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Preface

This text describes the features of a dialect of LISP known as INTERLISP. IN-
TERLISP stands for “Interactive Lisp.” It provides a rich program development
and problem prototyping environment.

There is strong agreement among LISP developers and users about what the
basic functions of LISP are. All of these are described in the first few chapters of
this book. But there is no “standard” for LISP and it is unlikely that we will see
one in the near future. To date, the best standard that exists is the INTERLISP
Reference Manual. This manual is edited and maintained by staff members of
the Xerox Corporation’s Palo Alto Research Center, Palo Alto, CA and Special
Information Systems Division, Pasadena, CA.

For all of the detail and wealth of information contained in the INTERLISP
Reference Manual [irm78, irm83], it remains a remarkably obtuse document.
Some say that it is user-hostile. One must have extreme familiarity with IN-
TERLISP, usually through the tutelage of an INTERLISP guru, to be able to
use it efficiently. This text attempts to correct this problem by describing most of
the major functions, capabilities, and packages provided by INTEBUMISP. It is
augmented by numerous examples taken from actual experience as well as many
technical papers published in the open Al literature. Where appropriate, refer-
ences to the INTERLISP Reference Manual [irm78, irmS3] will be made using
the notation (IRM x.y.z) where x,y,z refer to the chapter, section, and para-
graph of the IRM respectively.

This text is based upon experience gained using INTERLISP on an IBM
3081 under VM/SP (version 3.0), INTERLISP-D on a Xerox 1100 Scientific In-
formation Processor (through the Fugue release), and INTERLISP-10 on a
DECSystem-20 under TOPS-20 (release dated 26-SEP-83).

It is not my intent to teach you how to “program” in LISP in this text. There
are numerous books that explain the essential features of LISP programming
from the viewpoint of the novice. Many of these are mentioned in the references,
but a notable volume is that of Winston and Horn:
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Viii Preface

Winston, P. and Horn, B.K.P,
Lisp
Addison-Wesley, Reading, MA, 1981

whose first few chapters provide a basic introduction to LISP programming. If
you have not programmed in LISP before, you may also want to consult

Touretzsky, D.
LISP: A Gentle Introduction to Symbolic Computation
Harper & Row, New York, 1983 '

Wilensky, R.
LISPCraft
W. Norton & Sons, San Francisco, 1984

The text is divided at a logical breakpoint. Chapters 1 through 16 discuss
features that are largely found in most LISP systems, although they may often go
by different names or have different implementations. Chapters 17 through 31
discuss features that provide INTERLISP with its power as an interactive pro-
gramming environment. A second volume is contemplated that will discuss the
INTERLISP-D implementation. Tentatively, this volume will be entitled

Interlisp: The Interactive Programming Environment

You will find this current text replete with examples of LISP functions that
have been described and (sometimes) commented. This reflects a bias of mine
that you understand a language by reading programs or functions written in the
language. That is, we all learn programming by analogy; we look at how some-
body else has written a program and copy the essential elements. Sometimes we
copy their style and faults as well. The functional code presented in this text has,
for the most part, been tested on one of the INTERLISP systems mentioned
above.

Stephen H. Kaister

Silver Spring, Maryland
March. 1986
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Introduction

LISP, as a language, has been around for about 25 years [mcca78]. It was origi-
nally developed to support artificial intelligence (Al) research. Atfirst, it seemed
to be little noticed except by a small band of academics who implemented some
of the early LISP interpreters and wrote some of the early Al programs. In the
early 60’s, LISP began to diverge as various implementations were developed for
different machines. McCarthy [mcca78] gives a short history of its early days.

LISP, as a programming language, began to be widely used in the early 70’s.
A number of organizations supported different dialects—BBN, MIT, Xerox
PARC, UC Irvine, and others. In the middle 70’s, several people realized that
conventional machines were not suitable for the efficient execution of LISP pro-
grams. They began to develop a class of specialized processors known as LISP
machines. By the early 80’s, renewed interest in Al and expert systems caused
LISP to become more visible. Several dialects had been more or less standard-
ized and a few companies (such as Xerox, Symbolics, and Lisp Machine) had
entered into commercial production of LISP machines. Moreover, many people
had discovered that LISP provided an excellent implementation language for
some of the new ideas in software engineering.

Today, LISP is being used for many applications other than Al programs
(for example, see [elliSO] and [leviSQ]), although it is still strongly associated
with that discipline. In order to further its acceptance as a general purpose pro-
gramming language, | have focused on describing a specific dialect of LISP—
INTERLISP. I chose INTERLISP because there is a well-defined standard for
it—namely, the INTERLISP Reference Manual [irm78, irm83]. Moreover, IN-
TERLISP is available on the DECSystem 10/20 under TENEX and TOPS-20,
on the VAX-11/780 under UNIX and VMS, on the IBM 30xx series under VM/
SP (available from Uppsala University, Sweden), and on the Xerox 1100 family
of scientific information processors. Undoubtedly, more implementations will
be available in the near future.

This chapter will set the stage for an in-depth analysis of INTERLISP. In
the first two sections, we motivate the choice of LISP and briefly explore some of
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the available dialects. Sections 1.3 and 1.4 discuss the impact of LISP on the way
we program and on the way we think about the architecture of software systems.
Section 1.5 reviews the structure of the text. Section 1.6 discusses presentation
ISSues.

1.1 WHY LISP?

Why should you choose LISP to implement a software system? For many rea-
sons, as it turns out, some of which are physical (e.g., implementation issues),
some of which are stylistic (e.g., programming issues), and some of which are
conceptual (e.g., design or architectural issues). For the moment, let us concen-
trate upon the physical reasons.

LISP offers many features and capabilities that would be/are difficult to
provide in more traditional languages such as FORTRAN, PASCAL, and PL/1.
I would like to review these with you and argue for the view that LISP can do
them better. This does not imply that LISP is the best language for all applica-
tions. There is no such language. But | do take the view that LISP should have a
well-defined niche in your repertoire of programming languages.

With this view in mind, the following paragraphs discuss some of the key
ideas associated with LISP and contrast their implementation in conventional
languages.

1.1.1 Symbolic Computation

Most programs compute on numbers. Conventional languages make the task of
manipulating numbers quite easy. They may also be able to handle string or
character expressions in an efficient manner. But, as Al research has shown,
much computation at the human level is done on concepts—complex, structured
representations of knowledge. Representation of knowledge is often the most
critical element of the computational problem. There may be no intuitively obvi-
ous way of selecting numeric codes to represent pieces of knowledge. Arbitrary
encodings tend to obscure significant aspects of the problem, and make the task
of programming, debugging, and testing very complicated.

LISP was designed to allow the efficient, easy representation of symbolic
expressions. We use lists in everyday life to keep track of things, so our personal
experience should readily transfer to our use of lists in the computer. LISP essen-
tially recognizes two basic data structures: atoms and lists. Atoms are just sym-
bols—indivisible sequences of characters that have a meaning and a value. Lists
are collections of atoms and/or lists (e.g., sublists). Lists are usually stored in
the computer in a form similar to the way we see them on paper. The sequencing
information of the elements of a list is explicitly stored with each list item.

To manipulate symbolic knowledge, we represent it as a list of atoms and
then perform various operations upon the representation. In many cases, the
manipulation functions modify the structure of the list to add or subtract infor-
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mation, to alter its structure, or to transform its contents. Examples throughout
the text will demonstrate how these operations are performed.

A number of languages have been built “on top of” LISP to provide sym-
bolic algebraic manipulation, most notably, REDUCE2, developed by A.C.
Hearn and colleagues at the University of Utah, and MACSYMA, developed by
the MATHLAB Group at the Laboratory for Computer Science, MIT [math77].
Nicol [nicoSI] provides a definition of a simple symbolic differentiator for alge-
braic expressions.

1.1.2 Information Representation by Lists

Information representation is a critical problem in designing a software system.
It is particularly acute in Al programs and expert systems because the informa-
tion structures themselves are manipulated. In LISP, most information is repre-
sented as lists. Simple lists are composed of atoms while complex expressions
have multiple levels of lists. This capability allows us to build very complex infor-
mation structures without too much regard for addressing. By comparison, con-
ventional languages rarely provide more than linear data structures, including
two dimensional arrays and record structures as in PASCAL.

Consider the representation of information concerning familial relation-
ships between individuals. To represent the fact that Isaac is a child of Abra-
ham, we may use the list

(is-child-of lIsaac abraham)

and the corresponding list to represent the relationship that Abraham is a parent
of Isaac

(is-parent-of abraham lIsaac).

Other facts that might be represented about individuals include physical
data such as gender, age, height, and so on, and other relationships, skills, or
occupations. The power of the list representation allows us to capture all of this
information in a single uniform data structure, the list. With a few simple primi-
tive functions, we may begin to access and manipulate this information, and
even build more powerful operators.

1.1.3 Primitive Functions

The essential kernel of LISP [moor79] is composed of a small set of primitive
functions. Usually, these functions are hardwired to improve the efficiency of
their execution. The composition of the kernel depends on the dialect. For ex-
ample, the kernel of INTERLISP/370 is written in IBM assembly language
while the kernel of INTERLISP-D is written in microcode.
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Most conventional languages do not have a primitive set of functions.
Rather, the primitive functions reside in the underlying machine language. Con-
ventional languages such as FORTRAN and PASCAL consist of statement types
which represent simple methods for writing (possibly long) sequences of primi-
tive functions. The source statements are translated into a sequence of machine
language instructions by a compiler or an interpreter. The resulting executable
program often bears no resemblance to the source program.

John Backus [back78] argues for a simpler style of programming based on
the concept of “functional programming.” It is interesting to note that func-
tional programming corresponds to the basic mathematical theory of function
composition carried over to the realm of programming language development
and methodology.

LISP provides an excellent example of the notions expressed in Backus’s
paper. The minimal set of functions that we need in LISP to implement all other
functions are CAR, CDR, and CONS, EQ, and a few predicates for testing data
types. All other functions may be built from compositions of these elementary or
primitive functions. Of course, most LISP systems define a much larger set of
primitive functions for reasons of efficiency. Many of the functions that are de-
scribed in this text for which definitions are given exemplify the notion of func-
tion composition.

1.1.4 Function Composition

Proceeding from the kernel, LISP users create more complex functions by com-
bining expressions containing primitive functions. The procedure is directly
analogous to mathematical function composition. The beauty of this feature is
that most of INTERLISP is written in LISP. One merely keeps building func-
tions on top of functions to create more complex systems.

We should think of LISP as a tool for building more powerful tools. Many
systems designed for implementing artificial intelligence applications may right-
fully be considered extended programming languages. Good examples include
OPS5 [forgSl] developed by Charles Forgy at CMU and ROSIE [fainSl, 82,
hayeS2] developed by Frederick Hayes-Roth and others at the Rand Corpora-
tion.

1.1.5 Functions versus Data

LISP possesses a singular advantage over most conventional languages, even
those that are interpreted. This is that functions and data are represented in the
same way. Conventional languages stress the separation of code and data as in-
dependent entities. LISP emphasizes uniformity of representation—a single
model, if you will. Thus, we can create a data structure as a list and treat the
same data structure as an executable function definition or function invocation.

The beauty of this approach is demonstrated in a technique known as proce-
dural attachment [stee79]. You may define an object, nominally a frame, which
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has slots for the attributes that describe or distinguish the object from others of
its type. The value of an attribute may be an integer, atom, string, pointer to
another object, or a procedure (e.g., a LISP function definition). The procedure
may do anything a LISP function can do since it is a LISP function. Common
uses of procedures are validation of data, transformation of data, asking ques-
tions to obtain the values of other attributes, or performing some computation to
instantiate another instance of the frame. You may operate upon the procedure
definition as data, but execute it by applying EVAL to it.

1.1.6 The EVAL Function

The function EVAL serves a dual purpose in LISP. It is both the formal defini-
tion of the language as well as an interpreter for its execution. That is, EVAL
validates the syntax of the expressions presented to it for execution and verifies
their semantics by invoking the requested functions. By comparison, most con-
ventional languages separate the syntax validation, performed by the compiler,
from the semantic verification, performed by the run-time monitor.

1.2 LISP DIALECTS

LISP has a long and rich history. There have been many dialects of LISP imple-
mented on many different machines. McCarthy’s paper [mcca78] summarizes
the initial development of LISP. As he notes, it began to rapidly diverge after a
few years. Today, I think it is safe to say that there are two main dialects of LISP:

1. INTERLISP, which runs on DECSystem 10/20 machines, DEC ma-
chines, and Xerox lIxx Scientific Information Processors. A subset of
INTERLISP, available from Uppsala University, Sweden, runs on IBM
30xx processors under VM/SP.

2. MACLISP, developed for the DECSystem 10/20 family by MIT’s Artifi-
cial Intelligence Laboratory, which also runs on V AX-11/7xx machines.
It, too, has spawned new machine architectures, principally Lisp Ma-
chine’s LAMBDA machine and Symbolics’ 36xx family of LISP Work-
stations. MACLISP has actually been superseded by CommonLisp, but
the heritage remains the same.

In this section, | will briefly review and note some of the other LISP dialects
and their major differences.

1.2.1 MACLISP/Zetalisp

MACLISP is a dialect of LISP that was developed at MIT’s Laboratory for Com-
puter Science (formerly Project MAC). It runs on DECSystem-10/20s and VAX-
I1/7xx series processors. MACLISP is oriented to efficient numeric computa-
tion within a symbolic environment. MIT’s Laboratory for Artificial Intelligence
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pioneered the concept of personal computers running LISP through the develop-
ment of the CONS (1976) and CADR (1978) Lisp machines. Subsequently, Sym-
bolics [symb83] was formed to develop commercial Lisp machine products.
Their first entry was the LM-2 which was a repackaged and enhanced CADR
machine. In 1982, Symbolics announced the 3600, a fourth generation (they
claim) Lisp machine.

Winston and Horn [wins81] introduce MACLISP in the first part of their
book. The second part gives numerous examples of LISP applications drawn
from the Al arena. Charniak, Riesbeck, and McDermott [charSO] provide an
extensive discussion of MACLISP features in their book along with numerous
examples of Al programs.

There are major differences between MACLISP and INTERLISP. Winston
and Horn note some of the most important differences are as follows:

MACLISP does not distinguish case information; every character is
translated to upper case on input.

Several functions, such as SETQ, DIFFERENCE, and QUOTIENT, may
take multiple arguments in MACLISP.

MACLISP has only three types of function evaluation as opposed to four in
INTERLISP. These are related as follows:

MACLISP INTERLISP
EXPR EXPR
----- FEXPR
LEXPR EXPR*
FEXPR FEXPR*

MACLISP uses the function DEFUN instead of DEFINEQ. The syntax is
somewhat different.

In MACLISP, MAPCAR’s arguments are <function> and <list>. MAPCAR
may also take multiple lists as its arguments where the <function) is applied
to each element of each list.

The last two arguments of PUTPROP are reversed in MACLISP. That is,
the syntax of PUTPROP is

(PUTPROP <atom> <value> <property>).

MACLISP comments start with a ; which may occur anywhere within a
program without affecting the execution of the program.

Bitwise logical operations are performed by the function BOOLE in
MACLISP with a numeric argument indicating which function is desired.
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For their Lisp machines, Symbolics uses a variant of MACLISP known as
ZetalLisp [weinSlI] which introduces the following new features [symb83]:

A full range of data types

Flexible function calling and multiple-value returns
Stream-oriented input and output

The Flavor System for object-oriented programming with message passing
Macros for extending ZetaLisp syntax

Predefined functions for sorting, hashing, linear equations, and matrix
operations

Multiple name spaces (packages)

Zetal isp will be compatible with CommonLisp, which has been developed
by a consortium of academics and Al researchers along with considerable indus-
try participation [stee84].

1.2.2 FranzLisp

FranzLisp was developed at the University of California, Berkeley by John Fo-
deraro [fodeSl]. It runs under Berkeley Unix BSD 4.1 and Eunice on VAX-11/
7xx series machines. It is being ported to a large number of microcomputers
(primarily 16-bit machines) that also run BSD 4.1. FranzLisp is a subset of MA-
CLISP. Lately, it has taken a development path that diverges from MACLISP
through a series of enhancements designed and implemented by several universi-
ties notably the University of Maryland and Carnegie-Mellon University.

1.2.3 Portable Standard Lisp

Portable Standard LISP (PSL) is a version of LISP being developed by the Utah
Symbolic Computation Group. It has been described in a series of technical re-
ports by Griss [grisSl, gris82a, gris82b] and Marti [mart79]. PSL is written in a
language called SYSLISP whose definition is given in Benson and Griss [bensSl]
and Griss and Hearn [grisSI]. PSL was developed to support the porting of the
REDUCE-2 symbolic algebraic manipulation system to a number of different
machines. It is rumored that PSL will be the Lisp of choice for the Cray ma-
chines.

1.2.4 CommonLisp

CommonLisp [stee84] is a collaborative effort of over 50 researchers and LISP
programmers. Its authors claim that is a new dialect of LISP which is a successor
to MACLISP, but which has been strongly influenced by Lisp Machine LISP,
SCHEME, and less so by INTERLISP.
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CommonLisp is intended to be a common LISP. That is, it should serve to
unify the features of many of the successors to MACLISP that have been devel-
oped for a variety of machines. Several groups have indicated that they will en-
sure compatibility with CommonLisp once the standard reference manual is
published.

CommonLisp is intended to ensure portability of programs among a large
number of machines by eliminating those features that cannot be implemented
easily on any one of the machines. Some details are left to the implementors and
some features are made optional. The goal is to ensure that programs adhering
to the CommonLisp standard will be transferrable among machines as long as
they contain no machine-specific features.

CommonLisp is intended to define an internally consistent semantics for
many standard LISP functions. Different implementations of LISP have treated
variables in different ways which have resulted in different results when the pro-
gram is moved from one machine to another (or even from one implementation
to another, e.g., shallow versus deep bound INTERLISP systems). The refer-
ence manual specifies one and only one semantic interpretation for each func-
tion.

CommonLisp follows the MACLISP tradition in emphasizing the power of
system-building tools. Its designers envision, much like MACLISP and IN-
TERLISP, that many user-level packages will be built on top of CommonLisp,
but these are not part of the core specification.

CommonLisp is designed to be efficient and stable. It is primarily compati-
ble with MACLISP and its descendents/variants, but less so with INTERLISP.

CommonLisp will unify a community of LISP programmers who have be-
come quite fragmented by pursuing variations of MACLISP. The approach is
laudable in that LISP, at least the MACLISP side, is one of the last languages to
develop a coherent standard. | encourage you, when writing programs in IN-
TERLISP, to pay careful attention to the CommonLisp constructs in the event
that you want to translate your programs to that dialect. Having translated sev-
eral programs from esoteric implementations of FranzLisp, | can assure you that
the reverse translation is quite painful and labor-intensive (particularly to de-

bug).

1.3 LISP AS A PROGRAMMING ENVIRONMENT

LISP may be considered from two viewpoints; first, as a programming environ-
ment, and, second, as a conceptual environment. In this section, I will discuss
LISP as a programming environment. In the next section, | will discuss it from a
conceptual viewpoint.

Different application domains place different requirements on the lan-
guage(s) which may be used to write programs for them. Put another way, no one
language is suitable for all applications. LISP was developed to support artificial
intelligence (Al) research and has become the primary tool for developing pro-
grams in that discipline.
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This development has been neither circumstantial or serendipitous. LISP
incorporates many ideas (indeed, it pioneered quite a few) that are now consid-
ered to be essential elements of the professional programming environment. The
following paragraphs summarize the major requirements for an Al program-
ming language and discuss how LISP satisfies them.

1.3.1 Multiple Data Types

Al systems are generally large, complex programs. Many types of information
are used and need to be represented within the program. A variety of data types,
with associated operators, make it easier to encode and manipulate information
within a program. INTERLISP provides numerous data types (see Chapter 2).
One of the major features of INTERLISP isthat any data type may be passed as
an argument to a function. In most cases, the function must decide what it has
and how to process it. In addition, you may also define your own data types (see
Chapter 27) and utilize system functions to operate upon them.

Lists, in one form or another, are the basic data structure used in Al pro-
grams. Facilities for the efficient manipulation of lists are very important. Obvi-
ously, INTERLISP satisfies this requirement as it is list-based. Chapters 3 and 6
discuss the basic list processing primitives.

As INTERLISP evolved, new data types were added to the language to in-
crease its flexibility. Initially, INTERLISP supported only atoms, numbers (a
special type of atom), and lists. Later, strings and arrays were added. Today,
INTERLISP-D supports a number of basic data types such as bit maps and win-
dows, to provide a powerful, window-oriented programming environment. This
trend is significant because it makes INTERLISP useful as a general-purpose
programming language.

Defining new data types, such as relational tables for a database applica-
tion, is relatively simple. Providing the associated support mechanisms may or
may not be so simple depending on the complexity of the data structure. How-
ever, the ability to develop a data type to meet your application needs without the
artificial constraints that are often imposed by conventional programming lan-
guages should allow you greater flexibility in your programming.

1.3.2 Modular Programming

To make large systems understandable, you must be able to decompose them
into smaller modules that are both readable and maintainable. Segregation of
functionality makes a system easier to manage when updates or modifications
are required. Traditional languages may support two or three methods of de-
composition. For example, FORTRAN has both functions and subroutines. A
simple model is necessary to minimize sideeffects while making changes an easy
task. INTERLISP uses a functional programming model where the basic units
are functions. A system is just a collection of functions that invoke one another.
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One decomposition strategy is to gather common useful patterns of state-
ments into a package. These packages are not just abbreviations to save typing
(like macros). Rather, they are abstractions which encapsulate higher level con-
cepts that have meaning independent of their implementation. Once a package
is constructed and properly tested, a programmer may use it directly, without
regard for its internal details, because it corresponds to a concept or primitive
notion that he uses to solve the problem.

INTERLISP naturally supports the top-down programming methodology.
You may define functions with stubs for functions to be called but defined later.
The stubs are merely definitions of the functions which return NIL. When you
are ready, you may use the editor to replace a stub by its full definition. The
ability to incrementally build a system and test while you go has been called
“prototyping” by certain programmers. You should note that it does not corre-
spond to the classical top-down methodology espoused by most software engi-
neers.

1.3.3 Deferred Binding

By binding, we mean the association of a value with a variable. For most Al
programs, values are not known when the program is written, but become
known as the program is executed. Conventional languages bind either at com-
pile time or link time or, rarely, at execution time. INTERLISP binds at execu-
tion time. For example, the size of a list need not be known until some function is
applied to it. The same is true for the number and types of properties associated
with a particular atom. Moreover, the structure of a list need not be known until
it is operated upon by other functions. Indeed, the list may carry a description of
its structure with it, a feature that is difficult to replicate in conventional lan-
guages. The ability to break apart and put together lists with little or no regard
for storage allocation is a feature that is rarely, if at all, found in more conven-
tional languages.

1.3.4 Interactive Development

Most conventional languages are batch-oriented even though they may be ac-
cessed from a time-shared environment. That is, a complete program unit is
submitted for compilation, then loaded, and finally executed - where each oper-
ation is an independent activity. A few conventional languages such as BASIC
and APL may be interactively executed.

INTERLISP allows you to begin execution of programs that are only parti-
ally written. At worst, attempting to execute a missing function generates an
UNDEFINED FUNCTION error. More likely, it will cause a break (see Chapter
20) and allow you to attempt to correct the problem. The correction may be as
simple as correcting a misspelling of the function name or defining the body of
the function. Returning from a break usually allows you to resume execution
with no detrimental consequences to your environment. While this is not an
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ideal way to develop a program, it does provide a convenient mechanism for

testing a set of functions after they are written without having to complete the
whole program.

1.3.5 Flexible Control Structures

A control structure determines the sequence in which program statements and
functions are executed. INTERLISP supports the standard control structures
such as conditional execution, case selection, and iteration. It also provides
mechanisms for recursion (as an inherent language feature), and coroutines for
parallel processing. Beyond these language-based features, we may define more
sophisticated control structures that facilitate data-driven or goal-directed be-
haviors. These control structures are usually embedded in expert systems. Three
types of control structures that are often implemented in expert systems include
[aiel83]

Goal-driven (backchaining)
Event-driven
Model-driven

Goal-driven strategies use a goal rule which invokes all rules whose conclu-
sions are referenced by conditions in the goal rule. These rules invoke relevant
rules in a chain until the rules to be executed reference only input data to the
system.

Event-driven strategies use a set of inputs to determine the invocation of one
or more rule-sets. Executing these rule-sets generates new events which invokes
more rules and so on until some conclusion is reached (e.g., no more events may
be generated using the given rule-sets).

Model-driven strategies match a current “state of the world” against prob-
lem models to generate expectations. Expectations are events that stipulate in-
puts to be looked for or requested from the user. As data are entered, the state of
the world is updated until no more expectations may be generated (e.g., the
model is complete within the given rule-sets).

While these strategies are presented within the framework of expert sys-
tems, | believe that they have general utility to other applications that might be
written in LISP. Numerous books on Al, including Waterman and Hayes-Roth’s
book [wate78], discuss various approaches to these control structures.

1.3.6 Pattern Matching Facilities

Pattern matching is a content-based selection strategy where the alternative to
be executed is not known until run time. INTERLISP has been utilized to build
a number of different types of pattern matching programs. Kornfeld [korn79]
discusses a class of high level languages known as pattern-directed invocation
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languages. Waterman and Hayes-Roth [wate78] edited a book that describes
recent (at that time) work in pattern-directed inference systems.

Patterns are merely templates for interpreting (or validating) otherwise arbi-
trary data structures. For example, the pattern (A ? ? D) matches the data struc-
ture (A B C D) but does not match the data structure (E ? ? D). Pattern match-
ing allows us to retrieve a selected set of values of data structures (often called
facts or assertions) from a larger collection by applying a pattern to them. Sim-
ple pattern matchers are easy to build and are often given as introductory pro-
gramming projects in LISP courses. Kornfeld describes a simple pattern
matcher and demonstrates its actions with a few examples.

In most databases, there are a number of facts that are not physically
present in the database. More sophisticated pattern matchers have been devel-
oped that can deduce or infer data from existing data given a set of patterns to
work with. These pattern matches form the basis for production rule systems,
many of which are described in Waterman’s book. Shapiro [shap79], Winston
and Horn [winsSl], and Charniak et al. [charSO] all describe examples of simple
deduction and inferencing systems based on pattern matching.

1.3.7 Language Extensibility

As | mentioned above, it is relatively easy to implement a very small kernel of
LISP that allows you to “start” programmming fairly quickly. Rather quickly,
you will find that you need additional functions or capabilities to implement
problem solutions. Unlike most other languages, you will find that it is easy to
extend the LISP language by merely introducing new functions. Many of the
functions that you will encounter in this text have been written using basic LISP
functions. That is, they represent extensions to the LISP language. The flexibil-
ity and ease with which you may extend the language is perhaps its most power-
ful feature. This means that you may tailor the form and features of the language
to any class of users or any type of application. Once you begin programming in
LISP with any regularity, you will find that you think in terms of language exten-
sions rather than just implementing programs.

1.4 LISP AS ACONCEPTUAL ENVIRONMENT

Program design is a creative (some say artistic) process. Humans solve the prob-
lems while computers implement the solutions. But the transformation from
concepts to executable code is often a difficult and laborious process. The variety
of problems to be solved means that there can be no standard recipes or mecha-
nized processes to effect program design. For many problems, we do not know
the nature of the solution although we may have a good idea of what the answer
should be. The programming process then becomes one of exploration and ex-
perimentation with solution techniques to elicit the essence of the problem. Of-
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ten, the solution emerges along with the understanding of the problem. This
method of programming is sometimes known as prototyping.

LISP provides an environment that makes prototyping an effective means of
exploring the solutions to problems. What we look for is the conceptual architec-
ture of the problem, the steps to be taken to “solve” the problem, e.g., to pro-
duce the right answer. Using conventional languages, we almost always must
know the entire solution before we begin to write the program. With LISP, we
can incrementally build and refine the solution as we explore different alterna-
tives in the problem representation.

Stefik et al. [stef82] note that design isthe making of specifications to create
objects that satisfy particular requirements. The problem that faces the pro-
grammer isto develop the specifications for the program that produces a specific
result. However, when the algorithm(s) and methods for solving the problem are
not explicitly known, conventional languages offer no help in designing the pro-
gram because they require us to have a complete conceptual architecture before
coding.

Stefik et al. note that there are five key problems associated with design:

1. In large problems, a designer cannot immediately assess the conse-
quences of design decisions. He must be able to explore design alterna-
tives tentatively.

2. A design will be constrained by many sources. Oftentimes, the con-
straints are imposed by the features and capabilities of the language in
which the solution will be implemented.

3. To solve large problems, the designer must cope with system complexity
by factoring the design into subproblems. He must also cope with inter-
actions between the subproblems, since they are seldom independent.
Consider the simplicity (after studying the LISP language) with which
you may use top-down programming to decompose a complex problem
into simpler, more manageable pieces.

4. When a program becomes very large, it is easy to forget the reasons for
design decisions. It is also hard to assess the impact of a change to a part
of the program. While LISP does not provide any mechanism for captur-
ing design decisions (other than comments), the ability to immediately
test modifications to program segments and repeal (undo) those which
do not lead to progress in the problem solution is a feature that is not
often found in other languages (or is very difficult to perform).

5. When programs are modified to reflect new design decisions, it is impor-
tant to be able to reconsider different possibilities. Few languages have
the inherent capability to maintain multiple versions of functions or to
manage the structure of programs spread across one or more files.
Through the File Package, INTERLISP provides this feature as a stan-
dard capability.
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1.5 STRUCTURE OF THE TEXT

This text is divided into 31 chapters, a reference list, and an index. It loosely
follows the organization of the INTERLISP Reference Manual [irm78, irm83].
However, | have taken the liberty of organizing the contents of individual chap-
ters according to my own logical view even though this contravenes the IRM.

Chapter 1is an introductory chapter. It contains a short history of LISP and
a discussion of different LISP dialects. LISP is examined in both the program-
ming environment, as a language for implementing tools and systems, and in the
conceptual environment, as a way of thinking about the functional architecture
of systems. The remainder of the chapter contains this outline and notes con-
cerning the presentation methods within the text.

Chapter 2 discusses the basic data types provided by INTERLISP. These
include atoms, lists, numbers, strings, and arrays. Operations on these data
types are described in succeeding chapters.

Chapter 3 discusses the primitive functions of INTERLISP. Most other
functions can be built using these primitives. These functions are usually
hardwired in machine language or microcode for purposes of efficiency. In gen-
eral, most of the functions defined in this chapter and Chapters 4-13 are com-
mon to all dialects of LISP although there may be a few discrepancies. You
should note that INTERLISP is generally much richer in its primitive functions
than most other dialects of LISP.

Chapter 4 discusses the fundamental predicates. Predicates are a means of
testing the condition of an S-expression or atom (or other datatype). A predicate
returns either NIL (meaning false), T, or some non-NIL value (both of which
mean true). Most of the fundamental predicates test whether their argument is a
given datatype, whether the argument has a certain characteristic (e.g., even-
ness or oddness) or whether two things are equal.

Chapter 5 discusses logical connectives and predicates. A logical connective
is either AND or OR. Logical predicates are EVERY, SOME, and their vari-
ants. Note that it is possible to implement sophisticated control structures using
the AND and OR functions.

Chapter 6 discusses the list manipulation functions. These functions allow
you to create and destroy lists, concatenate two or more lists, and copy lists.
Together with the functions presented in Chapters 3 and 4, these functions usu-
ally constitute the basic functions of the Lisp language.

Chapter 7 discusses property lists and functions for manipulating them.
Property lists are attached to atoms. A property list is a list of <name> <value)
pairs which may be thought of as descriptors or characteristics of the atom.

Chapter 8 discusses function definition and evaluation. A function is a spec-
ification for operating upon an atom, list, or other datatype or data structure.
INTERLISP provides several methods for defining and using functions.

Chapter 9 discusses atom manipulation and the rules for creating atoms.
Atoms are the elementary information carriers in INTERLISP.
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Chapter 10 discusses string manipulation functions. Strings represent an
unusual datatype in that they are neither atoms nor lists.

Chapter 11 discusses arrays, including hash arrays, and their associated
functions. It describes how to create 2-D arrays, known as matrices.

Chapter 12 discusses the mapping functions. Mapping is a technique for
iterating (applying) a function over multiple instances of a datatype.

Chapter 13 discusses the basic arithmetic functions, both integer and float-
ing point. Special functions, including some statistical functions, are also de-
scribed.

Chapters 14 and 15 describe the functions associated with input and output.
Rather more information is provided in these chapters than the novice program-
mer needs to know. Judicious reading will help you decide what is immediately
necessary. Mastery of the input/output functions is essential to becoming a com-
petent INTERLISP programmer.

Chapter 16 discusses file management functions. Unlike conventional lan-
guages, which depend on the operating system or system utilities for file man-
agement [kais82], INTERLISP incorporates a set of file management functions
into its environment. Depending on the environment, these functions may or
may not interface with external operating system functions.

Chapter 17 describes the features and capabilities of the File Package. At
one level, the File Package may be viewed as a sophisticated source code control
system similar to that provided by the Programmer’s Workbench in UNIX
[dolo78].

Chapters 18 and 20 discuss error handling and debugging procedures.
Whenever an error occurs, INTERLISP allows you to inspect the state of your
environment, modify it, and (hopefully) resume your computation.

Chapter 19 discusses the LISP editor. The editor understands the structure
of S-expressions and function definitions, so it is known as a structure editor. It
operates upon S-expressions in a manner that is (usually) guaranteed to preserve
the balance of parentheses. Novices may begin with a few simple commands.
Experienced users have a wealth of powerful, flexible commands at their beck
and call.

Chapter 21 discusses the process of advising a function. Advising allows you
to modify the interface between a function and its environment, whether or not
the function is called from another function. You may “intercept” the function
before or after it is executed.

Chapter 22 discusses the DWIM (Do What | Mean) facility. DWIM pro-
vides an error correction facility for simple errors associated with spelling, and a
facility for handling simple structural errors. DWIM receives control before the
error mechanisms described in Chapters 18 and 20.

Chapter 23 discusses Conversational LISP (CLISP). CLISP allows you to use
English-like phrases in place of some of the normal INTERLISP constructs.
CLISP makes LISP programs appear more like a conventional language and
hence more readable.
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Chapter 24 discusses a number of LISP users packages. These are packages
or subsystems contributed by various INTERLISP users that extend the capabil-
ities of the system in various ways. As INTERLISP-D continues to spread
throughout the Al and programming communities, more packages are being
developed and submitted to Xerox all the time. Xerox has incorporated some of
the most useful and practical packages directly into the INTERLISP-D system.

Chapter 25 discusses the Programmer’s Assistant. The Programmer’s Assis-
tant performs simple error correction, including spelling correction, on the more
obvious errors committed by a user when typing in a function or S-expression to
the system.

Chapter 26 discusses Masterscope, a utility for managing aspects of the code
development process. Masterscope allows you to keep track of the modules or
functions that have been developed, to examine their interactions, and to main-
tain (to a limited extent) subsets of the functions comprising your program.

Chapter 27 discusses the Record Package. The Record Package effectively
implements a data-access programming technique that relieves you of the bur-
den of worrying about storage management. You determine the data structures
and how they are to be used. INTERLISP translates these declarations into calls
to primitive functions when it executes your programs.

Chapter 28 discusses the History Package. Together with the Programmer’s
Assistant, the History Package provides a flexible environment for developing
source code. The History Package effectively maintains an audit trail of your
interactions with INTERLISP at the top level. You may retry, correct, or undo
erroneous expressions, and you may create new commands within the package.

Chapter 29 is a catchall chapter for functions that don’t seem to have a logi-
cal fit elsewhere. This is really not a fair interpretation of the utility of these
functions, but they are too few to warrant a chapter of their own. Included are
the clock functions, greetings, storage management, and a function for regain-
ing space when your virtual memory becomes full.

Chapter 30 discusses the structure of the underlying INTERLISP environ-
ment. INTERLISP dynamically binds values to variables using a stack mecha-
nism. The stack is accessible to you through stack manipulation functions or
through the Break Package.

Chapter 31 discusses some aspects of the process of compiling. Once you
have debugged your programs to the point where you think they can run without
major errors, it is often advisable to compile the code in order to gain increased
efficiency and performance.

1.6 COMMENTS ON THE TEXT

The structure of this text reflects some of my personal biases about how to
present material to a technical audience. It is important that you, the reader, be
aware of these biases as you read (or peruse) this and succeeding volumes.
One major bias is that readers understand and (hopefully) learn more about
the subject by seeing many concrete examples of the things that are being talked
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about. You will find this text replete with examples for the many functions and
features that are discussed. In addition, | show how to develop new functions for
capabilities that are not currently provided by the baseline version of IN-
TERLISP (although this is changing as a result of Xerox’s continued develop-
ment and enhancement of the language and programming environment).

Another bias is that people learn more about how things work by seeing how
functions and programs are put together. Thus, in many cases, | have tried to
show the basic code that is used to implement a feature. The code is often a
skeletal representation of the functions necessary to implement the full capabil-
ity. Some functions are merely suggested while others are developed in full.

Where functions take multiple arguments, | have used a tabular format to
show the structure of the function and describe its arguments. | feel this makes it
easier to refer to the meaning and/or usage of arguments that may be given to a
function.

I have tried to follow several conventions in this text to make it easy to read.
These conventions are listed below:

When | reference an INTERLISP function, whether in text or in an
example, it will always be capitalized.

Arguments to INTERLISP functions, whose skeletons are given in the text,
will always be entered in lower case, except when upper case is specified
explicitly in the INTERLISP Reference Manual [irm78,irm83].

When | refer to arguments of INTERLISP functions in text, I will capitalize
the names of the arguments so that their usage is clear.

When | define a function, | will capitalize the primitive functions used, but
generally show the function definition in lower case. | believe this highlights
the distinction between the basic functions and those that may be developed
“on top of” INTERLISP. | also believe that it improves readability of the
text. You should note, however, that INTERLISP always operates in upper
case.

| have consistently tried to use the symbol to indicate the prompt
throughout the text. This symbol is normally used only on INTERLISP-D. |
have represented it as two characters since most terminals (and typesetters)
do not have the left arrow as a standard symbol. Please be aware that left
arrow has several other meanings as well in INTERLISP.
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After you have defined a problem, one of the first tasks that you face in captur-
ing the problem solution in executable code is how to represent the data required
to solve the problem in a form manipulable by the computer. In doing this, you
are constrained by the data types and structures provided by the programming
language. In most conventional programming languages, these are fixed by your
choice of language. In INTERLISP, a set of basic datatypes is provided with the
language, but you are also provided with the ability to extend these through vari-
ous mechanisms inherent in the language.

INTERLISP provides a wide variety of datatypes. The primitive datatypes
are lists and atoms. Other datatypes have been provided to increase the effi-
ciency of INTERLISP and remedy the problems of representation of certain
types of data structures. This chapter will describe the basic datatypes used by
most INTERLISP programmers. Extensions to these datatypes will be discussed
in chapters that describe the functions for manipulating the datatypes.

2.1 LITERAL ATOMS

A literal atom is the most basic datatype of INTERLISP. A literal atom is some-
thing that stands for itself. Thus, every literal atom created in the INTERLISP
system must be unique. If two literal atoms have the same name (called the prin-
namg or pname), then they are the same identical atom. This means that these
atoms will always have the same address in memory.

Atoms play the part of variables in INTERLISP. Different programming
languages treat the notion of variables in different ways depending on how the
variable is stored in memory and how values are bound to it. Variables allow you
to write programs in which the actual values of data items are not known until
the program is executed. However, by implication, the values associated with
variables in a programming language are always finite because of the limitations
of the computer.

19
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The “attributes” of a variable describe how the variable will be treated in a
program. Among the attributes that may be associated with a variable are

The permitted range of values
The scope of its name

How and when it is created
The type of the variable

A simple model of a variable might appear as:

Attributes

Value representation

Unlike conventional programming languages, INTERLISP variables do not
have an explicit type associated with them. Rather, the variable takes on the type
of its current value whether it is a array pointer, integer, string, or another atom.

The “value representation” describes the form that the value of the variable
takes in memory. Often, the value representation is a function of the underlying
hardware. However, list representation, even though an elementary datatype, is
a data structure imposed on top of (or extending) the essential machine hard-
ware.

INTERLISP extends this simple model with additional information, Each
literal atom consists of the following components

a pname (print name)

a value

a property list (see Chapter 7)

a function definition cell (see Chapter 8)
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2.1.1 Pnames

A pname is the name of the atom as it appears when printed by one of the IN-
TERLISP printing functions. Pnames are not directly accessible by the user.
The representation of a pname in memory is dependent on the particular imple-
mentation. The maximum length of a pname is a 127 characters for IN-
TERLISP-10 and 255 characters for INTERLISP-D.

Examples of atoms include the following

BEN FRANKLIN COUNTRY
1.2567 751

2.1.2 Value Cells

A value cell is a storage area assigned to hold the value of an atom. A value cell
always contains the top-level value of an atom. When an atom is initially created,
the value cell contains the atom NOBIND which indicates that no explicit value
has been bound to the atom. Atoms may also have values bound in stack frames
as the result of PROG expressions and function calls.

A value cell is created for an atom when

The atom is referenced in a SETQ function
The atom is used as the argument to a function
The atom is used as a PROG variable (see Section 3.7)

Values are really pointers to other INTERLISP objects rather than the ac-
tual values themselves.
Binding is discussed in Chapter 30.

2.1.3 Property Lists

Each atom may have a value. The value may be a number, another atom, a list,
or an address of some other structure, such as an array. But atoms really repre-
sent (in most cases) complex objects; that is, they stand for something. These
object usually have a multitude of characteristics. Most conventional languages
require you to define and manipulate several complex data structures in order to
fully define an object. LISP, however, allows you to attach a property list to an
atom. A property list is a list of descriptors and their associated values which
serves to further define or describe the object represented by the atom.

2.1.4 Function Definition Cells

Each atom has an accompanying function definition cell, e.g., a cell whose con-
tents are a list that defines a function of the same name. Thus, in INTERLISP,
atoms may have both values and actions associated with them. INTERLISP dis-
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tinguishes between these two usages by the appearance of the atom name in a
list.

2.1.5 Creating Atoms

There are several ways to create atoms in INTERLISP:

by assigning a value to a literal atom’s pname

by packing a sequence of characters to form an atom pname
by making an atom

by asking the system to generate a temporary symbol

Setting the Value of an Atom

An atom may be created by assigning a value to a literal atom. This is the most
commonly used method of creating atoms in INTERLISP. As an example, con-
sider the assignments

(setg boy John)
(set "boy 7John)

Both of these statements have the effect of assigning the value “john” to the
atom whose name is “boy.” The difference results from the operation of the
function SETQ (see Section 3.8). If this is the first time that “boy” has ever
occurred in an INTERLISP program, when the function (either one) is executed,
the atom “boy” will be created and assigned the value “john.” By created, we
mean that INTERLISP allocates memory for it, defines the underlying data
structure, and places JOHN in the value cell of BOY.

Creating an Atom via PACK
An atom may be created by packing a list of atoms to form the PNAME of a new
atom. Typically, the list consists of atoms each of which is a single character.
Consider the list (b a 11i m o r €). When this list is given to PACK (see
Section 9.3.1) as an argument, it concatenates the individual characters into a
PNAME that represents a single atom. In this case, the single atom is BALTI-
MORE. Of course, the list does not have to be composed of single characters as
in the following case:

(PACK "(tom-jones))
which yields the atom TOM-JONES.
Making an Atom

An atom may be created by the function MKATOM which operates on strings
(see Section 9.2.2). For example, the function call
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(MKATOM "john-jones™)
would create the atom JOHN-JONES.

Generating a Temporary Atom
Atoms may be created by INTERLISP at your request. INTERLISP provides the
function GENSYM to create atoms of the form xnnnn where x is a character and
the n’s are digits. Typically, atoms generated in this way are used for temporary
storage within an INTERLISP program.

To create an atom using GENSYM, you may either specify the character or
NIL as in the following examples:

(GENSYM ’B) which produces an atom such as B0102
(GENSYM) which produces an atom such as AOOOQI

A counter is maintained internal to INTERLISP. The value of this counter
is used to determine the digits which are appended to the character passed to
GENSYM. If no character is specified by the user, INTERLISP automatically
assumes the character A.

2.1.6 Binding Variable Values

Binding is the act of associating a value representation with a variable. There are
two notions of binding that you must understand in INTERLISP:

1. Bound versus unbound atoms

A "bound" variable has a legal value assigned to it. An
unbound variable has no value assigned to it (not even
NIL). If you use a variable in an expression, INTERLISP
attempts to evaluate it, finds that it does not have a
value, and issues the error message "U.B.A." for "UnBound
Atom". Atoms created without values (such as in PROG
declarations) will have the atom NOBIND placed in their
value cell. NOBIND is a special atom within the INTERLISP
system which indicates "no value.” A predicate, BOUNDP,
allows you to determine whether or not an atom has a
value bound to it.

2. Global (free) versus local atoms

INTERLISP programs (systems) consist of a set of
functions that are linked together by calls from one
another. Variables may be global or local within a set of
functions. A local variable is one which is defined
within a function and is used only within that function.
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Typically, local variables are declared by the LOCALVARS
declaration or by appearing in a PROG header. Global
variables are variables defined in one function and used
(freely) in one or more other functions. The INTERLISP
name space is a one-level name space. Thus, any atom
defined by a SETQ, GENSYM etc. is known to all
functions.

Another type of binding is the time when storage is allocated to the variable.
Most conventional languages and systems will bind variables to memory loca-
tions at one of three times;

Compile time
Link edit time
Execution time

INTERLISP dynamically allocates storage to all atoms at execution time.
This allows memory to be used efficiently in the computation process at some
expense to performance in managing the memory. Currently, one of the critical
problems with INTERLISP (and other LISP dialects) is that once atoms are cre-
ated they cannot be destroyed in the same session. Variables created in a PROG
header are temporary place holders on the stack. All other atoms are allocated
specific storage locations and become a “permanent” part of your INTERLISP
environment. Methods for managing your environment to save only the relevant
information are discussed in Chapter 17.

2.1.7 Variable Typing and Declaration

Most conventional languages require you to declare your variables before you
use them. That is, you must “announce” the name and type of a variable to the
compiler in a declaration statement before the variable name is used in an exe-

cutable statement elsewhere in the program. The “type” of a variable deter-
mines

The set of values it may assume
The set of operations to which it may be subjected

For example, declaring a variable to be a STRING (or CHAR) specifies its
storage representation and the permissible operations upon it. Thus, | can con-
catenate two strings, but I cannot add them together. Each TYPE in a conven-
tional language has a set of operations that are checked by the compiler at com-
pilation. The compiler generates error messages if you attempt to violate the type

of a variable. Note that the type of the variable is (usually) permanent through-
out the program.
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INTERLISP (and other LISP dialects) do not require you to declare or type
a variable. A variable is declared when it is referenced for the first time. Its type
is determined when you make an assignment of a value to the variable. Thus, the
“type” of a variable may change during the execution of a program as different
values are assigned to it. Type checking is performed when the value of a vari-
able is utilized since a function cannot know the type of the variable’s value until
it has actually referenced it.

The notion of typing leads to the concept of “constants,” e.g., data items
whose value cannot be changed. INTERLISP (and other LISP dialects) do not
utilize the notion of constant except in the following cases

The atom T has a fixed value that may not be changed.
The atom NIL has a fixed value that may not be changed.
Numbers (both FIXP and FLOATP) have values that may not be changed.

In some systems, NOBIND is represented as an atom whose value may not
be changed.

Thus, aside from these few cases, any atom may be assigned any value at any
time during execution.

2.2 NUMBERS

All programming languages include the capability to manipulate numeric data.
Even in nonumeric data processing, there is a need to use numbers as counters,
system parameters (such as line length), and control variables in a computation.
Unlike mathematics, however, the classes of numbers that we use in program-
ming languages are finite. That is, the range of values of a class of numbers is
constrained by the physical attributes of the machine (such as register size).
INTERLISP supports two types of numbers: integers and floating point
numbers. Every number is an atom. They differ from literal atoms in that they
do not have property lists, value cells, function definitions, or explicit pnames.

2.2.1 Integers

An integer is represented as a string of digits preceded by an optional sign (either
“— or “+ ”) and followed by an optional “Q”. If the Q is present, the number
will be interpreted as an octal (base 8) number. INTERLISP/370 allows you to
enter hexadecimal numbers by entering an optional “—" or “+ ” followed by an
“at sign” (@) followed by a string of hexadecimal digits (0 ... A ... F).

Integers may be either “small” or “large.” Small integers fall into the range
[—65536,65536] while large integers fall in the range [—2**32,2**32]. For IN-
TERLISP/370, the range of small integers is [-2**23,2**23] which fits into the
24-bit address field used by IBM Series 370 machines.
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Integers may be created by PACK and MKATOM since they are atoms, as
in the following example:

(PACK
(LIST 375))

will create the integer 345. In a similar fashion, we could also specify the follow-
ing code: i

(PACK
(LIST 7 7 'Q))

which would yield the integer 63. In this case, the ’Q means that the integer is
77Q (i.e., 77 base 8 or 63 base 10).

Small integers are given special storage in INTERLISP in order to increase
the efficiency of the system. Large integers are not. Thus, the user should be
careful when testing the values of integers. Two small integers are always guar-
anteed to have the same representation. Two large integers may have the same
value but not the same address in memory. Thus, if you use the EQ function on
the two integers, they may not be equal. Instead, use the function IEQP or
EQUAL to test the equality of two integers (see Section 13.2).

2.2.2 Floating Point Numbers

A floating point number corresponds to a real number in traditional languages
such as FORTRAN. A floating point number is read or written as a (possibly)
signed integer, followed by a decimal point followed by another sequence of dig-
its. The digits following the decimal point are known as the fraction or mantissa.
A floating point number may be optionally followed by an exponent designated
by E followed by a (possibly) signed integer in the range —39 through +38.

Whether the fraction or the exponent is used is at your discretion, but one
must be present to distinguish a floating point number from an integer.

Floating point numbers may be created during input (via READ), by apply-
ing FLOAT to an integer, and by PACK or MKATOM.

Floating point numbers are printed by the system using format controls
specified by the function FLTFMT.

INTERLISP-D Convention
Floating point numbers are currently stored in single precision using the IEEE
“single” mode of 32 bits.

INTERLISP/370 Convention
If the floating point number contains six or fewer digits, it is stored as a single
precision number. If it contains more than six digits, it will be stored as a double
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precision number. Floating point numbers in the range IE—3 to 1E6 will be
printed without an exponent; otherwise they will be printed with an exponent.

2.2.3 Complex Numbers

A complex number is a generalization of the real number that is introduced in
mathematics so that all polynomial equations with real coefficients may have
solutions. A complex number is composed of two parts: a real part and an imagi-
nary part. Most conventional languages, developed for numeric data processing,
support the notion of complex numbers. For example, FORTRAN has a type
declaration COMPLEX which results in a specific storage representation and set
of operations upon complex numbers. INTERLISP (and other LISP dialects) do
not support complex numbers. However, it is not difficult to create a data struc-
ture to provide this capability. Chapter 13 will dicuss some ideas concerning the
implementation of complex numbers.

2.2.4 Conversion between Numeric Classes

In mathematics, integers are a “subclass” of the real numbers. In computer
systems, because integers and floating point numbers must be represented dif-
ferently in storage, integers cannot be considered a subclass of floating point
numbers. Thus, we need a set of conversion routines that allow us to convert
data from one representation to another. However, conversion introduces inac-
curacy in our numeric representations due to precision of representation and
“roundoff” errors in arithmetic computations carried out by the machine.

2.3 LISTS

The second basic datatype within INTERLISP is the list. A list is a collection of
zero or more components which may be atoms or other lists. A list with no com-
ponents is often called the empty or null list. Lists may have atoms as their com-
ponents, other lists as their components, or a mixture of both. A list is usually
viewed as an “ordered” collection of components. The components may be inte-
gers, floating point numbers, strings, array pointers, or other data objects.

The format of a list begins with a left parenthesis (. It is followed by any
number of atoms or other lists and is terminated by a right parenthesis). Thus, a
very simple list would appear as (MARYLAND) where the atom’s name is
MARYLAND. Of course, the simplest list that we may write is () which is a
representation for the null list.

Examples of more complex lists include

(MARYLAND VIRGINIA WEST-VIRGINIA)

where individual atoms are separated by blanks and
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(MARYLAND (CAPITOL ANNAPOLIS) (GOVERNCR HARRY-HUGHES))
which consists of an atom and two sublists represented, respectively, by

(CAPITOL ANNAPOLIS)
(GOVERNOR HARRY-HUGHES)

In general, lists are known as S-expressions where the S stands for *“sym-
bolic.” Thus, the generic form of a list is given by

(S-expression[l] S-expression[2] ... S-expresslon[n])

The simplest form of an S-expression is the dotted pair which consists of two
atoms, respectively the CAR and CDR. A dotted pair usually appears as

(apple . orange)
((the rain in spaln) . (stays mainly in the plain))

The trend, today, is to discourage the use of the “dot notation” because it
does not correspond to the recent implementations of LISP. | mention it here
only so that you know of its existence.

The key to INTERLISP is parentheses. Lists are well-formed when pairs of
left, (, and right, ), parentheses balance in an expression. Many problems arise
in writing INTERLISP expressions and functions because parentheses do not
balance. Thus, a cardinal rule is to always check your parentheses (or use soft-
ware that does so for you—see the INTERLISP Users Packages).

Lists may be created, destroyed, and manipulated in many interesting ways.
We can create lists using CONS, LIST, or APPEND. We can access elements of
lists using CAR, CDR, and their variants. We can manipulate them using
RPLACA, RPLACD, ASSOC, MEMBER, and many other functions. Chapters
3 and 6 describe many of the primitive functions that operate upon lists.

We may constrain the full generality of these list structures in order to create
other types of data structures. Some of these data structures include

Stack Alist in which all insertions, deletions, and accesses are
made at one end of the list, known as the “top” of the
stack.

Queue Alist in which additions can be made only at one end and
deletions only at the other end.

Deque A*double-ended” queue in which insertions, accesses, or

deletions may be made at either end of the list.
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Knuth [knut68], Horowitz and Sahni [horo82], and Aho, Hopcroft, and Ul-
Iman [aho83] all discuss the theory, representation, and manipulation of these
data structures.

2.4 ARRAYS

Arrays are one of the most familiar data structures in programming, perhaps
because we use tables (arrays) to store information in our everyday activities. An
array is an ordered set of elements of the same type. Each array has dimensional-
ity, the number of subscripts that must be used to reference an individual item
within it. Vectors are one-dimensional arrays while matrices are two-dimen-
sional arrays.

Vectors are often represented in the following form:

V = {vl, v2, v3, v4, VN}

Matrices are often represented in the following form:

all al2 alN
a2l a22 a2N
aMl awe avN

An array is represented as a block of contiguous storage of arbitrary length.
Array storage (in INTERLISP-10) is divided into three sections

A header
A section containing unboxed numbers
A section containing pointers

The header of an array contains descriptive information. Its format depends
on the implementation.

