
INTERLISP
The Language and Its Usage

STEPHEN H. KAISLER
Defense Advanced Research Projects Agency

A Wiley-lnterscience Publication
JOHN WILEY & SONS
New York • Chichester • Brisbane • Toronto • Singapore

Cb{>yr^it © 1986 by W il^ & Sons, Inc.

All rights reserved. Published shnnttaneoosly in Canada.

Reproduction or translation of zssj part <rf tins work
beyond that permitted \ty Section 107 or 106 the
1976 United States Copyi^Jit Act without the permissimi
of the copyr^ht owner is unlawful. Requests for
permission or further uiforniation should be addressed to
the Pbrmissions Departm oit, Wiley &. Sons, Inc.

Ubrmry cfCom gnss Cmtalogimg im PmbBcmtiom Dmrn:
Kaisler, Stephen H. (St^rfien Hendridi)

INTERLISP: the language and its usage.

“A Wiley-Interscience publication.”
BibKograpby: p.
Includes index.
1. LISP (Computer program lai^uage) I. U tle

QA76.73.L23KJ5 1986 005.13*3 8S-31528
ISBN 0-471-81644-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

^ 7//C'*
I U l S
f

I
I

To my loving wife, Chryl Kennedy Kaisler,

who has persevered through the many hours that
it took to write this book. Her patience and support
are greatly appreciated and, I hope, amply rewarded.

Preface

This text describes the features of a dialect of LISP known as INTERLISP. IN
TERLISP stands for “Interactive Lisp.” It provides a rich program development
and problem prototyping environment.

There is strong agreement among LISP developers and users about what the
basic functions of LISP are. All of these are described in the first few chapters of
this book. But there is no “standard” for LISP and it is unlikely that we will see
one in the near future. To date, the best standard that exists is the INTERLISP
Reference Manual. This manual is edited and maintained by staff members of
the Xerox Corporation’s Palo Alto Research Center, Palo Alto, CA and Special
Information Systems Division, Pasadena, CA.

For all of the detail and wealth of information contained in the INTERLISP
Reference Manual [irm78, irm83], it remains a remarkably obtuse document.
Some say that it is user-hostile. One must have extreme familiarity with IN
TERLISP, usually through the tutelage of an INTERLISP guru, to be able to
use it efficiently. This text attempts to correct this problem by describing most of
the major functions, capabilities, and packages provided by INTEBU^ISP. It is
augmented by numerous examples taken from actual experience as well as many
technical papers published in the open AI literature. Where appropriate, refer
ences to the INTERLISP Reference Manual [irm78, irmS3] will be made using
the notation (IRM x.y.z) where x,y,z refer to the chapter, section, and para
graph of the IRM respectively.

This text is based upon experience gained using INTERLISP on an IBM
3081 under VM/SP (version 3.0), INTERLISP-D on a Xerox 1100 Scientific In
formation Processor (through the Fugue release), and INTERLISP-10 on a
DECSystem-20 under TOPS-20 (release dated 26-SEP-83).

It is not my intent to teach you how to “program” in LISP in this text. There
are numerous books that explain the essential features of LISP programming
from the viewpoint of the novice. Many of these are mentioned in the references,
but a notable volume is that of Winston and Horn:

VII

viii Preface

Winston, P. and Horn, B.K.P,
Lisp
Addison-Wesley, Reading, MA, 1981

whose first few chapters provide a basic introduction to LISP programming. If
you have not programmed in LISP before, you may also want to consult

Touretzsky, D.
LISP: A Gentle Introduction to Symbolic Computation
Harper & Row, New York, 1983 '

Wilensky, R.
LISPCraft
W. Norton & Sons, San Francisco, 1984

The text is divided at a logical breakpoint. Chapters 1 through 16 discuss
features that are largely found in most LISP systems, although they may often go
by different names or have different implementations. Chapters 17 through 31
discuss features that provide INTERLISP with its power as an interactive pro
gramming environment. A second volume is contemplated that will discuss the
INTERLISP-D implementation. Tentatively, this volume will be entitled

Interlisp: The Interactive Programming Environment

You will find this current text replete with examples of LISP functions that
have been described and (sometimes) commented. This reflects a bias of mine
that you understand a language by reading programs or functions written in the
language. That is, we all learn programming by analogy; we look at how some
body else has written a program and copy the essential elements. Sometimes we
copy their style and faults as well. The functional code presented in this text has,
for the most part, been tested on one of the INTERLISP systems mentioned
above.

St e p h e n H. K a is l e r

f}

Silver Spring, Maryland
March. 1986

Acknowledgments

No book is ever completed without the assistance of a great many people. Let me
take this opportunity to thank a few of those who assisted me. Jerry Alexander of
Analytics, Inc. encouraged the completion of the book as did numerous Interlisp
programmers and adherents who believed that something better than the IRM
was needed. Charles Kellogg of MCC and John Vittal and Beau Shiel of Xerox
reviewed the manuscript and provided many cogent comments. Jim Gaughan,
my former editor; Carol Beasley, who stepped in in his absence; and Maria Tay
lor, my current editor, were all instrumental in seeing the project through to
completion. Also, I would like to especially thank Sandra Renner, their secre
tary, who handled numerous queries and phone calls. Finally, I want to ac
knowledge the contribution of the family cats. Sprite and Gizmo, who carefully
monitored the progress of the book by sitting in front of the computer terminal
while I typed away.

S.H.K.

IX

Contents

1. INTRODUCTION 1
1.1 Why Lisp? 2

1.1.1 Symbolic Computation 2
1.1.2 Information Representation by Lists 3
1.1.3 Primitive Functions 3
1.1.4 Function Composition 4
1.1.5 Functions versus Data 4
1.1.6 The EVAL Function 5

1.2 Lisp Dialects 5
1.2.1 MACLISP/ZetaLisp 5
1.2.2 FranzLisp 7
1.2.3 Portable Standard Lisp 7
1.2.4 CommonLisp 7

1.3 Lisp as a Programming Environment 8
1.3.1 Multiple Data Types 9
1.3.2 Modular Programming 9
1.3.3 Deferred Binding 10
1.3.4 Interactive Development 10
1.3.5 Flexible Control Structures 11
1.3.6 Pattern Matching Facilities 11
1.3.7 Language Extensibility 12

1.4 Lisp as a Conceptual Environment 12
1.5 Structure of the Text 14
1.6 Comments on the Text 16

2. LISP DATA STRUCTURES 19
2.1 Literal Atoms 19

2.1.1 Pnames 21
2.1.2 Value Cells 21
2.1.3 Property Lists 21

xi

2.1.4 Function Definition Cells 21
2.1.5 Creating Atoms 22
2.1.6 Binding Variable Values 23
2.1.7 Variable Typing and Declaration 24

2.2 Numbers 25
2.2.1 Integers 25
2.2.2 Floating Point Numbers 26
2.2.3 Complex Numbers 27
2.2.4 Conversion between Numeric Classes 27

2.3 Lists 27
2.4 Arrays 29

2.4.1 Dimensionality 30
2.4.2 Specification and Creation of Arrays 31
2.4.3 Hash Arrays 31

2.5 Strings 32
2.6 Records and User-Defined Datatypes 32 i
2.7 Files 33

3. PRIMITIVE FUNCTIONS 35

3.1 Taking Lists Apart: CAR and CDR 35
3.1.1 CAR/CDR Combinations 37

3.2 Putting Lists Together; CONS, LIST, and APPEND 40
3.2.1 CONS: Constructing Lists 40
3.2.2 LIST: Making Lists 42
3.2.3 APPEND: Concatenating Lists 45
3.2.4 Creating (NIL) 48

3.3 Physical Structure Replacement: RPLACA and RPLACD 48
3.3.1 Replacing the CAR Cell 49
3.3.2 Replacing the CDR Cell 50
3.3.3 Replacing the CAR and CDR of a Cell 52

3.4 Preventing Evaluation 53
3.5 Conditional Execution: COND 56

3.5.1 Executing a COND Expression 57
3.5.2 The Default Clause 58
3.5.3 Test Phrase Values 58

3.6 Multiple Case Selection: SELECTQ 60 1
3.6.1 Executing a SELECTQ Expression 60
3.6.2 SELECTQ Examples 62
3.6.3 A Definition for SELECTQ 63 |
3.6.4 SELECTC: Selecting on Constants 64 I

3.7 Iterative Evaluation: PROG 65 ;
3.7.1 Binding of PROG Variables 66 j
3.7.2 Variations on PROG 68 j
3.7.3 Transfer of Control 69 |
3.7.4 Exiting PROGs 71 '

xii Contents

3.7.5 Implementing a DO-WHILE-UNTIL Construct 71
3.7.6 Other LISP Forms 75

3.8 Value Assignment: SET and SETQ 76
3.9 Setting an Atom’s Value Cell 77

3.9.1 Binding Atoms from a File 77
3.9.2 Getting and Setting the Top Level Value 78

4. FUNDAMENTAL PREDICATES 81
4.1 Atom Testing: ATOM and LITATOM 81

4.1.1 An Alternative Atomic Predicate 83
4.2 Numeric Predicates 84

4.2.1 Testing for Numbers 84
4.2.2 Testing for Zero 85
4.2.3 A Generalized Zero Predicate 86
4.2.4 Testing the Type of Number 87

4.3 String Testing: STRINGP 88
4.4 Array Testing: ARRAYP 89
4.5 List Testing: LISTP and TAILP 90

4.5.1 Testing for the Tail of a List 91
4.5.2 Counting the CDRs to Produce a Tail 93

4.6 Testing for Equality 94
4.6.1 EQ versus EQUAL 94
4.6.2 Atomic Equality 97
4.6.3 Numeric Equality 99
4.6.4 Testing Equality of Length 100
4.6.5 Testing Complex or Circular Structures 101
4.6.6 Testing for Non-Equality 102
4.6.7 Testing for Null 103

4.7 Testing Variable Bindings 103
4.8 Determining Membership in a List 105

5. LOGICAL CONNECTIVES AND PREDICATES 109
5.1 Logical Conjunction 109

5.1.1 An Application of AND 111
5.2 Logical Disjunction 111

5.2.1 An Application of the OR Function 113
5.3 Logical Negation 113

5.3.1 Computing the Logical Negation 113
5.3.2 Creating Negated S-expressions 114

5.4 Universal Quantification 116
5.4.1 A Definition for EVERY 117
5.4.2 Applications of EVERY 118

5.5 Existential Quantification 119
5.5.1 A Definition for SOME 120

Contents xiii

6. LIST MANIPULATIOrsf 123

6.1 Creating Lists: LIST 123
6.2 Concatenating Lists 125

6.2.1 NCONC: Normal Concatenation 125
6.2.2 TCONC: One at a Time Concatenation 128
6.2.3 LCONC: Concatenating Lists 130
6.2.4 ATTACH: Concatenating at the Front 132
6.2.5 Variations on Concatenation 133

6.3 Sublist Extraction 136
6.3.1 Extracting the Last Element 136
6.3.2 Extracting the Tailing N Elements 137
6.3.3 Extracting the Last N Elements 139
6.3.4 Extracting from the Nth Element 142

6.4 Copying and Reversing Lists 143
6.4.1 Copying List Elements 144
6.4.2 Copying All List Elements 146
6.4.3 Copying with Reversal 148
6.4.4 Removing Elements from a List 149

6.5 Modifying Lists by Substitution 151
6.5.1 A General Substitution Function: SUBST 151
6.5.2 Substituting by Segments: LSUBST 153
6.5.3 Substituting by Association: SUBLIS 154
6.5.4 Substituting by Pairing: SUBPAIR 157

6.6 Logical Operations on Lists 161
6.6.1 Logical Difference 162 ^
6.6.2 Logical Intersection 166
6.6.3 Logical Union 167

6.7 Sorting Lists 168
6.7.1 A Basic Sorting Function 169
6.7.2 Numeric Sorting 170
6.7.3 Alphameric Sorting 171
6.7.4 Comparing Two Lists 173

6.8 Length Functions 177
6.8.1 Finding the Length of a List 177
6.8.2 Counting List Cells 178
6.8.3 Counting Down a List 179

6.9 Merging Lists 180
6.9.1 Merging Two Lists 181
6.9.2 Merging with Insertion 183

6.10 Association Functions 184
6.10.1 Searching Lists for Associations 184
6.10.2 Replacing an Association List Value 186
6.10.3 Removing an Entry 187
6.10.4 Adding a Value to an Entry 189

xiv Contents

6.11 Searching Lists 189
6.11.1 Searching Lists in Property List Format 190
6.11.2 Replacing Elements in Place in a List 191

7. PROPERTY LIST FUNCTIONS 193
7.1 Concept of the Property List 193

7.1.1 The Uniqueness of Atoms 194
7.2 Getting a Property 195

7.2.1 Getting the Entire Property List 197
7.3 Putting Properties 198

7.3.1 Assigning Multiple Properties 201
7.3.2 Setting the Property List 201
7.3.3 Defining a Property for Multiple Atoms 202

7.4 Modifying Property Lists 203
7.4.1 Adding a Property 203
7.4.2 Removing a Property 206
7.4.3 Removing the Property List 207
7.4.4 Changing Property Names 208

7.5 Obtaining the Property Names of an Atom 210
7.5.1 Obtaining the System Property Names 211

7.6 Extracting A Property Sublist 211

8. FUNCTION DEFINITION AND EVALUATION 213
8.1 Function Types 213

8.1.1 To Evaluate or Not 214
8.1.2 To Spread or Not 215
8.1.3 Compiled Functions 216
8.1.4 Summary of Function Types 216
8.1.5 Determining the Function Type 217

8.2 Defining Functions 218
8.2.1 Syntax of a Function Definition 218
8.2.2 Defining a Function: DEFINEQ 219
8.2.3 Defining a Function: DEFINE 220
8.2.4 The Effect of DFNFLG 221
8.2.5 Alternative Defining Forms 222

8.3 Retrieving a Function Definition 223
8.4 Setting a Function Definition 224

8.4.1 Alternative Forms of PUTD 225
8.5 Copying Function Definitions 225

8.5.1 A MOVD Example 226
8.6 Function Predicates 228
8.7 Argument List Functions 229

8.7.1 Determining the Argument Type 229
8.7.2 Determining the Number of Arguments 231

Contents xv

8.7.3 Obtaining the Argument List 234
8.7.4 Accessing the Arguments of a Nospread Function 235
8.7.5 Setting the Arguments of a Nospread Function 236

8.8 Function Evaluation 237
8.8.1 Updating a Database Variable 237
8.8.2 A-list Evaluation 238
8.8.3 Constant Evaluation 238

8.9 Function Application 239
8.9.1 APPLYing to an Indefinite Number of Arguments 241

8.10 Repetitive Execution 241
8.11 Generators 243

8.11.1 Initializing a Generator 244
8.12 Macros 245

8.12.1 Definition of Macros 246
8.12.2 Expansion of Macros 249
8.12.3 A Function for Defining Macros 250

9. ATOM MANIPULATION 253
9.1 Rules for Atom Names 254
9.2 Creating Atoms 255

9.2.1 GENSYM: Generating a Symbol 256
9.2.2 MKATOM: Creating Atoms from Strings 259
9.2.3 Making an Atom from a Substring 260

9.3 Packing and Unpacking Atoms 262
9.3.1 Packing Atoms 262
9.3.2 Unpacking Atoms 263
9.3.3 Using PACK and UNPACK 264

9.4 Character Conversion 265
9.4.1 CHCON: Converting to a Number 265
9.4.2 CHARACTER: Converting to the PNAME

Equivalent 266
9.4.3 Character Code Structures 267
9.4.4 Character Translation 268

9.5 Determining PNAME Length 270
9.6 Extracting Characters 271
9.7 Selecting Alternatives by Character Codes 273
9.8 Case Functions 273

10. STRING MANIPULATION FUNCTIONS 275
10.1 Creating a String 275

10.1.1 Allocating a String Pointer 277
10.2 Extracting Substrings 277

10.2.1 The SUBSTRING Function 278
10.2.2 Getting the Next or Last Character 279

xvi Contents

10.3 Concatenating Strings 280
10.3.1 Concatenating a List of Objects 281

10.4 Testing Strings 282
10.4.1 Determining String Existence 282
10.4.2 Testing the Equality of Strings 282
10.4.3 Testing String Membership 283

10.5 Replacing Elements of a String 284
10.5.1 Replacing Elements with Character Codes 285

10.6 Searching a String 286
10.6.1 Searching a String for a Character 290
10.6.2 Creating Bit Tables 291

10.7 String Operations 292
10.7.1 Inserting into a String 292
10.7.2 Deleting from a String 293
10.7.3 Substituting into a String 294

10.8 Trimming a String 294

11. ARRAY MANIPULATION FUNCTIONS 297
11.1 Creating an Array: INTERLISP-10 297

11.1.1 Creating an Array: INTERLISP-D 299
11.2 Manipulating Arrays 299

11.2.1 Obtaining the Array Size 300
11.2.2 Obtaining the Array Type 300
11.2.3 Validating an Array Pointer 301
11.2.4 Obtaining a Pointer to the Beginning of an

Array 301
11.2.5 Setting the Value of an Array Element 302
11.2.6 Retrieving the Value of an Array Element 304
11.2.7 Copying Arrays 305
11.2.8 Comparing Two Arrays 306

11.3 Hash Arrays 307
11.3.1 Creating and Testing Hash Arrays 308
11.3.2 Storing into and Retrieving from a Hash Array 309
11.3.3 Applying a Function to a Hash Array 312
11.3.4 Dumping Hash Arrays 312
11.3.5 Overflow Handling 313

11.4 A Matrix Package 315
11.4.1 Defining a Matrix 315
11.4.2 Getting a Matrix Element 317
11.4.3 Setting a Matrix Element 319
11.4.4 Basic Matrix Operations 319

11.5 Sorting Using Arrays 325
11.5.1 BubbleSort 325
11.5.2 Selection Sorting 327

Contents xvli

xviii Contents

12. MAPPING FUNCTIONS 329
12.1 Generic Mapping 329

12.1.1 Returning a List of Values 331
12.1.2 Mapping on Successive Elements 332
12.1.3 Mapping on Successive Elements: MAPCONC 334
12.1.4 Mapping over Two Arguments 336
12.1.5 Mapping Across Atoms: MAPATOMS 338
12.1.6 A Generic Printing Function 339

12.2 Applying Functions to Subsets 341
12.3 Specifying an Argument as a Function: FUNCTION 342
12.4 The FUNARG Mechanism 344

12.4.1 Using FUNARGs 344
12.4.2 Constructing FUNARGs to be Passed as

Functions 346
12.5 APPLYing a Function to its Arguments 348

12.5.1 Determining S-expression Depth 349

13. ARITHMETIC FUNCTIONS 351
13.1 Integer Functions 352

13.1.1 Integer Addition 352
13.1.2 Integer Subtraction 353
13.1.3 Integer Multiplication 355
13.1.4 Integer Division 356
13.1.5 Minimum and Maximum 357
13.1.6 Integer Modulus 358
13.1.7 Converting to an Integer 358

13.2 Integer Predicates 359
13.2.1 Boolean Predicates 359
13.2.2 Predicates for Testing Equality 360
13.2.3 Predicates for Testing Characteristics 362

13.3 Manipulating Integers 365
13.3.1 Logical Manipulations 366
13.3.2 Integer Shift Functions 367
13.3.3 Integer Conversion 369
13.3.4 The Greatest Common Divisor 369

13.4 Floating Point Functions 370
13.4.1 Floating Point Addition 370
13.4.2 Floating Point Subtraction 371
13.4.3 Floating Point Multiplication 372
13.4.4 Floating Point Division 372
13.4.5 Testing Equality of Floating Point Numbers 373
13.4.6 Floating Point Boolean Functions 374
13.4.7 Floating Point Minimum and Maximum 374
13.4.8 Converting a Number to Floating Point Format 375

13.5 Mixed Arithmetic Functions 375
13.5.1 Computing the Absolute Value 376

13.6 Special Arithmetic Functions 377
13.6.1 Trigonometric Functions 377
13.6.2 Inverse Trigonometric Functions 378
13.6.3 Exponentiation 379
13.6.4 Square Root 380
13.6.5 Logarithms 381
13.6.6 Random Number Generation 382

13.7 More Arithmetic Functions 383
13.7.1 Statistical Functions 384
13.7.2 Complex Arithmetic 386
13.7.3 Additional Arithmetic Functions 391

14. INPUT FUNCTIONS 395
14.1 READ: The General Case 395

14.1.1 Effect of Control Characters 397
14.2 READing: Special Cases 401

14.2.1 RATOM; Reading an Atom 401
14.2.2 Reading up to an Atom 402
14.2.3 Testing Atom Demarcators 403
14.2.4 RSTRING: Reading a String 405
14.2.5 READC: Reading a Character 405
14.2.6 Reading the Last Character 406
14.2.7 Looking Ahead in the Input Stream 407
14.2.8 READLINE: Reading a Terminal Line 408
14.2.9 Reading from a File 409
14.2.10 Skipping S-expressions in a File 410

14.3 Input Predicates 412
14.3.1 READP: Testing Input 412
14.3.2 Waiting for Input 414

14.4 Concept of the Read Table 415
14.4.1 Syntax Classes 415
14.4.2 Getting the Syntax Class 417
14.4.3 Setting the Syntax Class 418
14.4.4 Testing the Syntax Class 420
14.4.5 Read Macros: Defining User Syntax Classes 421
14.4.6 Standard Read Macro Characters 424
14.4.7 Read Macro Functions 425
14.4.8 BQUOTE: An Example of a SPLICE Macro 426

14.5 Read Table Functions 428
14.5.1 Testing a Read Table 428
14.5.2 Obtaining a Read Table Address 428
14.5.3 Setting a Read Table 429
14.5.4 Copying a Read Table 429

Contents xix

14.6 Line Buffering 430
14.6.1 Enabling and Disabling Line Buffering 431
14.6.2 Clearing the Line Buffer 434
14.6.3 Accessing the Buffer’s Contents 434
14.6.4 Resetting the Line and System Buffers 435

14.7 The Askuser Package 436
14.7.1 ASKUSER 436
14.7.2 Key Completion 438
14.7.3 Key List Format 438
14.7.4 The Default Key List 439
14.7.5 Key List Options 43^
14.7.6 Key List Construction 443
14.7.7 Special Keys 444

15. OUTPUT FUNCTIONS 447
15.1 Printing S-expressions: PRINx 448

15.1.1 PRINl 448
15.1.2 Printing with Separators 449
15.1.3 Printing with a Carriage Return 451
15.1.4 Printing-Bells 452
15.1.5 User-Defined Printing 452
15.1.6 Printing Unusual Data Structures 454
15.1.7 Writing Expressions to a File 457

15.2 Print Control Functions 458
15.2.1 Printing Multiple Spaces 458
15.2.2 Printing a Carriage Return 460
15.2.3 Tabbing 460

15.3 Setting the Print Level 462
15.4 Printing Numbers 465

15.4.1 Format Conversion 465
15.4.2 Fixed Point Format 466
15.4.3 Floating Point Format 467
15.4.4 Changing the Integer Radix 468
15.4.5 Changing the Floating Point Output Format 469

15.5 Terminal Tables 469
15.5.1 Terminal Syntax Classes 471
15.5.2 Establishing a Terminal Table 472
15.5.3 Getting a Terminal Table Address 472
15.5.4 Testing a Terminal Table 473
15.5.5 Copying Terminal Tables 473
15.5.6 Resetting the Terminal Table 474

15.6 Terminal Control 474
15.6.1 Echo Modes 474
15.6.2 Echo Control 476
15.6.3 Character and Line Deletion Control 477

XX Contents

15.6.4 Converting to Upper Case on Typein 480
15.6.5 Line Length Control 480

15.7 Prettyprinting 483
15.7.1 Generalized Prettyprinting 483
15.7.2 Prettyprinting to the Terminal 487
15.7.3 Displaying Prettyprinted Definitions 488
15.7.4 Prettyprinting Symbolic Files 489
15.7.5 Prettyprinting Control Variables 489

15.8 The Printout Package 493
15.8.1 Horizontal Spacing Commands 494
15.8.2 Vertical Spacing Commands 495
15.8.3 Printing Specifications 495
15.8.4 Structure Specifications 496

16. FILE MANAGEMENT AND OPERATIONS 499
16.1 File Structures and Names 499

16.1.1 The VM/SP File System 499
16.1.2 The INTERLISP-D and INTERLISP-10 File

Systems 500
16.2 File Declarations 501

16.2.1 The Primary F ile ‘T 501
16.2.2 Declaring the Primary Input File 501
16.2.3 Declaring the Primary Output File 503
16.2.4 Testing Input/Output Files 505
16.2.5 File Name Recognition 505

16.3 Opening a File 506
16.3.1 A General File Open Function 507
16.3.2 A Predicate for Testing Open Files 509

16.4 Getting and Setting File Attributes 510
16.4.1 Setting File Attributes 513

16.5 Closing Files 513
16.5.1 Basic Closing Functions 513
16.5.2 Closing All Files 514
16.5.3 The Whenclose Package 515

16.6 Other File Operations 517
16.6.1 Deleting Files 517
16.6.2 Renaming Files 518

16.7 Manipulating File Names 518
16.7.1 Unpacking a File Name 519
16.7.2 Constructing File Names 519
16.7.3 Accessing a File Name Field 520

16.8 Random Access Files ̂ 521
16.8.1 Manipulating the File Pointer 522
16.8.2 Testing for Random Accessibility 523
16.8.3 Searching a File 524

Contents xxi

16.8.4 Copying Bytes from FUe to FUe 526
16.8.5 Testing for an End of Rle 527

16.9 Saving and Restoring a User’s Virtual Memory:
SYSIN/SYSOUT 527
16.9.1 Saving Your Virtual Memory 528
16.9.2 Restoring Your Virtual Memory 529
16.9.3 Advising SYSOUT Before Saving 530
16.9.4 Advising SYSOUT After Restoring 531

16.10 Commenting Function Definitions 532
16.10.1 Printing Comments 533
16.10.2 Comment Pointers 534

17. THE FILE PACKAGE 537
17.1 Features of the File Package 537

17.1.1 Marking Changes to Files 538
17.1.2 Noticing Files 538
17.1.3 Updating FUes 539
17.1.4 File Package Properties 539
17.1.5 FUe Maps 540
17.1.6 File Package Variables 541

17.2 File Package Commands 542
17.2.1 Functions 543
17.2.2 Variables 544
17.2.3 Adding Variables to a File 548
17.2.4 Association Lists 550
17.2.5 Properties 551
17.2.6 S-expressions 553
17.2.7 Evaluation of S-exptessions 554
17.2.8 Commands 554
17.2.9 Comments 555
17.2.10 Advice 556
17.2.11 Macros 557
17.2.12 File Package Commands 559
17.2.13 Records 559
17.2.14 Arrays 560
17.2.15 CLISP Expressions 561
17.2.16 Templates 561
17.2.17 Blocks 561
17.2.18 Declarations 562
17.2.19 Files 562
17.2.20 Variations on Command Structure 563

17.3 File Package Functions 564
17.3.1 Making Files 565
17.3.2 Remaking Files 572
17.3.3 Making Multiple Files 573
17.3.4 Listing Files 575

xxii Contents

Contents xxiii

17.3.5 Compiling Files 576
17.3.6 Cleaning Up Files 577
17.3.7 Determining File Status 578
17.3.8 WHEREIS: Finding Types in Files 581
17.3.9 Marking Changes in Files 582
17.3.10 Determining What has been Changed 584
17.3.11 Adding to Files 584

17.4 Defining New File Package Types 586
17.4.1 FILEPKGTYPE 586
17.4.2 File Package Type Definitions 588

17.5 Manipulating File Package Types 589
17.5.1 Getting a Type Definition 591
17.5.2 Creating a Definition 593
17.5.3 Copying a Definition 594
17.5.4 Deleting a Definition 596
17.5.5 Showing Definitions 596
17.5.6 Editing a Definition 597
17.5.7 Saving and Unsaving Definitions
17.5.8 Loading a Definition 599
17.5.9 Renaming an Object 600

598

17.5.10 Changing Calling Function Names 601
17.5.11 Comparing Definitions 603
17.5.12 Determining Type Existence 604
17.5.13 Determining the Types of an Object 605

17.6 Defining New File Package Commands 606
17.6.1 FILEPKGCOM 606

17.7 Manipulating File Package Command Lists 609
17.7.1 Adding to a File’s COMS 609
17.7.2 Deleting from a File’s COMS 610
17.7.3 Determining if an Object is in a Command 611
17.7.4 Making a New File Package Command 613
17.7.5 Creating a COMS Variable Name 613
17.7.6 Smashing a File’s COMS 614
17.7.7 Moving an Item between Files 615

17.8 Prettyprinting to a File 615
17.8.1 Prettyprinting Function Definitions 615
17.8.2 Printing a Definition 619
17.8.3 Making a File Creation Slug 620
17.8.4 Determining the File Date 621
17.8.5 Printing the File Date 622
17.8.6 Printing Function Definitions on a File 623
17.8.7 Printing a COMS Message upon Loading 624
17.8.8 Obtaining the File Changes 624

17.9 Symbolic File Input 625
17.9.1 Generalized Load 625
17.9.2 Loading Selected Functions 627

17.9.3 Loading Selected Expressions 628
17.9.4 Editing Functions without Loading 629
17.9.5 Loading Symbolic Definitions 629

18. ERROR HANDLING 631
18.1 How Errors Occur 631
18.2 Catching and Handling Errors 632

18.2.1 Catching Errors: ERRORTYPELST 632
18.2.2 An Example of ERRORTYPELIST Usage 634

18.3 Catching Errors in a Computation 635
18.3.1 Alternative Forms of ERRORSET 637
18.3.2 Checking for an End of File 638

18.4 Terminal-Initiated Breaks 638
18.5 Types of Errors 640
18.6 Error Handling Functions 648

18.6.1 Printing Error Messages 648
18.6.2 Returning from Errors 653
18.6.3 Obtaining Information about Errors 654
18.6.4 Entering the Error Routines 655

19. THE INTERLISP EDITOR 661
19.1 Invoking the Editor 661

19.1.1 Function Editing 661
19.1.2 Value Editing 666
19.1.3 Property List Editing 668
19.1.4 Expression Editing 670

19.2 EDITL: The INTERLISP Editor 671
19.3 Editor Functions 672

19.3.1 Finding a Pattern 672
19.3.2 Substituting in an Expression 673
19.3.3 Changing Names 674
19.3.4 Searching Files 674
19.3.5 Tracing Editor Macros 675

19.4 Editor Concepts 675
19.4.1 The Concept of Currency 675
19.4.2 The Print Level 676
19.4.3 Multiple Commands per Line 676
19.4.4 Pattern Specifications for Searching 676

19.5 Basic Editor Commands 677
19.5.1 Printing the Current Expression 677
19.5.2 Descending a Level 678
19.5.3 Ascending the Edit Chain 678
19.5.4 Modifying the List Structure 679
19.5.5 Adding Elements to the End of the Current

Expression 680

xxiv Contents

Contents xxv

19.5.6 Finding an Element 681
19.5.7 Replacing an Element 682
19.5.8 Exiting the Editor 682

19.6 An Editor Command Encyclopedia 682
19.6.1 Inserting After the Current Expression 685
19.6.2 Inserting Before the Current Expression 686
19.6.3 Locating a Pattern 686
19.6.4 Searching Backwards 687
19.6.5 Inserting Balanced Parentheses 688
19.6.6 Binding Macro Variables 689
19.6.7 Backing Up in the Current Expression 690
19.6.8 Deleting Balanced Parentheses 691
19.6.9 Capitalization 691 •
19.6.10 CLISPIFYing Expressions 692
19.6.11 Command Execution 693
19.6.12 Deleting Expressions 693
19.6.13 DWIMIFYing Expressions 694
19.6.14 Evaluating Input 695
19.6.15 Embedding 696
19.6.16 Evaluating an Expression 697
19.6.17 Examining an Expression 698
19.6.18 Finding an S-expression 699
19.6.19 Getting a Definition 701
19.6.20 Getting a Value 702
19.6.21 Getting a Comment 703
19.6.22 Going to a PROG Label 703
19.6.23 Conditional Listing 703
19.6.24 Inserting into an Expression 704
19.6.25 Joining Conditional Expressions 705
19.6.26 Locating an S-expression 706
19.6.27 Inserting and Removing Left Parentheses 707
19.6.28 Lower-Case Conversion 708
19.6.29 Iterative Execution 709
19.6.30 Macro Definition 709
19.6.31 Assigning Values to Arguments 711
19.6.32 Making a Function 712
19.6.33 Marking and Restoring the Edit Chain 713
19.6.34 Moving Expressions 714
19.6.35 Adding to the End of an Expression 715
19.6.36 Negating the Current Expression 716
19.6.37 Advancing to the Next Expression 716
19.6.38 The NIL Command 717
19.6.39 Finding the Nth Element 717
19.6.40 Exiting the Editor 718
19.6.41 Using the Original Definition 718
19.6.42 Executing Any One Command 719

19.6.43 Printing the Current Expression 719
19.6.44 Replacing in an Expression 720
19.6.45 Raising the Case in an Expression 721
19.6.46 Editing Atoms or Strings 721
19.6.47 Right Parenthesis In 722
19.6.48 Right Parenthesis Out 722
19.6.49 Setting a Literal Atom’s Value 723
19.6.50 Showing Instances 723
19.6.51 Splitting Conditional Expressions 724
19.6.52 Switching Elements in an Expression 725
19.6.53 Setting a Tentative Edit Marker 726
19.6.54 THRU and TO: Location Specification 727
19.6.55 Recursive Editing 727
19.6.56 Undoing an Editor Command 727
19.6.57 Moving up the Edit Chain 728
19.6.58 Extracting from the Current Expression 728
19.6.59 Inserting Comments 729
19.6.60 Attention-Changing Commands 730

20. DEBUGGING FACILITIES 731
20.1 TRACE: Tracing a Function 731
20.2 Break Commands 735

20.2.1 Releasing Breaks 735
20.2.2 Evaluation in a Break 736
20.2.3 Returning a Value from a Break 737
20.2.4 Aborting a Break 737
20.2.5 Unbreaking a Function 738
20.2.6 Displaying Arguments and Bindings 738
20.2.7 Obtaining a Backtrace 741
20.2.8 Displaying the Entire Stack 744
20.2.9 Setting the Stack Frame 745
20.2.10 Setting Values on the Stack 746
20.2.11 Breakmacros 746
20.2.12 Breakresetforms 748