The unboxed number section stores numbers, either real or floating point.
The pointer section contains INTERLISP-10 pointers that allow an array to rep-
resent a collection of objects other than numbers. The size of the unboxed and
pointer regions may range from 0 to the size of memory. Arrays are explained in
greater detail in Chapter 11.
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INTERLISP/370 Convention
INTERLISP/370 represents the internal format of an array as follows:

word 0 length
1 reserved
2 pointer address
3 reserved
4 numbers
pointers
n

where the length of the block is given by
16 + 4 * ARRAYSIZE

The value 16 is derived from four bytes times four words of header informa-
tion. Each number and/or each pointer also consumes four bytes.

INTERLISP-D Convention

INTERLISP-D has extended and refined the concept of arrays to fit its new im-
plementation. In this implementation arrays contain only one “type” of data so
there is no division of an array into partitions. Data types that may be stored in
arrays include BIT, BYTE, WORD, FIXP (integers), FLOATP (floating point
numbers), and POINTER. Arrays may have either a 0-origin or a 1-origin; the
default is 1 as required by the TENEX implementation.

2.4.1 Dimensionality

The dimensionality of an array should be chosen to meet the needs of the prob-
lem to be solved. Most languages allow you to specify up to three dimensions
(each of different size) for an array. Some languages allow an unlimited number
of dimensions. Most applications usually require no more than three dimen-
sions. Unfortunately, INTERLISP supports only one-dimensional arrays at the
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current time. In Chapter 11, we describe a method for implementing two-dimen-
sional arrays using the one-dimensional structures provided by INTERLISP.

The bounds of an array’s dimensions correspond to the lower and upper
limits on the values of its subscripts. Many languages allow these limits to be any
pair of integers such that the lower limit is less than the upper limit. INTERLISP
requires that all subscripts have a lower limit (the origin) at either 0 or 1. The
lower limit must be the same for all dimensions of the array. This allows both
conventional mathematical numbering as well as the practice that is more com-
mon in most conventional programming languages.

2.4.2 Specification and Creation of Arrays

Several pieces of data must be known to create an array (following the IN-
TERLISP-D convention)

The type of the elements

The size or bound of the array
The origin of the array

The initial value of each element

Arrays may only be created viathe ARRAY function (see Section 11.1). Ele-
ments may only be accessed via ELT and set via SETA. Unlike most conven-
tional languages, INTERLISP allows you to specify an initial value that is as-
signed to every element of the array when it is created. Arrays are referenced in
INTERLISP by passing the address of the array to various functions that can
manipulate them.

2.4.3 Hash Arrays

A second type of array is the hash array. It is an array that provides a linkage
between one INTERLISP data type, the hash item, and another data type, the
hash value. A hash array consists of a number of cells defined when you create
the hash array. To enter an item into the hash array, you provide both a key and
its associated value. A hashing function (internally defined) is applied to the key
to generate a cell index. A hash link, consisting of a pointer to the hash item and
a pointer to the hash value, is placed in the cell. You obtain an item from a hash
array by specifying its key.

When a hash array is seven-eighths full, INTERLISP assumes it to be com-
pletely full. Attempts to add new items to the hash array will result in an error.
However, INTERLISP does provide a mechanism for handling these overflow
conditions which is explained in Section 11.3.5.

Hash arrays are used by several of the INTERLISP packages. A notable
instance is CLISPARRAY which is used by the CLISP package (see Chapter 23).
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2.5 STRINGS

A string is a collection of alphanumeric characters that has a literal value but
does not represent a data item. The number of elements in a string is called the
length of the string. Strings are demarcated by pairs of “ {double-quotes). Any
characters except “ and % may appear within a string. Clearly, “ may not be
included because it is the marker for a string. % has the special meaning of
escape which is discussed in more detail in Chapter 14.

A string is not a fundamental datatype since it cannot be read directly by
READ. Strings are created by the function MKSTRING, and manipulated by
the functions SUBSTRING and CONCAT. Strings may be read in from external
files via the function RSTRING.

A number of different operations may be defined for strings. The two most
important operations are concatenation, where we join together two strings to
make a new one, and substring, where we extract a segment of a string to make a
new one. Most other string operations can be defined as sequences of these two
operations.

It is also frequently necessary to scan strings for a specific character or se-
quence of characters. Scanning is utilized in many important applications (text
processing, message decoding, etc.). It includes

Searching for delimiters
Searching for words in order to construct indices and concordances

Searching for character patterns in messages in order to recognize sections
of the message

Scanning may be programmed with the substring access function, but most
implementations of INTERLISP provide a search function to improve the effi-
ciency of the scanning process.

Internally, a string is stored in two parts: a string pointer and the sequence
of characters that compose the string. A string pointer consists of the length of
the string and the address at which the string begins, INTERLISP-10 and IN-
TERLISP-D both support 32,767 characters as the maximum length of strings.

INTERLISP/370 Convention
INTERLISP/370 supports only 256 characters as the maximum length of a
string owing to machine instruction characteristics.

2.6 RECORDS AND USER DEFINED DATATYPES

The datatypes described in the previous sections are inherent features of a basic
INTERLISP system. Users, however, may extend the classes of datatypes by
adding new list structures. INTERLISP formally captures this notion in the Re-
cord Package which is described in Chapter 27.
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A record is an object that has a formal description. Each record has a fixed
number of fields. The record may be thought of as an object template which is
used to create instances. A user may access and replace the contents of individ-
ual fields within an instance of the record. The individual elements of a record
need not all be the same datatype. This notion is captured in many conventional
programming languages in various forms.

Elements of a record are accessed by their name. You may reference the
whole record or any part of it. Individual fields of the record may themselves be
records (subrecords). Since a record description is a template for a data struc-
ture (e.g., an S-expression), we may lay the template over any S-expression.

In addition, you may define new datatypes with complex structures via the
function DECLAREDATATYPE (see Section 27.7), The primary difference be-
tween records, which also use the datatype functions, and your own datatypes is
that the File Package and other subsystems “know” about records and how to
formally treat them. In most cases, you will have to provide your own functions
for manipulating, saving, and restoring your datatypes.

2.7 FILES

Files are not strictly an INTERLISP datatype. However, most programs require
a mechanism for specifying long term storage of data in an organized manner.
The File Package supported by INTERLISP, which interfaces with the host op-
erating system, provides a method for the user to retrieve, store, and organize
external data.

INTERLISP treats files as a byte stream much like Unix. You may open a
file and read from or write to it using various input and output functions. A
hierarchy of capabilities is provided by the File Package which allows you to treat
files in various ways. Since INTERLISP functions are just S-expressions, func-
tion definitions, data, and file descriptors (e.g., commands for creating the file)
may be intermixed in a single file. This feature is unlike conventional program-
ming languages which require the separation of the data and program code.

When a symbolic file is written by the File Package, afile map is placed at
the end of the file. A file map contains the names and addresses (as byte offsets
from the beginning) of objects within the file. Many of the File Package func-
tions use the file map to extract objects and their values from a symbolic file.

One special type of file is written by INTERLISP—a file containing com-
piled code. Compiled code is a combination of low-level function calls and ma-
chine language instructions. Its format and contents depend on the implementa-
tion. Aside from a few examples, we will not discuss this type of file in this text
because it is implementation dependent.
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INTERLISP, as a symbolic processing language, encourages the use of “func-
tional programming” concepts. Functional programming emphasizes the use of
well-defined functions that “operate” on data structures or objects—either sys-
tem defined or user defined. The previous chapter discussed some of the basic
data structures provided by INTERLISP. This chapter explores the primitive
functions that you may use to begin constructing more complex functions. Most
primitive functions are “hardwired” in assembly language or microcode for rea-
sons of efficiency.

3.1 TAKING LISTS APART: CAR AND CDR

INTERLISP provides two functions for taking lists apart; that is, decomposing a
list into its constituent elements. These are CAR and CDR. The names are mne-
monic and are rooted in the historical implementations of INTERLISP’s prede-
cessors. The earliest version of LISP was implemented on an IBM 704 computer
in assembly language. The 704 word had two key fields: the address field and the
decrement field. The CAR pointer of an atom was contained in the address field
while the CDR pointer was contained in the decrement field.

CAR returns the first element of a list. CDR returns the remaining elements
of a list (which may be NIL) after the first element.

The generic formats of these two functions are

Function: CAR

# Arguments: 1

Argument: 1) anonempty list, LST

Value: Thefirst element of the list.
Function: DR

35
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# Arguments: 1

Argument: 1) a nonempty list, LST

Value: The remainder of the list after the
deletion of the first element.

CAR always returns the first element of its argument, if it is a list. Suppose
we have created the following list using SETQ:

«<-(SETQ presidents '(adams hayes monroe nixon ford))
(adams hayes monroe nixon ford)

When we apply CAR to this list, it returns the value

*«-(CAR presidents)
adams

which is the first element of the list.
CDR always returns the remainder of a list minus its first element. If we
apply CDR to PRESIDENTS we obtain the result

N(CDR presidents)
(hayes monroe nixon ford)

Note that CDR always returns a list as its result if its argument is a valid list.
CAR may return either an atom or a list depending on the type of the first
element in its argument. For example, if we construct the following list:

«<-(SETQ presidents-parties
'((kennedy  democrat) (nixon republican)))

and then apply CAR to it, we obtain the result

®Y(CAR presidents-parties)
(kennedy democrat)

which is a list of two atoms. CAR returned a list because the first element of its
argument was a list.

If CAR is applied to an atom, it returns an error message as a result:

*««-(CAR 'kennedy)
ARG NOT LIST

However, CDR applied to an atom returns NIL since we assume that the
empty list is pointed to by the CDR portion of an atom.
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<-(CDR ’kennedy)
NIL

Both CAR and CDR may be applied to the empty list which is represented
either by the atom NIL or the list “(). In this case, both functions will return the
result NIL:

"-(CAR NIL)
NIL
~(CDR ()
NIL

CDR operates normally on lists of one element by returning the value NIL
meaning there are no more elements in the list. For example, applying CDR to
the list (LINCOLN) yields

*CDR '(lincoln))
NIL

because this list has only one element. Thus, an implied last element of every list
is the null or empty list.

3.1.1 CAR/CDR Combinations

Lists are rarely so simple as those given above. Often, we build fairly complex
structures that have multiple levels of elements. Processing these lists with CAR
and CDR functions can be difficult if we need certain elements quite often.

Consider the list PRESIDENTS-PARTIES given above. How do we obtain
the first element of the second sublist? One way is to take the CDR of the list,
and then take its CAR:

<-(CAR (CDR presidents-partles))
nixon

or
m«(SETQ parties-temp (CDR presidents-parties))
(nixon republican)
<-(CAR parties-temp)
nixon

Both of these methods are unwieldy. Too many CARs or CDRs used to dis-
sect a list will result in code which is obtuse and incomprehensible. Fortunately,
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INTERLISP provides us with a method of “abbreviation” for combinations of
these common functions.
The general form of a combination is

(CxxxxR <some-list-argument>)

where each *x’ represents either an A or an D. Most LISP systems will support all
combinations (a total of 30) of the four-letter abbreviations.
We can rewrite the forms to retrieve the first element of the second sublist as

*«-(CADR presidents-parties)
nixon

We analyze such forms by reading from “right-to-left” in the function
name. This form says: take the CDR of the argument, and then take the CAR of
the result. Note that INTERLISP does not return the intermediate result, which
is the CDR of the argument, but only the final result that we seek.

Another example is given by the following list, which is slightly more com-
plex:

o<-(SETQ electoral-year-votes
(LIST '(1952 eisenhower 44-2)
'(1956 eisenhower 457)
"(1960 kennedy 303)
‘(1964 Johnson 486)
‘(1968 nixon 301)
'(1972 nixon 520)))

which represents the election/president/electoral votes for recent elections.

Let us ask how we get the name of the winner of the election of 1956? Of
course, we know the answer is EISENHOWER because we can see it in the list.
But how do we dissect the list to retrieve it?

We might reason as follows:

(1956....) is the second sublist of the list.

It is also the first element of the CDR of the list so we know that we can use

CADR <list>)
(1956 eisenhower 457)

EISENHOWER is the second element of a list, so following the same reasoning
as above, we can produce



<(CADADR <list>)

eisenhower

which is the desired result!

3.1 Taking Lists Apart: CAR and CDR

Note that we could have written this out as:

A(CAR (CDR (CAR (CDR <list>))))

eisenhower
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A few more examples should be sufficient to demonstrate the various combi-

nations:

N(CADDDR electoral-year-votes)

(1964 Johnson 486)

N(CDADR electoral-year-votes)

(eisenhower 457)

A(cddddr electoral-year-votes)
((1968 nixon 301) (1972 nixon 520))

Note that the list has too many elements to extract the last sublist using a
combination form. To get the electoral votes for NIXON’s second victory, we

must use:

<-(CADDDR (CDDDDR electoral-year-votes))

520

Here is a table of the first few combinations of CARs and CDRs that are

commonly used in INTERLISP programs.

Abbreviation

(CAAR <list>)
(CADR <list>)
(CDAR <list>)
(CDDR <list>)
(CADAR <list>)

(CADDR <list>)

CAR/CDR Combinations

Extended Form
(CAR (CAR <list>))
(CAR (CDR <list>))
(CDR (CAR <list>))
(CDR (CDR <list>))
(CAR (CDR (CAR <list>)))

(CAR (CDR (CDR <list>)))

Here are some examples of how these abbreviations might work on the list

given above:

<-(CAAR electoral-year-votes)

1952



40 Primitive Functions

*««-(CADR electoral-year-votes)
(1956 eisenhower 457)

&-(CDAR electoral-year-votes)
(eisenhower 442)

<-(CDDR electoral-year-votes)
((1960 kennedy 303) ........ )

3.2 PUTTING LISTS TOGETHER: CONS, LIST AND APPEND

In order to take lists apart, we need some way to have put them together in the
first place! The three functions discussed in this section permit you to create lists
in various ways. Before proceeding to a discussion of these functions, let us note
that we can create lists using the SETQ function.

Remember that we said that SETQ assigns a value to an atom which is its
first argument. This value may also be a list. Using SETQ, of course, the second
argument is unevaluated (see Section 3.8), so the list will be typed exactly as you
wish it to appear as the value of the atom. For example,

<~(SETQ alist '(apple orange plum pear cherry lemon))
(apple orange plum pear cherry lemon)

sets the value of ALIST to be the specified list. If we now ask for the value of
ALIST, we should receive

alist
(apple orange plum pear cherry lemon)

We briefly mention SETQ here so that it may be used in examples in the
following sections.

3.2.1 CONS: Constructing Lists

CONS is the list construction function. It takes the form

Function: QONS
# Arguments: 2
Arguments: 1) anyatom or list, EXPRESSION
2) any list, LST
Value: Alist whose CARis the value of the first

argument and whose COR is the value of its
second argument.
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CONS takes two arguments, one of which is a list, and puts them together to
form a new list. The first argument of CONS is always the element to be added to
the second argument, which is always a list. The first element is always attached
to the front of the second to form the new list. The first argument may be either
an atom or a list. For example, consider the following sequence of INTERLISP
statements:

ASETQ subject ’john)

John

<-(SETQ predicate '(is big))
(is big)

&-(CONS subject predicate)
(john is big)

The result of the CONS is to form a new list having a value that is a combina-
tion of its two arguments. The first argument may also be a list. Consider the
following example:

ANSETQ subject '(the boy))
(the boy)

®(CONS subject predicate)
((the boy) is big)

Note that since the first argument is a list, the first element of the new list
must also be a list! This is not exactly what we wanted though. Rather, we
wanted our new list to look like this:

(the boy is big)

To accomplish this, we need to dissect the first argument, and then CONS
the pieces together. The following statement achieves this effect:

A(CONS (CAR subject)
(CONS (CADR subject) predicate))
(the boy is big)

Because NIL represents the empty list, we may use it as the second argument
of CONS. CONSing an atom and NIL together creates a list of a single element.

Consider this example:

«*-(CONS subject NIL)
((the boy))
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We may read this as: take the CONS of the value of “subject” and NIL, and
return a list of them. This is a list of the list (the boy) and the empty list which is
never represented when we print out lists unless the list value is the null list.
Thus, it is possible to construct a list as follows:

<-(CONS NIL NIL)
(NIL)

Because this construct is frequently used, many LISP dialects define a func-
tion, NCONS, which CONSes a single argument with NIL. It takes the form

Function: NCONS

# Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: The value of the argument CONSed with NIL.

What happens if the second argument to CONS is not a list but an atom? CONS
still executes, but it forms a data structure known as a dotted pair. A dotted pair
is a CONS cell with pointers to two atoms—a degenerate list form. We may rep-
resent it graphically as follows:

PTR PTR
\Y \Y
X Y

and display it, when printing the values, as

X .Y

Notice the “dot” separating the two atom names whence the notion of the
dotted pair.

The concept of dotted pair often causes LISP novices much trouble. | will
only mention dotted pairs briefly in the remainder of this text, usually to point
out where they may cause problems for users. Touretzky [tour84] and Siklossy
[sikl76] both give adequate explanations of dotted pairs.

3.2.2 LIST: Making Lists

INTERLISP provides a very useful primitive function for creating a list from any
number (indefinite) of arguments. This function is called LIST.
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The format of the LIST function is shown below

Function: LIST

# Arguments: 1-N

Arguments: 1-N) S-expressions, EXPRESSION[1]
EXPRESSION[N]

Value: A list of the values of its arguments.

LIST takes each of its arguments in turn and places them in a list. It is a
nospread function. For example, consider the following statement:

A(LIST 'the 'boy 'is 'big)
(the boy is big)

Note that the result is the same as one we previously created with multiple
SETQs and CONSes. We may think of LIST in the following way:

(LIST (argument)) = (CONS <argument) NIL)

Both of these statements will give the same result. The utility of the LIST
function becomes apparent when we want to create much larger and more com-
plex lists. For example, using CONS, we would have to write the following state-
ment to create the list (the boy is big):

(CONS 'the
(CONS 'boy
(CONS ‘'is
(CONS 'big NIL))))

So, we may think of LIST as a shorthand notation for writing multiple CON-
Ses to create a list. The beauty of LIST is that it take any number of arguments
and gathers them up into a list. Note that it evaluates its arguments as it pro-
cesses them for inclusion into the resulting list. The following example shows
how we might create the list for presidential elections that we used in a previous
example:

(LIST
(LIST 1952 ‘eisenhower AA2)
(LIST 1956 ‘eisenhower 4-57)
(LIST 1960 ‘'kennedy 303)

Note that each argument to LIST becomes an element of the new list. In the
example above, one argument is the S-expression (LIST 1956 ‘eisenhower 457).
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Each of the arguments 1956, ‘eisenhower, and 442 becomes an element of a list
created by that LIST function. Because the form (LIST 1952 ‘eisenhower 442) is
an S-expression, it is evaluated when it is encountered in the list of arguments to
produce a value that is then included in the resultant list. Its value, of course, is
(1952 eisenhower 442).

Note that LIST with no arguments returns NIL, but (LIST NIL) returns
(NIL).

We said that LIST may take any S-expression as an argument. We have seen
where one of those S-expressions forms a list when evaluated. Other examples of
LIST to consider include

¢-(LIST '(apple orange) '(plum cherry))
((apple orange) (plum cherry))

Here, the arguments are lists that are passed to LIST. If the argument is
already a list, LIST embeds it as a sublist within a list. For example,

me-(LIST '(apple orange))
((apple orange))

But, if you do not want it to be embedded as a sublist, then you must test to
see if the argument is already a list before applying LIST to it. Fortunately, IN-
TERLISP provides a function that performs this chore for you, MKLIST. It
takes the form

Function: MKLIST

# Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: A list containing the value ofEXPRESSION.

MKLIST makes a list from the value of its argument.If EXPRESSION s
already a list or NIL, MKLIST merely returns the value of EXPRESSION. Oth-
erwise, it applies LIST to the value of EXPRESSION. For example,

%
(MKLIST ‘cherry-pie)
(cherry-pie)

AMKLIST)
NIL

AMKLIST (LIST 1952 ‘eisenhower AA2))
(1952 eisenhower 4*42)

We might define MKLIST as follows (although I haven’t told you how to
define functions yet):
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(DEFINEQ
(mklist (expression)
(COND
((OR
(NULL expression)
(LISTP expression))
expression))
(T
(LIST expression)))
)

3.2.3 APPEND: Concatenating Lists

A function that also creates new lists is APPEND, Unlike LIST, however, AP-
PEND takes an indefinite number of lists as its arguments and returns a list by
copying the lists to the new list. The generic format for invoking APPEND ap-
pears as follows

Function: APPEND

# Arguments: 1-N

Arguments: 1-N) lists,LST[1] ... LST[N]
Value: Alist oftheS-expressions of the

individual lists.

Note that (APPEND) and (APPEND NIL NIL) both return NIL. Consider
the following example:

*«-(SETQ subject '(the boy))
(the boy)

%(SETQ predicate '(is big))
(is big)

*«-(APPEND subject predicate)
(the boy is big)

Note that two individual lists have been combined into one list. Compare the
two functions to see how they work:

“-(LIST subject predicate)
((the boy) (is big))

*(APPEND subject predicate)
(the boy is big)
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We see that after LIST is executed, the two arguments still retain their iden-
tity whereas, after APPEND is executed, they are merged into one list. We call
this top level copying because APPEND takes the top level values and concate-
nates them together giving a new list.

APPEND is usually implemented as a “hardwired” primitive to provide effi-
cient execution since it is so frequently used. We can, however, write APPEND
as a recursive function using just CONS and CDR (see Chapter 8 for a discussion
of function definition).

(DEFINEQ
(APPEND (a-list b-list)
(COND
((NULL a-list) b-list)
(T
(CONS
(CAR a-list)
(APPEND (CDR a-list) b-list))))
)

but this does not copy B-LIST. It merely links the cells of B-LIST to those of A-
LIST. Thus, a change to the new list created by the concatenation may also
change B-LIST. It also works upon only two lists, e.g., it is a very simple defini-
tion of APPEND.

An alternative definition copies the top level elements of each argument. It
is defined as follows:

(DEFINEQ
(append 1st
(PROG (value x temp y 2)
(SETQ temp (CAR 1st))

(COND
((AND 1st
(NULL (CDR 1st))
(LISTP temp))
(SETQ 1st (CDR 1st))
(GO loop4)))
loopl
(COND

((NLISTP 1st)
(RETURN value)))
(SETQ temp (CAR 1st))
(SETQ 1st (CDR 1st))
(COND
((OR
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(NLISTP 1st)

(NLISTP temp))

*
Only the last one of more
than one argument is not
copied.

)(GO loop2)))

loop4-
(SETQ z
(SETQ y
(CONS (CAR temp)
(CDR temp))))
loop3
(SETQ temp (CDR temp))
(COND
((LISTP temp)
(SETQ y
(RPLACD y
(CONS (CAR temp)
(CDR temp))))
(GO loop3)))
(SETQ temp 2)
loop2
(COND
((LISTP x)
(RPLACD (SETQ x (LAST x))
temp))
(T
(SETQ value (SETQ x temp))))
(GO loopl))

)

APPEND will also work on arguments that are not lists. However, the data
structures that are produced involved dotted pairs. Consider the following exam-

ples;

<-(APPEND 'kennedy
(LIST 'Johnson 'nixon ’ford ‘'carter))
(Johnson nixon ford carter)

(APPEND (LIST ‘'Johnson 'nixon ‘ford ‘carter)

‘reagan)
(Johnson nixon ford carter . reagan)
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-(APPEND
(APPEND (LIST “"Johnson “nixon ‘ford)
‘carter)
(LIST 'reagan))
(Johnson nixon ford reagan)

<-(APPEND
(APPEND (LIST 'Johnson 'nixon 'ford)
‘carter))
(Johnson nixon ford . carter)

Note that APPEND is modifying the values of the CDR pointers in the
CONS ceils when it combines lists.

3.2.4 Creating (NIL)

Sometimes, we will find it useful to create a list containing the NIL list. This list
takes the form (NIL). We can create this list in two simple but elegant ways using
the primitive functions CONS and LIST.

With CONS, we merely say

A(CONS)
(NIL)

which returns (NIL) because both of its argument are NIL.
With LIST, we can merely say

<-(LIST NIL)
(NIL)

where the second argument is an implied NIL that is treated as the empty list
because that is what LIST expects.

Note that APPEND cannot be used to return (NIL) because it operates upon
lists. Thus

<-(APPEND)
NIL

~(APPEND NIL NIL)
NIL

3.3 PHYSICAL STRUCTURE REPLACEMENT: RPLACAAND
RPLACD

In Section 2.4, we discussed the structural representation of lists using cells.
This provided a convenient way of thinking about lists as collections of pointers
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to values as well as boxes for holding values. Using this model, whenever we
created a result from a function so far, we have always allocated new cells to hold
the result. This approach can be quite expensive, both in terms of execution
efficiency and in consumption of free memory.

INTERLISP provides us with two functions that allow us to physically mod-
ify a list without allocating new cells. These functions, RPLACA and RPLACD,

allow us to replace the contents of the CAR or the CDR portions of a list cell,
respectively.

3.3.1 Replacing the CAR Cell

RPLACA (RePLAce CAr) allows us to replace the CAR portion of a list cell.
RPLACA takes the following form

Function: RPLACA

# Arguments: 2

Arguments: 1) an S-expressionresolving toan atom,
AIM
2) an S-expresslon, EXPRESSION

Value: The new value ofthe literal atom after

the replacement has been performed.
Suppose we have created a list of the following form:

m(SETQ good-idea '(apple pie is tasty))
(apple pie is tasty)

We can change the type of pie by using RPLACA to change the CAR portion
of the first list cell (e.g., the one containing “apple”) as follows:

*(RPLACA good-idea 'cherry)
(cherry pie is tasty)

Note that INTERLISP allocates no new cells to hold the result but merely
changes the pointer to the atom APPLE to the pointer to the atom CHERRY.
We say that RPLACA “smashes” the CAR value of the CONS cell. We can dia-
gram this as follows:
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good-idea
\Y%
> >
\
\ v v v
\ pie IS tasty
#0\
\
\
v \
apple
\Y%
cherry

where # indicates that the pointer to APPLE has been broken (e.g., no longer
exists).

Errors may occur when we give RPLACA bad arguments. For example, we
cannot RPLACA NIL. Consider the statement

NRPLACA NIL <anything>)
ATTEMPT TO RPLAC NIL

except for the form (RPLACA NIL NIL) which has no effect at all:

<-(RPLACA NIL NIL)
NIL

If we attempt to replace the CAR portion of something that is not a list,
INTERLISP returns the error ARGUMENT NOT LIST. Consider the state-
ment

m-(RPLACA ‘'apple (anything))
ARGUVENT NOT LIST

3.3.2 Replacing the CDR Cell

In a similar fashion, RPLACD (RePLAce CDr) replaces the pointer to the CDR
portion of a list cell. RPLACD takes the following form:
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Function: RPLACD

# Arguments: 2

Arguments: 1) an S-expressionevaluating to a literal
atom, AIM
2) an S-expression, EXPRESSION

Value: The new value oftheliteral atom after

the replacement has been performed.

Using the list GOOD-IDEA defined above, we can use RPLACD to create a
list that has as its value (apple tarts are tough).

(RPLACD good-idea ‘'(tarts are tough))
(apple tarts are tough)

The following diagram shows how this is done:

good-idea
—— —_ >
\ % % v
Y% \ pie S tasty
apple \
\
\Y%
_—_ _—_
\Y% \Y \Y%
tarts are tough

where # indicates that the pointer from the CDR portion of the CONS is broken.

Using RPLACD can be dangerous for a number of reasons. If you change
the pointer to a group a cells to which nothing else points, those cells are lost. For
example, the cells comprising the list (PIE IS TASTY) are pointed to by the
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CDR portion of GOOD-IDEA By replacing that pointer, we have no knowledge
of the address of the first cell of that list. Thus, the cells are allocated, but we
have no way to access them again during the remainder of the INTERLISP ses-
sion. Too many mistakes in this fashion causes memory to be consumed at a
prodigious rate. One indication that memory is disappearing is a more frequent
occurrence of garbage collections.

Another problem that you may encounter is creating circular lists. Circular
lists may be good or bad, depending on your application’s requirements. In most
cases they are bad. We can create a circular list by causing the CDR portion of a
list cell to point to the beginning of the list. For example, consider the following
statement:

-(RPLACD (CDDDR good-idea) good-idea)
an infinite list

causes the CDR portion of the last cell of GOOD-IDEA to point to the first cell
of the list.

Errors may occur if we give RPLACD bad arguments. For example, we can-
not replace the CDR portion of NIL:

N(RPLACD NIL (anything))
ATTEMPT TO RPLAC NIL

except that INTERLISP allows us to say (RPLACD NIL NIL) which has no ef-
fect at all:

A(RPLACD NIL NIL)
NIL

If we attempt to RPLACD something that is not a list, INTERLISP returns
the error ARGUMENT NOT LIST. For example, consider

(RPLACD 'apple <anything))
ARGUVENT NOT LIST

3.3.3 Replacing the CAR and CDR of a Cell

INTERLISP provides two functions to replace the contents of a node (e.g., an
atom) without changing the atom’s name: RPLNODE and RPLNODE2.
RPLNODE takes the form

Function: RPLNODE
# Arguments: 3
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Arguments: 1) an atom, AIM
2) an S-expression, EXPRESSION-A
3) an S-expression, EXPRESSION-D

Value: The name of the atom.

RPLNODE (RePLace NODE) replaces the CAR and CDR pointers of the
atom’s CONS cell without changing the name of the atom or creating a new
CONS cell.

We might define RPLNODE as follows:

(DEFINEQ
(rplnode (atm expression-a expression-d)
(RPLACA atm expression-a)
(RPLACD atm expression-d)
atm

)

RPLNODE?2 also replaces the contents of an atom’s CONS cell by extracting
the CAR and CDR portions of an S-expression. It takes the form

Function: RPLNODE2
# Arguments: 2
Arguments: 1) an atom, AM
2) an S-expression, EXPRESSION
Value: The name of the atom.

We might define RPLNODE?2 as follows:

(DEFINEQ
(rpnode2 (atm expression)
(RPLACA atm (CAR expression))
(RPLACD atm (CDR expression))
atm

)

3.4 PREVENTING EVALUATION

In programming languages, we need to differentiate between a symbol that
stands for something (i.e., a variable) and a literal (i.e., a symbol whose value is
itself). Numbers are literals. Atoms are variables.

When we use atoms in INTERLISP statements, we assume the atom has a
value. What we want to manipulate is the value of the variable, not the name of

the variable. For example.
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(IPLUS X y)

means add the value of X to the value of Y and return the result.

Arguments are usually passed to INTERLISP functions using the call-by-
value method. That is, what the function “sees” is not the name of the variable,
but its value. So, in evaluating the statement above, what IPLUS sees are the
values of the variables X and Y. INTERLISP evaluates the two arguments to
determine their values and passes these values to the function.

Sometimes we do not want arguments evaluated before they are passed to a
function. In Chapter 8, we shall see one method of preventing evaluation in the
way in which certain types of functions (called NLAMBDA functions) are de-
fined. Another way is to QUOTE the argument so that its literal value is passed
rather than attempting to evaluate it for a value.

Suppose we want to test the equality of two values. First, we may represent
them as the values of atoms. For example,

NSETQ X 'apples)

apples

<-(SETQ y ‘'oranges)
oranges

NEQUAL x vy)

NIL

because the two values are not equal. We could directly specify the value
ORANGES instead of assigning it to a variable as follows;

(EQUAL x ‘'oranges)
NIL

If we had attempted to execute

&«(EQUAL x oranges)
U.B.A.

oranges

because INTERLISP expects ORANGES to be the name of a variable that has a
value. By quoting ORANGES, we tell INTERLISP that it should pass the literal
value ORANGES to the EQUAL function.

Some functions in INTERLISP automatically assume that one or more of
their arguments are not to be evaluated; that is, they ar assumed to be “quoted.”
SETQ is one of these. It assumes that its first argument (for example, X) is to be
assigned a value. A variant of SETQ which assumes that both its arguments are
quoted is SETQQ. Compare the following examples:
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<-(SETQ x| ‘'apples)
apples

NSETQQ x2 apples)
apples

apples
<-X2
apples

The INTERLISP function that prevents the evaluation of its argument is
QUOTE. It takes the form

Function: QUOTE
KWOTE
# Arguments: 1
Argument: 1) anS-expression,EXPRESSION
Value: The literal valueof its argument.

QUOTE is an NLAMBDA, nospread function. QUOTE returns the
PRINI-PNAME of that argument. However, because we use the quoting facihty
so much in INTERLISP, a convenient shorthand notation is provided for enter-
ing the QUOTE function. We prefix the S-expression to be quoted by a single
apostrophe (sometimes called a quote-mark). The single apostrophe istreated as
a read macro (see Section 14.5).

Internally, INTERLISP requires all data to be expressed in a strict S-ex-
pression form. The quote-mark notation does not fit this form. So, the IN-
TERLISP function that reads data typed in by the user converts all *<S-expres-
sion> forms to (QUOTE <S-expression >) forms. Thus, while we type in

(CAR 'Xx)
what INTERLISP really sees is

(CAR (QUOTE x))

When we attempt to give QUOTE more than one argument, it generates a
PARENTHESES ERROR. For example,

<NQUOTE i (CONS see her))
PARENTHESES ERROR

because QUOTE does not know how to process the second argument.
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An alternate function, KWOTE, returns a value which is its argument as a
literal value. KWOTE is a LAMBDA function; that is, it arguments are evalu-
ated. For example,

+-(SETQ X 'apples)
apples

'‘N(SETQ y 'oranges)
oranges

<-(KANOTE (list X))
(QUOTE (apples oranges))

If the value of its argument is a number, which is a literal value, KWOTE
merely returns that number:

ANSETQ pi 3.171592)

3.141592

NKWOTE pi)

3.141592

Similarly, if the value of the argument is NIL, KWOTE merely returns NIL:
<-(SETQ truth-flag NIL)

NIL

<-(KWOTE truth-flag)
NIL

3.5 CONDITIONAL EXECUTION: COND

INTERLISP provides a conditional execution facility through the function
COND. The format of the COND expression is

Function: GON\D

# Arguments: 1-N

Arguments: any S-expressions

Value: The value of the last statement in the
fl_irst S-expression whose CAR evaluates to

COND isan NLAMBDA, nospread function. A COND expression takes the
following format (when prettyprinted):
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(COND
(<testl> ... <resultl>)
(<test2> ... <result2>)
(<testN> ... <resultN>))

3.5.1 Executing a COND Expression

The elements of a COND statement are called clauses. Each clause is composed
of a test phrase, represented as an S-expression, followed by zero or more action
phrases, represented as S-expressions, which are actions to be taken if the test
evaluates true.

COND:s are executed as follows:

Execute the test of the first clause. If it is true (i.e., T), then execute all of
the S-expressions comprising the result. The value of the COND is the value
of the last S-expression in the result that is executed.

If the test returns NIL when evaluated, proceed to the next clause.
Continue to evaluate the tests of each clause in turn until one returns a non-
NIL value. If this occurs, execute the S-expressions in the result as
mentioned above.

If no clause evaluates successfully, the value of the COND is NIL.

Suppose we wanted to determine the type of an argument presented to a
function. We could use COND to execute a sequence of tests that could serve to
identify the argument’s type. A possible definition for a function that captures
this idea is

(DEFINEQ
(test-argument (an-argument)
(COND

((LISTP an-argument) 'LIST)
((NUMBERP an-argument) “NUVBER)
((STRING? an-argument) 'STRING)
((ATOM an-argument) 'ATOM)
(T "UNKNOWN))

)

In this example, there are five clauses. The first clause consists of the test

(LISTP an-argument)
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and the result
*LIST

If the argument passed to TEST-ARGUMENT were a list such as (A B),
then TEST-ARGUMENT would return the value LIST. LISTP is a predicate
(see Chapter 4) which returns either a true (T) or false (NIL) value.

3.5.2 The Default Clause

The last clause (T NIL) in the example above is often called a default clause
because it will be executed if no other clause succeeds. The test in the default
clause always evaluates to true because it is the single atom T. Thus, the result
will always be executed. For example,

<-(SETQ x (ARRAY 10 5 5))
[ARRAYPJ#1,1047

(test-argument Xx)
unknown

because X is not one of the data types tested for in TEST-ARGUMENT. Thus,
none of the first four clauses succeeds. The default clause is executed and re-
turns UNKNOWN.

Because a clause with T as its test is always evaluated, it should always be
the last clause in the COND expression. Clauses appearing after the T clause in a
COND expression will never be executed because they can never be reached dur-
ing normal program flow. This is a frequent error made by novice LISP pro-
grammers that is easy to avoid.

3.5.3 Test Phrase Values

The test of a clause must return a true or false value to determine whether the
result is executed or not. Many functions do not return T but some value (for
example, MEMBER). If we required the value of the test to be only T or NIL,
then any function returning other than T would have to be tested for a non-NIL
value to produce a T. Consider the following COND fragment:

(COND
((MEMBER item bag) item)

MEMBER always returns the fragment of a list beginning with its first argu-
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ment if that first argument is indeed a member of the list (see Section 4.8). Thus,
to ensure a T or NIL value, we would have to test what MEMBER returns via

<ANULL (MEMBER item bag))
T or NIL

Happily, INTERLISP does not require this constraint. Any value returned
by a function used in the test phrase of a clause that is non-NIL suffices to indi-
cate a successful execution. Thus, if (MEMBER item bag) returns a non-NIL
value, the corresponding result phrases will be executed.

Suppose we have a program which reads user queries and executes them
against a database. In addition, the program may also respond to several com-
mands that cause other functions to be called to perform administrative duties
associated with program execution. We might write the function to read the
query and decide what to do as follows (making judicious use of the COND ex-
pression):

(DEFINEQ
(get-query (query)
(PROG (first-character)
(COND
((NOT (NULL query))
(RETURN query )))
loop
(PRINI "'Enter Query: ")
(SETQ query (READ))
(SETQ first-character
(CAR (UNPACK query)))
(COND
((EQUAL (CAR (CHCON first-character))
(CAR (CHCON '#)))
(SETQ query
(PACK
(CDR
(unpack query))))
(execute-query query))
((EQUAL (CAR (CHOON first-character))
(CAR (CHOON '?)))
(print-commands))
((EQUAL 'DEBUG query)
(SETQ *debug* (NOT *debug*)))
((EQUAL 'OPTIONS query)
(set-options))
((EQUAL 'RULES query)
(show-rules))
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((EQUAL 'QUIT query)
(RESET))
(T
(RETURN query)))
(GO loop))

)
3.6 MULTIPLE CASE SELECTION: SELECTQ

The COND statement tests each clause until it finds one that returns a true
value, executes its consequents, and exits. Often, you will want to perform some
function based on an explicit value of a variable or function. In a COND state-
ment, you would have to test for each and every instance, perhaps through using
EQUAL. This can be both tedious as well as leading to omitting one or more
important cases. INTERLISP provides the SELECTQ function to select a spe-
cific statement from among multiple cases.

A SELECTQ expression takes the form

Function: SELECTQ
# Arguments:  2-N
Arguments: 1) a selectionphrase, SELECTOR
2) a case clause, CLAUSE[1]
3-N) case clauses, CLAUSE[2] ... clause[N]
Value: The value ofthelast S-expression

executed within the selected case clause
or the default clause.

SELECTQ is an NLAMBDA, nospread function. The general structure of
the SELECTQ statement is given by:

(SELECTQ <selection-value>

(case[l] <clause[l]>)
(case[2] <clause[2]>)
(case[N] <clause[N]>)

(<default-clause >))

3.6.1 Executing a SELECTQ Expression

The <selection-value>, SELECTOR, may be an atom or an S-expression that
evaluates to an atomic value. It is compared with the case clauses as follows:

1. If case[i] is an atom, then if (EQ SELECTOR case[i]) is true,
INTERLISP executes the S-expression comprising clause[i].
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2. If case[i] isa list, then SELECTOR is compared with each element of the
list in turn. If it is EQ to one of the elements of the list, then the S-
expressions in clause[i] are executed.

3. If none of the case[i] are selected by either of the two methods, the <de-
fault-clause> is executed. There must always be a default clause present
in a SELECTQ expression.

Note that none of the case[i] are evaluated. Moreover, the clause[i] may be
compound expressions as denoted by a PROGN (see Section 3.7.2).

The value of a SELECTQ statement is always the value of the last S-expres-
sion executed in any of the clauses or the <default-clause>.

3.6.2 SELECTQ Examples

Suppose we can select one of several operations from a menu. How might we use
SELECTQ to “switch” to the proper execution stream for the selected opera-
tion? Let us assume that the operations are CREATE, DELETE, UPDATE,
DISPLAY, and EXIT. We might define a function as follows:

(DEFINEQ
(execute.operation (item menu key)
(COND
((EQUAL key 'MIDDLE)
(SELECTQ (CAR item)
(create
(create.node))
(update
(update.node))
(delete
(delete.node))
(display
(display.node))
(exit
(exit.operations))
(PROGN NIL))))

)

This example is drawn from a program in INTERLISP-D that makes use of
the menu display and selection capability in the window system. You select an
item from the menu by pressing the mouse key. Associated with the menu is a
function to be executed when a selection is made. The function above “switches”
you to the appropriate function to be executed based on your selection. Note that
the last expression in the SELECTQ statement is a PROGN which means do
nothing if no selection was made.
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The IRM [irm83] presents another simple example to select the number of
days in a month. It looks like this:

(SELECTQ month
(february
(COND
((leapyearp)
29)
(T 28)))
((april june September november) 30)
(PROGN 31))

where LEAPYEARRP tests if the current year is a leap year (e.g., divisible by 4).

SELECTQ may also be used to invoke different processing routines based
on the current state of the computation. Consider the case where your program is
reading free text from a file. Your program must perform different kinds of pro-

cessing based on the syntactic element it is trying to complete. Here is a fragment
of a routine showing how SELECTQ might be used:

(SELECTQ state

(scanning
(COND
((test-character (LIST *PARACGRAPH*
*DELIMITER*
*SENTENCE™)))
(T
(SETQ word (TGONC NIL char))
(SETQ state 'word))))
(word
(COND
((test-character *DELIMITER*)
(PACK word))
(T
(TCONC word char))))
(sentence
(COND
((test-character *NEW-LINE*)
"*SENTENCE?)
(T
(SETQ state ’scanning))))
(paragraph
(COND
((test-character *NEW-LINE*)
' "PARAGRAPH?*)
(T

(SETQ state ’scanning)))))
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The basic idea is that STATE holds the current state of the scanning pro-
cess. In this example, SELECTQ acts like a finite state automaton to switch the

computation to the current processing routine based on the input it has just re-
ceived.

3.6.3 A Definition for SELECTQ
We might define SELECTQ as follows:

(DEFINEQ
(selectq
(NLAVBDA selectqg-args
(APPLY 'PROGN
(SELECTQI
(EVAL (CAR selectqg-args))
(CDR selectqg-args)))
)))

Note that we must evaluate the SELECTOR to obtain its value for compari-
son with the cases.

SELECTQI is defined as

(DEFINEQ
(selectgl (selector clauses)
(PROG (clause-list)
(SETQ clause-list clauses)
loop
(SETQ clauses (CDR clauses))
(COND
((NULL clauses)
*
A single case/clause pair
in the SELECTQ, so return
the sole clause.

)(REI'URN clause-list))

((OR
(EQ |
(CAR (SETQ clause-list
(CAR clause-
list)))
selector)
(AND

(LISTP (CAR clause-list))
(MEMBER selector
(CAR clause-

list))))
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(*
The first of these
expressions tests the
selector against a single
atom in a case.
The second expression tests
against a list of atoms in
the case.

)(REI'LRN (CDR clause-list))))
(GO loop))

)

Note that SELECTQI merely returns a list of the clauses to be executed
when a match has been found for a particular case. The clauses are executed in
the APPLY expression in SELECTQ through the application of PROGN.

3.6.4 SELECTC: Selecting on Constants

Avariation on SELECTQ is the function SELECTC which performs selection on
constants. It takes the form

Function: SELECTC
ft Arguments: 2-N
Arguments: 1) a selectionphrase, SELECTOR

2) a case clause, CLAUSE[1]
3-N) optional case clauses, CLAUSE[?]
CLAUSEIN]

Value: The value ofthelast expression executed
in the case clause that is selected.

SELECTC is an NLAMBDA, nospread function. SELECTC allows you to
determine the keys in the case phrase of a case clause at execution time. In SE-
LECTQ, the key(s) in a case are literals that are not evaluated at execution time.
However, the case[i] which determine the selection keys may be S-expressions
which are evaluated to produce the possible selection keys. SELECTC is com-
piled as a SELECTQ, so that its selection keys are treated as compile-time con-
stants.

The IRM [irm83] gives an example of how SELECTC may be used:

(SELECTC number
((for X from 1 to 9
collect (TIMES X X))
"SQUARE")
(PROGN "NON-SQUARE”))
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where the (for ...) expression is evaluated at execution time to produce the list (1
49 16 25 36 49 64 81) against which the selector (e.g., NUMBER) is compared.

3.7 ITERATIVE EVALUATION: PROG

The iteration mechanism provided by INTERLISP is the PROG statement.
PROG allows you to write a “program” that may transfer control either forward
(“skipping”) or backward (“looping”) over one or more statements.

A PROG expression takes the format

Function: PROG

# Arguments: 1-N

Arguments: 1) a list ofvariables, VARLST
2-N) one or more S-expressions,
EXPRESSION[1] ... EXPRESSION[N]

Value: The value ofthe lastS-expression

executed within the scope of the PROG.

PROG is an NLAMBDA, nospread function. The general structure of a
PROG statement is

(PROG <program-variable-list>
<S-expressions>

<label)
<S-expressions>

(GO <label>))

PROG operates as follows. The program variables specified in the <pro-
gram-variable-list> are initialized to NIL or to a specified value (see below). The
<S-expressions>are executed in sequence. Control of statement execution may
be modified in two ways:

1. A statement of the form (GO <label)) is executed that specifies the next
statement to be executed is found after (label). Control may be transfer-
red either forward or backward within the PROG body.

2. A statement of the form (RETURN <S-expression)) is executed which
causes the PROG to immediately exit with the value of the S-expression.

Control may be transferred either forward or backward within the list of S-
expressions depending on the position of the (label) that is the argument of GO.
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Labels must always be literal atoms. They serve only as markers within the se-
quence of S-expressions and are never executed.

The value of a PROG statement is either the value of the RETURN state-
ment or NIL ifthe PROG “falls off the end.” That is, the last S-expression inthe
sequence is executed without a RETURN statement being encountered. The lat-
ter form is bad programming practice.

3.7.1 Binding of PROG Variables

A <program-variable-list> specifies the variables that are used by the PROG
statement. They are similar to LAMBDA variables (see Chapter 8) in that they
are bound locally to the PROG expression. Once the PROG expression is exe-
cuted, the PROG variables cease to have a valid binding. If no program vari-
ables are needed, you must specify NIL or () to indicate no local variables are
needed. Otherwise, <program-variable-list> entries may take one of two forms:

1. Anentry may be a literal atom which isthen initialized to NIL. For exam-
ple,

(PROG (clause) ...)

2. An entry may have the form (<atom> <S-expression>) where the atom is
initialized to the value determined by evaluating the S-expression. For
example,

(PROG ((sum 0) (index 1)) ...)

Attempting to use anything other than a literal atom as a PROG variable
causes the error message ARG NOT LITATOM to be printed. You may not use
NIL or T as PROG variable names, although they may be used to initialize
PROG variables. Attempting to do so will cause the error message ATTEMPT
TO BIND NIL OR T to be displayed and an error to occur.

PROG variables exist only for the execution of the PROG. They have no
value outside it. Thus, once you execute a RETURN statement, any PROG vari-
ables within the PROG disappear (i.e., become undefined).

PROG variables do not have to be unique. You may use the names of vari-
ables that are external to the PROG as the names of PROG variables. However,
atom names appearing in a <program-variable-list> take precedence over those
names external to the PROG. That is, the name indicates a new variable which
has the value given by the PROG initialization and not the value of a similarly
named variable external to the PROG.

Here is an example of a PROG expression used in a function that skips
spaces while reading text from a file.
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(DEFINEQ
(skip-spaces (file-in)
(PROG (char)
loop
(SETQ char (read-character file-in))
(COND
((NULL char)
(RETURN *EOF%*))
((EQUAL
(CAR (CHCON char))
*EOF*)
(RETURN *EOF*))
((NOT  (EQUAL
(CAR (CHOON char))
space))
(RETURN char))
(T (GO loop))))

)

Note that the RETURN expressions are embedded within the COND
clauses. We could just as easily have written this function as follows:

(DEFINEQ
(skip-spaces (file-in)
(PROG (char)
loop

(SETQ char (read-character file-in))
(COND
((NULL char)
(GO end-of-file))

((EQUAL
(CAR (CHOON char))
*EOF*)
(GO end-of-file))
(NOT  (EQUAL
(CAR (CHCON char))
space))
(GO exit))
(T (GO loop)))
end-of-file
(RETURN *EOF*)

exit
(RETURN char))

)
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This form makes the transfer of control more explicit in that the function
skips forward to labels to exit the program. The style is akin to FORTRAN pro-
gramming.

3.7.2 Variations on PROG

There are three variations to PROG. PROGI takes a sequence of S-expressions
with no <program-variable-list>, executes each in turn, but always returns the
value of the first S-expression that it executed. PROG2 is similar to PROGI but
returns the value of its second argument. PROGN is a function which evaluates
its arguments in order and returns the value of the last argument. All are
NLAMBDA, nospread functions. They take the form

Function: PROGI
PROG2
PROGN
# Arguments: 1-N
Arguments: 1-N) S-expressions
Value: The value of the first (respectively, the

second) S-expression in the argument list.

Suppose we had a function that we knew was used to read the first atom of a
command line. When it is called, it reads the atom, via RATOM, and also sets
up the margin for echoing the command line. We want this function to return
the atom read even though we test for the existence of a command and perform
an additional function. *RATOM can do this using PROGI:

(DEFINEQ
( *ratom ()
(PROGI
(SETQ command (RATOM))
(AND
(ISSCOMMAND? command)
(MAKEMARGIN)))
)

Note that | have defined *RATOM with a space between the (.and the func-
tion name *RATOM so that it is distinguished from a comment.

PROGN evaluates each of the S-expressions which are its arguments, but
always returns the value of the last S-expression.

PROGI, PR0OG2, and PROGN may be thought of as block delimiting state-
ments. That is, they identify a sequence of statements that are executed as a
single entity. Their only difference is which S-expression value they return. Pro-
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grammers familiar with such block-structured languages as C and PASCAL will
see a striking similarity to the BEGIN ... END blocks of those languages.

PROGI and PROGN are particularly useful in SELECTQ expressions. The
cases of a SELECTQ expression take the form

(<selector) <action))

The syntax of SELECTQ restricts (action) to a single S-expression. Using
PROGN, we may collect any number of S-expressions into a single expression.
For example,

((selector)
(PROGN <actionl)
<action2)

(actionN)))

Note also that RETURN (see Section 3.7.4) takes a single S-expression as its
argument. PROGN may be used here as well to execute a block of S-expressions
the last of which becomes the value of the PROG.

3.7.3 Transfer of Control

PROG expressions allow you to develop iterative procedures in a function. Con-
trol is transferred to another statement by executing GO. It takes the form

Function: (€O)

# Arguments: 1

Arguments: 1a label, LABEL
Value: None, butcontrol is transferred to LABEL,

which must be a literal atom.

LABEL identifies a location within the body of the PROG. If the label is
undefined, GO generates an error with the message “UNDEFINED OR ILLE-

GAL GO”.
GO transfers control only within a function in which the PROG is defined.

GO may transfer control either forward or backward within a PROG expression.
PROG expressions may be nested within one another to any depth. When GO is
executed, if the <label) does not appear within the current PROG, INTERLISP
searches the hierarchy of PROGs looking for (label). Control is transferred to a
statement higher in the hierarchy if it is identified by <label). For example.
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(PROG

= (GO loop))))
The GO expression transfers control to the label LOOP in the outermost
PROG.
Sometimes, PROGs may be independently situated within a function. Con-
trol may not be transferred out of one PROG and into another because, once a
PROG has been exited, no knowledge exists about its structure. For example,

(DEFINEQ <function)

(PROG (...)

m>|oop

(RETURN))

(PROG (...)

X (GO loop)))

will generate an error because no knowledge of LOOP is retained once the first
PROG has been exited.
Control may be transferred either forward or backward within a PROG

body. As in conventional programming languages, there are many possibilities
for abusing the unconditional GOTO.
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I recommend limited use of it according to the following rules:

1. GO should transfer control only backward within a PROG body, except
for rule 2;

2. O may transfer control forward only to a label that identifies the last
statement in the PROG body. For mnemonic purposes, this label should
have the word EXIT as part of its name to indicate that the statements
that follow will terminate the PROG.

3.7.4 Exiting PROGs

PROG expressions may be exited in two ways:

1. Normally, by executing a RETURN expression.
2. Abnormally, by “dropping off” the end of the PROG body.

When a PROG expression terminates, it normally returns NIL as its value.
RETURN allows us to stipulate a value that we want returned as the value of the
PROG expression.

RETURN takes the form

Function: RETURN

# Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: The value of theS-expression, but a side
effect is to terminate the PROG
expression,

EXPRESSION is an expression which is evaluated and becomes the value of
the PROG.

If RETURN is executed inside an interpreted function, but not within a
PROG, it will force an exit from the last interpreted PROG expression that was
entered, if any. Otherwise, an error will result. That is, you may call other func-
tions within the body of a PROG expression and embed the RETURN from the
PROG within one of those functions. However, this can lead to considerable
confusion when reading program code and, | believe, constitutes poor program-
ming practice.

The compiler detects RETURN expressions that are not contained within
PROG expressions in a function and generates an error at compile time.

3.7.5 Implementing a DO-WHILE-UNTIL Construct

Charniak et al. [charSO] describe the implementation of a LOOP macro (using
MACLISP features) that includes both DO-WHILE and DO-UNTIL capabili-
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ties. INTERLISP does not provide macro features at the user programming
level. Nevertheless, let us describe how the LOOP statement works as a guide for
building PROG statements.

The basic structure of the LOOP statement consists of a number of subordi-
nate statements organized in sequence:

(LOOP
(INITIAL <initialization-expressions))
(WHILE  <while-condition>)
(DO <do-body>)
(NEXT <next-case-expressions>)
(UNTIL <untll-condltion>)
(RESULT  <return-condition>))

Most of these subordinate statements are optional. They may be combined
in several ways to provide analogues to conventional DO-WHILE or DO-UNTIL
iterations. Indeed, you may specify an INITIAL-DO-RESULT loop which acts
exactly like a PROGN.

Each of the subordinate statements is translated into a more familiar LISP
statement by the macro. We will examine each of the statements and then show
how they map into a general construct for an INTERLISP PROG statement.

1. The INITIAL statement specifies the local variables of the PROG and
assigns them values prior to the execution of any statements in the loop
body. The format of an <initialization-expression> is a sequence of <vari-
ables-expression> pairs. For example,

(INITIAL SUM 0 COUNT 0)

initializes two variables, SUM and COUNT, to 0. However, the expres-
sion may be any valid S-expression.

The INITIAL statement is translated into a sequence of SETQ state-
ments plus a list of variables that become the <program-variable-list> of
the PROG statement. Thus, the example above becomes

(PROG (SUM COUNT)
(SETQ SUM 0)
(SETQ COUNT 0)

2. The WHILE statement tests a condition and terminates the loop if the
condition yeilds a false (NIL) value. Stated in a different way, the loop
body is executed as long as the <while-condition> istrue (T). The <while-
condition) is just an S-expression that is to be evaluated. Thus, the
WHILE statement translates as e
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(OR
(<while-condition))
(GO EXITS))

where EXITS is a label indicating the exit from the loop. Note that Char-
niak’s macro generator inserts this automatically, but in our formulation
you will have to code it explicitly. As an example, consider

(WHILE (NEQ COUNT 10))

which translates to

(OR
(NEQ COUNT 10)
(GO EXITS))

. The DO statement specifies the body of the loop. It contains one or more
S-expressions that are to be executed on each pass through the loop. The
expressions are evaluated from first to last in order. Transfers of control
occurring within the DO-body must be explicitly encoded by the user. An
example of a DO-body is

(DO
(SETQ NEXT-NUVBER (READ))
(SETQ SUM (IPLUS SUM NEXT-NUMBER)))

which just reads a number and adds it to SUM. The translation of this
DO-body is merely

(SETQ NEXT-NUMBER (READ))
(SETQ SUM (IPLUS SUM NEXT-NUMBER))

. The NEXT statement specifies the local variables that are to be updated
for the next loop iteration. The <next-case-expressions> take the form of
<variable-expression> pairs where the variable is set to the value of the
expression. Typically, the expression involves some previous value of the
variable in its computation. An example of a NEXT statement might be

(NEXT COUNT (ADDI COUNT))

which is translated to

(SETQ COUNT (ADDI COUNT))

. The UNTIL statement terminates the execution of the loop when the
<until-condition> evaluates to true (non-NIL). Stated differently, the
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loop body is executed as long as the <until-condition> is false (NIL). The
<until-condition> is just an S-expression that is evaluated. An example
of an UNTIL statement might be

(UNTIL (IGREATERP SUM 1000))
which is translated to
(AND

(IGREATERP SUM 1000)
(GO EXITS))

. The RESULT statement specifies the value that the loop has when its

termination conditions are satisfied. A <result-expression> is an S-ex-
pression that is evaluated and becomes the loop value. For example,

(RESULT (QUOTIENT SUM COUNT))
which translates to

(RETURN
(QUOTIENT SUM COUNT))

Let us put the pieces together, with appropriate comments to see the frame-

work for a general model of a PROG statement using the concepts discussed by
Charniak et al. Our final PROG statement would appear as

(PROG (SUM COUNT)
(* from INITIAL statement *)
(SETQ SUM 0)
(SETQ COUNT 0)
LOOP$
(* from WHILE statement *)
(O3
(NEQ GOUNT 10)
(GO EXITS))
(* from DO statement *)
(SETQ NEXT-NUMBER (READ))
(SETQ SUM (IPLUS SUM NEXT-NUMBER))
(™ from NEXT statement *)
(SETQ COUNT (ADDI COUNT))
(* from UNTIL statement *)
(AND
(IGREATERP SUM 1000)
(GO EXITS))
(GO LOOPY)
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EXITS
(* from RESULT statement *)
(RETURN
(QUOTIENT SUM COUNT)))

Note that Charniak’s macros would insert the loop markers LOOPS and
EXITS automatically, but you must explicitly encode them in your PROG con-
struct. We see that this PROG construct merely reads ten numbers (or until their
sum is greater than 1000), and computes the average.

3.7.6 Other LISP forms

PROG provides us with two key features for writing programs:

1. The ability to perform iteration.
2. The ability to define and initialize local variables.

Other LISP dialects, such as MACLISP and FranzLisp, provide PROG ex-
pressions. But they also provide alternative forms that accomplish the same
functions but with (they claim) simpler forms.

LET is an expression that allows you to declare and bind local variables. Its
structure appears as

(LET <local-variable-list>
<forms-list>)

where <local-variable-list> is a list of expressions of the form ((variable)
<value>). <forms-list> isjust a list of S-expression to be executed. The variables
defined within a LET have existence only for the duration of the LET. You may
think of a LET as a PROGN with local variable capability.

DO is a special form that provides the local variable binding capability of
the LET form with the iteration facility of PROG. DO has the following struc-
ture:

(DO (<local-variable-list>)
(<condition) <action-list))
(<expression[l])

<expression[N]))

The <local-variable-list) has a form similar to that used in LET expressions:
((variable) (value) (update-expression))

The (update-expression) is evaluated on each cycle of the DO loop to up-

date the value of the variable. Variables with no (update-expression) are as-
sumed to retain the initial value throughout the execution of the DO loop.
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The ((condition) <action-list>) expression determines how the DO expres-
sion terminates. On each pass through the DO loop, the {condition) is exe-
cuted. If it evaluates true, then the expressions on the <action-list) are executed
and the DO expression is exited. The value of the DO expression is the value of
the last expression in the <action-list).

The DO body is composed of expressions to be evaluated. Unlike PROG,
however, when the DO reaches the last expression of the body, it begins a new
cycle of the loop rather than falling off the end. The DO body may contain GO
expressions and RETURN expressions to control the sequence of execution and
when the loop is terminated, respectively. The DO body may be empty if all
computation can be done by the <update-expression)s in the <local-variable-
list).

Charniak [charSO], Winston [winsSl], and Touretzky [tour84] discuss both
the LET and DO forms in more detail.

Do not confuse the DO discussed in this section with the DO operator pro-
vided by CLISP.

3.8 VALUE ASSIGNMENT: SET AND SETQ

To assign values to variables, we use the SETQ function. SETQ takes two argu-
ments: the variable to be set and an S-expression that may or may not be evalu-
ated to provide a value for the variable. The format of SETQ (and SET as well) is

Function: SETQ
SET
SETQQ
# Arguments: 2
Arguments: 1) aliteral atom, AIM
2) an S-expression, EXPRESSION
Value: The newvalue of the wvariable.

ATM must be a literal atom. Attempting to use anything other than a literal
atom causes the error message “ARG NOT LITATOM” to be displayed. If
ATM is NIL or T, the error message “ATTEMPT TO SET NIL OR T” will be
displayed.

SETQ and SET differ only in the evaluation of their first argument. SET
evaluates its first argument to produce the name of the literal atom to be as-
signed a value. SETQ does not. That is, SETQ assumes that the first argument
is the name of the variable to which a value is to be assigned.

Consider the following examples:

¢-(SETQ computer-manufacturers (LIST ‘univac ‘itbm 'ncr))
(univac ibm ncr)
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¢-(SETQ an-industry ‘computer-manufacturers)
computer-manufacturers

% (SET an-Industry
(APPEND computer-manufacturers
(LIST 'honeywell)))
(univac ibm ncr honeywell)

an-industry
computer-manufacturers

computer-manufacturers
(univac ibm ncr honeywell)

Notice that SET evaluated the value of its first argument, which is COM-
PUTER-MANUFACTURERS, and set it to the value of its second argument.
Thus, when we display COMPUTER-MANUFACTURERS later, it has the new
value that is shown.

An alternative form of SETQ, SETQQ, assumes that both of its arguments
are “quoted.” That is, neither argument is evaluated. Using the example above,
we would have

(SETQQ computer-manufacturers (univac ibm ncr))
(univac ibm ncr)

3.9 SETTING AN ATOM'S VALUE CELL

INTERLISP has been implemented in several different versions. One major dis-
tinction concerns whether variables are deep or shallow bound on the stack. This
notion will be discussed in more detail in Chapter 30. However, | will discuss
several functions that set an atom’s value cell in this chapter because they are so
widely used, most notably by the File Package (see Chapter 16).

3.9.1 Binding Atoms from a File

RPAQ and RPAQQ are NLAMBDA functions that set an atom’s value cell.
They operate exactly like SETQ and SETQQ. They have the format

Function: RPAQ
RPAQQ
RPAQ?
# Arguments: 2
Arguments: 1) aliteral atom, ATM
2) an S-expression, EXPRESSION
Value: The value oftheS-expression.

The expression is evaluated for RPAQ and is not evaluated for RPAQQ.
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*<-(RPAQ computer-manufacturers '(univac ibin ncr))
(univac ibm ncr)

Both RPAQ and RPAQQ generate an error message “ARG NOT LITA-
TOM” if ATM is not a literal atom.

RPAQ? sets the top level value of ATM if and only if it does not have a
current top-level binding, e.g., the contents of the value cell is the atom NO-
BIND. It returns the value of EXPRESSION if the top level value is set, other-

wise NIL.

RPAQ, RPAQQ, and RPAQ? are intended to be used from within the File
Package.

These functions are often “hardwired” for efficiency because File Package
operations are used so frequently by experienced INTERLISP programmers.

3.9.2 Getting and Setting the Top Level Value

As we mentioned in Section 2.1, atoms have value cells. When atoms are created
by INTERLISP, they are allocated storage locations in memory. How a value is
bound to an atom depends on the implementation:

1. Deep binding systems save the variable’s new value on the stack. When a
variable is referenced, its value is found by searching the stack for tke
most recent binding. If there is no binding on the stack, INTERLISP
retrieves the value stored in the value cell of the atom.

2. Shallow binding systems save the variable name and old value on the
stack, and place the new value in the atom’s value cell. When a variable
Is accessed, the current value is always found in the value cell.

INTERLISP provides two pairs of functions for accessing the value of a vari-
able. They take the forms

Function: GETTOPVAL
CETATOWAL
# Arguments: 1
Arguments: 1) an atom, AIM
Value: The top level binding of AIM
Function SETTOPVAL
SETATOWAL

# Arguments: 2

Arguments: 1) an atom, AIM
2) an S-expression, EXPRESSION

Value: The value of theS-epxression.
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GETTOPVAL returns the top level value of ATM, even if it is NOBIND,
regardless of any other local bindings that may appear in the stack.

GETATOMVAL always returns the value cell contents of ATM. In shallow
bound systems, it is equivalent to executing (EVAL atm). In deep bound sys-
tems, it defaults to GETTOPVAL.

SETTOPVAL sets the top level value of ATM regardless of other local bind-
ings that may appear on the stack.

SETATOMVAL sets the value cell of ATM to the value of EXPRESSION.
In a shallow bound system, it is equivalent to executing SET. In a deep bound
system, it defaults to SETTOPVAL.






Fundamental Predicates

INTERLISP provides a large number of functions called predicates. A predicate
is a function that tests some condition or attribute of its arguments. For exam-
ple, a predicate may test whether its argument is an example of a given data
type, whether it has a value satisfying certain criteria, or even whether it has a
specific structure. The result of applying a predicate to its arguments is one of
the atoms T or NIL (representing “true” or “false,” respectively) or some non-
NIL value representing true. Some predicates are known slsfundamental predi-
cates because they test essential characteristics of LISP objects. This chapter will
discuss several of the fundamental predicates common to most LISP implemen-
tations. More predicates will be described in later chapters when we discuss the
specific data types or subsystems with which they are associated.

By convention, the name of a predicate should always be terminated by the
character “P” to indicate that it is a predicate. For historical reasons, some of
the fundamental predicates do not follow this rule. Asan INTERLISP program-
mer, it is good practice for you to terminate each application predicate function
that you write with “P” to indicate that it is a predicate.

41 ATOM TESTING: ATOM AND LITATOM

The simplest datatype available in INTERLISP is the atom. Atoms are indivisi-
ble data structures. INTERLISP provides two predicates to test for the existence
of atoms: ATOM and LITATOM.

Function: ATOM

#Arguments: 1

Argument: 1) an S-expression,EXPRESSION

Value: T if the argumentis an atom; NIL
otherwise.

81
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ATOM determines whether or not its argument is an atom. If itis, ATOM
returns T; otherwise, it returns NIL. ATOM is the most general predicate for
testing atoms whether they be numbers or literal atoms. ATOM returns NIL if
its argument is an instance of one of the other fundamental datatypes such as
strings, arrays, etc. In some dialects of LISP, ATOM is defined to be equivalent
to NLISTP (see Section 4.5), e.g., an atom is assumed to be anything that is not
a list.

Another fundamental predicate is LITATOM. LITATOM tests whether or
not its argument is a literal atom but not a number.

Function: LITATOM

# Arguments: 1

Arguments: 1) an S-expression, EXPRESSION

Value: T, if its argument is a literal atom; NIL
otherwise.

Suppose that we let the value of the atom GIRL-FRIENDS be the following:

<NSETQ girl-friends
‘(Jane nancy marcia susan ellen cheryl))
(Jane nancy marcia susan ellen cheryl)

We can apply ATOM to this atom in the following ways:
Test if GIRL-FRIENDS is an atom

(ATOM 'girl-friends)
T

Test the value of GIRL-FRIENDS

<-(ATOM girl-friends)
NIL

Note that INTERLISP distinguishes between the name of an atom and its
value. In this case, GIRL-FRIENDS is an atom when we test its name, but when
we test its value, we see that its value is not an atom but a list.

We can apply ATOM to other arguments as follows:

To a number

<-(ATOM 1378)
>
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although this is a redundant test because we know that numbers are literal at-
oms.

To a string

A(ATOM "Sandra is beautiful™)
NIL

because strings are not atoms, but a separate datatype.
Let us also apply LITATOM to several examples:

(LITATOM ‘girl-friends)
T
-“(LITATOM 1378)
NIL

because numbers, while atoms, are not literal atoms.

¢-(LITATOM "Sandra is beautiful™)
NIL

4.1.1 An Alternative Atomic Predicate

In other LISP dialects, the LITATOM predicate is replaced by the SYMBOLP
predicate. SYMBOLP accomplishes the same function as LITATOM.
Touretzky [tour84] notes that you may define SYMBOLP in terms of ATOM
and NUMBERP (see below) as follow:

(DEFINEQ
(symbolp (x)
(AND
(ATOM Xx)
(NOT (NUVBERP Xx)))
)
where SYMBOLP will take the form
Function: SYVBOLP
# Arguments: 1
Argument: 1) an S-expression,EXPRESSION
Value: T, ifitsargument is a literal atom; NIL

otherwise.
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Let us apply SYMBOLP to a few examples to see how it works:
(SywBOL? 'girl-friends)
T

(SYMBOLP 1378)
NIL

4.2 NUMERIC PREDICATES

INTERLISP provides several fundamental predicates for testing whether or not
the value of an atom is a number. These include NUMBER?, ZEROP, FIX?,
FLOAT?, and SMALL?.

4.2.1 Testing for Numbers

NUMBER? returns its argument (meaning T) if the value of its argument is a
number of any type; otherwise, it returns NIL. It takes the form

Function: NUVBERP

# Arguments: 1

Argument: 1) an S-expression,EXPRESSION

Value: T, if the valueof its argument is a

number; NIL otherwise

Consider the following cases in which NUMBER? is used:

<-(SETQ a.number 1.7832)
1.7832

NNUMBERP a.number)
1.7832 (which means T)

NSETQ another-number 100)
100

(NUVBERP another-number)
100  (which means T)

Note that NUMBER? works on both integers and floating point numbers
with equivalent results.

“NNUMBERP "1776")
NIL

(NUVMBERP 'FIVE)
NIL
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NUMBER? works only with numeric representations of numbers. It does
not know how to deal with string representations. We can circumvent this prob-
lem by using

<NUMBERP (MKATOM "1776"))
1776

4.2.2 Testing for Zero

One of the most common tests that we make when performing arithmetic calcu-
lations is to determine if the value of some variable or expression is zero. IN-
TERLISP provides a fundamental predicate for testing if the value of an atom or
S-expression is zero: ZEROP. ZEROP returns T if the value of its argument is
zero; otherwise, it returns NIL. It takes the form

Function: ZEROP

# Arguments: 1

Argument: 1) anS-expression,EXPRESSION

Value: T, if the valueof its argument is zero;

NIL otherwise
Consider the following examples:

<-(SETQ a-number 0)
0

(ZEROP a-number)
T

Alternatively, we can test the value of an expression. For example, we can
say

(ZEROP (IPLUS 6 (IMINUS 6)))
T

where the value of the S-expression (IPLUS 6 (IMINUS 6)) is identically zero.
ZEROP returns NIL if its argument is not a number. For example,

(ZEROP 'pi)
NIL

We should note that ZEROP is just a convenient function that could be de-
fined in terms of other primitive functions. It is provided in most LISP systems
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as a hardwired function for greater efficiency because it is so frequently used. A
definition of ZEROP in terms of EQ would appear as

(DEFINEQ
(ZEROP (number)
(COND
((NUMBERP number)
(EQ number 0))
(T NIL))
)

Most arithmetic functions generate an error if their argument is nonnu-
meric. Therefore, we test the argument to see if it is a number. If so, we compare
it with 0 and return the result. Otherwise, we just return NIL.

Note: ZEROP should not be used for testing if floating point numbers are
equal to zero because it uses EQ which works only on integers. You should use
EQP instead. For example,

A(SETQ x 0)

0

<NEQ x 0.0)
NIL

<-(EQP x 0.0)
T

(EQUAL x 0.0)

T

4.2.3 A Generalized Zero Predicate

If you do not know whether your data will be integer or floating point numbers,
you may want to define a generalized predicate for testing equality with zero. Let
us call it EQZERO. It takes the following form

Function: EQZERO

# Arguments: 1

Argument: 1) anS-expression, EXPRESSION

Value: T, if itsargument is zero either as a

FIXP or a FLOATP; otherwise, NIL.

We might define EQZERO as follows

(DEFINEQ
(eqzero (x)
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(COND
((NUMBERP X)
(COND
((FIXP X)
(*

It is an integer!

)(ZERO? X))
((FLOAT? X)

*

It is floating point!

)
(EQP x 0.0))))
(T

It is not a number, so return NIL

)
NIL))
))

Consider the following examples:

*NSETQ anumber (IPLUS 6 (IMINUS 6))
0

-N(EQZERO anumber)
T

ASETQ anumber (FPLUS 6.0 (FMINUS 6.0))
0.0

*««-(EQZERO anumber)
T

“NEQZERO 'pi)
NIL

4.2.4 Testing the Type of Number

Numbers may be either integers or floating point numbers in INTERLISP. Two
predicates allow you to test whether a number is an integer or a floating point
number: FIXP or FLOATP. They take the following form

Function: FIXP
FLOATP

# Arguments: 1
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Argument: 1) an S-expression, EXPRESSION

Value: The value of EXPRESSION if it is a number
of the specified type; otherwise, NIL.

Consider the following examples:

ANSETQ anumber 100.765)
100.765

*«-(FIXP anumber)
NIL

<-(FLOATP anumber)
100.765

Both FIXP and FLOATP return NIL if their argument is not a number.

INTERLISP provides a predicate for testing whether or not a number is a
small integer. Small integers arose from early implementations of LISP where
space was extremely limited. The value of a small integer could be represented in
the value cell itself rather than being pointed to by the contents of the value cell.
SMALL? is the predicate that tests if a number is a small integer. It takes the
form

Function: S\VALLP

# Arguments: 1

Argument: 1) an S-expression,EXPRESSION

Value: The value ofexpression if it is a small

integer; otherwise, NIL.

The range of small integers is implementation dependent and is discussed
further in Chapter 13. Consider the following examples (on INTEIiLISP-10):

<-(SVALLP 25)
25

(SVIALLP 33762)
NIL

because the range of small integers on INTERLISP-10 is -1535 to 1535. Other
implementations will have different ranges.

4.3 STRING TESTING: STRINGP

INTERLISP provides a fundamental predicate for testing whether or not the
value of its argument is a string. This predicate is called STRINGP. STRINGP
takes the form



Function:
# Arguments:
Argument:

Value:
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STRINGP
1
1) an expression,EXPRESSION

T, if theexpression has the datatype
string; NIL otherwise.

STRINGP returns the string if the value of its argument has a datatype of
STRING; NIL otherwise.
Consider the following examples:

mNSETQ astring
"The quick brown fox jumped over the lazy dog")
"The quick brown fox jumped over the lazy dog"

(STRINGP astring)
"The quick brown fox jumped over the lazy dog"

(STRINGP 1.7875)

NIL

ANSTRINGP 'presidents)

NIL

ASTRINGP (MKSTRING 1776))

"1776"

4.4 ARRAY TESTING: ARRAYP

INTERLISP provides a fundamental predicate, ARRAYP, for testing whether
or not its argument has a datatype of ARRAY. ARRAYP takes one argument—
a potential array object. It determines whether or not the argument is an array
object. Ifitis, it returns the value of the array object. If it is not, it returns NIL.
ARRAYP takes the form

Function:

# Arguments:
Argument:
Value:

ARRAYP
HARRAYP

1
1) An address of an array, ARRAYX

The value of the address if it is a
pointer to an array object;
otherwise, NIL.

HARRAYP returns the address of a hash array if its argument has the data-

type hash array.
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Note: arrays may only be created by the function ARRAY (see Section 11.1).
Arrays have a special format used by INTERLISP to manage their contents that
requires allocation from a special storage pool. Arrays are discussed in more
detail in Chapter 11.

4.5 LIST TESTING: LISTP and TAILP

INTERLISP provides a fundamental predicate to test whether or not its argu-
ment is a list. This predicate is called LISTP. It takes the form

Function: LISTP
NLISTP

# Arguments: 1

Argument: 1) an S-expression,EXPRESSION

Value: T, if value ofargument is a list; NIL
otherwise

LISTP returns T if its argument is a list; otherwise, it returns NIL. Consider
the following examples:

~(SETQ presidents
(CONS 'kennedy
(CONS 'johnson ’nixon)))
(kennedy johnson nixon)

o<~(LISTP presidents)
T

where the list is built by multiple CONSes.

<-(SETQ presidents "kennedy johnson nixon’)
"kennedy johnson nixon"

(LISTP presidents)
NIL

<-(SETQ numbers
(ARRAY 5 3 0))
[ARRAYPJ#1,2120

ANSETA numbers 1 100)
100

*«-(SETA numbers 2 200)
200
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“(SETA numbers 3 300)
300

(LISTP numbers)
NIL

Neither arrays nor strings are represented as lists in INTERLISP. Thus,
LISTP returns a value of NIL because they are not list-structures. For example,

LISTP NIL)
NIL

because NIL is considered to be a literal atom, rather than a list. Thus, while
(LITATOM NIL) = (ATOM NIL) = T, LISTP applied to NIL returns NIL.
You should exercise caution if the value of an object may be the empty list.

Note that other implementations of LISP may consider NIL (“the empty
list") to represent a list whence LISTP will return T. This may cause difficulty
when you attempty to transport source code from one dialect of LISP to another.

An alternative form, NLISTP, returns the logical negation of LISTP, i.e., it
asks if its argument is not a list. We might define NLISTP as

(DEFINEQ
(nlistp (x)
(NULL (LISTP x))
)

Consider the following example:

A(NLISTP ’presidents)
T

A(NLISTP presidents)
NIL

where PRESIDENTS has the value (kennedy Johnson nixon).

4.5.1 Testing for the Tail of a List

We have already seen how to take lists apart using the CAR and CDR functions.
We often want to test whether or not the remainder of a list (that is, its tail) has a
certain value. With CAR and CDR we can test the permissible combinations of
these functions. However, most lists tend to be longer than four elements. Dis-
membering such lists can be difficult if we have to write specific functions to take
a given number of CDRs from a list. INTERLISP provides us with a convenient
function to test the tail of a list for equivalence to a specific value, TAELP.
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The generic format of this function is

Function: TAILP
# Arguments: 2

Arguments: 1) a list structure, X
2) any list structure, LST

Value: X, 1If thevalue of Xis EQ to some number
of CDRs 0=0) of LST; NIL otherwise.

TAILP returns the value of its first argument if that argument is a tail of its
second argument; otherwise, it returns NIL. Atail is defined as the list resulting
from taking some number of CDRs of the second argument. Consider the follow-
ing examples:

-<-(SETQ girl-friends
‘(marcia mary janice angela elizabeth))
(marcia mary janice angela elizabeth)

m<(TAILP '(angela elizabeth) girl-friends)
NIL

because TAILP uses EQ to compare the two lists. In this case, ‘(angela eliza-
beth) is a new list with a new storage allocation. On the other hand,

<-(SETQ recent-girl-friends (CDDDR girl-friends))
(angela elizabeth)

(TAILP recent-girl-friends girl-friends)
(angela elizabeth) which means T

because some number of CDRs of GIRL-FRIENDS returns a list that is EQ to
the value of its first argument.

The value of the first argument X must match exactly the structure of some
tail of the second argument LST. Using EQ, the value is T if the value of X is a
substructure of LST. That is, for TAILP to succeed, X must be embedded in
LST such that the last N elements of LST correspond exactly to the elements of
X.

Thus, the following examples will not succeed:

®\(SETQ acquaintance ‘'(sandra))
(sandra)

(TAILP acquaintance girl-friends)
NIL
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because no number of CDRs produces a list that has the same value as a tail of
GIRL-FRIENDS.

mN(SETQ a-good-friend '(elizabeth))

(elizabeth)
-"(SETQ one-good-friend (CODDDR girl-friends))
(elizabeth)
(TAILP a-good-friend girl-friends)
NIL

because A-GOOD-FRIEND does not point to the same structure in memory as
the element ELIZABETH in the list GIRL-FRIENDS.

(TAILP one-good-friend girl-friends)
(elizabeth)

because ONE-GOOD-FRIEND points to a list structure that is embedded
within the second argument.

For mathematical purposes, we say that X isaproper tail of LST if the num-
ber of CDRs necessary to find the tail is greater than zero. Unfortunately, no

indication of the number of CDRs required to determine the tail is provided by
INTERLISP.

We might define TAILP as follows

(DEFINEQ
(tailp (x 1st)
(AND x
(PROG NIL
loop
(COND
((NLISTP 1st)
(RETURN NIL))
((EQ x 1st)
(RETURN Xx)))
(SETQ 1st (CDR 1st))
(GO loop)))
))

4.5.2 Counting the CDRs To Produce a Tail

Suppose you wanted to know how many CDRs it will take to reach the tail of
LST. We could modify the definition of TAILP to return this information in-
stead of the value of the tail. Let us call this function TAILP? and let it take the
form
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Function: TAILP?
#Arguments: 2

Arguments: 1) an S-expression, X
2) a list structure, LST

Value: The number ofCDRs required to reach the
tail of LST if X satisfies TAILP on LST;

otherwise, NIL.
We might define TAILP? as follows

(DEFINEQ
(tailp? (x 1st)
(AND x
(PROG (ntails)
(SETQ ntails 0)
loop
(COND
((NLISTP 1st)
(RETURN NIL))
((EQ x 1st)
(RETURN ntails)))
(SETQ 1st (CDR 1st))
(SETQ ntails (ADDI ntails))
(GO loop)))

)

Note that TAILP? returns zero if X and LST are exactly equal; that is, no
CDRs are required to produce the tail. If no number of CDRs would produce a
tail because X is not a tail of LST, then TAILP? returns NIL. Otherwise, it

counts the number of CDRs and returns that value.

4.6 TESTING FOR EQUALITY

In any programming language, we want to be able to test the equality of two
objects. INTERLISP provides predicates for testing equality based on the data-
type of the objects as well as the equality of certain attributes of the objects.

46.1 EQ versus EQUAL

The two basic predicates for testing equality are EQ and EQUAL. They have the

following format
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Function: EQ
EQUAL

# Arguments: 2

Arguments: 1) aLISP  object, X
2) a LISP object, Y

Value: T, if the objects are equal; NIL,
otherwise.

EQ and EQUAL differ in the way they compare their arguments. Consider
two literal atoms that have the same name. Both EQ and EQUAL will return T.
For example,

&-(EQ ’John 'john)
T

<-(EQUAL ’John 'john)
T

both of which return T because each literal atom points to a unique location in
storage. Thus, there is only one instance of JOHN in the entire INTERLISP
memory.

EQ and EQUAL produce the same result when their arguments have the
same values if those values are literal atoms or numbers. For example,

®N(SETQ name-1 ’john)

john
ANSETQ name-2 'john)
john
m&-(EQ name-1 name-2)
T

(EQUAL name-1 name-2)
T

because the values of NAME-1 and NAME-2 are the same literal atom.

EQ operates by comparing the pointers of its arguments. If they point to the
same structure, EQ returns T. Otherwise, it returns NIL. However, a problem
arises when we apply EQ to more complex data structures such as lists and
strings. Consider the following example

-«-(SETQ languages-i-know
(LIST 'pascal 'fortran ‘'snobol 'cobol))
(pascal fortran snobol cobol)
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&-(SETQ languages-used
(LIST 'pascal 'fortran ‘'snobol ‘cobol))
(pascal fortran snobol cobol)

<-(EQ languages-i-know languages-used)
NIL

*«-(EQUAL languages-i-know languages-used)

In this case, EQ returns NIL while EQUAL returns T. Why? We must re-
member that each time LIST is applied to its arguments, it consumes additional
storage to construct and return a new list. Thus, although the two lists LAN-
GUAGES-I-KNOW and LANGUAGES-USED have the same elements, they
are stored in different locations in memory. Because EQ uses pointers to data
structures for comparison, the two lists are not equal because they have different
addresses in memory.

To test the equality of two data structures, we must use EQUAL, which
compares the elements of the two structures. Thus, EQUAL returns T because it
compares the successive elements of the two lists LANGUAGES-I-KNOW and
LANGUAGES-USED, and finds them equivalent.

EQUAL compares the top-level values of its arguments. Thus, two struc-
tures will be EQUAL if

1. EQ That is, pointers to the same structure.

2. EQP That is, numbers with equal value.

3. STREQUAL That is, strings containing the same sequence of charac-
ters.

4. Lists whose CARs are EQUAL and whose CDRs are EQUAL, applied
recursively.

EQ and EQUAL also work correctly when given pointers to the same array
object. However, EQUAL returns NIL if it is asked to compare two different
arrays because it does not perform an individual comparison of the array ele-
ments.

Why should you use EQ over EQUAL? Basically, it is a matter of efficiency.
EQ is a primitive operation that may be encoded as a single instruction whereas
EQUAL must always be defined as a subroutine because it has more work to do.
On the other hand, if you are not too worried about the efficiency of your pro-
gram, but are worried about it performing the proper checks every time, then |
would encourage you to use EQUAL wherever possible.

Programming Convention: It is a good idea, if you are a novice, to always
use EQUAL to ensure that the proper evaluation of the two arguments is per-
formed by INTERLISP. Because data structures that are EQUAL are not always
EQ, many beginning programmers expend substantial effort in attempting to
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determine why a program does not work correctly even though the data appear
to be exactly the same.

Note that some dialects of LISP allocate new storage every time a number is
created even though that number may already be represented in memory. Thus,
two numbers may never be guaranteed to be EQ, even if they are EQUAL.

4.6.2 Atomic Equality

When we have complex data structures, we may want to know if they are exactly
equal throughout the entire structure. To determine total equality, we must de-
scend to the atomic level throughout the data structure. EQUAL does not oper-
ate in this manner since it compares only top-level values. To thoroughly test two
data structures, INTERLISP provides the predicate EQUALALL.

EQUALALL always descends to the atomic level of each of its arguments to
determine equality. Thus, it should be used when comparing arrays, user data
types, or complex structures having multiple levels of sublists beneath the top
level. It takes the form

Function: EQUALALL

# Arguments: 2

Arguments: 1) a datastructure, X
2) a data structure, Y

Value: T, if each elementof X is EQUAL to the
corresponding element of Y; otherwise,
NIL.

EQUALALL may be used to determine the equality of two arrays by inspect-
ing their contents. Let us define two arrays as follows

ASETQ Al (ARRAY 5 5))
[ARRAYP#542224

ASETQ A2 (ARRAY 5 5))
[ARRAYPJ#542233

Clearly, EQ and EQUAL will not work on the values of Al and A2, respec-
tively, because they are different addresses for arrays. Let us initialize the arrays
as follows (using a CLISP expression):

<(FOR | ROM 1 TO 5
DO
(SETA AL | (ITIMES | 100))
(SETA A2 | (ITIMES | 100)))
NIL
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<MFOR I ROM 1 TO 5

DO

(PRINI (ELT Al 1))

(TAB 20)

(PRINT (ELT A2 1)))
100 100
200 200
300 300
400 400
500 500

NIL

Now, let us compare Al and A2 for equality using EQUALALL:

-(EQUALALL Al A2)

because EQUALALL descends into the array to compare individual elements.
Now, let us compare two lists which have equivalent elements but are not

EQ or EQUAL. First, let us define the lists

-N(SETQ LSTI
(LIST 'red
'yellow
(LIST 'green 'blue)
(LIST 'black)))
(red yellow (green blue) (black))

-N(SETQ LST2
(LIST 'red
'yvellow
(LIST 'green 'blue)
(LIST 'black)))
(red yellow (green blue) (black))

These two lists occupy different locations in memory because LIST con-
sumes new CONS cells each time it is called. Thus, we may compare the two lists
for equality

<-(EQ Istl Ist2)
NIL

<-(EQUALALL Istl Ist2)
T
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4.6.3 Numeric Equality

EQ returns T if two numbers have the same structure in memory. For example,
-NSETQ ten 10)
10
NEQ 10 ten)

However, EQ cannot compare an integer with a floating point number even
though they may have the same value. For example,

<-(SETQ ten 10)
10

<NSETQ ften (FLOAT ten))
10.0

<-(EQ ten ften)
NIL

INTERLISP provides EQP to test numerical equality between two numbers.
However, EQP does not do conversion to a canonical representation. Thus, EQP
will succeed when

ANEQP ten ften)
T

but will fail when

ANEQP ten 10.3)
NIL

EQP takes the format

Function: EQP
# Arguments: 2

Arguments: 1) anumber, X
2) a number, Y

Value: T, if the two numbers are equal;
otherwise, NIL.

EQP may be used to compare X and Y as objects. It returns T if X and Y are
EQ; NIL, otherwise. X and Y may be array pointers or stack pointers.
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4.6.4 Testing Equality of Length

In many applications, you will want to know if the length of a list is at least equal
to a given number. INTERLISP provides the predicate EQLENGTH to test the
size of a list. The format of EQLENGTH is

Function: EQLENGTH
# Arguments: 2

Arguments: 1) an S-expression,EXPRESSION
2) a minimum length, LEN

Value: T, if theS-expression has the minimum
length; NIL, otherwise

A simple definition of EQLENGTH might appear as

(DEFINEQ
(eqlength (expression len)
(IGEQ (LENGTH expression) len)

)

Whatever the length of EXPRESSION, LENGTH must traverse the entire
structure to determine its length before the comparison of values may take place.
If EXPRESSION is very long, substantial time may be consumed in determining
its length. Moreover, if EXPRESSION is a circular list, LENGTH never termi-
nates until the operating system steps in.

A more efficient version of EQLENGTH that is safe to use with circular lists
can be defined as

(DEFINEQ
(eglength (expression alength)
(PROG (alst the-length)
(SETQ alst expression)
(SETQ the-length 0)
LOCP
(COND
((GAR alst)
(*
If there is a CAR cell,
increment the counter for
the length of the list.

)(SEI'Q the-length (ADDI the-
length) )
(SETQ alst (CDR alst))
(T
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(RETURN NIL)))

(COND
((EQUAL the-length alength)
(*
Exit with T if and only if
the list has a length equal
to ALENGTH
)
(RETURN T)))
(GO LOOP))

)

In this definition, EQLENGTH will terminate when ALST is determined to
have the minimum length specified or ALST is determined to have a length less

than that specified. It works for circular lists because the number of compari-
sons is bounded by ALENGTH.

4.6.5 Testing Complex or Circular Structures

Some applications may require the use of circular structures (although this is not
generally recommended). Other applications require complex structures where
we want to know only if they are equal to some depth of recursion. INTERLISP
provides the predicate EQUALN to test if two structures are equal to a given
depth. Its format is

Function: EQUALN
# Arguments: 3

Arguments: 1) anS-expression, EXPI
2) an S-expression, EXP2
3) a depth, DEPTH

Value: T, if EXPI equalsEXP2 to the given depth
and no further recursion is possible;
?, if EXPI equals EXP2 and further
recursion is possible; NIL, otherwise.

EQUALN uses DEPTH to determine how deep to search in the complex
structure. For example,

(EQUALN "(((a)) b) '(((z)) b) 2)

9

because at level 2 of the CAR recursion, it still has to compare (A) to (Z). At level
2 they are equal, but further recursion remains, so equality is undetermined.
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“(EQUALN *(((a)) b) '(((z)) b) 3)
NIL

With the depth were set to 3, EQUALN would return NIL because it would
compare A to Z and find them not equal.

:(EQUALN '(((a)) b) '(((a)) b) 3)

Note that DEPTH may be set to 0. Consider the following simple test cases:

, (EQUALN “(A) (A) 0)

ANEQUALN '(A) '(A) 1)

4.6.6 Testing for Non-Equality

Just as we may test for equality, we may also test for non-equality. INTERLISP
provides the predicate NEQ to determine if two data structures are not equal to
each other. This test is very simple because INTERLISP uses EQ to compare the
pointers to the two structures. NEQ returns T if the two structures are not equal;
otherwise, it returns NIL. It takes the form

Function: NEQ
NOTEQUAL
# Arguments: 2
Arguments: 1) an S-expression, EXPRESSIONI
2) an S-expresslon, EXPRESSION2
Value: T, if EXPRESSIONI is not equal to

EXPRESSION2; NIL, otherwise.
A simple definition of NEQ might appear as

(DEFINEQ
(neq (expressionl expression2)
(NOT (EQ expressionl expression2))

)

Note that because NEQ uses EQ to compare the two data structures, the two
data structures may be EQUAL without being EQ. Thus, you may also want to
define a function NOTEQUAL which ensures that they are not equal at the top
level.
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A simple definition of NOTEQUAL might appear as

(DEFINEQ
(notequal (x vy)
(NOT (EQUAL X y))

)

Note that you may also want to define a function NOTEQUALALL which
determines that two structures are not equal at the atomic level.

4.6.7 Testing for Null

INTERLISP provides the predicate NULL to test whether or not its argument
has the value NIL. NULL returns T if the argument has the value NIL. Other-
wise, it returns NIL. Its format is

Function: NULL

# Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: T, 1if the value of EXPRESSION is NIL; NIL,
otherwise.

Consider the following examples:

A(NULL (LIST))
T

because NIL is treated as a literal atom.

<-(NULL (CONS))
NIL

4.7 TESTING VARIABLE BINDINGS

Some functions use “free” or “global” variables in their computations. To pre-
vent errors, you may want to determine whether or not a variable has been bound
to a value before proceeding with the computation. INTERLISP provides the
predicate BOUND? to test if a variable is bound to anything in the current con-

text. It takes the form

Function: BOUNDP
# Arguments: 1
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Argument: 1) a variable, VAR

Value:T, if the variable is bound in some
environment.

BOUNDRP returns T if its argument has a top level value. If the value of the
variable is NOBIND or if the variable has not been created, BOUNDP will re-
turn NIL. Consider the following example

(PROG (var-1 var-2 var-3 ...)
(SETQ var-1 <some value))
(SETQ var-2 NIL)

(<a-function> var-1 var-2)

(RETURN))

Note that in the PROG we have bound VAR-1 and VAR-2 to some values.
However, we have not bound VAR-3. If we were to use VAR-3 in A-FUNC-
TION, an error would result (specifically, U.B.A.) because VAR-3 has not been
given a value. The error results when INTERLISP attempts to (EVAL var-3) to
determine its value.

We can avoid this error by using BOUNDP to determine if a variable is
bound before it is used. Thus, in A-FUNCTION, we might encode a condition as

follows

(COND
((NOT (BOUNDP var-3))
(SETQ var-3 NIL)))

which sets VAR-3 to NIL if it does not have a value.
Consider the following example (assuming we have never set X to any value)

A(BOUNDP 'X)
NIL

A(SETTOPVAL 'X 'ABC)
ABC

<-(BOUNDP 'X)

T
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4.8 DETERMINING MEMBERSHIP IN A LIST

In many applications, a list represents a collection of related items. Often, we
want to know whether or not another item is a member of that set of items.
MEMBER determines if an item X is a member of a list. It takes the form

Function: VEVBER
VEVB
EQvEVB
# Arguments: 2
Arguments: 1) an element, X
2) a list of elements, LST
Value: The tail of LST beginning with X if X is a

member of LST; NIL, otherwise.

MEMBER uses EQUAL to compare X against the elements of LST. Con-
sider the following example,

NSETQ presidents ‘(reagan carter ford nixon Johnson

(reagan carter ford nixon Johnson ...)

assuming that the list PRESIDENTS contains the last names of all the presi-
dents of the United States.

<-(MEMBER 'disney presidents)
NIL

<-(MEVMBER 'adams presidents)
(adams monroe madison Jefferson adams Washington)

Note that PRESIDENTS contains the name ADAMS twice, representing
the sixth and second presidents respectively. However, because we have ordered
the list beginning with the most recent president, the first occurrence of ADAMS
will be detected in the list.

We might define MEMBER as follows

(DEFINEQ
(member (x 1st)
(PROG NIL
loop
(COND

((NLISTP 1st)
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*

If LST is not a 1st, then

return NIL
)
(RETURN NIL))
((COND
((LITATOM x)
(*
If Xis a literal
atom, use EQ for speed
In comparing.
)
(EQ X (CAR 1st)))
(T
(* _
Otherwise, compare X
with the top level
components of the
first element of LST.
)
(EQUAL x (CAR 1st))))
(RETURN 1st)))
(SETQ 1st (CDR 1st))
(GO loop))

)

An alternative form, MEMB, uses EQ instead of EQUAL to perform its
comparisons. MEMB should only be used if you are certain that the elements of
list may be uniquely compared. That is, the elements of the list should either be
numbers, T or NIL, or literal atoms.

For MAKEFILE (see Section 17.3.1), you may specify a list of options that
determines how the code that is written to the file will be processed. MAKEFILE
checks the options that you specify to determine if they are valid, and sets certain
flags that are used later in the function. An abstract of the code used to check
flags is shown below

(COND
((MEMB 'NOCLISP OPTIONS)
(RESETSAVE PRETTYTRANFLG T)))
(COND
(MEVB 'FAST OPTIONS)
(RESETSAVE PRETTYTRANFLG NIL)))
(COND
(OR
(VBVB "CLISPIFY OPTIONS)
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(MevB 'CLISP OPTIONS))
(RESETSAVE CLISPIFYFLG T)))

Because MEMBER uses EQUAL, it will determine if two objects are equal
even if they do not have the same memory location. MEMB, however, uses EQ
which checks for equality of location. | suggest that you use MEMBER (even
though it takes more time) when you are inspecting a list for an element.

Another form, EQMEMB, is T if either X isequal to LST or X is a member
of LST. In the definition of MEMBER given above, if LST is not a list, then
MEMBER returns NIL. EQMEMB allows us to specify either an atom or a list
as its second argument. If the second argument is an atom, EQMEMB deter-
mines if it is identical to the first argument; otherwise, it invokes MEMBER with
the two arguments. We might define EQMEMB as follows:

(DEFINEQ
(egmemb (x vy)
(COND
((nlistp vy)
(EQ X))
(T

(MEMBER x Y)))
)






Logical Connectives
and Predicates

INTERLISP provides a number of functions for performing logical functions on
collections of S-expressions. These logical functions include the Boolean AND,
OR, and NOT, and several Boolean predicates including SOME and EVERY.
You should note that the arguments to each of these functions are evaluated
prior to application of the logical function to the set of results produced by those
evaluations.

5.1 LOGICAL CONJUNCTION

A conjunction is an expression whose value is true if and only if each of its com-
ponents evaluates to a true value.

The logical AND function accepts an indefinite number of S-expressions as
its arguments; the number of arguments may be zero. It takes the form

Function: AND

ft Arguments:  0-N

Arguments: 1-N) oneormore S-expressions,
EXPRESSION[1] ... EXPRESSION[N]

Value: The value of thelast argument, if all of

its S-expressions evaluate to T or its
equivalent; otherwise, NIL.

AND isan NLAMBDA, nospread function. Each of the arguments to AND
is evaluated in turn until one such argument is determined to have a NIL value.
At that time, the AND terminates, returning NIL. If all of its arguments have
non-null values, AND returns the value of the last argument. For example,

A(AND '(1 CAVD '(1 SAW '(1 CONQUERED))
(I CONQUERED)

109
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Consider the following examples:
No arguments

A(AND)

because no argument is detected as having a value of NIL.
First argument is NIL

NAND NIL (anything))
NIL

always results in NIL because its first argument is NIL.
Some argument is NIL

<-(SETQ presidents '(kennedy Johnson nixon ford))
(kennedy johnson nixon ford)

<-(AND
(MEMBER 'nixon presidents)
(MEVBER 'ford presidents)
(VEVMBER 'disney presidents))
NIL

When the arguments to AND are evaluated, we see that the first two S-ex-
pressions succeed because NIXON and FORD are members of the list PRESI-
DENTS. However, upon evaluating the third S-expression, a value of NIL is
returned because DISNEY is not a member of PRESIDENTS. Thus, a value of
NIL isreturned as the value of the AND function. The order of the S-expressions
makes no difference in this example (but will below), so we can rewrite the above
example as

~(AND
(MEMBER 'nixon presidents)
(MEMBER 'disney presidents)
(MEMBER 'ford presidents))
NIL

In this case, the last S-expression will not be evaluated because the second S-

expression has a value of NIL which terminates the execution of the AND func-
tion.

No arguments are NIL

<-(AND
(MEMBER 'nixon presidents)
(MEMBER 'ford presidents)
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(MEMBER 'kennedy presidents))
(kennedy johnson nixon ford)

In this example, all three S-expressions have non-null values. Therefore, the
AND function returns as its value the value of the last S-expression [because
MEMBER returns a non-null value if it succeeds (see Section 4.8)].

5.1.1 An Application of AND

The AND function may be used in many interesting ways. One interesting form

has been to simulate the action of an UNTIL clause in a DO...UNTIL loop
[charSQ].

The WHILE...DO... loop formalism is created using the PROG function
(see Section 3.7). A skeletal form would appear as follows

(PROG ((variables)) (* INITIAL *)
(SETQ (variable) (expression))

(SETQ (variable) (expression)) (* INITIAL *)
LOOP
(OR (* WHILE *)
(expressions)
(GO EXIT))
(expressions) (* DO %)
(SETQ (variable) (expression)) (* NEXT *)
(AND (* UNTIL *)
(expressions)
(GO EXIT))
(GO LOOP)
EXIT
(RETURN (expression))) (* RESULT *)

A detailed analysis of this formalism was discussed during the examination
of the PROG function (see Section 3.7.5).

When the AND function is reached in this formalism, we have already exe-
cuted all of the (expressions) that correspond to the DO-body of an iterative
loop. At that time, the (expressions) within the AND function are evaluated. If
any of these (expressions) have a value of NIL, we jump to execute the loop once
more. When all (expressions) have non-null values, we exit from the loop.

5.2 LOGICAL DISJUNCTION

A disjunction is an expression whose value is true if and only if at least one of its
components evaluates to a true value.
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The logical OR function operates in a fashion similar to the logical AND
function. It also takes an indefinite number of arguments each of which is evalu-
ated in turn. It takes the form

Function: R

# Arguments: O-N

Arguments: 1-N) oneormore S-expressions,
EXPRESSION[1] ... EXPRESSION[N]

Value: The value of the first non-NIL argument,

if any of its arguments evaluates to T or
its equivalent; otherwise, NIL.

OR isan NLAMBDA, nospread function. However, OR returns the value of
the first S-expression whose value is non-null; otherwise, it returns NIL if all its
arguments have a value of NIL. Consider the following examples:

No arguments

"(OR)
NIL

because no argument has a non-null value.
First Argument is non-null

<-(OR T (anything))
T

because the first argument is always non-null, it returns T.
Some argument is non-null

<~(OR
(VBEVBER 'nixon presidents)
(VEVMBER 'disney presidents))
(nixon ford)

returns the list (NIXON FORD) because NIXON is a member of the list PRESI-
DENTS and MEMBER always returns the tail of the list consisting of the match-
ing element.

No argument is non-null

<-(0R
(VBVBER 'disney presidents)
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(MEMBER 'churchill presidents))
NIL

because none of the S-expressions has a non-null value.

5.2.1 An Application of tiie OR Function

Reviewing the sample structure given in Section 5.1.1, you will see that OR is
used to select a terminating condition for the loop. In this case, OR implements
the WHILE phrase of the loop by allowing the iteration to continue if any of its
arguments is non-NIL.

We often combine AND and OR in expressions to test different conditions.
In Section 4.6.3, we used EQP to test the equality of two numbers. Suppose that
we do not care whether the numbers are equal, but do care about the equality of
their signs. The function EQSIGNP allows us to test this concept. It is defined as

(DEFINEQ
(eqsignp (x )
(OR
(AND
(ZEROP x)
(ZEROP y))
(AND
(LESSP x 0)
(LESSP y 0))
(AND
(GREATER? x 0)
(GREATERP y 0)))
))

The first argument to OR tests a simple case (it executes more quickly than
either of the following relational comparisons). It also handles the case where X
is 0 and Y is 0.0. The latter two arguments to OR handle the cases where both
arguments to EQSIGNP are less than or greater than 0.

5.3 LOGICAL NEGATION

Logical negation has the effect of returning the opposite truth value of its argu-
ment. INTERLISP provides two functions to perform logical negation: NOT
and NEGATE.

5.3.1 Computing the Logical Negation

NOT returns the opposite value of its argument. That is, itturns T (or some non-
NIL value) into NIL, and NIL into T. It takes the form
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Function: NOT

# Arguments: 1

Argument: 1) anS-expression, EXPRESSION

Value: Thelogical negation of the value of its
argument.

The value given to NOT may be any S-expression, including atoms and lists.
For example,

<-(NOT (LIST 'michigan 'lllinois ’purdue))
NIL

Many of the predicates in INTERLISP do not have the corresponding oppo-
site forms. Two which do are NLISTP, which is the opposite of LIST?, and
NEQ, which isthe opposite of EQ. Aswe saw in Section 4.6.6, we may create the
opposite predicate by defining a function that prepends NOT to an existing
predicate. In general, you will find these forms easier to read and understand
than writing an S-expression of the form

(NOT ({predicate) <arguments>))

wherever you want to use the opposite predicate. There is a minimal cost to this
approach, namely, defining a new function with the proper name and definition.

5.3.2 Creating Negated S-expressions

NOT merely computes the opposite truth value of the value of its argument.
NEGATE, on the other hand, returns an S-expression that would compute the
opposite value. It takes the form

Function: NEGATE

# Arguments: 1

Arguments: 1) an S-expression, EXPRESSION

Value: The S-expressionevaluating to the logical

negation of the value of its argument.

NEGATE returns an S-expression which will evaluate to the negative of a
value. For example,

(NEGATE 'X)
(NOT X)
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(SETQ x 1)
T

<-(NEGATE Xx)
NIL

NEGATE is written to inspect the structure of its argument and perform
some simple Boolean manipulations to generate the resulting form. Consider the
following examples:

(NEGATE '(AND X V))
(OR (NOT x) (NOT y))

Suppose we assign the values T and NIL to X and Y respectively. Then we
may see how NEGATE operates:

<NSETQ x T)
T

ANSETQ y NIL)
NIL

<(AND x )
NIL

NNEGATE '(AND X y))
(OR (NOT x) (NOT y))

<-(OR (NOT x) (NOT vy))
T

The corresponding form using OR is

<-(NEGATE '(OR x vy))
(AND (NOT x) (NOT vy))

NEGATE recognizes the negative predicates that are defined within IN-
TERLISP. For example,

NNEGATE '(EQ X Y))

(NEQ x y)

<-(NEGATE '(OR X (NLISTP y)))
(AND (NOT x) (LISTP y))

If NEGATE cannot resolve the form into a series of predicates it knowns
about, it prepends NOT to the value of EXPRESSION and returns that as its
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value. Thus, if we had defined NOTEQUAL as a function (see Section 4.6.6),
NEGATE does not know about it. Thus, we have the following case: ,

(NEGATE '(EQUAL X Y))
(NOT (EQUAL x y))

NEGATE works with any number of logical operators composed in an S
expression, but only at the top level of the expression. Consider the following
complex expression:

(NEGATE '(OR (NOT b) (AND a (NOT (OR b d)))))
(A\D b (OR (NOT a) (OR b d)))

5.4 UNIVERSAL QUANTIFICATION

In predicate logic, a formula P(x) may have the value T no matter what assign-
ment is given to the variable X. To assert that every value of X chosen from some
domain satisfies the predicate P, we place a universal quantification symbol
naming the variable in front of the predicate. INTERLISP provides a function to
test whether or not all members of a list satsify a given predicate.

EVERY tests if the application of a given function to each element of a list
results in a value of T; otherwise, it returns NIL.It takes the form

Function: BVERY
NOTEVERY

# Arguments: 3

Arguments: 1) any S-expression, BEVERYX
2) an evaluation function, EVERYFNI
3) a selection function, EVERYFA\2

Value: T if (EVERYFENI (CAR EVERYX)) is T for all
elements of EVERYX selected by EVERYFNZ
NIL otherwise.

EVERY takes a list, denoted by EVERYX, and applies a function,
EVERYFNI, to its CAR, e.g., (EVERYFNI (CAR EVERYX)). If the result of
this computation is NIL, then EVERY returns NIL without further evaluations.
Otherwise, it applies a second function, EVERYFN2, to generate the new
EVERYX. If EVERYFN2 is NIL, EVERY simply computes (CDR EVERY X).
Consider the following examples:

EVERYFNI is NIL, EVERYFN2 is NIL
This is a degenerate form that is equivalent to
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(MAPCAR everyx “AND)

EVERYFENI is non-null, EVERYFNZ2 is NIL
This is the equivalent of applying EVERYFNI to each element of the list
EVERYX. For example, if EVERYFNI is ATOM, then

A(EVERY (LIST 'x 'y 'z) (FUNCTION ATOM))
T

EVERYFNI is NIL, EVERYFN2 is non-null

This form allows a user to select those elements of EVERY X that will be
tested by EVERY. Because EVERYFN2 is used to generate each new version of
EVERY X, only those elements of EVERY will be tested.

5.4.1 A Definition for EVERY
We might define EVERY as follows:

(DEFINEQ
(every (everyx everyfnl everyfn2)
(PROG NIL
loop
(COND
((NLISTP everyx)

( If EVERYX is not a list,
apply BEMERY to a listified
form of EVERYX

)(REI'URN
(EVERY (LIST everyx)

everyfnl)))
((NULL
(APPLY* everyfnl
(CAR everyx)
everyx))

( Test the CAR of EVERYX with
the specified predicate. If
the result is NIL, BVERY
fails for this instance of
EVERYX

)(REI'URN NIL)))

(SETQ everyx
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(COND
(everyfn2
There is a selector
function! So generate
a new version of
BEVERYX
)
(APPLY* everyfn2 everyx))
(T
The default case.
)
(CDR everyx))))
(GO loop))

)

An alternative form, NOT-EVERY, returns the opposite of EVERY if some
of the elements of EVERY X do not satisfy EVERYFNI. We might define NO-
TEVERY as follows:

(DEFINEQ
(notevery (everyx everyfnl everyfn2)
(NULL (EVERY everyx everyfnl everyfn2))

)

5.4.2 Applications of EVERY

EVERY has numerous applications in INTERLISP programs for testing the
consistency of data structures and values of elements of data structures. Con-
sider the following examples:

Test if every member of a list is a number

(DEFINEQ
(numbers? (1st)
(EVERY 1st (FUNCTION NUMBERP))

)

ASETQ 1st '(1 -3A 2.65 0 0.0 -32.09 2314))
(1 -34 2.65 0 0.0 -32.09 2314)

(numbers? 1st)
T

Test if every member of a list is an atom
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(DEFINEQ
(atoms? (1st)
(EVERY 1st (FUNCTION ATOM))
))

ASETQ 1st '(harding grant coolidge))
(harding grant coolidge)

¢-(atoms? 1st)
T

Similar functions may be defined to test any characteristic of a single-level
list by substituting the appropriate predicate into the EVERY expression and
choosing a suitable name for the function. | believe it makes INTERLISP pro-
grams more readable to define new predicate functions in this manner rather
than to use EVERY expressions directly in the program code.