20.3 Setting Breakpoints 748
20.3.1 Function Breakpoints 749
20.3.2 Defining a Breakpoint 750
20.3.3 Activating a Breakpoint 754
20.3.4 Breaking into a Function 756
20.3.5 BREAKCHECK: When to Break 760

20.4 Unbreaking Functions 761
20.4.1 Unbreaking a Function: 1 761
20.4.2 Unbreaking a Function: 2 762
20.4.3 Unbreaking a Broken-into Function 763

20.5 Break Package Utilities 763
20.5.1 Reading Break Package Commands 763

xxvl Contents

20.5.2 Changing Names in Functions 764
20.5.3 Restoring a Virgin Definition 765
20.5.4 Printing a Backtrace of the Stack 765

21. ADVISING 769
21.1 ADVISE: Modifying a Function’s Interface 769
21.2 UNADVISE: Removing Advice 775
21.3 READVISEing a Function 776
21.4 Saving Advice in a File 776

22. DWIM: AUTOMATIC ERROR CORRECTION 779
22.1 DWIM Modes 779

22.1.1 A DWIM Example 780
22.2 DWIM Protocols 781

22.2.1 Spelling Correction 781
22.2.2 Parenthesis Errors 782
22.2.3 Clause Errors 782

22.3 Error Correction Algorithms 784
22.3.1 Unbound Atoms 785
22.3.2 Undefined Functions 787
22.3.3 Undefined Functions in APPLY 789

22.4 Enabling DWIM 790
22.5 DWIMIFYing an Expression 790

22.5.1 DWIMIFYing a List of Functions 792
22.5.2 DWIMIFY Variables 793

22.6 The Spelling Corrector 795
22.6.1 Choosing a Candidate 795
22.6.2 Scoring a Candidate 802

22.7 DWIM Parameters 809
22.7.1 User-Directed Corrections and Transformations 810
22.7.2 The Spelling Lists 812

22.8 Spelling Functions 814
22.8.1 Adding a Word to a Spelling List 814
22.8.2 Finding a Misspelling 822
22.8.3 Fixing the Spelling of a Word 823
22.8.4 Checking a Function Name Spelling 826
22.8.5 Correcting File Name Spelling 827
22.8.6 A Spelling Correction Example 829

23. CONVERSATIONAL LISP 833
23.1 How CLISP Operates 834

23.1.1 Translating CLISP Statements 834
23.2 Operators 835

23.2.1 List Operators 835
23.2.2 Infix Operators 837

Contents xxvil

23.2.3 Prefix Operators 839
23.2.4 Operator Precedence 840
23.2.5 CUSP Declarations 840
23.2.6 Operator Definitions 842

23.3 Conditional Statements 844
23.4 Iterative Statements 846

23.4.1 I.S.Opr Translations 846
23.4.2 I.S.Type Operators 847
23.4.3 I.S.Binding Operators 851
23.4.4 I.S.Selection Operators 852
23.4.5 I.S.Termination Operators 855
23.4.6 I.S.Modification Operators 856
23.4.7 Potential Errors in Iterative Statements 857
23.4.8 Defining New Iterative Statement Operators 859

23.5 English Phrases 860
23.5.1 Basic English Forms 861
23.5.2 Defining New Words 861

23.6 CLISPIFYing 862
23.6.1 CLISPIFY Variables 863

23.7 CLISP Conventions 865
23.8 CLISP Functions 869

23.8.1 CLISPIFYing Functions 869
23.8.2 Disabling CLISP Operators 870
23.8.3 Storing CLISP Translations 870

23.9 CLISP Variables 871
23.10 The CHANGETRAN Package 872

23.10.1 CHANGETRAN Words 872
23.10.2 Defining New CLISP Words 874

24. LISP USER'S PACKAGES 877
24.1 File System Extensions 877

24.1.1 Indexing a File 877
24.1.2 Indexing Multiple Files 878
24.1.3 Implementing the ALL File Package Type 882
24.1.4 Editing a File’s History 883
24.1.5 Making Files Permanently Open 885

24.2 Extensions to Masterscope 886
24.2.1 Dumping Masterscope’s Knowledge 886
24.2.2 Enumerating the Masterscope Questions 887
24.2.3 Finding Out About Everything 889
24.2.4 Automatic Masterscope Database Creation 890

24.3 The DECL Package 891
24.4 TRANSOR: A LISP Translator 892
24.5 Other LISP User’s Packages 892

24.5.1 The Pattern Match Compiler 893

xxviil Contents

24.5.2 The Hash File Package 893
24.5.3 EDITA: The Array Editor 893
24.5.4 CJSYS: Access to the Operating System 893
24.5.5 EXEC: A TENEX Executive in INTERLISP 893
24.5.6 The NET Package 894
24.5.7 FTP: The File Transfer Package 894

25. THE PROGRAMMER'S ASSISTANT 895
25.1 The Concept of Undoing 895
25.2 LISPX: Type-In Evaluation 897

25.2.1 A Definition for LISPX 898
25.2.2 LISPX Macros 903
25.2.3 User Processing of Input 905

25.3 Establishing a User Executive 907
25.4 Undoable Versions of Destructive Functions 908

25.4.1 Undoable Sets 908
25.4.2 Replacing the Top-Level Value 913
25.4.3 Undoing Mapping Functions 914
25.4.4 Undoing Function Definitions 915
25.4.5 Undoing the Putting and Removing of

Properties 916
25.4.6 Writing Your Own Undoable Functions 919

25.5 Programmer’s Assistant Functions 919
25.5.1 LISPX Support Functions 919
25.5.2 Evaluating Expressions as if LISPXREAD 923
25.5.3 Apprising the Assistant of Undoable Functions 924
25.5.4 Substituting Undoable Versions 925
25.5.5 Undoing Events 925
25.5.6 Undoing When Errors Occur 928
25.5.7 LISPX Printing Support 928

25.6 Controlling Prompting 930
25.7 The Reset Package 931

25.7.1 Establishing a Reset List 931
25.7.2 Restoring Your Environment 932
25.7.3 Resetting Variables 934
25.7.4 Resetting Expressions 935
25.7.5 Establishing UNDO Information 936
25.7.6 Structure of RESETFORMS 937

25.8 Programmer’s Assistant Variables 938
25.9 LISPX Statistics 939

25.9.1 Printing LISPX Statistics 939
25.9.2 Adding New Statistics 940
25.9.3 Updating Statistics 940
25.9.4 System Statistics 941

Contents xxix

26. MASTERSCOPE 943
26.1 Masterscope Concepts 944
26.2 Interacting with Masterscope 944

26.2.1 Analyzing Functions 944
26.2.2 Erasing the Database 946
26.2.3 Showing Structures 946
26.2.4 Editing Functions 947
26.2.5 Checking Sets 948
26.2.6 Using CLISP in Masterscope 948
26.2.7 Obtaining Help 949

26.3 Specifying Sets 951
26.4 Specifying Relations 955
26.5 Specifying Paths 958
26.6 Describing Function Behavior 960
26.7 Masterscope Functions 965

26.7.1 Entering Masterscope 965
26.7.2 Determining Who a Function Calls 966
26.7.3 Determining the Free Variables 967
26.7.4 Getting and Setting Templates 967
26.7.5 Defining Masterscope Synonyms 968
26.7.6 Parsing a Relation 969
26.7.7 Getting the Results of a Relation 969
26.7.8 Testing a Relation 970
26.7.9 Mapping Across a Relation 971
26.7.10 Updating the Database 971
26.7.11 Dumping the Masterscope Database 972

27. THE RECORD PACKAGE 975

27.1 Record Declarations 975
27.1.1 Components of the Record Declaration 975
27.1.2 Using the Record Declaration 977
27.1.3 Translating the Record Declaration 978
27.1.4 Record Subfields 979

27.2 Creating a Record 979
27.3 Testing for Records 982
27.4 Manipulating Record Fields 983
27.5 Records and Typed Records 984
27.6 Property and Association List Records 986
27.7 Array and Hashlink Records 987
27.8 User Datatype Records 988
27.9 Access Records 988
27.10 Atom Records 989
27.11 Record Package Functions 990

27.11.1 Editing a Record Declaration 990
27.11.2 Obtaining a Record Declaration 990

XXX Contents

27.11.3 Obtaining the Declarations of a Field 991
27.11.4 Obtaining a Declaration’s Field Names 992
27.11.5 Accessing or Replacing a Record Value 992

27.12 User-Defined Datatypes 993
27.12.1 Defining New Datatypes 994
27.12.2 Fetching the Contents of an Object Field 995
27.12.3 Replacing the Contents of an Object Field 995
27.12.4 Creating an Instance of an Object 995
27.12.5 Obtaining the Field Specifications 996
27.12.6 Obtaining the Field Descriptors 996
27.12.7 Identifying User Datatypes 997

28. THE HISTORY PACKAGE 999
28.1 Structure of the History List 999
28.2 Updating the History List 1003
28.3 Event Specification 1003

28.3.1 Event Addresses 1004
28.4 History Commands 1006

28.4.1 Re-executing Previous Expressions 1006
28.4.2 Argument Substitution 1007
28.4.3 Editing a Previous Event 1010
28.4.4 Retrying an Event 1011
28.4.5 Printing the History List 1012
28.4.6 Undoing the Effects of Events 1012
28.4.7 Correcting Errors via DWIM 1014
28.4.8 Saving and Retrieving Events 1015
28.4.9 Archiving Events 1017
28.4.10 Forgetting Side Effects 1018
28.4.11 Remembering Events 1018
28.4.12 Printing Property Lists 1018
28.4.13 Printing Atom Bindings 1019
28.4.14 Analyzing Errors 1019
28.4.15 Bypassing the Programmer’s Assistant 1020
28.4.16 Preventing History List Recording 1020

28.5 History Package Variables 1020
28.5.1 LISPX History Macros 1020
28.5.2 History Package Forms 1022
28.5.3 The Archival Function 1023
28.5.4 The Value of an Event 1024

28.6 History Package Functions 1024
28.6.1 Recording a History Event 1024
28.6.2 Locating a History Event 1025
28.6.3 Locating Events by Specification 1026
28.6.4 Extracting a History Event 1027
28.6.5 Obtaining an Event’s Value 1027

Contents xxxl

28.6.6 Changing a History List’s Timeslice 1028
28.6.7 Searching the History List 1029
28.6.8 Printing the History List 1029

29. MISCELLANEOUS FUNCTIONS 1031
29.1 Chronometric and Counting Functions 1031

29.1.1 Date and Time Functions 1031
29.1.2 Clock Functions 1033

29.2 System Functions 1034
29.2.1 Exiting Interlisp 1034
29.2.2 Obtaining the System Type 1035
29.2.3 Obtaining the User Name 1036

29.3 Performance Measuring Functions 1036
29.3.1 Counting CONS Operations 1036
29.3.2 Counting Page Faults 1037
29.3.3 Timing an Expression 1038
29.3.4 Breaking Down Performance by Function 1039

29.4 Session Transcripts 1042
29.5 Greetings 1043
29.6 Directory Access Functions 1044

29.6.1 Reading the File Directory 1044
29.6.2 Manipulating File Directories 1044
29.6.3 Connecting to Another Directory 1048

29.7 Storage Management 1049
29.7.1 Displaying Storage Usage 1049
29.7.2 Gaining Space 1050

30. THE INTERLISP EXECUTION ENVIRONMENT 1055
30.1 Binding of Variables 1055

30.1.1 Variable Types 1056
30.1.2 Global Variables 1056

30.2 Stack Structure 1057
30.2.1 A Basic Frame Example 1057
30.2.2 A Frame Extension Example 1058
30.2.3 Stack Frames and Pointers 1059

30.3 Stack Access Functions 1060
30.3.1 Locating a Stack Frame 1061
30.3.2 Obtaining and Changing the Frame Name 1063

30.4 Variable Binding Functions 1064
30.4.1 Obtaining Variables at a Stack Frame 1064
30.4.2 Obtaining Variable Values at a Stack Frame 1065
30.4.3 Scanning the Stack for Bindings 1065

30.5 Stack Frame Operations 1066
30.5.1 Distinguishing Real from Dummy Frames 1067

xxxil Contents

30.5.2 Finding a Real Stack Frame 1068
30.5.3 Scanning Frames for Atom Bindings 1068

30.6 Evaluation in Other Frames 1069
30.6.1 Evaluation in Other Contexts 1069
30.6.2 Evaluating Expressions in an Access

Environment 1070
30.7 Manipulating Stack Pointers 1071

30.7.1 Testing a Stack Pointer 1071
30.7.2 Releasing a Stack Pointer 1072
30.7.3 Clearing an Active Stack 1072
30.7.4 Copying Stack Frames 1073

30.8 Exiting from a Stack Frame 1073
30.9 Operating on the Stack 1076

30.9.1 Mapping Down the Stack 1076
30.9.2 Searching Down the Stack 1077

31. THE INTERLISP COMPILER 1079
31.1 The Compiler Dialogue 1079
31.2 Compilation Issues 1081

31.2.1 Compiling NLAMBDA Functions 1081
31.2.2 Declarations 1082
31.2.3 Open Functions 1083
31.2.4 Constants 1083
31.2.5 COMPILETYPELST 1084
31.2.6 Compiling CUSP 1084

31.3 Compiler Functions 1085
31.3.1 Compiling Functions 1085
31.3.2 Compiling a Definition 1087
31.3.3 Compiling Symbolic Files 1088
31.3.4 Recompiling a File 1089

31.4 Compiled Code 1090
31.5 Compiler Error Messages 1091

REFERENCES 1095
INDEX 1105

Contents xxxiii

INTERLISP

1

Introduction

LISP, as a language, has been around for about 25 years [mcca78]. It was origi
nally developed to support artificial intelligence (AI) research. At first, it seemed
to be little noticed except by a small band of academics who implemented some
of the early LISP interpreters and wrote some of the early AI programs. In the
early 60’s, LISP began to diverge as various implementations were developed for
different machines. McCarthy [mcca78] gives a short history of its early days.

LISP, as a programming language, began to be widely used in the early 70’s.
A number of organizations supported different dialects—BBN, MIT, Xerox
PARC, UC Irvine, and others. In the middle 70’s, several people realized that
conventional machines were not suitable for the efficient execution of LISP pro
grams. They began to develop a class of specialized processors known as LISP
machines. By the early 80’s, renewed interest in AI and expert systems caused
LISP to become more visible. Several dialects had been more or less standard
ized and a few companies (such as Xerox, Symbolics, and Lisp Machine) had
entered into commercial production of LISP machines. Moreover, many people
had discovered that LISP provided an excellent implementation language for
some of the new ideas in software engineering.

Today, LISP is being used for many applications other than AI programs
(for example, see [elliSO] and [leviSO]), although it is still strongly associated
with that discipline. In order to further its acceptance as a general purpose pro
gramming language, I have focused on describing a specific dialect of LISP—
INTERLISP. I chose INTERLISP because there is a well-defined standard for
it—namely, the INTERLISP Reference Manual [irm78, irm83]. Moreover, IN
TERLISP is available on the DECSystem 10/20 under TENEX and TOPS-20,
on the VAX-11/780 under UNIX and VMS, on the IBM 30xx series under VM/
SP (available from Uppsala University, Sweden), and on the Xerox 1100 family
of scientific information processors. Undoubtedly, more implementations will
be available in the near future.

This chapter will set the stage for an in-depth analysis of INTERLISP. In
the first two sections, we motivate the choice of LISP and briefly explore some of

the available dialects. Sections 1.3 and 1.4 discuss the impact of LISP on the way
we program and on the way we think about the architecture of software systems.
Section 1.5 reviews the structure of the text. Section 1.6 discusses presentation
issues.

1.1 WHY LISP?
•

Why should you choose LISP to implement a software system? For many rea
sons, as it turns out, some of which are physical (e.g., implementation issues),
some of which are stylistic (e.g., programming issues), and some of which are
conceptual (e.g., design or architectural issues). For the moment, let us concen
trate upon the physical reasons.

LISP offers many features and capabilities that would be/are difficult to
provide in more traditional languages such as FORTRAN, PASCAL, and PL/1.
I would like to review these with you and argue for the view that LISP can do
them better. This does not imply that LISP is the best language for all applica
tions. There is no such language. But I do take the view that LISP should have a
well-defined niche in your repertoire of programming languages.

With this view in mind, the following paragraphs discuss some of the key
ideas associated with LISP and contrast their implementation in conventional
languages.

1.1.1 Symbolic Computation
Most programs compute on numbers. Conventional languages make the task of
manipulating numbers quite easy. They may also be able to handle string or
character expressions in an efficient manner. But, as AI research has shown,
much computation at the human level is done on concepts—complex, structured
representations of knowledge. Representation of knowledge is often the most
critical element of the computational problem. There may be no intuitively obvi
ous way of selecting numeric codes to represent pieces of knowledge. Arbitrary
encodings tend to obscure significant aspects of the problem, and make the task
of programming, debugging, and testing very complicated.

LISP was designed to allow the efficient, easy representation of symbolic
expressions. We use lists in everyday life to keep track of things, so our personal
experience should readily transfer to our use of lists in the computer. LISP essen
tially recognizes two basic data structures: atoms and lists. Atoms are just sym
bols—indivisible sequences of characters that have a meaning and a value. Lists
are collections of atoms and/or lists (e.g., sublists). Lists are usually stored in
the computer in a form similar to the way we see them on paper. The sequencing
information of the elements of a list is explicitly stored with each list item.

To manipulate symbolic knowledge, we represent it as a list of atoms and
then perform various operations upon the representation. In many cases, the
manipulation functions modify the structure of the list to add or subtract infor

2 Introduction

mation, to alter its structure, or to transform its contents. Examples throughout
the text will demonstrate how these operations are performed.

A number of languages have been built “on top of” LISP to provide sym
bolic algebraic manipulation, most notably, REDUCE2, developed by A.C.
Hearn and colleagues at the University of Utah, and MACSYMA, developed by
the MATHLAB Group at the Laboratory for Computer Science, MIT [math77].
Nicol [nicoSl] provides a definition of a simple symbolic differentiator for alge
braic expressions.

1.1.2 Information Representation by Lists
Information representation is a critical problem in designing a software system.
It is particularly acute in AI programs and expert systems because the informa
tion structures themselves are manipulated. In LISP, most information is repre
sented as lists. Simple lists are composed of atoms while complex expressions
have multiple levels of lists. This capability allows us to build very complex infor
mation structures without too much regard for addressing. By comparison, con
ventional languages rarely provide more than linear data structures, including
two dimensional arrays and record structures as in PASCAL.

Consider the representation of information concerning familial relation
ships between individuals. To represent the fact that Isaac is a child of Abra
ham, we may use the list

(i s - c h i ld - o f Isaac abraham)

and the corresponding list to represent the relationship that Abraham is a parent
of Isaac

(is -p a r e n t-o f abraham Isa a c) .

Other facts that might be represented about individuals include physical
data such as gender, age, height, and so on, and other relationships, skills, or
occupations. The power of the list representation allows us to capture all of this
information in a single uniform data structure, the list. With a few simple primi
tive functions, we may begin to access and manipulate this information, and
even build more powerful operators.

1.1.3 Primitive Functions
The essential kernel of LISP [moor79] is composed of a small set of primitive
functions. Usually, these functions are hardwired to improve the efficiency of
their execution. The composition of the kernel depends on the dialect. For ex
ample, the kernel of INTERLISP/370 is written in IBM assembly language
while the kernel of INTERLISP-D is written in microcode.

1.1 Why LISP 3

Most conventional languages do not have a primitive set of functions.
Rather, the primitive functions reside in the underlying machine language. Con
ventional languages such as FORTRAN and PASCAL consist of statement types
which represent simple methods for writing (possibly long) sequences of primi
tive functions. The source statements are translated into a sequence of machine
language instructions by a compiler or an interpreter. The resulting executable
program often bears no resemblance to the source program.

John Backus [back78] argues for a simpler style of programming based on
the concept of “functional programming.” It is interesting to note that func
tional programming corresponds to the basic mathematical theory of function
composition carried over to the realm of programming language development
and methodology.

LISP provides an excellent example of the notions expressed in Backus’s
paper. The minimal set of functions that we need in LISP to implement all other
functions are CAR, CDR, and CONS, EQ, and a few predicates for testing data
types. All other functions may be built from compositions of these elementary or
primitive functions. Of course, most LISP systems define a much larger set of
primitive functions for reasons of efficiency. Many of the functions that are de
scribed in this text for which definitions are given exemplify the notion of func
tion composition.

1.1.4 Function Composition
Proceeding from the kernel, LISP users create more complex functions by com
bining expressions containing primitive functions. The procedure is directly
analogous to mathematical function composition. The beauty of this feature is
that most of INTERLISP is written in LISP. One merely keeps building func
tions on top of functions to create more complex systems.

We should think of LISP as a tool for building more powerful tools. Many
systems designed for implementing artificial intelligence applications may right
fully be considered extended programming languages. Good examples include
0PS5 [forgSl] developed by Charles Forgy at CMU and ROSIE [fainSl, 82,
hayeS2] developed by Frederick Hayes-Roth and others at the Rand Corpora
tion.

4 Introduction

1.1.5 Functions versus Data
LISP possesses a singular advantage over most conventional languages, even
those that are interpreted. This is that functions and data are represented in the
same way. Conventional languages stress the separation of code and data as in
dependent entities. LISP emphasizes uniformity of representation—a single
model, if you will. Thus, we can create a data structure as a list and treat the
same data structure as an executable function definition or function invocation.

The beauty of this approach is demonstrated in a technique known as proce
dural attachment [stee79] . You may define an object, nominally a frame, which

has slots for the attributes that describe or distinguish the object from others of
its type. The value of an attribute may be an integer, atom, string, pointer to
another object, or a procedure (e.g., a LISP function definition). The procedure
may do anything a LISP function can do since it is a LISP function. Common
uses of procedures are validation of data, transformation of data, asking ques
tions to obtain the values of other attributes, or performing some computation to
instantiate another instance of the frame. You may operate upon the procedure
definition as data, but execute it by applying EVAL to it.

1.1.6 The EVAL Function
The function EVAL serves a dual purpose in LISP. It is both the formal defini
tion of the language as well as an interpreter for its execution. That is, EVAL
validates the syntax of the expressions presented to it for execution and verifies
their semantics by invoking the requested functions. By comparison, most con
ventional languages separate the syntax validation, performed by the compiler,
from the semantic verification, performed by the run-time monitor.

1.2 LISP DIALECTS
LISP has a long and rich history. There have been many dialects of LISP imple
mented on many different machines. McCarthy’s paper [mcca78] summarizes
the initial development of LISP. As he notes, it began to rapidly diverge after a
few years. Today, I think it is safe to say that there are two main dialects of LISP:

1. INTERLISP, which runs on DECSystem 10/20 machines, DEC ma
chines, and Xerox llxx Scientific Information Processors. A subset of
INTERLISP, available from Uppsala University, Sweden, runs on IBM
30xx processors under VM/SP.

2. MACLISP, developed for the DECSystem 10/20 family by MIT’s Artifi
cial Intelligence Laboratory, which also runs on VAX-ll/7xx machines.
It, too, has spawned new machine architectures, principally Lisp Ma
chine’s LAMBDA machine and Symbolics’ 36xx family of LISP Work
stations. MACLISP has actually been superseded by CommonLisp, but
the heritage remains the same.

In this section, I will briefly review and note some of the other LISP dialects
and their major differences.

1.2.1 MACLISP/ZetaLisp
MACLISP is a dialect of LISP that was developed at MIT’s Laboratory for Com
puter Science (formerly Project MAC). It runs on DECSystem-10/20s and VAX-
ll/7 x x series processors. MACLISP is oriented to efficient numeric computa
tion within a symbolic environment. MIT’s Laboratory for Artificial Intelligence

1.2 LISP Dialects 5

pioneered the concept of personal computers running LISP through the develop
ment of the CONS (1976) and CADR (1978) Lisp machines. Subsequently, Sym
bolics [symb83] was formed to develop commercial Lisp machine products.
Their first entry was the LM-2 which was a repackaged and enhanced CADR
machine. In 1982, Symbolics announced the 3600, a fourth generation (they
claim) Lisp machine.

Winston and Horn [wins81] introduce MACLISP in the first part of their
book. The second part gives numerous examples of LISP applications drawn
from the AI arena. Charniak, Riesbeck, and McDermott [charSO] provide an
extensive discussion of MACLISP features in their book along with numerous
examples of AI programs.

There are major differences between MACLISP and INTERLISP. Winston
and Horn note some of the most important differences are as follows:

MACLISP does not distinguish case information; every character is
translated to upper case on input.
Several functions, such as SETQ, DIFFERENCE, and QUOTIENT, may
take multiple arguments in MACLISP.
MACLISP has only three types of function evaluation as opposed to four in
INTERLISP. These are related as follows:

MACLISP INTERLISP

EXPR EXPR
----- FEXPR

LEXPR EXPR*

FEXPR FEXPR*

MACLISP uses the function DEFUN instead of DEFINEQ. The syntax is
somewhat different.
In MACLISP, MAPCAR’s arguments are <function> and <list>. MAPCAR
may also take multiple lists as its arguments where the <function) is applied
to each element of each list.
The last two arguments of PUTPROP are reversed in MACLISP. That is,
the syntax of PUTPROP is

(PUTPROP <atom> <value> <property>).

MACLISP comments start with a ; which may occur anywhere within a
program without affecting the execution of the program.
Bitwise logical operations are performed by the function BOOLE in
MACLISP with a numeric argument indicating which function is desired.

6 Introduction

For their Lisp machines, Symbolics uses a variant of MACLISP known as
ZetaLisp [weinSl] which introduces the following new features [symb83]:

A full range of data types
Flexible function calling and multiple-value returns
Stream-oriented input and output
The Flavor System for object-oriented programming with message passing
Macros for extending ZetaLisp syntax
Predefined functions for sorting, hashing, linear equations, and matrix
operations
Multiple name spaces (packages)

ZetaLisp will be compatible with CommonLisp, which has been developed
by a consortium of academics and AI researchers along with considerable indus
try participation [stee84].

1.2.2 FranzLisp
FranzLisp was developed at the University of California, Berkeley by John Fo-
deraro [fodeSl]. It runs under Berkeley Unix BSD 4.1 and Eunice on VAX-11/
7xx series machines. It is being ported to a large number of microcomputers
(primarily 16-bit machines) that also run BSD 4.1. FranzLisp is a subset of MA
CLISP. Lately, it has taken a development path that diverges from MACLISP
through a series of enhancements designed and implemented by several universi
ties notably the University of Maryland and Carnegie-Mellon University.

1.2.3 Portable Standard Lisp
Portable Standard LISP (PSL) is a version of LISP being developed by the Utah
Symbolic Computation Group. It has been described in a series of technical re
ports by Griss [grisSl, gris82a, gris82b] and Marti [mart79]. PSL is written in a
language called SYSLISP whose definition is given in Benson and Griss [bensSl]
and Griss and Hearn [grisSl]. PSL was developed to support the porting of the
REDUCE-2 symbolic algebraic manipulation system to a number of different
machines. It is rumored that PSL will be the Lisp of choice for the Cray ma
chines.

1.2.4 CommonLisp
CommonLisp [stee84] is a collaborative effort of over 50 researchers and LISP
programmers. Its authors claim that is a new dialect of LISP which is a successor
to MACLISP, but which has been strongly influenced by Lisp Machine LISP,
SCHEME, and less so by INTERLISP.

1.2 LISP Dialects 7

CommonLisp is intended to be a common LISP. That is, it should serve to
unify the features of many of the successors to MACLISP that have been devel
oped for a variety of machines. Several groups have indicated that they will en
sure compatibility with CommonLisp once the standard reference manual is
published.

CommonLisp is intended to ensure portability of programs among a large
number of machines by eliminating those features that cannot be implemented
easily on any one of the machines. Some details are left to the implementors and
some features are made optional. The goal is to ensure that programs adhering
to the CommonLisp standard will be transferrable among machines as long as
they contain no machine-specific features.

CommonLisp is intended to define an internally consistent semantics for
many standard LISP functions. Different implementations of LISP have treated
variables in different ways which have resulted in different results when the pro
gram is moved from one machine to another (or even from one implementation
to another, e.g., shallow versus deep bound INTERLISP systems). The refer
ence manual specifies one and only one semantic interpretation for each func
tion.

CommonLisp follows the MACLISP tradition in emphasizing the power of
system-building tools. Its designers envision, much like MACLISP and IN
TERLISP, that many user-level packages will be built on top of CommonLisp,
but these are not part of the core specification.

CommonLisp is designed to be efficient and stable. It is primarily compati
ble with MACLISP and its descendents/variants, but less so with INTERLISP.

CommonLisp will unify a community of LISP programmers who have be
come quite fragmented by pursuing variations of MACLISP. The approach is
laudable in that LISP, at least the MACLISP side, is one of the last languages to
develop a coherent standard. I encourage you, when writing programs in IN
TERLISP, to pay careful attention to the CommonLisp constructs in the event
that you want to translate your programs to that dialect. Having translated sev
eral programs from esoteric implementations of FranzLisp, I can assure you that
the reverse translation is quite painful and labor-intensive (particularly to de
bug).

1.3 LISP AS A PROGRAMMING ENVIRONMENT
LISP may be considered from two viewpoints; first, as a programming environ
ment, and, second, as a conceptual environment. In this section, I will discuss
LISP as a programming environment. In the next section, I will discuss it from a
conceptual viewpoint.

Different application domains place different requirements on the lan-
guage(s) which may be used to write programs for them. Put another way, no one
language is suitable for all applications. LISP was developed to support artificial
intelligence (AI) research and has become the primary tool for developing pro
grams in that discipline.

8 Introduction

This development has been neither circumstantial or serendipitous. LISP
incorporates many ideas (indeed, it pioneered quite a few) that are now consid
ered to be essential elements of the professional programming environment. The
following paragraphs summarize the major requirements for an AI program
ming language and discuss how LISP satisfies them.

1.3 LISP as a Programming Environment 9

1.3.1 Multiple Data Types
AI systems are generally large, complex programs. Many types of information
are used and need to be represented within the program. A variety of data types,
with associated operators, make it easier to encode and manipulate information
within a program. INTERLISP provides numerous data types (see Chapter 2).
One of the major features of INTERLISP is that any data type may be passed as
an argument to a function. In most cases, the function must decide what it has
and how to process it. In addition, you may also define your own data types (see
Chapter 27) and utilize system functions to operate upon them.

Lists, in one form or another, are the basic data structure used in AI pro
grams. Facilities for the efficient manipulation of lists are very important. Obvi
ously, INTERLISP satisfies this requirement as it is list-based. Chapters 3 and 6
discuss the basic list processing primitives.

As INTERLISP evolved, new data types were added to the language to in
crease its flexibility. Initially, INTERLISP supported only atoms, numbers (a
special type of atom), and lists. Later, strings and arrays were added. Today,
INTERLISP-D supports a number of basic data types such as bit maps and win
dows, to provide a powerful, window-oriented programming environment. This
trend is significant because it makes INTERLISP useful as a general-purpose
programming language.

Defining new data types, such as relational tables for a database applica
tion, is relatively simple. Providing the associated support mechanisms may or
may not be so simple depending on the complexity of the data structure. How
ever, the ability to develop a data type to meet your application needs without the
artificial constraints that are often imposed by conventional programming lan
guages should allow you greater flexibility in your programming.

1.3.2 Modular Programming
To make large systems understandable, you must be able to decompose them
into smaller modules that are both readable and maintainable. Segregation of
functionality makes a system easier to manage when updates or modifications
are required. Traditional languages may support two or three methods of de
composition. For example, FORTRAN has both functions and subroutines. A
simple model is necessary to minimize sideeffects while making changes an easy
task. INTERLISP uses a functional programming model where the basic units
are functions. A system is just a collection of functions that invoke one another.

One decomposition strategy is to gather common useful patterns of state
ments into a package. These packages are not just abbreviations to save typing
(like macros). Rather, they are abstractions which encapsulate higher level con
cepts that have meaning independent of their implementation. Once a package
is constructed and properly tested, a programmer may use it directly, without
regard for its internal details, because it corresponds to a concept or primitive
notion that he uses to solve the problem.

INTERLISP naturally supports the top-down programming methodology.
You may define functions with stubs for functions to be called but defined later.
The stubs are merely definitions of the functions which return NIL. When you
are ready, you may use the editor to replace a stub by its full definition. The
ability to incrementally build a system and test while you go has been called
“prototyping” by certain programmers. You should note that it does not corre
spond to the classical top-down methodology espoused by most software engi
neers.

1.3.3 Deferred Binding
By binding, we mean the association of a value with a variable. For most AI
programs, values are not known when the program is written, but become
known as the program is executed. Conventional languages bind either at com
pile time or link time or, rarely, at execution time. INTERLISP binds at execu
tion time. For example, the size of a list need not be known until some function is
applied to it. The same is true for the number and types of properties associated
with a particular atom. Moreover, the structure of a list need not be known until
it is operated upon by other functions. Indeed, the list may carry a description of
its structure with it, a feature that is difficult to replicate in conventional lan
guages. The ability to break apart and put together lists with little or no regard
for storage allocation is a feature that is rarely, if at all, found in more conven
tional languages.

1.3.4 Interactive Development
Most conventional languages are batch-oriented even though they may be ac
cessed from a time-shared environment. That is, a complete program unit is
submitted for compilation, then loaded, and finally executed - where each oper
ation is an independent activity. A few conventional languages such as BASIC
and APL may be interactively executed.

INTERLISP allows you to begin execution of programs that are only parti
ally written. At worst, attempting to execute a missing function generates an
UNDEFINED FUNCTION error. More likely, it will cause a break (see Chapter
20) and allow you to attempt to correct the problem. The correction may be as
simple as correcting a misspelling of the function name or defining the body of
the function. Returning from a break usually allows you to resume execution
with no detrimental consequences to your environment. While this is not an

10 Introduction

ideal way to develop a program, it does provide a convenient mechanism for
testing a set of functions after they are written without having to complete the
whole program.

1.3 LISP as a Programming Environment 11

1.3.5 Flexible Control Structures
A control structure determines the sequence in which program statements and
functions are executed. INTERLISP supports the standard control structures
such as conditional execution, case selection, and iteration. It also provides
mechanisms for recursion (as an inherent language feature), and coroutines for
parallel processing. Beyond these language-based features, we may define more
sophisticated control structures that facilitate data-driven or goal-directed be
haviors. These control structures are usually embedded in expert systems. Three
types of control structures that are often implemented in expert systems include
[aiel83]

Goal-driven (backchaining)
Event-driven
Model-driven

Goal-driven strategies use a goal rule which invokes all rules whose conclu
sions are referenced by conditions in the goal rule. These rules invoke relevant
rules in a chain until the rules to be executed reference only input data to the
system.

Event-driven strategies use a set of inputs to determine the invocation of one
or more rule-sets. Executing these rule-sets generates new events which invokes
more rules and so on until some conclusion is reached (e.g., no more events may
be generated using the given rule-sets).

Model-driven strategies match a current “state of the world” against prob
lem models to generate expectations. Expectations are events that stipulate in
puts to be looked for or requested from the user. As data are entered, the state of
the world is updated until no more expectations may be generated (e.g., the
model is complete within the given rule-sets).

While these strategies are presented within the framework of expert sys
tems, I believe that they have general utility to other applications that might be
written in LISP. Numerous books on AI, including Waterman and Hayes-Roth’s
book [wate78], discuss various approaches to these control structures.

1.3.6 Pattern Matching Facilities
Pattern matching is a content-based selection strategy where the alternative to
be executed is not known until run time. INTERLISP has been utilized to build
a number of different types of pattern matching programs. Kornfeld [korn79]
discusses a class of high level languages known as pattern-directed invocation

languages. Waterman and Hayes-Roth [wate78] edited a book that describes
recent (at that time) work in pattern-directed inference systems.

Patterns are merely templates for interpreting (or validating) otherwise arbi
trary data structures. For example, the pattern (A ? ? D) matches the data struc
ture (A B C D) but does not match the data structure (E ? ? D). Pattern match
ing allows us to retrieve a selected set of values of data structures (often called
facts or assertions) from a larger collection by applying a pattern to them. Sim
ple pattern matchers are easy to build and are often given as introductory pro
gramming projects in LISP courses. Kornfeld describes a simple pattern
matcher and demonstrates its actions with a few examples.

In most databases, there are a number of facts that are not physically
present in the database. More sophisticated pattern matchers have been devel
oped that can deduce or infer data from existing data given a set of patterns to
work with. These pattern matches form the basis for production rule systems,
many of which are described in Waterman’s book. Shapiro [shap79], Winston
and Horn [winsSl], and Charniak et al. [charSO] all describe examples of simple
deduction and inferencing systems based on pattern matching.

12 Introduction

1.3.7 Language Extensibility
As I mentioned above, it is relatively easy to implement a very small kernel of
LISP that allows you to “start” programmming fairly quickly. Rather quickly,
you will find that you need additional functions or capabilities to implement
problem solutions. Unlike most other languages, you will find that it is easy to
extend the LISP language by merely introducing new functions. Many of the
functions that you will encounter in this text have been written using basic LISP
functions. That is, they represent extensions to the LISP language. The flexibil
ity and ease with which you may extend the language is perhaps its most power
ful feature. This means that you may tailor the form and features of the language
to any class of users or any type of application. Once you begin programming in
LISP with any regularity, you will find that you think in terms of language exten
sions rather than just implementing programs.

1.4 LISP AS A CONCEPTUAL ENVIRONMENT
Program design is a creative (some say artistic) process. Humans solve the prob
lems while computers implement the solutions. But the transformation from
concepts to executable code is often a difficult and laborious process. The variety
of problems to be solved means that there can be no standard recipes or mecha
nized processes to effect program design. For many problems, we do not know
the nature of the solution although we may have a good idea of what the answer
should be. The programming process then becomes one of exploration and ex
perimentation with solution techniques to elicit the essence of the problem. Of

ten, the solution emerges along with the understanding of the problem. This
method of programming is sometimes known as prototyping.

LISP provides an environment that makes prototyping an effective means of
exploring the solutions to problems. What we look for is the conceptual architec
ture of the problem, the steps to be taken to “solve” the problem, e.g., to pro
duce the right answer. Using conventional languages, we almost always must
know the entire solution before we begin to write the program. With LISP, we
can incrementally build and refine the solution as we explore different alterna
tives in the problem representation.

Stefik et al. [stef82] note that design is the making of specifications to create
objects that satisfy particular requirements. The problem that faces the pro
grammer is to develop the specifications for the program that produces a specific
result. However, when the algorithm(s) and methods for solving the problem are
not explicitly known, conventional languages offer no help in designing the pro
gram because they require us to have a complete conceptual architecture before
coding.

Stefik et al. note that there are five key problems associated with design:

1. In large problems, a designer cannot immediately assess the conse
quences of design decisions. He must be able to explore design alterna
tives tentatively.

2. A design will be constrained by many sources. Oftentimes, the con
straints are imposed by the features and capabilities of the language in
which the solution will be implemented.

3. To solve large problems, the designer must cope with system complexity
by factoring the design into subproblems. He must also cope with inter
actions between the subproblems, since they are seldom independent.
Consider the simplicity (after studying the LISP language) with which
you may use top-down programming to decompose a complex problem
into simpler, more manageable pieces.

4. When a program becomes very large, it is easy to forget the reasons for
design decisions. It is also hard to assess the impact of a change to a part
of the program. While LISP does not provide any mechanism for captur
ing design decisions (other than comments), the ability to immediately
test modifications to program segments and repeal (undo) those which
do not lead to progress in the problem solution is a feature that is not
often found in other languages (or is very difficult to perform).

5. When programs are modified to reflect new design decisions, it is impor
tant to be able to reconsider different possibilities. Few languages have
the inherent capability to maintain multiple versions of functions or to
manage the structure of programs spread across one or more files.
Through the File Package, INTERLISP provides this feature as a stan
dard capability.

1.4 LISP as a Conceptual Environment 13

1.5 STRUCTURE OF THE TEXT
This text is divided into 31 chapters, a reference list, and an index. It loosely
follows the organization of the INTERLISP Reference Manual [irm78, irm83].
However, I have taken the liberty of organizing the contents of individual chap
ters according to my own logical view even though this contravenes the IRM.

Chapter 1 is an introductory chapter. It contains a short history of LISP and
a discussion of different LISP dialects. LISP is examined in both the program
ming environment, as a language for implementing tools and systems, and in the
conceptual environment, as a way of thinking about the functional architecture
of systems. The remainder of the chapter contains this outline and notes con
cerning the presentation methods within the text.

Chapter 2 discusses the basic data types provided by INTERLISP. These
include atoms, lists, numbers, strings, and arrays. Operations on these data
types are described in succeeding chapters.

Chapter 3 discusses the primitive functions of INTERLISP. Most other
functions can be built using these primitives. These functions are usually
hardwired in machine language or microcode for purposes of efficiency. In gen
eral, most of the functions defined in this chapter and Chapters 4-13 are com
mon to all dialects of LISP although there may be a few discrepancies. You
should note that INTERLISP is generally much richer in its primitive functions
than most other dialects of LISP.

Chapter 4 discusses the fundamental predicates. Predicates are a means of
testing the condition of an S-expression or atom (or other datatype). A predicate
returns either NIL (meaning false), T, or some non-NIL value (both of which
mean true). Most of the fundamental predicates test whether their argument is a
given datatype, whether the argument has a certain characteristic (e.g., even
ness or oddness) or whether two things are equal.

Chapter 5 discusses logical connectives and predicates. A logical connective
is either AND or OR. Logical predicates are EVERY, SOME, and their vari
ants. Note that it is possible to implement sophisticated control structures using
the AND and OR functions.

Chapter 6 discusses the list manipulation functions. These functions allow
you to create and destroy lists, concatenate two or more lists, and copy lists.
Together with the functions presented in Chapters 3 and 4, these functions usu
ally constitute the basic functions of the Lisp language.

Chapter 7 discusses property lists and functions for manipulating them.
Property lists are attached to atoms. A property list is a list of <name> <value)
pairs which may be thought of as descriptors or characteristics of the atom.

Chapter 8 discusses function definition and evaluation. A function is a spec
ification for operating upon an atom, list, or other datatype or data structure.
INTERLISP provides several methods for defining and using functions.

Chapter 9 discusses atom manipulation and the rules for creating atoms.
Atoms are the elementary information carriers in INTERLISP.

14 Introduction

Chapter 10 discusses string manipulation functions. Strings represent an
unusual datatype in that they are neither atoms nor lists.

Chapter 11 discusses arrays, including hash arrays, and their associated
functions. It describes how to create 2-D arrays, known as matrices.

Chapter 12 discusses the mapping functions. Mapping is a technique for
iterating (applying) a function over multiple instances of a datatype.

Chapter 13 discusses the basic arithmetic functions, both integer and float
ing point. Special functions, including some statistical functions, are also de
scribed.

Chapters 14 and 15 describe the functions associated with input and output.
Rather more information is provided in these chapters than the novice program
mer needs to know. Judicious reading will help you decide what is immediately
necessary. Mastery of the input/output functions is essential to becoming a com
petent INTERLISP programmer.

Chapter 16 discusses file management functions. Unlike conventional lan
guages, which depend on the operating system or system utilities for file man
agement [kais82], INTERLISP incorporates a set of file management functions
into its environment. Depending on the environment, these functions may or
may not interface with external operating system functions.

Chapter 17 describes the features and capabilities of the File Package. At
one level, the File Package may be viewed as a sophisticated source code control
system similar to that provided by the Programmer’s Workbench in UNIX
[dolo78].

Chapters 18 and 20 discuss error handling and debugging procedures.
Whenever an error occurs, INTERLISP allows you to inspect the state of your
environment, modify it, and (hopefully) resume your computation.

Chapter 19 discusses the LISP editor. The editor understands the structure
of S-expressions and function definitions, so it is known as a structure editor. It
operates upon S-expressions in a manner that is (usually) guaranteed to preserve
the balance of parentheses. Novices may begin with a few simple commands.
Experienced users have a wealth of powerful, flexible commands at their beck
and call.

Chapter 21 discusses the process of advising a function. Advising allows you
to modify the interface between a function and its environment, whether or not
the function is called from another function. You may “intercept” the function
before or after it is executed.

Chapter 22 discusses the DWIM (Do What I Mean) facility. DWIM pro
vides an error correction facility for simple errors associated with spelling, and a
facility for handling simple structural errors. DWIM receives control before the
error mechanisms described in Chapters 18 and 20.

Chapter 23 discusses Conversational LISP (CLISP). CLISP allows you to use
English-like phrases in place of some of the normal INTERLISP constructs.
CLISP makes LISP programs appear more like a conventional language and
hence more readable.

1.5 Structure of the Text 15

Chapter 24 discusses a number of LISP users packages. These are packages
or subsystems contributed by various INTERLISP users that extend the capabil
ities of the system in various ways. As INTERLISP-D continues to spread
throughout the AI and programming communities, more packages are being
developed and submitted to Xerox all the time. Xerox has incorporated some of
the most useful and practical packages directly into the INTERLISP-D system.

Chapter 25 discusses the Programmer’s Assistant. The Programmer’s Assis
tant performs simple error correction, including spelling correction, on the more
obvious errors committed by a user when typing in a function or S-expression to
the system.

Chapter 26 discusses Masterscope, a utility for managing aspects of the code
development process. Masterscope allows you to keep track of the modules or
functions that have been developed, to examine their interactions, and to main
tain (to a limited extent) subsets of the functions comprising your program.

Chapter 27 discusses the Record Package. The Record Package effectively
implements a data-access programming technique that relieves you of the bur
den of worrying about storage management. You determine the data structures
and how they are to be used. INTERLISP translates these declarations into calls
to primitive functions when it executes your programs.

Chapter 28 discusses the History Package. Together with the Programmer’s
Assistant, the History Package provides a flexible environment for developing
source code. The History Package effectively maintains an audit trail of your
interactions with INTERLISP at the top level. You may retry, correct, or undo
erroneous expressions, and you may create new commands within the package.

Chapter 29 is a catchall chapter for functions that don’t seem to have a logi
cal fit elsewhere. This is really not a fair interpretation of the utility of these
functions, but they are too few to warrant a chapter of their own. Included are
the clock functions, greetings, storage management, and a function for regain
ing space when your virtual memory becomes full.

Chapter 30 discusses the structure of the underlying INTERLISP environ
ment. INTERLISP dynamically binds values to variables using a stack mecha
nism. The stack is accessible to you through stack manipulation functions or
through the Break Package.

Chapter 31 discusses some aspects of the process of compiling. Once you
have debugged your programs to the point where you think they can run without
major errors, it is often advisable to compile the code in order to gain increased
efficiency and performance.

1.6 COMMENTS ON THE TEXT
The structure of this text reflects some of my personal biases about how to
present material to a technical audience. It is important that you, the reader, be
aware of these biases as you read (or peruse) this and succeeding volumes.

One major bias is that readers understand and (hopefully) learn more about
the subject by seeing many concrete examples of the things that are being talked

16 Introduction

about. You will find this text replete with examples for the many functions and
features that are discussed. In addition, I show how to develop new functions for
capabilities that are not currently provided by the baseline version of IN
TERLISP (although this is changing as a result of Xerox’s continued develop
ment and enhancement of the language and programming environment).

Another bias is that people learn more about how things work by seeing how
functions and programs are put together. Thus, in many cases, I have tried to
show the basic code that is used to implement a feature. The code is often a
skeletal representation of the functions necessary to implement the full capabil
ity. Some functions are merely suggested while others are developed in full.

Where functions take multiple arguments, I have used a tabular format to
show the structure of the function and describe its arguments. I feel this makes it
easier to refer to the meaning and/or usage of arguments that may be given to a
function.

I have tried to follow several conventions in this text to make it easy to read.
These conventions are listed below:

When I reference an INTERLISP function, whether in text or in an
example, it will always be capitalized.
Arguments to INTERLISP functions, whose skeletons are given in the text,
will always be entered in lower case, except when upper case is specified
explicitly in the INTERLISP Reference Manual [irm78,irm83].
When I refer to arguments of INTERLISP functions in text, I will capitalize
the names of the arguments so that their usage is clear.
When I define a function, I will capitalize the primitive functions used, but
generally show the function definition in lower case. I believe this highlights
the distinction between the basic functions and those that may be developed
“on top of” INTERLISP. I also believe that it improves readability of the
text. You should note, however, that INTERLISP always operates in upper
case.
I have consistently tried to use the symbol to indicate the prompt
throughout the text. This symbol is normally used only on INTERLISP-D. I
have represented it as two characters since most terminals (and typesetters)
do not have the left arrow as a standard symbol. Please be aware that left
arrow has several other meanings as well in INTERLISP.

1.6 Comments on the Text 17

LISP Data Structures

After you have defined a problem, one of the first tasks that you face in captur
ing the problem solution in executable code is how to represent the data required
to solve the problem in a form manipulable by the computer. In doing this, you
are constrained by the data types and structures provided by the programming
language. In most conventional programming languages, these are fixed by your
choice of language. In INTERLISP, a set of basic datatypes is provided with the
language, but you are also provided with the ability to extend these through vari
ous mechanisms inherent in the language.

INTERLISP provides a wide variety of datatypes. The primitive datatypes
are lists and atoms. Other datatypes have been provided to increase the effi
ciency of INTERLISP and remedy the problems of representation of certain
types of data structures. This chapter will describe the basic datatypes used by
most INTERLISP programmers. Extensions to these datatypes will be discussed
in chapters that describe the functions for manipulating the datatypes.

2.1 LITERAL ATOMS
A literal atom is the most basic datatype of INTERLISP. A literal atom is some
thing that stands for itself. Thus, every literal atom created in the INTERLISP
system must be unique. If two literal atoms have the same name (called the prin-
namg or pname), then they are the same identical atom. This means that these
atoms will always have the same address in memory.

Atoms play the part of variables in INTERLISP. Different programming
languages treat the notion of variables in different ways depending on how the
variable is stored in memory and how values are bound to it. Variables allow you
to write programs in which the actual values of data items are not known until
the program is executed. However, by implication, the values associated with
variables in a programming language are always finite because of the limitations
of the computer.

19

2 0 LISP Data Structures

The “attributes” of a variable describe how the variable will be treated in a
program. Among the attributes that may be associated with a variable are

The permitted range of values
The scope of its name
How and when it is created
The type of the variable

A simple model of a variable might appear as:

NAME

\
\
\
\
\

A ttrib u te s

Value rep re se n ta tio n

Unlike conventional programming languages, INTERLISP variables do not
have an explicit type associated with them. Rather, the variable takes on the type
of its current value whether it is a array pointer, integer, string, or another atom.

The “value representation” describes the form that the value of the variable
takes in memory. Often, the value representation is a function of the underlying
hardware. However, list representation, even though an elementary datatype, is
a data structure imposed on top of (or extending) the essential machine hard
ware.

INTERLISP extends this simple model with additional information, Each
literal atom consists of the following components

a pname (print name)
a value
a property list (see Chapter 7)
a function definition cell (see Chapter 8)

2.1.1 Pnames
A pname is the name of the atom as it appears when printed by one of the IN
TERLISP printing functions. Pnames are not directly accessible by the user.
The representation of a pname in memory is dependent on the particular imple
mentation. The maximum length of a pname is a 127 characters for IN-
TERLISP-10 and 255 characters for INTERLISP-D.

Examples of atoms include the following

BEN FRANKLIN COUNTRY
1.2567 751

2.1.2 Value Cells
A value cell is a storage area assigned to hold the value of an atom. A value cell
always contains the top-level value of an atom. When an atom is initially created,
the value cell contains the atom NOBIND which indicates that no explicit value
has been bound to the atom. Atoms may also have values bound in stack frames
as the result of PROG expressions and function calls.

A value cell is created for an atom when

The atom is referenced in a SETQ function
The atom is used as the argument to a function
The atom is used as a PROG variable (see Section 3.7)

Values are really pointers to other INTERLISP objects rather than the ac
tual values themselves.

Binding is discussed in Chapter 30.

2.1.3 Property Lists
Each atom may have a value. The value may be a number, another atom, a list,
or an address of some other structure, such as an array. But atoms really repre
sent (in most cases) complex objects; that is, they stand for something. These
object usually have a multitude of characteristics. Most conventional languages
require you to define and manipulate several complex data structures in order to
fully define an object. LISP, however, allows you to attach a property list to an
atom. A property list is a list of descriptors and their associated values which
serves to further define or describe the object represented by the atom.

2.1.4 Function Definition Cells
Each atom has an accompanying function definition cell, e.g., a cell whose con
tents are a list that defines a function of the same name. Thus, in INTERLISP,
atoms may have both values and actions associated with them. INTERLISP dis

2.1 Literal Atoms 21

tinguishes between these two usages by the appearance of the atom name in a
list.

2.1.5 Creating Atoms
There are several ways to create atoms in INTERLISP:

by assigning a value to a literal atom’s pname
by packing a sequence of characters to form an atom pname
by making an atom
by asking the system to generate a temporary symbol

Setting the Value of an Atom
An atom may be created by assigning a value to a literal atom. This is the most
commonly used method of creating atoms in INTERLISP. As an example, con
sider the assignments

(setq boy ’john)
(set 'boy ’john)

Both of these statements have the effect of assigning the value “john” to the
atom whose name is “boy.” The difference results from the operation of the
function SETQ (see Section 3.8). If this is the first time that “boy” has ever
occurred in an INTERLISP program, when the function (either one) is executed,
the atom “boy” will be created and assigned the value “john.” By created, we
mean that INTERLISP allocates memory for it, defines the underlying data
structure, and places JOHN in the value cell of BOY.

Creating an Atom via PACK
An atom may be created by packing a list of atoms to form the PNAME of a new
atom. Typically, the list consists of atoms each of which is a single character.

Consider the list (b a 11 i m o r e). When this list is given to PACK (see
Section 9.3.1) as an argument, it concatenates the individual characters into a
PNAME that represents a single atom. In this case, the single atom is BALTI
MORE. Of course, the list does not have to be composed of single characters as
in the following case:

(PACK '(tom-jones))

which yields the atom TOM-JONES.

Making an Atom
An atom may be created by the function MKATOM which operates on strings
(see Section 9.2.2). For example, the function call

22 LISP Data Structures

(MKATOM " jo h n - jo n e s ”)

would create the atom JOHN-JONES.

Generating a Temporary Atom
Atoms may be created by INTERLISP at your request. INTERLISP provides the
function GENSYM to create atoms of the form xnnnn where x is a character and
the n’s are digits. Typically, atoms generated in this way are used for temporary
storage within an INTERLISP program.

To create an atom using GENSYM, you may either specify the character or
NIL as in the following examples:

(GENSYM ’B) which produces an atom such as B0102
(GENSYM) which produces an atom such as AOOOl

A counter is maintained internal to INTERLISP. The value of this counter
is used to determine the digits which are appended to the character passed to
GENSYM. If no character is specified by the user, INTERLISP automatically
assumes the character A.

2.1.6 Binding Variable Values
Binding is the act of associating a value representation with a variable. There are
two notions of binding that you must understand in INTERLISP:

1. Bound versus unbound atoms

A "bound'' v a r ia b le has a le g a l va lue ass ig n ed to i t . An
unbound v a r ia b le has no v a lu e ass ig n ed to i t (n o t even
N IL). I f you use a v a r ia b le in an e x p re ss io n , INTERLISP
a tte m p ts to e v a lu a te i t , f in d s th a t i t does n o t have a
v a lu e , and is s u e s th e e r r o r message "U .B.A ." fo r "UnBound
Atom". Atoms c re a te d w ith o u t v a lu es (such as in PROG
d e c la r a t io n s) w i l l have th e atom NOBIND p laced in t h e i r
v a lu e c e l l . NOBIND i s a s p e c ia l atom w ith in th e INTERLISP
system which in d ic a te s "no v a lu e ." A p re d ic a te , BOUNDP,
a llow s you to determ ine w hether o r n o t an atom has a
v a lu e bound to i t .

2. Global (free) versus local atoms

INTERLISP program s (system s) c o n s is t o f a s e t o f
fu n c tio n s t h a t a re lin k e d to g e th e r by c a l l s from one
a n o th e r . V a ria b le s may be g lo b a l o r lo c a l w ith in a s e t o f
fu n c t io n s . A lo c a l v a r ia b le i s one which i s d efin ed
w ith in a fu n c tio n and i s used on ly w ith in th a t fu n c tio n .

2.1 Literal Atoms 23

Typically , lo c a l va riab les are declared by the LOCALVARS
dec lara tion or by appearing in a PROG header. Global
v a riab les are variab les defined in one function and used
(free ly) in one or more o ther functions. The INTERLISP
name space i s a one-level name space. Thus, any atom
defined by a SETQ, GENSYM, e tc . is known to a l l
functions.

Another type of binding is the time when storage is allocated to the variable.
Most conventional languages and systems will bind variables to memory loca
tions at one of three times;

Compile time
Link edit time
Execution time

INTERLISP dynamically allocates storage to all atoms at execution time.
This allows memory to be used efficiently in the computation process at some
expense to performance in managing the memory. Currently, one of the critical
problems with INTERLISP (and other LISP dialects) is that once atoms are cre
ated they cannot be destroyed in the same session. Variables created in a PROG
header are temporary place holders on the stack. All other atoms are allocated
specific storage locations and become a “permanent” part of your INTERLISP
environment. Methods for managing your environment to save only the relevant
information are discussed in Chapter 17.

24 LISP Data Structures

2.1.7 Variable Typing and Declaration
Most conventional languages require you to declare your variables before you
use them. That is, you must “announce” the name and type of a variable to the
compiler in a declaration statement before the variable name is used in an exe
cutable statement elsewhere in the program. The “type” of a variable deter
mines

The set of values it may assume
The set of operations to which it may be subjected

For example, declaring a variable to be a STRING (or CHAR) specifies its
storage representation and the permissible operations upon it. Thus, I can con
catenate two strings, but I cannot add them together. Each TYPE in a conven
tional language has a set of operations that are checked by the compiler at com
pilation. The compiler generates error messages if you attempt to violate the type
of a variable. Note that the type of the variable is (usually) permanent through
out the program.

INTERLISP (and other LISP dialects) do not require you to declare or type
a variable. A variable is declared when it is referenced for the first time. Its type
is determined when you make an assignment of a value to the variable. Thus, the
“type” of a variable may change during the execution of a program as different
values are assigned to it. Type checking is performed when the value of a vari
able is utilized since a function cannot know the type of the variable’s value until
it has actually referenced it.

The notion of typing leads to the concept of “constants,” e.g., data items
whose value cannot be changed. INTERLISP (and other LISP dialects) do not
utilize the notion of constant except in the following cases

The atom T has a fixed value that may not be changed.
The atom NIL has a fixed value that may not be changed.
Numbers (both FIXP and FLOATP) have values that may not be changed.
In some systems, NOBIND is represented as an atom whose value may not
be changed.

Thus, aside from these few cases, any atom may be assigned any value at any
time during execution.

2.2 Numbers 25

2.2 NUMBERS
All programming languages include the capability to manipulate numeric data.
Even in nonumeric data processing, there is a need to use numbers as counters,
system parameters (such as line length), and control variables in a computation.
Unlike mathematics, however, the classes of numbers that we use in program
ming languages are finite. That is, the range of values of a class of numbers is
constrained by the physical attributes of the machine (such as register size).

INTERLISP supports two types of numbers: integers and floating point
numbers. Every number is an atom. They differ from literal atoms in that they
do not have property lists, value cells, function definitions, or explicit pnames.

2.2.1 Integers
An integer is represented as a string of digits preceded by an optional sign (either
“ —” or “ + ”) and followed by an optional “Q” . If the Q is present, the number
will be interpreted as an octal (base 8) number. INTERLISP/370 allows you to
enter hexadecimal numbers by entering an optional “ — ” or “ + ” followed by an
“at sign” (@) followed by a string of hexadecimal digits (0 ... A ... F).

Integers may be either “small” or “large.” Small integers fall into the range
[— 65536,65536] while large integers fall in the range [— 2**32,2**32]. For IN
TERLISP/370, the range of small integers is [-2**23,2**23] which fits into the
24-bit address field used by IBM Series 370 machines.

Integers may be created by PACK and MKATOM since they are atoms, as
in the following example:

(PACK
(LIST 3 ^ 5))

will create the integer 345. In a similar fashion, we could also specify the follow
ing code: i

(PACK
(LIST 7 7 'Q))

which would yield the integer 63. In this case, the ’Q means that the integer is
77Q (i.e., 77 base 8 or 63 base 10).

Small integers are given special storage in INTERLISP in order to increase
the efficiency of the system. Large integers are not. Thus, the user should be
careful when testing the values of integers. Two small integers are always guar
anteed to have the same representation. Two large integers may have the same
value but not the same address in memory. Thus, if you use the EQ function on
the two integers, they may not be equal. Instead, use the function lEQP or
EQUAL to test the equality of two integers (see Section 13.2).

26 LISP Data Structures

2.2.2 Floating Point Numbers
A floating point number corresponds to a real number in traditional languages
such as FORTRAN. A floating point number is read or written as a (possibly)
signed integer, followed by a decimal point followed by another sequence of dig
its. The digits following the decimal point are known as the fraction or mantissa.
A floating point number may be optionally followed by an exponent designated
by E followed by a (possibly) signed integer in the range —39 through +38.

Whether the fraction or the exponent is used is at your discretion, but one
must be present to distinguish a floating point number from an integer.

Floating point numbers may be created during input (via READ), by apply
ing FLOAT to an integer, and by PACK or MKATOM.

Floating point numbers are printed by the system using format controls
specified by the function FLTFMT.

INTERLISP-D Convention
Floating point numbers are currently stored in single precision using the IEEE
“single” mode of 32 bits.

INTERLISP/370 Convention
If the floating point number contains six or fewer digits, it is stored as a single
precision number. If it contains more than six digits, it will be stored as a double

precision number. Floating point numbers in the range IE —3 to 1E6 will be
printed without an exponent; otherwise they will be printed with an exponent.

2.2.3 Complex Numbers
A complex number is a generalization of the real number that is introduced in
mathematics so that all polynomial equations with real coefficients may have
solutions. A complex number is composed of two parts: a real part and an imagi
nary part. Most conventional languages, developed for numeric data processing,
support the notion of complex numbers. For example, FORTRAN has a type
declaration COMPLEX which results in a specific storage representation and set
of operations upon complex numbers. INTERLISP (and other LISP dialects) do
not support complex numbers. However, it is not difficult to create a data struc
ture to provide this capability. Chapter 13 will dicuss some ideas concerning the
implementation of complex numbers.

2.2.4 Conversion between Numeric Classes
In mathematics, integers are a “subclass” of the real numbers. In computer
systems, because integers and floating point numbers must be represented dif
ferently in storage, integers cannot be considered a subclass of floating point
numbers. Thus, we need a set of conversion routines that allow us to convert
data from one representation to another. However, conversion introduces inac
curacy in our numeric representations due to precision of representation and
“roundoff” errors in arithmetic computations carried out by the machine.

2.3 Lists 27

2.3 LISTS
The second basic datatype within INTERLISP is the list. A list is a collection of
zero or more components which may be atoms or other lists. A list with no com
ponents is often called the empty or null list. Lists may have atoms as their com
ponents, other lists as their components, or a mixture of both. A list is usually
viewed as an “ordered” collection of components. The components may be inte
gers, floating point numbers, strings, array pointers, or other data objects.

The format of a list begins with a left parenthesis (. It is followed by any
number of atoms or other lists and is terminated by a right parenthesis). Thus, a
very simple list would appear as (MARYLAND) where the atom’s name is
MARYLAND. Of course, the simplest list that we may write is () which is a
representation for the null list.

Examples of more complex lists include

(MARYLAND VIRGINIA WEST-VIRGINIA)

where individual atoms are separated by blanks and

(MARYLAND (CAPITOL ANNAPOLIS) (GOVERNOR HARRY-HUGHES))

which consists of an atom and two sublists represented, respectively, by

(CAPITOL ANNAPOLIS)
(GOVERNOR HARRY-HUGHES)

In general, lists are known as S-expressions where the S stands for “sym
bolic.” Thus, the generic form of a list is given by

(S-expression[l] S-expression[2] . . . S -expresslon[n])

The simplest form of an S-expression is the dotted pair which consists of two
atoms, respectively the CAR and CDR. A dotted pair usually appears as

(apple . orange)
((the ra in in spaln) . (s tays mainly in the p la in))

The trend, today, is to discourage the use of the “dot notation” because it
does not correspond to the recent implementations of LISP. I mention it here
only so that you know of its existence.

The key to INTERLISP is parentheses. Lists are well-formed when pairs of
left, (, and right,), parentheses balance in an expression. Many problems arise
in writing INTERLISP expressions and functions because parentheses do not
balance. Thus, a cardinal rule is to always check your parentheses (or use soft
ware that does so for you—see the INTERLISP Users Packages).

Lists may be created, destroyed, and manipulated in many interesting ways.
We can create lists using CONS, LIST, or APPEND. We can access elements of
lists using CAR, CDR, and their variants. We can manipulate them using
RPLACA, RPLACD, ASSOC, MEMBER, and many other functions. Chapters
3 and 6 describe many of the primitive functions that operate upon lists.

We may constrain the full generality of these list structures in order to create
other types of data structures. Some of these data structures include

Stack A list in which all insertions, deletions, and accesses are
made at one end of the list, known as the “top” of the
stack.

Queue A list in which additions can be made only at one end and
deletions only at the other end.

Deque A “double-ended” queue in which insertions, accesses, or
deletions may be made at either end of the list.

28 LISP Data Structures

Knuth [knut68], Horowitz and Sahni [horo82], and Aho, Hopcroft, and Ul-
Iman [aho83] all discuss the theory, representation, and manipulation of these
data structures.

2.4 Arrays 29

2.4 ARRAYS
Arrays are one of the most familiar data structures in programming, perhaps
because we use tables (arrays) to store information in our everyday activities. An
array is an ordered set of elements of the same type. Each array has dimensional
ity, the number of subscripts that must be used to reference an individual item
within it. Vectors are one-dimensional arrays while matrices are two-dimen
sional arrays.

Vectors are often represented in the following form:

V = { v l , v2, v3, v4, vN}

Matrices are often represented in the following form:

a l l al2
a21 a22

alN
a2N

aMl aM2 aMN

An array is represented as a block of contiguous storage of arbitrary length.
Array storage (in INTERLISP-10) is divided into three sections

A header
A section containing unboxed numbers
A section containing pointers

The header of an array contains descriptive information. Its format depends
on the implementation.

The unboxed number section stores numbers, either real or floating point.
The pointer section contains INTERLISP-10 pointers that allow an array to rep
resent a collection of objects other than numbers. The size of the unboxed and
pointer regions may range from 0 to the size of memory. Arrays are explained in
greater detail in Chapter 11.

30 LISP Data Structures

INTERLISP/370 Convention
INTERLISP/370 represents the internal format of an array as follows:

word 0

1

2

3

4

n

length

reserved

p o in te r address

reserved

numbers

po in te rs

where the length of the block is given by

16 + 4 * ARRAYSIZE

The value 16 is derived from four bytes times four words of header informa
tion. Each number and/or each pointer also consumes four bytes.

INTERLISP-D Convention
INTERLISP-D has extended and refined the concept of arrays to fit its new im
plementation. In this implementation arrays contain only one “type” of data so
there is no division of an array into partitions. Data types that may be stored in
arrays include BIT, BYTE, WORD, FIXP (integers), FLO ATP (floating point
numbers), and POINTER. Arrays may have either a 0-origin or a 1-origin; the
default is 1 as required by the TENEX implementation.

2.4.1 Dimensionality
The dimensionality of an array should be chosen to meet the needs of the prob
lem to be solved. Most languages allow you to specify up to three dimensions
(each of different size) for an array. Some languages allow an unlimited number
of dimensions. Most applications usually require no more than three dimen
sions. Unfortunately, INTERLISP supports only one-dimensional arrays at the

current time. In Chapter 11, we describe a method for implementing two-dimen
sional arrays using the one-dimensional structures provided by INTERLISP.

The bounds of an array’s dimensions correspond to the lower and upper
limits on the values of its subscripts. Many languages allow these limits to be any
pair of integers such that the lower limit is less than the upper limit. INTERLISP
requires that all subscripts have a lower limit (the origin) at either 0 or 1. The
lower limit must be the same for all dimensions of the array. This allows both
conventional mathematical numbering as well as the practice that is more com
mon in most conventional programming languages.

2.4 Arrays 31

2.4.2 Specification and Creation of Arrays
Several pieces of data must be known to create an array (following the IN-
TERLISP-D convention)

The type of the elements
The size or bound of the array
The origin of the array
The initial value of each element

Arrays may only be created via the ARRAY function (see Section 11.1). Ele
ments may only be accessed via ELT and set via SETA. Unlike most conven
tional languages, INTERLISP allows you to specify an initial value that is as
signed to every element of the array when it is created. Arrays are referenced in
INTERLISP by passing the address of the array to various functions that can
manipulate them.