5.5 EXISTENTIAL QUANTIFICATION

In predicate logic, a formula P(x) may have the value T if any one of its argu-
ments satisfies the predicate. To assert that some value of X chosen from a suit-
able domain satisfies P, we place an existential quantification symbol in front of
the formula. INTERLISP provides a function for testing whether or not one of a
list of values satisfies a given predicate.

SOME tests if the application of a given function to each element of a list
results in a value of T for some members of that list. It takes the form

Function: SOVE
NOTANY
# Arguments: 3
Arguments: 1) a list, SOMEX

2) an evaluation function, SOMEFNI
3) a selector function, SOMEFN2

Value: The tail of SOVEX if atleast one element
of SOVEX satisfies SOMEFNI; NILotherwise.

SOME applies SOMEFNI to the CAR of SOMEX. If that value is non-NIL,
SOMEX is returned as the value of SOME. Otherwise, SOMEFNZ2 is applied to
SOMEX. If SOMEFN2 is NIL, SOME uses (CDR SOMEX). That is, it applies
SOMEFNI to each element of SOMEX in succession until one of those elements
returns a non-NIL value. The value of SOME is the tail of SOMEX beginning
with the element which satisfied SOMEFNI.

Consider the following cases:

SOMEFNI is NIL, SOMEFN2 is NIL
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This is a degenerate case that is equivalent to

(MAPCAR soraex 'OR)
SOMEFNI is non-null, SOMEFN2 is NIL

This is the equivalent to applying SOMEFNI to each element of SOMEX.
For example, if SOMEFNI is GREATER?, then

<(SOME (LIST 23.0 -5.0 0.0) (FUNCTION GREATER?))
(23.0 -45.0 0.0)

5.5.1 A Definition for SOME
We might define SOME as follows:

(DEFINEQ
(some (somex somefnl somefn2)
(PROG NIL
loop
(COND

((NLISTP somex)

N
If SOMEX is not a list,
apply SOVE recursively to a
listified form of SOVEX No
need to pass SOMEFNZ since
we know there's only one
element of the first
argument.

)(REI'LRN
(SOVE (LIST somex)
somefnl))))

((APPLY* somefnl

(CAR somex)
somex)

(*
If this form evaluates to a
non-NIL value, we have
found at least one element
of SOVEX that satisfies the
predicate.

)(REI'LRN somex)))
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(SETQ somex
(COND
(somefn2
(*
There is a selector
function! So generate
the new version of
SOVEX
)
(APPLY* soraefn2 somex))
(T
The default case.
)
(CDR somex))))
(GO loop))

)

An alternative form, NOTANY, performs the opposite operation from
SOME. That is, if SOME returns NIL, meaning no element satisfied SO-
MEFNI, then NOTANY would return T.

We might define NOTANY as

(DEFINEQ

(notany (somex somefnl somefn2)
(NULL (SOVE somex somefnl somefn2))

)






List Manipulation

Symbolic expressions are also called lists. A list is just a sequence of objects,
such as atoms or other lists, enclosed in a pair of parentheses. The essence of
programming in INTERLISP is manipulating lists to store information. This
chapter discusses the basic list manipulation functions.

6.1 CREATING LISTS

We have discussed the list creation functions in Section 3.2. However, to make
this chapter complete, we will summarize these functions for you.

CONS adds a new member to the list by prefixing it to the front of the list
which is given as its second argument. It takes the form

Function: CONS
# Arguments: 2
Arguments: 1) any atom or list, EXPRESSION
2) any list, LST
Value: A list whose CAR is the value of the first

argument and whose CDR is the value of the
second argument.

Consider the following example:

A(CONS "X '(y z))
(xy 2)

If the second argument is not a list but another atom, then CONS produces
a form known as a dotted pair. This form takes its name from the fact that the
pointers to the two atoms occupy the CAR and CDR portions of a CONS cell.

123
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<(CONS 'x 'y)
x .y

LIST creates a new list from its argument which may be atoms or lists. Typi-
cally, LIST is used to create a new list from a sequence of atoms. It takes the
form

Function: LIST

# Arguments: 1-N

Arguments: 1-N) S-expressions, EXPRESSION[1]
EXPRESSION[N]

Value: Alist of the values of itsarguments.

Consider the following example:

*«-(LIST 'apple ‘cherry 'lime)
(apple cherry lime)

APPEND joins two lists together at their top level. What this means is, figu-
ratively, that if we place the two lists side-by-side and erase the innermost pair of
opposing parentheses, we will see the new list take shape. It takes the form

Function: APPEND

# Arguments: 1-N

Arguments: 1-N) lists, LST[1] ... LST[N]

Value: Alist of the S-expressions of the

individual lists.

Consider the following example:

(APPEND ' (sherry port) '(riesling pinot-noir))
(sherry port riesling pinot-noir)

We can visualize this by placing the lists side-by-side as shown below and
erasing the innermost pair of opposing parentheses.

( sherry port ) ]{ riesling pinot-noir )
t
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Erase this pair of opposing parentheses to yield

(sherry port riesling pinot-noir)

6.2 CONCATENATING LISTS

When you append two or more lists together, the result is always a new list.
Frequent invocations of APPEND will rapidly consume the available memory
forcing the system to spend more of its time in garbage collecting the remnants
we have left lying around. Moreover, we often want to amend a list without
changing its name (as we must do in using APPEND). INTERLISP provides us
with several concatenation functions that change the CDR portion of the last cell
of all but the last argument when linking the argument lists together. In effect,
they “smash” the current value of each last cell’s CDR portion and replace it
(just as RPLACD does) with a new value—the pointer to the first cell of the next
argument list. However, in performing this operation we destroy the integrity of
the second argument because it is merged into the first argument.

6.2.1 NCONC: Normal Concatenation

NCONC isthe INTERLISP function that performs normal concatenation of two
or more lists. Each of its arguments is a list. It modifies the CDR portion of the
last cell of each list to point to the first cell of the succeeding argument list.
Obviously, this cannot occur for the last argument list, and so it remains unmod-
ified. It takes the form

Function: NCONC

# Arguments: 2.. N

Arguments: lists

Value: a pointer to the first argument

NCONC is a nospread function. Consider the following example:

<-(SETQ french-wlnes (LIST 'pinot-noir 'merlot))
(pinot-noir merlot)

<-(SETQ german-wines (LIST 'riesling 'sylvaner))
(riesling sylvaner)

<-(SETQ wines (APPEND french-wines german-wines))
(pinot-noir merlot riesling sylvaner)

french-wines
(pinot-noir merlot)
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-german-wines
(riesling sylvaner)

<-(SETQ wines french-wines)
(pInot-noir merlot)

<-(NCONC wines german-wines)
(pinot-noir merlot riesling sylvaner)

<-wines
(pinot-noir merlot riesling sylvaner)

where we see that the list WINES has physically been altered by execution of
NCONC.

NCONC can take more than two lists as its arguments. In this case, all but
the last list will be physically altered by execution of NCONC. NCONC always
returns a pointer to the first cell of the first argument as its result.

NCONC may be given NIL as the value of its first argument. Since NIL is
treated as both an atom and a list, the following is a valid invocation of NCONC:

+<-(SETQ good-wines NIL)
NIL

(NOONC good-wines (LIST 'pinot-noir ’merlot))
(pinot-noir merlot)

However, NCONC operates somewhat differently when it encounters this
situation. We must realize that NCONC deals with pointers to lists rather than
the lists themselves. Thus, when it encounters NIL as the value of GOOD-
WINES, it does not know that this NIL is the value of GOOD-WINES as op-
posed to the intrinsic atom/list NIL. The result would be to modify the system
atom/list NIL permanently, which would produce future catastrophic results.
Thus, NCONC checks to see if its first argument is NIL and, if so, returns a
pointer to the second argument.

good-wines
NIL

Thus, although the value of the NCONC expression is (pinot-noir merlot),
GOOD-WINES has not been changed. NCONC has not changed NIL the
“atom” into a list.

Note that the first argument of NCONC cannot be an atom in any case since
NCONC is not allowed to change a non-list to a list in order to concatenate it.
However, the second argument may be an atom. A variation of NCONC,
NCONCI, is used to concatenate an atom to the end of a list. It takes the form
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Function: NCONCI
# Arguments: 2
Arguments: 1) a list, LST
2) any S-expression, EXPRESSION
Value: A listcomposed of LST concatenated with

the value of EXPRESSION.
We might define NCONCI as

(DEFINEQ
(NCONCI (alst an-atom)
(NCONC alst (LIST an-atom))

)

Basically, NCONCI just applies the function LIST to its second argument
before performing the concatenation. However, since this operation is frequently
performed, NCONCI is often hardwired to make it more efficient. For example,

(NCONCI french-wines “cabernet-sauvignon)
(pinot-noir merlot cabernet-sauvignon)

The definition for NCONC in terms of more primitive functions might ap-
pear as

(DEFINEQ
(NCONC  (list-of-lists)
(PROG (a-list tail)
(SETQ a-list
(OR
(SOME list-of-lists (FUNCTION LISTP))
(RETURN
(CAR (LAST list-of-lists)))))
(SETQ tail
(LAST (CAR a-list)))
(MAPC
(CDR a-list)
(FUNCTION
(LAMBDA (item)
(RPLACD tail item)
(SETQ tail (LAST tail)))))

(RETURN (CAR a-list)))
)
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6.2.2 TCONC: One at a Time Concatenation

When we use NCONCI, INTERLISP must find the end of the list in order to add
the new element. Many times we are faced with the situation where we must add
multiple elements to the end of the list, but one at a time. As the number of
elements to be added grows, NCONCI rapidly becomes inefficient because it
finds the end of the list anew on each invocation.

TCONC solves this problem by remembering where the end of the list is
from invocation to invocation. Each time it is called, TCONC inspects a pointer
it has created for the list that shows where the end of the list resides in memory.
Thus, updating a list can proceed very rapidly when one element at a time is
added to its end. It takes the form

Function: TCONC
# Arguments: 2

Arguments: 1) a listhaving thepointer  format,
POINTER
2) the element to be added, ELEMENT
Value: An updated pointer forsucceeding
operations.

TCONC can be initialized in two ways:

1. If POINTER is NIL, TCONC creates a POINTER for you.
2. If POINTER has a value, TCONC changes the value of POINTER.

Consider the following examples:

<-(SETQ wines (TCONC NIL Terlot))
((merlot) merlot)

where the CAR of the list returned is the list that you are building and the CDR
is the pointer to the last element added to the list. Thus, you can always deter-
mine where you are in building the list if its proper assembly depends on a spe-
cific sequence of steps.

When POINTER is (NIL), TCONC will change the value of POINTER.
Consider the following example:

A(SETQ fruits (LIST NIL))
(NIL)

(TCONC fruits Tabernet-sauvignon)
((cabernet-sauvignon) cabernet-sauvignon)

fruits
((cabernet-sauvignon) cabernet-sauvignon)
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We usually build a list incrementally when we are repeating a function or
sequence of statements several times. One likely candidate is within a PROG.
Many times, however, we merely want to repeat one function a fixed number of
times where each iteration generates a single element to be added to the list. In

this case, we are likely to use the RPTQ or RPT function.
Consider the following example:

N(RPTQ 5
(SETQ list-of-numbers

(TCONC list-of-numbers rptn)))
(5 4321) 1)

We recognize that this statement produces a list that appears a lot like the
vector produced by the APL index-generation operator. Let us capture it as a
function, but produce the list in the proper order.

(DEFINEQ
(index-generation (index)
(PROG (index-list)
(SETQ index-list (LIST NIL))

(SETQ index-list

(DREVERSE

(CAR

(RPT index

(TCONC index-list RPTN)))))
(RETURN index-list))

)

We can define TCONC in terms of the elementary functions as follows

(DEFINEQ
(TCONC (pointer element)
(PROG (pointer-list)
(RETURN
(COND
((NULL pointer)

N
( POINTER 1is NIL. Create one

with the value of ELEMENT
and return it.

%CONS
(SETQ pointer-list
(CONS element NIL))
pointer-list))
((NLISTP pointer)
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Generate an error if the
pointer is not a list.

)(ERROR "Bad Argument-TCONC:”
pointer))
((NULL (CDR pointer))

( Handle the case of the
first-time call, whence
there is no end-of-list
pointer.

)
(RPLACA pointer (CONS element NIL))
(RPLACD pointer (CAR pointer)))

(T

Handle all other cases.

)(RPLACD pointer
(CDR
(RPLACD (CDR pointer)
(RPLACD (CONS element)
(CDR pointer)))

)))
)

6.2.3 LCONC: Concatenating Lists

TCONC is used to add elements to the end of a list. Many times, we want to add
lists to the end. Again, the problem is that we must always find the end of the list
each time we invoke NCONC. LCONC (for List Concatenation) maintains a
pointer just as TCONC does, but its second argument must always be a list. It
takes the form

Function: LGONC
# Arguments: 2
Arguments: 1) a listhaving pointer format,POINTER
2) a list, LST
Value: TSSeTpointer list updated with the value of

Consider the following example:
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¢-(SETQ wines (LIST NIL))
(NIL)

¢-(LCONC wines (LIST 'merlot 'sylvaner))
((merlot sylvaner) sylvaner)

Note that the CDR portion contains the value of the last list element that is
added to the list. This convention is the same as that used for TCONC. Thus, if
we had to add both lists and elements to a list, we can call both TCONC and
LCONC with the same pointer structure. Given the pointer structure WINES
above, consider the following example:

(TCONC wines 'chablis)
(merlot sylvaner chablis) chablis)

(LCONC wines 'chablis)
bad argument-LCONC

because the second argument must be a list.
We can define LCONC in terms of elementary functions as follows

(DEFINEQ
(LCONC (pointer a-list)
(PROG (pointer-list)
(SETQ pointer-list (LAST a-list))

(RETURN
(COND
((NULL a-list)

( If NIL is to be added to the
existing list, just return the
pointer.

pointer)

((NLISTP a-list)

( If the argument to be added is
not a list, generate an error.

)(ERROR "Bad Argument-LCONC: "

a-list))
((NULL pointer)
(*

If POINTER is NIL, create a new
pointer with A-LIST as the sole
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element, and the last atom of A-
LIST as the marker.

)
(CONS a-list pointer-list))
((NLISTP pointer)
*
If POINTER is not a list,
generate an error.

)
(ERROR "Bad Argument-LCONC: ”
pointer))
((NULL (CAR pointer))

*

Handle the case (NIL).

)(RPLACA
(RPLACD pointer pointer-list)
a-list))
(T
(*

Handle all other cases.

)
(RPLACD (CDR pointer) a-list)
(RPLACD pointer pointer-list)))

)

6.2.4 ATTACH: Concatenating at the Front

Each of NCONC, TCONC, and LCONC adds elements, whether atoms or lists,
to the end of a list. It is often useful to be able to add elements to the front of a
list. For example, in maintaining an agenda of tasks to be accomplished, you
may want to place the highest priority task at the front of the list.

ATTACH adds an element to the front of the list by doing an RPLACA and
RPLACD. Its format is

Function: ATTACH
# Arguments: 2

Arguments: 1) an element, X
2) a list, LST
Value: The modifiedlist, LST'.

Consider the following example:

<-(SETQ baryons '(proton muon kaon))
(proton muon kaon)
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¢-(ATTACH 'omega-minus baryons)
(omega-minus proton muon kaon)

(ATTACH 'sigma-minus NIL)
(sigma-minus)

which is the same as performing (CONS ‘sigma-minus NIL).

*«-(ATTACH (LIST ‘'tau-minus) baryons)
((tau-minus) omega-minus proton muon kaon)

ATTACH performs destructive modification of the list. The resulting list
remains EQ to LST.

If the second argument is not a list, INTERLISP generates an error message
ARG NOT LIST.

We might define ATTACH as follows:

(DEFINEQ
(attach (x 1st)
(COND
((LISTP 1st)
(RPLACA
(RPLACD 1st
(CONS (CAR 1st)
(CDR 1st)))
X))
((NULL 1st)
The second argument must be a
list.
)(ERROR "ARG NOT LIST" x)))
))

6.2.5 Variations on Concatenation

The CONCatenation functions use an extra CONS cell to keep track of the
pointers to the list elements. INTERLISP provides two functions that avoid the
overhead of the extra CONS cell: DOCOLLECT and ENDCOLLECT. They

take the form

Function: DOCOLLECT
ENDCOLLECT

# Arguments: 2
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Arguments: 1) an item, ITEM
2) a list, LST
Value: Alist with the item inserted.

Consider the following examples:

<-(SETQ particles '(neutrino electron W-boson))
(neutrino electron W-boson)

*NDOCOLLECT 'neutron particles)
(neutron electron W-boson)

N-particles
(neutrino neutron electron W-boson)

Caution must be exercised in using DOCOLLECT because you may cause
the machine to enter into an infinite loop that may only be exited by rebooting.
Consider the example

<-(SETQ particles NIL)
NIL

*««-(DOCOLLECT 'positron particles)

At this point, the machine begins printing an endless list as follows:

(positron positron positron positron positron positron
positron positron positron ... ad infinitum

%-(SETQ particles (LIST 'neutrino ‘'electron 'W-boson))
(neutrino electron W-boson)

NENDCOLLECT particles 'tau-minus)
(electron W-boson)

AN-particles
(neutrino . tau-minus)

(ENDCOLLECT particles (LIST 'J-particle 'omega-zero))
(electron W-boson)

me-particles
(neutrino J-particle omega-zero)

NENDCOLLECT NIL ‘'electron)
electron

NSETQ particles '(electron proton))
(electron proton)
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me-(ENDCOLLECT particles NIL)
(proton)

¢-particles
(electron)

As we see, DOCOLLECT adds an item at the beginning of the CDR of the
list, whereas ENDCOLLECT replaces the CDR of the list. In general, DOCOL-
LECT maintains the list that it is building as a circular list. When you are ready
to add the last item, you should use ENDCOLLECT, which returns a non-circu-
lar list. Thus, DOCOLLECT and ENDCOLLECT are meant to be complemen-
tary functions.

Implementing DOCOLLECT
DOCOLLECT may be implemented in terms of RPLACD as follows:

(DEFINEQ
(docollect (an-item a-list)
(COND
((NLISTP a-list)
(RPLACD (SETQ a-list (LIST item))
a-list))
(T
(CDR (RPLACD a-list
(CONS item a-list)))))
)

Implementing ENDCOLLECT
ENDCOLLECT may be implemented using RPLACD as follows:

(DEFINEQ
(endcollect (item a-list)
(COND
((NULL item) a-list)
(T
(PROGI
(CDR item)
(RPLACD item a-list))))
)

Using DOCOLLECT in MAPCAR
The IRM [irm78] suggests that MAPCAR may be defined, using DOCOL-
LECT and ENDCOLLECT, as follows:

(DEFINEQ
(mapcar (a-list a-function)
(PROG (value)
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loop
(COND
((NLISTP a-list)
(RETURN (ENDCOLLECT value))))

(SETQ value
(DOCOLLECT
(APPLY* a-function (CAR a-list))
value))
(SETQ a-lIst (CDR a-llst))
(GO loop))

)

6.3 SUBLIST EXTRACTION

In Chapter 2, we saw that one way to take a list apart was to use the functions
CAR and CDR. These work, respectively, on the head and the tail of a list. In
addition, INTERLISP provides several functions that can operate on interior
components of a list.

6.3.1 Extracting the Last Element

LAST allows you to retrieve the last node in a list, e.g., the contents of the last
list cell. LAST takes the form

Function: LAST

# Arguments: 1

Arguments: 1) alist, LST

Value: A listwhose element is the last node in

LST; otherwise, NIL.
If its argument is not a list, LAST returns NIL:

A(LAST ‘'rhomboid)
NIL

Otherwise, it returns the contents of the last cell of LST as a list. There are
two possible cases:

1. The last cell was appended (NIL in the CDR part). For example,

<-(LAST '(parallel quadrilateral rhomboid))
(rhomboid)
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2. The last ceil was CONSed to the list. For example,

<-(LAST '(parallel triangle quadrilateral . rhomboid))
(quadrilateral . rhomboid)

LAST is useful when you must obtain the last entry of a list. If the list is
longer than four elements, you cannot use one of the CAR ... CDR combinations
to retrieve the element. Using LAST, you do not need to know the length of the
list to retrieve the last element.

We might define LAST as follows:

(DEFINEQ
(last (1st)
(PROG (xprev)
(SETQ xprev NIL)
loop
(COND
((NLISTP 1st)
(RETURN xprev)))
(SETQ xprev 1st)
(SETQ 1st (CDR 1st))
(GO loop))
)

Note that XPREV always holds the previous element of X. Thus, when we
determine that X is no longer a list, the previous element must be a list. Hence, it
isreturned as the last element of X. On the first pass through the code, if X is not
a list, then NIL will be returned. See [knut68] for a detailed discussion of list
manipulation algorithms.

6.3.2 Extracting the Tailing N Elements

NLEFT allows you to extract the rightmost N elements of a list where N is greater
than the number of elements in a specified tail of the list. Its format is

Function: NLEFT
# Arguments: 3
Arguments: 1) a list, LST

2) extension, N
3) the tail, TAIL

Value: Alist with N more elements than the tail.
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Consider the following examples:
1. TAIL is NIL (the usual case):

<-(SETQ awards '(tony oscar emmy coty))
(tony oscar emmy coty)

-(NLEFT awards 2)
(emmy coty)

2. TAIL is non-NIL:

ANSETQ tail (CDDDR awards))
(coty)

<-(NLEFT awards 1 tail)
(emmy coty)

where the length of the tail is 1, and we are asking for a list whose length

is 1 greater than the length of the tail.

<-(NLEFT awards 4 tail)
NIL

because there is no list that may be extracted from the first argument
which meets the specified criterion, namely having a length 4 elements

greater than the tail.

If LST is not a list and is equivalentto TAIL, NLEFT returns NIL, except in

the case where N is zero:
A(NLEFT (LAST awards) 1 tail)
NIL

(NLEFT (LAST awards) O tail)
(coty)

You may use NLEFT to work backwards through a list by setting TAIL to
(LAST 1st). Then, by calling NLEFT repreatedly with different values of N and
using CAR to strip off the head of the resulting list, you access the list in reverse
order. When the result is NIL, you know that you have reached the end of the

list.
We might define NLEFT as follows:

(DEFINEQ
(nleft (1st n tail)
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(PROG (x)
(SETQ X 1st)
loop
(COND
((ZEROP n)
( N equal to 0 is equivalent
to LAST.

)(GO loopl))
((OCR
(EQ x tail)
(NLISTP x))
Return NIL if:
1. The first argument is
not a list.
2. It is equal to the
thing that is looked
for.

)(REI'URN NIL)))

(SETQ X (CDR x))

(SUBIVAR n)

(GO loop)

loopl
(COND
((OR

(EQ x tail)
(NLISTP x))

*

Return 0 if Nis O.

)(REI'URN 1st)))
(SETQ x (CDR x))
(SETQ 1st (CDR 1st))
(GO loopl))

)

Note that if N is zero and TAIL is NIL, then NLEFT is equivalent to LAST.
If N is zero and TAIL is non-NIL, then NLEFT operates like MEMBER.

6.3.3 Extracting the Last N Elements
LASTN extracts the last N elements of a list. It takes the form
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Function: LASTN
# Arguments: 2
Arguments: 1) a list, LST
2) an index, N
Value: An S-expression consisting of the initial

and final segments of a list.

Assume LST has length equal to L elements. LASTN “breaks” a list at the
Nth element. It returns an S-expression equivalent to

(CONS initial . final)
where

Initial The first through L-N-1 elements of the list
Final  The Nth through L elements of the list

If LST does not contain N elements (i.e., L less than N), LASTN returns
NIL.
Consider the following examples:

<-(SETQ 1st ’(the lazy fox jumped over the brown dog))
(the lazy fox jumped over the brown dog)

AN ( LASTIN 1st 5)
((the lazy fox) jumped over the brown dog)

<-(LASTN 1st 10)
NIL

A ( LASTN 1st 8)
(NIL the lazy fox jumped over the brown dog)

LASTN provides a convenient mechanism for decomposing complex list
structures. The CAR of its result always returns the initial segment while the
CDR returns the final segment. Let us assume the following complex structure:

(class conceptualization properties constituents)

which might be the syntax node structure in a natural language parser.

We know that the list has a fixed structure but that the type of individual
elements (except for the first) may be atoms or lists. We can defined the follow-
ing functions:
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(DEFINEQ
(syntax:class (node)
(car node)))
(DEFINEQ
(syntax:concept (node)
(CADR (LASTN node 3))))
(DEFINEQ
(syntax:properties (node)
(CADR (LASTN node 2))))
(DEFINEQ
(syntax:constituents (node)
(CADR (LASTN node 1))))

Note that we can extract an individual element by taking the CADR of
LASTN of the original list where the element is the Nth element from the tail of
the list.

Although I have demonstrated this approach for a list of four elements, you
can see that it is easily applicable to a list of N elements provided N is fixed.

A Definition for LASTN
We might define LASTN as follows:

(DEFINEQ
(lastn (1st n)
(PROG (xIst ylst)
(SETQ xIst (NTH 1st n))
(COND
((NLISTP 1st)

*

If LST is not a list.

)
(RETURN NIL))
((NULL xIst)
(*
If Nis greater than the
length of LST.

)(REI'URN xIst)))

loop
(SETQ xIst (CDR xlst))
(COND
((NULL xIst)
(RETURN
(CONS ylst 1st))))
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(SETQ ylst

(NCONCI ylst (CAR 1st)))
(SETQ 1st (CDR 1st))
(GO loop))

)

6.3.4 Extracting From the Nth Element

Given a list of K elements, how do you extract from the Nth element (where N is
lessthan K)? If N is 1,2, or 3, you can use some combination of CARs and CDRs
to retrieve it. You may use LAST if N equals K. Otherwise a complex function
might be required with substantial testing for the len”h and end of the list for
different cases. INTERLISP provides NTH to extract the tail of a list beginning
with the Nth element where the length of the list is unknown. It takes the form

Function: NTH

# Arguments: 2

Arguments: 1) anS-expression,EXPRESSION
2) an index, N

Value: Thetail of thelist beginning with the
Nth element.

Let us consider several cases, using the list

<-(SETQ games
(LIST ‘'poker ‘'gin-rummy ‘hearts 'bridge
‘canasta))

(poker gin-rummy hearts bridge canasta)

1. If N is 0, the value is (CONS NIL EXPRESSION).

<-(NTH games 0)
(NIL poker gin-rummy hearts bridge canasta)

2. If N is 1, the value is EXPRESSION.

ANTH games 1)
(poker gin-rummy hearts bridge canasta)

3. If N is 2, the value is (CDR EXPRESSION).

<-(NTH games 2)
(gin-rummy hearts bridge canasta)

@
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4. If (LENGTH EXPRESSION) is less than N, the value is NIL.

-"(NTH games 7)
NIL

5. Otherwise, the tail of EXPRESSION beginning with the NTH element is
returned.

«-(NTH games 3)
(hearts bridge canasta)

We might define NTH as follows:

(DEFINEQ
(nth (expression n)
(COND
(IGREATERP 1 N)

*

If Nis less than or equal to
zero.

)(CONS NIL expression)))
(PROG NIL
loop
(COND
((EQUAL n 1)
(RETURN expression))
((NLISTP expression)
(RETURN NIL)))
(SETQ expression (CDR expression))
(SETQ n (SUBI n))
(GO loop))

)

6.4 COPYING AND REVERSING LISTS

INTERLISP duplicates pointers to lists rather than duplicating the lists them-
selves in many functions. For example,

mN(SETQ computers
(LIST ‘atari-1200 ‘'apple-lle 'TRS-80))
(atari-1200 apple-lle TRS-80)

<-(SETQ microcomputers computers)
(atari-1200 apple-lle TRS-80)
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creates an additional pointer to the list which is the value of COMPUTERS. We
can verify this by checking to see if MICROCOMPUTERS and COMPUTERS
are EQ.

<-(EQ microcomputers computers)
T

However, if we subsequently modify COMPUTERS, then the value of MI-
CROCOMPUTERS is modified as well.

<-(SETQ computers (APPEND computers ’*i1APX-286))
(atari-1200 apple-lle TRS-80 IAPX-286)

Amicrocomputers
(atari-1200 apple-lle TRS-80 iAPX-286)

However, if we wish to modify COMPUTERS without modifying MICRO-
COMPUTERS, then we must make a copy of COMPUTERS. This section de-
scribes functions for copying lists.

6.4.1 Copying List Elements

COPY makes a copy of the list which is its argument. It returns the new list as its
value. COPY duplicates elements of its arguments down to the non-list level.
However, if some of its elements are strings or arrays, the new list will contain
these same strings or arrays (via pointers to them). It takes the form

Function: aorY
# Arguments: 1
Argument: 1) anS-expression to becopied,
EXPRESSION
Value: A copy (with newstorage assigned) of its
argument.

Consider the following examples:

*<-(SETQ countries “(france Spain denmark norway))
(france Spain denmark norway)

NSETQ same-countries (COPY countries))
(france spain denmark norway)

<-(EQ countries same-countries)
NIL

(EQUAL countries same-countries)
T
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demonstrates that while the lists are equivalent, they are not the same data struc-
ture.

ANSETQ some-sf-writers '("Asimov” "Dick"
"Saberhagen"))
("Asimov" "Dick" "Saberhagen")

<-(SETQ good-sf-writers (COPY some-sf-writers))
("Asimov" "Dick" "Saberhagen")

mNEQ some-sf-writers good-sf-writers)

NIL

“(EQUAL some-sf-writers good-sf-writers)
T

B<-(SETQ seed 'tamarind)

tamarind

<-(SETQ new-seed (COPY seed))

tamarind

*-(EQ seed new-seed)

T

If you just want to copy the top level of the list, you may use (APPEND
expression).
We might define COPY as follows:

(DEFINEQ
(copy (expression)
(COND
((NLISTP expression)
( If EXPRESSION is not a list,
just return the value of
EXPRESSION.

expression))
(PROG (xIst ylst)

*

Copy the first element of expression.

)(SETQ ylst
(LIST (COPY (CAR expression))))

(SETQ xIst ylst)

loop
(SETQ expression (CDR expression))
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(GOND
((NLISTP expression)

( Condition is satisfied when
we reach the end of
expression, since (NLISTP
NIL) is T.

)(RPLACD ylst (COPY expression))

(RETURN x1st)))

(SETQ ylst
(CDR
(RPLACD vy st
(RPLACD
(CONS
(CopY
(CAR
expression))
ylst)))))
(GO loop))

)

6.4.2 Copying All List Elements

COPY will not duplicate non-list elements when it copies an expression (see
“seed” example above). Rather, it creates pointers to non-list elements such as
arrays, strings, etc. COPYALL duplicates every element of a list including at-
oms, arrays, and strings when you must have new copies of each element of the

list. It takes the form

Function: QCOPYALL
HCOPYALL
# Arguments: 1
Argument: 1) an S-expression,EXPRESSION
Value: A new copy OfEXPRESSION including all

non-list data structures.
Consider the following examples:

NSETQ xI "Merry Christmas”)
"Merry Christmas"

NSETQ x2 (COPYALL x1))
"Merry Christmas"

(Al
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NEQ xI x2)
NIL

(EQUAL x| x2)
T
<-x2

"Merry Christmas”

<NSETQ y (ARRAY 3))
{ARRAYP}542224

ASETA y 1 100)
100

<NSETA y 2 200)
200

ASETA y 3 300)
300

<-(SETQ z (COPYALL vy))
{ARRAY?7}#542231

AELT z 2)
200

A variation, HCOPYALL, copies data structures that contain circular
pointers. For example,

*«-(SETQ rare-gases
(LIST ’helium ‘'krypton ‘'argon 'xenon ‘radon))
(helium krypton argon xenon radon)

Now let us create a circular list:
*«-(RPLACD (LAST rare-gases) rare-gases)

The result of executing this function at the top level of INTERLISP is a
repeating list of the form

(helium krypton argon xenon radon helium krypton argon
xenon radon ...)

To terminate the printing, you must interrupt via CTRL-D to force a reset of

the top level of INTERLISP.
If we attempt to apply COPYALL to this circular list, we obtain

<-(SETQ inert-gases (COPYALL rare-gases))
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This function never succeeds because COPYALL attempts to build up a list
by successive references to elements of RARE-GASES. The ultimate result is to
exhaust your virtual memory and cause INTERLISP to crash.

However, if we apply HCOPYALL, we obtain

NSETQ inert-gases (HOOPYALL rare-gases))
(helium krypton argon xenon radon . [1])

where the strange notation indicates that INERT-GASES is circular just like
RARE-GASES.

6.4.3 Copying with Reversal

REVERSE allows you to copy a list while reversing the order of its elements. It
takes one argument, the list to be reversed, and returns the reversed list. It takes
the form

Function: REVERSE
DREVERSE
# Arguments: 1
Argument: 1) an S-expression,EXPRESSION
Value: A copy of EXPRESSION withall top-level

elements reversed in sequence.
Consider the following examples:

(REVERSE 'huckleberry)
NIL

because it does not operate upon non-lists.

*<(REVERSE (LIST ‘'orange 'blue 'magenta 'yellow))
(yellow magenta blue orange)

REVERSE will only reverse the top-level elements in a list. For example,

SETQ errors
(LIST ' (my blunder)
"(his oversight)
‘(their negligence)))
((my blunder) (his oversight) (their negligence))

<-(REVERSE errors)
((their negligence) (his oversight) (my blunder))

—_— )



6.4 Copying and Reversing Lists 149

You may wish to define a function, REVERSEALL, that reverses a list at all
levels.

An alternative version, DREVERSE, destroys the original list and sets the
reversed list as its value. It does not use any additional storage.

REVERSE is useful in many situations, but particularly in those programs
where you are simulating a stack or an agenda.

Suppose you need to read a sentence into your program. Each sentence is
terminated by a ! or a ? which indicates the type of processing to be applied to
the sentence. We want to define a function GET-SENTENCE which reads atoms
from the your terminal until it detects one of those two terminators. Its definition
looks like this

(DEFINEQ
(get-sentence NIL
(PROG (sentence)
loop
(SETQ sentence
(CONS (RATOM) sentence))

(COND
((MEMBER (CAR sentence) '(! ?))
(RETURN
(CONS (REVERSE sentence)
NI1L))))
(GO loop))
)
We might define REVERSE as follows:
(DEFINEQ
(reverse (expression)
(PROG (1st)
loop
(COND
((NLISTP expression)
(RETURN 1st)))
(SETQ 1st
(CONS (CAR expression) 1st))
(SETQ expression (CDR expression))
(GO loop))
)

6.4.4 Removing Elements from a List

To remove an element from a list, we must excise it from the front, back, or
within the list. Removing an element from the front of the list is very simple—we
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just return the CDR of the list. Removing an element from the rear is also simple
because we can use RPLACA to assign NIL to the last element of the list. Re-
moving an element from within a list is more difficult because we must search for
the element and then delete it while adjusting the pointers from the surrounding
elements. INTERLISP provides REMOVE to delete elements within a list. It
takes the form

Function: REVOVE
DrREVOVE

# Arguments: 2

Arguments: 1) an atom, X
2) an S-expression, LST

Value: A copy of LST withalltop level elements
equal to X removed from it.

Consider the following examples:

REMOVE ’a '(c r awdaddy))

(crwdddy)
REMOME can delete NIL from a list:
Aplaintext

(EPLURIBUSUNUM)

<-(RPLACA (LAST plaintext))
(NIL)

plaintext
(EPLURIBUSUNU NIL)

NREMOVE NIL plaintext)
(EPLURIBUSUNU)

Note that REMOVE only removes the top-level elements equal to X. For
example,

(REMOVE 'sheila '(sheila (sheila)))
((sheila))

And removing the only element of a list makes that list become NIL. For
example,

(REMOVE ‘apple-pie ‘(apple-pie))
NIL
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An alternative form, DREMOVE, uses EQ instead of EQUAL to delete X.
Moreover, it actually modifies LST rather than returning a copy with X deleted.
However, DREMOVE cannot change a list to NIL. For example,

mNSETQ dessert '(apple-pie))
(apple-pie)

+-(DREMOVE ‘'apple-pie dessert)
NIL

eNdessert
(apple-pie)

This execution of DREMOVE returns NIL, but it does not perform any
CONSes. The value of DESSERT remains (apple-pie), because there is no way
to change a list into a non-list.

We might define REMOVE as follows:

(DEFINEQ
(remove (x 1st)
(COND
((NLISTP 1st) NIL)
((EQUAL x (CAR 1st))
(REMOVE x (CDR 1st)))
(T
(CONS (CAR 1st)
(REMOVE x (CDR 1st)))))
)

6.5 MODIFYING LISTS BY SUBSTITUTION

Lists are a generalized structure for representing information about problems.
Often, the ordering of elements within a list has significant import to the inter-
pretation of the list within a program. As program execution progresses, you
may want to modify the structure of a list to replace old information with new
values. One way is to modify the list itself by substituting new values for those

that already exist in the list.

6.5.1 A General Substitution Function: SUBST
SUBST is the general INTERLISP substitution function. Its format is

Function: SUBST
DSUBST
LSUBST
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# Arguments: 3

Arguments: 1) an S-expression, NeW
2) an atom, QD
3) a list, LST

Value: The new value of the list after
substitution.

SUBST evaluates its arguments. It performs a one-for-one substitution of
the value of NEW for the value of OLD for all occurrences of OLD in LST when

1. OLD is EQUAL to the CAR of some sublist of LST,

2. When OLD is atomic and not NIL,

3. When OLD is atomic, not NIL, and EQ to the CDR of some sublist of
LST.

For example, suppose we have a mathematical formula to evaluate that has
placeholders for arguments. We need to substitute the variable names into the
formula and then evaluate it. Consider the following example:

<-(SETQ formula
*(SQRT (PLUS (TIMES $x $x) (TIMES $y $vy))))
(SQRT (PLUS (TIMES $x $x) (TIMES $y $y)))

-<-(SETQ length 10)
10

NSETQ height 20)
20

<-(EVAL (SUBST 'length '$x
(SUBST ’height '$y formula)))
22.36

How was this accomplished? First, the substitution is performed to yield the

S-expression to be evaluated. This isjust a list that is given to EVAL to interpret.
EVAL returns the value. The intermediate steps in the evaluation are

(SUBST ’height '$y formula) yields a list of the form
(SQRT (PLUS (TIMES $x $x) (TIMES height height))).

This is then used by (SUBST ‘length ‘$x ...) to produce the list

(SQRT (PLUS (TIMES length length) (TIMES height
height))).
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This list is evaluated by EVAL. Note that LENGTH and HEIGHT in the
final list are the names of variables that have values, as defined above, which are
evaluated by EVAL to produce the result.

The value of SUBST is a new list containing the appropriate changes to
LST, If NEW is a list, its value is copied into the new list at each occurrence of a
substitution.

DSUBST is an alternative form of SUBST that does not copy LST but
changes its structure. However, it does use a new copy of NEW.

A Definition for SUBST
We might define SUBST as follows:

(DEFINEQ
(subst (new old 1st)
(COND
((NULL 1st) NIL)
((NLISTP 1st)
(COND
((EQ old 1st)
(COND
((NLISTP new) new)
(T (COPY new))))
(T 1st)))
(T
(CONS
(COND
((COND
((LITATOM old)
(EQ old (CAR
1st)))
(COND
((NLISTP new)
new)
(T (COPY new))))
(T
(SUBST new old (CAR
1s1))))
(SUBST new old (CDR 1st)))))
))

6.5.2 Substituting by Segments: LSUBST

LSUBST is similar to SUBST except that it substitutes “NEW” segments for
OLD. That s, ifthe value of NEW is a list, when NEW is substituted for OLD in
some LST, the elements of NEW become individual elements of LST. For exam-

ple,
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|
<-(SETQ sentence
‘(the boy sees the girl with the telescope))
(the boy sees the gitl with the telescope)

*«-(LSUBST ‘(loves) 'sees sentence)
(the boy loves the girl with the telescope)

*«-(LSUBST ‘(the old man) 'boy sentence)
(the old man sees the girl with the telescope)

<-(LSUBST '(the green engine) 'john 'john)
(the green engine)

We might define LSUBST as follows:

(DEFINEQ
(Isubst (new old 1st)
(COND
((NULL 1st) NIL)
((NLISTP 1st)
(COND
((EQ old 1st) new)
(T 1st)))
((EQUAL old (CAR 1st))
(NCONC  (COPY new)
(LSUBST new old (CDR 1st))))
(T
(CONS
(LSUBST new old (CAR 1st))
(LSUBST new old (CDR 1st)))))

)
If LST is empty, no substitution can be performed, so LSUBST merely re-
turns NIL. If LST is not a list, and OLD is equal to LST, the value of NEW is

substituted for LST. Thus, you may dissect a list component by component and
replace individual elements.

6.5.3 Substituting by Association: SUBLIS

Given an expression consisting of many atoms composed into a complex struc-
ture, you may want to perform wholesale substitution from one or more atoms in
the expression. SUBLIS allows you to substitute for multiple atoms with one
function invocation. It takes the form

Function: SUBLIS
# Arguments: 3
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Arguments: 1) an association list, ALST
2) an S-expression, EXPRESSION
3) a structure flag, HAG

Value: A new expression with the appropriate
substitutions made according to ALST.

ALST is a list of pairs having the form
((<atoml> . <newatoml>) ... (<atomN> . <newatomN>))

SUBLIS substitutes <newatom[i]> for each <atom[i]> that is found in the
expression. For example,

'A(SUBLIS '((A B)) '(A B AB AB))
((B) B (B) B (B) B

A new structure may be created if needed, or if FLAG is T. If FLAG is NIL,
and there are no substitutions made, the value returned is EXPRESSION.

SUBLIS and SUBPAIR (see below) substitute the identical structure into
EXPRESSION (unless FLAG is T) while SUBST and LSUBST substitute cop-

ies. Consider the following example:

-NSETQ fruits '(papaya guava))

(papaya guava)

ANSETQ cheeses ‘'(edam gouda camembert))
(edam gouda camembert)

<NDSUBLIS (LIST (CONS 'edam fruits)) cheeses)
((PAPAYA GUAVA) GOUDA CAVEVBERT)

<NDSUBLIS (LIST (CONS 'gouda fruits)) cheeses T)
((PAPAYA GUAVA) (PAPAYA GUAVA) CAVEVEERT)

N(EQ (CAR cheeses) fruits)
T

<-(EQ (CADR cheeses) fruits)
NIL

An alternative form of SUBLIS, DSUBLIS, modifies EXPRESSION rather

than copying it.
We might define SUBLIS as follows:

(DEFINEQ
(sublis (alst expression flag)

(COND
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(alst
(SUBPR expression alst))
(flag

*

No substitutions; create new
copy.

)
(COPY expression))
(T expression))

)

SUBPR is defined in the next section. SUBLIS may be used to implement a
simple substitution cipher system. Let the association list entries have the form

(<plaintext letter) (ciphertext letter))

The association list has 26 entries (assuming no numbers or special charac-
ters). Consider the following key:

Plaintext:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ciphertext:

DEFGHIJKLMNOPQRSTUVWXYZABC
which is just the letters of the alphabet circulated by three characters.

A function to encipher plaintext is just

(DEFINEQ
(encipher (text key)
(SUBLIS key text T)

)

Deciphering is done, of course, by reversing all of the entries in the key and
applying it to the enciphered text.

We may demonstrate this technique by applying it to several examples.
First, let us define the key as follows:

(SETQ KEY
(LIST "(A . D 'B .E) '(c . P 'O .09 -(E.H
'‘F .1 'G . 'H.K * . 'J:M
'"K.N (L .0 '™M.p 'N.Q '(0,R
‘P .s) 'Q.TH '(R.u '(s.Vv (T .,w
'u . X'V, ' W.2) 'X,A (Y .B

'(z_. ©)))
(A.D B.E C.F ..)
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<-(SETQ plaintext "(EPLURIBUSUNUM))
(EPLURIBUSUNUM)

ANSETQ ciphertext (ENCIPHER plaintext key))
(HSOXULEXVXQXP)

¢+-(SETQ plaintext2
'"(TWASTHENIGHTBEFOREXMAS))
(TWASTHENIGHTBEFOREXMAS)

-NSETQ ciphertext2 (ENCIPHER plaintext2 key))
(WZDVWKHQLJKWEHIRUHAPDV)

You may reverse the entries in the key using the following function

(DEFINEQ
(reverse-key (key)
(MAPCAR key (FUNCTION REVERSE))

)

To decipher the text derived above, you may use the expression
(ENCIPHER ciphertext (REVERSE-KEY key))

(EPLURIBUSUNUM)

-"(ENCIPHER ciphertext2 (REVERSE-KEY key))

(TWASTHENIGHTBEFOREXMAS)

Note that each entry must be in the form of a CONS list. If each entry was a
list of the form (A B), W example, then the resulting list produced by ENCI-
PHER would appear as

((H) &) O ) U L E X M K Q X (P)

6.5.4 Substituting by Pairing: SUBPAIR

SUBPAIR operates like SUBLIS except that the old and new values are con-
tained in separate lists. It takes the form

Function: SUBPAIR
# Arguments: 4
Arguments: 1) a key list, (@ HD)

2) a replacement list, NW
3) an S-expression, EXPRESSION
A) a structure flag, HAG

Value: The modified expression.
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For each atom in OLD, SUBPAIR substitutes the corresponding atom in
NEW for every occurrence in EXPRESSION. There are several cases:

1. IfOLD isan atom, the entire list NEW is substituted for it. For example,
in creating a file header, you may specify a form for the File Package
command as

(FNS * <fllefns>)

where <filefns> is an atom whose value is a list of functions in the file.
You may substitute the value of <filefns> for the atom in the form using

ASETQ fnsform (LIST 'FNS '* 'MYFNS))
(FNS * MYRN\S)

A(SUBPAIR 'MYFNS MYRNS ANSFORM T)
(FNS * MYFNSI MYANS2 MYARNS ...)

and you may remove the asterisk (*) via DREMOVE (see Section 6.4.4).

2. If (LENGTH OLD) is less than (LENGTH NEW) and OLD ends in an
atom other than NIL, the remaining elements of NEW are substituted
for the last element of OLD. For example,

(SUBPAIR "(a b . ¢c) '(defg '(xycw)
xy (fgw

because A is matched with D, B is matched with E, and (F G) is matched
with C.

3. If (LENGTH NEW) is less than (LENGTH OLD), then NIL is matched
with each of the remaining atoms on OLD, For example,

NSUBPAIR '"(abed) '(xy z) '"(cabby))
(z Xyyy)

(SUBPAIR '(abed) '(xy 2z '(daddy))
(NIL X NIL NIL vy)

As with SUBLIS, a new structure is created only if needed or if FLAG is T.
That is, if FLAG is NIL, and no substitutions are performed, then the expression
returned is EXPRESSION.

We may use SUBPAIR instead of SUBLIS in our cryptographic example
given above. We define two key lists as follows:
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ANSETQ oldkey '(a b c d ...))

(@abcd...)
«-(SETQ newkey '(d e f g ...))
(defg...)

We modify the definition of ENCIPHER as follows:

(DEFINEQ
(encipher (oldkey newkey text)
(SUBPAIR oldkey newkey text T)
)

Then, we may apply it to an example;

NSETQ ciphertext (encipher oldkey newkey plaintext))
(HSOXUEXVXQXP)

Note that we need only reverse the order of the keys in this definition of
ENCIPHER in order to decipher the text.

-M(SETQ newplaintext (encipher newkey oldkey ciphertext))
(EPLURIBUSUNUM)

We might define SUBPAIR as follows:

(DEFINEQ
(subpair (old new expression flag)
(COND
(old
(SUBPR expression
old
(RPLACA '((D E F)) new)))
(flag
(COPY expression))
(T
expression))
)

Both SUBLIS and SUBPAIR make use of SUBPR to perform the hard work
of substitution. SUBPR might be defined as follows:

(DEFINEQ
(subpr (expression Istl Ist2)
(PROG (index dlst alst)
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(GOND
((NLISTP expression)
(COND
((NULL 1Ist2)
Called from
SUBLIS.
LST2 is NIL.

)(GO loop2)))
(SETQ Ist2 (CAR Ist2))
(SETQ index 1)
(GO loop))
((SETQ dlIst (CDR expression))
(SETQ dlst
(subpr (CAR expression)
Istl

Ist2))))
(SETQ alst
(subpr (CAR expression)
Istl
1st))
(RETURN
(COND
((OR flag
(NEQ alst (CAR expression))
(NEQ dIst (CDR
expression)))
(CONS alst dlst))
(T expression)))
loop
Searching for LSTI element in
expression.

oo
((NULL 1Istl)
(RETURN expression))
((NLISTP 1Istl)
(COND
((EQ expression Istl)
(GO loopl)))
(RETURN expression))
((EQ expression (CAR Istl))
(GO loopl)))
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(SETQ index (ADDI index))

(SETQ Istl (CDR Istl))

(GO loop)

loopl

(* _ _
At this point, we have found an
element in expression from LSTI; now
find corresponding element in LST2.

loonp
((EQ index 1)
(SETQ Ist2
(COND
((NLISTP 1Istl) Ist2)
(T  (CAR Ist2))))
(RETURN
(COND
(flag (COPY Ist2))
_ (T I5t2)))))
(SETQ index (SUBI index))
(SETQ Ist2 (CDR Ist2))
(GO loopl)
loop2
(COND
((EQ (CAAR Istl) expression)
(RETURN
(COND
(flag (COPY (CDAR
Istl)))
(T (COAR Istl)))))
((NULL (SETQ Istl (CDR Istl)))
(RETURN expression)))
(GO loop2))

6.6 LOGICAL OPERATIONS ON LISTS

A set, in mathematical terms, is an unordered collection of items. Typically, sets
contain only numbers which may be mathematically manipulated. Because IN-
TERLISP is a symbolic processing language, sets may contain symbolic infor-

mation.

A set may be represented as a list. To add an item to a set, we CONS or
NCONC it to the list. Deletion of an item is effected by CAR or some other func-

tion.



162 List Manipulation

Set theory defines a number of primitive operations on sets: difference, in-
tersection, and union. INTEBILISP provides functions that operate on lists as if
they were sets. In the following sections, we describe these primitive functions.
Then, we look at additional set functions that may be written using them.

6.6.1 Logical Difference

The logical difference of two sets, X and Y, is a list consisting of those elements
of X that are not members of Y. Consider the following example:

A(SETQ states (LIST 'AL 'MD 'NY ’SD 'CA ’IL 'HI 'CT))
(AL MD NY SD CA IL HI CT)

--(SETQ eastern-states (LIST 'AL 'MD 'NY 'CT))
(AL MD NY CT)

m<-(LDIFFERENCE states eastern-states)
(SD CA IL HI)

<-(LDIFFERENCE eastern-states states)
NIL

Note that LDIFFERENCE is not a commutative function. LDIFFERENCE
takes the form

Function: LDIFFERENCE
# Arguments: 2
Arguments: 1) a list, LSTI
2) a list, LST2
Value: The difference between the two lists

formed by extracting all elements of the
first list from the second.

We might define LDIFFERENCE as follows:

(DEFINEQ
(Idifference (Istl Ist2)
(COND
((OR
(NULL Istl)
(NULL Ist2))

If either list is empty, the
logical difference with NIL is
NIL.
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NIL)
(MEMBER (CAR Istl) Ist2)
(/\
Compare the lists by matching
down LSTI; use recursion.

)(Idifference (COR Istl) Ist2))
(T
(*
The element is not a member of
LST2, so add it to the list of
differences.

)(CONS (CAR Istl)
(Idifference (CDR Istl)
Ist2))))
)

Note that LDIFFERENCE returns a new list containing only the members
of LSTI which are not found in LST2.

LDIFF: Computing the Difference to a Tail

LDIFF computes the difference between LSTI and LST2. LST2 must be a
proper tail of LSTI. That is, LST2 is derived by applying CDR some number of
timesto LSTI. Thus, we obtain a list of differences between LSTI and LST2 up
to LST2 in LSTI. It takes the form

Function: LDIFF
# Arguments: 3
Arguments: 1) a list, LSTI

2) a list which is atail of LSTI, LST2
3) a result list, LST3

Value: The differencesbetween LSTI andLST2.

If LST3 is not NIL, then the differences between LSTI and LST2 are
NCONCed onto LST3. This provides a mechanism for gathering the differences
among a number of lists into a single list.

Consider the following example:

¢-(SETQ os '(vms unix vulcan aos multics mvs))
(vms unix vulcan aos multics mvs)

-M(SETQ bigos (NLEFT os 1 (LAST o0s)))
(multics mvs)



164 List Manipulation

<(LDIFF os bigos)
(vms unix vulcan aos)

<-(LDIFF os bigos '(cp/m ms-dos))
(cp/m ms-dos vms unix vulcan aos)

<-(LDIFF os '(mcp tenex))
LDIFF: NOT A TAIL
(mcp tenex)

<-(LDIFF o0s)
(vms unix vulcan aos multics mvs)

<-(LDIFF os o0s)
NIL

¢-(LDIFF os os ‘'(cp/m ms-dos))
(cp/m ms-dos)

LDIFF always returns a new list structure unless LST2 is NIL, in which case
the value is LSTI.

If LST2 is not a tail of LSTI, LDIFF generates an error message “LDIFF:
NOT A TAIL”. LDIFF will terminate on a null check. However, if LSTI is a
circular list and LST2 is not a tail, LDIFF goes into an infinite loop.

We might define LDIFF as follows:

(DEFINEQ
(Idiff (Istl Ist2 Ist3)
(COND
((EQUAL Istl Ist2)

*

No differences; return LST3

)
Ist3)

((AND (NULL Ist2) (NULL Ist3))

*

LST2 is null; return LSTI

)
Istl)
(T
(PROG (diflst)
*

DIFLST is the difference list,
which is initialized to LST3, if
present.

)(SI:—I'Q diflst (LAST Ist3))
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(SETQ diflst
(CDR
(RPLACD diflst
(RPLACD
(CONS (CAR Istl)
diflst)))))
(COND
(Ist3 diflst)
(T
(SETQ diflst
(SETQ Ist3
(CONS (CAR
Istl))))))
(SETQ Istl (CDR Istl))
(COND
((EQ Istl Ist2)

( If lists are
identically equal,
there is no
difference, so return
LST3.

)(REI'LRN Ist3))

((NULL 1stl)

( Obviously, LST2 cannot
be a tail of the null
list. But, when we
reach here, we have
also exhausted LSTI.