2.4.3 Hash Arrays
A second type of array is the hash array. It is an array that provides a linkage
between one INTERLISP data type, the hash item, and another data type, the
hash value. A hash array consists of a number of cells defined when you create
the hash array. To enter an item into the hash array, you provide both a key and
its associated value. A hashing function (internally defined) is applied to the key
to generate a cell index. A hash link, consisting of a pointer to the hash item and
a pointer to the hash value, is placed in the cell. You obtain an item from a hash
array by specifying its key.

When a hash array is seven-eighths full, INTERLISP assumes it to be com
pletely full. Attempts to add new items to the hash array will result in an error.
However, INTERLISP does provide a mechanism for handling these overflow
conditions which is explained in Section 11.3.5.

Hash arrays are used by several of the INTERLISP packages. A notable
instance is CLISPARRAY which is used by the CLISP package (see Chapter 23).

2.5 STRINGS
A string is a collection of alphanumeric characters that has a literal value but
does not represent a data item. The number of elements in a string is called the
length of the string. Strings are demarcated by pairs of “ {double-quotes). Any
characters except “ and % may appear within a string. Clearly, “ may not be
included because it is the marker for a string. % has the special meaning of
escape which is discussed in more detail in Chapter 14.

A string is not a fundamental datatype since it cannot be read directly by
READ. Strings are created by the function MKSTRING, and manipulated by
the functions SUBSTRING and CONCAT. Strings may be read in from external
files via the function RSTRING.

A number of different operations may be defined for strings. The two most
important operations are concatenation, where we join together two strings to
make a new one, and substring, where we extract a segment of a string to make a
new one. Most other string operations can be defined as sequences of these two
operations.

It is also frequently necessary to scan strings for a specific character or se
quence of characters. Scanning is utilized in many important applications (text
processing, message decoding, etc.). It includes

Searching for delimiters
Searching for words in order to construct indices and concordances
Searching for character patterns in messages in order to recognize sections
of the message

Scanning may be programmed with the substring access function, but most
implementations of INTERLISP provide a search function to improve the effi
ciency of the scanning process.

Internally, a string is stored in two parts: a string pointer and the sequence
of characters that compose the string. A string pointer consists of the length of
the string and the address at which the string begins, INTERLISP-10 and IN-
TERLISP-D both support 32,767 characters as the maximum length of strings.

INTERLISP/370 Convention
INTERLISP/370 supports only 256 characters as the maximum length of a
string owing to machine instruction characteristics.

32 LISP Data Structures

2.6 RECORDS AND USER DEFINED DATATYPES
The datatypes described in the previous sections are inherent features of a basic
INTERLISP system. Users, however, may extend the classes of datatypes by
adding new list structures. INTERLISP formally captures this notion in the Re
cord Package which is described in Chapter 27.

A record is an object that has a formal description. Each record has a fixed
number of fields. The record may be thought of as an object template which is
used to create instances. A user may access and replace the contents of individ
ual fields within an instance of the record. The individual elements of a record
need not all be the same datatype. This notion is captured in many conventional
programming languages in various forms.

Elements of a record are accessed by their name. You may reference the
whole record or any part of it. Individual fields of the record may themselves be
records (subrecords). Since a record description is a template for a data struc
ture (e.g., an S-expression), we may lay the template over any S-expression.

In addition, you may define new datatypes with complex structures via the
function DECLAREDATATYPE (see Section 27.7), The primary difference be
tween records, which also use the datatype functions, and your own datatypes is
that the File Package and other subsystems “know” about records and how to
formally treat them. In most cases, you will have to provide your own functions
for manipulating, saving, and restoring your datatypes.

2.7 FILES
Files are not strictly an INTERLISP datatype. However, most programs require
a mechanism for specifying long term storage of data in an organized manner.
The File Package supported by INTERLISP, which interfaces with the host op
erating system, provides a method for the user to retrieve, store, and organize
external data.

INTERLISP treats files as a byte stream much like Unix. You may open a
file and read from or write to it using various input and output functions. A
hierarchy of capabilities is provided by the File Package which allows you to treat
files in various ways. Since INTERLISP functions are just S-expressions, func
tion definitions, data, and file descriptors (e.g., commands for creating the file)
may be intermixed in a single file. This feature is unlike conventional program
ming languages which require the separation of the data and program code.

When a symbolic file is written by the File Package, a file map is placed at
the end of the file. A file map contains the names and addresses (as byte offsets
from the beginning) of objects within the file. Many of the File Package func
tions use the file map to extract objects and their values from a symbolic file.

One special type of file is written by INTERLISP—a file containing com
piled code. Compiled code is a combination of low-level function calls and ma
chine language instructions. Its format and contents depend on the implementa
tion. Aside from a few examples, we will not discuss this type of file in this text
because it is implementation dependent.

2.7 Files 33

,1

Primitive Functions

INTERLISP, as a symbolic processing language, encourages the use of “func
tional programming” concepts. Functional programming emphasizes the use of
well-defined functions that “operate” on data structures or objects—either sys
tem defined or user defined. The previous chapter discussed some of the basic
data structures provided by INTERLISP. This chapter explores the primitive
functions that you may use to begin constructing more complex functions. Most
primitive functions are “hardwired” in assembly language or microcode for rea
sons of efficiency.

3.1 TAKING LISTS APART: CAR AND CDR
INTERLISP provides two functions for taking lists apart; that is, decomposing a
list into its constituent elements. These are CAR and CDR. The names are mne
monic and are rooted in the historical implementations of INTERLISP’s prede
cessors. The earliest version of LISP was implemented on an IBM 704 computer
in assembly language. The 704 word had two key fields: the address field and the
decrement field. The CAR pointer of an atom was contained in the address field
while the CDR pointer was contained in the decrement field.

CAR returns the first element of a list. CDR returns the remaining elements
of a list (which may be NIL) after the first element.

The generic formats of these two functions are

Function: CAR

Arguments: 1
Argument: 1) a nonempty l i s t , LST
Value: The f i r s t element of the l i s t .

Function: CDR

35

36 Primitive Functions

Arguments: 1
Argument: 1) a nonempty l i s t , LST
Value: The remainder of the l i s t a f t e r the

dele tion of the f i r s t element.

CAR always returns the first element of its argument, if it is a list. Suppose
we have created the following list using SETQ:

•<-(SETQ presiden ts '(adams hayes monroe nixon ford))
(adams hayes monroe nixon ford)

When we apply CAR to this list, it returns the value

•«-(CAR presiden ts)
adams

which is the first element of the list.
CDR always returns the remainder of a list minus its first element. If we

apply CDR to PRESIDENTS we obtain the result

^(CDR presiden ts)
(hayes monroe nixon ford)

Note that CDR always returns a list as its result if its argument is a valid list.
CAR may return either an atom or a list depending on the type of the first

element in its argument. For example, if we construct the following list:

•<-(SETQ p re s id e n ts -p a r t ie s
'((kennedy democrat) (nixon repub lican)))

and then apply CAR to it, we obtain the result

■ (̂CAR p re s id e n ts -p a r t ie s)
(kennedy democrat)

which is a list of two atoms. CAR returned a list because the first element of its
argument was a list.

If CAR is applied to an atom, it returns an error message as a result:

•«-(CAR 'kennedy)
ARG NOT LIST

However, CDR applied to an atom returns NIL since we assume that the
empty list is pointed to by the CDR portion of an atom.

3.1 Taking Lists Apart: CAR and CDR 37

<-(CDR ’kennedy)
NIL

Both CAR and CDR may be applied to the empty list which is represented
either by the atom NIL or the list ‘(). In this case, both functions will return the
result NIL:

''-(CAR NIL)
NIL

^(CDR ' ())
NIL

CDR operates normally on lists of one element by returning the value NIL
meaning there are no more elements in the list. For example, applying CDR to
the list (LINCOLN) yields

*^(CDR ' (l i n c o l n))
NIL

because this list has only one element. Thus, an implied last element of every list
is the null or empty list.

3.1.1 CAR/CDR Combinations
Lists are rarely so simple as those given above. Often, we build fairly complex
structures that have multiple levels of elements. Processing these lists with CAR
and CDR functions can be difficult if we need certain elements quite often.

Consider the list PRESIDENTS-PARTIES given above. How do we obtain
the first element of the second sublist? One way is to take the CDR of the list,
and then take its CAR:

<-(CAR (CDR p r e s id e n t s - p a r t l e s))
nixon

or

■«-(SETQ p ar tie s - tem p (CDR p r e s id e n t s - p a r t i e s))
(nixon repub lican)

<-(CAR par tie s - tem p)
nixon

Both of these methods are unwieldy. Too many CARs or CDRs used to dis
sect a list will result in code which is obtuse and incomprehensible. Fortunately,

INTERLISP provides us with a method of “abbreviation” for combinations of
these common functions.

The general form of a combination is

(CxxxxR <some-list-argument>)

where each ‘x’ represents either an A or an D. Most LISP systems will support all
combinations (a total of 30) of the four-letter abbreviations.

We can rewrite the forms to retrieve the first element of the second sublist as

•«-(CADR p re s id e n ts -p a r t ie s)
nixon

We analyze such forms by reading from “right-to-left” in the function
name. This form says: take the CDR of the argument, and then take the CAR of
the result. Note that INTERLISP does not return the intermediate result, which
is the CDR of the argument, but only the final result that we seek.

Another example is given by the following list, which is slightly more com
plex:

•<-(SETQ e lec to ra l-y e a r-v o te s
(LIST '(1952 eisenhower 44-2)

'(1956 eisenhower 457)
'(I960 kennedy 303)
'(1964 Johnson 486)
'(1968 nixon 301)
'(1972 nixon 520)))

which represents the election/president/electoral votes for recent elections.
Let us ask how we get the name of the winner of the election of 1956? Of

course, we know the answer is EISENHOWER because we can see it in the list.
But how do we dissect the list to retrieve it?

We might reason as follows:

(1956....) is the second sublist of the list.

It is also the first element of the CDR of the list so we know that we can use

•^(CADR < lis t>)
(1956 eisenhower 457)

EISENHOWER is the second element of a list, so following the same reasoning
as above, we can produce

38 Primitive Functions

3.1 Taking Lists Apart: CAR and CDR 39

<-(CADADR < l is t>)
eisenhower

which is the desired result!
Note that we could have written this out as:

^(CAR (CDR (CAR (CDR < l i s t >))))
eisenhower

A few more examples should be sufficient to demonstrate the various combi
nations:

^(CADDDR e le c to ra l -y e a r -v o te s)
(1964 Johnson 486)

^(CDADR e le c to ra l -y e a r -v o te s)
(eisenhower 457)

^ (c d d d d r e le c to ra l -y e a r -v o te s)
((1968 nixon 301) (1972 nixon 520))

Note that the list has too many elements to extract the last sublist using a
combination form. To get the electoral votes for NIXON’s second victory, we
must use:

<-(CADDDR (CDDDDR e le c to ra l -y e a r -v o te s))
520

Here is a table of the first few combinations of CARs and CDRs that are
commonly used in INTERLISP programs.

CAR/CDR Combinations
Abbreviation Extended Form
(CAAR < l is t>) (CAR (CAR < l is t>))
(CADR < l is t>) (CAR (CDR < l i s t>))
(CDAR < l is t>) (CDR (CAR < l i s t>))
(CDDR < l i s t>) (CDR (CDR < l i s t>))
(CADAR < l is t>) (CAR (CDR (CAR < l i s t>)))

(CADDR < l i s t>) (CAR (CDR (CDR < l i s t>)))

Here are some examples of how these abbreviations might work on the list
given above:

<-(CAAR e le c to ra l -y e a r -v o te s)
1952

•«-(CADR e lec to ra l-y ea r-v o tes)
(1956 eisenhower 457)
■«-(CDAR e lec to ra l-y ea r-v o tes)
(eisenhower 442)
<-(CDDR e lec to ra l-y ea r-v o tes)
((I960 kennedy 303))

3.2 PUTTING LISTS TOGETHER: CONS, LIST AND APPEND
In order to take lists apart, we need some way to have put them together in the
first place! The three functions discussed in this section permit you to create lists
in various ways. Before proceeding to a discussion of these functions, let us note
that we can create lists using the SETQ function.

Remember that we said that SETQ assigns a value to an atom which is its
first argument. This value may also be a list. Using SETQ, of course, the second
argument is unevaluated (see Section 3.8), so the list will be typed exactly as you
wish it to appear as the value of the atom. For example,

•<-(SETQ a l i s t '(app le orange plum pear cherry lemon))
(apple orange plum pear cherry lemon)

sets the value of ALIST to be the specified list. If we now ask for the value of
ALIST, we should receive

a l i s t
(apple orange plum pear cherry lemon)

We briefly mention SETQ here so that it may be used in examples in the
following sections.

3.2.1 CONS: Constructing Lists
CONS is the list construction function. It takes the form

Function: CONS
Arguments: 2

Arguments: 1) any atom or l i s t , EXPRESSION
2) any l i s t , LST

Value: A l i s t whose CAR is the value of the f i r s t
argument and whose CDR is the value of i t s
second argument.

40 Primitive Functions

CONS takes two arguments, one of which is a list, and puts them together to
form a new list. The first argument of CONS is always the element to be added to
the second argument, which is always a list. The first element is always attached
to the front of the second to form the new list. The first argument may be either
an atom or a list. For example, consider the following sequence of INTERLISP
statements:

^(SETQ su b je c t ’john)
John

<-(SETQ p re d ic a te ' (i s b ig))
(i s big)

■«-(CONS su b je c t p red ic a te)
(john i s big)

The result of the CONS is to form a new list having a value that is a combina
tion of its two arguments. The first argument may also be a list. Consider the
following example:

^(SETQ su b je c t ' (t h e boy))
(the boy)

■^(CONS su b je c t p red ic a te)
((th e boy) i s big)

Note that since the first argument is a list, the first element of the new list
must also be a list! This is not exactly what we wanted though. Rather, we
wanted our new list to look like this:

(the boy is big)

To accomplish this, we need to dissect the first argument, and then CONS
the pieces together. The following statement achieves this effect:

^(CONS (CAR su b jec t)
(CONS (CADR sub jec t) p re d ic a te))

(the boy i s big)

Because NIL represents the empty list, we may use it as the second argument
of CONS. CONSing an atom and NIL together creates a list of a single element.
Consider this example:

•*-(CONS su b je c t NIL)
((th e boy))

3.2 Putting Lists Together: CONS, LIST and APPEND 41

We may read this as: take the CONS of the value of “subject” and NIL, and
return a list of them. This is a list of the list (the boy) and the empty list which is
never represented when we print out lists unless the list value is the null list.
Thus, it is possible to construct a list as follows:

<-(CONS NIL NIL)
(NIL)

Because this construct is frequently used, many LISP dialects define a func
tion, NCONS, which CONSes a single argument with NIL. It takes the form

Function: NCONS

Arguments: 1

Argument: 1) an S -ex p ressio n , EXPRESSION

Value: The value o f th e argument CONSed w ith NIL.

What happens if the second argument to CONS is not a list but an atom? CONS
still executes, but it forms a data structure known as a dotted pair. A dotted pair
is a CONS cell with pointers to two atoms—a degenerate list form. We may rep
resent it graphically as follows:

42 Primitive Functions

PTR PTR

V V
X Y

and display it, when printing the values, as

(X . Y)

Notice the “dot” separating the two atom names whence the notion of the
dotted pair.

The concept of dotted pair often causes LISP novices much trouble. I will
only mention dotted pairs briefly in the remainder of this text, usually to point
out where they may cause problems for users. Touretzky [tour84] and Siklossy
[sikl76] both give adequate explanations of dotted pairs.

3.2.2 LIST: Making Lists
INTERLISP provides a very useful primitive function for creating a list from any
number (indefinite) of arguments. This function is called LIST.

The format of the LIST function is shown below

Function: LIST
Arguments: 1-N

Arguments: 1-N) S -expressions, EXPRESSI0N[1] . . .
EXPRESSION[N]

Value: A l i s t of the values of i t s arguments.

LIST takes each of its arguments in turn and places them in a list. It is a
nospread function. For example, consider the following statement:

^ (L IS T ' th e 'boy ' i s 'b ig)
(the boy i s big)

Note that the result is the same as one we previously created with multiple
SETQs and CONSes. We may think of LIST in the following way:

(LIST (argum ent)) = (CONS <argument) NIL)

Both of these statements will give the same result. The utility of the LIST
function becomes apparent when we want to create much larger and more com
plex lists. For example, using CONS, we would have to write the following state
ment to create the list (the boy is big):

(CONS ' th e
(CONS 'boy

(CONS ' i s
(CONS 'b ig NIL))))

So, we may think of LIST as a shorthand notation for writing multiple CON
Ses to create a list. The beauty of LIST is that it take any number of arguments
and gathers them up into a list. Note that it evaluates its arguments as it pro
cesses them for inclusion into the resulting list. The following example shows
how we might create the list for presidential elections that we used in a previous
example:

(LIST
(LIST 1952 'eisenhower AA2)
(LIST 1956 'eisenhower 4-57)
(LIST 1960 'kennedy 303)

3.2 Putting Lists Together: CONS, LIST and APPEND 43

Note that each argument to LIST becomes an element of the new list. In the
example above, one argument is the S-expression (LIST 1956 ‘eisenhower 457).

Each of the arguments 1956, ‘eisenhower, and 442 becomes an element of a list
created by that LIST function. Because the form (LIST 1952 ‘eisenhower 442) is
an S-expression, it is evaluated when it is encountered in the list of arguments to
produce a value that is then included in the resultant list. Its value, of course, is
(1952 eisenhower 442).

Note that LIST with no arguments returns NIL, but (LIST NIL) returns
(NIL).

We said that LIST may take any S-expression as an argument. We have seen
where one of those S-expressions forms a list when evaluated. Other examples of
LIST to consider include

♦-(LIST '(app le orange) '(plum cherry))
((apple orange) (plum cherry))

Here, the arguments are lists that are passed to LIST. If the argument is
already a list, LIST embeds it as a sublist within a list. For example,

■•-(LIST '(app le orange))
((apple orange))

But, if you do not want it to be embedded as a sublist, then you must test to
see if the argument is already a list before applying LIST to it. Fortunately, IN
TERLISP provides a function that performs this chore for you, MKLIST. It
takes the form

Function: MKLIST

Arguments: 1
Argument: 1) an S-expression, EXPRESSION

Value: A l i s t containing the value of EXPRESSION.

MKLIST makes a list from the value of its argument. If EXPRESSION is
already a list or NIL, MKLIST merely returns the value of EXPRESSION. Oth
erwise, it applies LIST to the value of EXPRESSION. For example,

%
(MKLIST 'che rry -p ie)

(cherry-pie)

^(MKLIST)
NIL

^(MKLIST (LIST 1952 'eisenhower AA2))
(1952 eisenhower 4*42)

We might define MKLIST as follows (although I haven’t told you how to
define functions yet):

44 Primitive Functions

3.2 Putting Lists Together: CONS, LIST and APPEND 45

(DEFINEQ
(m k lis t (expression)

(COND
((OR

(NULL expression)
(LISTP expression))
ex p res s io n))

(T
(LIST exp ress ion)))

))

3.2.3 APPEND: Concatenating Lists
A function that also creates new lists is APPEND, Unlike LIST, however, AP
PEND takes an indefinite number of lists as its arguments and returns a list by
copying the lists to the new list. The generic format for invoking APPEND ap
pears as follows

Function: APPEND

Arguments: 1-N

Arguments: 1-N) l i s t s , LST[1] . . . LST[N]

Value: A l i s t of the S-expressions of the
in d iv id u a l l i s t s .

Note that (APPEND) and (APPEND NIL NIL) both return NIL. Consider
the following example:

•«-(SETQ su b je c t ' (t h e boy))
(the boy)
“•-(SETQ p re d ic a te ' (i s b ig))
(i s big)
•«-(APPEND su b je c t p red ic a te)
(the boy i s big)

Note that two individual lists have been combined into one list. Compare the
two functions to see how they work:

“•-(LIST su b je c t p red ica te)
((th e boy) (i s b ig))
•^(APPEND su b je c t p red ica te)
(the boy i s big)

We see that after LIST is executed, the two arguments still retain their iden
tity whereas, after APPEND is executed, they are merged into one list. We call
this top level copying because APPEND takes the top level values and concate
nates them together giving a new list.

APPEND is usually implemented as a “hardwired” primitive to provide effi
cient execution since it is so frequently used. We can, however, write APPEND
as a recursive function using just CONS and CDR (see Chapter 8 for a discussion
of function definition).

(DEFINEQ
(APPEND (a - l i s t b - l i s t)

(COND
((NULL a - l i s t) b - l i s t)
(T

(CONS
(CAR a - l i s t)
(APPEND (CDR a - l i s t) b - l i s t))))

))

but this does not copy B-LIST. It merely links the cells of B-LIST to those of A-
LIST. Thus, a change to the new list created by the concatenation may also
change B-LIST. It also works upon only two lists, e.g., it is a very simple defini
tion of APPEND.

An alternative definition copies the top level elements of each argument. It
is defined as follows:

(DEFINEQ
(append 1st

(PROG (value x temp y z)
(SETQ temp (CAR 1 s t))
(COND

((AND 1st
(NULL (CDR 1 s t))
(LISTP temp))
(SETQ 1st (CDR 1 s t))
(GO loop4)))

loopl
(COND

((NLISTP 1st)
(RETURN value)))

(SETQ temp (CAR 1 s t))
(SETQ 1st (CDR 1 s t))
(COND

((OR

46 Primitive Functions

(NLISTP 1st)
(NLISTP temp))
(*

Only the l a s t one of more
than one argument i s not
copied.

)
(GO loop2)))

loop4-
(SETQ z

(SETQ y
(CONS (CAR temp)

(CDR temp))))
loop3

(SETQ temp (CDR temp))
(COND

((LISTP temp)
(SETQ y

(RPLACD y
(CONS (CAR temp)

(CDR temp))))
(GO loop3)))

(SETQ temp z)
loop2

(COND
((LISTP x)

(RPLACD (SETQ x (LAST x))
temp))

(T
(SETQ value (SETQ x temp))))

(GO lo o p l))
))

APPEND will also work on arguments that are not lists. However, the data
structures that are produced involved dotted pairs. Consider the following exam
ples;

<-(APPEND 'kennedy
(LIST 'Johnson 'n ixon ’ford 'c a r t e r))

(Johnson nixon ford c a r te r)
(APPEND (LIST 'Johnson 'nixon 'fo rd 'c a r te r)

'reagan)
(Johnson nixon ford c a r t e r . reagan)

3.2 Putting Lists Together: CONS, LIST and APPEND 47

48 Primitive Functions

-^(APPEND
(APPEND (LIST 'Johnson 'nixon 'fo rd)

'c a r te r)
(LIST 'reagan))

(Johnson nixon ford reagan)
<-(APPEND

(APPEND (LIST 'Johnson 'nixon 'ford)
' c a r t e r))

(Johnson nixon ford . c a r te r)

Note that APPEND is modifying the values of the CDR pointers in the
CONS ceils when it combines lists.

3.2.4 Creating (NIL)
Sometimes, we will find it useful to create a list containing the NIL list. This list
takes the form (NIL). We can create this list in two simple but elegant ways using
the primitive functions CONS and LIST.

With CONS, we merely say

^(CONS)
(NIL)

which returns (NIL) because both of its argument are NIL.
With LIST, we can merely say

<-(LIST NIL)
(NIL)

where the second argument is an implied NIL that is treated as the empty list
because that is what LIST expects.

Note that APPEND cannot be used to return (NIL) because it operates upon
lists. Thus

<-(APPEND)
NIL

^(APPEND NIL NIL)
NIL

3.3 PHYSICAL STRUCTURE REPLACEMENT: RPLACAAND
RPLACD

In Section 2.4, we discussed the structural representation of lists using cells.
This provided a convenient way of thinking about lists as collections of pointers

to values as well as boxes for holding values. Using this model, whenever we
created a result from a function so far, we have always allocated new cells to hold
the result. This approach can be quite expensive, both in terms of execution
efficiency and in consumption of free memory.

INTERLISP provides us with two functions that allow us to physically mod
ify a list without allocating new cells. These functions, RPLACA and RPLACD,
allow us to replace the contents of the CAR or the CDR portions of a list cell,
respectively.

3.3.1 Replacing the CAR Cell
RPLACA (RePLAce CAr) allows us to replace the CAR portion of a list cell.
RPLACA takes the following form

Function: RPLACA

Arguments: 2

Arguments: 1) an S -expression reso lv in g to an atom,
ATM
2) an S -expresslon , EXPRESSION

Value: The new value of the l i t e r a l atom a f t e r
the replacement has been performed.

Suppose we have created a list of the following form:

■^(SETQ good-idea '(a p p le p ie i s t a s ty))
(apple p ie i s ta s ty)

We can change the type of pie by using RPLACA to change the CAR portion
of the first list cell (e.g., the one containing “apple”) as follows:

•^(RPLACA good-idea 'cherry)
(cherry p ie i s ta s ty)

Note that INTERLISP allocates no new cells to hold the result but merely
changes the pointer to the atom APPLE to the pointer to the atom CHERRY.
We say that RPLACA “smashes” the CAR value of the CONS cell. We can dia
gram this as follows:

3.3 Physical Structure Replacement: RPLACA and RPLACD 49

50 Primitive Functions

good-idea

V

— > — >

\
\
\

\
\

V
pie

V
is

V
ta s ty

\
V

apple
\

V
cherry

where # indicates that the pointer to APPLE has been broken (e.g., no longer
exists).

Errors may occur when we give RPLACA bad arguments. For example, we
cannot RPLACA NIL. Consider the statement

^(RPLACA NIL <anything>)
ATTEMPT TO RPLAC NIL

except for the form (RPLACA NIL NIL) which has no effect at all:

<-(RPLACA NIL NIL)
NIL

If we attempt to replace the CAR portion of something that is not a list,
INTERLISP returns the error ARGUMENT NOT LIST. Consider the state
ment

■•-(RPLACA 'apple (anyth ing))
ARGUMENT NOT LIST

3.3.2 Replacing the CDR Cell
In a similar fashion, RPLACD (RePLAce CDr) replaces the pointer to the CDR
portion of a list cell. RPLACD takes the following form:

Function: RPLACD
Arguments: 2

Arguments: 1) an S -expression eva lua ting to a l i t e r a l
atom, ATM
2) an S -expression , EXPRESSION

Value: The new value of the l i t e r a l atom a f t e r
the replacement has been performed.

Using the list GOOD-IDEA defined above, we can use RPLACD to create a
list that has as its value (apple tarts are tough).

(RPLACD good-idea ' (t a r t s are tough))
(apple t a r t s a re tough)

The following diagram shows how this is done:

3.3 Physical Structure Replacement: RPLACA and RPLACD 51

good-idea

— > — >

\
V

apple
\
\
\

V
t a r t s

V
p ie

V
i s

V
t a s ty

V

---- > ---- >

V
are

V
tough

where # indicates that the pointer from the CDR portion of the CONS is broken.
Using RPLACD can be dangerous for a number of reasons. If you change

the pointer to a group a cells to which nothing else points, those cells are lost. For
example, the cells comprising the list (PIE IS TASTY) are pointed to by the

CDR portion of GOOD-IDEA By replacing that pointer, we have no knowledge
of the address of the first cell of that list. Thus, the cells are allocated, but we
have no way to access them again during the remainder of the INTERLISP ses
sion. Too many mistakes in this fashion causes memory to be consumed at a
prodigious rate. One indication that memory is disappearing is a more frequent
occurrence of garbage collections.

Another problem that you may encounter is creating circular lists. Circular
lists may be good or bad, depending on your application’s requirements. In most
cases they are bad. We can create a circular list by causing the CDR portion of a
list cell to point to the beginning of the list. For example, consider the following
statement:

-^(RPLACD (CDDDR good-idea) good-idea)
. . . an in f in i t e l i s t . . .

causes the CDR portion of the last cell of GOOD-IDEA to point to the first cell
of the list.

Errors may occur if we give RPLACD bad arguments. For example, we can
not replace the CDR portion of NIL:

^(RPLACD NIL (anything))
ATTEMPT TO RPLAC NIL

except that INTERLISP allows us to say (RPLACD NIL NIL) which has no ef
fect at all:

^(RPLACD NIL NIL)
NIL

If we attempt to RPLACD something that is not a list, INTERLISP returns
the error ARGUMENT NOT LIST. For example, consider

(RPLACD 'apple <anything))
ARGUMENT NOT LIST

52 Primitive Functions

3.3.3 Replacing the CAR and CDR of a Cell
INTERLISP provides two functions to replace the contents of a node (e.g., an
atom) without changing the atom’s name: RPLNODE and RPLN0DE2.
RPLNODE takes the form

Function: RPLNODE

Arguments: 3

Arguments: 1) an atom, ATM
2) an S -expression , EXPRESSION-A
3) an S -expression , EXPRESSION-D

Value: The name of the atom.

RPLNODE (RePLace NODE) replaces the CAR and CDR pointers of the
atom’s CONS cell without changing the name of the atom or creating a new
CONS cell.

We might define RPLNODE as follows:

(DEFINEQ
(rplnode (atm expression -a expression-d)

(RPLACA atm expression-a)
(RPLACD atm expression-d)
atm

))

RPLN0DE2 also replaces the contents of an atom’s CONS cell by extracting
the CAR and CDR portions of an S-expression. It takes the form

Function: RPLN0DE2

Arguments: 2

Arguments: 1) an atom, ATM
2) an S -expression , EXPRESSION

Value: The name of the atom.

We might define RPLNODE2 as follows:

(DEFINEQ
(rpnode2 (atm expression)

(RPLACA atm (CAR expression))
(RPLACD atm (CDR expression))
atm

))

3.4 PREVENTING EVALUATION
In programming languages, we need to differentiate between a symbol that
stands for something (i.e., a variable) and a literal (i.e., a symbol whose value is
itself). Numbers are literals. Atoms are variables.

When we use atoms in INTERLISP statements, we assume the atom has a
value. What we want to manipulate is the value of the variable, not the name of
the variable. For example.

3.4 Preventing Evaluation 53

54 Primitive Functions

(IPLUS X y)

means add the value of X to the value of Y and return the result.
Arguments are usually passed to INTERLISP functions using the call-by-

value method. That is, what the function “sees” is not the name of the variable,
but its value. So, in evaluating the statement above, what IPLUS sees are the
values of the variables X and Y. INTERLISP evaluates the two arguments to
determine their values and passes these values to the function.

Sometimes we do not want arguments evaluated before they are passed to a
function. In Chapter 8, we shall see one method of preventing evaluation in the
way in which certain types of functions (called NLAMBDA functions) are de
fined. Another way is to QUOTE the argument so that its literal value is passed
rather than attempting to evaluate it for a value.

Suppose we want to test the equality of two values. First, we may represent
them as the values of atoms. For example,

^(SETQ X 'apples)
apples
<-(SETQ y 'oranges)
oranges
^(EQUAL X y)
NIL

because the two values are not equal. We could directly specify the value
ORANGES instead of assigning it to a variable as follows;

(EQUAL X 'oranges)
NIL

If we had attempted to execute

■«-(EQUAL X oranges)
U.B.A.
oranges

because INTERLISP expects ORANGES to be the name of a variable that has a
value. By quoting ORANGES, we tell INTERLISP that it should pass the literal
value ORANGES to the EQUAL function.

Some functions in INTERLISP automatically assume that one or more of
their arguments are not to be evaluated; that is, they ar assumed to be “quoted.”
SETQ is one of these. It assumes that its first argument (for example, X) is to be
assigned a value. A variant of SETQ which assumes that both its arguments are
quoted is SETQQ. Compare the following examples:

<-(SETQ x l 'app les)
apples

•^(SETQQ x2 apples)
apples

apples

<-x2
apples

The INTERLISP function that prevents the evaluation of its argument is
QUOTE. It takes the form

Function: QUOTE
KWOTE

Arguments: 1

Argument: 1) an S -expression , EXPRESSION

Value: The l i t e r a l value of i t s argument.

QUOTE is an NLAMBDA, nospread function. QUOTE returns the
PRINl-PNAME of that argument. However, because we use the quoting facihty
so much in INTERLISP, a convenient shorthand notation is provided for enter
ing the QUOTE function. We prefix the S-expression to be quoted by a single
apostrophe (sometimes called a quote-mark). The single apostrophe is treated as
a read macro (see Section 14.5).

Internally, INTERLISP requires all data to be expressed in a strict S-ex-
pression form. The quote-mark notation does not fit this form. So, the IN
TERLISP function that reads data typed in by the user converts all ’<S-expres-
sion> forms to (QUOTE < S-expression >) forms. Thus, while we type in

(CAR 'x)

what INTERLISP really sees is

(CAR (QUOTE x))

When we attempt to give QUOTE more than one argument, it generates a
PARENTHESES ERROR. For example,

<^(QUOTE i (CONS see her))
PARENTHESES ERROR

because QUOTE does not know how to process the second argument.

3.4 Preventing Evaluation 55

An alternate function, KWOTE, returns a value which is its argument as a
literal value. KWOTE is a LAMBDA function; that is, it arguments are evalu
ated. For example,

♦-(SETQ X 'apples)
apples
'^(SETQ y 'oranges)
oranges
<-(KWOTE (l i s t X y))
(QUOTE (apples oranges))

If the value of its argument is a number, which is a literal value, KWOTE
merely returns that number:

^(SETQ p i 3.1^1592)
3.141592

^(KWOTE pi)
3.141592

Similarly, if the value of the argument is NIL, KWOTE merely returns NIL:

<-(SETQ t r u th - f la g NIL)
NIL
<-(KWOTE t ru th - f la g)
NIL

56 Primitive Functions

3.5 CONDITIONAL EXECUTION: COND
INTERLISP provides a conditional execution facility through the function
COND. The format of the COND expression is

Function: COND

Arguments: 1-N

Arguments: any S-expressions

Value: The value of the l a s t statem ent in the
f i r s t S-expression whose CAR evaluates to
T.

COND is an NLAMBDA, nospread function. A COND expression takes the
following format (when prettyprinted):

(COND
(< te s t l> . . . < re s u l t l>)
(< te s t2 > . . . < re su lt2 >)

• •

• •

(< testN > . . . < resu ltN >))

3.5.1 Executing a CON D Expression
The elements of a COND statement are called clauses. Each clause is composed
of a test phrase, represented as an S-expression, followed by zero or more action
phrases, represented as S-expressions, which are actions to be taken if the test
evaluates true.

CONDs are executed as follows:

Execute the test of the first clause. If it is true (i.e., T), then execute all of
the S-expressions comprising the result. The value of the COND is the value
of the last S-expression in the result that is executed.
If the test returns NIL when evaluated, proceed to the next clause.
Continue to evaluate the tests of each clause in turn until one returns a non-
NIL value. If this occurs, execute the S-expressions in the result as
mentioned above.
If no clause evaluates successfully, the value of the COND is NIL.

Suppose we wanted to determine the type of an argument presented to a
function. We could use COND to execute a sequence of tests that could serve to
identify the argument’s type. A possible definition for a function that captures
this idea is

(DEFINEQ
(te s t-a rg u m e n t (an-argum ent)

(COND
((LISTP an-argum ent) 'LIST)
((NUMBERP an-argum ent) ’NUMBER)
((STRING? an-argum ent) 'STRING)
((ATOM an-argum ent) 'ATOM)
(T 'UNKNOWN))

))

In this example, there are five clauses. The first clause consists of the test

(LISTP an-argum ent)

3.5 Conditional Execution: CON D 57

58 Primitive Functions

and the result

•LIST

If the argument passed to TEST-ARGUMENT were a list such as (A B),
then TEST-ARGUMENT would return the value LIST. LISTP is a predicate
(see Chapter 4) which returns either a true (T) or false (NIL) value.

3.5.2 The Default Clause
The last clause (T NIL) in the example above is often called a default clause
because it will be executed if no other clause succeeds. The test in the default
clause always evaluates to true because it is the single atom T. Thus, the result
will always be executed. For example,

<-(SETQ X (ARRAY 10 5 5))
[ARRAYP]#1,104^

(te s t-a rg u m en t x)
unknown

because X is not one of the data types tested for in TEST-ARGUMENT. Thus,
none of the first four clauses succeeds. The default clause is executed and re
turns UNKNOWN.

Because a clause with T as its test is always evaluated, it should always be
the last clause in the COND expression. Clauses appearing after the T clause in a
COND expression will never be executed because they can never be reached dur
ing normal program flow. This is a frequent error made by novice LISP pro
grammers that is easy to avoid.

3.5.3 Test Phrase Values
The test of a clause must return a true or false value to determine whether the
result is executed or not. Many functions do not return T but some value (for
example, MEMBER). If we required the value of the test to be only T or NIL,
then any function returning other than T would have to be tested for a non-NIL
value to produce a T. Consider the following COND fragment:

(COND
((MEMBER item bag) item)

MEMBER always returns the fragment of a list beginning with its first argu

ment if that first argument is indeed a member of the list (see Section 4.8). Thus,
to ensure a T or NIL value, we would have to test what MEMBER returns via

<^(NULL (MEMBER item bag))
T or NIL

Happily, INTERLISP does not require this constraint. Any value returned
by a function used in the test phrase of a clause that is non-NIL suffices to indi
cate a successful execution. Thus, if (MEMBER item bag) returns a non-NIL
value, the corresponding result phrases will be executed.

Suppose we have a program which reads user queries and executes them
against a database. In addition, the program may also respond to several com
mands that cause other functions to be called to perform administrative duties
associated with program execution. We might write the function to read the
query and decide what to do as follows (making judicious use of the COND ex
pression):

(DEFINEQ
(get-query (query)

(PROG (f i r s t - c h a r a c t e r)
(COND

((NOT (NULL query))
(RETURN query)))

loop
(PRINl ' 'E n te r Query: ")
(SETQ query (READ))
(SETQ f i r s t - c h a r a c t e r

(CAR (UNPACK query)))
(COND

((EQUAL (CAR (CHCON f i r s t - c h a r a c te r))
(CAR (CHCON '#)))
(SETQ query

(PACK
(CDR

(unpack query))))
(execute-query query))

((EQUAL (CAR (CHCON f i r s t - c h a r a c t e r))
(CAR (CHCON '?)))
(print-commands))

((EQUAL 'DEBUG query)
(SETQ *debug* (NOT *debug*)))

((EQUAL 'OPTIONS query)
(s e t - o p t io n s))

((EQUAL 'RULES query)
(show -ru les))

3.5 Conditional Execution: CON D 59

((EQUAL 'QUIT query)
(RESET))

(T
(RETURN query)))

(GO loop))
))

3.6 MULTIPLE CASE SELECTION: SELECTQ
The COND statement tests each clause until it finds one that returns a true
value, executes its consequents, and exits. Often, you will want to perform some
function based on an explicit value of a variable or function. In a COND state
ment, you would have to test for each and every instance, perhaps through using
EQUAL. This can be both tedious as well as leading to omitting one or more
important cases. INTERLISP provides the SELECTQ function to select a spe
cific statement from among multiple cases.

A SELECTQ expression takes the form

Function: SELECTQ

Arguments: 2-N

Arguments: 1) a se le c t io n phrase, SELECTOR
2) a case c lause , CLAUSE[1]
3-N) case c lauses , CLAUSE[2] . . . clause[N]

Value: The value of the l a s t S-expression
executed w ithin the se lec ted case clause
or the d e fau lt c lause .

SELECTQ is an NLAMBDA, nospread function. The general structure of
the SELECTQ statement is given by:

(SELECTQ <selec tion-value>
(case [l] <clause[l]>)
(case [2] <c la u se [2]>)

60 Primitive Functions

(case[N] <clause[N]>)
(< d e fa u lt-c la u s e >))

3.6.1 Executing a SELECTQ Expression
The <selection-value>, SELECTOR, may be an atom or an S-expression that
evaluates to an atomic value. It is compared with the case clauses as follows:

1. If case[i] is an atom, then if (EQ SELECTOR case[i]) is true,
INTERLISP executes the S-expression comprising clause[i].

2. If case[i] is a list, then SELECTOR is compared with each element of the
list in turn. If it is EQ to one of the elements of the list, then the S-
expressions in clause[i] are executed.

3. If none of the case[i] are selected by either of the two methods, the <de-
fault-clause> is executed. There must always be a default clause present
in a SELECTQ expression.

Note that none of the case[i] are evaluated. Moreover, the clause[i] may be
compound expressions as denoted by a PROGN (see Section 3.7.2).

The value of a SELECTQ statement is always the value of the last S-expres-
sion executed in any of the clauses or the <default-clause>.

3.6 Multiple Case Selection: SELECTQ 61

3.6.2 SELECTQ Examples
Suppose we can select one of several operations from a menu. How might we use
SELECTQ to “switch” to the proper execution stream for the selected opera
tion? Let us assume that the operations are CREATE, DELETE, UPDATE,
DISPLAY, and EXIT. We might define a function as follows:

(DEFINEQ
(ex ec u te .o p e ra tio n (item menu key)

(COND
((EQUAL key 'MIDDLE)

(SELECTQ (CAR item)
(c re a te

(c re a te .n o d e))
(update

(update .node))
(d e le te

(d e le te .n o d e))
(d isp lay

(d isp la y .n o d e))
(e x i t

(e x i t .o p e r a t io n s))
(PROGN NIL))))

))

This example is drawn from a program in INTERLISP-D that makes use of
the menu display and selection capability in the window system. You select an
item from the menu by pressing the mouse key. Associated with the menu is a
function to be executed when a selection is made. The function above “switches”
you to the appropriate function to be executed based on your selection. Note that
the last expression in the SELECTQ statement is a PROGN which means do
nothing if no selection was made.

The IRM [irm83] presents another simple example to select the number of
days in a month. It looks like this:

(SELECTQ month
(february

(COND
((leapyearp)

29)
(T 28)))

((april june September november) 30)
(PROGN 31))

where LEAPYEARP tests if the current year is a leap year (e.g., divisible by 4).
SELECTQ may also be used to invoke different processing routines based

on the current state of the computation. Consider the case where your program is
reading free text from a file. Your program must perform different kinds of pro
cessing based on the syntactic element it is trying to complete. Here is a fragment
of a routine showing how SELECTQ might be used:

(SELECTQ s ta te
(scanning

(COND
((te s t - c h a ra c te r (LIST *PARAGRAPH*

DELIMITER
SENTENCE)))

(T
(SETQ word (TCONC NIL char))
(SETQ s ta te 'word))))

(word
(COND

((te s t - c h a ra c te r *DELIMITER*)
(PACK word))

(T
(TCONC word ch a r))))

(sentence
(COND

((te s t - c h a ra c te r *NEW-LINE*)
’*SENTENCE*)

(T
(SETQ s ta t e ’scanning))))

(paragraph
(COND

((te s t - c h a ra c te r *NEW-LINE*)
' ^PARAGRAPH*)

(T
(SETQ s ta t e ’scann ing)))))

62 Primitive Functions

The basic idea is that STATE holds the current state of the scanning pro
cess. In this example, SELECTQ acts like a finite state automaton to switch the
computation to the current processing routine based on the input it has just re
ceived.

3.6.3 A Definition for SELECTQ
We might define SELECTQ as follows:

(DEFINEQ
(s e le c tq

(NLAMBDA se le c tq -a rg s
(APPLY 'PROGN

(SELECTQl
(EVAL (CAR s e le c tq -a rg s))
(CDR s e le c tq -a rg s)))

)))

Note that we must evaluate the SELECTOR to obtain its value for compari
son with the cases.

SELECTQl is defined as

(DEFINEQ
(s e le c tq l (s e le c to r c lauses)

(PROG (c l a u s e - l i s t)
(SETQ c l a u s e - l i s t c lauses)

loop
(SETQ c lauses (CDR c lauses))
(COND

((NULL clauses)
(*

A s in g le case /c lau se p a i r
in the SELECTQ, so re tu rn
the so le c lause .

)
(RETURN c l a u s e - l i s t))

3.6 Multiple Case Selection: SELECTQ 63

((OR
(EQ

(AND

(CAR (SETQ c l a u s e - l i s t
(CAR c lause -

l i s t)))
s e le c to r)

(LISTP (CAR c l a u s e - l i s t))
(MEMBER s e le c to r

(CAR c lause -
l i s t))))

(*
The f i r s t of these
expressions t e s t s the
se le c to r against a single
atom in a case.
The second expression t e s t s
against a l i s t of atoms in
the case.

)
(RETURN (CDR c l a u s e - l i s t))))

(GO loop))
))

Note that SELECTQl merely returns a list of the clauses to be executed
when a match has been found for a particular case. The clauses are executed in
the APPLY expression in SELECTQ through the application of PROGN.

3.6.4 SELECTC: Selecting on Constants
A variation on SELECTQ is the function SELECTC which performs selection on
constants. It takes the form

Function: SELECTC

ft Arguments: 2-N

Arguments: 1) a s e le c t io n phrase, SELECTOR
2) a case c lause , CLAUSE[1]
3-N) op tiona l case c lauses , CLAUSE[2] . . .
CLAUSE[N]

Value: The value of the l a s t expression executed
in the case clause th a t i s se lec ted .

SELECTC is an NLAMBDA, nospread function. SELECTC allows you to
determine the keys in the case phrase of a case clause at execution time. In SE
LECTQ, the key(s) in a case are literals that are not evaluated at execution time.
However, the case[i] which determine the selection keys may be S-expressions
which are evaluated to produce the possible selection keys. SELECTC is com
piled as a SELECTQ, so that its selection keys are treated as compile-time con
stants.

The IRM [irm83] gives an example of how SELECTC may be used:

(SELECTC number
((fo r X from 1 to 9

c o l le c t (TIMES X X))
"SQUARE”)

(PROGN "NON-SQUARE”))

64 Primitive Functions

where the (for . . .) expression is evaluated at execution time to produce the list (1
4 9 16 25 36 49 64 81) against which the selector (e.g., NUMBER) is compared.

3.7 ITERATIVE EVALUATION: PROG
The iteration mechanism provided by INTERLISP is the PROG statement.
PROG allows you to write a “program” that may transfer control either forward
(“skipping”) or backward (“ looping”) over one or more statements.

A PROG expression takes the format

Function: PROG
Arguments: 1-N

Arguments: 1) a l i s t of v a r ia b le s , VARLST

2-N) one or more S -expressions,
EXPRESSI0N[1] . . . EXPRESSION[N]

Value: The value of the l a s t S-expression
executed w ith in the scope of the PROG.

PROG is an NLAMBDA, nospread function. The general structure of a
PROG statement is

(PROG <p ro g ram -v a riab le - l is t>

<S-expressions>

<la b e l)

<S-expressions>

(GO < labe l>))

PROG operates as follows. The program variables specified in the <pro-
gram-variable-list> are initialized to NIL or to a specified value (see below). The
< S-expressions> are executed in sequence. Control of statement execution may
be modified in two ways:

1. A statement of the form (GO <label)) is executed that specifies the next
statement to be executed is found after (label). Control may be transfer
red either forward or backward within the PROG body.

2. A statement of the form (RETURN <S-expression)) is executed which
causes the PROG to immediately exit with the value of the S-expression.

Control may be transferred either forward or backward within the list of S-
expressions depending on the position of the (label) that is the argument of GO.

3.7 Iterative Evaluation; PROG 65

Labels must always be literal atoms. They serve only as markers within the se
quence of S-expressions and are never executed.

The value of a PROG statement is either the value of the RETURN state
ment or NIL if the PROG “falls off the end.” That is, the last S-expression in the
sequence is executed without a RETURN statement being encountered. The lat
ter form is bad programming practice.

66 Primitive Functions

3.7.1 Binding of PROG Variables
A <program-variable-list> specifies the variables that are used by the PROG
statement. They are similar to LAMBDA variables (see Chapter 8) in that they
are bound locally to the PROG expression. Once the PROG expression is exe
cuted, the PROG variables cease to have a valid binding. If no program vari
ables are needed, you must specify NIL or () to indicate no local variables are
needed. Otherwise, <program-variable-list> entries may take one of two forms:

1. An entry may be a literal atom which is then initialized to NIL. For exam
ple,

(PROG (clause) . . .)

2. An entry may have the form (<atom> < S-expression >) where the atom is
initialized to the value determined by evaluating the S-expression. For
example,

(PROG ((sum 0) (index 1)) . . .)

Attempting to use anything other than a literal atom as a PROG variable
causes the error message ARG NOT LITATOM to be printed. You may not use
NIL or T as PROG variable names, although they may be used to initialize
PROG variables. Attempting to do so will cause the error message ATTEMPT
TO BIND NIL OR T to be displayed and an error to occur.

PROG variables exist only for the execution of the PROG. They have no
value outside it. Thus, once you execute a RETURN statement, any PROG vari
ables within the PROG disappear (i.e., become undefined).

PROG variables do not have to be unique. You may use the names of vari
ables that are external to the PROG as the names of PROG variables. However,
atom names appearing in a <program-variable-list> take precedence over those
names external to the PROG. That is, the name indicates a new variable which
has the value given by the PROG initialization and not the value of a similarly
named variable external to the PROG.

Here is an example of a PROG expression used in a function that skips
spaces while reading text from a file.

(DEFINEQ
(sk ip -sp aces (f i l e - i n)

(PROG (char)
loop

(SETQ char (re ad -ch a rac te r f i l e - i n))
(COND

((NULL char)
(RETURN *EOF*))

((EQUAL
(CAR (CHCON char))
EOF)
(RETURN *EOF*))

((NOT (EQUAL
(CAR (CHCON char))
space))
(RETURN char))

(T (GO lo o p))))
))

Note that the RETURN expressions are embedded within the COND
clauses. We could just as easily have written this function as follows:

(DEFINEQ
(sk ip -sp aces (f i l e - i n)

(PROG (char)
loop

(SETQ char (re ad -ch a rac te r f i l e - i n))
(COND

((NULL char)
(GO e n d -o f - f i le))

((EQUAL
(CAR (CHCON char))
EOF)
(GO e n d -o f - f i le))

((NOT (EQUAL
(CAR (CHCON char))
sp ace))
(GO e x i t))

(T (GO loop)))
e n d - o f - f i l e

(RETURN *EOF*)
e x i t

(RETURN char))
))

3.7 Iterative Evaluation: PROG 67

This form makes the transfer of control more explicit in that the function
skips forward to labels to exit the program. The style is akin to FORTRAN pro
gramming.

3.7.2 Variations on PROG
There are three variations to PROG. PROGl takes a sequence of S-expressions
with no <program-variable-list>, executes each in turn, but always returns the
value of the first S-expression that it executed. PR0G2 is similar to PROGl but
returns the value of its second argument. PROGN is a function which evaluates
its arguments in order and returns the value of the last argument. All are
NLAMBDA, nospread functions. They take the form

Function: PROGl
PR0G2
PROGN

Arguments: 1-N
Arguments: 1-N) S-expressions

Value: The value of the f i r s t (re sp ec tiv e ly , the
second) S-expression in the argument l i s t .

Suppose we had a function that we knew was used to read the first atom of a
command line. When it is called, it reads the atom, via RATOM, and also sets
up the margin for echoing the command line. We want this function to return
the atom read even though we test for the existence of a command and perform
an additional function. *RATOM can do this using PROGl:

(DEFINEQ
(*ratom ()

(PROGl
(SETQ command (RATOM))
(AND

(IS.COMMAND? command)
(MAKEMARGIN)))

))

Note that I have defined *RATOM with a space between the (and the func
tion name *RATOM so that it is distinguished from a comment.

PROGN evaluates each of the S-expressions which are its arguments, but
always returns the value of the last S-expression.

PROGl, PR0G2, and PROGN may be thought of as block delimiting state
ments. That is, they identify a sequence of statements that are executed as a
single entity. Their only difference is which S-expression value they return. Pro

68 Primitive Functions

3.7 Iterative Evaluation: PROG 69

grammers familiar with such block-structured languages as C and PASCAL will
see a striking similarity to the BEGIN ... END blocks of those languages.

PROGl and PROGN are particularly useful in SELECTQ expressions. The
cases of a SELECTQ expression take the form

(<s e le c to r) <a c tio n))

The syntax of SELECTQ restricts (action) to a single S-expression. Using
PROGN, we may collect any number of S-expressions into a single expression.
For example,

((s e l e c to r)
(PROGN < ac tio n l)

<action2)

(a c t io n N)))

Note also that RETURN (see Section 3.7.4) takes a single S-expression as its
argument. PROGN may be used here as well to execute a block of S-expressions
the last of which becomes the value of the PROG.

3.7.3 Transfer of Control
PROG expressions allow you to develop iterative procedures in a function. Con
trol is transferred to another statement by executing GO. It takes the form

Function: GO

Arguments: 1
Arguments: 1) a la b e l , LABEL
Value: None, but co n tro l i s t r a n s fe r r e d to LABEL,

which must be a l i t e r a l atom.

LABEL identifies a location within the body of the PROG. If the label is
undefined, GO generates an error with the message “UNDEFINED OR ILLE
GAL GO” .

GO transfers control only within a function in which the PROG is defined.
GO may transfer control either forward or backward within a PROG expression.
PROG expressions may be nested within one another to any depth. When GO is
executed, if the <label) does not appear within the current PROG, INTERLISP
searches the hierarchy of PROGs looking for (label). Control is transferred to a
statement higher in the hierarchy if it is identified by <label). For example.

70 Primitive Functions

(PROG

----- >loop

(PROG (. . .)

(PROG (. . .)

■< (GO loop))))

The GO expression transfers control to the label LOOP in the outermost
PROG.

Sometimes, PROGs may be independently situated within a function. Con
trol may not be transferred out of one PROG and into another because, once a
PROG has been exited, no knowledge exists about its structure. For example,

(DEFINEQ <function)

(PROG (. . .)

■>loop

(PROG

(RETURN))

(. . .)

■< (GO loop)))

will generate an error because no knowledge of LOOP is retained once the first
PROG has been exited.

Control may be transferred either forward or backward within a PROG
body. As in conventional programming languages, there are many possibilities
for abusing the unconditional GOTO.

3.7 Iterative Evaluation: PROG 71

I recommend limited use of it according to the following rules:

1. GO should transfer control only backward within a PROG body, except
for rule 2;

2. O may transfer control forward only to a label that identifies the last
statement in the PROG body. For mnemonic purposes, this label should
have the word EXIT as part of its name to indicate that the statements
that follow will terminate the PROG.

3.7.4 Exiting PROGs
PROG expressions may be exited in two ways:

1. Normally, by executing a RETURN expression.
2. Abnormally, by “dropping off” the end of the PROG body.

When a PROG expression terminates, it normally returns NIL as its value.
RETURN allows us to stipulate a value that we want returned as the value of the
PROG expression.

RETURN takes the form

Function: RETURN
Arguments: 1

Argument: 1) an S -expression , EXPRESSION
Value: The value of the S -expression , but a s ide

e f f e c t i s to term inate the PROG
expression ,

EXPRESSION is an expression which is evaluated and becomes the value of
the PROG.

If RETURN is executed inside an interpreted function, but not within a
PROG, it will force an exit from the last interpreted PROG expression that was
entered, if any. Otherwise, an error will result. That is, you may call other func
tions within the body of a PROG expression and embed the RETURN from the
PROG within one of those functions. However, this can lead to considerable
confusion when reading program code and, I believe, constitutes poor program
ming practice.

The compiler detects RETURN expressions that are not contained within
PROG expressions in a function and generates an error at compile time.

3.7.5 Implementing a DO-WHILE-UNTIL Construct
Charniak et al. [charSO] describe the implementation of a LOOP macro (using
MACLISP features) that includes both DO-WHILE and DO-UNTIL capabili

ties. INTERLISP does not provide macro features at the user programming
level. Nevertheless, let us describe how the LOOP statement works as a guide for
building PROG statements.

The basic structure of the LOOP statement consists of a number of subordi
nate statements organized in sequence:

(LOOP
(INITIAL < in i t ia l iz a t io n - e x p re s s io n s))
(WHILE <while-condition>)
(DO <do-body>)
(NEXT <next-case-expressions>)
(UNTIL <untll-condltion>)
(RESULT <return-condition>))

Most of these subordinate statements are optional. They may be combined
in several ways to provide analogues to conventional DO-WHILE or DO-UNTIL
iterations. Indeed, you may specify an INITIAL-DO-RESULT loop which acts
exactly like a PROGN.

Each of the subordinate statements is translated into a more familiar LISP
statement by the macro. We will examine each of the statements and then show
how they map into a general construct for an INTERLISP PROG statement.

1. The INITIAL statement specifies the local variables of the PROG and
assigns them values prior to the execution of any statements in the loop
body. The format of an <initialization-expression> is a sequence of <vari-
ables-expression> pairs. For example,

(INITIAL SUM 0 COUNT 0)

initializes two variables, SUM and COUNT, to 0. However, the expres
sion may be any valid S-expression.

The INITIAL statement is translated into a sequence of SETQ state
ments plus a list of variables that become the <program-variable-list> of
the PROG statement. Thus, the example above becomes

(PROG (SUM COUNT)
(SETQ SUM 0)
(SETQ COUNT 0)

2. The WHILE statement tests a condition and terminates the loop if the
condition yeilds a false (NIL) value. Stated in a different way, the loop
body is executed as long as the <while-condition> is true (T). The <while-
condition) is just an S-expression that is to be evaluated. Thus, the
WHILE statement translates as •

72 Primitive Functions

(OR
(<w h ile -c o n d it io n))
(GO EXIT$))

where EXITS is a label indicating the exit from the loop. Note that Char-
niak’s macro generator inserts this automatically, but in our formulation
you will have to code it explicitly. As an example, consider

(WHILE (NEQ COUNT 10))

which translates to

(OR
(NEQ COUNT 10)
(GO EXIT$))

3. The DO statement specifies the body of the loop. It contains one or more
S-expressions that are to be executed on each pass through the loop. The
expressions are evaluated from first to last in order. Transfers of control
occurring within the DO-body must be explicitly encoded by the user. An
example of a DO-body is

(DO
(SETQ NEXT-NUMBER (READ))
(SETQ SUM (IPLUS SUM NEXT-NUMBER)))

which just reads a number and adds it to SUM. The translation of this
DO-body is merely

(SETQ NEXT-NUMBER (READ))
(SETQ SUM (IPLUS SUM NEXT-NUMBER))

4. The NEXT statement specifies the local variables that are to be updated
for the next loop iteration. The <next-case-expressions> take the form of
<variable-expression> pairs where the variable is set to the value of the
expression. Typically, the expression involves some previous value of the
variable in its computation. An example of a NEXT statement might be

(NEXT COUNT (ADDl COUNT))

which is translated to

(SETQ COUNT (ADDl COUNT))

5. The UNTIL statement terminates the execution of the loop when the
<until-condition> evaluates to true (non-NIL). Stated differently, the

3.7 Iterative Evaluation: PROG 73

loop body is executed as long as the <until-condition> is false (NIL). The
<until-condition> is just an S-expression that is evaluated. An example
of an UNTIL statement might be

(UNTIL (IGREATERP SUM 1000))

which is translated to

(AND
(IGREATERP SUM 1000)
(GO EXIT$))

6. The RESULT statement specifies the value that the loop has when its
termination conditions are satisfied. A <result-expression> is an S-ex-
pression that is evaluated and becomes the loop value. For example,

(RESULT (QUOTIENT SUM COUNT))

which translates to

(RETURN
(QUOTIENT SUM COUNT))

Let us put the pieces together, with appropriate comments to see the frame
work for a general model of a PROG statement using the concepts discussed by
Charniak et al. Our final PROG statement would appear as

(PROG (SUM COUNT)
(* from INITIAL sta tem en t *)
(SETQ SUM 0)
(SETQ COUNT 0)

74 Primitive Functions

LOOP$
(* from WHILE sta tem en t *)
(OR

(NEQ COUNT 10)
(GO EXIT$))

(* from DO sta tem en t *)
(SETQ NEXT-NUMBER (READ))
(SETQ SUM (IPLUS SUM NEXT-NUMBER))
(^ from NEXT sta tem en t *)
(SETQ COUNT (ADDl COUNT))
(* from UNTIL sta tem en t *)
(AND

(IGREATERP SUM 1000)
(GO EXIT$))

(GO LOOP$)

EXIT$
(* from RESULT statem ent *)
(RETURN

(QUOTIENT SUM COUNT)))

Note that Charniak’s macros would insert the loop markers LOOPS and
EXITS automatically, but you must explicitly encode them in your PROG con
struct. We see that this PROG construct merely reads ten numbers (or until their
sum is greater than 1000), and computes the average.

3.7.6 Other LISP forms
PROG provides us with two key features for writing programs:

1. The ability to perform iteration.
2. The ability to define and initialize local variables.

Other LISP dialects, such as MACLISP and FranzLisp, provide PROG ex
pressions. But they also provide alternative forms that accomplish the same
functions but with (they claim) simpler forms.

LET is an expression that allows you to declare and bind local variables. Its
structure appears as

(LET < lo c a l -v a r i a b le - l i s t>
< f o rm s - l i s t>)

where <local-variable-list> is a list of expressions of the form ((variable)
<value>). <forms-list> is just a list of S-expression to be executed. The variables
defined within a LET have existence only for the duration of the LET. You may
think of a LET as a PROGN with local variable capability.

DO is a special form that provides the local variable binding capability of
the LET form with the iteration facility of PROG. DO has the following struc
ture:

(DO (< lo c a l - v a r ia b le - l i s t>)
(<c o n d itio n) < a c t io n - l i s t))
(< e x p re s s io n [l])

• • •

<expression[N]))

The <local-variable-list) has a form similar to that used in LET expressions:

((v a r ia b le) (v a lu e) (u p d a te -ex p re ss io n))

The (update-expression) is evaluated on each cycle of the DO loop to up
date the value of the variable. Variables with no (update-expression) are as
sumed to retain the initial value throughout the execution of the DO loop.

3.7 Iterative Evaluation: PROG 75

1

The ((condition) <action-list>) expression determines how the DO expres
sion terminates. On each pass through the DO loop, the {condition) is exe
cuted. If it evaluates true, then the expressions on the <action-list) are executed
and the DO expression is exited. The value of the DO expression is the value of
the last expression in the <action-list).

The DO body is composed of expressions to be evaluated. Unlike PROG,
however, when the DO reaches the last expression of the body, it begins a new
cycle of the loop rather than falling off the end. The DO body may contain GO
expressions and RETURN expressions to control the sequence of execution and
when the loop is terminated, respectively. The DO body may be empty if all
computation can be done by the <update-expression)s in the < local-variable-
list).

Charniak [charSO], Winston [winsSl], and Touretzky [tour84] discuss both
the LET and DO forms in more detail.

Do not confuse the DO discussed in this section with the DO operator pro
vided by CLISP.

76 Primitive Functions

3.8 VALUE ASSIGNMENT: SET AND SETQ
To assign values to variables, we use the SETQ function. SETQ takes two argu
ments: the variable to be set and an S-expression that may or may not be evalu
ated to provide a value for the variable. The format of SETQ (and SET as well) is

Function: SETQ
SET
SETQQ

Arguments: 2

Arguments: 1) a l i t e r a l atom, ATM
2) an S-expression, EXPRESSION

Value: The new value of the v a r ia b le .

ATM must be a literal atom. Attempting to use anything other than a literal
atom causes the error message “ARG NOT LITATOM” to be displayed. If
ATM is NIL or T, the error message “ATTEMPT TO SET NIL OR T” will be
displayed.

SETQ and SET differ only in the evaluation of their first argument. SET
evaluates its first argument to produce the name of the literal atom to be as
signed a value. SETQ does not. That is, SETQ assumes that the first argument
is the name of the variable to which a value is to be assigned.

Consider the following examples:

♦-(SETQ computer-manufacturers (LIST 'univac 'ibm 'n c r))
(univac ibm ncr)

♦-(SETQ an - in d u s try 'computer-manufacturers)
computer-manufacturers
“«-(SET an-Indus t r y

(APPEND computer-manufacturers
(LIST 'honeyw ell)))

(univac ibm ncr honeywell)

an - in d u s try
computer-manufacturers

computer-manufacturers
(univac ibm ncr honeywell)

Notice that SET evaluated the value of its first argument, which is COM
PUTER-MANUFACTURERS, and set it to the value of its second argument.
Thus, when we display COMPUTER-MANUFACTURERS later, it has the new
value that is shown.

An alternative form of SETQ, SETQQ, assumes that both of its arguments
are “quoted.” That is, neither argument is evaluated. Using the example above,
we would have

(SETQQ computer-manufacturers (univac ibm ncr))
(univac ibm ncr)

3.9 SETTING AN ATOM'S VALUE CELL
INTERLISP has been implemented in several different versions. One major dis
tinction concerns whether variables are deep or shallow bound on the stack. This
notion will be discussed in more detail in Chapter 30. However, I will discuss
several functions that set an atom’s value cell in this chapter because they are so
widely used, most notably by the File Package (see Chapter 16).

3.9.1 Binding Atoms from a File
RPAQ and RPAQQ are NLAMBDA functions that set an atom’s value cell.
They operate exactly like SETQ and SETQQ. They have the format

Function: RPAQ
RPAQQ
RPAQ?

Arguments: 2
Arguments: 1) a l i t e r a l atom, ATM

2) an S -expression , EXPRESSION

Value: The value of the S-expression .

The expression is evaluated for RPAQ and is not evaluated for RPAQQ.

3.9 Setting an Atom's Value Cell 77

•<-(RPAQ computer-manufacturers ' (univac ibin ncr))
(univac ibm ncr)

Both RPAQ and RPAQQ generate an error message “ARG NOT LITA-
TOM” if ATM is not a literal atom.

RPAQ? sets the top level value of ATM if and only if it does not have a
current top-level binding, e.g., the contents of the value cell is the atom NO
BIND. It returns the value of EXPRESSION if the top level value is set, other
wise NIL.

RPAQ, RPAQQ, and RPAQ? are intended to be used from within the File
Package.

These functions are often “hardwired” for efficiency because File Package
operations are used so frequently by experienced INTERLISP programmers.

3.9.2 Getting and Setting the Top Level Value
As we mentioned in Section 2.1, atoms have value cells. When atoms are created
by INTERLISP, they are allocated storage locations in memory. How a value is
bound to an atom depends on the implementation:

1. Deep binding systems save the variable’s new value on the stack. When a
variable is referenced, its value is found by searching the stack for tke
most recent binding. If there is no binding on the stack, INTERLISP
retrieves the value stored in the value cell of the atom.

2. Shallow binding systems save the variable name and old value on the
stack, and place the new value in the atom’s value cell. When a variable
is accessed, the current value is always found in the value cell.

INTERLISP provides two pairs of functions for accessing the value of a vari
able. They take the forms

Function: GETTOPVAL
GETATOMVAL

Arguments: 1

Arguments: 1) an atom, ATM

Value: The top le v e l binding of ATM.

Function SETTOPVAL
SETATOMVAL

Arguments: 2

Arguments: 1) an atom, ATM
2) an S-expression, EXPRESSION

Value: The value of the S-epxression.

78 Primitive Functions

GETTOPVAL returns the top level value of ATM, even if it is NOBIND,
regardless of any other local bindings that may appear in the stack.

GETATOMVAL always returns the value cell contents of ATM. In shallow
bound systems, it is equivalent to executing (EVAL atm). In deep bound sys
tems, it defaults to GETTOPVAL.

SETTOPVAL sets the top level value of ATM regardless of other local bind
ings that may appear on the stack.

SETATOMVAL sets the value cell of ATM to the value of EXPRESSION.
In a shallow bound system, it is equivalent to executing SET. In a deep bound
system, it defaults to SETTOPVAL.

3.9 Setting an Atom's Value Cell 79

4

Fundamental Predicates

INTERLISP provides a large number of functions called predicates. A predicate
is a function that tests some condition or attribute of its arguments. For exam
ple, a predicate may test whether its argument is an example of a given data
type, whether it has a value satisfying certain criteria, or even whether it has a
specific structure. The result of applying a predicate to its arguments is one of
the atoms T or NIL (representing “true” or “false,” respectively) or some non-
NIL value representing true. Some predicates are known slsfundamental predi
cates because they test essential characteristics of LISP objects. This chapter will
discuss several of the fundamental predicates common to most LISP implemen
tations. More predicates will be described in later chapters when we discuss the
specific data types or subsystems with which they are associated.

By convention, the name of a predicate should always be terminated by the
character “P” to indicate that it is a predicate. For historical reasons, some of
the fundamental predicates do not follow this rule. As an INTERLISP program
mer, it is good practice for you to terminate each application predicate function
that you write with “P” to indicate that it is a predicate.

4.1 ATOM TESTING: ATOM AND LITATOM
The simplest datatype available in INTERLISP is the atom. Atoms are indivisi
ble data structures. INTERLISP provides two predicates to test for the existence
of atoms: ATOM and LITATOM.

Function: ATOM

Arguments: 1
Argument: 1) an S -expression , EXPRESSION

Value: T i f the argument i s an atom; NIL
otherw ise .