)(REITRN

(ERROR "LDIFF: NOT A
TAIL"
Ist2))))
(SETQ diflst
(COR
(RPLACD diflst
(RPLACD
(CONS (CAR Istl)
diflst)))))
(X0 loop))))
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6.6.2 Logical Intersection

The intersection of two sets, X and Y, is a set consisting of those elements that
are members of both X and Y. Consider the following example:

<-(INTERSECTION states eastern-states)
(AL MD NY CT)

*-(INTERSECTION eastern-states states)
(AL MD NY CT)

Note that INTERSECTION is a commutative function; that is, the order of
the arguments does not affect the result.
INTERSECTION takes the form:

Function: INTERSECTION
# Arguments: 2
Arguments: 1) a list, LSTI
2) a list, LST2
Value: A list containing elements that appear

either in LSTI or LST2.

We might define INTERSECTION as follows:

(DEFINEQ
(intersection (Istl Ist2)
(COND
((OR
(NULL Istl)
(NULL Ist2))

*
No intersection with the null
list.

l)\IIL)
(MEMBER (CAR Istl) Ist2)

*
Here we begin to construct the
list to be returned. We always
choose an element from LSTI.

)(CONS (CAR Istl)
(intersection (CDR Istl)
Ist2)))
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(T
(intersection (CDR Istl) Ist2)))

Note that INTERSECTION does not check for duplicates in LSTI. Thus, if
there are two elements with the same value in LSTI, both elements will appear in
the result if there is at least one corresponding element in LST2. Sometimes, we
want to work with unique sets, e.g., those where there is at most one element of a
given value in the set. We can define the function UNIQUE to produce this set as
follows:

(DEFINEQ
(unique (x)
(intersection X X)
)

Consider the following example:

<-(SETQ states (LIST 'AL ’Ny 'CT 'MI 'AL 'FL 'CT))
(AL NY CT M AL FL CT)

A(UNIQUE states)
(AL NY CT M FL)

6.6.3 Logical Union

The union of two sets, X and Y, is a set consisting of all elements that appear in
either X or Y. Consider the example:

<-(SETQ northern-states (LIST 'MD 'NY 'PA ’RI))
(MD NY PA RI)

(UNION eastern-states northern-states)
(AL CT MD NY PA RI)

AUNION northern-states eastern-states)
(PA RI AL MD NY CT)

The order of the arguments makes a profound difference in the result. You
should consider this carefully if your application depends on the list elements

occurring in a particular order.
Note that UNION is not commutative. Its value is a new list consisting of the
elements of Y with all elements of X that are not members of Y CONSed to the

front. UNION takes the form
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Function: UNION

# Arguments: 2

Arguments: 1) a list, LSTI
2) a list, LST2

Value: Anew list which is the union of LSTI and
LST2.

We might define UNION as follows:

(DEFINEQ
(union (Istl Ist2)
(COND
((NULL Istl) Ist2)
(MEMBER (CAR Istl) Ist2)
(union (CDR Istl) Ist2))
(T
(CONS (CAR Istl)
(union (CDR Istl) 1st2))))
)

Note that if an element appears twice in LST2, it will also appear twice in the
UNION of LSTI and LST2. Sometimes, we want the unique union of two sets.
We may define a function to produce the unique union as follows:

(DEFINEQ
(unique-union (x y)
(intersection (union X y))

)

6.7 SORTING LISTS

Most lists are constructed without regard to the ordering of the elements. Some
applications, however, require a list to be sorted according to some criterion
before processing.

Sorting is the process by which a list of items, normally disordered, is placed
in order according to some criterion based on the contents of the list. For unor-
dered lists, there is no better procedure than a serial search. If the list does not
contain the item sought, we must search the entire list to determine this fact. If
the list is ordered, however, certain techniques greatly reduce the searching ef-
fort to determine if the item is present. This section will present a number of
sorting functions using different algorithms. Further information on sorting
may be obtained from Knuth [knut68] and Aho, Hopcroft, and Ullman [aho83].
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6.7.1 A Basic Sorting Function

INTERLISP provides the basic function SORT to sort lists. It sorts lists by a
brute force method of comparing two items in the list at a time. It has the format

Function: SORT

# Arguments: 2

Arguments: 1) a listof items tobe sorted, ITEMS
2) a comparison function, FNOCOVPARE

Value: A sortedlist comprised of theitems on

the source list.

SORT uses the function specified by FNCOMPARE, which must be a predi-
cate with two arguments, to compare two data items. FNCOMPARE must re-
turn T if its first argument belongs before the second, otherwise NIL.

If FNCOMPARE is NIL, SORT uses ALPHORDER (see Section 6.7.3) to
lexically order items. Consider the following example:

<-{SETQ states (LIST WA 'MD 'AL 'FL 'CO 'ND 'HI))
(WA MD AL FL QO ND HI)

A(SORT states)
(AL GO FL HI MD ND WY

SORT expects the elements of ITEMS to be atomic values. However, SORT
allows you to sort a list whose elements are themselves lists. In this case, the CAR
of each list must be atomic. It is passed to ALPHORDER to determine the order
of arrangement. To specify this invocation, you must set FNCOMPARE to T.
Consider the following example:

<-(SETQ items '((x 1.0) (b 2.3) (j 3-7) (f 0.4) (g 6.3)))
((x 1.0) (b 2.3) (j 3.7) (f 0.4) (g 6.3))

-N(SORT items T)
((b 2.3) (f 0.4) (j 3.7) (g 6.3) (x 1.0))

SORT is a destructive function. That is, it modifies the list given as its argu-
ment rather than creating a new list. Thus, if the initial ordering of the input list
is also important, you should copy the input list before sorting.

We might define SORT as follows:

(DEFINEQ
(sort (items fncompare)
(PROG (result nxtitems olditems)
(SETQ olditems items)



170 List Manipulation

(SETQ items
(CONS (CAR items)
(CDR items)))
loop
(SETQ nxtitems (CDDR items))
(SETQ result
(CONS
(MERGEl (RPLACD (CDR items))
(RPLACD items)
fncompare)
result))
(AND
(SETQ items nxtitems)
(GO loop))
(SETQ items result)
loop2
(SETQ nxtitems items)
loopl
(COND
(nxtitems
(RPLACA nxtitems
(MERGEl (CAR nxtitems)
(CADR nxtitems)
fncompare))
(RPLACD nxtitems
(CDDR nxtitems))
(SETQ nxtitems
(CDR nxtitems))
(GO loopl)))
(AND
(CDR items)
(GO loop2))
(RPLACA olditems (CAAR items))
(RPLACD olditems (CDAR items))
(RETURN olditems))

)
MERGEI is defined in Section 6.9.

6.7.2 Numeric Sorting

A common application for sorting is to arrange a set of numbers in ascending or
descending sequence. We might write a function NUMERIC-SORT as follows
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(DEFINEQ

(numeric-sort (items flag)
(SELECTQ flag

(ascending (SORT items (FUNCTION
GREATERP)))

(descending (SORT items (FUNCTION LESSP)))
(PROGN

(PRINI "unknown flag”)
(TERPRI)))

)

6.7.3 Alphameric Sorting

ALPHORDER is a predicate function that is used when sorting lists according
to their alphabetical sequence. It takes the form

Function: ALPHORDER
# Arguments: 2

Arg\iments: 1) an atom, X
2) an atom, Y

Value: T, if X occurs before Y; otherwise, NIL.
ALPHORDER determines if X occurs before Y. X and Y may be numbers,
atoms, or strings. Numbers come before literal atoms and are ordered by magni-

tude (using GREATERP). Literal atoms and strings are ordered by comparing
the character codes of their PRINI-names. Consider the following examples:

(ALPHORDER ‘'newton ‘benatar)

NIL

~(ALPHORDER 3.171592 3-141593)

T

~(ALPHORDER ™" Interlisp-10" "Interlisp/VAX")
T

If neither X nor Y is an atom or a string, ALPHORDER returns T; that is,
they are presumed in order because ALPHORDER can make no determination.
For example,

~(SETQ Al (ARRAY 3 3))
{ARRAYP}#542224
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ASETQ A2 (ARRAY 5 5))
{ARRAYP}542231

<(ALPHORDER A2 Al)
T

even though itis clear, by inspection, that Al occurs physically in memory before
A2,
We might define ALPHORDER as follows:

(DEFINEQ
(alphorder (x vy)
(COND
((FIXP x)
(COND
((FIX? y)
(IGREATERP vy X))
((FLOATP )
(FGREATERP vy X))
(TT)))
((FLOATP x)
(COND
((FIXP )
(FGREATERP (FLOAT y) Xx)))
((FLOATP )
(FGREATREP vy X))
(T 1))
((LITATOM x)
(CON\D
((NUMBERP y) NIL)
((LITATOM )
(PROG (index xlen ylen xchar
ychar)
(SETQ index 0)
(SETQ xlen (NCHARS x))
(SETQ ylen (NCHARS vy))
loop
(AND
(EQ index xlen)
(RETURN T))
(AND
(EQ index ylen)
(RETURN NIL))
(SETQ index (ADDI index))
(SETQ xchar
(NTHCHAR x index))
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(SETQ ychar
(NTHCHAR vy index))
(COND
((EQ xchar ychar)
(GO loop)))
(RETURN
(IGREATERP
(CHOON xchar)
(GHOON ychar)))))

UD))
(T 1)

)

The IRM [irm83] notes that ALPHORDER performs no UNPACKS,
CHCONSs, or NTHCHARSs (even though we show it might be coded above using
these functions!). Thus, it is several times faster than anything that can be writ-
ten using these other functions. ALPHORDER is actually implemented in ma-
chine language or microcode, but the definition given above (for INTERLISP/
370) suggests how it works.

In FranzLisp, this function is known as ALPHALESSP.

6.7.4 Comparing Two Lists

ALPHORDER does not work on lists. Sometimes, we may need to compare two
lists to determine their differences. COMPARELISTS is a function that com-
pares two lists and prints their differences. Printing is inherent in the operation
of COMPARELISTS. It takes the form

Function: COMPARELISTS

# Arguments: 2

Arguments: 1) a list, LSTI
2) a list, LST2

Value: NIL, but it prints the differences between

the two lists.
Consider the following example:

<-(COMPARELISTS o0s bigos)
(vms unix vulcan —)
(multics mvs)

Note that COMPARELISTS is subject to the influence of PRINTLEVEL
(see Chapter 15).
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We might define COMPARELISTS as follows:

(DEFINEQ
(comparelists (Istl Ist2)
(RESETFORM (PRINTLEVEL 1)

(PROG (finish)
(COND
((EQUAL Istl Ist2)
(RETURN NIL))
((AND
(NLISTP 1Istl)
(NLISTP Ist2)
(GETD Istl)
(GETD Ist2))
(SETQ Istl (GETD
Istl))
(SETQ Ist2 (GETD
Ist2))))
(COND
((CR
(NLISTP Istl)
(NLISTP 1Ist2))
(PRINT Istl T)
(PRINT Ist2 T)
(GO finish)))
(PRINI (™ T
Print LSTI by comparison
with LST2.
)(GMPLISTS Istl Ist2)
(PRINI ™)™ 1)
(TERPRI T)
(PRINI "(” T

*

And vice versa.

%GMPLISTS Ist2 Istl)
(PRINI ™)™ 1)
(TERPRI T)
finish
(RETURN T)))
)

where CMPLISTS is defined as
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(DEFINEQ
(cmplists (xIst ylst)
(PROG (x y flag dotflag)
loopl
(COND
((NOT dotflag)
(SETQ X (CAR xlst))
(SETQ y (CARylst)))

(T
(SETQ X xlst)
(SETQ y ylst)))
(COND
(flag
(COND
(dotflag (PRINI " . ” T))
(T (PRINI ” ™ T)))))
(COND
((EQUAL X y)
( If the two lists are the
same, just print a &
)(PRINZ

(COND
((ATOM x) x)

(T '&))

T))

((OR
(NLISTP Xx)
(NLISTP vy))

( If they are unequal
and one is not a list,
have PRIN2 display
something at the
terminal.

)(PRINZ X 1))

(T

*
( Otherwise, print ()" and
recurse to analyze the

sublists.

)(PRINI (T
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)

(CMPLISTS Xy)
(PRINI ™)™ T)))
(SETQ flag T)
( ALAG causes CMPLISTS to print " —"
if lists are of different lengths;
otherwise, just the CDR

(o

(dotflag
(RETURN NIL)))
(COND
((NULL (CDR xlst))
(RETURN NIL)))
(SETQ dotflag (NLISTP (CDR xlIst)))
(COND
((NULL (CDR ylst))
If YLST expires first,
print the tail of XLST.

)(C(]\D
(dotflag
(PRINI' ” . ™)
(PRIN2
(GON\D
((ATOM (CDR x1st))
(CDR x1st))
(T '&))
T)
((NULL (CDDR xIst))
(SPACES 1 1)
(PRIN2
(COND
((ATOM (CADR xIst))
(CADR xlIst))
(T '&))
T)

(PRINI ” — 1))
(RETURN NIL)))
(SETQ xIst (CDR xlst))
(SETQ ylIst (CDR ylst))
(GO loopl))

(T
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Note that DOTFLAG handles the case where the last element of the list is
really a dotted pair.

6.8 LENGTH FUNCTIONS

An essential feature of INTERLISP is that you almost never need to know the
length of a list when you are writing your program. There usually comes a time,
however, when you must know the length of a list. INTERLISP provides three
functions for determining length.

6.8.1 Finding the Length of a List
LENGTH determines the length of its argument. It takes the form

Function: LENGTH

# Arguments: 1

Argument: 1) an S-expression,EXPRESSION

Value: The length of thelist EXPRESSION as an
integer.

The length is determined by taking successive CDRs until a non-list is
found. For example,

*LENGTH '(Cavendish Rutherford Becquerel Curie
Roentgen))
5

<-(LENGTH NIL)
0

because NIL is an atom.

“-(LENGTH ’yankees)
0

because atoms are lists of zero length.

(LENGTH ‘(austin dallas fort-worth))
3
“(LENGTH '(austin dallas fort-worth . galveston))
3

because GALVESTON has been CONSed onto the list and so it occupies a CDR
cell.
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LENGTH is usually hardwired into the virtual machine for efficiency. How-
ever, we might define it as follows:

(DEFINEQ
(length (expression)
(COND
((NULL expression) 0)
((ATOM expression) 0)
(T
(ADDI (LENGTH (CDR expression)))))
)

6.8.2 Counting List Ceils

LENGTH works only on the top-level elements of a list. Some algorithms may
need to know the total number of cells occupied by a list. These include al-
gorithms that must recursively process sublists of list elements where the time
required to execute the algorithm is on the order of the size of the list. Various
parsing algorithms fall into this category.

COUNT determines the total number of list cells occupied by its argument.
It takes the form

Function: GOUNT

# Arguments: 1

Argument: 1) anS-expression, EXPRESSION

Value: The number oflist cells required to

represent EXPRESSION as an integer.

In effect, it applies LENGTH not only to each element of a list but also to
each sublist which is an element. COUNT applied to a non-list is 0. Consider
these examples;

<-(COUNT NIL)
0

<-(GOUNT (CONS 'braves ‘'brewers))
1

(COUNT (LIST 'hayes-roth ‘lenat 'brown 'feigenbaum))

(GOUNT "Does it believe in strings?")
0

+-(COUNT (ARRAY 10))
0
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and let’s look at a complex example:

*<-(SETQ structure
"(noun-phrase
((3 (1000 frame (person sex male)
startframe)))
NIL

(noun-phrase-head NIL
(numpers (1 3))) he))

o-(LENGTH structure)
5

<-(QOUNT structure)
22

We might define COUNT as follows:

(DEFINEQ
(count (expression)
(GOND
((OR
(NULL expression)
(ATOM expression)
(NLISTP expression))
0)
(T
(PLUS
(GON\D
((LIST? (GAR expression))
(GOUNT (GAR expression)))
(T D)
(GOUNT (GDR expression)))))
)

6.8.3 Counting Down a List

When you apply COUNT to a list, you must “touch” every list cell in the list in
order to determine the total number. Moreover, COUNT counts every cell in the
list. Many times, you merely want to know if a list occupies a minimum number
of list cells. COUNTDOWN operates like COUNT in that it counts list cells. It

takes the form

Function: COUNTDOAN
# Arguments: 2
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Arguments’. 1) an S expression, EXPRESSION
2) a limit, LIMIT
Value: Either the number of list cells in X or O.

COUNTDOWN counts the list cells that comprise EXPRESSION. It decre-
ments LIMIT as it touches each list cel. COUNTDOWN stops when

1. LIMIT is decremented to 0, whence 0 is returned. This indicates the list
has at least LIMIT cells.

2. The end of EXPRESSION is reached while LIMIT is greater than 0. The
value returned is equivalent to

(IDIFFERENCE limit (OCOUNT expression))
Consider the following examples:

(COUNTDOAN  (DOCOLLECT 1 NIL) 100)
0

(COLNTDOAN (FOR | FROM 1 TO 10 GOLLECT (CONS 1)) 50)
30

where the CLISP statement would yield

(1) @ 3 @ 6 6 ) B (9 (10).
<-(QOUNTDOAN (CONS 'baltimore ’maryland) 10)
9

<-(COUNTDOAN (LIST ‘crimson 'red 'magenta 'ochre 'purple) 6)

Using COUNTDOWN, you may determine how far EXPRESSION has
grown toward a predefined limit. This measurement may be used in state space
search algorithms where the order of the size of EXPRESSION, which may be a
representation of the problem states, is a measure of algorithm efficiency. In this
case, we are concerned not only with the LENGTH of EXPRESSION but also
the amount of memory that it consumes.

Note also that COUNT will not work with circular lists as it continually cy-
clesthrough the list. Using COUNTDOWN, you may place a bound on the num-
ber of cells to be counted and determine the size of the list relative to that bound.

6.9 MERGING LISTS

In its simplest form, merging is the process of taking two ordered lists and creat-
ing a single ordered list out of them. Knuth [knut68] and Aho, Hopcroft, and
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Ullman [aho83] present additional material on the theory of merging and a
number of different algorithms for merging two or more lists. INTERLISP pro-
vides two basic functions for merging lists: MERGE and MERGEINSERT.

6.9.1 Merging Two Lists

MERGE destructively combines two sorted lists, X and Y, into a single new list.
It takes the format

Function: MERGE
# Arguments: 3

Arguments: 1) a sorted list, X
2) a sorted list, Y
3) a comparison function, HANCOVPARE

Value: A list comprising the destructive merger
of Xand Y.

MERGE uses FNCOMPARE to merge the elements of the sorted lists X and
Y. FNCOMPARE must be the same function that was used to sort both X and
Y. Consider the following examples:

<NSETQ x (FOR | FROM 1 TO 10 (COLLECT (RAND 0 1000)))
(844 606 642 606 538 92 883 49 110 865)

ASETQ y (FOR | FROM 1 TO 10 (COLLECT (RAND 0 1000)))
(533 100 258 677 401 405 104 279 722 926)

<\(SORT x (FUNCTION IGREATERP))
(833 865 844 642 606 606 538 110 92 49)

A(SORT y (FUNCTION IGREATERP))
(926 722 677 533 405 401 279 258 104 100)

(MERCE x y (FUNCTION IGREATERP))
(926 883 865 844 722 677 642 606 606538 533405 401 279
258 110 104 100 92 49)

AMERGE x y (FUNCTION LESSP))
(883 865844 642 606 606 538 110 92 49926 722 677 533
405 401279 258 104 100)

where we see the lists are not merged because the comparisonfunction is differ-
ent from the one used to sort the two lists.

(MERCE x y)
(883 865844 642606 606 538 110 92 49926 722 677 533
405 401 279 258 104 100)
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because the comparison function is NIL, so alphabetical order is used to com-
pare the elements of the lists.
We might define MERGE as follows:

(DEFIN
(merge (x y fncompare)
(COND
((NULLx)y)
((NULL y) x)
((NLISTP x)
(ERROR "ARG NOT A LIST" X))
((NLISTP y)
(ERROR "ARG NOT A LIST" vy))
(T
(SETQ fncompare
(MERGEI (CONS (CAR x) (CDR x))
(CONs (CARy) (CDRY))
fncompare))
(RPLACA
(RPLACD y (CDR fncompare))
(CAR fncompare))
(RPLACA
(RPLACD X (CDR fncompare))
(CAR fncompare))))

)
MERGEI is defined as follows:

(DEFINEQ
(mergel (x y fncompare)
(PROG (result last)
(OR X (RETURN v))
ORy (RETURN X))

(COND
((SELECTQ fncompare)
(NIL
(ALPHORDER (CAR x) (CARYY)))
(T
(ALPHORDER (CAAR x) (CAAR Y)))
(APPLY* fncompare (CAR x) (CARY)))
(SETQ result x)
: (SETQ X (CDR x)))
T

(SETQ result vy)
(SETQ y (CDRYY))))
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(SETQ last result)

(COND
((NULL x)
(RPLACD last vy)
(RETURN result)))
(COND
((NULL y)
(RPLACD last x)
(RETURN result)))
loop
(COND

((SELECTQ fncompare)

(NIL
- (ALPHORDER (CAR x) (CAR Y)))
(ALPHORDER (CAAR x) (CAAR Y)))
(APPLY* fncompare (CAR x) (CAR Y)))
(RPLACD last x)
(SETQ last x)
(SETQ x (CDR x))
(COND
((NULL x)
(RPLACD last vy)
(RETURN result))))

(T
(RPLACD last vy)
(SETQ last vy)
(SETQ y (CORYY))
(COND
((NULL vy)
(RPLACD last x)
(RETURN result)))))
(GO loop))

)

6.9.2 Merging with Insertion

Given a sorted list, X, we often want to insert an item into that list. MERGEIN-
SERT inserts a single item into a sorted list. It takes the format

Function: MERGEINSERT

# Arguments: 3

Arguments: 1) a new item, NeW
2) a sorted list, X
3) a flag, ONEFLAG
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Value: A sorted list with the new element
inserted at the proper location.

MERGEINSERT attempts to place the new item, NEW, into the list X in
the “best” possible position. Insertion is destructive; that is, X is physically
modified. Consider the following example:

<-(SETQ players '(cobb evers robinson tinker wagner))
(cobb evers robinson tinker wagner)

“NMERGINSERT 'ruth players)
(cobb evers robinson ruth tinker wagner)

Usually, we do not want to insert an item into a list if it is already present. If
ONEFLAG is T, MERGEINSERT will not modify the list if NEW is already
present. For example,

-“(MERGEINSERT ‘evers players T)
(cobb evers robinson ruth tinker wagner)

6.TO ASSOCIATION FUNCTIONS

A common use of lists is to relate one value to another value or list of values.
Usually, this takes the form (<key> <result>). KEY is the item to be searched for
while RESULT is the value sought. If the result is a pointer, these are sometimes
called inverted file indices. INTERLISP calls lists of this form association lists
because they represent an association between a key and a result. The primary
problem with using association lists is searching them.

6.10.1 Searching Lists for Associations

ASSOC searches a list of entries for an item. It returns a list consisting of the
item and its associated value. ASSOC takes the form

Function: ASSOC
SASSCC
# Arguments: 2
Arguments: 1) a search item, KgY
2) an association list, ALST
Value: The entry or NIL.

The association list is a list of zero or more entries where each entry has the
form (usually a dotted pair)

(<key> . <result))
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ASSOC searches ALST one entry at a time. It compares the CAR of each
entry with KEY, If they are EQ, ASSOC returns the entry. Otherwise, it returns
NIL. For example,

NSETQ games
(LIST (CONS 'bridge ’cards)

(CONS 'baccarat 'cards)

(CONS ‘chess 'men)

(CONS ‘craps ‘'dice)

(CONS ‘'scrabble 'letters)))
((bridge . cards) (baccarat . cards) (chess . men) (craps
dice) (scrabble . letters))

(ASSOC 'chess games)
(chess . men)

(ASSOC 'backgammon games)
NIL

Because ASSOC uses EQ to compare the key against the CAR of each entry,
the keys must be atoms.

An alternative form, SASSOC, takes the same arguments but uses EQUAL
for the comparison. For example,

<-(SETQ games
(LIST (LIST (LIST 'bridge) ‘'cards)

(LIST (LIST 'baccarat) ‘cards)

(LIST (LIST ‘'chess) 'men)

(LIST (LIST ‘'craps) ‘'dice)

(LIST (LIST 'scrabble) ‘'letters)))
(((bridge) cards) ((baccarat) cards) ((chess) men)
((craps) dice) (scrabble) letters))

(ASSOC ‘'(bridge) games)
NIL

-(SASSOC '(bridge) games)
((bridge) cards)

We might define ASSOC as follows:

(DEFINEQ
(assoc (key alst)
(PROG NIL
loop
(COND

((NLISTP alst)
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(COND
((NULL alst)
(RETURN NIL)))
((EQ (CAAR alst) key)
(RETURN (CAR alst))))
(SETQ alst (CDR alst))
(GO loop))

)

6.10.2 Replacing an Association List Value

There are three maintenance operations that we can perform on association lists:

1. Adding a new entry
2. Replacing the value associated with a key
3. Removing an entry

The latter case defaults to setting the value associated with a key to NIL.
PUTASSOC is used for maintaining association lists. It takes the form

Function: PUTASSCC
# Arguments: 3

Arguments: 1) a search item, KEY
2) a value, VALLE
3) an association list, ALST

Value: The new value.

PUTASSOC searches the association list using ASSOC. If it finds an entry
with KEY as its CAR, PUTASSOC replaces the associated value with VALUE
using RPLACD since the value isthe CDR of the entry. Otherwise, it adds a new
entry to the association list using (CONS KEY VALUE). If ALST is not a list,
PUTASSOC generates an error with the message “ARG NOT LIST For exam-

ple,

“(PUTASSOC ‘'checkers ’men games)
men

games
((bridge . cards) (baccarat . cards) (chess . men) (craps

dice) (scrabble . letters) (checkers . men))

ANPUTASSOC 'chess 'men-and-board games)
men-and-board
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games
((bridge . cards) (baccarat . cards) (chess . men-and-
board) (craps . dice) (scrabble . letters) (checkers
men))

We might define PUTASSOC as follows:

(DEFINEQ
(putassoc (key value alst)
(PROG (entry)
(COND

((NLISTP alst)
(ERRORX (4 T)))

((SETQ entry (ASSOC key alst))
(RPLACD entry value))

(T
(NCONC alst (CONS key value))
(RETURN value))))

)

6.10.3 Removing an Entry

As we mentioned above, removing an entry from an association list may be con-
sidered equivalent to setting the associated value of the key to NIL. Let us create
a function DELASSOC that removes an entry from an association list. It takes

the form

Function: DELASSOC

# Arguments: 2

Arguments: 1) a search item, KEY
2) an association list, ALST

Value: An association list with the entry
corresponding to KEY removed if it was
present.

We might define a function DELASSOC as follows:

(DEFINEQ
(delassoc (key alst)
(PUTASSOC key NIL alst))

)
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However, this has the unfortunate side effect that, if an entry with KEY as
its CAR is not found, then an entry of the form (CONS KEY NIL) will be added
to the association list. If we are processing sparse association lists (where the
domain of keys is large but the actual key instances are relatively small), the
association list will grow with the addition of many entries of the form (<key> .
NIL). This can have a deleterious effect on program performance since the entire
association list must be searched each time. So, let us redefine DELASSOC as
follows:

(DEFINEQ
(delassoc (key alst)
(PROG (entry)
(COND

((NLISTP alst)
(ERRORX (LIST 4 'T)))

((SETQ entry (ASSOC key alst))
(RPLACD entry NIL))

(T NIL)))

)

This version is somewhat better in that it adds nothing to the association list
if the KEY is not found. However, after some period of time, the list may be
“littered” with entries of the form (<key> . NIL) as a result of setting previous
associations to NIL. What we really intended to do, in many cases, was to re-
move the entry entirely. The following definition shows how we can do either
case:

(DEFINEQ
(delassoc (key alst dflag)
(PROG (entry)
(GOND
((NLISTP alst)
(ERRORX (LIST 4 *T)))
((SETQ entry (ASSOC key alst))
(GOND
(dflag
(RPLACD entry NIL))
(T
(DREMOMVE entry alst))))))

)

where DFLAG determines whether we set the associated flag to NIL or remove
the entry from the association list. If DFLAG is NIL, the entry will be removed.
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6.10.4 Adding a Value to an Association List Entry

Often, the value associated with a key in an association list will be a list itself.
You may want to add a value to that list. Let us define a function ADDASSOC
that performs this operation. It takes the form

Function: ADDASSOC
# Arguments: 3

Arguments: 1) a searchitem, KEY
2) a value to be added to an entry, VALLE
3) an association list, ALST

Value: An associationlist.

ADDASSOC determines if an entry having KEY is present in the associa-
tion list. If so, it adds VALUE to the value of the entry, converting it to a list if it
is not already one. If no entry is present, ADDASSOC creates a new entry con-
sisting of KEY and VALUE.

We can define ADDASSOC which performs this operation:

(DEFINEQ
(addassoc (key value alst)
(PROG (entry)
(COND
((NLISTP alst)
(ERRORX (LIST k ’T)))
((SETQ entry (ASSOC key alst))

(RPLACD entry
(APPEND (CDR entry)
(COND
((NLISTP value)
(LIST value))
(T value)))))
(T NIL)))

)

6.11 SEARCHING LISTS

We have seen that we can search lists using MEMBER or ASSOC. MEMBER
(Section 4.8) compares the key with each element in the list and returns the tail
of the list. ASSOC (Section 6.10) compares the key with the CAR of an entry and
returns the associated value. MEMBER works on lists whose elements are at-
oms. ASSOC works on lists having the (<key> . <result>) format. In the next
chapter, we shall see that certain functions also search the property lists of at-
oms.
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LISTGET and LISTPUT operate on the top-level values of atoms which are
lists that have a property list format:

(key[l] value[l] key[2] value[2] ... key[n] value[n])

6.11.1 Searching Lists in Property List Format

LISTGET searches a list two elements at a time. It takes the form

Function: LISTGET
LISTGETI
' # Arguments: 2
Arguments: 1) a list, LST
2) a search key, KEY
Value: The next value after the key.

LISTGET searches LST using CDDR to access every other element, i.e., it
assumes property list format. If an element is EQ to KEY, it returns the next
element in the list. We might define it as:

(DEFINEQ
(listget (1st key)
(COND
((NLISTP 1st)
(ERROR "ARG NOT LIST™ 1st)))
(PROG (alst entry)
(SETQ alst (COPY 1st))
loop
(AND
(EQ key (CAR alst))
(RETURN (CADR alst)))
(SETQ alst (CDDR alst)) *
(AND alst (GO loop))
(RETURN NIL))
)

An alternative form, LISTGET]I, searches the list one CDR at a time. Its
definition differs from LISTGET only slightly in that we change the expression

indicated by * above to

(SETQ alst (CDR alst))
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6.11.2 Replacing Elements in Place in a List

We may modify a list in place by searching for a value and replacing it, LIST-
PUT acts like LISTGET but replaces the next element if the entry is found. It
searches a list using CDDR just like LISTGET. It takes the form

Function: LISTPUT
LISTPUTI

# Arguments: 3

Arguments: 1) a list, LST

2) a search key, KEY
3) a new value, VALLE

Value: The newvalue.

We might define LISTPUT as follows:

(DEFINEQ
(listput (1st key value)
(COND
((NLISTP 1st)
(ERROR "not a list")))
(PROG NIL
loop
(AND
(EQ key (CAR 1st))
(RPLACD (CAR 1st)
UPPEND (LIST value)
(CDDR 1st)))
(RETURN value))
(SETQ 1st (CDDR 1st)) *
{Am 1st (GO loop))
(RETURN NIL))
)

An alternative version, LISTPUTI, searches the list one CDR at a time. Its
definition differs from LISTPUT only slightly in that we change the expression
indicated by * above to

(SETQ 1st (CDR 1st))
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So far, we have seen that atoms can have values. These values may be other
atoms, such as numbers, or they may be lists. The value is retrieved by using the
literal name of the atom in a function or just giving it to the top-level READ-
EVAL-PRINT loop of INTERLISP. The problem with this approach is that an
atom standing for some object may really have many characteristics. We want to
be able to associate all those characteristics with the atom itself rather than
building additional data structures in which we have to look up the name of the
atom in order to find the value of the characteristic.

INTERLISP provides us with a convenient method for storing the multiple
attributes of an object with the atom which represents that object. This method
is called the property list. A property list is a conventional list associated with an
atom that is composed of pairs of values. Each pair consists of aproperty and a
property value. Property names and property values are determined by the user.
INTERLISP uses some predefined properties for internal functions associated
with its utilities.

7.1 CONCEPT OF THE PROPERTY LIST

Suppose we are trying to construct an augmented transition network for natural
language parsing. We need to describe each word in our “dictionary” by several
attributes. We might require that each word have a class—a part of speech, a
number—the person in which that word is used, and a tense—if it is a verb. For
example, the word BOY has CLASS = noun and NUMBER = present tense,
third person.

We can define the following functions to define a word in the dictionary

(DEFINEQ
(define-word (a-word-definition)
(MAPCAR (CDR a-word-definition)

193
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(FUNCTION define-word-property))
)

(DEFINEQ
(define-word-property (a-property)
(PUTPROP (CAR a-word-definition)
(CAR a-property)
(CDR a-property))
))

To insert BOY into the dictionary, we execute the following function call

(define-word
' (boy
(class noun)
(number (1 3))))

This has the effect of placing the property CLASS on BOY’s property list
with the value NOUN and the property NUMBER with the value (1 3). | deter-
mined that the names of the properties would be CLASS and NUMBER. | also
determined that the values of the properties would be NOUN and (1 3). Other
values for CLASS might be VERB, ADJECTIVE, ADVERB, and so on. Other
values for NUMBER might be (2 3), (3 3), and so on.

The property list construct allows us to associate many values with a single
atom. With BOY, which represents an object, we can associate many attributes
that describe our knowledge about a boy. You are allowed to select the names of
the properties and the types of their values. Be careful to distinguish between the
value of an atom and the values associated with each of its properties.

Properties would seem to be an efficient way of building a database to de-
scribe an object, whether physical or conceptual. Early Al researchers at-
tempted to use the notion of properties as a serious analogy to the attributes of
real-world objects. However, they found that representing real-world object
characteristics using properties was a difficult task because of the complexity
required to model these objects to a sufficient degree of detail. Today, properties
are used as a powerful representation mechanism that are used to build complex
data structures that capture real-world object characteristics.

7.1.1 The Uniqueness of Atoms
Atoms are unique entities, but they have a scope in relation to how they are used.
Consider the following example:

NSETQ color 'black)

black

<-(PUTPROP 'color 'number 5)
5



7.2 Getting a Property 195

NPROG (color)
(SETQ color 'red)
(RETURN color))
red

color
black

which shows that the atom COLOR used inside the PROG is a local variable
whose existence lasts for the duration of the PROG. However, because it has the
same name as an existing atom, INTERLISP saves its value (BLACK) prior to
binding a new value inside the PROG expression. The mechanics of saving and
restoring values for variables is discussed in Chapter 28.

**(PROG (color)
(PUTPROP 'color ‘'number 10)
(RETURN
(GETPROP 'color ‘'number)))
10

(GETPROP 'color 'number)
10

Note, however, that changes to a property are not local to a PROG expres-
sion or a function definition, even if the atom is a local variable. This is because
each atom is a unique object. It may have different values bound to it throughout
the execution of the program. The atom COLOR inside the PROG expression is
the same atom that was bound at the top level (e.g., external to the PROG).
Thus, changes to the property of the atom are global to the entire program be-
cause it is exactly the same atom!.

7.2 GETTING A PROPERTY

To retrieve a property from the property list of an atom, you use the function
GETPROP. GETPROP takes the following form:

Function: GETPROP
# Arguments: 2
Arguments: 1) an atom, AIM
2) a property name, PROPERTY
Value: The value of the property if it exists on

ATM's property list; otherwise NIL.

If ATM is not an atom, GETPROP returns NIL. If the property is found on
the property list of the atom, GETPROP returns the value associated with that
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property name. If the atom does not have a property list or no property by that
name exists on the property list, GETPROP returns NIL. Thus, it is not a good
idea to choose NIL as the default value of a property because it is difficult to
distinguish whether the property has been initialized or really has the value NIL.

Suppose | want to retrieve the property CLASS of the word BOY from our
dictionary. 1 would say

(GETPROP 'boy ‘'class)
noun

Note that GETPROP returns the value associated with property which, in
this case, is the atom NOUN.
If | wished to retrieve the NUMBER of BOY, | would say

<-(GETPROP 'boy 'number)
(13)

Note that GETPROP returns the exact value of the property. In one case, it
was an atom while in the other it was a list.
If | asked for the TENSE of BOY:

GETPROP 'boy 'tense)
NIL

because the word BOY does not have a tense since it is not a verb.

Often, we will initialize the values of properties on a property list to NIL
because we will set them later on in the course of the program. In this case,
GETPROP will return the value NIL when we access that property. To distin-
guish whether or not the property exists versus whether it exists with value NIL,
we must use the following form [irm78]:

(VBVBER property (GETPROPLIST atom))
We might define GETPROP as follows:

(DEFINEQ
(getprop (atm property)
(COND
((LITATOM atm)
(PROG (proplst)
(SETQ proplst (GETPROPLIST
atm))
loop
(COND
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((OR
(NLISTP proplst)
(NLISTP (CDR
proplst)))
(RETURN NIL))
((EQUAL (CAR proplst)
property)

*

Extract value of
property from the
list.

)(REI'LRN (CADR
proplst))))
(SETQ proplst (CDDR proplst))
(GO loop)))
(T NIL))

)

7.2.1 Getting the Entire Property List

GETPRORP is used for retrieving the value of a single property. Sometimes, |
want to manipulate the entire property list of an atom. | can retrieve the entire
property list by executing GETPROPLIST. GETPROPLIST takes the form

Function: GETPROPLIST

# Arguments: 1

Argument: 1) an atom, AMM

Value: A list, possibly NIL, representing the

entire property list associated with ATM

If the argument is not an atom, GETPROPLIST generates an error: ARG
NOT LITATOM. For example,

ANSETQ word 'boy)
boy

(GETPROPLIST word)
((class noun) (number (1 3)))

but

<-(SETQ word ‘'(boy))
(boy)
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<-(GETPROPLIST word)
ARG NOT LITATOM

Here is a more complex example:

APRINTDEF (GETPROPLIST 'DECLARE))
(IOMACRO (X (PROGN
(MAPC X
(FUNCTION
(LAVBDA (X MACROY
(COND
((NEQ (CAR X) 'CLISP)
(EVALX))))))

(REFRAVE)
'INSTRUCTIONS))

CLISPMWORD (FORNVARD . declare))

which has two properties: IOMACRO and CLISPWORD. The value of
IOMACRO is the macro definition for the atom DECLARE.

7.3 PUTTING PROPERTIES
The corresponding functions for putting properties are PUTPROP and SET-
PROPLIST. PUTPROP takes the following form:

Function: PUTPROP

# Arguments: 3

Arguments: 1) an atom, AIM
2) a property name, PROPERTY
3) a value, VALLE

Value: The valueof the property.

PUTPROP puts the specified property on the property list of the atom with
the given value. If the property already exists, the given value replaces the old
value. If the first argument is not an atom, PUTPROP generates an error mes-
sage, ARG NOT LITATOM. For example,

(PUTPROP 'maryland 'capitol 'annapolis)
annapolis

(GETPROPLIST 'maryland)
(capitol annapolis)

because the property CAPITOL did not previously exist. Now, by applying PUT-
PROP again
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A-(PUTPROP *"maryland “capitol Baltimore)

(new CAPITOL property for MARYLAND)
baltimore

because we performed this operation at the top level of the READ-EVAL-
PRINT loop.

(GETPROPLIST ‘maryland)
(capitol baltimore)

A Definition for PUTPROP
We might define PUTPROP as follows:

(DEFINEQ
(putprop (atm property value)
(COND
((NULL atm)

*

IT ATM is null, generate an
error.

)
(ERRORX (LIST 7 (LIST atm

property))))
((NOT (LITATOM atm))

(ERROR "ARC NOT LITATOM™ atm)))
(PROG (proplst)

(SETQ proplst (GETPROPLIST atm))
loop

(COND
((NLISTP proplst xprop atemp)
(COND
((AND

(NULL proplst)

xtemp)

( We have encountered
the end of the
property list where
there are an even
number of entries,
i.e., one value for
every property name.

%SETQ atemp
(LIST property
value))
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(RPLACD (CDR xprop) atemp))

(RETURN value)))

( Note: the property
list was initially NIL
or a non-list, so we
add the new property
at the beginning.

((NLISTP (C[)])Q proplst))

N

( The property list
terminates at an odd
position, e.g., a name
followed by no value or a
name with the value CONSed
to it. So add it at the
beginning.

)
((EQ (CAR xprop) property)
(*
The property name is found
in the property list, so
just replace the value.

)(RPLACA (CDR xprop) value)
(RETURN value))
(T
(SETQ xprop proplst)
(SETQ proplst (CDDR xprop))
(GO loop)))
Add new property and value to front
of property list.

)(SI:—I'Q atemp
(CONS property
(CONS value
(GETPROPLIST atm))))
(SETPROPLIST atm atemp)
(RETURN value))

)
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7.3.1 Assigning Multiple Properties

In many cases, you may wish to assign multiple properties to an atom. This can
be a tedious operation if each assignment requires a single invocation of PUT-
PROP. INTERLISP provides an alternative, PUTPROPS, to perform multiple
property assignments. It takes the form

Function: PUTPROPS
# Arguments: 3-N

Arguments: 1) an atom, AM
2) a property name, PROPERTY
3) a value, VALLE
4-N) property name/value pairs

Value: NIL

PUTPROPS is an NLAMBDA, nospread function.
PUTPROPS takes successive pairs of property names and values and places

them on the property list of the specified atom. Its value is NIL. Consider the
following example:

PUTPROPS maryland
governor harry-hughes

(senators (charles-mathias paul-sarbanes)
counties (kent harford))
NIL

«-(GETPROPLIST 'maryland)

(capitol annapolis governor harry-hughes senators
(charles-mathias paul-sarbanes) counties
(kent harford))

Note that the arguments to PUTPROPS are not evaluated. Thus, you do not
need to quote MARYLAND and any of the arguments.

7.3.2 Setting the Property List

You may also construct the property list yourself and then assign it to an atom
via SETPROPLIST. SETPROPLIST takes the form

Function: SETPROPLIST
# Arguments: 2

Arguments: 1) an atom, AIM
2) an S-expression, EXPRESSION
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Value: The property list which is the value of
EXPRESSION.

SETPROPLIST sets the property list of ATM to be the value of its second
argument. If the first argument is not an atom, SETPROPLIST displays the
error message ARG NOT LITATOM. If the first argument is NIL, SETPRO-
PLIST displays the error message ATTEMPT TO RPLAC NIL. However, if the
S-expression is also NIL, SETPROPLIST merely returns NIL. For example,

(SETPROPLIST ’maryland
(LIST 'governor ‘hughes
'senators (LIST 'mathias
'sarbanes)))
(governor hughes senators (mathias sarbanes))

(GETPROPLIST 'maryland)
(governor hughes senators (mathias sarbanes))

Note that any property list that previously existed for MARYLAND is com-
pletely replaced by SETPROPLIST.

7.3.3 Defining a Property for Multiple Atoms

You may wish to assign the same property to many atoms with the same or dif-
ferent values. DEFLIST takes the form

Function: DEFLIST
# Arguments: 2
Arguments: 1) a list of atom-value pairs, LST

2) a property name, PROPERTY
Value: NIL

LST is a list of elements each of which has the form
(<atom> . <value))

DEFLIST puts PROPERTY on the property list of every atom which is the
CAR of an entry on LST with the value which is the CDR of that entry. Consider

the following example:

(DEFLIST ' ((maryland hughes)
(Virginia robb)
(massachusetts dukakis)
(texas white))

‘governor)
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NIL

NGETPROPLIST 'maryland)
(capitol annapolis governor hughes)

(GETPROPLIST 'texas)
(governor white)

A Definition for DEFLIST
We might define DEFLIST as follows:

(DEFINEQ
(deflist (1st property)

(PROG NIL

loop
(COND

((NLISTP 1st)
(RETURN NIL)))

(PUTPROP (CAAR 1st)

property

(CADAR 15st))
(SETQ 1st (CDR 1st))
(GO loop))

)

7.4 MODIFYING PROPERTY LISTS
INTERLISP provides three functions for modifying property lists:

ADDPROP adds a new property
REMPROP removes a property
CHANGEPROP changes the name, but not the value, of a property

7.4.1 Adding a Property

A property may have a list (or other data structure) as its value. Adding a new
value to that list usually requires the creation of a new list structure with the
value added to the front or back of the list. For example,

“(SETQ property-value (GETPROP atm prop))
<-(PUTPROP atm prop (CONS property-value newvalue))

or

(PUTPROP atm prop (APPEND property-value newvalue))
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To avoid creating a new list structure, INTERLISP provides ADDPROP to
add a value to a list which is the value of the property. It takes the form

Function: ADDPRCP
# Arguments: 4

Arguments: 1) an atom, AIM
2) a property name, PROPERTY
3) a new value, NEW
4) a flag, AAG

Value: The value of the new property.

FLAG controls the terminus at which theproperty will be added. If FLAG is
T, the new property is CONSed to the front of the list; otherwise, it is NCONCed
to the end of it. If no property exists for the atom, the effect is the same as

(PUTPROP atm prop (LIST new))
For example,

+-(ADDPROP 'maryland ‘representatives ’byron)
(byron)

<-(GETPROP 'maryland ’representatives)
(byron)

(ADDPROP 'maryland 'representatives 'barnes T)
(barnes byron)

w\(GETPROP 'maryland 'representatives)
(barnes byron)

NADDPROP 'maryland 'representatives 'hoyer)
(barnes byron hoyer)

<-(GETPROP 'maryland 'representatives)
(barnes byron hoyer)

A Definition for ADDPROP
We might define ADDPROP as follows:

(DEFINEQ
(addprop (atm property value flag)
(COND
((NULL atm)
(ERROR "ATTEVPT TO RPLAC NIL")) =
((NOT (LITATOM atm))
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(ERROR "ARG NOT LITATOM’ atm)))
(PROG (x proplst)
(SETQ X atm)
loop
(COND
((NLISTP (CDR x))
( Note that the COR cell of an
atom contains the pointer to the
property list form that atom.

Here, we have reached the end of
the property list, so we just
RPLACD a new entry onto its end.

)(SETQ proplst
(LIST property
(SETQ value
(LIST value))))
(RPLACD x proplst))
((EQ (CADR x) property)
Found the property name in the
property list.

)(RPLACA (CDDR X)

(SETQ value
(COND
(flag
(CONS value
(CADDR x)))
(T

(NCONCI (CADDR x)
value))))

)

((SETQ X (CDDR x))
Have not found property;
advance along property
list.

)(Go loop))
(T

Property list ended on a
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property name with no
value.

)(SI:—I'Q proplst
(CONS property
(CONS
(SETQ value
(LIST value))
(COR atm))))
(RPLACD atm proplst)))
(RETURN value))

)

7.4.2 Removing a Property

You may remove a property from the property list via REMPROP. It takes the
form

Function: REIVPRCP
# Arguments: 2
Arguments: 1) an atom, AIM
2) a property name, PROPERTY
Value: The property name or NIL.

REMPROP removes all occurrences of the specified property and its value
from the atom’s property list. If any occurrences are found, its value is the name
of the property. Othervi®ise, it returns NIL. Note that multiple occurrences of a
property may appear in a property list if the list was assigned to the atom via
SETPROPLIST. Consider the following examples:

<-(GETPROPLIST 'maryland)
(capitol annapolis  governor hughes senators
(mathiassarbanes) counties (kent harford))

*(REMPROP 'maryland 'governor)
governor

<- (GETPROPLIST 'maryland)
(capitol annapolis senators (mathias sarbanes) counties
(kent harford))

(REMPROP 'maryland 'population)
NIL
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A Definition for REMPROP
We might define REMPROP as follows:

(DEFINEQ
(remprop (atm property)
(COND
((NULL (LITATOM atm))
(ERROR "ARG NOT LITATOM’ atm)))
(PROG (proplst newproplst value)
(SETQ proplst
(GETPROPLIST atm))

loop
(COND
((OR
(NLISTP proplst)
(NLISTP (CDR proplst)))
(RETURN value))
(EQUAL (CAR proplst) property)
(SETQ value property)
(COND
(newproplst
(RPLACD (CDR newproplst)
(CCDR proplst)))
(T
(SETPROPLIST atm
(CDDR newproplst)))
)
(T
(SETQ proplst
(CDDR (SETQ newproplst proplst)))))
(GO loop))
)

7.4.3 Removing the Property List

To remove multiple properties, INTERLISP provides the function REMPRO-
PLIST. It takes the form

Function: REMPROPLIST
# Arguments: 2

Arguments: 1) an atom, AM
2) a list of property names, PROPLST

Value: NIL
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REMPROPLIST removes all the properties whose names appear in PRO-
PLST from the property list of the specified atom.

To remove the entire property list of an atom, you may use one of the follow-
ing function calls:

(SETPROPLIST <atom> NIL)
(REMPROPLIST <atom> (PROPNAIVES <atom>))

Note: Many atoms in INTERLISP already have property lists with proper-
ties used by various system packages. You should be careful not to delete such
properties as they may cause the system to malfunction (or cease tofunction).
You may use SYSPROPS to obtain a list of all the system property names.

Heeding this advice, we should rewrite the second expression above as fol-
lows

(MAPC (PROPNAMVES <atom>)
'(LAMBDA (name)
(COND
((MVEMBER name (SYSPROPS)) NIL)
(T (REMPROP <atom> name)))))

Consider the following example where we force the property list to have mul-
tiple copies of a property name

NSETPROPLIST x'(abcdabefghahb))
(abcdabefghab)

The property name A is repeated three times in this property list. Now, we
may remove A via REMPROPLIST

AREMPROPLIST 'x '(A))
NIL

<-(GETPROPLIST 'x)
(cde f gh)

7.4.4 Changing Property Names

The foregoing functions changed the structure of the property list by adding or
deleting a property and its associated value. Sometimes, you want to keep the
value but change the name of the property. CHANGEPROP takes the form

Function: CHANGEPROP
§ Arguments: 3
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Arguments: 1) an atom, AIM
2) a property name, PROPERTYI
3) a property name, PROPERTY2

Value: The atom name.

CHANGEPROP changes the name of property PROPERTY!I to the name
given by PROPERTY?2 on the property list of ATM. If PROPERTYI does not
exist on ATM’s property list, it returns NIL. If ATM is not a literal atom,
CHANGEPROP generates an error with the message “ARG NOT LITATOM”.

Consider the following example:

<- (GETPROPLIST 'maryland)
(capitol annapolis governor hughes senators (mathias
sarbanes))

Note that we have used the property name SENATORS to represent the
United States senators. However, Maryland has a bicameral legislature in which
the upper house is also called the Senate. So, let us rename the property SENA-
TORS to US-SENATORS to avoid confusion.

¢-(CHANGEPROP 'maryland 'senators ’us-senators)
maryland

NGETPROPLIST 'maryland)
(capitol annapolis governor hughes us-senators (mathias
sarbanes))

A Definition for CHANGEPROP
We might define CHANGEPROP as follows:

(DEFINEQ
(changeprop (atm propertyl property2)
(COND
((NOT (LITATOM atm))
(ERRORX (LIST "ARG NOT LITATOM'
atm)))
((SETQ propertyl
(VEVBER propertyl (GETPROPLIST
atm)))
Only change the name if
propertyl is actually present in
the property list.
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(RPLACA propertyl property2)
atm))

)

7.5 OBTAINING THE PROPERTY NAMES OF AN ATOM

PROPNAMES allows you to obtain a list of the property names associated with
an atom. It takes the form

Function: PROPNAVES

# Arguments: 1

Arguments: 1) an atom, AIM

Value: Alist ofthe property names.

PROPNAMES is useful when you want to apply a function to all the proper-
ties of an atom. For example, to delete all of the properties associated with an
atom, we can use the following expression:

(REMPROPLIST atm (PROPNAVES atm))

We might print the properties and their associated values using the follow-
ing expression

(MAPC (PROPNAIMVES atm)
'(LAMBDA  (name)
(PRINI name)
(SPACES 2)
(PRINTDEF (GETPROP atm name))))

A Definition for PROPNAMES
We might define PROPNAMES as follows:

(DEFINEQ
(propnames (atm)
(PROG (propnamelst proplst)
(SETQ proplst (GETPROPLIST atm))
(SETQ propnamelst NIL)
loop
(COND
((NLISTP proplst)
(RETURN propnamelst)))
(SETQ propnamelst
(APPEND propnamelst (CAR proplst)))
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(SETQ proplst (CDDR proplst))
(GO loop))

)

7.5.1 Obtaining the System Property Names

INTERLISP has many predefined property names that are used by various sys-
tem packages. You may obtain a list of the system property names by executing
SYSPROPS which takes the form

Function: SYSPROPS

# Arguments: O

Arguments: NIL

Value: Alist of system property names.

For example, the following list was obtained by executing SYSPROPS un-
der the Fugue release on a Xerox 1100 Scientific Information Processor:

+-(SYSPROPS)

(BYTEMACRO ALTOMACRO JMACRO VAXVIECRO DVACRO IOVACRO
VARTYPE HASDEF FILEPKGCONTENTS PROPTYPE ALISTTYPE DELDEF
EDITDEF PUTDEF GETDEF WHENCHANGED NOTICEFN NBACOVAN
PRETTYTYPE DELAROVPRETTYCOM ADDTOPRETTYCOM ACCESSFN ACS
ADVICE ADVISED ALIAS AVEC ARGNAVES BLKLIBRARYDEF BRKINFO
BROADSCOPE BROKEN BROKEN-HIN CLISPCLASS CLISPCLASSDEF
CLISPFORM CLISPIFYISPROP CLISPINFIX CLISPISFORM
CLISPISPROP CLISPNEG CLISPTYPE CLISPWORD CLMAPS OCDE
CONVERT COREVAL CROPS CTYPE EDIT-SAVE EXPR FILE
FILECHANGES FILEDATES FILEDEF FILEGROUP FILEHISTORY
FILEMAP FILETYPE GLOBALVAR HISTORY 1.S.0PR I.S.TYPE INFO
LASTVALUE LISPFN MACRO MAKE NAVESCHANGED NARGS OLDVALULE
OPD READVICE SETFN SUBR UBOX UNARYCP VALUE DEF
CLISPBRACKET)

7.6 EXTRACTING A PROPERTY SUBLIST

You may extract a sublist of the property list using GETLIS, which takes the
form

Function: GETLIS
# Arguments: 2
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Arguments: 1) an atom, AIM
2) a list of properties, PROPLST
Value; The tail of the property list for ATM

GETLIS searches the property list of ATM using the values found on PRO-
PLST which may be an atom or a list of properties. It returns the tail of the
property list beginning with PROPLST. If PROPLST is an atom, then that
property name isthe CAR of the result. If PROPLST isa list, GETLIS uses each
element on PROPLST as a search key until one matches a property of ATM. The

tail of the property list beginning with that element is returned.

If no element of PROPLST is found on the property list of ATM, GETLIS

returns NIL. For example,

ANGETLIS ’maryland ' (us-senators))

(us-senators (mathias sarbanes) counties (kent harford))

mNGETLIS 'maryland ’governor)
NIL

(GETLIS 'maryland ’capitol)
NIL

Note that if PROPLST is an atom,as in the case above,GETLIS returns

NIL. Thus, you cannot determine whether or not the property exists.

A Definition for GETLIS
We might define GETLIS as follows:

(DEFINEQ
(getlis (atm proplst)
(PROG (atmproplst)
(SETQ atmproplst (GETPROPLIST atm))
loop
(COND
((OR
(NLISTP atmproplst)
(vBvBER (GAR atmproplst)
proplst))
(RETURN atmproplst)))
(SETQ atmproplst (GDR atmproplst))
(GO loop))

)

Note that GETLIS makes no distinction between the property names and

their values when it searches the atom’s property list.



Function Definition
and Evaluation

INTERLISP embodies the mathematical definition of a function as a procedure
or specification for action. A function takes zero or more arguments as inputs
and produces one or more values as outputs. Unlike mathematical functions,
however, INTERLISP functions exist within a program—a collection of func-
tions gathered to accomplish a purpose—and, so, may have side effects on
global variables defined within the program.

In INTERLISP, there are three ways to create a function for evaluation:

1. Use DEFINEQ or PUTD to attach the definition to an atomic symbol
(Section 8.2.2)

2. Place the definition on an atom’s property list under one of the properties
EXPR, FEXPR, or MACRO (Section 7.3)

3. Dynamically bind a definition to an atom through the FUNARG mecha-
nism (Section 12.4)

Because atoms have both value cells and function definition cells, we cannot
determine whether an arbitrary data object is to be used as a variable or a func-
tion. Usage is determined by how the data object is evaluated (e.g., which primi-
tive functions are applied to it) because the value cell and the function definition
cell may both have non-NIL values.

The primary focus of this chapter is to discuss the definition and evaluation
of user-defined functions. Several system functions allow you to obtain informa-
tion about a function and its arguments. Most functions do not retain any histor-
ical information about previous invocations unless you explicitly build their
structures to do so. Generators are a simple mechanism for maintaining status
information across function invocations.

8.1 FUNCTION TYPES
INTERLISP provides two types of functions: EXPRs and SUBRs.

213
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An EXPR is a function that iswritten in INTERLISP; itis interpreted. Each
literal atom has a function definition cell in which a function definition may be
stored. A function definition is a pointer to a list that describes the procedure
that the function performs. Note that the atom may also have a defined value
that is independent of its function definition.

A SUBR is a function that is hand-coded in machine language (IN-
TERLISP/370) or is provided by the underlying virtual machine firmware (IN-
TERLISP-D). Compiled functions (see below) are treated as SUBRs.

The distinction is important because the functions PUTD and GETD oper-
ate differently upon the two types of functions. You cannot define a SUBR with
either DEFINE or DEFINEQ. When you compile an EXPR function, you effec-
tively convert it to a SUBR when it is loaded into memory.

Applying GETD to an EXPR function name returns the list comprising the
function definition. Applying GETD to a SUBR returns a dotted pair that has
the following characteristics:

The CAR of the dotted pair is an encoded form of

1. the argument type
2. the number of arguments

The CDR of the dotted pair is the address of the first instruction of the
function.

INTERLISP allows us to modify the basic concept of a function in two re-
spects: whether or not the arguments are evaluated, and whether or not the func-
tion has a definite number of arguments.

8.1.1 To Evaluate or Not

Normally, arguments passed to functions are evaluated to yield their respective
values which are then used by the function. This is called a LAMBDA-type func-
tion. Consider the following example:

-(SETQ integer-1 10)
10

NSETQ integer-2 20)
20

m<-(IDIFFERENCE integer-1 integer-2)
-10

IDIFFERENCE is a LAMBDA-type function. The values that IDIF-
FERENCE receives are the numbers 10 and 20 which are the values of the argu-
ments when they are evaluated. This mechanism is known as call by value in
other languages.
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You may specify that a function’s arguments not be evaluated when the
function is invoked. This is known as an NLAMBDA-type function and the
mechanism is similar to a call by reference in other languages. DEFINEQ (see
below) is an NLAMBDA-type function. Consider the following example:

(DEFINEQ
(exchange (pair)
(LIST (CADR pair) (CAR pair))
))

The argument to DEFINEQ is not evaluated but is passed to DEFINEQ for
internal evaluation. Thus, the value passed to DEFINEQ is the list

(exchange (pair) (LIST (CADR pair) (CAR pair)))

When FNTYP (see Section 8.1.5) is applied to NLAMBDA-type functions,
it returns the type of the function prefixed by the letter F. FEXPR or FSUBR.

8.1.2 To Spread or Not

Normally, a function is defined with a definite number of arguments that are
enumerated in its parameter list. INTERLISP matches the arguments specified
in the function invocation with the parameters specified by the function defini-
tion (i.e., we say the arguments are spread across the parameters). If there are
not enough arguments to satisfy all the parameters, INTERLISP substitutes
NIL for the remaining parameters. If there are more arguments than parame-
ters, the excess arguments are ignored (but there are a few exceptions, e.g., see
QUOTE).

Sometimes, we want to pass an indefinite number of arguments to a func-
tion. The number and type of arguments may be dependent on the arguments
themselves. How the arguments are to be evaluated is determined within the
function itself. This is called a nospread function.

To define a nospread function, we give a single variable, not enclosed in
parentheses, after the LAMBDA or NLAMBDA declaration. For example,

(DEFINEQ
(add
(LAVBDA x
(PROG (sum 1st)
(SETQ sura 0)
(SETQ 1st (copy X))
(AND (NULL 1st)(RETURN sum))
loop
(SETQ sum (plus sum (car x)))
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(AND
(SETQ 1st (CDR 1st))
(GO loop))

(RETURN sum))

)

where X is a list of all the arguments presented in the calling sequence to the
function. The arguments are evaluated or not depending on whether the func-
tion is defined to be LAMBDA or NLAMBDA. For example,

<-(ADD 10 20 30)

would set X to the list (10 20 30),

When FNTYP is given the name of a function which does not spread its
arguments, it returns the type of the function with an asterisk (*) appended to
the type name.

8.1.3 Compiled Functions

Most INTERLISP functions are interpreted. Even in the best of circumstances,
interpretation can be a lengthy process. Once a function is debugged and ready
for production use, you may compile the function. INTERLISP provides a com-
piler (see Chapter 31) that converts the INTERLISP source code into the under-
lying computer’s machine language. When FNTYP is given the name of a func-
tion that has been compiled, it returns the type of the function preceded by the
letter C: CEXPR or CFEXPR. For the purposes of applying GETD to compiled
functions, they are treated like SUBRs.

8.1.4 Summary of Function Types

In summary, there are 12 types of functions supported by INTERLISP. These
are shown in the following table:

BEXPR SUER
BEXPR SUBR
BEARM SUBR*
FEXPR FSUBR
FEXPR* FSUBR*
CEXPR

CEXPR*

CFEXPR

CHEXPR*

Note that SUBRs, because they are written in machine language, already
exist in a compiled state.
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8.1.5 Determining the Function Type

You may determine the type of a function by executing FNTYP. FNTYP takes
the following form

Function: FNTYP

# Arguments: 1

Argument: 1) a function name, FN
Value: The functiontype.

The argument of FNTYP may be either the name of a defined function or a
function definition itself. The value of FNTYP is an atom taken from the table
below. Otherwise, it returns NIL. For example,

FNTYP 'GETD)
CEXPR

FNTYP 'DEFINE)
CEXPR

FNTYP 'DEFINEQ)
CFEXPR*

<-(FNTYP '(LAMBDA (pair)
(LIST (CADR pair) (CAR pair))))
EXPR

where FNTYP has checked the function definition (indicated by the LAMBDA)
to determine the function type.

SETQ a-functlon 'GETD)

AENTYP a-functlon)
CEXPR

FNTYP may also return the atom FUNARG if the argument is a function

argument expression (see Section 12.4).
The value of FNTYP is one of the following twelve literal atoms, based on

the type of the function:

Expressions Compiled Built-In
Lambda-Spread BEXPR CEXPR SUBR
Nlambda-Spread FEXPR CFEXPR FSUBR
Lambda-Nospread EXPR* CEXPR* SUBR*

Nlambda-Nospread FEXPR* CFEXPR* FSUBR*
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The types in the Built-In column are returned only for INTERLISP-10 and
INTERLISP/370.

A Definition for FNTYP
We might define FNTYP as follows (after INTERLISP/370):

(DEFINEQ
(fntyp (M)
(SELECTQ (NTYP (MKFNI

(0 4) "FSUBR*)
((1 5 TFSUBR)
((2 6) "SUBR*)
((3 7) =SUBR)
(8 "FEXPR*)
© "FEXPR)
(10 EXPRY)
(11 "BPR)
(12 TFEXPRY)
(13  "CFEXPR)
(14  "CEXPRY)
(15  CEXPR)
(20 "FUNARG)
NIL)

)

where the number is an indication of the datatype for the atom.

8.2 DEFINING FUNCTIONS

You may define a new function in INTERLISP using either DEFINE or DE-
FINEQ. Let us discuss DEFINEQ first and, then, explore the generalized ver-
sion represented by DEFINE.

8.2.1 Syntax of a Function Definition

A function definition consists of the following components:

The name of the function

A declaration of function type: LAMBDA or NLAMBDA
A parameter list or NIL

The body of the function

These items are combined together in a list which is passed to either DE-
FINE or DEFINEQ.
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The name of the function must be a symbolic atom that conforms to the
naming conventions of the particular INTERLISP system that you are using.

LAMBDA or NLAMBDA determines whether the function’s arguments are
evaluated or not when the function is invoked.

The parameter list is a list of the names of symbolic atoms, usually enclosed
in parentheses, that represent the arguments to the function. Each symbolic
atom may appear in the body of the function in which case we say that the atom
is local to the function. The parameter list may be represented by the atom NIL
which means that the function expects no arguments. The parameter list may
consist of a single atom which indicates that the arguments are not spread. In
this case, when the function is invoked, all arguments specified in the argument
list are gathered into a list which is bound to the single atom.

The body of the function is a sequence of INTERLISP statements that speci-
fies the procedure of the function. Variables appearing in the function body that
do not appear in the parameter list are assumed to be global variables for this
function, although they may be local and bound in a function which invoked this
function. When the function is executed, if the value of these variables is
changed, we say that the function has a side effect. That is, the value of the
variable persists beyond the execution of the function because the variable is
defined outside the function. The value a function gives back when it is executed
is called the value returned. This value is the result of the last statement executed
within the function body, which may not necessarily be the last physical expres-
sion in the function body.

8.2.2 Defining a Function: DEFINEQ

DEFINEQ is used to define one or more functions. It takes the form

Function: DEFINEQ
# Arguments: 1-N
Arguments: 1) a list of oneormore function forms,
FNS
Value: The names of the function that are
defined.

DEFINEQ is an NLAMBDA, nospread function. It takes an indefinite
number of arguments that are not evaluated. Each entry in FNS must take the
form required by DEFINE (see below). If it does not, DEFINEQ (or DEFINE)
issues an error message “INCORRECT DEFINING FORM”. The File Package
writes functions to symbolic files using DEFINEQ so that, when read in via
LOAD, they will be defined anew in your virtual memory.

DEFINEQ calls DEFINE with individual entries from FNS.
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8.2.3 Defining a Function: DEFINE

DEFINE is the LAMBDA-spread version for defining a function. It takes the
form

Function: DEFINE

# Arguments: 1

Arguments: 1) a list oflists, X
Value: The names of functions defined as

described in X
Each element of the list X is itself a list which takes one of two forms:
1. (<name> (definition))
where <definition) has the structure
(<lambda-declaration> (arguments) <body>)

A <lambda-declaration) is either a LAMBDA or an NLAMBDA.
Functions written by the File Package to symbolic files take this form.
Consider the example

(DEFINEQ
(CUBIC
(LAVBDA (X)
(ITIMES X (ITIMES X X))

)

2. (<name) (arguments) <body))

The function type is assumed to be LAMBDA. Most functions defined
by type-in take this form. Consider the example

(DEFINEQ
(CUBIC (X
(ITIMES X (ITIMES X X))

)

The appropriate LAMBDA expression is automatically created by DE-
FINEQ as the function definition is read. Thus, when you print the definition of
CUBIC after typing it in, you will see a LAMBDA expression inserted into the
definition.

o
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The <name> field causes an atom to be created or updated with a function
definition using a LAMBDA or NLAMBDA expression. The function definition
is placed in the atom’s function definition cell. <arguments) is either NIL or a
list of atoms representing arguments to be used by the function. The <body> is
one or more S-expressions that are inspected for proper form (see below) and
comprise the specification of the function.

DEFINEQ works even if the function is broken, advised, or broken-in (see
Chapters 20 and 21).

If time stamping is enabled (see Section 29.6.2), DEFINEQ and DEFINE
stamp the definition with a comment consisting of your initials and the date
when the function was defined.

8.2.4 The Effect of DFNFLG
DFNFLG determines how DEFINE treats the proposed definition:

DFENFLG is NIL
If DFNFLG is NIL and <name> already has a definition, DEFINE displays the
message (<name> REDEFINED). It saves the old definition, via SAVEDEF (see
Section 17.5.7), on <name>’s property list before redefining it.

Consider the following example:

DFNFLG
NIL

<-(DEFINEQ (CUBIC (X) (ITIMES X (ITIMES X X))))
(CUBIC)

+-(DEFINEQ (CUBIC (X) (EXPT X 3)))
(CUBIC redefined)
(CUBIC)

<-(GETPROP 'CUBIC 'EXPR)
(EXPR (LAVBDA (X) (* edited: "ll-June-84 20:06™)
(ITIMES X (ITIMES X X))))

DFNFLG is T

If DFNFLG is T, the function is simply redefined without the warning message.
Consider the following example if it was executed after the second expres-

sion in case 1:

<-(SETQ DFNFLG T)
T

ADEFINEQ (CUBIC (X) (EXPT X 3)))
(CUBIC)
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DFNFLG is PROP
If DENFLG is PROP or ALLPROP, the new definition is stored on <name>’s
property list under the property EXPR. However, it does not place any definition
in the atom’s function definition cell. Thus, attempting to get the definition of
the function using GETD will return NIL. However, PP will work because it
inspects both the function definition cell and the property list of the atom for a
property named EXPR.

DFNFLG initially has the value NIL. It is reset by LOAD (see Section
17.9.1) when you load functions and variables from a file.

8.2.5 Alternative Defining Forms

INTERLISP/370 provides two alternative forms for defining functions; DE and
DF. DE and DF define LAMBDA and NLAMBDA functions, respectively, in
half-spread format. They take the following form

Function: DE
DF
# Arguments: 3-N
Arguments: 1) a function name, AN

2) an argument list, ARGLST
3-N) one or more S-expressions composing
the body of the function, BEXPRS

Value: The function name, if successful.
For example, we might define the function DISJOINT as

(DE disjoint (la 1b)
(COND
((NULL la) ™)
(MEMBER (CAR la) Ib) NIL)
(T
(disjoint (CDR la) 1b))))

Basically, these functions provide a shorthand notation for defining func-
tions that allow you to eliminate a few of the parentheses required by DEFINEQ.
They have a form similar to DEFUN which is the defining function for the
MACLISP family.

A Definition for DE
We might define DE as follows:

(DEFINEQ
(de (NLAVBDA (x . y)
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(DEFINE
(LIST
(LIST x
(CONS 'LAVBDA Y))))

)
DF merely replaces the ‘LAMBDA in the CONS expression by ‘NLAMBDA
to achieve the same effect.

8.3 RETRIEVING A FUNCTION DEFINITION

You may retrieve the definition of a function from its function definition cell by
invoking GETD. GETD takes the format

Function: CETD

# Arguments: 1

Argument: 1) the name ofa function, AN
Value: The definition of the function.

GETD returns the definition of afunction if it exists; otherwise, NIL. For
example,

(DEFINEQ
(exchange (pair)
(LIST (CADR pair) (CAR pair))

)

*- (GETD 'exchange)
(LAVBDA (PAIR) (LIST (CADR pair) (CAR pair)))

If the function is compiled or a SUER, GETD returns an encoded form
representing the address of the first instruction of the function. For example
(under the Fugue release of INTERLISP-D),

<~-(GETD 'getd)
{(CCODEP)}#!,161244

which is the encoded form of the dotted pair. CCODEP means that GETD is a
compiled code pointer. #1 means that it takes one argument. 161244 is the mem-
ory address where the first executable instruction of that procedure is located.

Executing the same function under INTERLISP-10 returns the following

form

<(GETD 'GETD)
(1 . {STACK}11271)
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which reflects the different memory allocation models used in the two implemen-
tations. Note that INTERLISP-10 returns the CONS of the function type with
the address of the function.

Note that INTERLISP returns a pointer to the function. Two successive
calls to GETD will return two different pointers. These pointers are not EQ.
Rather, EQUAL or EQP must be used to compare them.

8.4 SETTING A FUNCTION DEFINITION

We have seen, in Section 8.2, that we can define a function using either DEFINE

or DEFINEQ. The effect of these functions is to place the given definition in the

function definition cell of the symbolic atom that was specified as the name of

the function, INTERLISP provides another mechanism for inserting values into

an atom’s function definition cell. This is the function PUTD and its variations.
PUTD takes the form

Function: PUTD
PUTDQ
PUTDQ?
# Arguments:
Arguments: 1) the name of a function, RN
2) a definition for the function,
DEFINITION
Value: The value of DEFINITION.

The first argument must be a literal atom; otherwise, PUTD generates an
error message: ARG NOT LITATOM. If the second argument is not a list,
PUTD generates an error message; ILLEGAL ARG. NIL is a valid value for the
second argument. Unlike DEFINE or DEFINEQ, PUTD does not check the list
to see if it is a valid definition, but merely stores it away. For example,

-(PUTD 'f-to-c
'(LAMBDA (temperature)

(QUOTIENT
(DIFFERENCE temperature 32.0)

1.8))))
(F-TO-C)

which defines the atom F-TO-C as a function that converts a temperature given
in fahrenheit to an equivalent measure in celsius. Note that the definition of the
function given to PUTD must include either a LAMBDA or NLAMBDA.

Note that PUTD is not sensitive to the value of DENFLG, but places the
value of DEFINITION directly in the function definition cell. Any contents of
the function definition cell are replaced by the new definition.
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8.4.1 Alternative Forms of PUTD

An alternative form of PUTD is PUTDQ. PUTDQ is an NLAMBDA version of

PUTD that assumes that both of its arguments are literal values. Thus, we may
define F-TO-C as follows:

(PUTDQ f-to-c
(LAVBDA (temperature)
(QUOTIENT
(DIFFERENCE temperature 32.0)

1.8))))
(F-TO-C)

Another form of PUTD is PUTDQ?. PUTDQ? is an NLAMBDA form of
PUTD that sets the value of the function definition cell of the first argument if
and only if it is not defined. That is, it acts like PUTDQ. Otherwise, it returns
NIL and does nothing.

A Definition for PUTDQ?
We might define PUTDQ? as follows:

(DEFINEQ
(putdqg?
(NLAVBDA (fn definition)
(AND (NULL (GETD fn))
(PUTD fn definition))
)))

8.5 COPYING FUNCTION DEFINITIONS

Because function definitions are just lists or pointers to sequences of compiled
code, we can copy a function definition from one atom to another. There are two
reasons why you might want to perform this operation.

First, to simplify the definition of several similar functions. In this case, you
define a (perhaps lengthy) function. Then, you copy its definition to another
atom and edit the definition to produce a similar but different function.

Second, you may want to dynamically assign a function definition to an
atom based on the current state of your program.

INTERLISP provides MOVD to copy function definitions between atoms.
An alternative form, MOVD?, copies the function definition to the destination
atom if and only if its function definition cell is NIL; otherwise, it does nothing.

The generic format for invoking these functions is

Function: MOVD
MOVD?
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# Arguments: 3

Arguments: 1) a function name, FROVFN
2) a function name, TOFN
3) a copy flag, COPYFLAG

Value: The name of the TOFN atom (MOVD/MOVD?);
otherwise, NIL.

Note that MOVD works for EXPRs, compiled functions, and SUBRs.
COPYFLAG, which is valid only for EXPRs, indicates that a copy of the func-
tion definition will be used if it is T. Otherwise, a pointer to the EXPR list is
placed in the TO-atom’s function definition cell. A new copy of the EXPR list
allows us to edit the function definition as desired in case 1 above.

A Definition for MOVD
We might define MOVD as follows:

(DEFINEQ
(movd (fromfn tofn copyflag)
(PROG (newflag)
(SETQ newflag
(NULL (GETD tofn)))

(PUTD tofn
(COND
(copyflag
(COPY (GETD fromfn)))
(T

(GETD fromfn))))
(RETURN tofn))

)

8.5.1 A MOVD Example

Suppose we can apply one of several disjunction operators to a pair of argu-
ments. One way to code this is to assign the name of the disjunction function to
an atom and use that atom as the argument of a SELECTQ statement. For ex-

ample

mNSETQ disjunction-operator
(QUOTE <a-disjunction-function)))

(SELECTQ disjunction-operator
(disjunctl (disjunctl a b))
(disjunct2 (disjunct2 a b))

(disjunctN (disjunctN a b)))
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An alternative method would be to copy the function definition of the appro-
priate function to the function definition cell of DISJUNCTION-OPERATOR.
Then, we could code DISJUNCTION-OPERATOR uniformly in our program.
The current definition would be applied to the arguments whenever a statement

of the form
(disjunction-operator a b)

IS executed.
Consider the following definitions for possible disjunction functions:

(DEFINEQ
(disjunctO (a b)
(COND
((ZEROP a) b)
((ZEROP b) a)
(T D)
))

(DEFINEQ
(disjunctl (a b)
(MIN 1 (PLUS a b))

)
(DEFINEQ
(disjunct2 (a b)
(DIFFERENCE
(PLUS a b)
(TIMES a b))
)
(DEFINEQ
(disjunct3 (a b)
(MAX a b)
)

To set the current definition of DISJUNCTION-OPERATOR, we might use
the following statement:

(MOVD
(SELECTQ <some condition)
(0] (QUOTE disjunctQ))
(1 (QUOTE disjunctl))
(2 (QUOTE disjunct2))
(3 (QUOTE disjunct3)))
(QUOTE disjunction-operator)

7
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To make this method as general as possible, we could package this state-
ment as a function that can be called from anywhere in the program.

8.6 FUNCTION PREDICATES

INTERLISP provides several predicates for testing the type of a function. These
predicates correspond to the values returned by FNTYP as discussed in Section
8.1. Each predicate returns T if and only if its argument is one of the type indi-
cated in the following table

Function Predicates

Predicate Truth Condition

SUBRP SUBR, FSUBR, SUER*, FSUBR*
OCOODEP CEXPR, CFEXPR, CEXPR*, CFEXPR*
EXPRP EXPR, FEXPR, EXPR* FEXPR*

also, if the argument has a list
definition that does not begin with LAVBDA
or NLAVEDA

The general format for invoking these predicates is

Function: SUBRP
CooDEP
EXPRP

# Arguments:

Argument: 1) a function name or a function
definition, i.e., a list beginning with
LAVBDA or NLAVBDA
Value: T, if the truth condition in the table
above is met; NIL otherwise.

These predicates may be defined using FNTYP.
Consider the following examples:

«-(EXPRP 'CREATE.NODE)

(COODEP ’DEFINEQ)

(SUBRP 'CAR)

A Definition for SUBRP
We might define SUBRP as follows:
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(DEFINEQ
(subrp (a-function)
(COND
((SELECTQ (FNTYP a-function)
((SUBR FSUBR SUBR* FSUBR*) T
) (NIL))))

The other functions are defined analogously.

8.7 ARGUMENT LIST FUNCTIONS

An INTERLISP function may or may not have arguments. When it does, it is
sometimes useful to be able to obtain information about the arguments associ-
ated with the function. Variable bindings are determined by function type

1. If the function is a LAMBDA, each argument is bound to a value that
results from enumerating and evaluating the expressions given in the ar-
gument list of the calling expression.

2. If the function is an NLAMBDA, the expressions in the calling expres-
sion are not evaluated, but are bound directly to the atoms in the argu-
ment list.

3. If <arguments >in the function definition is NIL, the function receives no
arguments when it is called.

4. 1If {arguments) in the function definition is a single atom, the arguments
in the calling expression are gathered into a list and assigned as the value
of that atom. Expressions in the calling expression’s argument list are
evaluated or not depending on whether the function is a LAMBDA or
NLAMBDA function.

INTERLISP provides several functions to determine the characteristics of
arguments that are passed to a function.

8.7.1 Determining The Argument Type

You may need to determine the type of arguments a function expects in order to
construct the argument list to be passed to that function. Usually, this case
arises when you are interfacing with code written by another user. ARGTYPE
takes one argument—the name of a function—and returns an integer that speci-
fies the type of function that it is or NIL if it is not a function. It takes the follow-
ing form;

Function: ARGTYPE
# Arguments: 1
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Argument: 1) a function name, FN
Value: The argument type or NIL.

The value of ARGTYPE is specified by the following table:

Argument Types of Functions

Value Function Type
0 Lambda-spread
1 Nlambda-spread
2 Lambda-nospread
3 Nlambda-nospread

Suppose that we have a function FI that has been defined by another user,
perhaps in a package that has been compiled. We do not know the type of the
function nor do we care to visually inspect the code, if we could, to determine
what the type of the function is. Nevertheless, we must use the function in our
program. To do so properly, we have to construct an argument list to pass to the
function. We might write a function in our own program called BUILD-ARGU-
MENT-LIST that constructs the proper argument list based on the type of func-
tion.

A skeletal definition of BUILD-ARGUMENT-LIST might appear as fol-
lows:

(DEFINEQ
(build-argument-list (a-function an-argument-list)
(SELECTQ (ARGTYPE a-function)

(0 (make-Is-list argument-list))
(1 (raake-ns-list argument-list))
(2 (make-In-list argument-list))
(3 (make-nn-list argument-list))
(NIL NIL))

)

where each of the functions MAKE... construct the proper argument list for the

appropriate function type.
To call the function FI, we would use APPLY::

(APPLY fl (build-argument-list fl argument-list))

Applying ARGTYPE directly to several standard INTERLISP functions, we
see that it returns:

NARGTYPE 'DEFINEQ)
3
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(ARGTYPE 'ARGTYPE)
0
(ARGTYPE 'PUTDQ)

(ARGTYPE 'IPLUS)

8.7.2 Determining the Number of Arguments

You may also want to determine how many arguments a function requires when
it is invoked. This knowledge is useful in constructing an argument list for a
function. NARGS returns an integer that is the number of arguments in the
function’s argument list or NIL if its argument is not a function. It takes the
form

Function: NARGS

# Arguments: 1

Arguments: 1) a function name, AN

Value: The number of arguments or NIL.

Its value is determined by:

NIL, if FN is not a function.

0, if the argument list of FN’s definition is NIL.

1, if FN is a nospread function or has a single argument.

N, which is the actual number of arguments expected by FN.

P wbdpE

Consider the following example:

(NARGS (FUNCTION build-argument-list))
2

because BUILD-ARGUMENT-LIST requires two arguments.
<-(NARGS 'RECORDACCESS)
(NARGS 'LOGOUT)
0

NARGS uses EXPRP rather than FNTYP. Therefore, NARGS will work on
S-expressions that are not functions but which are lists. For example.
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MNARGS '(do-test a-list an-operation))
2

where DO-TEST has not been defined as a function. However, it appears to take
two arguments (if it were treated as a function) and so the terms A-LIST and
AN-OPERATION are treated as “arguments to the presumed function DO-
TEST.

A Definition for NARGS
We might define NARGS as follows (after INTERLISP/370):

(DEFINEQ
(nargs (fn)
(GOND
((EXPRP (SETQ fn (CGETD fn)))

( If AN has a function definition
or an BEXPR property. Extract the
argument list from the function
definition.

)(SI:—I'Q fn (CADE fn))

(GOND
((NULL fn)
If the argument list
is NIL, return zero.
)
0)
((ATOM fn)

*
If the argument list
IS an atom, its a
nospread function.

((NULE)(CDR (LAST fn)))

(*
An argument list with
some number of atoms
representing
arguments.

)

(LENGTH fn))

(T
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The argument list has
a dotted pair at its
end.

)
(ADDI (LENGTH fn)))))
((CCODEP fn)
The function is a compiled
function, so look at the linkage
to the function. This is machine

dependent.

)(LOGN\D
(LRSH
(VKN
(CAR (IPLUS 8
(MN fn))))

8)
255))

(T
N
Functions defined as part of the
underlying virtual machine have
only one or two arguments.

)(SELECTQ (FNTYP fn)
((SUBR FSUBR) 2)
((SUBR* FSUBR¥) 1)
NIL)))

)
where CGETD is defined as

(DEFINEQ
(cgetd (fn)
(COND
((LITATOM fn)
(GETD fn))
(T fn))

)

CGETD merely distinguishes between an atom, which is assumed to be the
name of the function, and an S-expression, which is assumed to be a LAMBDA/

NLAMBDA form.
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8.7.3 Obtaining the Argument List

Given a function that you did not define, but which you wish to invoke, you may
determine the argument list by executing the function ARGLIST. ARGLIST
takes the form

Function: ARGLIST

# Arguments: 1

Argument: 1) a function name, AN

Value: The arguments forthe function.

ARGLIST returns a list of the arguments of the function which it takes as its
argument. This function is particularly useful when you want to prompt the user
for the values of arguments.

The value it returns depends on the function type and definition

1. NIL, if the function definition had NIL as its argument list specification.

2. An atom, if FN is a nospread function.

3. A list of atoms which are the names of the arguments that appeared in
the function definition.

4. An error message, ARGS NOT AVAILABLE, if FN is not a
function.

Consider the following examples:

(ARGLIST 'BREAKIN)
(FN WHERE WHEN BRKCOIVD)

A(ARGLIST 'ASKUSER)
(WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG
OPTIONSLST FILE)

Certain functions in various INTERLISP implementations are hardwired
via assembly language (INTERLISP-10/VAX/370) or microcode (INTERLISP-
D). Thus, the actual names of the arguments are not preserved in the sysout. In
this case, ARGLIST “manufactures” dummy argument names. For example,

(ARGLIST 'LIST)
U

A(ARGLIST 'RPLAGA)
(XY)

If FN is a compiled function, the argument list must be reconstructed from
the arguments. Thus, each call to ARGLIST will cause the construction of a new

list.
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If FN is an atom with an EXPR property whose value is a list beginning with
LAMBDA or NLAMBDA, ARGLIST returns the CADR of GETD of the value.
ARGLIST also works if it is given a list whose CAR is LAMBDA or NLAMBDA.
For example,

A(ARGLIST '(LAMBDA (X) (ITIMES X X)))
(0

8.7.4 Accessing the Arguments of a Nospread Function

A nospread function has a single atom as its argument list specification. Any
expressions appearing after the function name in the calling expression are eval-
uated and their values are bundled into a list and bound to that single atom. To
access individual arguments, you may use ARG which takes the form

Function: ARG
# Arguments: 2

Arguments: 1) a variable name, VARX
2) an index into the argument list, N

Value: The value of the corresponding argument.

ARG is an NLAMBDA function. VARX is the name of the atom that ap-
peared in the nospread function’s definition. It may be any atom except NIL or
T. It isnot evaluated by ARG. N is an index into the argument list that specifies
the number of the argument that you wish to retrieve. It is evaluated as follows:

1. If N is less than or equal to 0, ARG returns NOBIND.
2. If N is greater than the number of arguments, ARG returns NOBIND.
3. ARG returns the value of the corresponding argument.

Consider the following example (after the IRM):

(DEFINEQ
(xplus
(LAVBDA varx
(PROG ((ARGNUM 0) (ARGVAL 0))
loop
(COND

((EQ ARGNLM varx)
(RETURN ARGVAL)))
(SETQ ARGNLM (ADDI ARGNUM)
(SETQ ARGVAL
(PLUS ARGVAL
(ARG varx ARGNUM)))
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(GO loop))
)

Note that the variable VARX is bound to the number of arguments for a
LAMBDA nospread function. When XPLUS is called, VARX is bound to 3.
Thus, the test for terminating the loop succeeds. However, you should neyer
reset the LAMBDA variable. Individual arguments may be reset via SETARG
below.

Consider the following example:

(XPLUS 10 30 50)
90

where we have the following correspondences:
<-(ARG varx 1)

10

<-(ARG varx 2)
30

NARG varx 3)
50

and the value of VARX is 3.

8.7.5 Setting the Arguments of a Nospread Function

SETARG allows you to set the arguments of a LAMBDA nospread function
from within the function. It takes the form

Function: SETARG

# Arguments: 3

Arguments: 1) a variable name, VARX
2) an index, N
3) a value to be set, VALLE

Value: The new value.

SETARG is an NLAMBDA function. SETARG sets to VALUE the Nth ar-
gument of the LAMBDA nospread function whose argument list is given by the
atom VARX. VARX is not evaluated, but N and VALUE are evaluated. It is
primarily used to modify the argument list prior to processing it within the func-
tion.
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8.8 FUNCTION EVALUATION

INTERLISP operates in a READ-EVAL-PRINT loop. Expressions are read
from the primary input file, evaluated, and the results are printed on the pri-
mary output file. EVAL is the function vVYich evaluates (e.g., “executes"”) the
expression and returns its value. EVAL takes the form

Function: EVAL

# Arguments: 1

Arguments: 1) anS-expression, EXPRESSION

Value: The value, ifany, produced by evaluating
EXPRESSION.

EVAL takes one argument, EXPRESSION, which is an S-expression, that
it gives to the intepreter for execution. Consider the following example:

<-(SETQ exl '(ITIMES XXX))
(ITIMES XXX)

SNSETQ X 20)
20

<-(EVAL exl)
8000

<-exl|
(ITIMES XXX)

EVAL is a LAMBDA function, so its argument is evaluated before being
bound to EXPRESSION. EVAL is primarily used within functions where we
construct an S-expression and then execute it. The following sections discuss
some situations in which EVAL may be profitably used (some reference is made
to concepts introduced in later chapters).

8.8.1 Updating a Database Variable

The File Package (see Chapter 17) uses a variable having the name <file)VARS
to represent a list of variables that are to be “saved” when a new version of the
symbolic file is written. If your program processes several databases, you cannot
hardwire the VARS variable into the code as some of the File Package functions
expect. However, you may create your own updating function as follows:

(DEFINEQ
(add.to.database.variables (a.variable)
(SET current.database.vars
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(APPEND (EVAL current.database.vars)
(LIST a.variable)))

)

where CURRENT.DATABASE.VARS holds the name of the VARS variable.

Suppose we were maintaining a database about countries of the world. As-
sume that we needed to add the variable PUERTO-RICO to the USA database.
When the database is loaded, we would set CURRENT.DATABASE.VARS to
USAVARS. Then, adding Puerto-Rico would merely involve

(add.to.database.variables 'puerto-rico)
(maryland puerto-rico)

Note that CURRENT.DATABASE.VARS has as its value the name of the
file package variable. We evaluate this variable to obtain its value for updating.

8.8.2 A-list Evaluation

EVALA simulates a-list evaluation as it was performed in Lisp 1.5 [mcca72]. It
takes the form

Function: EVALA
# Arguments: 2
Arguments: 1) anexpression,EXPRESSION
2) a list of dotted pairs, ALST
Value: The value produced by evaluating
EXPRESSION.

EVALA spreads ALST on the stack. Each entry in ALST is a dotted pair
consisting of a variable name and a value. EXPRESSION is evaluated using the
“free” variables that appear on the stack as a result of spreading ALST. This
form of evaluation was used in early LISP implementations. | recommend that
you do not use it since its form and implementation are archaic.

8.8.3 Constant Evaluation

In some applications, you may need to specify functional arguments, but want
them to evaluate to constants. INTERLISP provides functions that evaluate to
the most frequently used constants. They take the form

Function: NILL
TRUE
ZFRO
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# Arguments: O
Arguments: N/A
Value: NIL, T, or 0, respectively.

These functions are nospread functions that always produce the specified
constants.

8.9 FUNCTION APPLICATION

One of the nice characteristics of INTERLISP is the ability to define a function
dynamically, and then use that function to accomplish some result. In general,
this capability is not available in most other conventional programming lan-
guages. It is available because data structures and functions are just S-expres-
sions in INTERLISP. So, to create a new function, we merely build an S-expres-
sion of its definition and then evaluate it. A problem arises in telling the function
about its arguments; that is, in setting up the proper calling sequence because
the function has not been formally defined to INTERLISP via DEFINE. To
solve this problem, we can use APPLY which takes a function definition and a
list of arguments. It takes the following format:

Function: APPLY

# Arguments: 2

Arguments: 1) a function definition, AN
2) a list of arguments, ARGS

Value: The result ofapplying FN to ARGS.

FN may take several different forms:
1. It may be the literal name of a function:

AAPPLY 'PLUS '(5 6))
11

2. It may be a FUNCTION specification:

<-(APPLY (FUNCTION TIMES) ’(5 6))
30

3. It may be a LAMBDA or NLAMBDA definition:

<-(APPLY '(LAVBDA (X Y)
(CONS y x))
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‘(apples oranges))
(oranges . apples)

APPLY does not evaluate the individual elements of ARGS. Rather, it sim-
ply calls FN with ARGS as the argument list. Thus, LAMBDA and NLAMBDA
functions are treated exactly the same.

APPLY is a LAMBDA function, so it evaluates its arguments before it is
called. Suppose I have a set of functions for computing weighted conjunctions of
two numbers which represent evaluations of two conditions. CONJUNCT com-
putes the proper evaluations given two numeric operands, but its operation may
vary with the state of the program. We might define CONJUNCT as follows:

(DEFINEQ
(conjunct (x y)
(COND
((AND
(NUVBERP X)
(NUVBER? y))
(APPLY *conjunct-operator* x y))
(T
(ERROR "Non-numeric Arguments™)))
)

where *CONJUNCT-OPEBIATOR* is a global variable whose value is the name
of a conjunction function.
We might define several conjunction functions as follows:

(DEFINEQ
(conjunctl (x y)
(COND
(EQP x 1.0) )
(EQP y 1.0) x)
(T 0.0))
)
(DEFINEQ

(conjunct2 (x vy)
(fmaximum 0.0 (PLUS x y (MINUS 1.0)))

)

(DEFINEQ
(conjunct3 (x y)
(PLUS 1.0 (TIMES x Yy))

)

Each function computes a different weighting of the variables X and Y. To
select a function, we set its name as the value of *CONJUNCT-OPERATOR*.



8.10 Repetitive Execution 241
¢-(SETQ *conjunct-operator* 'conjunctl)
conjunctl

"(conjunct 1.0 3.0)
3.0

ANSETQ *conjunct-operator* ‘conjunct2)
conjunct2

¢-(conjunct 1.0 3-0)
3.0

<-(SETQ *conjunct-operator* ‘conjunct3)
conjunct3

ee-(conjunct 1.0 3.0)
4.0

8.9.1 APPLYing to an Indefinite Number of Arguments

Sometimes, the individual arguments to FN are produced separately in the call-
ing program. To use these arguments in APPLY, you would have to invoke it in
the following form

(APPLY <FN> (LIST <argl> <arg2> ... <argN>))

INTERLISP provides APPLY* as a shorthand notation for this form. It
takes the format

Function: APPLY*
# Arguments: 1-N

Arguments: 1) a function specification, AN
2-N) arguments for AN
Value: The result ofapplying Fn to ARGSJ[i]

APPLY™ is a nospread function. It is useful where the arguments are calcu-
lated prior to applying the function. For example, you may have an expression of
the form

(APPLY* (select-print-function) (select-print-arguments))
which determines which printing function to apply to the specified arguments.

8.10 REPETITIVE EXECUTION

Many expressions are executed several times in a program in succession. Usu-
ally, the expression maintains internal variables whose values change with each
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iteration. Normally, you would have to set up a PROG loop to count the number
of times that the expression is executed with a test to decide when you have iter-
ated enough times. A shorthand notation for this mechanism is provided by
RPT, which takes the form

Function: RPT
# Arguments: 2

Arguments: 1) arepetition count, RPIN
2) an expression, RPTF

Value: Thevalue resulting from the last
evaluation of RPTF.

RPT executes the expression RPTF for RPTN times. RPTN is counted down
as each evaluation is performed. RPTF may use the value of RPTN to determine
what to do at any given iteration. If RPTN is less than or equal to zero, RPTF is
not evaluated; RPT returns NIL.

An alternative form, RPTQ, is an NLAMBDA, nospread version of RPT.
Its first argument, RPTN is evaluated to determine the number of iterations.
The remaining N arguments are expressions which are not evaluated prior to
calling RPTQ. At each repetition, RPTQ evaluates each of the RPTF[i] in suc-
cession. Its value is the result of the last evaluation of the last expression,
RPTF[N].

Consider the following examples:

<-(RPT 10 '(PRINT RPTN))
10

PR NDNW DGO~ ©©

(the returned value)

Note that RPTN is accessible in the expression that is executed by RPT.
We can initialize an array to a specific constant using RPT as follows:

ASETQ AL (ARRAY 5 5))
{ARRAYPH546261
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A(RPT (ARRAYSIZE Al) '(SETA Al RPIN (ITIMES RPTN 100)))
100

which is the last value assigned because RPT counts down from the upper limit.
Inspecting the value of AI[3], we see that it is 300:

AELT Al 3)
300

A Derinition for RPT
We might define RPT as follows:

(DEFINEQ
(rpt (rptn rptf)
(PROG (rptv)
loop
(COND
(IGREATERP rptn 0)
(SETQ rptv (EVAL rptf))
(SETQ rptn (SUBI rptn))
(GO loop))
(T
(RETURN rptv))))

)

8.11 GENERATORS

Whenever you call a function in INTERLISP, it creates a stack frame (see Chap-
ter 30) that exists for the duration of the function’s execution. When the function
exits, the stack frame is released and all information concerning that activation
is forgotten. If the function’s task is to compute a series of values, you must

1. Compute all values and store them as a global variable. Functions exter-
nal to the function that computed these values are responsible for access-
ing the individual values. Or,

2. Retain state information about the function in a global variable so that,
at each invocation, the function can reestablish its previous state before
computing the next value.

The former method may be time-consuming if a large number of values
must be computed. Moreover, if the next value to be computed depends upon
some massaging of the previous value by an external function, it may not be
possible to compute all the values at one time. The latter method introduces
substantial complexity into the function which makes it difficult to comprehend
as well as as leading to possible errors due to wrong implementation.
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Generators are a mechanism for circumventing this problem. A generator is
a function that retains state information (e.g., a history of its previous invoca-
tions).

8.11.1 Initializing a Generator

GENERATOR is an NLAMBDA function that initializes a generator. It takes
the format

Function: CENERATOR
# Arguments: 2
Arguments: 1) an expression, FORM
2) a generator handle, QOVPVAR
Value: A generator handle.

GENERATOR creates a stack frame for FORM so that it may be called
repeatedly, it returns a generator handle which is a pair of stack pointers.
Consider the following example taken from the IRM [irm83]:

NDEFINEQ
(LISTGEN (1st)
(IF 1st
THEN (PRODUCE (CAR 1st))
(LISTGEN (CDR 1st)))

))
(LISTGEN)
LISTGEN will produce elements of the list one at a time.

ASETQ R (GENERATOR (LISTGEN '(ABC))))
(#i,13742/#0 . #1,13444/generator)

Each time GENERATE is called, it invokes PRODUCE to return the next
value.

+(GENERATE GR)
A

NGENERATE GR)
B
<-(GENERATE GR)
C

NGENERATE GR)
(#1,1342/#0 . #1,13444/4#0)
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When you have exhausted the input list, GENERATE returns the generator
handle to indicate termination.

<-( GENERATE GR)
STACK POINTER HAS BEEN RELEASED
'#1,134U/#0

PRODUCE and GENERATE take the following forms

Function: PRODUCE

# Arguments: 1

Argument: 1) a value to be returned, VALUE
Value: The value.

PRODUCE is used from within a generator to return a value each time the
generator is called.

Function: GENERATE

# Arguments: 2

Arguments: 1) a generator handle, HANDLE
2) a value, VALLE

Value: The value to be returned.

GENERATE restarts the generator given by HANDLE. VALUE is returned
as the value of the PRODUCE which last suspended the operation of the genera-
tor. When the generator runs out of values (if it does), GENERATE returns the
value of HANDLE itself.

8.12 MACROS

When a function is called in INTERLISP, a new stack frame is created to estab-
lish the environment in which the function will execute. Since INTERLISP does
not distinguish between large and small functions, every function experiences
this overhead. Sometimes, we need to parametrize very small pieces of code to do
simple but diverse operations. Coding these code skeletons as fucntions forces us
to pay the price of the function call.

Macros allow us to create code skeletons which are expanded in-line to pro-
duce efficient code. Macros are parametrizable, but invoking them does not
cause a new stack frame to be created. They are akin to the in-line functions
allowed in FORTRAN. Basically, executing a macro results in the creation of
another piece of code which is then evaluated to produce a result. Thus, execut-
ing a macro is a two-step process: macro expansion and resultant code evalua-
tion.
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Any literal atom may have a macro definition, just as it has a function defi-
nition cell. The macro definition is stored on the atom’s property list as a list.
The property name under which the definition is stored depends on the imple-
mentation that you are using. Current property names include

MACRO implementation independent macros

IOMACRO macros for INTERLISP-10
DVACRO macros for INTERLISP-D
VAXVACRO macros for INTERLISP-VAX

8.12.1 Defining Macros

A macro is defined by placing a value for a macro property name on the property
list of a literal atom. Macro definitions can take several forms:

1. Lambda or Nlambda forms

When functions are compiled, they generate code that includes the
overhead necessary to create a stack frame. You may force a function to
compile open (e.g., generate in-line code) by placing a macro definition
with LAMBDA or NLAMBDA on the atom’s property list. The defini-
tion takes the usual form of a LAMBDA or NLAMBDA S-expression.

Consider the code for REPLACADD which has the definition

(DEFINEQ
(replacaddd (x y)
(RPLACA (LAST x) v)

y))

and a test function, TESTI, defined as
(DEFINEQ (TESTI (XY) (REPLACADDD X Y)))

We may put the macro definition for REPLACADDD on its prop-
erty list using

(PUTPROP 'REPLACADDD 'MACRO (GETD 'REPLACADDD))

Now, compiling TESTI, we see the following code (under IN-
TERLISP-10):

(TESTI (x y) NIL)
(ENTERF 2 0 0 0)
-1 (PUSHV X 0)
(PUSHV y 1)
(LAM
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2 (RET)
(LDV y A)
(VCLL y 5 RPLACA 2)
(PUSHP)
CLL x 4 LAST 1)
0
BIND (x y) 2 02 2 NIL NIL T 2)

)
(RET)

But, if we remove the macro definition from REPLACADDD’s
property list via

(REMPROP 'REPLACADDD 'MACRO)
and recompile TESTI, we see the following code:

(TESTI (x y) NIL)
(ENTERF 2 0 0 0)

-1 (PUSHV x 0)
(VCLL y 1 REPLACADDD 2)
(RET)

In the case of the macro definition, the code for REPLACADDD was
compiled in-line to the definition of TESTI whereas in the second case, a
function call was generated.

. Substitution Macros

A substitution macro takes one of two forms:

(NIL <expression>)
(<list> (expression))

Each argument in the S-expression being evaluated or compiled is
substituted for the corresponding atom in <list>. The resulting expres-
sion is used instead of the form. Consider the example given in the IRM
[irm83]

A(PUTPROP 'ADDONE 'MACRO '((X) (IPLUS X1)))
(X) (IPLUS X 1))

<-(SETQ y '(5 6))
(5 6)

<(EXPANDMACRO (ADDONE (CAR Y)))
6
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. T Macros

When a macro definition has the value T, the compiler ignores the
macro definition and compiles the function definition instead. Normally,
this will be used with atoms that have both a MACRO property and a
specific implementation MACRO property, such as IOMACRO. The
MACRO property has the macro definition. If you want to run the func-
tion on INTERLISP but the macro definition is valid only for IN-
TERLISP-D, setting the DMACRO property to T instructs the compiler
to ignore it when compiling the expression on INTERLISP-10 systems.

. Synonym Macros

You may instruct the compiler to treat one function as if it were an-
other when compiling expressions by specifying MACRO properties of
the following form:

(= . <other-function-name>)

For example, INTERLISP-D compiles many of the functions begin-
ning with F (for “fast”—see the IRM) exactly like their interpreted
brethren (because of the way they are implemented in INTERLISP-D).
Thus, FRPLACAs are treated exactly like RPLACAs. However, this ap-
proach does not work with any of the other implementations because
they compile into machine language.

These types of macros may be used to define synonyms for functions.
Suppose you frequently misspell the name of a function in a file. Rather
than searching the file to replace all of the misspellings, you might place
a synonym macro on the misspelling which specifies the correct function
to be used in compiling the file.

. Computational Macros

A macro definition beginning with a literal atom other than those
above causes the S-expression value to be evaluated or compiled in place
of the form. This form is specified by

(<literal-atom> (expression))
The literal atom receives the argument list to the macro.

The IRM suggests that LIST could be compiled using the alternative
form

(X
(LIST "CONS
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(CAR X)
(AND (CDR X)
(CONS 'LIST
(COR X)))))

Thus, the expression (LIST ‘MOSES ‘ABRAHAM ‘ISHMAEL)
would be compiled as

(CONS MOSES
(CONS ABRAHAM
(CONS ISHVIAEL. NIL)))

In this case, the macro expansion contains a recursive expression
that allows it to deal with any number of arguments to LIST.
For example, giving this macro property to TEST2:

M(PUTPROP 'TEST2

MACRO
(X
(LIST 'CONS
CAR X)
(AND (CDR X
(CONS 'LIST
(COR X))))))

(X (LIST 'CONS (CAR X) (AND (CDR X) (CONS 'LIST (CDR

X))

ATEST2 'MOSES 'ABRAHAM 'ISHMAEL)
(MOSES ABRAHAM ISHVIAEL)

A(TEST2 10 20 30 40 50)
(10 20 30 40 50)

where X has taken the value (10 20 30 40 50) prior to expanding the
macro definition.

If the literal atom evaluates to the litatom IGNOREMACRO, the
macro is ignored and the compilation or evaluation proceeds as if there
were no macro definition.

8.12.2 Expansion of Macros

Literal atoms may have both a function definition and a macro definition. When
the interpreter evaluates an expression, it inspects the CAR of the expression. If
the CAR of the expression has a function definition, that will be used (via a
function call) to evaluate the expression. If it has a macro definition, then the
expansion of the macro will be used to evaluate the expression.
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The reverse is true during compilation. The macro definition is checked
first. If it exists, it is used to generate the code for evaluating the expression,
subject to the constraints mentioned above. If there is no macro definition, then
the function definition is used.

The IRM suggests that you may want to use a function definition that has a
lot of error handling and debugging code for interpreted expressions during sys-
tem development, but replace this by a fast in-line macro expansion when you
compile the same expression (without the debugging code).

Interpreted macros are implemented by the function MACROTRAN (for
macro translation) which is an entry on DWIMUSERFORMS. If DWIM (see
Chapter 22) is not enabled, MACROTRAN will not work.

MACROTRAN is called if the CAR of an expression is undefined; that is,
does not have a function definition. If the CAR of the expression has a macro
definition, it is expanded and the result is evaluated in place of the original
expression. The value of the expansion (an expression itself) is saved by
CLISPTRAN (see Chapter 23) in CLISPARRAY sothat the expansion need only
be performed once. On subsequent findings, the expansion is retrieved from
CLISPARRAY without invoking MACROTRAN.

EXPANDMACRO is a function that is used to expand the macro definition
of a literal atom and evaluate it during interpretation. It takes the form

Function: BEXPANDVACRO
# Arguments: 2
Arguments: 1) an expression,EXPRESSION
2) a quiet flag, QUIETFLAG
Value: The result of expanding the macro

definition and evaluating it.

The CAR of EXPRESSION must have a macro definition. This is expanded
by EXPANDMACRO and evaluated. The result will be prettyprinted, unless
QUIETFLAG is T, whence it is just returned.

Consider the definition for TEST2 as demonstrated in the following exam-

ple

(EXPANDVACRO ' (TEST2 MATTHEW)
(CONS MATTHEW NIL)

8.12.3 A Function for Defining Macros

Other LISP dialects provide functions for defining macros. For example,
FranzLisp provides the function DEFMACRO which takes a form similar to a
function definition. We might define DEFMACRO as follows
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«-(DEFINEQ
(defmacro
(NLAVBDA definition
(PUTPROP (CAR definition)
'MACRO
(CDR definition))
(CAR definition)
)))
(DERVIACRO)
NDEFMACRO NEQ (A B) (NOT (EQ A B)))
NEQ

NGETPROP ’NEQ 'MACRO)
((A B (NOT (EQ A B)))

NEXPANDMACRO '(NEQ X Y))
(NOT (EQ X Y))

<NEXPANDMACRO (NEQ X Y))
T

with X set to ABC and Y set to DFE.
With this function, we may define two simple macros that treat a list like a
stack. PUSH and POP have the following definitions

<NDEFMACRO PUSH (VALUE STACK)
(SETQ STACK (CONS VALLE STACK)))
PUSH

NDEFMACRO POP (STACK)
(PROGI
(CAR STACK)
(SETQ STACK (CDR STACK))))
POP

<-{SETQ STACK NIL)
NIL

<-(SETQ VALLE 'X)
X

<-(PUSH VALUE STACK)
)

<-(POP STACK)
X

<-STACK
NIL






Atom Manipulation

As we mentioned in Section 2.1, a literal atom is an indivisible unit of storage
that is allocated by INTERLISP at the user’s request. Atoms have names, the
PRINI-NAME (PNAME), that are printed by INTERLISP. Two atoms that
have the same PNAME have identical addresses in memory. Atoms are unique.
The PNAME is defined as the sequence of characters that will be displayed by
PRINL

An atom may be characterized by a property list, a value, a function defini-
tion, and a PNAME. Property lists and their manipulation are discussed in
Chapter 7. Function definitions and their manipulation are discussed in Chapter
8. This chapter discusses the creation and manipulation of atoms, and the print-
ing of their names and values.

The value cell of an atom is a set of memory locations that are allocated and
assigned to an atom when it is given a value. An atom may be given a value in
three ways:

1. Referencing it as a variable via SETQ
2. Specifying it as a function parameter
3. Specifying it as a PROG variable

An atom that has not been assigned a value has the atom NOBIND placed in
its value cell. Thus, a value cell contains eitheranexplicit value (one that fits
into a computer word, such as an integer) or a pointer to a set ofmemory loca-
tions that contain the atom’s value.

Value cells cannot be directly referenced by the user. They must be accessed
by referencing the atom as a variable.