81

ATOM determines whether or not its argument is an atom. If it is, ATOM
returns T; otherwise, it returns NIL. ATOM is the most general predicate for
testing atoms whether they be numbers or literal atoms. ATOM returns NIL if
its argument is an instance of one of the other fundamental datatypes such as
strings, arrays, etc. In some dialects of LISP, ATOM is defined to be equivalent
to NLISTP (see Section 4.5), e.g., an atom is assumed to be anything that is not
a list.

Another fundamental predicate is LITATOM. LITATOM tests whether or
not its argument is a literal atom but not a number.

Function: LITATOM

Arguments: 1
Arguments: 1) an S-expression, EXPRESSION

Value: T, i f i t s argument i s a l i t e r a l atom; NIL
otherw ise .

Suppose that we let the value of the atom GIRL-FRIENDS be the following:

<^(SETQ g i r l - f r ie n d s
'(ja n e nancy marcia susan e l len cheryl))

(jane nancy marcia susan e l le n cheryl)

We can apply ATOM to this atom in the following ways:

Test if GIRL-FRIENDS is an atom

• (̂ATOM 'g i r l - f r i e n d s)
T

Test the value of GIRL-FRIENDS

<-(ATOM g i r l - f r ie n d s)
NIL

Note that INTERLISP distinguishes between the name of an atom and its
value. In this case, GIRL-FRIENDS is an atom when we test its name, but when
we test its value, we see that its value is not an atom but a list.

We can apply ATOM to other arguments as follows:
To a number

<-(ATOM 1378)
T

82 Fundamental Predicates

although this is a redundant test because we know that numbers are literal at
oms.

To a string

^(ATOM "Sandra i s b e a u t i fu l")
NIL

because strings are not atoms, but a separate datatype.
Let us also apply LITATOM to several examples:

(LITATOM 'g i r l - f r i e n d s)
T

-^(LITATOM 1378)
NIL

because numbers, while atoms, are not literal atoms.

♦-(LITATOM "Sandra i s b e a u t i fu l")
NIL

4.1 Atom Testing: Atom and Litatom 83

4.1.1 An Alternative Atomic Predicate
In other LISP dialects, the LITATOM predicate is replaced by the SYMBOLP
predicate. SYMBOLP accomplishes the same function as LITATOM.
Touretzky [tour84] notes that you may define SYMBOLP in terms of ATOM
and NUMBERP (see below) as follow:

(DEFINEQ
(symbolp (x)

(AND
(ATOM x)
(NOT (NUMBERP x)))

))

where SYMBOLP will take the form

Function: SYMBOLP

Arguments: 1
Argument: 1) an S -expression , EXPRESSION

Value: T, i f i t s argument i s a l i t e r a l atom; NIL
otherw ise .

Let us apply SYMBOLP to a few examples to see how it works:

(SYMBOL? 'g i r l - f r ie n d s)
T

(SYMBOLP 1378)
NIL

4.2 NUMERIC PREDICATES
INTERLISP provides several fundamental predicates for testing whether or not
the value of an atom is a number. These include NUMBER?, ZEROP, FIX?,
FLOAT?, and SMALL?.

4.2.1 Testing for Numbers
NUMBER? returns its argument (meaning T) if the value of its argument is a
number of any type; otherwise, it returns NIL. It takes the form

Function: NUMBERP

Arguments: 1
Argument: 1) an S-expression, EXPRESSION

Value: T, i f the value of i t s argument i s a
number; NIL otherwise

Consider the following cases in which NUMBER? is used:

<-(SETQ a.number 1.7832)
1.7832

^(NUMBERP a.number)
1.7832 (which means T)

^(SETQ another-number 100)
100

(NUMBERP another-number)
100 (which means T)

Note that NUMBER? works on both integers and floating point numbers
with equivalent results.

- (̂NUMBERP "1776”)
NIL

(NUMBERP 'FIVE)
NIL

84 Fundamental Predicates

NUMBER? works only with numeric representations of numbers. It does
not know how to deal with string representations. We can circumvent this prob
lem by using

< (̂NUMBERP (MKATOM "1776"))
1776

4.2 Numeric Predicates 85

4.2.2 Testing for Zero
One of the most common tests that we make when performing arithmetic calcu
lations is to determine if the value of some variable or expression is zero. IN
TERLISP provides a fundamental predicate for testing if the value of an atom or
S-expression is zero: ZEROP. ZEROP returns T if the value of its argument is
zero; otherwise, it returns NIL. It takes the form

Function: ZEROP

Arguments: 1

Argument: 1) an S -expression , EXPRESSION
Value: T, i f the value of i t s argument i s zero;

NIL otherwise

Consider the following examples:

<-(SETQ a-number 0)
0

(ZEROP a-number)
T

Alternatively, we can test the value of an expression. For example, we can
say

(ZEROP (IPLUS 6 (IMINUS 6)))
T

where the value of the S-expression (IPLUS 6 (IMINUS 6)) is identically zero.
ZEROP returns NIL if its argument is not a number. For example,

(ZEROP 'p i)
NIL

We should note that ZEROP is just a convenient function that could be de
fined in terms of other primitive functions. It is provided in most LISP systems

as a hardwired function for greater efficiency because it is so frequently used. A
definition of ZEROP in terms of EQ would appear as

(DEFINEQ
(ZEROP (number)

(COND
((NUMBERP number)

(EQ number 0))
(T NIL))

))

Most arithmetic functions generate an error if their argument is nonnu
meric. Therefore, we test the argument to see if it is a number. If so, we compare
it with 0 and return the result. Otherwise, we just return NIL.

Note: ZEROP should not be used for testing if floating point numbers are
equal to zero because it uses EQ which works only on integers. You should use
EQP instead. For example,

-^(SETQ X 0)
0
<^(EQ X 0.0)
NIL

<-(EQP X 0.0)
T

(EQUAL X 0.0)
T

4.2.3 A Generalized Zero Predicate
If you do not know whether your data will be integer or floating point numbers,
you may want to define a generalized predicate for testing equality with zero. Let
us call it EQZERO. It takes the following form

Function: EQZERO

Arguments: 1
Argument: 1) an S-expression, EXPRESSION

Value: T, i f i t s argument i s zero e i th e r as a
FIXP or a FLOATP; otherwise, NIL.

We might define EQZERO as follows

(DEFINEQ
(eqzero (x)

86 Fundamental Predicates

4.2 Numeric Predicates 87

(COND
((NUMBERP x)

(COND
((FIXP x)

(T

(*
I t i s an in teger!

)
(ZERO? x))

((FLOAT? x)
(*

I t i s f lo a t in g po in t!
)
(EQP X 0 .0))))

I t i s not a number, so re tu rn NIL
)

NIL))
))

Consider the following examples:

*^(SETQ anumber (IPLUS 6 (IMINUS 6))
0

-^(EQZERO anumber)
T
^(SETQ anumber (FPLUS 6 .0 (FMINUS 6 .0))
0 .0

•«-(EQZER0 anumber)
T

•^(EQZERO 'p i)
NIL

4.2.4 Testing the Type of Number
Numbers may be either integers or floating point numbers in INTERLISP. Two
predicates allow you to test whether a number is an integer or a floating point
number: FIXP or FLOATP. They take the following form

Function: FIXP
FLOATP

Arguments: 1

Value: The value of EXPRESSION i f i t i s a number
of the spec if ied type; otherwise, NIL.

Consider the following examples:

^(SETQ anumber 100.765)
100.765
•«-(FIXP anumber)
NIL
<-(FLOATP anumber)
100.765

Both FIXP and FLOATP return NIL if their argument is not a number.
INTERLISP provides a predicate for testing whether or not a number is a

small integer. Small integers arose from early implementations of LISP where
space was extremely limited. The value of a small integer could be represented in
the value cell itself rather than being pointed to by the contents of the value cell.
SMALL? is the predicate that tests if a number is a small integer. It takes the
form

Function: SMALLP
Arguments: 1
Argument: 1) an S-expression, EXPRESSION
Value: The value of expression i f i t i s a small

in teg e r ; otherwise, NIL.

The range of small integers is implementation dependent and is discussed
further in Chapter 13. Consider the following examples (on INTEIiLISP-10):

<-(SMALLP 25)
25

(SMALLP 33762)
NIL

because the range of small integers on INTERLISP-10 is -1535 to 1535. Other
implementations will have different ranges.

4.3 STRING TESTING: STRINGP
INTERLISP provides a fundamental predicate for testing whether or not the
value of its argument is a string. This predicate is called STRINGP. STRINGP
takes the form

88 Fundamental Predicates

Argument: 1) an S-expression, EXPRESSION

Function: STRINGP
Arguments: 1

Argument: 1) an expression , EXPRESSION

Value: T, i f the expression has the datatype
s t r in g ; NIL otherw ise.

STRINGP returns the string if the value of its argument has a datatype of
STRING; NIL otherwise.

Consider the following examples:

■^(SETQ a s t r in g
"The quick brown fox jumped over the lazy dog")

"The quick brown fox jumped over the lazy dog"
(STRINGP a s t r in g)

"The quick brown fox jumped over the lazy dog"

(STRINGP 1.7875)
NIL

^(STRINGP 'p re s id e n ts)
NIL
^(STRINGP (MKSTRING 1776))
"1776"

4.4 ARRAY TESTING: ARRAYP
INTERLISP provides a fundamental predicate, ARRAYP, for testing whether
or not its argument has a datatype of ARRAY. ARRAYP takes one argument—
a potential array object. It determines whether or not the argument is an array
object. If it is, it returns the value of the array object. If it is not, it returns NIL.
ARRAYP takes the form

Function: ARRAYP
HARRAYP

Arguments: 1
Argument: 1) An address of an a r ray , ARRAYX

Value: The value of the address i f i t i s a
p o in te r to an array o b jec t;
o therw ise , NIL.

HARRAYP returns the address of a hash array if its argument has the data
type hash array.

4.4 Array Testing: ARRAYP 89

Note: arrays may only be created by the function ARRAY (see Section 11.1).
Arrays have a special format used by INTERLISP to manage their contents that
requires allocation from a special storage pool. Arrays are discussed in more
detail in Chapter 11.

4.5 LIST TESTING: LISTP and TAILP
INTERLISP provides a fundamental predicate to test whether or not its argu
ment is a list. This predicate is called LISTP. It takes the form

Function: LISTP
NLISTP

Arguments: 1
Argument: 1) an S-expression, EXPRESSION
Value: T, i f value of argument i s a l i s t ; NIL

otherwise

LISTP returns T if its argument is a list; otherwise, it returns NIL. Consider
the following examples:

-‘-(SETQ p res iden ts
(CONS 'kennedy

(CONS 'johnson ’nixon)))
(kennedy johnson nixon)

•<-(LISTP p res iden ts)
T

where the list is built by multiple CONSes.

<-(SETQ p res iden ts "kennedy johnson nixon”)
''kennedy johnson nixon"

(LISTP p res iden ts)
NIL

<-(SETQ numbers
(ARRAY 5 3 0))

[ARRAYP]#1,2120
^(SETA numbers 1 100)
100
•«-(SETA numbers 2 200)
200

90 Fundamental Predicates

“̂ (SETA numbers 3 300)
300

(LISTP numbers)
NIL

Neither arrays nor strings are represented as lists in INTERLISP. Thus,
LISTP returns a value of NIL because they are not list-structures. For example,

LISTP NIL)
NIL

because NIL is considered to be a literal atom, rather than a list. Thus, while
(LITATOM NIL) = (ATOM NIL) = T, LISTP applied to NIL returns NIL.
You should exercise caution if the value of an object may be the empty list.

Note that other implementations of LISP may consider NIL ("the empty
list") to represent a list whence LISTP will return T. This may cause difficulty
when you attempty to transport source code from one dialect of LISP to another.

An alternative form, NLISTP, returns the logical negation of LISTP, i.e., it
asks if its argument is not a list. We might define NLISTP as

(DEFINEQ
(n l i s t p (x)

(NULL (LISTP x))
))

Consider the following example:

^(NLISTP ’p re s id e n ts)
T

^(NLISTP p re s id e n ts)
NIL

where PRESIDENTS has the value (kennedy Johnson nixon).

4.5.1 Testing for the Tail of a List
We have already seen how to take lists apart using the CAR and CDR functions.
We often want to test whether or not the remainder of a list (that is, its tail) has a
certain value. With CAR and CDR we can test the permissible combinations of
these functions. However, most lists tend to be longer than four elements. Dis
membering such lists can be difficult if we have to write specific functions to take
a given number of CDRs from a list. INTERLISP provides us with a convenient
function to test the tail of a list for equivalence to a specific value, TAELP.

4.5 List Testing: LISTP and TAILP 91

The generic format of this function is

Function: TAILP

Arguments: 2
Arguments: 1) a l i s t s t ru c tu re , X

2) any l i s t s t ru c tu re , LST
Value: X, i f the value of X i s EQ to some number

of CDRs 0= 0) of LST; NIL otherwise.

TAILP returns the value of its first argument if that argument is a tail of its
second argument; otherwise, it returns NIL. A tail is defined as the list resulting
from taking some number of CDRs of the second argument. Consider the follow
ing examples:

-<-(SETQ g i r l - f r ie n d s
' (marcia mary jan ice angela e l izab e th))

(marcia mary jan ice angela e lizabeth)

■<-(TAILP '(ange la e lizabe th) g i r l - f r ie n d s)
NIL

because TAILP uses EQ to compare the two lists. In this case, ‘(angela eliza
beth) is a new list with a new storage allocation. On the other hand,

<-(SETQ re c e n t -g i r l - f r i e n d s (CDDDR g i r l - f r ie n d s))
(angela e lizabe th)

(TAILP re c e n t -g i r l - f r i e n d s g i r l - f r ie n d s)
(angela e lizabe th) which means T

because some number of CDRs of GIRL-FRIENDS returns a list that is EQ to
the value of its first argument.

The value of the first argument X must match exactly the structure of some
tail of the second argument LST. Using EQ, the value is T if the value of X is a
substructure of LST. That is, for TAILP to succeed, X must be embedded in
LST such that the last N elements of LST correspond exactly to the elements of
X.

Thus, the following examples will not succeed:

■^(SETQ acquaintance '(san d ra))
(sandra)

(TAILP acquaintance g i r l - f r ie n d s)
NIL

92 Fundamental Predicates

because no number of CDRs produces a list that has the same value as a tail of
GIRL-FRIENDS.

■^(SETQ a-good-fr iend ' (e l iz a b e th))
(e l iz a b e th)

-^(SETQ one-good-friend (CDDDDR g i r l - f r i e n d s))
(e l iz a b e th)

(TAILP a-good-friend g i r l - f r i e n d s)
NIL

because A-GOOD-FRIEND does not point to the same structure in memory as
the element ELIZABETH in the list GIRL-FRIENDS.

(TAILP one-good-friend g i r l - f r i e n d s)
(e l iz a b e th)

because ONE-GOOD-FRIEND points to a list structure that is embedded
within the second argument.

For mathematical purposes, we say that X is a proper tail of LST if the num
ber of CDRs necessary to find the tail is greater than zero. Unfortunately, no
indication of the number of CDRs required to determine the tail is provided by
INTERLISP.

We might define TAILP as follows

(DEFINEQ
(t a i l p (x 1s t)

(AND X
(PROG NIL
loop

(COND
((NLISTP 1st)

(RETURN NIL))
((EQ X 1st)

(RETURN x)))
(SETQ 1 s t (CDR 1 s t))
(GO loop)))

))

4.5.2 Counting the CDRs To Produce a Tail
Suppose you wanted to know how many CDRs it will take to reach the tail of
LST. We could modify the definition of TAILP to return this information in
stead of the value of the tail. Let us call this function TAILP? and let it take the
form

4.5 List Testing: LISTP and TAILP 93

Function: TAILP?
Arguments: 2
Arguments: 1) an S-expression, X

2) a l i s t s t ru c tu re , LST
Value: The number of CDRs required to reach the

t a i l of LST i f X s a t i s f i e s TAILP on LST;
otherwise, NIL.

We might define TAILP? as follows

(DEFINEQ
(ta i lp ? (x 1st)

(AND X
(PROG (n ta i l s)

(SETQ n ta i l s 0)
loop

(COND
((NLISTP 1st)

(RETURN NIL))
((EQ X 1st)

(RETURN n ta i l s)))
(SETQ 1st (CDR 1 s t))
(SETQ n t a i l s (ADDl n t a i l s))
(GO loop)))

))

Note that TAILP? returns zero if X and LST are exactly equal; that is, no
CDRs are required to produce the tail. If no number of CDRs would produce a
tail because X is not a tail of LST, then TAILP? returns NIL. Otherwise, it
counts the number of CDRs and returns that value.

94 Fundamental Predicates

4.6 TESTING FOR EQUALITY
In any programming language, we want to be able to test the equality of two
objects. INTERLISP provides predicates for testing equality based on the data
type of the objects as well as the equality of certain attributes of the objects.

4.6.1 EQ versus EQUAL
The two basic predicates for testing equality are EQ and EQUAL. They have the
following format

Function: EQ
EQUAL

Arguments: 2

Arguments: 1) a LISP o b je c t , X
2) a LISP o b je c t , Y

. Value: T, i f the o b je c ts are equal; NIL,
otherw ise .

EQ and EQUAL differ in the way they compare their arguments. Consider
two literal atoms that have the same name. Both EQ and EQUAL will return T.
For example,

■«-(EQ ’John 'john)
T

<-(EQUAL ’John 'john)
T

both of which return T because each literal atom points to a unique location in
storage. Thus, there is only one instance of JOHN in the entire INTERLISP
memory.

EQ and EQUAL produce the same result when their arguments have the
same values if those values are literal atoms or numbers. For example,

■^(SETQ name-1 ’john)
john

^(SETQ name-2 'john)
john

■«-(EQ name-1 name-2)
T

(EQUAL name-1 name-2)
T

because the values of NAME-1 and NAME-2 are the same literal atom.
EQ operates by comparing the pointers of its arguments. If they point to the

same structure, EQ returns T. Otherwise, it returns NIL. However, a problem
arises when we apply EQ to more complex data structures such as lists and
strings. Consider the following example

-«-(SETQ languages-i-know
(LIST 'p a sc a l ' f o r t r a n 'snobol 'cobol))

(p asca l f o r t r a n snobol cobol)

4.6 Testing for Equality 95

■«-(SETQ languages-used
(LIST 'pasca l 'f o r t r a n 'snobol 'cobol))

(pascal fo r tra n snobol cobol)
<-(EQ languages-i-know languages-used)
NIL
•«-(EQUAL languages-i-know languages-used)

96 Fundamental Predicates

In this case, EQ returns NIL while EQUAL returns T. Why? We must re
member that each time LIST is applied to its arguments, it consumes additional
storage to construct and return a new list. Thus, although the two lists LAN-
GUAGES-I-KNOW and LANGUAGES-USED have the same elements, they
are stored in different locations in memory. Because EQ uses pointers to data
structures for comparison, the two lists are not equal because they have different
addresses in memory.

To test the equality of two data structures, we must use EQUAL, which
compares the elements of the two structures. Thus, EQUAL returns T because it
compares the successive elements of the two lists LANGUAGES-I-KNOW and
LANGUAGES-USED, and finds them equivalent.

EQUAL compares the top-level values of its arguments. Thus, two struc
tures will be EQUAL if

1. EQ That is, pointers to the same structure.
2. EQP That is, numbers with equal value.
3. STREQUAL That is, strings containing the same sequence of charac

ters.
4. Lists whose CARs are EQUAL and whose CDRs are EQUAL, applied

recursively.

EQ and EQUAL also work correctly when given pointers to the same array
object. However, EQUAL returns NIL if it is asked to compare two different
arrays because it does not perform an individual comparison of the array ele
ments.

Why should you use EQ over EQUAL? Basically, it is a matter of efficiency.
EQ is a primitive operation that may be encoded as a single instruction whereas
EQUAL must always be defined as a subroutine because it has more work to do.
On the other hand, if you are not too worried about the efficiency of your pro
gram, but are worried about it performing the proper checks every time, then I
would encourage you to use EQUAL wherever possible.

Programming Convention: It is a good idea, if you are a novice, to always
use EQUAL to ensure that the proper evaluation of the two arguments is per
formed by INTERLISP. Because data structures that are EQUAL are not always
EQ, many beginning programmers expend substantial effort in attempting to

determine why a program does not work correctly even though the data appear
to be exactly the same.

Note that some dialects of LISP allocate new storage every time a number is
created even though that number may already be represented in memory. Thus,
two numbers may never be guaranteed to be EQ, even if they are EQUAL.

4.6.2 Atomic Equality
When we have complex data structures, we may want to know if they are exactly
equal throughout the entire structure. To determine total equality, we must de
scend to the atomic level throughout the data structure. EQUAL does not oper
ate in this manner since it compares only top-level values. To thoroughly test two
data structures, INTERLISP provides the predicate EQUALALL.

EQUALALL always descends to the atomic level of each of its arguments to
determine equality. Thus, it should be used when comparing arrays, user data
types, or complex structures having multiple levels of sublists beneath the top
level. It takes the form

Funct io n : EQUALALL

Arguments: 2
Arguments: 1) a data s t r u c tu re , X

2) a data s t r u c tu re , Y

Value: T, i f each element of X is EQUAL to the
corresponding element of Y; o therw ise ,
NIL.

EQUALALL may be used to determine the equality of two arrays by inspect
ing their contents. Let us define two arrays as follows

^(SETQ A1 (ARRAY 5 5))
[ARRAYP]#542224

^(SETQ A2 (ARRAY 5 5))
[ARRAYP]#542233

Clearly, EQ and EQUAL will not work on the values of A1 and A2, respec
tively, because they are different addresses for arrays. Let us initialize the arrays
as follows (using a CLISP expression):

<-(FOR I FROM 1 TO 5
DO

(SETA A1 I (ITIMES I 100))
(SETA A2 I (ITIMES I 100)))

NIL

4.6 Testing for Equality 97

<^(FOR I FROM 1 TO 5
DO

(PRINl (ELT A1 I))
(TAB 20)
(PRINT (ELT A2 I)))

100 100
200 200
300 300
400 400
500 500
NIL

Now, let us compare A1 and A2 for equality using EQUALALL:

-•-(EQUALALL A1 A2)

98 Fundamental Predicates

because EQUALALL descends into the array to compare individual elements.
Now, let us compare two lists which have equivalent elements but are not

EQ or EQUAL. First, let us define the lists

-^(SETQ LSTl
(LIST 'r e d

'yellow
(LIST 'g reen 'b lu e)
(LIST 'b la c k)))

(red yellow (green b lue) (b lack))

-^(SETQ LST2
(LIST 'r e d

'yellow
(LIST 'g reen 'b lu e)
(LIST 'b la c k)))

(red yellow (green b lue) (b lack))

These two lists occupy different locations in memory because LIST con
sumes new CONS cells each time it is called. Thus, we may compare the two lists
for equality

<-(EQ I s t l l s t2)
NIL

<-(EQUALALL I s t l l s t2)
T

4.6.3 Numeric Equality
EQ returns T if two numbers have the same structure in memory. For example,

-^(SETQ te n 10)
10
^(EQ 10 ten)

4.6 Testing for Equality 99

However, EQ cannot compare an integer with a floating point number even
though they may have the same value. For example,

<-(SETQ te n 10)
10
<^(SETQ f te n (FLOAT te n))
10.0
<-(EQ te n f ten)
NIL

INTERLISP provides EQP to test numerical equality between two numbers.
However, EQP does not do conversion to a canonical representation. Thus, EQP
will succeed when

^(EQP te n f ten)
T

but will fail when

^(EQP ten 10.3)
NIL

EQP takes the format

Function: EQP
Arguments: 2
Arguments: 1) a number, X

2) a number, Y

Value: T, i f the two numbers are equal;
o therw ise , NIL.

EQP may be used to compare X and Y as objects. It returns T if X and Y are
EQ; NIL, otherwise. X and Y may be array pointers or stack pointers.

4.6.4 Testing Equality of Length
In many applications, you will want to know if the length of a list is at least equal
to a given number. INTERLISP provides the predicate EQLENGTH to test the
size of a list. The format of EQLENGTH is

Function: EQLENGTH
Arguments: 2
Arguments: 1) an S-expression, EXPRESSION

2) a minimum length , LEN

Value: T, i f the S-expression has the minimum
length; NIL, otherwise

A simple definition of EQLENGTH might appear as

(DEFINEQ
(eqlength (expression len)

(IGEQ (LENGTH expression) len)
))

Whatever the length of EXPRESSION, LENGTH must traverse the entire
structure to determine its length before the comparison of values may take place.
If EXPRESSION is very long, substantial time may be consumed in determining
its length. Moreover, if EXPRESSION is a circular list, LENGTH never termi
nates until the operating system steps in.

A more efficient version of EQLENGTH that is safe to use with circular lists
can be defined as

(DEFINEQ
(eqlength (expression alength)

(PROG (a l s t the-leng th)
(SETQ a l s t expression)
(SETQ th e -len g th 0)

LOOP
(COND

((GAR a l s t)
(*

I f the re i s a CAR c e l l ,
increment the counter fo r
the length of the l i s t .

)
(SETQ th e -len g th (ADDl the-

length))
(SETQ a l s t (CDR a l s t))

(T

100 Fundamental Predicates

4.6 Testing for Equality 101

(RETURN NIL)))
(COND

((EQUAL th e - le n g th alength)
(*

Exit with T i f and only i f
the l i s t has a leng th equal
to ALENGTH.

)
(RETURN T)))

(GO LOOP))
))

In this definition, EQLENGTH will terminate when ALST is determined to
have the minimum length specified or ALST is determined to have a length less
than that specified. It works for circular lists because the number of compari
sons is bounded by ALENGTH.

4.6.5 Testing Complex or Circular Structures
Some applications may require the use of circular structures (although this is not
generally recommended). Other applications require complex structures where
we want to know only if they are equal to some depth of recursion. INTERLISP
provides the predicate EQUALN to test if two structures are equal to a given
depth. Its format is

Function: EQUALN

Arguments: 3
Arguments: 1) an S -expression , EXPl

2) an S-expression , EXP2
3) a depth, DEPTH

Value: T, i f EXPl equals EXP2 to the given depth
and no fu r th e r recu rs ion i s p o ss ib le ;
?, i f EXPl equals EXP2 and fu r th e r
recu rs io n i s p o ss ib le ; NIL, o therw ise .

EQUALN uses DEPTH to determine how deep to search in the complex
structure. For example,

(EQUALN ' (((a)) b) ' (((z)) b) 2)
9

because at level 2 of the CAR recursion, it still has to compare (A) to (Z). At level
2 they are equal, but further recursion remains, so equality is undetermined.

^(EQUALN ' (((a)) b) ' (((z)) b) 3)
NIL

With the depth were set to 3, EQUALN would return NIL because it would
compare A to Z and find them not equal.

^(EQUALN ' (((a)) b) ' (((a)) b) 3)
T

Note that DEPTH may be set to 0. Consider the following simple test cases:

(EQUALN '(A) '(A) 0)
?

^(EQUALN '(A) '(A) 1)

■ f

102 Fundamental Predicates

4.6.6 Testing for Non-Equality
Just as we may test for equality, we may also test for non-equality. INTERLISP
provides the predicate NEQ to determine if two data structures are not equal to
each other. This test is very simple because INTERLISP uses EQ to compare the
pointers to the two structures. NEQ returns T if the two structures are not equal;
otherwise, it returns NIL. It takes the form

Function: NEQ
NOTEQUAL

Arguments: 2

Arguments: 1) an S -ex p ressio n , EXPRESSIONl
2) an S -ex p resslo n , EXPRESSI0N2

Value: T, i f EXPRESSIONl is no t equal to
EXPRESSI0N2; NIL, o therw ise .

A simple definition of NEQ might appear as

(DEFINEQ
(neq (e x p re s s io n l expression2)

(NOT (EQ e x p re ss io n l e x p re ss io n 2))
))

Note that because NEQ uses EQ to compare the two data structures, the two
data structures may be EQUAL without being EQ. Thus, you may also want to
define a function NOTEQUAL which ensures that they are not equal at the top
level.

A simple definition of NOTEQUAL might appear as

(DEFINEQ
(notequal (x y)

(NOT (EQUAL x y))
))

Note that you may also want to define a function NOTEQUALALL which
determines that two structures are not equal at the atomic level.

4.6.7 Testing for Null
INTERLISP provides the predicate NULL to test whether or not its argument
has the value NIL. NULL returns T if the argument has the value NIL. Other
wise, it returns NIL. Its format is

Function: NULL
Arguments: 1

Argument: 1) an S -expression , EXPRESSION
Value: T, i f the value of EXPRESSION is NIL; NIL,

otherw ise .

Consider the following examples:

-^-(NULL (LIST))
T

because NIL is treated as a literal atom.

<-(NULL (CONS))
NIL

4.7 TESTING VARIABLE BINDINGS
Some functions use “free” or “global” variables in their computations. To pre
vent errors, you may want to determine whether or not a variable has been bound
to a value before proceeding with the computation. INTERLISP provides the
predicate BOUND? to test if a variable is bound to anything in the current con
text. It takes the form

Funct io n : BOUNDP

Arguments: 1

4.7 Testing Variable Bindings 103

Argument: 1) a v a r ia b le , VAR
Value: T, i f the variab le is bound in some

environment.

104 Fundamental Predicates

BOUNDP returns T if its argument has a top level value. If the value of the
variable is NOBIND or if the variable has not been created, BOUNDP will re
turn NIL. Consider the following example

(PROG (var-1 var-2 var-3 . . .)
(SETQ var-1 <some value))
(SETQ var-2 NIL)
• • •

(<a-function> var-1 var-2)
• • •

(RETURN))

Note that in the PROG we have bound VAR-1 and VAR-2 to some values.
However, we have not bound VAR-3. If we were to use VAR-3 in A-FUNC-
TION, an error would result (specifically, U.B.A.) because VAR-3 has not been
given a value. The error results when INTERLISP attempts to (EVAL var-3) to
determine its value.

We can avoid this error by using BOUNDP to determine if a variable is
bound before it is used. Thus, in A-FUNCTION, we might encode a condition as
follows

(COND
((NOT (BOUNDP var-3))

(SETQ var-3 NIL)))

which sets VAR-3 to NIL if it does not have a value.
Consider the following example (assuming we have never set X to any value)

^(BOUNDP 'X)
NIL

^(SETTOPVAL 'X 'ABC)
ABC

<-(BOUNDP 'X)
T

4.8 DETERMINING MEMBERSHIP IN A LIST
In many applications, a list represents a collection of related items. Often, we
want to know whether or not another item is a member of that set of items.
MEMBER determines if an item X is a member of a list. It takes the form

Function: MEMBER
MEMB
EQMEMB

Arguments: 2

Arguments: 1) an element, X
2) a l i s t of elements, LST

Value: The t a i l of LST beginning with X i f X is a
member of LST; NIL, otherw ise.

MEMBER uses EQUAL to compare X against the elements of LST. Con
sider the following example,

^(SETQ p re s id e n ts '(reagan c a r t e r ford nixon Johnson

(reagan c a r t e r ford nixon Johnson . . .)

assuming that the list PRESIDENTS contains the last names of all the presi
dents of the United States.

<-(MEMBER 'd isn ey p re s id e n ts)
NIL
•<-(MEMBER 'adams p re s id e n ts)
(adams monroe madison Jefferson adams Washington)

Note that PRESIDENTS contains the name ADAMS twice, representing
the sixth and second presidents respectively. However, because we have ordered
the list beginning with the most recent president, the first occurrence of ADAMS
will be detected in the list.

We might define MEMBER as follows

(DEFINEQ
(member (x 1st)

(PROG NIL
loop

(COND
((NLISTP 1st)

4.8 Determining Membership in a List 105

(*
I f LST is not a 1 s t , then
re tu rn NIL

)
(RETURN NIL))

((COND
((LITATOM x)

(*
I f X is a l i t e r a l
atom, use EQ fo r speed
in comparing.

)
(EQ X (CAR 1 s t)))

(T
(*

Otherwise, compare X
with the top lev e l
components of the
f i r s t element of LST.

)
(EQUAL X (CAR 1 s t))))

(RETURN 1 s t)))
(SETQ 1st (CDR 1st))
(GO loop))

))

An alternative form, MEMB, uses EQ instead of EQUAL to perform its
comparisons. MEMB should only be used if you are certain that the elements of
list may be uniquely compared. That is, the elements of the list should either be
numbers, T or NIL, or literal atoms.

For MAKEFILE (see Section 17.3.1), you may specify a list of options that
determines how the code that is written to the file will be processed. MAKEFILE
checks the options that you specify to determine if they are valid, and sets certain
flags that are used later in the function. An abstract of the code used to check
flags is shown below

(COND
((MEMB 'NOCLISP OPTIONS)

(RESETSAVE PRETTYTRANFLG T)))
(COND

((MEMB 'FAST OPTIONS)
(RESETSAVE PRETTYTRANFLG NIL)))

(COND
((OR

(MEMB "CLISPIFY OPTIONS)

106 Fundamental Predicates

(MEMB 'CLISP OPTIONS))
(RESETSAVE CLISPIFYFLG T)))

Because MEMBER uses EQUAL, it will determine if two objects are equal
even if they do not have the same memory location. MEMB, however, uses EQ
which checks for equality of location. I suggest that you use MEMBER (even
though it takes more time) when you are inspecting a list for an element.

Another form, EQMEMB, is T if either X is equal to LST or X is a member
of LST. In the definition of MEMBER given above, if LST is not a list, then
MEMBER returns NIL. EQMEMB allows us to specify either an atom or a list
as its second argument. If the second argument is an atom, EQMEMB deter
mines if it is identical to the first argument; otherwise, it invokes MEMBER with
the two arguments. We might define EQMEMB as follows:

(DEFINEQ
(eqmemb (x y)

(COND
((n l i s t p y)

(EQ X y))
(T

(MEMBER X y)))
))

4.8 Determining Membership in a List 107

Logical Connectives
and Predicates

INTERLISP provides a number of functions for performing logical functions on
collections of S-expressions. These logical functions include the Boolean AND,
OR, and NOT, and several Boolean predicates including SOME and EVERY.
You should note that the arguments to each of these functions are evaluated
prior to application of the logical function to the set of results produced by those
evaluations.

5.1 LOGICAL CONJUNCTION
A conjunction is an expression whose value is true if and only if each of its com
ponents evaluates to a true value.