The PNAME of an atom is the collection of characters that represents the
name of the atom as it appears when entered by the user or printed by the sys-
tem. The length of the PNAME is implementation dependent. For example,

(SETQ maryland NIL)

253



254 Atom Manipulation

will create the atom MARYLAND if it did not previously exist in the system. The
sequence of characters MARYLAND is the PNAME of the atom. The user refer-
ences the value of this atom by typing MARYLAND to the top-level READ-
EVAL-PRINT loop of INTERLISP. For example,

<-maryland
NIL

9.1 RULES FOR ATOM NAMES

The length of the PNAME of a literal atom depends on the implementation.
Currently, this length is 127 for INTERLISP-10, INTERLISP/VAX, and IN-
TERLISP/370, and 255 characters for INTERLISP-D. Attempting to create a
literal atom with a PNAME whose length exceeds these limits causes the error
“ATOM TOO LONG” to be generated.

Literal atom names are any sequence of characters that

1. Cannot be interpreted as a number
2. Are delimited by one of the following syntactic characters:

space

EOL end-of-line

<L line feed

( left parenthesis
) right parenthesis
” double quote

[ left bracket

] right bracket

However, any character may be included in a literal atom name if it is pre-
ceded by an <ESC> character, %. For example, we may create a rather unusual
atom name via the following expression

<NSETQ kv6{BCY%D NIL)
NIL

which creates the atom A(BC)D. To ask INTERLISP to print its value, we must
explicitly type the escape character before the left and right parentheses to indi-
cate they are part of the atom’s name. Thus, we must enter

NIL

A PNAME is a collection of characters that are output when a pointer is
printed using PRINI (see Section 15.1.1) or PRINT (see Section 15.1.3). This is
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often referred to as the PRINI-PNAME. PRINI does not print escape characters
that might occur in the name.

An alternative function, PRIN2 (see Section 15.1.2), prints all escape char-
acters in the pointer’s name. PRIN2’s action may be modified by the action of a
read table.

The PNAME of an integer depends on the value of RADIX (see Section
15.4.4). Integers are always printed by PRINI using the current value of RA-
DIX.

The number of characters permitted in a literal atom name allows you to be
both expressive and creative. It is hard to underestimate the value of using good
mnemonic names, and yet, you will find many INTERLISP programs that re-
flect the influence of FORTRAN where only six characters were permitted.

Good names, particularly when they reflect the usage of the variable, make
a program easier to read. You may argue that you have to type in too many
characters time after time, which is a tedious process. True, but given the ten-
dency of INTERLISP programmers to fail to document their functions, lengthy
names may help you remember what a function did weeks or months later.

I have found that it helps me read my programs by breaking up the literal
atom names with periods (.) or dashes (-). The latter works most of the time, but
CLISP (see Chapter 23) does have a tendency to interpret such names as the
subtraction of two variables. You might also consider using an underscore (__),
but I have found that some printers do not display that character. Rather, they
substitute a space which often leaves you wondering whether you are looking at
two atoms or a single atom with an unprintable underscore.

Consider some of the following atom names;

candidate.goals
deduce.plan.list
lexical .scanner
sentence.scanner
number .of .characters

It is unfortunate that most of the atom and function names used in IN-
TERLISP do not follow this philosophy. You should contrast this with the read-
ability of many ZetaLisp programs which use names broken into manageable
segments as suggested above.

9.2 CREATING ATOMS
We have mentioned that atoms are normally created in three ways:
1. via SETQ

2. as a function parameter
3. as a PROG variable
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In each of these cases, the name of the atom is specified by you when you
execute an INTERLISP statement.

INTERLISP allows you to create atoms using three other functions: GEN-
SYM, PACK, and MKATOM.

9.2.1 GENSYM: Generating a Symbol

You may create an atom using GENSYM, which takes the form

Function: CGA\SYM

# Arguments: 1

Argument: 1) a character sequence, (HAR
Value: A unique (usually) literal atom.

GENSYM appends up to four digits to the character sequence to create the
atom name. The form of the atom name is

<character sequence><digits)

If the (character sequence) is NIL, INTERLISP uses the default character
A.

INTERLISP maintains an internal counter that is initialized to 10000. The
current value of GENNUM, a system variable, represents the value that was
used to create the last atom. GENNUM is incremented each time GENSYM is
executed. Consider the following examples:

GENNUM
10000

(GNSYM)
AOCOI

NGENSYM)
A0002

NGENSYM 'X)
X0003

*(GENSYM 'help)
HELPA

Note that GENSYM suppresses the appropriate number of leading digits
depending on the number of characters in its argument. Thus, when given the
argument HELP above, GENSYM suppresses all leading zeroes, and merely ap-
pends the nonzero digits. This may cause a problem if you use character se-
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quences with four characters in them. Consider the following expression (A
CLISP expression) and its results:

<-(FOR | AROM 1 TO 11 DO (PRINT (GENSYM 'HELP)))
HELPI

HELP2
HELP3
HELPA
HELPS
HELP6
HELP?
HELPS
HELP9
HELPO
HELPI

Note that the last atom name generated is not unique because GENSYM
suppresses leading digits. Caution should be exercised when using GENYSM
with character sequences larger than two or three characters if you expect to
create many atoms.

If the character sequence is five characters in length, GENSYM merely re-
turns that character sequence. For example,

AGENNUM
10011
<-(GENSYM 'TRIAL)
TRIAL
but note that GENNUM is still incremented by one:

"GENNUM
10012

If the sequence is longer than five characters, GENSYM generates an error:

(GENSYM ' PROCRASTINATION)
ILLEGAL ARG
PROCRASTINATION

A Definition of GENSYM
One possible definition of GENSYM might be as follows:

(DEFINEQ
(gensym (a-string)
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(PROG (atora-prefix)
(SETQ atom-prefix a-string)
(COND
((NULL atora-prefix)

If no character sequence is
specified, use the default.

)(SI:_I'Q atom-prefix 'A))
((GREATERP (LENGTH (UNPACK atom-prefix))
5)
(* _
Generate an error if the
character sequence length is
greater than 5 characters.

)
(PRINT "ILLEGAL ARG")
(PRINT atora-prefix)
(RETURN)))
(*
Generate the atom name and increment
GE\NUM Note the use of PROGI.

FETRN
(PROGI
(SET
(PACK
(APPEND
(UNPACK atom-prefix)
(LASTN (UINPACK GE\NLM
(DIFFERENCE 5
(LENGTH
(UNPACK atora-prefix)))

)
NIL)
(SETQ GENNLUM (ADDI GENNUM)))))

)

INTERLISP does not guarantee that the atom it creates will be unique. This
situation may arise if you create atoms having the form specified above. Suppose
the current value of GENNUM is 10056. Further, suppose you have previously

created an atom J0057. If you execute

<(GENSYM ’j)
J0057
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INTERLISP does not create a new atom JO057 because one alreay exists by
that name. Assignment of a value to what you expected to be a new atom may, in
fact, overwrite the value of the existing atom (possibly with disastrous conse-
quences). Good programming practice dictates that you do not use atom names
of this form in your programs.

It is permissible to reset the value of GENNUM within your program, but
you do so at some risk. In fact, if you follow the advice regarding the specifica-
tion of atom names given above, you should never run the risk of conflict be-
tween atom names created by GENSYM and those that you have created.

9.2.2 MKATOM: Creating Atoms from Strings

When executing programs, you may want to create atoms having names that are
dependent on data read in or created by the program. For example, suppose you
have a program that maintains a catalog of books by author. Entries in the cata-
log are represented by atoms constructed from the author’s name. New entries in
the catalog are made by reading the author’s name and manipulating it to create
a new atom.

We can create a new atom from the string representing the author’s name
using MKATOM, which takes the following form

Function: MKATCM

# Arguments: 1

Arguments: 1) an expression,EXPRESSION

Value: A new atomwhose pname is the characters

comprising the string.

If the value of EXPRESSION is not a string, INTERLISP applies MK-
STRING to it. If this succeeds, MKATOM creates an atom, if one does not
already exist, with the PNAME given by the value of the string.

Consider the following examples:

NSETQ z "NOW IS THE TIME FOR ALL GOOD MVEN’)
"NOW IS THE TIME FOR ALL GOCD MEN!

AMKATOM z)
NOAA 1SN THEA TIMEA FORM ALLA GOODN MEN

which is an atom with 32 characters in its name. The %s indicate that the spaces
are valid characters in the name of the atom.

«-(SETQ X (LIST ’julius 'caesar))
(julius caesar)

NMKATOM X)
A(JULIUS® CAESARY
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Note that the parentheses have been included as valid symbols in the name
of the atom. This occurs because the result of evaluating (LIST ‘JULIUS "CAE-
SAR) is (JULIUS CAESAR) v¥ich is then given to MKSTRING. If the string
has a length greater than that allowed for an atom name in the particular imple-
mentation, the error “ATOM TOO LONG” will be generated.

<-(SETQ X 3.141592)
3.141592

<(VKATOM x)
3.141592

<IVKATOM "3.141592")
3.141592

Numbers are literal atoms, by definition. No literal atom can have the
PNAME of a number except the number itself.

A Definition for MKATOM
We can define MKATOM as follows:

(DEFINEQ
(mkatom (a-string)
(PROG (the-string)
(SETQ the-string a-string)
(COND
((NOT (STRINGP a-string))
(SETQ the-string
(MKSTRING a-string))))
(RETURN
(SET
(GAR
(PACK
(UNPACK the-string)))
NIL)))

)

9.2.3 Making an Atom from a Substring

Given a string, you may make an atom name from a substring of the string using
SUBATOM, which takes the form

Function: SUBATOM
# Arguments: 3



9.2 Creating Atoms 261

Arguments: 1) an expression, EXPRESSION
2) a staring index, START
3) an ending index, H\D

Value: A literal atom name created from the
substring extracted from the value of
EXPRESSION.

Usually, START and END are positive and characters are counted from the
beginning of the string. If either START or END is negative, then that index is
counted from the end of the string.

If the value of EXPRESSION is not a string, MKSTRING is applied to it to
create a string to which SUBSTRING is applied.

Consider the following examples:

<-(SETQ string "Washington was the father of his
country")
"Washington was the father of his country"

From this string we might extract a few substrings which become atoms in a
database we are building from strings that are read into our program. For exam-
ple, the key figure in this string is WASHINGTON, so we can extract his name
as an atom via

SUBATOM string 1 10)
WASHINGTON

<-(SUBATOM string 20 25)
FATHER

If START or END is negative, it indicates a position counting backwards
from the end of the string. Thus, we could extract FATHER as follows

<-(SUBATOM string -21 -16)
FATHER

Note that if the value of the substring could be interpreted as a number, then
the value of SUBATOM would be the corresponding number. Consider the fol-
lowing example:

(SUBATOM "July A, 1776" 9 -1)
1776

A Definition for SUBATOM
We might define SUBATOM to be
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(DEFINEQ
(subatom (expression start end)
(MKATCM (SUBSTRING expression start end))

)

9.3 PACKING AND UNPACKING ATOMS

As we mentioned, an atom is an indivisible unit. But the name of an atom is
merely a sequence of characters which, themselves, are indivisible units. We can
break an atom name up into its constituent parts using the function UNPACK
(sometimes called EXPLODE in other LISP systems). Conversely, we create
atom names from a sequence of characters (or character codes) using the func-
tion PACK (sometimes called IMPLODE in other LISP systems).

PACK and UNPACK allow you to create atom names which represent both
similarity and diversity. For example, the first N characters of a name could be
the same indicating a similarity of purpose of the names, while the remaining
characters are different indicating the different purpose of each of the atoms.

9.3.1 Packing Atoms

PACK concatenates any number of individual atom names into a single atom
name. PACK takes the following form

Function: PACK
PACKC
# Arguments: 1
Argument: 1) a list of atoms, LST
Value: An atom.

In fact, PACK really concatenates the PNAMEs of the individual atoms in
LST to form the PNAME of the result. If the argument is not a list, PACK gener-
ates an error message: ILLEGAL ARG. Consider the following examples:

<-(PACK 'A)

ILLEGAL ARG

A

NPACK '(r e a g an)
REAGAN

<-(PACK '(13 . ™)
13.4

<-(PACK '(1 E -3))
.001
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Note that if PACK produces the PNAME of a number as its result, when
that PNAME is printed, it will appear correctly formatted by notation and radix.

If the length of the resulting atom name is longer than the maximum allow-
able atom name for your implementation, INTERLISP generates the error
“ATOM TOO LONG”.

A nospread version of PACK, PACK*, takes an indefinite number of argu-
ments but avoids the CONSes required to form the result. It takes the form

Function: PACK*

# Arguments: 1-N

Arguments: 1-N) LISP objects

Value: The concatenated result of the arguments

as an atom's pname, if valid.

PACK™* is a nospread function. Consider the following examples;

<-(PACK* 'A 'Q 'U 'l 'N 'A'S)
AQUINAS

<-(PACK* 1 7 8 2)
1.782

Another variant, PACKC, takes a list of character codes and returns the
alphanumeric equivalent of the PNAME. For example,

(PACKC '(45 67 89))
-?v

9.3.2 Unpacking Atoms

The converse function allows you to UNPACK the PNAME of an atom. Its value
is a list of atoms corresponding to the PNAMEs of the characters comprising the
PNAME of the argument. The generic format of UNPACK is

Function: UNPACK
# Arguments: 1-3
Arguments: 1) an atom orstring, AM

2) a flag, HAG
3) a read table, RDIBL

Value: A list ofatoms thatcomprise the PNAVE of
ATM
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Consider the following examples:

(UNPACK ' (Washington))
(Washington)

(UNPACK 3.141592)
B3 141592

(UNPACK "BRIGADOON")
(BRI GADOO N

If FLAG is NIL, UNPACK produces a list of atoms corrsponding to the
PRINI-PNAME of the first argument. However, if FLAG has the value T, then
the result corresponds to the PRIN2-PNAME of the first argument. The inter-
pretation of the PRIN2-PNAME is modified by the RDTBL (see Section 14.4).

(UNPACK '(WASHINGTON) T)
WASHINGTON

(UNPACK "BRIGADOON" T)
{%" BRIGADOON %)

NUNPACK 3.141592 T)
35 141509 2)

Note that UNPACK will execute N CONSes where N is the number of char-
acters in the argument to be unpacked.

9.3.3 Using PACK and UNPACK

The primary use of UNPACK is to produce a list of atoms that may be manipu-
lated by other functions.

Suppose that you have a program that processes an input file to produce an
output file. You prompt the user for the basic file name. Using this name, you
generate an input file name that has the proper extension to distinguish the file
types according to function.

We can construct the function MAKE-INPUT-TEXT-FILE-NAME using
PACK and UNPACK. This function assumes that the input file type is “.text”

(DEFINEQ
(make-input-text-file-narae (file-name)

(PROG (input-file-name temp-file-name)
(SETQ temp-file-name (UNPACK file-name))
(SETQ input-file-name NIL)

loop
(CON\D

((EQUAL (CAR temp-file-name) '.)
(GO exit))
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(T
(TCONC input-file-name
(CAR terap-file-name))))
(SETQ temp-file-name
(CDOR temp-file-name))
(AND
(NULL temp-file-name)
(GO exit))
(GO loop)
exit
(RETURN
(PACK
input-file-name
(UNPACK '.text))))
)

And, when we execute this function

NMAKE-INPUT-TEXT-FILE-NAME 'MONDALE-CAMPAIGN)
MONDALE-CAVPAIGN. TEXT

9.4 CHARACTER CONVERSION

Converting between the numeric equivalent of a character and its PNAME for-
mat is a useful function. There are two functions to accomplish this; CHCON
and CHARACTER.

9.4.1 CHCON: Converting to a Number

CHCON converts the PRINI-PNAME equivalent of an atom to a list of its nu-
meric equivalents. This function is dependent on the character code used by the
machine on which INTERLISP is implemented. Consider the following example
(assuming EBCDIC):

o<-(CHOON "tungsten)
(163 16A 149 135 162 163 133 149)

The generic format for calling CHCON is

Function: CHOON
# Arguments: 1-3
Arguments: 1) an atomor string, ATM

2) a flag, FLAG
3) a read table, RDTBL
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Value: Alist of the numeric equivalents of the
characters comprising the PNAVE of the
first argument.

If FLAG has a value of T, the PRIN2-PNAME will be used instead of the
PRINI-PNAME. If the read table is non-NIL (see Section 14.4), it is used to
interpret the characters in PRIN2-PNAME.

An alternative form, CHCONI, returns the character code of the first char-
acter of the atom or string. CHCONI does not use either the PRIN2-PNAME or
the read table as CHCON does. It takes the form

Function: CHOONI

# Arguments: 1

Argument: 1) an atom or string, AIM

Value: The character code of the firstcharacter

of the PNAVE of ATM
Consider the following example:

*(CHCONI ’tungsten)
163

A Definition for CHCONI
We might define CHCONI as follows:

(DEFINEQ
(chconl (atm)
(NTHCHARCODE atm 1)

)

9.4.2 CHARACTER: Converting to the PNAME Equivalent

CHARACTER takes a single character code as its argument and returns the
PNAME equivalent. It takes the form

Function: CHARACTER
# Arguments: 1
Argument: 1) a character code, ac
Value: The atom withthecorresponding character
as its PNAME

Consider the following examples:
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NCHARACTER 149)
N

(CHARACTER 202)
J

(CHARACTER 32) *
A<space> because 32 is the code for a blank!

NCHARACTER 13)
because 13 is a line-feed.

You should experiment with some of the non-printing characters to deter-
mine their behavior when the corresponding character codes are givento CHAR-
ACTER at the top level.

9.4.3 Character Code Structures

CHARCODE allows you to convert all the elements of an S-expression to charac-
ter codes with one function. It takes the form

Function: CHARCODE

# Arguments: 1

Argument: 1) an S-expression,EXPRESSION

Value: An atom or list with all characters
replaced by their corresponding character
codes.

CHARCODE is an NLAMBDA function. Consider the following example:

CHARCODE X)
88

A(CHARCODE "D”)
68

<-(CHARCODE (M | CHE NE R))
(77 73 67 72 69 78 69 82)

CHARCODE is especially useful when you must specify non-printing ASCII
characters. A control character may be represented by preceding a character
with <t>. For example,

<-( CHAROODE <t>B)
2
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If an atom or string begins with #, CHARCODE interprets it as an indica-
tion of a meta-character. Normally, ASCII uses the integers 0 to 127 to represent
characters. However, bytes are normally accorded a length of 8 bits, so there are
another 128 integers (128-255) that are unused. By preceding a character with #,
the character code that is returned is translated to the extended ASCII range.
For example, *

+-(CHARCODE #X)
216

CHARCODE provides atoms for the most frequently used non-printing
characters:

Character Code Atom

13 R

10 LF

32 SPACE, SP

27 ESC, ESCAPE

7 BELL

8 BS (e.g., backspace)
9 TAB

0 NULL

127 DEL

CHARCODE also maps NIL into NIL because some character manipula-
tion functions can return NIL as their value.

9.4.4 Character Translation

One of the most difficult problems that many users face in transporting pro-
grams from one computer system to another is the translation from one charac-
ter set to another. There are two major character sets: ASCII and EBCDIC.
ASCII is used by INTEmSP-10, INTERLISP/VAX, and INTERUSP-D.
EBCDIC is used by INTERLISP/370. This section describes a character trans-
lation function for converting from ASCII to EBCDIC (since it is the least fre-
quent direction of conversion).

The translation procedure may be defined as a table lookup procedure. We
will use the character code of the ASCII character as an index into the table to
determine the corresponding EBCDIC value.

We may initialize the EBCDIC array as follows:

(DEFINEQ
(initialize-ebcdic-array NIL
(PROG (ebcdic-table)
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(SETQ ebcdic-table (array 256 0 ’FIXP)
(FOR I FROM 0 TO 75
DO
(SETA ebcdic-table 1 1))
(SETA ebcdic-table 76 (CHCONI '<))
(SETA ebcdic-table 77 (CHCONI '[))
(SETA ebcdic-table 78 (CHCONI '+))
(SETA ebcdic-table 79 (CHCONI "))
(SETA ebcdic-table 80 (CHCONI '&))
(FOR I FROM 8 TO 89
BO)
(SETA ebcdic-table 11))
(SETA ebcdic-table 90 (CHCONI '!))
(SETA ebcdic-table 91 (CHCONI '$))
(SETA ebcdic-table 92 (CHCONI '*))
(SETA ebcdic-table 93 (CHCONI "))
(SETA ebcdic-table 9 (CHCONI ';))
(FOR I FROM 95 TO 108
BO)
(SETA ebcdic-table 1 1))
(SETA ebcdic-table 109 (CHCONI ' ))
(SETA ebcdic-table 110 (CHCONI '>))
(SETA ebcdic-table 111 (CHCONI '?))
(FOR I FROM 112 TO 120
BO)
(SETA ebcdic-table 11))
(SETA ebcdic-table 121 (CHCONI "))
(SETA ebcdic-table 122 (CHCONI ':))
(SETA ebcdic-table 123 (CHCONI '#))
(SETA ebcdic-table 12A (CHCONI '@))
(SETA ebcdic-table 125 (CHCONI "))
(SETA ebcdic-table 126 (CHCONI '=))
(SETA ebcdic-table 127 (CHCONI "'))
(SETA ebcdic-table 128 128)
(FOR I FROM 129 TO 137
B O]
(SETA ebcdic-table
I

(CHCONI
(L-CASE
(CHARACTER 1)
NIL))))

Now, we have to be able to handle conversion of several different types of
data objects. Our function to perform this translation for atoms is given below;
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(DEFINEQ
(convert.to.ebcdic (x)
(PROG (result)
(COND

((ATOM x)

(RETURN

(PACK

(MAPQONC  (UNPACK X)
(FUNCTION Tookup)))))))

)

As an exercise, you might consider how to include strings and lists as data-
types to be handled by the COND clause.

9.5 DETERMINING PNAME LENGTH

When constructing a formatted buffer for printing, we often need to know the
number of characters comprising the PNAME of an atom or string in order to
avoid overflowing the buffer. INTERLISP provides NCHARS to tell us how
many characters make up the PNAME of its argument. For example,

<<(NCHARS 'hydrogen)

8

MNCHARS "einsteinium” T)
13

because the *“s are included as part of the PNAME.
(NCHARS 1756.7)
6
(NCHARS "Now is the time for all good men")
A

The generic format for calling NCHARS is

Function: NCHARS
# Arguments:  1-3

Arguments: 1) an atom or string, AIM
2) a flag, AAG
3) a read table, RDIBL

Value: The number of characters comprising the
PNAVE or NIL.
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If the value of FLAG is T, then NCHARS uses the PRIN2-PNAME of its
first argument. If RDTBL is non-nil (see Section 14.4), it is used to interpret the
characters comprising the PRIN2-PNAME of its first argument.

We can define a basic form of NCHARS for PRINI-PNAMEs as follows:

(DEFINEQ
(nchars (argument)
(COND
((OR
(ATOM argument)
(STRING? argument)
(NUVMBER? argument))
(LENGTH (UNPACK argument))))
)

9.6 EXTRACTING CHARACTERS

You may want to extract the Nth character of the PNAME of an atom. NTH-
CHAR takes the form

Function: NTHCHAR
NTHCHARCODE
# Arguments: 4
Arguments: 1) an atom or string, AIM

2) an index, N
3) a flag, AAG
4) a readtable, RDTBL

Value: The Nth character of AIM otherwise, NIL.

NTHCHAR returns the Nth character of the PNAME of ATM. N may be
positive, whence the character is extracted relative to the beginning of the name,
or negative, whence it is extracted relative to the end of the name. NTHCHAR
returns NIL if N is greater than (NCHARS Xx) or less than (MINUS (NCHARS

x)). For example,
(NTHCHAR 'BALTIMORE 5)
I

NNTHCHAR ’BALTIMORE)
NONF-NUMERIC ARG
NIL

because we have not specified any value for N.
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M(NTHCHAR "BALTIMORE” 5)

An alternative form, NTHCHARCODE, returns the character code of the
Nth character. For example,

NTHCHARCODE 'BALTIMORE 5)
73

(NTHCHAROODE 'BALTIMORE 0)
NIL

(NTHCHARCCDE 1J45 3)
o1

(NTHCHARCCOLE ’BALTIMORE -4)
77

If FLAG is T, either function uses the PRIN2-PNAME of ATM mediated by
the read table (see Section 14.4).

A Definition for NTHCHAR
We might define NTHCHAR as follows:

(DEFINEQ
(nthchar (atm n)
(COND
((CR
(ATOM atm)
(STRING? atm)))
(T
(ERROR "ILLEGAL ARG' atm)))
(COND
((GREATERP (ABS n)
(LENGTH (UNPACK atm)))
NIL)
((GREATERP n 0)
(CADR (LASTN (UNPACK atm) n)))
((LESSP n 0)
(CADR (LASTN (UNPACK atm)
(PLUS (LENGTH (UNPACK
atm))
n))))

)
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9.7 SELECTING ALTERNATIVES BY CHARACTER CODES

Many applications use single characters as commands. SELCHARQ allows you
to branch to different alternatives based on the value of a single character code.
This function is also heavily used in writing communications software to assist in

the deciphering of protocol characters generated by different host systems. It
takes the form

Function: SHLCHARQ
# Arguments: 2-N
Arguments: 1) an expression,EXPRESSION
2-N) clauses, CLAUSEJ]
Value: The value ofthe last expression in the

selected set of clauses.

SELCHARQ operates like SELECTQ (see Section 3.6). However, it uses the
character code equivalent of the value of EXPRESSION rather than the quoted
character itself. Each clause takes the form

(<key> (action))

where <key> is a single character or a list of characters to be matched against the
value of EXPRESSION. When a match is found, all of the expressions appear-
ing in <action) are executed. The value of SELCHARQ is the value of the last
expression executed in the clause. Matching is performed using EQ for single
characters or MEMB for a list of characters. There must be a default clause
which is the last clause in the list of selectors. If no match is found, the expres-
sions in the default clause are executed. The value of SELCHARQ is then the
value of the last expression executed in the default clause.
SELCHARQ is an NLAMBDA, nospread function.

9.8 CASE FUNCTIONS

INTERLISP normally operates in upper case. That is, it accepts all commands
and expressions in upper case. However, it makes provision for accepting lower
case characters in certain instances. The body of a comment may be lower case
as may the contents of a string. When matching strings, you must be careful to
ensure that they correspond in case at every character position. Certain CLISP
words may also be entered in lower case, whence CLISP performs the appopriate
translation before executing the statement.

INTERLISP provides several functions for translating from one case to the
other and for testing the case of an object.

L-CASE translates an object to lower case while U-CASE translates an ob-
ject to upper case. They take the form
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Function: L-CASE
# Arguments: 2
Arguments: 1) an object, X
2) a flag, AG
Value: The lower case representation of X

L-CASE produces a lower case version of X. If FLG is T, the first letter will

be capitalized. For example,

(L-CASE 'WICHITA)
Wichita

ANL-CASE "WICHITA T)

Wi ichita

ANL-CASE "FILE NOT FOUND")
"file not found"

If X is a list, L-CASE returns a new list with L-CASE applied to each ele-

ment of the list. For example,

(L-CASE '(MONDAY TUESDAY VEDNESDAY THURSDAY FRIDAY) T)
(Monday Tuesday Wednesday Thursday Friday)

U-CASE takes the form

Function: U-CASE
U-CASEP
# Arguments: 1
Argument: 1) an object, X
Value: An upper caserepresentation of X

Consider the following example:

(U-CASE "As | was walking to St. lves")
"AS | WAS WALKING TO ST. IVES"

You may test if an object is an upper case representation using the predicate

U-CASEP. U-CASEP returns T if its argument, an object X, contains no lower
case characters. Consider the following example:

(U-CASEP '(SATURDAY SUNDAY))
T



10

string Manipulation
Functions

A string is a sequence of zero or more alphanumeric and/or special characters
that represents a literal value. Unlike atoms, strings do not represent memory
locations within INTERLISP and, therefore, do not have values except the string
representation itself. A string is demarcated by " (double quote). A string may
be assigned as the value of an atom.

INTERLISP provides a comprehensive set of functions for creating and ma-
nipulating strings. This chapter describes these functions and some applications
demonstrating how strings may be used.

10.1 CREATING A STRING

The basic function for creating a string is MKSTRING, which takes the follow-
ing format

Function: MKSTRING

# Arguments: 1

Argument: 1) an atom or list, X

Value: A stringcorresponding to the PRINI-PNAME
of X

Consider the following examples:

(MKSTRING)
"NIL"

<-(MKSTRING 'X)
IIXIl

where the PRINI-PNAME of ‘X is X.

275
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When a string is created, INTERLISP builds an internal data structure con-
sisting of a string pointer and the sequence of characters that comprise the
string. The string pointer contains the storage location where the sequence of
characters begins and the number of characters comprising the string. Several
string pointers may reference the same set of characters. String pointers may
also point into the middle of a sequence of characters (as a result of CONCAT or
SUBSTRING). This approach guarantees efficient management of string stor-
age space.

We may also create a string by assigning it as a value to an atom. For exam-
ple,

<-(SETQ a-string
"Go therefore and make disciples of all nations”)
”Go therefore and make disciples of all nations”

implicitly performs an MKSTRING to create the string data structure. The
value of the atom is the string pointer.

If we give MKSTRING a list as its argument, it makes a string of the whole
list (including the parentheses). For example,

<NSETQ proverb
(LIST 'a 'stitch 'in 'time ‘'saves 'nine))
(a stitch in time save nine)

NSETQ cliche (MKSTRING proverb))
"(a stitch in time saves nine”

But, this is not what we want! The result includes the parentheses. To rem-
edy the situation, let us write a recursive procedure that converts a list into a
string:

(DEFINEQ
(make.String.from.list (1st)
(CONCAT (MKSTRING (CAR 1st)
(COND
((NULL 1st) (MKSTRING))
((make.string.from.list (CDR 1st))))

)

Now, let us apply this function to the previous example:

NSETQ cliche (MAKE.STRING.FROM.LIST proverb))
"a stitch in time saves nine"
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10.1.1 Allocating a String Pointer

You may create a string pointer of a given length and initialize it to a default
character value using ALLOCSTRING. It takes the form

Function: ALLOCSTRING

# Arguments: 3

Arguments: 1) the length of the string, N
2) the initialization character, INITCHAR
3) an old string pointer, ODPTR

Value: A string of length N initialized to
INITCHAR.

INITCHAR must be a character code or an expression that is coercible to a
character code. If INITCHAR is an atom, the first character of the atom is used
as the initialization character. If INITCHAR is NIL, it defaults to the character
code N (from NIL). Consider the following examples:

AALLOCSTRING 1)
IINII
(ALLOCSTRING 3 0)

tr

NALLOCSTRING 5 'B)

"BBBBB"

(ALLOCSTRING 10 'HELP)
A(ALLOCSTRING 4 (LIST 'a 'b))
(G

N(ALLOCSTRING)
NON-NUMERIC ARG
NIL

because a string must have a length greater than 0.

10.2 EXTRACTING SUBSTRINGS

Strings, from an external viewpoint, are indivisible objects in INTERLISP. That
is, each function manipulates the entire contents of the string. However, we of-
ten need to break strings down into their constituent parts (for example, when
processing textual data). Two major operations are necessary;
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1. Extracting a substring
2. Peeling characters from the beginning or end of a string one-by-one

10.2.1 The SUBSTRING Function

Given a string, we can create a new string by extracting a portion of it—the
substring operation. The function SUBSTRING allows us to extract pieces of a
string. The format for SUBSTRING is

Function: SUBSTRING

# Arguments: 4

Arguments: 1) an S-expression whosevalue is a
string, STRING

2) the index of the first character of the
intended substring, N

3) the index of the last character of the
intended substring, M

) an optional string pointer, OLDPIR

Value: The specifiedsubstring; otherwise, NIL.

SUBSTRING extracts the Nth through Mth characters of the string. If M is
NIL, SUBSTRING extracts the Nth through last characters of the string. N may
not be NIL. Both N and M may be negative numbers, thus referring to the end of
the string rather than its beginning.

AMNSETQ STR "™\HQGAVE TO THE THEATRE”)
"WELQOME TO THE THEATRE’

(SUBSTRING STR 9 14)
"T0 THE”

(SUBSTRING STR 16)
"THEATRE”
(SUBSTRING STR NIL 7)

NON-NUVERIC ARG
NIL

+-(SUBSTRING STR 14 9)
NIL

A(SUBSTRING STR -14 -9)
"T0 THE’

If the string is not defined, e.g., then SUBSTRING applies MKSTRING to
the first argument before extracting the subtring.
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N and M must be well-defined according to the following conditions:

N <M
N <(NCHARS string) and M < (NCHARS string), if M not NIL
If N or M is negative, then N (or M) <(MINUS (NCHARS string))

If OLDPTR is a string pointer, it is reused to perform the subtring op-
eration; otherwise, a new string pointer will be created.

10.2.2 Getting the Next or Last Character

Many parsing programs, particularly command recognizers, need to extract
characters from a string one-by-one. GNC allows you to get the next character
from a string. GNC maintains an internal pointer to the string. It does not physi-
cally remove characters from the string, but merely changes the pointer and the
byte count. Thus, when you print the string, it appears as if characters have been
removed because the pointer has been changed.

If the argument is not a string, GNC applies MKSTRING to it before ex-
tracting the specified character. If the argument is NIL or the null string, GNC
returns NIL.

GLC allows you to get the last character of a string. As with GNC, the
pointer and the byte count are changed. Together, these two functions allow you
extract characters from either end of the string.

These functions take the following format

Function: a\C
acC
# Arguments: 1
Argument: 1) astring, X
Value: Thenextor last character of X

Consider the following example:
®mNSETQ z "Now is the time for all good men")
"Now is the time for all good men"

<M(for I from 1 to 32 do (PRINI (G\C z)) (SPACES 1))
Nowisthetimeforallgoodmen

<-(for I from 1 to 32 do (PRINI (GLC 2))(SPACES 1))
nemdoogllarofemitehtsiwoN

A(GNC)
N

because it applies (MKSTRING) which yields “NIL” and
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A(GLC)
L

for the same reason.
w\(SETQ string "rumpelstiltskin™)
"rumpelstiltskin®

«<(G\C string)
R

¢-string
"umpelstiltskin”

<-(GLC string)
N

string
"umpelstiltski"

Thus, if you need to preserve the original value of the argument, you should
copy it before applying either GNC or GLC to it. Consider the following exam-

ple:
NSETQ string
"abC”

<-(GNC string)
a

<GNC string)
b

<GNC string)
C

-(GNC string)
NIL

because the value of STRING is now the null string.

10.3 CONCATENATING STRINGS

The functions in Section 10.2 allow you to take strings apart. CONCAT allows
you to put two or more strings together into a new string. The format for CON-
CAT is

Function: CONCAT

# Arguments: 1-N
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Arguments: 1) a string, STRING[1]
2-N) strings, STRING[2] ... STRING|n]
Value: A new string composed of the individual
arguments.

CONCAT is a nospread function. CONCAT creates a new string pointer
and copies each of the argument strings to the new string. If any of the argu-
ments are not strings, CONCAT applies MKSTRING to it before copying. Con-
sider the following example:

(CONCAT)
e.g., the null string.
<-(QONCAT "Baltimore” ™ " 'is " " 'best.)
"Baltimore is best."

10.3.1 Concatenating a List of Objects

CONCATLIST concatenates a list of strings or other INTERLISP objects to
form a string. It takes the form

Function: CONCATLIST

# Arguments: 1

Argument: 1) a list of objects, LST

Value: A new string thatis the concatenation of

the individual elements of LST.

If the elments of LST are not strings, MKSTRING is applied to each in turn
to produce a string which is concatenated into the result. Consider the following
examples:

(CONCATLIST)

TtTT

which is the null string.

A(CONCATLIST (LIST 'a 'b 'c 'd 'e 'f))
' ' ABCDEF"

A Definition for CONCATLIST
We might define CONCATLIST as follows:

(DEFINEQ
(concatlist (1st)
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(APPLY (FUNCTION QONCAT) 1st)
)

10.4 TESTING STRINGS

There are two types of tests that we would like to apply to strings. The first deter-
mines if the argument is a string. The second determines if two strings are equal.

10.4.1 Determining String Existence

STRINGP allows you to determine whether a given S-expression is a string or
not. It returns the value of the S-expression if it is a string; otherwise, NIL. It
takes the form

Function: STRINGP

# Arguments: 1

Argument: 1) a string, STRING

Value: The value of STRING if it is a string;

otherwise, NIL,
Consider the following examples:
(STRINGP "Baltimore is best.”)

"Baltimore is best."

A(STRINGP)
NIL

(STRINGP 1.56)
NIL

10.4.2 Testing the Equality of Strings

STREQUAL allows you to determine if two strings, X and Y, are equal. Equality
is decided by determining whether or not the strings will print the same. Strings
may be equal without satisfying EQ as explained in Section 4.6. STREQUAL

takes the form

Function: STREQUAL
# Arguments: 2

Arguments: 1) a string, X
2) a string, Y

Value: T, if thestrings are equal.
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Consider the following examples:

NSTREQUAL "New York" "New York™)

T
¥—(EQ "Washington" "Washington")
NIL

NEQUAL "Washington™ "Washington™)
T

Two separate string pointers are created by INTERLISP when strings are
read in from the terminal (by RSTRING—see Section 14.2.4). Thus, the two
string pointers in the example above are not EQ, although their contents are
EQUAL. Note that EQUAL uses STREQUAL to determine the equality of two
strings.

10.4.3 Testing String Membership

In many cases, we want to know if one string exists within another string.
STRMEMB determines if its first argument, a string, is contained within its
second argument, another string. It takes the form

Function: STRVEVB
# Arguments: 2
Arguments: 1) a string, X
2) a string, Y
Value: The substring of Y, if X is contained

within Y: otherwise, NIL.
Consider the following examples:

<-(STRVEMB "X" "TAX YEAR")
"X YEAR"

STRMEMB returns the substring of Y beginning with X if X is included
within Y.

A Definition for STRMEMB
We might define STRMEMB as follows:

(DEFINEQ
(strmemb (x y)
(PROG (achar index)
(SETQ y (SUBSTRING y 1))



284 String Manipulation Functions

loopl
(SETQ index 1)
loop2
(SETQ achar (NTHCHAR x index))
(GOND
((NULL achar)
(RETLRN y)))
(COND

((EQ achar (NTHCHAR y index)
(SETQ index (ADDI index))

(GO loop?2)))
(COND
((NULL @\Cy))
(RETURN NIL))

(T (@ loopl))))
)

10.5 REPLACING ELEMENTS OF A STRING

In many programs, as we process strings, we want to replace characters in the
string by new characters. RPLSTRING allows you to substitute characters
within strings. The format of RPLSTRING is

Function: RPLSTRING
# Arguments: 3

Arguments: 1) an original string, X
2) the index of substitution, N
3) the substitution string, Y

Value: The modified version of the string X

RPLSTRING replaces characters in X beginning at the Nth character with
characters from Y. Substitution continues until either Y is exhausted or the
length of X is exceeded. Replacement is a one-for-one substitution of characters
in X, If there is not enough room in X to accommodate the new string, an error
occurs. X is physically modified by this operation. Note that if X is a substring of
some other string, say Z, then Z is modified also. Thus, you should exercise
caution concerning the indiscriminate modification of strings as a ripple effect
may occur that was not intended.

N may be positive or negative, but may not be greater than (NCHARS x). If
either X or Y is not a string, it is converted to a string before the replacement
operation is executed. In this case, a new string pointer will be returned,

ASETQ x "ABCDEF’)
"ABCDEF”
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AMRPLSTRING X -2 "XYZ”)
ILLEGAL ARC
XYZ

because inserting “XYZ” into X would increase its length, which is not allowed.

AMRPLSTRING x 2 "XYZ?)
"AXYZEF"

Note that “BCD” have been replaced by “XYZ”.

<-(SETQ x "BALITMORE")
"BALITMORE"

which is misspelled!

«SETQ y (SUBSTRING x 3 6))
"LITM"

A(RPLSTRING y 2 "TI")
"LTIM"

N X

"BALTIMORE"

where X is modified because Y was a substring of X.
To insert without modifying the string, see INSERT.STRING in Section
10.7.

10.5.1 Replacing Elements with Character Codes

An alternative form of RPLSTRING is RPLCHARCODE. RPLCHARCODE is
used primarily to insert nonprinting character codes into strings. It takes the
form

Function: RPLCHARCODE

# Arguments: 3

Arguments: ) an original string, X
2) an index, N
3) a character code, CHARCODE

Value: A modified version of thestring X.
RPLCHARCODE is used to replace (or place)a singleelement of a string

with a specified character code. The index N may be positive or negative. If N is
negative, replacement is relative to the end of the string.
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10.6 SEARCHING A STRING

One of the most common string operations is to search one string looking for an
occurrence of another string. STRPOS, which implements the string searching
operation, takes the form

Function: STRPCS
# Arguments: 6
Arguments: 1) a patternstring,PATTERN

2) a string, STRING

3) a starting position, START

4) a skip (wild card) character, SKIP
5) an anchor flag, ANCHXR

6) a tail flag, TAIL

Value: The characterposition in STRING if the
match is successful.

If either PATTERN or STRING is not a string, it is automatically converted
(using MKSTRING) before searching begins. The search starts at the character
indexed by START. If START is NIL, 1is assumed. STRPOS looks for a se-
quence of characters in STRING that match PATTERN. If a match is found,
the character index of the first matching character of the sequence of characters
is returned as the value of STRPOS. Otherwise, NIL is returned. Consider the
following examples:

NSETQ X "the quick brown fox jumped over the lazy dog”)
"the quick brown fox jumped over the lazy dog"

A(STRPOS "fox” X)
17

<-(STRPOCS ”fox" x 10)
17

A(STRPOS "fox" x 20)
NIL

(STRPOS "fox" X NIL)
17

ASTRPOS "fox" x -30)
17

(STRPOS " "")
NIL

<-(STRPOS)
1
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Searching may be nodified in severd ways:

1. SKIP is a character that acts like a wild card; that is, wherever it occurs
in PATTERN it matches any character in;string in the corresponding
position. SKIP may be any character but it is best to pick one that is not
likely to occur in the string that you are searching. For example,

<-(STRPOS "br&wn" x NIL '&)
11

A(STRPOS “dog&” x 1 '&)
NIL

2. IFfANCHOR is T, STRPOS searches for a match only at START (or 1, if
START is NIL). If a match fails between PATTERN and the character

sequence of STRING beginning at START, STRPOS returns NIL. For
example,

A(STRPOS "fox” x)
17

(STRPOS "fox™ x 17 NIL T)
17

<-(STRPOS "fox” x 15 NIL T)
NIL

3. IfTAIL is T, the character index returned by STRPOS is the index of the
first character after the PATTERN was found in STRING, i.e., the tail

string. For example,

AMSTRPOS fox” x 1 NIL NIL T)
20

(STRPOS "fox" x 17 NIL T T)
20

ANSTRPOS fox” x 15 NIL T T)

NIL

STRPOS may return a character position outside the string. For exam-
ple,

(STRPOS "dog” x 1 NIL NIL T)
A5

even though the string is only 44 characters long. Care should be taken in
using this feature of STRPOS in conjunction with RPLSTRING because
of the possibility of errors that may be generated by RPLSTRING.
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A Definition of STRPOS
We might define STRPOS as follows:

(DEFINEQ
(strpos (pattern string start skip anchor tail)
(*

Make PATTERN a string no matter what it is
originally!
)
(COND
((STRINGP pattern))
((LITATOM pattern)
(SETQ pattern (MKSTRING pattern)))
((NULL (STRINGP pattern))
(SETQ pattern (MKSTRING pattern))))
Make STRING a string no matter what
datatype it is originally!
)
(COND
((STRINGP string))
((LITATOM string)
(SETQ string (IMKSTRING string)))
(T
(SETQ string (MKSTRING string))))
(*
The SKIP character must be a single
character which the following code
assures, no matter how many characters are
provided.

)
(COND
(skip
(SETQ skip (NTHCHAR skip 1))))
Orient START, if it is defined, to the
beginning of the string.

((MINUSP start)
(SETQ start
(IPLUS start
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(NCHARS
String)

(T
(SETQ. start 1)))

*

Now, Isolate the proper substring to be
searched rather than searching from the
beginning of the string each time.

)
(SETQ string
(SUBSTRING string start))

*

Search for PATTERN in STRING

)
(PROG (achar substring.x substring.y index)
(SETQ index start)

loop2
Get the first character of the
respective strings.
)(SI:—I'Q substring.x (SUBSTRING pattern 1))
(SETQ substring.y (SUBSTRING string 1))
loopl
(COND
((SETQ achar (G\C substring.x))
(COND
((EQ achar (G\C
substring.y))
(GO loopl))
((EQ achar skip)
(GO loopl))
(T
(GO next.character))))
(tail
(RETURN
(IPLUS (NCHARS pattern)
index)))
(T

(RETURN index)))
next.character
(*
If no match in the exact position at
START, cease further searching.
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(GON\D

(anchor
(RETURN)))
( Strip a character from STRING and
proceed If any characters left to
search.
oo
((GNC string)
(SETQ index (ADDI index))
(GO loop2))

(T
(RETURN))))

)

10.6.1 Searching a String for a Character

In many cases, you will want to search a string for the first occurrence of a char-
acter which may be a member of a set of characters. STRPOSL, which compares
a set of characters against a string until one matches, takes the form

Function: STRPOSL
# Arguments: 4
Arguments: 1) a list ofcharacters, CHARSET

2) a string to be searched, STRING
3) Astarting index, START
<) a non-membership flag, NEG

Value: A characterindex or NIL.

CHARSET may be a list of characters or character codes. STRPOSL
searches STRING beginning at START (or 1, if START is NIL) for one of the
characters in CHARSET. If one character matches, the character index of the
matching character is returned. If no match occurs, NIL is returned. Consider

the following example:

A(STRPOSL '(Q Z J) X)
5

where X is defined as above.
If NEG is T, then STRPOSL finds the first character which is not a member

of ASET.
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A(STRPOSL ' (ABCDEFGHIKLMNOPQRSTUVX
YZ) x 1T
4

because SPACE is a legal character. If you insert a space at the end of the first
argument (using the form %<space>), re-executing the expression yields 14,
which is the index of W which does not appear in CHARSET.

A Definition of STRPOSL
We may define a simple form of STRPOSL as follows:

(DEFINEQ
(strposl (charset string)
(PROG (index)
(SETQ string (MKSTRING string))
(SOVE charset
(FUNCTION strposl))

(RETURN index))

))

where STRPOSI is defined as

(DEFINEQ
(strposl (achar)
(SETQ index (STRPOS achar string))

)

10.6.2 Creating Bit Tables

String searching is enhanced by converting the character codes to bit representa-
tions. STRPOSL will automatically convert the characters (or their codes) in
CHARSET into a bit representation if CHARSET is not a bittable. To do so, it
uses the function MAKEBITTABLE, which takes the form

Function: MAKEBITTABLE

# Arguments: 3

Arguments: 1) a list ofcharacter codes,CHARSET
2) a non-membership flag, NEG
3) an array, A

Value: An array with bitrepresentations for the
characters in LST.
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CHARSET is a list of characters or character codes as specified for STR-
POSL. NEG isthe same as used by STRPOSL. MAKEBITTABLE returns a bit
table as an array containing the bit representations of the characters in CHAR-
SET. For example,

<-(SETQ charset '(ABCDEFGHIJK))
(ABCDEFGHIIJK)

<NSETQ y (MAKEBITTABLE charset))
{ARRAYP}542635

If Alis an array, it is modified and returned as the new bittable to be used by
STRPOSL.

10.7 STRING OPERATIONS

Given a string, we often want to insert, delete, or substitute for elements of the
string. RPLSTRING can be coded to provide these functions, but it smashes the
characters into the string given as its argument. The following functions provide
similar capabilities, but return a new string composed of the appropriate ele-
ments of the old. These functions are not part of standard INTERLISP at this
time.

These functions have been defined very simply. No doubt you can increase
their complexity with a little extra thought. They are merely intended to show
that you do not have to rely entirely on RPLSTRING for manipulating strings.

10.7.1 Inserting into a String
Given a string of arbitrary length, we often want to insert a new string into the
middle of the string. INSERT.STRING takes the form

Function: INSERT.STRING

# Arguments: 3

Arguments: 1) a string, X
2) a fragment to be inserted, FRAGVENT
3) a position, POS

Value: A new string.

INSERT.STRING inserts the fragment immediately after POS. Consider
the example

AMINSERT.STRING "XYZ* "ABC” 1)
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A Definition for INSERT.STRING
We might define INSERT.STRING as follows:

(DEFINEQ
(insert.string (x fragment pos)
(COND
((NOT (STRINGP x)) NIL))
(COND
((NOT (STRINGP fragment))

(SETQ fragment (MKSTRING fragment))))
(CONGAT

(SUBSTRING X 1 pos)
fragment
(SUBSTRING X (addl pos)))

)

%
10.7.2 Deleting from a String

DELETE.STRING deletes a substring from a string and returns a new string
which is the concatenation of the remaining parts. It takes the form

Function: DELETE.STRING
# Arguments: 3

Arguments: 1) a string, AD
2) a starting position, N
3) an ending position, M

Value: A new string with the appropriate
characters deleted.

Consider the following example:

-"(DELETE.STRING "ABGDEFG” 3 5)
’7%”

A Definition for DELETE.STRING
We might define DELETE.STRING as follows:

(DEFINEQ
(delete.String (old n m
(CONGAT
(SUBSTRING old 1 (SUBI n))
(SUBSTRING old (ADDI m)))

)
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10.7.3 Substituting into a String

SUBSTITUTE.STRING substitutes a fragment in place of a portion of a string.
It takes the form

Function: SUBSTITUTE.STRING
# Arguments: K

Arguments: 1) a string, QD

2) a string to substitute, FRAGQVENT
3) a starting position, N
4) a final position, M

Value: A new string with FRAGVENTsubstituted for
the substring identified by (N,M).

Consider the following example:

<-(SETQ string "ABCDEFG")

<-(SUBSTITUTE.STRING string "XYZ' 3 5)
"ABXYZFG’

A Definition for SUBSTITUTE.STRING
We might define SUBSTITUTE.STRING as follows:

(DEFINEQ
(substitute.string (old fragment n m
(CONGAT
(SUBSTRING old 1 (SUBI n))
fragment
(SUBSTRING old (ADDI m)))

)

10.8 TRIMMING A STRING

Many strings, particularly those created by reading or processing text files, con-
tain an excess of blanks. Usually, we would like to eliminate these blanks in

order to tidy up the appearance of the string. TRIM will remove the excess
blanks from a string. It takes the following form

Function: TRIM
# Arguments: 1
Argument: 1) a string, STRING
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Value: A new string corresponding to STRING with
all excess blanks removed.

TRIM returns NIL if its argument is not a string.

A Definition for TRIM
We might define TRIM as follows:

(DEFINEQ
(trim (astring)
(COND
((NOT (STRINGP astring)) NIL)))
(PROG (newstring bflag achar)

*

Create an empty string in which to
compose the return value.

)(SEI'Q newstring (MKSTRING))

loop
(SETQ achar (GN\C astring))
(COND
((NULL achar)

(*
A\C returns NIL when no
more characters are left to
process.

(RETURN newstring))
((EQUAL (CHCONI achar) (CHARCODE " ™))

(COND
(bflag
(/\
BALAG set if we
have seen one
blank already.
)
(G0 loop))
(T
(*

Have not yet seen
a blank. Set
BALAG to one and
keep this blank.

)(SI:—I'Q bflag T)))
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(T

*

Some character other than a
blank.

)(SEI'Q bflag NIL)))
(SETQ newstring (GONCAT newstring achar))
(GO loop))

)
Note: TRIM is not a standard INTERLISP function.
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Array Manipulation
Functions

Arrays are data structures that were added after the initial definition of LISP
was developed. INTERLISP supports two types of arrays: basic linear arrays and
hash tables. A linear array is a sequence of locations that contain values which
are indexed by numerical position. A hash array is an array that relates two sets
of pointers. The first pointer is known as the hash item while the second is called
the hash value. Hash arrays operate in a manner similar to property lists in that
they establish an association between the hash item and the hash value.

In Section 11.4, we will show you how to define and manage matrices, which
are two-dimensional arrays. INTERLISP does not provide support for this data-
type. But, with a few functions, you can develop a comprehensive matrix han-
dling package that operates like any other datatype.

11.1 CREATING AN ARRAY: INTERLISP-10

An array may only be created in INTERLISP through a function invocation. To
create an array, you use ARRAY, which takes the following format

Function: ARRAY
# Arguments: 3

Arguments: 1) Size ofthearray, N
2) Number of value cells, P
3) Number of pointer cells, V

Value: A pointerto thearray printed as
{ARRAYP}#<address).

When you execute (ARRAY n p V), INTERLISP allocates a block of storage
of size N+ 2 words. The first two words contain descriptive information about
the array that is used internally by INTERLISP. The next P <= N cells contain

297
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numeric values. Initially, the numeric cells have the value 0 when the array is
created. Finally, the last N—P = >0 cells may contain pointers to list cells where
both the CAR and CDR portions are available for storing information. They are
initialized to the value of V.

ASETQ AL (ARRAY 10 10 0))
{ARRAYPH542224

<-(SETA AL 1 (CONS 'X 'Y))
NONNUVERIC ARG
X.V

because only numeric information may be stored in the numeric (“unboxed”)
region of an INTERLISP-10 array.

If P is NIL, INTERLISP assumes a value of 0 and creates an array of
pointers.

<-(SETQ A2 (ARRAY 10 0 0))

{ARRAYPH542240

<-(SETA A2 1 (CONS 'X ’Y))
X .Y

<-(ELT A2 1)

X .V

<NSETA A2 1 (LIST 'A 'B 'C))
(ABO

<-(SETD A2 1 (LIST 'X 'Y *2))
XY2

<-(ELT A2 1)

(ABC)

NELTD A2 1)

XY 2

In general, INTERLISP allocates storage for arrays from a common array
space. If sufficient space does not exist for the array to be created, INTERLISP
will attempt a garbage collection to gather space. If enough space is still not
available, INTERLISP generates an error with the message “ARRAYS FULL”.

The array facility provided by INTERLISP-10, INTERLISP/370, and IN-
TERLISP-VAX is more primitive than that provided by INTERLISP-D (as dis-
cussed below). The number region of an INTERLISP-10 array may only store
numbers, not pointers. These ceils are not inspected during a garbage collection.
All arrays in INTERLISP-IO/370/VAX are indexed beginning with 1.
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11.1.1 Creating an Array: INTERLISP-D

INTERLISP-D does not support the combined numeric value and pointer data
structure. Rather, arrays have been extended so that you may specify the type of
the value to be stored in the array. This approach provides you with more flexi-
bility in using arrays to refer to collections of data.

The format for defining arrays in INTERLISP-D is as follows;

Function: ARRAY
# Arguments: 4

Arguments: 1) Size ofthearray, SIZE
2) Type of the array, TYPE
3) Initialization value, INIT
- Origin of the array, ORIGIN

Value: A pointerto the array printed as
{ARRAY}<address)

INTERLISP-D accepts a type from the following list: BIT, BYTE, WORD,
FIXP, FLOATP, POINTER, or DOUBLEPOINTER. If the value of TYPE is
NIL, INTERLISP-D creates an array with the default type of POINTER. If
TYPE isanumber (i.e., SIZE), INTERLISP-D defaults to an array of type FIXP
(i.e., integers).

The initialization value INIT is used to set the value of each element of the
array when it is created. If INIT is NIL, zero is assumed for all numeric type
arrays and NIL for all other types.