The logical AND function accepts an indefinite number of S-expressions as
its arguments; the number of arguments may be zero. It takes the form

Function: AND

ft Arguments: 0-N
Arguments: 1-N) one or more S -expressions,

EXPRESSI0N[1] . . . EXPRESSION[n]

Value: The value of the l a s t argument, i f a l l of
i t s S-expressions evaluate to T or i t s
eq u iv a len t; o therw ise , NIL.

AND is an NLAMBDA, nospread function. Each of the arguments to AND
is evaluated in turn until one such argument is determined to have a NIL value.
At that time, the AND terminates, returning NIL. If all of its arguments have
non-null values, AND returns the value of the last argument. For example,

^(AND ' (I CAME) ' (I SAW) ' (I CONQUERED))
(I CONQUERED)

109

110 Logical Connectives and Predicates

Consider the following examples:

No arguments

^(AND)

because no argument is detected as having a value of NIL.
First argument is NIL

-^(AND NIL (a n y th in g))
NIL

always results in NIL because its first argument is NIL.
Some argument is NIL

<-(SETQ p re s id e n ts '(kennedy Johnson nixon ford))
(kennedy johnson nixon ford)

<-(AND
(MEMBER 'n ixon p re s id e n ts)
(MEMBER ' f o r d p re s id e n ts)
(MEMBER 'd isn e y p re s id e n ts))

NIL

When the arguments to AND are evaluated, we see that the first two S-ex-
pressions succeed because NIXON and FORD are members of the list PRESI
DENTS. However, upon evaluating the third S-expression, a value of NIL is
returned because DISNEY is not a member of PRESIDENTS. Thus, a value of
NIL is returned as the value of the AND function. The order of the S-expressions
makes no difference in this example (but will below), so we can rewrite the above
example as

^(AND
(MEMBER 'n ixon p re s id e n ts)
(MEMBER 'd isn e y p re s id e n ts)
(MEMBER ' fo r d p re s id e n ts))

NIL

In this case, the last S-expression will not be evaluated because the second S-
expression has a value of NIL which terminates the execution of the AND func
tion.

No arguments are NIL

<-(AND
(MEMBER 'n ixon p re s id e n ts)
(MEMBER ' fo r d p re s id e n ts)

(MEMBER 'kennedy p re s id e n ts))
(kennedy johnson nixon ford)

In this example, all three S-expressions have non-null values. Therefore, the
AND function returns as its value the value of the last S-expression [because
MEMBER returns a non-null value if it succeeds (see Section 4.8)].

5.2 Logical Disjunction 111

5.1.1 An Application of AND
The AND function may be used in many interesting ways. One interesting form
has been to simulate the action of an UNTIL clause in a DO...UNTIL loop
[charSO].

The WHILE...DO... loop formalism is created using the PROG function
(see Section 3.7). A skeletal form would appear as follows

(PROG ((v a r ia b le s))
(SETQ (v a r ia b le) (ex p ress io n))

(* INITIAL *)

LOOP

EXIT

(SETQ (v a r ia b le) (exp ress ion))

(OR
(ex p ress io n s)
(GO EXIT))

(ex p ress io n s)
(SETQ (v a r ia b le) (exp ress ion))
(AND

(ex p ress io n s)
(GO EXIT))

(GO LOOP)

(RETURN (ex p re ss io n)))

(* INITIAL *)

(* WHILE *)

(* DO *)
(* NEXT *)

(* UNTIL *)

(* RESULT *)

A detailed analysis of this formalism was discussed during the examination
of the PROG function (see Section 3.7.5).

When the AND function is reached in this formalism, we have already exe
cuted all of the (expressions) that correspond to the DO-body of an iterative
loop. At that time, the (expressions) within the AND function are evaluated. If
any of these (expressions) have a value of NIL, we jump to execute the loop once
more. When all (expressions) have non-null values, we exit from the loop.

5.2 LOGICAL DISJUNCTION
A disjunction is an expression whose value is true if and only if at least one of its
components evaluates to a true value.

The logical OR function operates in a fashion similar to the logical AND
function. It also takes an indefinite number of arguments each of which is evalu
ated in turn. It takes the form

Function: OR
Arguments: 0-N
Arguments: 1-N) one or more S-expressions,

EXPRESSI0N[1] . . . EXPRESSION[n]

Value: The value of the f i r s t non-NIL argument,
i f any of i t s arguments evaluates to T or
i t s equivalent; otherwise, NIL.

OR is an NLAMBDA, nospread function. However, OR returns the value of
the first S-expression whose value is non-null; otherwise, it returns NIL if all its
arguments have a value of NIL. Consider the following examples:

No arguments

^(OR)
NIL

because no argument has a non-null value.
First Argument is non-null

<-(0R T (anyth ing))
T

because the first argument is always non-null, it returns T.
Some argument is non-null

<^(0R
(MEMBER 'nixon p res iden ts)
(MEMBER 'd isney p res id en ts))
(nixon ford)

returns the list (NIXON FORD) because NIXON is a member of the list PRESI
DENTS and MEMBER always returns the tail of the list consisting of the match
ing element.

No argument is non-null

<-(0R
(MEMBER 'd isney p res iden ts)

112 Logical Connectives and Predicates

(MEMBER 'c h u r c h i l l p re s id e n ts))
NIL

because none of the S-expressions has a non-null value.

5.2.1 An Application of tiie OR Function
Reviewing the sample structure given in Section 5.1.1, you will see that OR is
used to select a terminating condition for the loop. In this case, OR implements
the WHILE phrase of the loop by allowing the iteration to continue if any of its
arguments is non-NIL.

We often combine AND and OR in expressions to test different conditions.
In Section 4.6.3, we used EQP to test the equality of two numbers. Suppose that
we do not care whether the numbers are equal, but do care about the equality of
their signs. The function EQSIGNP allows us to test this concept. It is defined as

(DEFINEQ
(eqsignp

(OR

5.3 Logical Negation 113

(x y)

(AND
(ZEROP x)
(ZEROP y))

(AND
(LESSP X 0)
(LESSP y 0))

(AND
(GREATER? x 0)
(GREATERP y 0)))

))

The first argument to OR tests a simple case (it executes more quickly than
either of the following relational comparisons). It also handles the case where X
is 0 and Y is 0.0. The latter two arguments to OR handle the cases where both
arguments to EQSIGNP are less than or greater than 0.

5.3 LOGICAL NEGATION
Logical negation has the effect of returning the opposite truth value of its argu
ment. INTERLISP provides two functions to perform logical negation: NOT
and NEGATE.

5.3.1 Computing the Logical Negation
NOT returns the opposite value of its argument. That is, it turns T (or some non-
NIL value) into NIL, and NIL into T. It takes the form

Function: NOT
Arguments: 1
Argument: 1) an S-expression, EXPRESSION
Value: The lo g ic a l negation of the value of i t s

argument.

The value given to NOT may be any S-expression, including atoms and lists.
For example,

<-(NOT (LIST 'michigan ' I l l i n o i s ’purdue))
NIL

Many of the predicates in INTERLISP do not have the corresponding oppo
site forms. Two which do are NLISTP, which is the opposite of LIST?, and
NEQ, which is the opposite of EQ. As we saw in Section 4.6.6, we may create the
opposite predicate by defining a function that prepends NOT to an existing
predicate. In general, you will find these forms easier to read and understand
than writing an S-expression of the form

(NOT ({pred ica te) <arguments>))

wherever you want to use the opposite predicate. There is a minimal cost to this
approach, namely, defining a new function with the proper name and definition.

5.3.2 Creating Negated S-expressions
NOT merely computes the opposite truth value of the value of its argument.
NEGATE, on the other hand, returns an S-expression that would compute the
opposite value. It takes the form

Function: NEGATE

Arguments: 1

Arguments: 1) an S-expression, EXPRESSION

Value: The S-expression evaluating to the lo g ic a l
negation of the value of i t s argument.

NEGATE returns an S-expression which will evaluate to the negative of a
value. For example,

(NEGATE 'x)
(NOT x)

114 Logical Connectives and Predicates

(SETQ X T)

5.3 Logical Negation 115

T

<-(NEGATE x)
NIL

NEGATE is written to inspect the structure of its argument and perform
some simple Boolean manipulations to generate the resulting form. Consider the
following examples:

(NEGATE '(AND x y))
(OR (NOT x) (NOT y))

Suppose we assign the values T and NIL to X and Y respectively. Then we
may see how NEGATE operates:

<^(SETQ X T)
T

^(SETQ y NIL)
NIL

<-(AND X y)
NIL
^(NEGATE '(AND x y))
(OR (NOT x) (NOT y))

<-(0R (NOT x) (NOT y))
T

The corresponding form using OR is

<-(NEGATE '(OR x y))
(AND (NOT x) (NOT y))

NEGATE recognizes the negative predicates that are defined within IN
TERLISP. For example,

^(NEGATE '(EQ x y))
(NEQ X y)
< -(NEGATE '(OR X (NLISTP y)))
(AND (NOT x) (LISTP y))

If NEGATE cannot resolve the form into a series of predicates it knowns
about, it prepends NOT to the value of EXPRESSION and returns that as its

value. Thus, if we had defined NOTEQUAL as a function (see Section 4.6.6),
NEGATE does not know about it. Thus, we have the following case: ,

(NEGATE '(EQUAL x y))
(NOT (EQUAL x y))

NEGATE works with any number of logical operators composed in an S-
expression, but only at the top level of the expression. Consider the following
complex expression:

(NEGATE '(OR (NOT b) (AND a (NOT (OR b d)))))
(AND b (OR (NOT a) (OR b d)))

116 Logical Connectives and Predicates

5.4 UNIVERSAL QUANTIFICATION
In predicate logic, a formula P(x) may have the value T no matter what assign
ment is given to the variable X. To assert that every value of X chosen from some
domain satisfies the predicate P, we place a universal quantification symbol
naming the variable in front of the predicate. INTERLISP provides a function to
test whether or not all members of a list satsify a given predicate.

EVERY tests if the application of a given function to each element of a list
results in a value of T; otherwise, it returns NIL. It takes the form

Function: EVERY
NOTEVERY

Arguments: 3
Arguments: 1) any S-expression, EVERYX

2) an evaluation function , EVERYFNl
3) a s e lec t io n function , EVERYFN2

Value: T i f (EVERYFNl (CAR EVERYX)) i s T fo r a l l
elements of EVERYX se lec ted by EVERYFN2;
NIL otherwise.

EVERY takes a list, denoted by EVERYX, and applies a function,
EVERYFNl, to its CAR, e.g., (EVERYFNl (CAR EVERYX)). If the result of
this computation is NIL, then EVERY returns NIL without further evaluations.
Otherwise, it applies a second function, EVERYFN2, to generate the new
EVERYX. If EVERYFN2 is NIL, EVERY simply computes (CDR EVERYX).
Consider the following examples:

EVERYFNl is NIL, EVERYFN2 is NIL
This is a degenerate form that is equivalent to

EVERYFNl is non-null, EVERYFN2 is NIL
This is the equivalent of applying EVERYFNl to each element of the list

EVERYX. For example, if EVERYFNl is ATOM, then

^(EVERY (LIST 'x 'y 'z) (FUNCTION ATOM))
T

EVERYFNl is NIL, EVERYFN2 is non-null
This form allows a user to select those elements of EVERYX that will be

tested by EVERY. Because EVERYFN2 is used to generate each new version of
EVERYX, only those elements of EVERY will be tested.

5.4.1 A Definition for EVERY
We might define EVERY as follows:

(DEFINEQ
(every (everyx eve ry fn l everyfn2)

(PROG NIL
loop

(COND
((NLISTP everyx)

(*
I f EVERYX is not a l i s t ,
apply EVERY to a l i s t i f i e d
form of EVERYX.

)
(RETURN

(EVERY (LIST everyx)
e v e ry fn l)))

((NULL
(APPLY* everyfn l

(CAR everyx)
everyx))

(*
Test the CAR of EVERYX with
the sp e c if ie d p re d ic a te . I f
the r e s u l t is NIL, EVERY
f a i l s fo r t h i s instance of
EVERYX.

)
(RETURN NIL)))

(SETQ everyx

5.4 Universal Quantification 117

(MAPCAR everyx 'AND)

n

118 Logical Connectives and Predicates

(COND
(everyfn2

(T

There is a se lec to r
function! So generate
a new version of
EVERYX.

)
(APPLY* everyfn2 everyx))

))

(*
The defau lt case.

)
(CDR everyx))))

(GO loop))

An alternative form, NOT-EVERY, returns the opposite of EVERY if some
of the elements of EVERYX do not satisfy EVERYFNl. We might define NO-
TEVERY as follows:

(DEFINEQ
(notevery (everyx everyfnl everyfn2)

(NULL (EVERY everyx everyfnl everyfn2))
))

5.4.2 Applications of EVERY
EVERY has numerous applications in INTERLISP programs for testing the
consistency of data structures and values of elements of data structures. Con
sider the following examples:

Test if every member of a list is a number

(DEFINEQ
(numbers? (1st)

(EVERY 1st (FUNCTION NUMBERP))
))

^(SETQ 1st '(1 -3A 2.65 0 0.0 -32.09 2314))
(1 -34 2.65 0 0.0 -32.09 2314)

(numbers? 1st)
T

Test if every member of a list is an atom

(DEFINEQ
(atoms? (1 s t)

(EVERY 1 s t (FUNCTION ATOM))
))

^(SETQ 1 s t '(h a rd in g gran t coolidge))
(hard ing g ran t coolidge)

♦-(atoms? 1s t)
T

Similar functions may be defined to test any characteristic of a single-level
list by substituting the appropriate predicate into the EVERY expression and
choosing a suitable name for the function. I believe it makes INTERLISP pro
grams more readable to define new predicate functions in this manner rather
than to use EVERY expressions directly in the program code.

5.5 EXISTENTIAL QUANTIFICATION
In predicate logic, a formula P(x) may have the value T if any one of its argu
ments satisfies the predicate. To assert that some value of X chosen from a suit
able domain satisfies P, we place an existential quantification symbol in front of
the formula. INTERLISP provides a function for testing whether or not one of a
list of values satisfies a given predicate.

SOME tests if the application of a given function to each element of a list
results in a value of T for some members of that list. It takes the form

Function: SOME
NOTANY

Arguments: 3
Arguments: 1) a l i s t , SOMEX

2) an eva lua tion function , SOMEFNl
3) a s e le c to r function , S0MEFN2

Value: The t a i l of SOMEX, i f a t l e a s t one element
of SOMEX s a t i s f i e s SOMEFNl; NIL otherw ise .

SOME applies SOMEFNl to the CAR of SOMEX. If that value is non-NIL,
SOMEX is returned as the value of SOME. Otherwise, SOMEFN2 is applied to
SOMEX. If SOMEFN2 is NIL, SOME uses (CDR SOMEX). That is, it applies
SOMEFNl to each element of SOMEX in succession until one of those elements
returns a non-NIL value. The value of SOME is the tail of SOMEX beginning
with the element which satisfied SOMEFNl.

Consider the following cases:

SOMEFNl is NIL, SOMEFN2 is NIL

5.5 Existential Quantification 119

This is a degenerate case that is equivalent to

(MAPCAR soraex 'OR)

SOMEFNl is non-null, SOMEFN2 is NIL
This is the equivalent to applying SOMEFNl to each element of SOMEX.

For example, if SOMEFNl is GREATER?, then

<-(SOME (LIST 23.0 -^5.0 0.0) (FUNCTION GREATER?))
(23.0 -45.0 0.0)

5.5.1 A Definition for SOME
We might define SOME as follows:

(DEFINEQ
(some (somex somefnl somefn2)

(PROG NIL
loop

(COND
((NLISTP somex)

(^
I f SOMEX is not a l i s t ,
apply SOME recu rs ive ly to a
l i s t i f i e d form of SOMEX. No
need to pass S0MEFN2 since
we know th e r e 's only one
element of the f i r s t
argument.

)
(RETURN

(SOME (LIST somex)
somefnl))))

((APPLY* somefnl
(CAR somex)
somex)

(*
I f th i s form evaluates to a
non-NIL value, we have
found a t l e a s t one element
of SOMEX th a t s a t i s f i e s the
p red ica te .

)
(RETURN somex)))

120 Logical Connectives and Predicates

5.5 Existential Quantification 121

(T

(SETQ somex
(COND
(somefn2

(*
There i s a s e le c to r
function! So generate
the new version of
SOMEX.

)
(APPLY* soraefn2 somex))

(*
The d e fa u l t case.

)
(CDR somex))))

(GO loop))
))

An alternative form, NOTANY, performs the opposite operation from
SOME. That is, if SOME returns NIL, meaning no element satisfied SO-
MEFNl, then NOTANY would return T.

We might define NOTANY as

(DEFINEQ
(notany (somex somefnl somefn2)

(NULL (SOME somex somefnl somefn2))
))

List Manipulation

Symbolic expressions are also called lists. A list is just a sequence of objects,
such as atoms or other lists, enclosed in a pair of parentheses. The essence of
programming in INTERLISP is manipulating lists to store information. This
chapter discusses the basic list manipulation functions.

6.1 CREATING LISTS
We have discussed the list creation functions in Section 3.2. However, to make
this chapter complete, we will summarize these functions for you.

CONS adds a new member to the list by prefixing it to the front of the list
which is given as its second argument. It takes the form

Function: CONS
Arguments: 2

Arguments: 1) any atom or l i s t , EXPRESSION
2) any l i s t , LST

Value: A l i s t whose CAR is the value of the f i r s t
argument and whose CDR i s the value of the
second argument.

Consider the following example:

^(CONS 'X ' (y z))
(x y z)

If the second argument is not a list but another atom, then CONS produces
a form known as a dotted pair. This form takes its name from the fact that the
pointers to the two atoms occupy the CAR and CDR portions of a CONS cell.

123

T̂i?|

<-(CONS ' X 'y)
(x . y)

LIST creates a new list from its argument which may be atoms or lists. Typi
cally, LIST is used to create a new list from a sequence of atoms. It takes the
form

Function: LIST
Arguments: 1-N
Arguments: 1-N) S-expressions, EXPRESSI0N[1] . . .

EXPRESSION[N]

Value: A l i s t of the values of i t s arguments.

Consider the following example:

•«-(LIST 'apple 'cherry 'lime)
(apple cherry lime)

APPEND joins two lists together at their top level. What this means is, figu
ratively, that if we place the two lists side-by-side and erase the innermost pair of
opposing parentheses, we will see the new list take shape. It takes the form

Function: APPEND

Arguments: 1-N
Arguments: 1-N) l i s t s , LST[1] . . . LST[N]

Value: A l i s t of the S-expressions of the
ind iv idual l i s t s .

Consider the following example:

(APPEND ' (sherry port) ' (r i e s l in g p in o t - n o i r))
(sherry po r t r i e s l in g p in o t-n o ir)

We can visualize this by placing the lists side-by-side as shown below and
erasing the innermost pair of opposing parentheses.

(sherry po r t) (r i e s l in g p in o t-n o ir) t T

124 List Manipulation

6.2 Concatenating Lists 125

Erase this pair of opposing parentheses to yield

(s h e rry p o r t r i e s l i n g p in o t-n o ir)

6.2 CONCATENATING LISTS
When you append two or more lists together, the result is always a new list.
Frequent invocations of APPEND will rapidly consume the available memory
forcing the system to spend more of its time in garbage collecting the remnants
we have left lying around. Moreover, we often want to amend a list without
changing its name (as we must do in using APPEND). INTERLISP provides us
with several concatenation functions that change the CDR portion of the last cell
of all but the last argument when linking the argument lists together. In effect,
they “smash” the current value of each last cell’s CDR portion and replace it
(just as RPLACD does) with a new value—the pointer to the first cell of the next
argument list. However, in performing this operation we destroy the integrity of
the second argument because it is merged into the first argument.

6.2.1 NCONC: Normal Concatenation
NCONC is the INTERLISP function that performs normal concatenation of two
or more lists. Each of its arguments is a list. It modifies the CDR portion of the
last cell of each list to point to the first cell of the succeeding argument list.
Obviously, this cannot occur for the last argument list, and so it remains unmod
ified. It takes the form

F unction : NCONC

Arguments: 2 . . .N

A rgum ents: l i s t s

V alue: a p o in te r to th e f i r s t argument

NCONC is a nospread function. Consider the following example:

<-(SETQ fren ch -w ln es (LIST 'p in o t - n o i r 'm er lo t))
(p in o t - n o i r m erlo t)

•<-(SETQ germ an-wines (LIST 'r i e s l i n g ' s y l v a n e r))
(r i e s l i n g sy lv a n e r)
<-(SETQ w ines (APPEND french-w ines germ an-wines))
(p in o t - n o i r m erlo t r i e s l i n g sy lv an er)

fren ch -w in es
(p in o t - n o i r m erlo t)

-^german-wines
(r ie s l in g sylvaner)
<-(SETQ wines french-wines)
(p ln o t-n o ir merlot)

<-(NCONC wines german-wines)
(p in o t-n o ir merlot r i e s l in g sylvaner)

<-wines
(p in o t-n o ir merlot r ie s l in g sylvaner)

where we see that the list WINES has physically been altered by execution of
NCONC.

NCONC can take more than two lists as its arguments. In this case, all but
the last list will be physically altered by execution of NCONC. NCONC always
returns a pointer to the first cell of the first argument as its result.

NCONC may be given NIL as the value of its first argument. Since NIL is
treated as both an atom and a list, the following is a valid invocation of NCONC:

•<-(SETQ good-wines NIL)
NIL

(NCONC good-wines (LIST 'p in o t-n o ir ’merlot))
(p in o t-n o ir merlot)

However, NCONC operates somewhat differently when it encounters this
situation. We must realize that NCONC deals with pointers to lists rather than
the lists themselves. Thus, when it encounters NIL as the value of GOOD-
WINES, it does not know that this NIL is the value of GOOD-WINES as op
posed to the intrinsic atom/list NIL. The result would be to modify the system
atom/list NIL permanently, which would produce future catastrophic results.
Thus, NCONC checks to see if its first argument is NIL and, if so, returns a
pointer to the second argument.

good-wines
NIL

Thus, although the value of the NCONC expression is (pinot-noir merlot),
GOOD-WINES has not been changed. NCONC has not changed NIL the
“atom” into a list.

Note that the first argument of NCONC cannot be an atom in any case since
NCONC is not allowed to change a non-list to a list in order to concatenate it.
However, the second argument may be an atom. A variation of NCONC,
NCONCl, is used to concatenate an atom to the end of a list. It takes the form

126 List Manipulation /

Function: NCONCl

Arguments: 2

Arguments: 1) a list, LST
2) any S-expression, EXPRESSION

Value: A list composed of LST concatenated with
the value of EXPRESSION.

We might define NCONCl as

(DEFINEQ
(NCONCl (alst an-atom)

(NCONC alst (LIST an-atom))
))

Basically, NCONCl just applies the function LIST to its second argument
before performing the concatenation. However, since this operation is frequently
performed, NCONCl is often hardwired to make it more efficient. For example,

(NCONCl french-wines 'cabernet-sauvignon)
(pinot-noir merlot cabernet-sauvignon)

The definition for NCONC in terms of more primitive functions might ap
pear as

(DEFINEQ
(NCONC (list-of-lists)

(PROG (a-list tail)
(SETQ a-list

(OR
(SOME list-of-lists (FUNCTION LISTP))
(RETURN

(CAR (LAST list-of-lists)))))
(SETQ tail

(LAST (CAR a-list)))
(MAPC

(CDR a-list)
(FUNCTION

(LAMBDA (item)
(RPLACD tail item)
(SETQ tail (LAST tail)))))

(RETURN (CAR a-list)))

))

6.2 Concatenating Lists 127

IS

6.2.2 TCONC: One at a Time Concatenation
When we use NCONCl, INTERLISP must find the end of the list in order to add
the new element. Many times we are faced with the situation where we must add
multiple elements to the end of the list, but one at a time. As the number of
elements to be added grows, NCONCl rapidly becomes inefficient because it
finds the end of the list anew on each invocation.

TCONC solves this problem by remembering where the end of the list is
from invocation to invocation. Each time it is called, TCONC inspects a pointer
it has created for the list that shows where the end of the list resides in memory.
Thus, updating a list can proceed very rapidly when one element at a time is
added to its end. It takes the form

Function: TCONC

Arguments: 2

Arguments: 1) a list having the pointer format,
POINTER
2) the element to be added, ELEMENT

Value: An updated pointer for succeeding
operations.

TCONC can be initialized in two ways:

1. If POINTER is NIL, TCONC creates a POINTER for you.
2. If POINTER has a value, TCONC changes the value of POINTER.

Consider the following examples:

<-(SETQ wines (TCONC NIL ’merlot))
((merlot) merlot)

where the CAR of the list returned is the list that you are building and the CDR
is the pointer to the last element added to the list. Thus, you can always deter
mine where you are in building the list if its proper assembly depends on a spe
cific sequence of steps.

When POINTER is (NIL), TCONC will change the value of POINTER.
Consider the following example:

^(SETQ fruits (LIST NIL))
(NIL)

(TCONC fruits ’cabernet-sauvignon)
((cabernet-sauvignon) cabernet-sauvignon)

fruits
((cabernet-sauvignon) cabernet-sauvignon)

128 List Manipulation

We usually build a list incrementally when we are repeating a function or
sequence of statements several times. One likely candidate is within a PROG.
Many times, however, we merely want to repeat one function a fixed number of
times where each iteration generates a single element to be added to the list. In
this case, we are likely to use the RPTQ or RPT function.

Consider the following example:

^(RPTQ 5
(SETQ list-of-numbers

(TCONC list-of-numbers rptn)))
((5 4 3 2 1) 1)

We recognize that this statement produces a list that appears a lot like the
vector produced by the APL index-generation operator. Let us capture it as a
function, but produce the list in the proper order.

(DEFINEQ
(index-generation (index)

(PROG (index-list)
(SETQ index-list (LIST NIL))
(SETQ index-list

(DREVERSE
(CAR

(RPT index
(TCONC index-list RPTN)))))

(RETURN index-list))

))

We can define TCONC in terms of the elementary functions as follows

(DEFINEQ
(TCONC (pointer element)

(PROG (pointer-list)
(RETURN

(COND
((NULL pointer)

(^
POINTER is NIL. Create one
with the value of ELEMENT
and return it.

)
(CONS

(SETQ pointer-list
(CONS element NIL))

pointer-list))
((NLISTP pointer)

6.2 Concatenating Lists 129

130 List Manipulation

Generate an e r ro r i f the
po in te r i s not a l i s t .

)
(ERROR "Bad Argument-TCONC: ”

p o in te r))
((NULL (CDR po in te r))

(*
Handle the case of the
f i r s t - t im e c a l l , whence
there i s no e n d -o f - l i s t
p o in te r .

)
(RPLACA p o in te r (CONS element NIL))
(RPLACD p o in te r (CAR p o in te r)))

(T

))

(*
Handle a l l o ther cases.

)
(RPLACD po in te r

(CDR
(RPLACD (CDR po in ter)

(RPLACD (CONS element)
(CDR p o in te r)))

))))))

6.2.3 LCONC: Concatenating Lists
TCONC is used to add elements to the end of a list. Many times, we want to add
lists to the end. Again, the problem is that we must always find the end of the list
each time we invoke NCONC. LCONC (for List Concatenation) maintains a
pointer just as TCONC does, but its second argument must always be a list. It
takes the form

Function: LCONC

Arguments: 2

Arguments: 1) a l i s t having p o in te r format, POINTER
2) a l i s t , LST

Value: The p o in te r l i s t updated with the value of
LST.

Consider the following example:

♦-(SETQ wines (LIST NIL))
(NIL)

♦-(LCONC wines (LIST 'm erlo t 'sy lv an er))
((m erlo t sy lvaner) sylvaner)

Note that the CDR portion contains the value of the last list element that is
added to the list. This convention is the same as that used for TCONC. Thus, if
we had to add both lists and elements to a list, we can call both TCONC and
LCONC with the same pointer structure. Given the pointer structure WINES
above, consider the following example:

(TCONC wines 'c h a b l is)
(m erlot sy lvaner ch ab lis) chab lis)

(LCONC wines 'c h a b l is)
bad argument-LCONC

because the second argument must be a list.
We can define LCONC in terms of elementary functions as follows

(DEFINEQ
(LCONC (p o in te r a - l i s t)

(PROG (p o i n t e r - l i s t)
(SETQ p o i n t e r - l i s t (LAST a - l i s t))
(RETURN

(COND
((NULL a - l i s t)

(*
I f NIL is to be added to the
e x is t in g l i s t , j u s t r e tu rn the
p o in te r .

)
p o in te r)

((NLISTP a - l i s t)
(*

I f the argument to be added is
not a l i s t , generate an e r ro r .

)
(ERROR "Bad Argument-LCONC: "

a - l i s t))
((NULL p o in te r)

(*
I f POINTER i s NIL, c rea te a new
p o in te r with A-LIST as the so le

6.2 Concatenating Lists 131

132 List Manipulation

element, and the l a s t atom of A-
LIST as the marker.

)
(CONS a - l i s t p o i n t e r - l i s t))

((NLISTP poin ter)
(*

I f POINTER is not a l i s t ,
generate an e r ro r .

)
(ERROR "Bad Argument-LCONC: ”

p o in te r))
((NULL (CAR po in te r))

(*
Handle the case (NIL).

)
(RPLACA

(RPLACD po in te r p o in te r - l i s t)
a - l i s t))

(T

))

(*
Handle a l l o ther cases.

)
(RPLACD (CDR po in ter) a - l i s t)
(RPLACD p o in te r p o in t e r - l i s t)))

6.2.4 ATTACH: Concatenating at the Front
Each of NCONC, TCONC, and LCONC adds elements, whether atoms or lists,
to the end of a list. It is often useful to be able to add elements to the front of a
list. For example, in maintaining an agenda of tasks to be accomplished, you
may want to place the highest priority task at the front of the list.

ATTACH adds an element to the front of the list by doing an RPLACA and
RPLACD. Its format is

Function: ATTACH

Arguments: 2

Arguments: 1) an element, X
2) a l i s t , LST

Value: The modified l i s t , LST'.

Consider the following example:

<-(SETQ baryons '(p ro to n muon kaon))
(proton muon kaon)

♦-(ATTACH 'omega-minus baryons)
(omega-minus pro ton muon kaon)

(ATTACH 'sigma-minus NIL)
(sigma-minus)

which is the same as performing (CONS ‘sigma-minus NIL).

•«-(ATTACH (LIST 'tau-m inus) baryons)
((tau-m inus) omega-minus proton muon kaon)

ATTACH performs destructive modification of the list. The resulting list
remains EQ to LST.

If the second argument is not a list, INTERLISP generates an error message
ARG NOT LIST.

We might define ATTACH as follows:

(DEFINEQ
(a t ta c h (x 1s t)

(COND
((LISTP 1st)

(RPLACA
(RPLACD 1st

(CONS (CAR 1st)
(CDR 1 s t)))

x))
((NULL 1st)

(*
The second argument must be a
l i s t .

)
(ERROR "ARG NOT LIST" x)))

))

6.2 Concatenating Lists 133

6.2.5 Variations on Concatenation
The CONCatenation functions use an extra CONS cell to keep track of the
pointers to the list elements. INTERLISP provides two functions that avoid the
overhead of the extra CONS cell: DOCOLLECT and ENDCOLLECT. They
take the form

Function: DOCOLLECT
ENDCOLLECT

Arguments: 2

Arguments: 1) an item, ITEM
2) a l i s t , LST

Value: A l i s t with the item inserted .

Consider the following examples:

•<-(SETQ p a r t ic le s '(n eu tr in o e lec tron W-boson))
(neutrino e lec tro n W-boson)
• (̂DOCOLLECT 'neutron p a r t ic le s)
(neutron e lec tro n W-boson)

^ -p a r t ic le s
(neutrino neutron e lec tro n W-boson)

Caution must be exercised in using DOCOLLECT because you may cause
the machine to enter into an infinite loop that may only be exited by rebooting.
Consider the example

<-(SETQ p a r t ic le s NIL)
NIL
•«-(DOCOLLECT 'p o s i t ro n p a r t ic le s)

At this point, the machine begins printing an endless list as follows:

(positron p o s itro n p os itron positron positron positron
p os itron p os itron p os itron . . . ad infin itum

”<-(SETQ p a r t i c le s (LIST 'neu tr ino 'e le c t ro n 'W-boson))
(neutrino e lec tro n W-boson)

^(ENDCOLLECT p a r t i c le s 'tau-minus)
(e lec tro n W-boson)

^ -p a r t ic le s
(neutrino . tau-minus)

(ENDCOLLECT p a r t ic le s (LIST 'J - p a r t i c l e 'omega-zero))
(e lec tro n W-boson)
■•-particles
(neutrino J - p a r t i c l e omega-zero)

^(ENDCOLLECT NIL 'e le c tro n)
e lec tro n

^(SETQ p a r t i c le s '(e le c t ro n proton))
(e lec tro n proton)

134 List Manipulation

■•-(ENDCOLLECT p a r t i c l e s NIL)
(proton)

♦ - p a r t i c le s
(e le c tro n)

As we see, DOCOLLECT adds an item at the beginning of the CDR of the
list, whereas ENDCOLLECT replaces the CDR of the list. In general, DOCOL
LECT maintains the list that it is building as a circular list. When you are ready
to add the last item, you should use ENDCOLLECT, which returns a non-circu
lar list. Thus, DOCOLLECT and ENDCOLLECT are meant to be complemen
tary functions.

Implementing DOCOLLECT
DOCOLLECT may be implemented in terms of RPLACD as follows:

(DEFINEQ
(d o c o lle c t (an-item a - l i s t)

(COND
((NLISTP a - l i s t)

(RPLACD (SETQ a - l i s t (LIST item))
a - l i s t))

(T
(CDR (RPLACD a - l i s t

(CONS item a - l i s t)))))
))

Implementing ENDCOLLECT
ENDCOLLECT may be implemented using RPLACD as follows:

(DEFINEQ
(e n d c o lle c t (item a - l i s t)

(COND
((NULL item) a - l i s t)
(T

(PROGl
(CDR item)
(RPLACD item a - l i s t))))

))
Using DOCOLLECT in MAPCAR

The IRM [irm78] suggests that MAPCAR may be defined, using DOCOL
LECT and ENDCOLLECT, as follows:

(DEFINEQ
(mapcar (a - l i s t a -function)

(PROG (value)

6.2 Concatenating Lists 135

136 List Manipulation

loop

))

(COND
((NLISTP a - l i s t)

(RETURN (ENDCOLLECT value))))
(SETQ value

(DOCOLLECT
(APPLY* a-function (CAR a - l i s t))
v a lu e))

(SETQ a - l l s t (CDR a - l l s t))
(GO loop))

6.3 SUBLIST EXTRACTION
In Chapter 2, we saw that one way to take a list apart was to use the functions
CAR and CDR. These work, respectively, on the head and the tail of a list. In
addition, INTERLISP provides several functions that can operate on interior
components of a list.