Arrays in INTERLISP-D may have their origin indexed by either 0 or L If
no origin is specified, the array will be indexed beginning with 1.

For example, we may create an array called NUMBERS by the following
statement:

<-(SETQ numbers (ARRAY 5 5))

{ARRAYP}#1,2150

-N(SETQ more-numbers (ARRAY 5 'FIX? 4 0))
{ARRAYP}#1,2140

“(ELT more-numbers 0)

A

11.2 MANIPULATING ARRAYS

INTERLISP provides several functions for manipulating arrays. Basically, these
functions provide the user with a foundation for creating a rich and complex
environment for specific applications.
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11.2.1 Obtaining the Array Size
You may obtain the size of an array by invoking the function ARRAYSIZE. It
takes the form

Function: ARRAYSIZE

# Arguments: 1

Arguments: 1) an array pointer, ARRAYPIR

Value: The size of the array.

INTERLISP generates an error, ARG NOT ARRAY, ifthe argument is not

an array object (i.e., one created by the ARRAY function). For example, using
NUMBERS

(ARRAYSIZE numbers)
5

11.2.2 Obtaining the Array Type

INTERLISP creates arrays that contain either numeric value cells, pointer cells,
or a mixture of both (INTERLISP-IO/VAX). To obtain the type of the array,
you may invoke the function ARRAYTYP with an array object as its argument.
If the argument is not an array object, INTERLISP generates an error, ARG
NOT ARRAY. It takes the form

Function: ARRAYTYP

# Arguments: 1

Argument: 1) an array address, XARRAY
Value: The second argument to ARRAY.

ARRAYTYP returns the value of the second argument to ARRAY. If this
value is a positive number greater than zero, it indicates the number of numeric
values that may be stored in the array (INTERLISP-10/VAX). If this number is
0 or NIL, it indicates that the array is composed entirely of pointers (IN-
TERLISP-10/VAX).

NARRAYTYP A2)
0

which shows that A2 is an array defined to have only pointers as values.

Thus, if you need to determine the number of pointers that may be stored in
an array, you must compute this number by subtracting the value of ARRAY-
TYP from ARRAYSIZE. We can encapsulate this in a function as follows
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(DEFINEQ
(arrayptr (array-object)
(IDIFFERENCE
(ARRAYSIZE array-object)
(ARRAYTYP array-object))

)
ARRAYTYP is not defined in INTERLISP/370.

INTERLISP-D Convention
INTERLISP-D will return a value (i.e, the name of the datatype) that may be
given to ARRAY (see above) that whll generate the same type of array again. For
example, using NUMBERS

(ARRAYTYP numbers)
FIX?

11.2.3 Validating an Array Pointer

You may determine whether or not a pointer points to an array element by invok-
ing the function ARRAYP. It takes the form

Function: ARRAYP

# Arguments: 1

Arguments: 1) an array pointer, ARRAYPIR

Value: The valueof ARRAYPTR if it is an array

pointer; otherwise, NIL.

ARRAYP is a predicate that returns the value of the pointer if it points to or
into an array. Otherwise, it returns NIL. INTERLISP does not check to see
whether or not the argument actually points to the beginning of the array. For

example,

(ARRAYP numbers)
{ARRAYP}#!,2150

11.2.4 Obtaining a Pointer to the Beginning of an Array

Given a pointer to an array element, you may obtain a pointer to the beginning
of the array by invoking the function ARRAYBEG. ARRAYBEG takes as its
argument a pointer into an array. It returns a pointer to the beginning of the
array if the pointer is valid. Otherwise, it returns NIL.
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INTERLISP-D does not support the function ARRAYBEG since it treats all
arrays as linear objects of a given type. Rather, INTERLISP-D provides the
function ARRAYORIG to return the origin of an array. It takes the form

Function: ARRAYORIG

# Arguments: 1

Argument: 1) an arrayaddress, XARRAY
Value: The originof thearray.

Consider the following examples:

<-(ARRAYORIG numbers) ” INTERLISP-D”
1

(ARRAYCRIG A2) "INTERLISP-10"

ARBIAYORIG generates an error, ARG NOT ARRAY, if its argument does

not satisfy ARRAY?.
In INTERLISP-IO/VAX, ARRAYORIG always returns 1. ARRAYORIG

is not defined in INTERLISP-370.

11.2.5 Setting the Value of an Array Element

You may set the value ofthe Ith array element by invoking the function SETA. It
has the following format:

Function: SETA
SETD
# Arguments: 3
Arguments: 1) anarray object, A
2) an index, |
3) a value, V
Value: The valueassigned to the Ith array
element.

SETA sets the Ith element of the array Ato the value V. If Alis not an array
object (i.e., returned by ARRAY), SETA generates an error ARG NOT AR-

RAY.

“A(SETA a3 2 156)
156
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<-(ELT a3 2)
156

If | <= P (from ARRAY), then the value of V must be numeric (i.e., satis-
fiess NUMBER?). IfP<=1<=N,Vis assigned to the CAR of the Ith element.
The latter case determines if the Ith element is in the pointer region of the array.
Note that pointers may not be inserted into the numeric regions of INTERLISP-
10/VAX arrays.

ASETQ a3 (ARRAY 10 5 0))
{ARRAYPH542270

ASETA a3 2 (LIST 'ALEX 'ALICE 'ANDREA))
NON-NUMERIC ARG

(ALIX ALICE ANDREA)

because 2 indicates a cell in the numeric (unboxed) region of A3.

<-(SETA a3 7 (LIST 'ALEX 'ALICE 'ANDREA))
(ALEX ALICE ANDREA)

because 7 indicates a cell in the pointer region of A3.

An alternative form of the function, SETD, will set the CDR of the Ith ele-
ment of the array if | is an index within the pointer region of the array. For
example,

ASETD a3 7 (LIST 'BARRY 'BART 'BILL))
(BARRY BART BILL)

<-(ELT a3 7)
(ALEX ALICE ANDREA)

because this list is stored in the CAR portion of the cell in the pointer region of
A3 indicated by the index 7.

INTERLISP-D Conventions
Since INTERLISP-D supports typed arrays, | must always be less than or equal

toN.
INTERLISP-D supports SETD only to maintain compatibility with IN-

TERLISP-10. It treats SETD as SETA when SETD is invoked.
We can set the elements of the array NUMBERS using the following state-
ments:

o<-(SETA numbers 1 1)
1
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¢-(SETA numbers 2 2)
2

<-(SETA numbers 3 3)
3

-<-(SETA numbers A A)
4

*¢-(SETA numbers 5 5)
5

but when we attempt to set element 6:

*NSETA numbers 6 6)
ILLEGAL ARG

because the array NUMBERS is defined to be only five elements in length begin-
ning with the element labeled 1.

11.2.6 Retrieving the Value of an Array Element

You may retrieve the value of the Ith array element by invoking the function
ELT. It has the following format

Function: ELT
ELTD

# Arguments: 2

Arguments: 1) an arrayobject, A
2) an index, |

Value: Thevalue of thelth element of the array

If I <= P (from ARRAY), ELT returns the numeric integer value contained
in the Ith cell. If P <1 <= N, ELT returns the CAR of the Ith element of the
array. In the latter case, | is an index into the pointer region of the array. For

example,

AELT a3 7)
(ALEX ALICE ANDREA)

If A'is not an array object, ELT generates an error ARG NOT ARRAY.
An alternative form, ELTD, returns the CDR of the Ith array element if I is
an index into the pointer region of the array.

<-(ELTD a3 7)
(BARRY BART BILL)
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INTERLISP-D Conventions
Since INTERLISP-D supports typed arrays, the value of 1 must always be less
than or equal to N.

INTERLISP-D supports ELTD to maintain compatibility with IN-
TERLISP-10. It returns the same value as ELT. For example, to retrieve ele-
ment 3 from NUMBERS,

<-(ELT numbers 3)

3
%-(ELT numbers 6)
ILLEGAL ARG

11.2.7 Copying Arrays

You may copy the contents of an array, as opposed to creating a new pointer to
it, by using the COPYARRAY function. It takes the form

Function: QOPYARRAY

# Arguments: 1

Arguments: 1) an arrayaddress,ARRAYPIR

Value: An array pointer tothe new array whose
contents are an exact copy of the
argument.

COPYARRAY creates a new array of the same size and type as its argu-
ment. Its value is a pointer to the new array. It generates an error message ARG
NOT ARRAY if its argument is not an array.

Consider the example

<<-(SETQ more-numbers (COPYARRAY numbers))
{ARRAYP}#5,33100

*«-(ELT more-numbers 4)
4

but note that the two arrays are not EQUAL (since EQUAL does not perform
these comparisons):

(EQUAL numbers more-numbers)
NIL
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11.2.8 Comparing Two Arrays

Two arrays may be tested for equality using EQUAL. EQUAL determines equal-
ity by determining if they have the same address. However, EQUAL does not
descend into the two arrays to determine if the corresponding elementsare
equal. Thus, two arrays may be equal but not have the same address.Let us
define a function EQARRAYP that determines if two arrays are equal according
to the following criteria:

The two arrays have the same length

The two arrays have the same type of elements

The two arrays have the same origin

The two arrays have equal elements in each position

The first three criteria are relatively easy to check and will probably account
for most of the work performed by our function.
EQARRAYP takes the following form:

Function: EQARRAYP
# Arguments: 2

Arguments: 1) an array, ARRAYI
2) an array, ARRAY2
Value: The address of ARRAYI if the two arrays

are equal; otherwise NIL.

A Definition for EQARRAYP
We might define EQARRAYP as follows:

(DEFINEQ
(eqarrayp (arrayl array2)
(GOND
((OR
(NOT (ARRAYP arrayl))
(NOT (ARRAY? array?2)))
( If one of the arguments is not
an array, return NIL.
)
NIL)
((NEQ

(ARRAYSIZE arrayl)
(ARRAYSIZE array?2))
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*
If the size of the arrays is not
equivalent, return NIL.

I)\IIL)

((NEQ
(ARRAYTYP arrayl)
(ARRAYTYP array?2))

*
If the type of the arrays is not
equivalent, return NIL.

I)\IIL)
((NEQ
(ARRAYCRIG arrayl)
(ARRAYORIG array?2))
N
If the origin of the arrays is
not equivalent, return NIL.

)
NIL)
(T
(PROG NIL
(FOR 1
FROM (ARRAYORIG arrayl)
TO (SUBI (ARRAYSIZE
arrayl))
B9
(IF
(NOT
(EQP
(ELT arrayl 1)
(ELT array2 1)))
THEN (RETURN NIL)))
(RETURN arrayl))))

)

Note: EQARRAYP is not a standard function in INTERLISP, but one that
you can easily define and save.

11.3 HASH ARRAYS

A hash array is an array where information is referenced by a hash item rather
than a strict numeric index. The association between a hash item and the data it
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refers to is called a hash link. To use a hash array, INTERLISP computes an
address, the hash address, in an array, called the hash array. At that location is
stored the hash value, a pointer to the actual value of the data. The contents of a
cell in the array are the hash item and the hash value, which together form a
hash link.

Ahash array is used when the potential universe of items to be represented is
large but the actual number of items to be stored and retrieved is rather small.
Multiple item values may hash to a single cell in the array. It is assumed that the
collision between keys is minimal; otherwise, a regular array representation
might be more profitably used.

When an item is hashed, the resulting hash address may already contain a
hash link. INTERLISP determines if the entry was derived from the item just
hashed. If so, the new value replaces the current contents of the cell. Otherwise,
a new address is generated. This process repeats until an empty cell is found in
which to place the hash link. When a hash array is seven-eighths full, it is either
enlarged or an error is generated.

Retrieving an item works in a similar fashion. A hash item is used to com-
pute an address in the hash array. The item is compared against the hash item in
the cell. If they match, the hash value is used to retrieve the desired value. Other-
wise, a new address is computed and the process repeats until a hash link con-
taining the item is found. If the hashing process generates a cell address whose
entry is NIL, then no hash link exists for the item.

INTERLISP provides a system hash array, SYSHASHARRAY, for you if
you do not wish to create your own. It has an initial size of 512 cells. To use
SYSHASHARRAY in the hashing functions, you must specify NIL as the value
of the hash array address.

11.3.1 Creating and Testing Hash Arrays
You may create a hash array byexecuting HARRAY It takes the form

Function: HARRAY

# Arguments: 1

Arguments: ) the number of cells, N
Value: A pointer to the hash array.

INTERLISP allocates storage for the hash array and returns a pointer to it
of the form {HARRAYP}#x,abcde where the lower-case letters represent the
storage address of the hash array. For example,

ASETQ a.hash.array (HARRAY 10)) "INTERLISP-D"
{HARRAYP}7,1030
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You may test if a pointer refers to a hash array using the function HAR-
RAYP. It takes the form

Function: HARRAYP

# Arguments: 1

Arguments: 1) a hash array address, X
Value: X, if it is a hash array address.

HARRAYP returns the pointer if it indeed points to a hash array; otherwise
NIL. For example,

"HARRAYP a.hash.array)
{HARRAYP}#?,1030

You may determine the number of cells in a hash array using the function
HARRAYSIZE. It takes the form

Function: HARRAYSIZE

# Arguments: 1

Arguments: 1) a hash array address, X

Value: The number of cells in the hash array.

Consider the following example:

A(HARRAYSIZE a.hash.array)
15

INTERLISP-D automatically increases the initial size of the hash array by
50% when it is created. Thus, although | created A.HASH.ARRAY of size 10,
INTERLISP-D actually assigned it a size of 15. INTERLISP-IO/VAX use a
function dependent on the size of the hash array to determine the number of
extra cells allocated.

Hash arrays are not implemented in INTERLISP/370.

11.3.2 Storing into and Retrieving from a Hash Array
You may put an item into a hash array using PUTHASH. It takes the form

Function: PUTHASH
# Arguments: 3
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Arguments: 1) a key, KEY
2) a value, VALLE
3) a hash array address, X

Value: The new value.

PUTHASH computes the hash address from KEY as described above. A
hash link from KEY to VALUE is created and placed at the hash address. If a
hash link already exists at that hash address, it will be overwritten by the new
hash link. You may remove a hash link by specifying VALUE to be NIL. Hash
values of NIL are not allowed. For example,

(PUTHASH "Steve kalsler™ "author™ a.hash.array)
"author™"

NPUTHASH "pete rose" "baseball player" a.hash.array)
"baseball player”

NPUTHASH "vanessa williams™ "miss america"
a.hash.array)
"miss america"

(PUTHASH "rick dempsey" "world series mvp"
a.hash.array)
"world series mvp"

KEY may be any type of INTERLISP pointer—atoms, strings, array ad-
dresses, lists, etc. If an INTERLISP object other than an atom is used as a key,
the exact same item must be used to retrieve the hash value. This is required
because INTERLISP compares the hash item stored in the cell with the key to
determine if that key produced the hash value. The comparison is performed

using EQ.

Clearing a Hash Array
You may clear a hash array that has been partially filled by executing the func-

tion CLRHASH. It takes the form

Function: CLRHASH

# Arguments: 1

Arguments: 1) a hash array address, X
Value: The hash array address.

CLRHASH removes the hash links in all cells of the hash array. It is a good
idea to execute CLRHASH after you have created a hash array before storing the
first hash link.
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Retrieving an Element from a Hash Array
You may retrieve a value from a hash array using the function GETHASH. It
takes the form

Function: GETHASH
# Arguments: 2
Arguments: 1) a hash key, KEY

2) a hash array address, X
Value: The hashvalue associated with KEY.

GETHASH finds the hash link from KEY. It returns the value associated
whith the hash value in the hash link. If a hash link does not exist, it returns NIL.
For example,

NGETHASH "Steve kaisler" a.hash.array)

"author™

NPUTHASH (LIST ‘'alex) "the great” a.hash.array)
"the great"

<-(SETQ new.key (LIST 'alex))

(alex)

which is a new list different from the one used in PUTHASH. So,

*«-(GETHASH new.key a.hash.array)
NIL

because the value of NEW.KEY is a different list from that used to create the
hash link.

Enlarging a Hash Array

When a hash array becomes seven-eighths full, it may overflow (see Section
11.3.5) or it may generate an error when you attempt to put a new value into it.
You can catch the error using ERRORSET. If you do not wish to provide an
overflow capability, you may expand the size of your hash array by copying it to
another hash array of a larger size. REHASH hashes all items in one hash array
into a new hash array. It takes the form

Function: REHASH
# Arguments: 2
Arguments: 1) an old hash array address, ODHARRAY

2) a new hash array address, NBAARRAY

Value: The new hash arrayaddress.



312 Array Manipulation Functions
Consider the following example:
<-(SETQ a.new.hash.array (HARRAY 20))

{HARRAYP}#1,2310

(REHASH a.hash.array a.new.hash.array)
{HARRAYP}#1,2310

<-(GETHASH "vanessa williams” a.new.hash.array)
"miss america”

11.3.3 Applying a Function to a Hash Array

MAPHASH allows you to apply a function to each hash link in a hash array. It
takes the form

Function: MAPHASH

# Arguments: 2

Arguments: 1) a hash array address, X
2) a mapping function, MAPHASHAN

Value: The hash array address.

MAPHASHEFN is a function of two arguments: the hash value and the hash
item. For each hash link in X, MAPHASHFN is applied to the hash value and
the hash item. For example, to prettyprint the entire contents of a hash array, we
might define the function

(DEFINEQ
(pp.hash.array (hasharray)
(MAPHASH hasharray

' (LAVBDA (hashvalue hashitem)
(TERPRI)
(PRINTDEF hashitem)
(TERPRI)
(PRINTDEF hashvalue)))

)

11.3.4 Dumping Hash Arrays
You may dump a hash array using the function DMPHASH. This function is
primarily intended to be used with the File Package to preserve the definitions of
a hash array on a file for subsequent loading. It takes the form

Function: DIVPHASH

# Arguments: 1-N
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Arguments: 1) the names of hash arrays

Value: The loadable expressions.

DMPHASH is an NLAMBDA, nospread function that prints on the pri-
mary output file a set of loadable forms that may be used to redefine a hash array
when the file is subsequently loaded.

If there are no arguments to DMPHASH, it assumes that you want to dump
the system hash array, SYSHASHARRAY.

Care must be exercised when reloading a hash array. READ creates new
structures for each of the items and values that it reads from the file. Thus, all
pointers except atoms and small integers will lose their EQ identities although
they will retain their EQUAL identities.

For example, to dump the system hash array, which you may use as your
default hash array, you would place the following S-expression in your File Pack-
age commands:

(E (DMPHASH))
Consider the following example:

<NSETQ a.hash.array (HARRAY 10))
{HARRAYP}#151466

(PUTHASH (LIST 'ALEX) “the great" a.hash.array)
"the great”

w(DMPHASH a.hash.array)

(RPAQ a.hash.array (HARRAY 11))
(PUTHASH '(ALEX) "the great” NOBIND)
NIL

11.3.5 Overflow Handling

When a hash array is created, it is given a definite size. As entries are made into
the hash array, the hashing process becomes less efficient because new keys hash
to slots that are already occupied by hash links. When a hash array becomes
seven-eighths full (87.5%), INTERLISP considers it to be full. Attempting to
add another hash link will cause a hash table overflow.

When a hash table overflow condition occurs as the result of PUTHASH,

either

1. An error will be generated, or
2. The hash array will be enlarged to accommodate additional keys.

An error results if the last argument to PUTHASH is merely a hash array
created by the user. Note if the hash array argument is NIL, SYSHASHARRAY
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is used. It is automatically increased by 50% whenever an overflow condition
occurs.

To prevent an error, you must tell INTERLISP how to enlarge the hash ar-
ray when an overflow condition occurs. The last argument to PUTHASH takes
the alternative form

(<hasharray> . (expression))
where <expression) has one of the following values:

<integer) A positive integer indicates that a new hash array is created
whose size is N cells greater than the old table.

(floating #) A floating point number indicates that a new hash array is
created whose size is equal to the size of the old table multiplied
by the number.

(function) A function name or LAMBDA expression that is called upon
hash table overflow. It takes one argument—the value of the
last argument to PUTHASH. If the function returns a number,
that number is used to create a new hash array of the given size.
Otherwise, a new hash array is created that is 50% larger than
the old hash table.

The function may be used to print a warning message, analyze the hash

array and delete some values, or monitor the function (via TRACE, for

example) that makes entries.

NIL A new hash array is created that is 50% larger than the old hash array.

For example, assume that A.HASH. ARRAY is seven-eighths full. Then, let
us execute the following PUTHASH expression:

(PUTHASH "carter" "ex-president” a.hash.array)
HASH TABLE FULL
{HARRAYP}#7,1030

However, if we has used the specification for overflow handling:

<-(PUTHASH "carter" "ex-president” (CONS a.hash.array 5))
"ex-president"

NHARRAYSIZE a.hash.array)
20

where we remember that even though we specified 10 to HARRAY, IN-
TERLISP-D automatically increased that by 50%.
An alternative might be
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<-(PUTHASH "carter” "ex-president” (CONS a.hash.array 2.0))
"ex-president”

NHARRAYSIZE a.hash.array)
30

Finally, let us look at an alternative using a function

(PUTHASH "carter™
"ex-president”
(CONS a.hash.array

'(LAMBDA (x)
(PRIN2 "Hash Array Overflow")
(TERPRI)
(PRIN2 "Increase size by 3")
(TERPRI)
(ITIMES (HARRAYSIZE a.hash.array)

3))))

Hash Array Overflow
Increase size by 3
"ex-president”

<-(HARRAYSIZE a.hash.array)

Note that the following construction causes an error:

NPUTHASH "carter" "ex-president” (LIST a.hash.array 2.0))
undefined function

@)

because INTERLISP expects to find the value in the CDR cell as a result of
CONSing the two values together.

11.4 A MATRIX PACKAGE

INTERLISP currently supports one-dimensional arrays, e.g., hash arrays.
Many applications require two-dimensional arrays, e.g., matrices, for represent-
ing data. This section describes a set of functions that you can use to define and
manipulate matrices. These functions are not supported in standard IN-
TERLISP.

11.4.1 Defining a Matrix

A matrix is a two-dimensional array, e.g., a array of arrays. The number of rows
is independent of the number of columns. A special case is the square matrix
where the number of rows is equal to the number of columns.
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MATRIX creates matrices. It takes the form

Function: MATRIX
# Arguments: 4

Arguments: 1) the number ofrows, NROAB
2) The number of columns, NIOLUMNS
3) Adata type, TYPE
4) An origin specification, ORIGIN

Value: An {ARRAYP}addressrepresenting the
storage allocation for the matrix.

MATRIX creates an array of NROWS elements. Each of these elements has
as its value an array of NCOLUMNS elements. The address of the column arrays
are stored as the values of the row elements. The address of the row array is
returned as the address of the matrix.

A matrix will have an origin of (0,0) or (1,1) depending on the value of ORI-
GIN. If ORIGIN is NIL, an origin of (1,1) like that of FORTRAN is assumed.
TYPE may be any of the legal values acceptable by ARRAY as specified in the
INTERLISP-D manual.

Consider the following example:

<-(SETQ gnp (matrix 5 2))
{ARRAYP}#7,1044

<-(for I from 1 to 5
do (PRINI 1) (SPACES 6) (PRINT (ELT gnp 1)))

1 {ARRAYP}?,1064
2 {ARRAYPH! 11310
3 {ARRAYP}?,1070
4 {ARRAYPH?,1104
5  {ARRAYP}?,1110
NIL

where each of the elements of GNP is an array as expected.

A Definition for MATRIX
We might define MATRIX as follows:

(DEFINEQ
(matrix (nrows ncolumns type origin)
(PROG (address index ilimit)

*
Test for invalid values for number of rows
and columns.
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(COND
((LEQ nrows 0)
(ERROR "negative or zero rows”))
((LEQ ncolumns 0)
(ERROR "negative or zero columns")))

*

If no origin is specified, assume (1,1).

oo
((NULL origin)
(SETQ origin 1)))
(AND
(NOT (IEQP origin 0))
(NOT (IEQP origin 1))
(ERROR "bad origin specification"))
(SETQ address
(ARRAY nrows ‘pointer NIL origin))
(SETQ ilimit
(CON\D
((ZEROP origin)
(SUBI nrows))
(T nrows)))
(SETQ index origin)

*

317

For each element of the matrix row, create

an array which represents the columns of
that row.

)(SI:—I'A address
index
(ARRAY ncolumns type NIL origin))
(SETQ index (ADDI index))
(AND
(ILEQ index ilimit)
(GO loop))
(RETURN address))

11.4.2 Getting a Matrix Element

To retrieve a matrix element, you need to specify row and column indices.
ELTM retrieves a matrix element. It takes the form

Function:

ELTM

# Arguments: 3
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Arguments: 1) a matrix address, NAMVE
2) a row index, ROV
3) a column index, GOLUWN

Value: The value stored at the row and column
entry of the matrix.

ELTM generates an error if

1. The row index is less than O or greater than the number of rows.
2. The column index is less than 0 or greater than the number of columns.
3. NAME is not the address of a matrix.

Consider the following example:

<MELTM G\P 1 1)
300

A Definition for ELTM
We might define ELTM as follows:

(DEFINEQ
(eltm (name row column)
(AND
(check.matrix name row column)
(RETURN NIL))
(ELT (ELT name row) column)
)
where CHECK.MATRIX is defined by
(DEFINEQ
(check.matrix (name row column)

(COND
((NOT (matrixp name))
(ERROR name "not a matrix”)))
(CON\D
((OCR
(ILESSP row 0)
(IGREATERP row (ARRAYSIZE name)))
(ERROR "bad row index™))
((OCR
(ILESSP column 0)
(IGREATERP column
(ARRAYSIZE (ELT name 1))))
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(ERROR "bad column index™))
(T name))

)

11.4.3 Setting a Matrix Element
To set a matrix element, you need to specify row and column indices. SETM sets
the corresponding matrix element. It takes the form

Function: SETM

# Arguments: 4

Arguments: 1) amatrix address, NAMVE
2) a row index, ROV
3) a column index, QGOLUWN
4) a value, VALLE

Value: The newvalue.
SETM operates like ELTM except that it replaces the existing element of

the matrix with the new value.
Consider the following example:

ASETM GNP 1 1 300)
300

A Definition for SETM
We might define it as follows:

(DEFINEQ
(SETM (name row column value)
(PROG NIL
(AND
(check.matrix name row column)
(RETURN NIL))
(SETA (ELT name row) column value)
(RETURN value))
)

11.4.4 Basic Matrix Operations

The basic operations that you may perform on two arithmetic matrices are addi-
tion, subtraction, and multiplication. In addition, a matrix may be multiplied
by a scalar. These operations are subject to certain conditions. Let M1 and M2
be two matrices with dimensions (il,jl) and (i2,j2) respectively. Then,
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1. Ml and M2 may be added or subtracted provided il equals jl and i2
equals j2.

2. MI and M2 may be mutiplied if il equals j2. The result has dimensions
of(ilJ2).

Adding or Subtracting Two Matrices
Given two matrices, Ml and M2, with dimensions (il,jl) and (i2,j2), respec-
tively, MPLUS and MDIFFERENCE will add or subtract individual elements of
the two matrices. They take the form

Function: MPLUS
VDIFFERENCE

# Arguments: 2

Arguments: 1) a matrix, M
2) a matrix, M

Value: The address of a new matrix whose elements
are the sum or difference of the elements
of Ml and M2

We can define MPLUS and MDIFFERENCE as follows:

(DEFINEQ
(mplus (Ml m2)
(add.or.subtract.matrices ml n2 T)

)

(DEFINEQ
(mdifference (ml nR)
(add.or.subtract.matrices ml n2 NIL)

)

The workhorse function that actually performs the operations is ADD.OR-
SUBTRACT.MATRICES which is defined as follows:

(DEFINEQ
(add.or.subtract.matrices (ml n2 flag)
(PROG (m3 il jl i2 j2 index)
(AND
(is.matrix ml)
(is.matrix m2))
(SETQ il  (ARRAYSIZE ml))
(SETQ i2  (ARRAYSIZE m2))
(SETQ jI  (ARRAYSIZE (ELT ml 1)))
(SETQ j2  (ARRAYSIZE (ELT n21)))
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(COND
((NEQ il i2)
(ERROR "unequal row dimensions"))
(NEQ 1 j2)
(ERROR "unequal column
dimensions™)))
(COND
((NOT
(vevBeR
(ARRAYTYPE (ELT ml 1))
*(FIXP FLOAT? ...)))
(ERROR ml "not an arithmetic matrix))
((NOT
(vevBeRR
(ARRAYTYPE (ELT n2 1))
'(FIX FLOAT? ...))
(ERROR n2 "not an arithmetic

matrix")))
(SETQ n8
(MATRIX il jl (ARRAYTYPE (ELT ml 1))
D
rloop )
(SETQ index jl)
cloop
(SETM 8
il
index
(COND
(flag
(PLUS (ELTM ml il index)
(ELT™ n2 il index)))
(T
(DIFFERENCE (ELT ml il index)
(ELT n2 il
index)))))
(SETQ index (SUBI index))
(AND
(GREATER? index 0)
(GO cloop))
(SETQ il (suBl il))
(AND
(GREATER? il 0)
(GO rloop))

(RETURN m3))
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Note that this definition does not consider whether or not both matrices have
the same origin. As an exercise, add the code to test for equivalent origins. You
will need to use the ARRAYORIGIN function to determine the origin.

Multiplying Two Matrices

Another operation that is often performed on matrices is multiplication. The
usual procedure for multiplying one matrix by another is to compute the dot
product of the rows of the first matrix with the columns of the second matrix.
Using a transposition procedure, we can turn the columns of the second matrix
into rows so that they are aligned with the rows of the first matrix. Then, a dot
product procedure may be used on corresponding rows. MATRIX-MULTIPLY
takes the form

Function: MATRIX-MULTIPLY
# Arguments: 2
Arguments: 1) a matrix, MATRIX
2) a matrix, MATRIX2
Value: A matrix that is the result of multiplying

MATRIXI by MATRIX2.

MATRIX-MULTIPLY assumes the two matrices are of equivalent dimen-
sions. As an exercise, you might want to recode it to handle two matrices of
different dimensions. We might define MATRIX-MULTIPLY as follows:

(DEFINEQ
(matrix-multiply (ml m2)
(PROG (M3 il jI i2 j2 rindex cindex)

(*
RINDEX is the row index.
CINDEX is the column index.
MB is the resulting matrix.

)

(AND

(is.matrix ml)
(is.matrix m2))
(SETQ il (ARRAYSIZE ml))
(SETQ i2 (ARRAYSIZE m2))
(SETQ jI (ARRAYSIZE (ELT ml 1)))
(SETQ j2 (ARRAYSIZE (ELT n2 1)))
Check the corresponding dimensions of
the two matrices.
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(COND
((NEQ il 12)
(ERROR "unequal row dimensions"))
(NEQ j1 j2)

(ERROR "unequal column
dimensions")))
*
Check that the elements of the matrix
are numeric so that the arithmetic
operation will not fall.

oo
((NOT
(MevBeR
(ARRAYTYPE (ELT ml 1))
'(FIXP FLOAT? ...)))
(ERROR ml "not an arithmetic matrix))
((NOT
(MevBeR
(ARRAYTYPE (ELT n2 1))
'(FIX FLOATP ...))
(ERROR n2 "not an arithmetic
matrix™)))
(*

Transpose m2's columns Into rows.

)(SETQ m3 (TRANSPOSE m2))
(SETQ rindex 1)

rloop

cloop
(SETQ cindex 1)
eloop
(SETA n8
rindex
cindex
(DOT.PRODUCT (ELT ml rindex)
(ELT nB clIndex)))
(SETQ cIndex (ADDI cindex))
(AND
(NOT (GREATERP clndex jl))
(GO eloop))
(SETQ rindex (ADDI rindex))
(AND
(NOT (GREATERP rindex 11))
(GO cloop))
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)

(RETURN m3))

The TRANSPOSE Function

TRANSPOSE merely exchanges rows for columns in the target matrix. We

might define TRANSPOSE as follows

(DEFINEQ

(transpose (ml)
(PROG (mt il jl rindex cindex)

)

Note that this function could have been defined more easily using CLISP
constructs (see Chapter 23). As an exercise, you may want to recode this function
using CLISP.

rloop

loop

(SETQ il (ARRAYSIZE ml))
(SETQ j1 (ARRAYSIZE (ELT ml 1)))
(SETQ mt

(MATRIX 11

|
J(ARRAYTYPE (ELT ml 1)) 1))

(SETQ cindex 1)
(SETQ rindex 1)

(SETM mt

cindex

rindex

(ELT™ ml rindex cindex))
(SETQ rindex (ADDI rindex))

(AND
(GREATERP rindex il)
(GO loop))
(SETQ cindex (ADDI cindex))
(AND
(GREATERP cindex jl)
(RETURN mt))
(GO rloop))

The DOT.PRODUCT Function

DOT.PRODUCT merely multiplies elements of vectors together and accumu-

lates their sum. We might define DOT.PRODUCT as follows:

(DEFINEQ

(dot.product (vl v2)
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(PROG (vsize vsum)
(SETQ vsize (ARRAYSIZE vl))
(SETQ vsum 0.0)
vioop
(SETQ vsum
(PLUS (ELT vI vsize)
(ELT v2 vsize)))
(SETQ vsize (SUBI vsize))
(AND
(ZEROP vsize)
(RETURN vsum))
(GO vloop))

)

Note that DOT.PRODUCT works backward through the two vectors. This
eliminates the need for an additional temporary variable.

11.5 SORTING USING ARRAYS

We have already seen a sorting function that works on lists of elements (see Sec-
tion 6.7). Atypical operation that is often performed upon arrays is to sort their
contents. In conventional programming languages, arrays are more often used
than lists in sorting algorithms. Thus, this section presents a few simple sorting
algorithms using arrays.

11.5.1 BubbleSort

The simplest sorting method known is called the bubblesort method because
items “bubble up” from within the set when it is sorted in ascending order. We
imagine an array of elements depicted in a vertical column. Elements with lower
key values move up the column to the top of the array. Bubblesorting makes
repeated passes over the array. At each pass, two adjacent elements are com-
pared. If they are out of order; that is, the lower-valued one follows the higher-
valued one, they are exchanged in place. As a result, after each pass the lowest
value has been “bubbled up” to its proper position in the array.
BUBBLE.SORT takes the following form:

Function: BUBBLE. SORT

# Arguments: 1

Arguments: 1) an arrayto besorted, XARRAY

Value: A new array whose contents are sorted in

ascending order.
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We might define BUBBLE.SORT as follows:

(DEFINEQ

(bubble.sort (xarray)
(PROG (xsize element index)

loop

test

*

( INDEX keeps track of the current
element in the array that we are
inspecting.

ELEIVENT keeps track of the starting
element on each pass through the
array.

)(SI:—I'Q xsize (ARRAYSIZE xarray))

(SETQ element 1)

(SETQ index element)

*

( Compare the elements at INDEX and
INDEX+1; if they are out of order,
swap them. Note that INDEX does not
exceed the limits of the array
because of the test performed below.

oo

((GREATERP (ELT xarray index)
(ELT xarray (ADDI index)))
(SWAP xarray index)
(SETQ element index)))
(SETQ index (ADDI index))
Determine if we have completed a pass
through the array.

)(AJ\D
(LESSP index xsize)
(GO test))

Determine if sorting is completed.
)
(COND
((EQUAL element (SUBI xsize))
(RETURN xarray))
(T
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(SETQ element (ADDI element))))
(GO loop))

)

SWAP merely exchanges two elements of the array in place given the index
of the first element. We might define SWAP as follows:

(DEFINEQ
(swap (xarray index)
(PROG (temp)

(SETQ temp (ELT xarray index))

(SETA xarray
index
(ELT xarray (ADDI index)))

(SETA xarray
(ADDI index)
temp))

)

This definition of BUBBLESORT sorts a single set of numbers. | encourage
you to embellish upon the definition in the following ways:

1. Letthe elements of the array be lists. Compare entries in the array based
on the CAR of the list (i.e., the “key”) and exchange them appropriately.

2. Allow BUBBLESORT to accept a function which is the comparison
function for the elements of the array. Since INTERLISP-D arrays can
be different datatypes, you may specify different kinds of functions to
perform the comparison.

3. Attempt to define a recursive form of BUBBLESORT. Trace the opera-
tion of this function to determine its behavior.

11.5.2Selection Sorting

Selection sorting is an equally simple idea. In the Ith pass through the set of
elements, we select the element with the highest key and swap it with the (N-I)th
element (where N is the size of the set). As a result, after | passes through the set,
the last | elements will be those elements with the highest keys sorted in ascend-
ing order. SELECTIONSORT takes the following form:

Function: SELECTION.SORT

# Arguments: 1

Argument: 1) an array tobe sorted,XARRAY
Value: The array XARRAY sorted in ascending

sequence.
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We might define SELECTION.SORT as follows:

(DEFINEQ
(selection.sort (xarray)
(PROG (xsize maximum)
(SETQ xsize (ARRAYSIZE xarray))
loop
(SETQ maximum 1)
(PROG (element)
(SETQ element 1)
loop2
(GOND
((GREATERP (ELT xarray element)
(ELT xarray xsize))
(SETQ maximum element)))
(SETQ element (ADDI element))
(AND
(LESSP element xsize)
(GO loop2))
(SWAP2 xarray maximum Xsize)
(SETQ xsize (SUBI xsize))

(AND
(EQP xsize 2)
(RETURN xarray))
(GO loop))
)
We might define SWAP2 as follows:
(DEFINEQ
(swap2 (xarray max.index last.index)
(PROG (temp)
(SETQ temp (ELT xarray max.index))
(SETA xarray
max. index
(ELT xarray last.index))
(SETA xarray last.index temp))
)

Note that SWAP2 takes two arguments for the locations of the elements to

be swapped, whereas SWAP merely exchanges adjacent elements.

N=,9
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Mapping Functions

INTERLISP provides two mechanisms for iteratively executing a function while
varying the values of its arguments. In Chapter 3, we examined the PROG mech-
anism which allowed us to develop models for the basic iterative control struc-
tures: Unconditional DO, DO...WHILE, and DO...UNTIL. However, we had
to explicitly set the new values of the arguments to a function before its next
invocation. In this chapter, we shall examine mapping functions that apply a
given function to successive subsets of its first argument. The form of the subset
on each successive iteration is determined by the function.

12.1 GENERIC MAPPING

The basic mapping function is MAP. It has the following format

Function: VAP
MAPLIST
# Arguments:  2-3
Arguments: 1) alist, MAPX

2) a function, MAPFNI, to be applied to
successive subsets of MAPX

3) a function, MAPFN2, for computing the
successive subsets of MAPX

Value: NILfor MAP;
a list of values for MAPLIST.

MAP operates by applying MAPFNI to the entire list MAPX, and then to
(CDR MAPX) repeatedly until MAPX is exhausted. That is, MAP operates on
the successive tails of MAPX. If MAPFN2 is non-NIL, INTERLISP computes

329



330 Mapping Functions

(MAPEN2 MAPX) rather than (CDR MAPX) for the successive subsets.

MAPFENI may take several forms:

1. A LAMBDA expression
2. A FUNCTION expression

3. A QUOTE expression whose argument is a function name or has an

EXPR property value.

Because MAP returns NIL as its value, it is primarily used for the side ef-
fects generated by MAPFNI. MAPFENI should do something positive such as

setting a flag or changing a data structure when called from MAP.

MAPFNI and MAPFN2 may be any functions that take one argument.
They may take more but, of course, these are assigned the value NIL. In general,
MAPFNI and MAPFNZ2 should check that their argument is a list before opera-

ting upon the argument.

A Definition for MAP
We might define MAP as follows:

(DEFINEQ

(map (raapx raapfnl raapfn2)

)

(PROG NIL
loop
(COND
((NLISTP raapx)

MAP applies only to lists.

)(REI'lRN NIL)))
(APPLY* mapfnl mapx)
(SETQ mapx
(COND
(mapfn2
( Use the user-supplied
mapping function to
generate next case.
)(APPLY* mapfn2 mapx))
(T
(COR mapx))))
(GO loop))

—_— (S

- et amm— (| ———
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12.1.1 Returning a List of Values

MAPLIST, an alternative form of MAP, executes exactly like MAP except that
it returns a list of the results generated by applying MAPFNI to MAPX.
We might define MAPLIST as follows:

(DEFINEQ
(maplist (mapx mapfnl raapfn2)
(PROG (map.list map.expression)
(SETQ map.list NIL)
loop
(COND
((NLISTP mapx)

*

MAPLIST works only on
lists.

)
(RETURN map.list)))
(*
Results are CONSed to the front of
the resulting list.

)(SETQ map.expression
(CONS
(APPLY* mapfnl mapx)
map.expression))
(COND
(map.list
(RPLACD (CDR map.expression)
(RPLACD
map.expression)))
(T
(SETQ map.list map.expression)))
(SETQ mapx
(COND
(mapfn2
(APPLY* mapfn2 mapx))
(T
(COR mapx))))
(GO loop))

)
Many alternative forms of MAP, designated in many texts as MAPXxxX, are

provided by INTERLISP. These are described in the following sections. It is
useful to inspect the different definitions of the mapping functions to see how
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minor changes in functions can produce new capabilities. We have included def-
initions of the major MAP functions so that you may inspect them and use them
as skeletons for developing more powerful mapping functions.

12.1.2 Mapping on Successive Elements

Many times we want to apply a function to successive elements of a list. IN-
TERLISP provides the function MAPC to help us accomplish this task. MAPC
applies MAPFNI to (CAR MAPX) on each iteration. Its value is NIL. If
MAPFNZ2 is non-NIL, it is used in place of CDR to compute the new value of
MAPX. It takes the form

Function: MARC
MAPCAR
# Arguments: 2-3
Arguments: 1) alist, MAPX

2) a function, MAPFNI, to be applied to
succesive elements of MAPX

3) a function, MAPAN2, for computing
successive subsets of MAPX

Value: NIL for MAPC,
a list of values for MAPCAR

An alternative form of MAPC is MAPCAR. It executes exactly as MAPC
does, but returns a list of the values of the successive invocations of MAPFNI on
the elements of MAPX. Let us inspect how these functions work using MAP-
CAR:

NSETQ presidents '(tyler polk lincoln hayes))
(tyler polk lincoln hayes)

<-(MAPC presidents 'PRINT)
tyler

polk

lincoln

hayes

NIL

where NIL is returned as the value of MAPC. Alternatively, by invoking MAP-
CAR, we obtain

(MAPCAR presidents 'PRINT)
tyler
polk
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lincoln
hayes
(tyler polk lincoln hayes)

where the final list is the result of invoking MAPCAR because PRINT returns
the value of the object printed.
Because MAPCAR returns a list, it consumes storage to create the list.

A Definition for MAPC
We might define MAPC and MAPCAR as follows:

(DEFINEQ
(mapc (mapx mapfnl raapf?2)
(PROG NIL
loop
(COND
((NLISTP mapx)
( MAPC works only on lists.

%RETURN NIL)))
(APPLY* mapfnl (CAR mapx))
(SETQ mapx
(COND
(mapfn2
(APPLY* mapfn2 mapx))

(CDR mapx))))
(GO loop))

)

(DEFINEQ
(mapcar (mapx mapfnl mapfn2)
(PROG (map.list map.expression)
(SETQ map.list NIL)
loop
(COND
((NLISTP mapx)

*

MAPCAR works only on lists.

%RETURN map.list)))
(SETQ map.expression
(CONS (APPLY* mapfnl
(CAR map.expression))
map .expression))
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(COND
(map.list
(RPLACD (CDR map.expression)
(RPLACD
map.expression)))
(T
(SETQ map.list map.expression)))
(SETQ mapx
(COND
(mapfn2
(APPLY* mapfn2 mapx))
(T
(COR mapx))))
(GO loop))

)

12.1.3 Mapping on Successive Elements: MAPCONC

We noted that MAPCAR always returns a new list containing the results of its
execution. Sometimes, we want to modify the list that is presented as an argu-
ment. To do so, we use MAPCON or MAPCONC which NCONC the results of
applying MAPFNI to MAPX onto the original list. They take the form

Function: MAPCON
MAPGONC
# Arguments:  2-3
Arguments: 1) a list, MAPX

2) a function, MAPFNI, to be applied to
succesive subsets (MAPCON) or CARs

(MAPCONC) of MAPX
3) a function, MAPFN2, to be used to

compute the succesive subsets of MAPX

Value: Alist of values of the successive
applications of MAPANI NCONCed together.

MAPCON computes the same values as MAP/MAPLIST but NCONCs the
values to form a list which it returns. MAPCONC computes the same values as
MAPC/MAPCAR in the same manner. Consider the following examples:

NSETQ X '(Pelee Etna NIL Vesuvius NIL NIL Krakatoa))
(Pelee Etna NIL Vesuvius NIL NIL Krakatoa)

AMAPCONC X
(LAVBDA (x)
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(COND
((NULL x) NIL)
_ (T (LIST X)))))
(Pelee Etna Vesuvius Krakatoa)

This MAPCONC expression strips null elements from a list and returns a
list of the non-null elements.

<-(SETQ X
'((Rome New-York) Milan (Bonn Moscow Paris)
Lisbon))

((Rome New York) Milan (Bonn Moscow Paris) Lisbon)

«-(MAPCONC X
'(LAMBDA (X)
(COND
((LISTP x) (APPEND vy))
((ATOM x) (LIST x))
(T NIL))))

(Rome New-York Milan Bonn Moscow Paris Lisbon)

This MAPCONC creates a linear list of all elements in lists or atoms which
are present in the argument. Since MAPCONC is NCONCing the results to-
gether, it will alter the original input list. To prevent this undesirable side effect,
the APPEND expression returns a top-level copy of the argument.

A Definition for MAPCONC
MAPCONC may be defined using several elementary functions of INTERLISP.
A possible definition for MAPCONC might be

(DEFINEQ
(MAPCONC  (mapx raapfnl mapfn2)
(PROG (mapl mape mapy)

loop
(COND
((NLISTP mapx)
(*
MAPCONC works only lists.
)
(RETURN mapl))

((SETQ mapy
(apply* mapfnl (car mapx)))
(COND
(mape
(RPLACD mape mapy))
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(T
(SETQ mapl
PROG NIL (SETQ mape mapy)))))
loopl
(COND
((SETQ mapy (CDR mape))
(SETQ mape mapy)
SETO (GO loopl)))))
mapx
(COND
(mapfn2
- (APPLY* mapfn2 mapx))
(COR mapx))))
(GO loop))

)

All of the mapping functions discussed so far work only on lists as their
arguments. These functions return NIL if their argument is not a list. You may
consider modifying the function definitions to make a list of the argument if it is
not a list. To do so, in each function, you should replace the expression

(COND
((NLISTP mapx)
(RETURN ...)))

by the expression

(COND
((NLISTP mapx)
(SETQ mapx (LIST mapx)))

which makes the argument a list if it is not already one.
You may want to define a new set of mapping functions which operate in this
manner to complement the basic functions provided by INTERLISP.

12.1.4 Mapping over Two Arguments

As we have seen, the mapping functions described above accept only one argu-
ment list to be operated upon. Many times you will want to apply a mapping
function to two lists on an element-by-element basis. INTERLISP provides two
functions MAP2C and MAP2CAR that allow you to accomplish this task. Their
formats are
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Function: MAP2C
MAP2CAR
# Arguments: 3-4
Arguments: 1) MAPX an argument list

2) MAPY, an argument list

3) MAPFNI, the function to be applied

4) MAPFN2, the function used to compute
successive tails of MAPX and MAPY

Value: NIL if MAP2C;
a list of results if MAP2CAR

MAP2C and MAP2CAR operate exactly like MAPC and MAPCAR. How-
ever, MAPFNI is applied to successive elements of MAPX and MAPY. That is,
MAPFENI is a function of at least two arguments. MAP2C (respectively MAP-
2CAR) terminates whenever one of the two lists is exhausted; that is, when the
result of MAPFN2 or CDR (the default) is NIL.

A(SETQ numbers-1 ‘(1 2 3 4))
(12 3 4)

NSETQ numbers-2 '(100 200 300 400))
(100 200 300 400)

<(MAP2CAR numbers-1 numbers-2 (FUNCTION IPLUS))
(101 202 303 404)

<-(MAP2CAR numbers-1 NIL (FUNCTION IPLUS))
NIL

<-(MAP2CAR numbers-2 numbers-2 (FUNCTION ITIMES))
(10000 40000 90000 160000)

A Definition for MAP2CAR
We might define MAP2CAR as follows:

(DEFINEQ
(map2car (mapx mapy mapfnl mapfn2)
(PROG (map.list map.expression)
(SETQ map.list NIL)
loop
(COND
((CR
(NLISTP mapx)
(NLISTP mapy))
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(*
MAP2CAR works only with
lists.

)(REIU?N map.list))).
(SETQ map.expression

(CONS
(APPLY"t mapfnl
(CAR mapx)
(CAR mapy))
map.expression))
(COND
(map.list
(SETQ mapx
(APPLY* mapfn2 mapx))
(SETQ mapy
(APPLY* mapfn2 mapy)))
T
(SETQ mapy (CDR mapy))
(SETQ mapx (CDR mapx))))
(GO loop))

)

12.1.5 Mapping Across Atoms: MAPATOMS

In many applications you may want to apply a function to some set of atoms that
have been created by your program. One way to do this isto build a list of all the
atoms as they are created and apply a function to them using one of the mapping
functions. If your application is very large, this may consume substantial space
to keep track of all the atoms.

MAPATOMS allows you to apply a function to all the literal atoms in the
system. However, its major problem is that it uses both atoms defined or created
by INTERLISP itself as well as all the atoms that you have created. In order to
apply it to a specific subset of atoms, your function, which is passed as an argu-
ment, must perform a filtering of all the atoms to select those to be operated
upon.

MAPATOMS takes the following format

Function: MAPATOVG
# Arguments: 1
Argument: 1) a function to be applied, FN

Value: NIL



12.1 Generic Mapping 339

The value of MAPATOMS is NIL so it is the responsibility of the function to
generate a result that you may later utilize. If you want to print all of the atoms

in the system (of which there are a great many!), you might use the following
expression

AMAPATOMS '(LAMBDA (x) (PRINT x)))
f

ISETPROPLIST
FORKBLOCK
DPROG
CHANGEDANSLST
DUVPSTATCOMS
DECLARE
INTEGERLENGTH
MERGEINSERT

which are the first few atoms printed from an INTERLISP-10 system.

Note that USERWORDS (see Section 22.7.2) is a list of all the atoms that
you have entered via type-in. You may apply MAPATOMS to this list to operate
only upon the atoms that you have created. Unlike other LISP dialects, such as
FranzLisp or MACLIisp, there is no function corresponding to (OBLIST) which
returns a list of all atoms created by the user.

You may print every atom with a function definition using the following ex-
pression

(MAPATOMVS * (LAVBDA (X)
(COND
((GETD x) (PRINT x)))))
/SETPROPLIST
FORKBLOCK
DECLARE
INTEGERLENGTH
MERGEINSERT

If you attach properties to each of the atoms that you create in your program
describing the usage of the atom, then you may code a MAPATOMS expression
to iterate over selected sets of atoms and perform some special operation on
them.

12.1.6 A Generic Printing Function

INTERLISP provides MAPRDAT as a general printing function. Even though it
is an output function, we discuss it in this chapter because it operates as a map-
ping function.
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MAPRINT has the following format

Function: MAPRINT
# Arguments: 7

Arguments: 1) an argument list, MAPX
2) an output file, FILE
3) a left expression demarcator, LEFT
A) a right expression demarcator, RIGHT
5) an expression separator, SEP
6) a print function, PFN
7) LISPXPRINTFLG

Value: NIL

MAPRINT applies PFN to successive elements of MAPX. PFN should be a
printing function. If it is NIL, PRINI is assumed. The results produced by MA-
PRINT are directed to FILE. If FILE is NIL, then T is assumed (i.e., the termi-
nal although it may also be explicitly specified).

You may use LEFT, RIGHT, and SEP to construct expression forms to suit
your application. Before each expression result from applying PFN to an ele-
ment of MAPX is printed, MAPRINT will print the value of LEFT. Similarly,
after the expression is printed, MAPRINT will print the value of RIGHT. Indi-
vidual expressions are separated by the value of SEP or * ”” (a string consisting of
a single space) if SEP is NIL.

To mimic the application of PRINI for lists, you could execute the following
function call

(MAPRINT presidents NIL % %))
(tyler polk lincoln hayes)NIL

at the terminal since the file specification is NIL.

<-(MAPRINT presidents NIL NIL NIL NIL 'PRINT)
tyler

polk

lincoln

hayes

NIL

¢-(MAPRINT presidents T NIL
tyler,polk,lincoln,hayes.NIL

because it is using PRINI to print the output. We can modify this to place spaces
between the entries and print NIL on the following line as follows
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*<(MAPRINT presidents
T
NIL
(CONCAT (MKSTRING (CHARACTER (CHARCODE CR)))
(MKSTRING (CHARACTER (CHARCODE LF))))
tyler, polk,’lincoln, hayes
NIL

If the LISPXPRINTFLG is T, then LISPXPRINI will be used in place of
PRINI (see Section 15.1.1).

12.2 APPLYING FUNCTIONS TO SUBSETS

When we apply a mapping function to a list, we often want the result to reflect
only the non-NIL values. In the generic mapping functions described in Section
12.1, a NIL willbe explicitly reflected in the resulting list of those functions
returning a list. SUBSET, which returns only the non-NIL values, takes the
form

Function: SUBSET
# Arguments: 2-3
Arguments: 1) a list, MAPX

2) a function, MAPFNI, to beapplied to
the successive subsets of MAPX

3) a function, MAPFN2, to be used to
compute the successive subsets of MAPX

Value: A list of the non-NIL values resulting
from applying MAPFNI to MAPX

Consider the following example:

(SUBSET '(a 2 b 6 x 32 i V U) (FUNCTION NUVBERP))
(2 6 32 U)

A Definition for SUBSET
We might define SUBSET as follows:

(DEFINEQ
(subset (mapx mapfnl mapfn2)
(PROG (map.list map.expression)
(SETQ map.list NIL)
loop
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(COND
((NLISTP mapx)

SUBSET works only on lists.

)(REIIRN map.list))

((APPLY* mapfnl (CAR mapx))

If the result is non-NIL, then
QONS it to the list of results.
||
)(CI]\D
((NULL map.list)
(SETQ map.list
(SETQ map.expression
T (CONS (CAR mapx)))))
(SETQ map.expression
(CDR
(RPLACD map.expression
(RPLACD
(CONS (CAR mapx)
mapexp))))))

)))
(SETQ mapx
(COND
(mapfn2
(APPLY* mapfn2 mapx))
(T (COR mapx))))
(GO loop))

)

SUBSET returns a list that contains only the non-NIL values produced by
applying a function to successive elements of a list. SUBSET has the same for-
mat as MAPCAR. Unlike MAPCAR, however, NIL values produced when
MAPFENI is applied to MAPX are ignored in constructing the resulting list.

12.3 SPECIFYING AN ARGUMENT AS A FUNCTION:
FUNCTION

In many applications we want to pass the name of a function as an argument to
another function. INTERLISP provides the FUNCTION function.to assist us.
FUNCTION is an NLAMBDA function that does not evaluate its arguments. It
has the followin