6.3.1 Extracting the Last Element
LAST allows you to retrieve the last node in a list, e.g., the contents of the last
list cell. LAST takes the form

Function: LAST

Arguments: 1

Arguments: 1) a l i s t , LST
Value: A l i s t whose element i s the l a s t node in

LST; otherw ise, NIL.

If its argument is not a list, LAST returns NIL:

^(LAST 'rhomboid)
NIL

Otherwise, it returns the contents of the last cell of LST as a list. There are
two possible cases:

1. The last cell was appended (NIL in the CDR part). For example,

•<-(LAST ' (p a r a l l e l q u a d r i la te r a l rhomboid))
(rhomboid)

2. The last ceil was CONSed to the list. For example,

<-(LAST ' (p a r a l l e l t r i a n g le q u a d r i la te r a l . rhomboid))
(q u a d r i l a t e r a l . rhomboid)

LAST is useful when you must obtain the last entry of a list. If the list is
longer than four elements, you cannot use one of the CAR ... CDR combinations
to retrieve the element. Using LAST, you do not need to know the length of the
list to retrieve the last element.

We might define LAST as follows:

(DEFINEQ
(l a s t (1 s t)

(PROG (xprev)
(SETQ xprev NIL)

loop
(COND

((NLISTP 1st)
(RETURN xprev)))

(SETQ xprev 1st)
(SETQ 1 s t (CDR 1 s t))
(GO loop))

))

Note that XPREV always holds the previous element of X. Thus, when we
determine that X is no longer a list, the previous element must be a list. Hence, it
is returned as the last element of X. On the first pass through the code, if X is not
a list, then NIL will be returned. See [knut68] for a detailed discussion of list
manipulation algorithms.

6.3.2 Extracting the Tailing N Elements
NLEFT allows you to extract the rightmost N elements of a list where N is greater
than the number of elements in a specified tail of the list. Its format is

Function: NLEFT

Arguments: 3
Arguments: 1) a l i s t , LST

2) ex tension , N
3) the t a i l , TAIL

Value: A l i s t with N more elements than the t a i l .

6.3 Sublist Extraction 137

Consider the following examples:

1. TAIL is NIL (the usual case):

<-(SETQ awards '(tony oscar emmy coty))
(tony oscar emmy coty)
-^(NLEFT awards 2)
(emmy coty)

2. TAIL is non-NIL:

^(SETQ t a i l (CDDDR awards))
(coty)
<-(NLEFT awards 1 t a i l)
(emmy coty)

where the length of the tail is 1, and we are asking for a list whose length
is 1 greater than the length of the tail.

<-(NLEFT awards 4 t a i l)
NIL

because there is no list that may be extracted from the first argument
which meets the specified criterion, namely having a length 4 elements
greater than the tail.

If LST is not a list and is equivalent to TAIL, NLEFT returns NIL, except in
the case where N is zero:

^(NLEFT (LAST awards) 1 t a i l)
NIL

(NLEFT (LAST awards) 0 t a i l)
(coty)

You may use NLEFT to work backwards through a list by setting TAIL to
(LAST 1st). Then, by calling NLEFT repreatedly with different values of N and
using CAR to strip off the head of the resulting list, you access the list in reverse
order. When the result is NIL, you know that you have reached the end of the
list.

We might define NLEFT as follows:

(DEFINEQ
(n le f t (1 s t n t a i l)

138 List Manipulation

))

(PROG (x)
(SETQ X 1st)

loop
(COND

((ZEROP n)
(*

N equal to 0 i s equ ivalen t
to LAST.

)
(GO loop l))

((OR
(EQ X t a i l)
(NLISTP x))
(*

Return NIL i f :
1. The f i r s t argument is

not a l i s t .
2. I t i s equal to the

th ing th a t i s looked
fo r .

)
(RETURN NIL)))

(SETQ X (CDR x))
(SUBIVAR n)
(GO loop)

loop l
(COND

((OR
(EQ X t a i l)
(NLISTP x))
(*

Return 0 i f N is 0.
)
(RETURN 1 s t)))

(SETQ X (CDR x))
(SETQ 1 s t (CDR 1 s t))
(GO lo op l))

6.3 Sublist Extraction 139

Note that if N is zero and TAIL is NIL, then NLEFT is equivalent to LAST.
If N is zero and TAIL is non-NIL, then NLEFT operates like MEMBER.

6.3.3 Extracting the Last N Elements
LASTN extracts the last N elements of a list. It takes the form

Function: LASTN
Arguments: 2
Arguments: 1) a l i s t , LST

2) an index, N

Value: An S-expression consis ting of the i n i t i a l
and f in a l segments of a l i s t .

Assume LST has length equal to L elements. LASTN “breaks” a list at the
Nth element. It returns an S-expression equivalent to

(CONS i n i t i a l . f in a l)

where

Initial The first through L-N-1 elements of the list
Final The Nth through L elements of the list

I
If LST does not contain N elements (i.e., L less than N), LASTN returns

NIL.
Consider the following examples:

<-(SETQ 1 s t ’ (the lazy fox jumped over the brown dog))
(the lazy fox jumped over the brown dog)

^ (LASTN 1 s t 5)
((th e lazy fox) jumped over the brown dog)

<-(LASTN 1st 10)
NIL
^ (LASTN 1 s t 8)
(NIL the lazy fox jumped over the brown dog)

LASTN provides a convenient mechanism for decomposing complex list
structures. The CAR of its result always returns the initial segment while the
CDR returns the final segment. Let us assume the following complex structure:

(c la ss concep tua liza tion p ro p e r tie s co n s titu en ts)

which might be the syntax node structure in a natural language parser.
We know that the list has a fixed structure but that the type of individual

elements (except for the first) may be atoms or lists. We can defined the follow
ing functions:

140 List Manipulation

(DEFINEQ
(sy n ta x :c la s s (node)

(c a r node)))
(DEFINEQ

(syntax :concep t (node)
(CADR (LASTN node 3))))

(DEFINEQ
(sy n ta x :p ro p e r t ie s (node)

(CADR (LASTN node 2))))
(DEFINEQ

(s y n ta x :c o n s t i tu e n ts (node)
(CADR (LASTN node 1))))

Note that we can extract an individual element by taking the CADR of
LASTN of the original list where the element is the Nth element from the tail of
the list.

Although I have demonstrated this approach for a list of four elements, you
can see that it is easily applicable to a list of N elements provided N is fixed.

A Definition for LASTN
We might define LASTN as follows:

(DEFINEQ
(la s tn (1 s t n)

(PROG (x l s t y l s t)
(SETQ x l s t (NTH 1 s t n))
(COND

((NLISTP 1st)
(*

I f LST is not a l i s t .
)
(RETURN NIL))

((NULL x ls t)
(*

I f N is g re a te r than the
length of LST.

)
(RETURN x l s t)))

loop
(SETQ x l s t (CDR x l s t))
(COND

((NULL x l s t)
(RETURN

(CONS y l s t 1 s t))))

6.3 Sublist Extraction 141

m

142 List Manipulation

(SETQ y l s t
(NCONCl y l s t (CAR 1 s t)))

(SETQ 1st (CDR 1st))
(GO loop))

))

6.3.4 Extracting From the Nth Element
Given a list of K elements, how do you extract from the Nth element (where N is
less than K)? If N is 1,2, or 3, you can use some combination of CARs and CDRs
to retrieve it. You may use LAST if N equals K. Otherwise a complex function
might be required with substantial testing for the len^h and end of the list for
different cases. INTERLISP provides NTH to extract the tail of a list beginning
with the Nth element where the length of the list is unknown. It takes the form

Function: NTH

Arguments: 2
Arguments: 1) an S-expression, EXPRESSION

2) an index, N

Value: The t a i l of the l i s t beginning with the
Nth element.

Let us consider several cases, using the list

<-(SETQ games
(LIST 'poker 'gin-rummy 'h e a r ts 'bridge
'c a n a s ta))

(poker gin-rummy h ea rts bridge canasta)

1. If N is 0, the value is (CONS NIL EXPRESSION).

<-(NTH games 0)
(NIL poker gin-rummy h ea rts bridge canasta)

2. If N is 1, the value is EXPRESSION.

^(NTH games 1)
(poker gin-rummy h ea rts bridge canasta)

3. If N is 2, the value is (CDR EXPRESSION).

<-(NTH games 2)
(gin-rummy h ea rts bridge canasta)

«si

4. If (LENGTH EXPRESSION) is less than N, the value is NIL.

-^(NTH games 7)
NIL

5. Otherwise, the tail of EXPRESSION beginning with the NTH element is
returned.

«-(NTH games 3)
(h e a r ts b ridge canasta)

We might define NTH as follows:

(DEFINEQ
(nth (expression n)

(COND
((IGREATERP 1 N)

(*
I f N i s le s s than or equal to
zero.

)
(CONS NIL expression)))

(PROG NIL
loop

(COND
((EQUAL n 1)

(RETURN expression))
((NLISTP expression)

(RETURN NIL)))
(SETQ expression (CDR expression))
(SETQ n (SUBl n))
(GO loop))

))

6.4 COPYING AND REVERSING LISTS
INTERLISP duplicates pointers to lists rather than duplicating the lists them
selves in many functions. For example,

■^(SETQ computers
(LIST 'a ta r i -1 2 0 0 'a p p le - I I e 'TRS-80))

(a ta r i-1 2 0 0 a p p le - I Ie TRS-80)
<-(SETQ microcomputers computers)
(a ta r i-1 2 0 0 a p p le - I Ie TRS-80)

6.4 Copying and Reversing Lists 143

creates an additional pointer to the list which is the value of COMPUTERS. We
can verify this by checking to see if MICROCOMPUTERS and COMPUTERS
are EQ.

<-(EQ microcomputers computers)
T

However, if we subsequently modify COMPUTERS, then the value of MI
CROCOMPUTERS is modified as well.

<-(SETQ computers (APPEND computers ’ iAPX-286))
(ata ri-1200 ap p le -IIe TRS-80 lAPX-286)

^microcomputers
(ata ri-1200 ap p le -IIe TRS-80 iAPX-286)

However, if we wish to modify COMPUTERS without modifying MICRO
COMPUTERS, then we must make a copy of COMPUTERS. This section de
scribes functions for copying lists.

6.4.1 Copying List Elements
COPY makes a copy of the list which is its argument. It returns the new list as its
value. COPY duplicates elements of its arguments down to the non-list level.
However, if some of its elements are strings or arrays, the new list will contain
these same strings or arrays (via pointers to them). It takes the form

Function: COPY

Arguments: 1

Argument: 1) an S-expression to be copied,
EXPRESSION

Value: A copy (with new storage assigned) of i t s
argument.

Consider the following examples:

•<-(SETQ countries '(france Spain denmark norway))
(france Spain denmark norway)

^(SETQ same-countries (COPY coun trie s))
(france spain denmark norway)

<-(EQ countries same-countries)
NIL

(EQUAL countries same-countries)
T

144 List Manipulation

demonstrates that while the lists are equivalent, they are not the same data struc
ture.

^(SETQ som e-sf-w rite rs '("Asimov” "Dick"
"Saberhagen"))
("Asimov" "Dick" "Saberhagen")

<-(SETQ g o o d -s f-w ri te rs (COPY som e-sf-w rite rs))
("Asimov" "Dick" "Saberhagen")

■^(EQ som e-sf-w rite rs g o o d -sf-w rite rs)
NIL

'‘-(EQUAL som e-sf-w rite rs g o od -sf-w rite rs)
T
■<-(SETQ seed 'tam arind)
tamarind

<-(SETQ new-seed (COPY seed))
tamarind

•*-(EQ seed new-seed)
T

If you just want to copy the top level of the list, you may use (APPEND
expression).

We might define COPY as follows:

(DEFINEQ
(copy (expression)

(COND
((NLISTP expression)

(*
I f EXPRESSION is not a l i s t ,
j u s t r e tu rn the value of
EXPRESSION.

)
ex p ress io n))

(PROG (x l s t y l s t)
(*

Copy the f i r s t element of expression .
)
(SETQ y l s t

(LIST (COPY (CAR ex p ress io n))))
(SETQ x l s t y l s t)

loop
(SETQ expression (CDR expression))

6.4 Copying and Reversing Lists 145

m

(COND
((NLISTP expression)

(*
Condition is s a t i s f ie d when
we reach the end of
expression, since (NLISTP
NIL) is T.

)
(RPLACD y ls t (COPY expression))
(RETURN x l s t)))

(SETQ y l s t
(CDR

(RPLACD y ls t
(RPLACD

(CONS
(COPY

(CAR
expression))

y l s t)))))
(GO loop))

))

6.4.2 Copying All List Elements
COPY will not duplicate non-list elements when it copies an expression (see
“seed” example above). Rather, it creates pointers to non-list elements such as
arrays, strings, etc. COPY ALL duplicates every element of a list including at
oms, arrays, and strings when you must have new copies of each element of the
list. It takes the form

Function: COPYALL
HCOPYALL

Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: A new copy of EXPRESSION including a l l
n o n - l i s t data s t ru c tu re s .

Consider the following examples:

•^(SETQ x l "Merry Christmas”)
"Merry Christmas"

^(SETQ x2 (COPYALL x l))
"Merry Christmas"

146 List Manipulation

•^(EQ x l x2)
NIL

(EQUAL x l x2)
T

< - x 2
"Merry Christmas”

<^(SETQ y (ARRAY 3))
{ARRAYP}#542224

-^(SETA y 1 100)
100
<^(SETA y 2 200)
200

^(SETA y 3 300)
300
<-(SETQ z (COPYALL y))
{ARRAY?}#542231
-^(ELT z 2)
200

A variation, HCOPYALL, copies data structures that contain circular
pointers. For example,

•«-(SETQ ra re -g a se s
(LIST ’helium 'krypton 'argon 'xenon 'radon))

(helium krypton argon xenon radon)

Now let us create a circular list:

•«-(RPLACD (LAST ra re -g ase s) ra re -gases)

The result of executing this function at the top level of INTERLISP is a
repeating list of the form

(helium krypton argon xenon radon helium krypton argon
xenon radon . . .)

To terminate the printing, you must interrupt via CTRL-D to force a reset of
the top level of INTERLISP.

If we attempt to apply COPYALL to this circular list, we obtain

<-(SETQ in e r t -g a s e s (COPYALL ra re -g ase s))

6.4 Copying and Reversing Lists 147

This function never succeeds because COPYALL attempts to build up a list
by successive references to elements of RARE-GASES. The ultimate result is to
exhaust your virtual memory and cause INTERLISP to crash.

However, if we apply HCOPYALL, we obtain

^(SETQ in e r t-g ases (HCOPYALL rare-gases))
(helium krypton argon xenon radon . [1])

where the strange notation indicates that INERT-GASES is circular just like
RARE-GASES.

6.4.3 Copying with Reversal
REVERSE allows you to copy a list while reversing the order of its elements. It
takes one argument, the list to be reversed, and returns the reversed list. It takes
the form

Function: REVERSE I
DREVERSE C

1
Arguments: 1 |
Argument: 1) an S-expression, EXPRESSION |

Value: A copy of EXPRESSION with a l l to p - lev e l
elements reversed in sequence.

Consider the following examples:

(REVERSE 'huckleberry)
NIL

because it does not operate upon non-lists.

•<-(REVERSE (LIST 'orange 'b lue 'magenta 'yellow))
(yellow magenta blue orange)

REVERSE will only reverse the top-level elements in a list. For example,

•^(SETQ e r ro rs
(LIST ' (my blunder)

' (h is oversight)
' (t h e i r negligence)))

((my blunder) (h is oversight) (th e i r negligence))
<-(REVERSE erro rs)
((t h e i r negligence) (h is oversight) (my blunder))

148 List Manipulation

You may wish to define a function, REVERSEALL, that reverses a list at all
levels.

An alternative version, DREVERSE, destroys the original list and sets the
reversed list as its value. It does not use any additional storage.

REVERSE is useful in many situations, but particularly in those programs
where you are simulating a stack or an agenda.

Suppose you need to read a sentence into your program. Each sentence is
terminated by a ! or a ? which indicates the type of processing to be applied to
the sentence. We want to define a function GET-SENTENCE which reads atoms
from the your terminal until it detects one of those two terminators. Its definition
looks like this

(DEFINEQ
(g e t-sen ten ce NIL

(PROG (sentence)
loop

(SETQ sentence
(CONS (RATOM) sentence))

(COND
((MEMBER (CAR sentence) ' (! ?))

(RETURN
(CONS (REVERSE sentence)

NIL))))
(GO loop))

))

We might define REVERSE as follows:

(DEFINEQ
(re v e rse (expression)

(PROG (1 s t)
loop

(COND
((NLISTP expression)

(RETURN 1 s t)))
(SETQ 1st

(CONS (CAR expression) 1 s t))
(SETQ expression (CDR expression))
(GO loop))

))

6.4.4 Removing Elements from a List
To remove an element from a list, we must excise it from the front, back, or
within the list. Removing an element from the front of the list is very simple—we

6.4 Copying and Reversing Lists 149

m

just return the CDR of the list. Removing an element from the rear is also simple
because we can use RPLACA to assign NIL to the last element of the list. Re
moving an element from within a list is more difficult because we must search for
the element and then delete it while adjusting the pointers from the surrounding
elements. INTERLISP provides REMOVE to delete elements within a list. It
takes the form

Function: REMOVE
DREMOVE

Arguments: 2
Arguments: 1) an atom, X

2) an S-expression, LST

Value: A copy of LST with a l l top le v e l elements
equal to X removed from i t .

Consider the following examples:

- (̂REMOVE ’a ' (c r a w d a d d y))
(c r w d d d y)
REMOVE can de le te NIL from a l i s t :

^ p l a i n t e x t
(E P L U R I B U S U N U M)

<-(RPLACA (LAST p la in te x t))
(NIL)

p la in te x t
(E P L U R I B U S U N U NIL)

^(REMOVE NIL p la in te x t)
(E P L U R I B U S U N U)

Note that REMOVE only removes the top-level elements equal to X. For
example,

(REMOVE 's h e i l a ' (s h e i l a (s h e i la)))
((s h e i la))

And removing the only element of a list makes that list become NIL. For
example,

(REMOVE 'ap p le -p ie '(a p p le -p ie))
NIL

150 List Manipulation

An alternative form, DREMOVE, uses EQ instead of EQUAL to delete X.
Moreover, it actually modifies LST rather than returning a copy with X deleted.
However, DREMOVE cannot change a list to NIL. For example,

■^(SETQ d e s s e r t ' (a p p le -p ie))
(ap p le -p ie)

♦-(DREMOVE 'a p p le -p ie d esse r t)
NIL

•^ d e s se r t
(ap p le -p ie)

This execution of DREMOVE returns NIL, but it does not perform any
CONSes. The value of DESSERT remains (apple-pie), because there is no way
to change a list into a non-list.

We might define REMOVE as follows:

(DEFINEQ
(remove (x 1s t)

(COND
((NLISTP 1st) NIL)
((EQUAL X (CAR 1 s t))

(REMOVE X (CDR 1 s t)))
(T

(CONS (CAR 1st)
(REMOVE X (CDR 1 s t)))))

))

6.5 Modifying Lists by Substitution 151

6.5 M ODIFYING LISTS BY SUBSTITUTION
Lists are a generalized structure for representing information about problems.
Often, the ordering of elements within a list has significant import to the inter
pretation of the list within a program. As program execution progresses, you
may want to modify the structure of a list to replace old information with new
values. One way is to modify the list itself by substituting new values for those
that already exist in the list.

6.5.1 A General Substitution Function: SUBST
SUBST is the general INTERLISP substitution function. Its format is

Function: SUBST
DSUBST
LSUBST

152 List Manipulation

Arguments: 3
Arguments: 1) an S-expression, NEW

2) an atom, OLD
3) a list, LST

Value: The new value of the l i s t a f te r
s u b s t i tu t io n .

SUBST evaluates its arguments. It performs a one-for-one substitution of
the value of NEW for the value of OLD for all occurrences of OLD in LST when

1. OLD is EQUAL to the CAR of some sublist of LST,
2. When OLD is atomic and not NIL,
3. When OLD is atomic, not NIL, and EQ to the CDR of some sublist of

LST.

For example, suppose we have a mathematical formula to evaluate that has
placeholders for arguments. We need to substitute the variable names into the
formula and then evaluate it. Consider the following example:

<-(SETQ formula
*(SQRT (PLUS (TIMES $x $x) (TIMES $y $y))))

(SQRT (PLUS (TIMES $x $x) (TIMES $y $y)))
-<-(SETQ length 10)
10
•^(SETQ height 20)
20

<-(EVAL (SUBST 'len g th '$x
(SUBST ’height '$y formula)))

22.36

How was this accomplished? First, the substitution is performed to yield the
S-expression to be evaluated. This is just a list that is given to EVAL to interpret.
EVAL returns the value. The intermediate steps in the evaluation are

(SUBST ’heigh t '$y formula) y ie ld s a l i s t of the form
(SQRT (PLUS (TIMES $x $x) (TIMES height h e ig h t))) .

This is then used by (SUBST ‘length ‘$x ...) to produce the list

(SQRT (PLUS (TIMES length length) (TIMES height
h e i g h t))) .

This list is evaluated by EVAL. Note that LENGTH and HEIGHT in the
final list are the names of variables that have values, as defined above, which are
evaluated by EVAL to produce the result.

The value of SUBST is a new list containing the appropriate changes to
LST, If NEW is a list, its value is copied into the new list at each occurrence of a
substitution.

DSUBST is an alternative form of SUBST that does not copy LST but
changes its structure. However, it does use a new copy of NEW.

A Definition for SUBST
We might define SUBST as follows:

(DEFINEQ
(su b s t (new old 1st)

(COND
((NULL 1st) NIL)
((NLISTP 1st)

(COND
((EQ old 1st)

(COND
((NLISTP new) new)
(T (COPY new))))

(T 1 s t)))
(T

(CONS
(COND

((COND
((LITATOM old)

(EQ old (CAR
1 s t)))

(COND
((NLISTP new)
new)
(T (COPY new))))

(T
(SUBST new old (CAR
1 s t))))

(SUBST new old (CDR 1 s t)))))
))

6.5.2 Substituting by Segments: LSUBST
LSUBST is similar to SUBST except that it substitutes “NEW” segments for
OLD. That is, if the value of NEW is a list, when NEW is substituted for OLD in
some LST, the elements of NEW become individual elements of LST. For exam
ple,

6.5 Modifying Lists by Substitution 153

<-(SETQ sentence
'(th e boy sees the g i r l with the te lescope))

(the boy sees the g i t l with the telescope)
•«-(LSUBST '(lo v es) 'sees sentence)
(the boy loves the g i r l with the telescope)

•«-(LSUBST '(th e old man) 'boy sentence)
(the old man sees the g i r l with the telescope)
<-(LSUBST '(th e green engine) 'john 'john)
(the green engine)

We might define LSUBST as follows:

(DEFINEQ
(Isu b s t (new old 1st)

(COND
((NULL 1st) NIL)
((NLISTP 1st)

(COND
((EQ old 1st) new)
(T 1 s t)))

((EQUAL old (CAR 1 st))
(NCONC (COPY new)

(LSUBST new old (CDR 1 s t))))
(T

(CONS
(LSUBST new old (CAR 1 s t))
(LSUBST new old (CDR 1 s t)))))

))

If LST is empty, no substitution can be performed, so LSUBST merely re
turns NIL. If LST is not a list, and OLD is equal to LST, the value of NEW is
substituted for LST. Thus, you may dissect a list component by component and
replace individual elements.

6.5.3 Substituting by Association: SUBLIS
Given an expression consisting of many atoms composed into a complex struc
ture, you may want to perform wholesale substitution from one or more atoms in
the expression. SUBLIS allows you to substitute for multiple atoms with one
function invocation. It takes the form

Function: SUBLIS

Arguments: 3

154 List Manipulation
I

Arguments: 1) an a s so c ia t io n l i s t , ALST
2) an S -expression , EXPRESSION
3) a s t ru c tu re f la g , FLAG

Value: A new expression with the appropria te
s u b s t i tu t io n s made according to ALST.

ALST is a list of pairs having the form

((<atoml> . <newatoml>) . . . (<atomN> . <newatomN>))

SUBLIS substitutes <newatom[i]> for each <atom[i]> that is found in the
expression. For example,

'^(SUBLIS '((A B)) '(A B A B A B))
((B) B (B) B (B) B)

A new structure may be created if needed, or if FLAG is T. If FLAG is NIL,
and there are no substitutions made, the value returned is EXPRESSION.

SUBLIS and SUBPAIR (see below) substitute the identical structure into
EXPRESSION (unless FLAG is T) while SUBST and LSUBST substitute cop
ies. Consider the following example:

-^(SETQ f r u i t s '(papaya guava))
(papaya guava)

^(SETQ cheeses '(edam gouda camembert))
(edam gouda camembert)

<^(DSUBLIS (LIST (CONS 'edam f r u i t s)) cheeses)
((PAPAYA GUAVA) GOUDA CAMEMBERT)

<^(DSUBLIS (LIST (CONS 'gouda f r u i t s)) cheeses T)
((PAPAYA GUAVA) (PAPAYA GUAVA) CAMEMBERT)

^(EQ (CAR cheeses) f r u i t s)
T
<-(EQ (CADR cheeses) f r u i t s)
NIL

An alternative form of SUBLIS, DSUBLIS, modifies EXPRESSION rather
than copying it.

We might define SUBLIS as follows:

(DEFINEQ
(s u b l is (a l s t expression f lag)

(COND

6.5 Modifying Lists by Substitution 155

(a l s t
(SUBPR expression a l s t))

(f la g
(*

No su b s t i tu t io n s ; crea te new
copy.

)
(COPY expression))

(T expression))
))

SUBPR is defined in the next section. SUBLIS may be used to implement a
simple substitution cipher system. Let the association list entries have the form

(< p la in tex t l e t t e r) (c ip h e r te x t l e t t e r))

The association list has 26 entries (assuming no numbers or special charac
ters). Consider the following key:

Plaintext:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Ciphertext:
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

which is just the letters of the alphabet circulated by three characters.
A function to encipher plaintext is just

(DEFINEQ
(encipher (te x t key)

(SUBLIS key te x t T)
))

Deciphering is done, of course, by reversing all of the entries in the key and
applying it to the enciphered text.

We may demonstrate this technique by applying it to several examples.
First, let us define the key as follows:

156 List Manipulation

(SETQ KEY
(LIST ’ (A .. D) '(B .. E) '(c . F) '(D ., G) -(E .. H)

'(F .. I) '(G .. J) '(H . K) *(I .. L) ' (J .. M)
’ (K .. N) '(L .. 0) '(M . P) '(N .. Q) '(0 ,. R)
'(P .. s) '(Q .. T) '(R . u) '(s .. V) '(T ,. w)
'(u ., X) '(V ,. Y) '(W . z) '(X ,. A) '(Y .. B)
'(z .. c)))

((A . D) (B . E) (C . F) . . .)

<-(SETQ p la in te x t ’ (E P L U R I B U S U N U M))
(E P L U R I B U S U N U M)
^(SETQ c ip h e r te x t (ENCIPHER p la in te x t key))
(H S O X U L E X V X Q X P)
♦-(SETQ p la in te x t2

' (T W A S T H E N I G H T B E F O R E X M A S))
(T W A S T H E N I G H T B E F O R E X M A S)
-^(SETQ c ip h e r te x t2 (ENCIPHER p la in te x t2 key))
(W Z D V W K H Q L J K W E H I R U H A P D V)

You may reverse the entries in the key using the following function

(DEFINEQ
(reverse-key (key)

(MAPCAR key (FUNCTION REVERSE))
))

To decipher the text derived above, you may use the expression

(ENCIPHER c ip h e r te x t (REVERSE-KEY key))
(E P L U R I B U S U N U M)

-^(ENCIPHER c ip h e r tex t2 (REVERSE-KEY key))
(T W A S T H E N I G H T B E F O R E X M A S)

Note that each entry must be in the form of a CONS list. If each entry was a
list of the form (A B), W example, then the resulting list produced by ENCI
PHER would appear as

((H) (S) (0) (X) (U) (L) (E) (X) (V) (X) (Q) (X) (P))

6.5.4 Substituting by Pairing: SUBPAIR
SUBPAIR operates like SUBLIS except that the old and new values are con
tained in separate lists. It takes the form

Function: SUBPAIR

Arguments: 4-
Arguments: 1) a key l i s t , OLD

2) a replacement l i s t , NEW
3) an S -expression , EXPRESSION
A) a s t ru c tu re f la g , FLAG

Value: The modified expression .

6.5 Modifying Lists by Substitution 157

For each atom in OLD, SUBPAIR substitutes the corresponding atom in
NEW for every occurrence in EXPRESSION. There are several cases:

1. If OLD is an atom, the entire list NEW is substituted for it. For example,
in creating a file header, you may specify a form for the File Package
command as

(FNS * < fllefns>)

where <filefns> is an atom whose value is a list of functions in the file.
You may substitute the value of <filefns> for the atom in the form using

^(SETQ fnsform (LIST 'FNS '* 'MYFNS))
(FNS * MYFNS)
^(SUBPAIR 'MYFNS MYFNS FNSFORM T)
(FNS * MYFNSl MYFNS2 MYFNS3 . . .)

and you may remove the asterisk (*) via DREMOVE (see Section 6.4.4).

2. If (LENGTH OLD) is less than (LENGTH NEW) and OLD ends in an
atom other than NIL, the remaining elements of NEW are substituted
for the last element of OLD. For example,

(SUBPAIR ' (a b . c) '(d e f g) '(x y c w))
(x y (f g) w)

because A is matched with D, B is matched with E, and (F G) is matched
with C.

3. If (LENGTH NEW) is less than (LENGTH OLD), then NIL is matched
with each of the remaining atoms on OLD, For example,

^(SUBPAIR ' (a b e d) ' (x y z) ' (c a b b y))
(z X y y y)

(SUBPAIR ' (a b e d) ' (x y z) ' (d a d d y))
(NIL X NIL NIL y)

As with SUBLIS, a new structure is created only if needed or if FLAG is T.
That is, if FLAG is NIL, and no substitutions are performed, then the expression
returned is EXPRESSION.

We may use SUBPAIR instead of SUBLIS in our cryptographic example
given above. We define two key lists as follows:

158 List Manipulation

^(SETQ oldkey ' (a b c d . . .))
(a b c d . . .)

«-(SETQ newkey ' (d e f g . . .))
(d e f g . . .)

We modify the definition of ENCIPHER as follows:

(DEFINEQ
(encipher (oldkey newkey te x t)

(SUBPAIR oldkey newkey te x t T)
))

Then, we may apply it to an example;

^(SETQ c ip h e r te x t (encipher oldkey newkey p la in te x t))
(H S O X U E X V X Q X P)

Note that we need only reverse the order of the keys in this definition of
ENCIPHER in order to decipher the text.

-^(SETQ new plain tex t (encipher newkey oldkey c ip h e r te x t))
(E P L U R I B U S U N U M)

We might define SUBPAIR as follows:

(DEFINEQ
(su b p a ir (o ld new expression f lag)

(COND
(old

(SUBPR expression
old
(RPLACA ' ((D E F)) new)))

(f la g
(COPY expression))

(T
e x p ress io n))

))

Both SUBLIS and SUBPAIR make use of SUBPR to perform the hard work
of substitution. SUBPR might be defined as follows:

(DEFINEQ
(subpr (expression I s t l l s t2)

(PROG (index d l s t a l s t)

6.5 Modifying Lists by Substitution 159

160 List Manipulation

(COND
((NLISTP expression)

(COND
((NULL ls t2)

(*
Called from
SUBLIS.
LST2 is NIL.

)
(GO loop2)))

(SETQ ls t2 (CAR ls t2))
(SETQ index 1)
(GO loop))

((SETQ d ls t (CDR expression))
(SETQ d ls t

(subpr (CAR expression)
I s t l
l s t 2))))

(SETQ a l s t
(subpr (CAR expression)

I s t l
1 s t))

(RETURN
(COND

((OR f lag
(NEQ a l s t (CAR expression))
(NEQ d ls t (CDR
expression)))
(CONS a l s t d ls t))

(T expression)))
loop

(*
Searching fo r LSTl element in
expression.

)
(COND

((NULL I s t l)
(RETURN expression))

((NLISTP I s t l)
(COND

((EQ expression I s t l)
(GO lo o p l)))

(RETURN expression))
((EQ expression (CAR I s t l))

(GO lo o p l)))

(SETQ index (ADDl index))
(SETQ I s t l (CDR I s t l))
(GO loop)

loop l
(*

At t h i s p o in t , we have found an
element in expression from LSTl; now
find corresponding element in LST2.

)
(COND

((EQ index 1)
(SETQ l s t2

(COND
((NLISTP I s t l) l s t2)
(T (CAR l s t 2))))

(RETURN
(COND

(f la g (COPY l s t 2))
(T l s t 2)))))

(SETQ index (SUBl index))
(SETQ l s t 2 (CDR l s t2))
(GO loopl)

loop2
(COND

((EQ (CAAR I s t l) expression)
(RETURN

(COND
(f la g (COPY (CDAR
I s t l)))
(T (CDAR I s t l)))))

((NULL (SETQ I s t l (CDR I s t l)))
(RETURN expression)))

(GO loop2))
))

6.6 Logical Operations on Lists 161

6.6 LOGICAL OPERATIONS ON LISTS
A set, in mathematical terms, is an unordered collection of items. Typically, sets
contain only numbers which may be mathematically manipulated. Because IN
TERLISP is a symbolic processing language, sets may contain symbolic infor
mation.

A set may be represented as a list. To add an item to a set, we CONS or
NCONC it to the list. Deletion of an item is effected by CAR or some other func
tion.

Set theory defines a number of primitive operations on sets: difference, in
tersection, and union. INTEBiLISP provides functions that operate on lists as if
they were sets. In the following sections, we describe these primitive functions.
Then, we look at additional set functions that may be written using them.

6.6.1 Logical Difference
The logical difference of two sets, X and Y, is a list consisting of those elements
of X that are not members of Y. Consider the following example:

-^(SETQ s ta te s (LIST 'AL 'MD 'NY ’SD 'CA ’IL 'HI 'CT))
(AL MD NY SD CA IL HI CT)

-•-(SETQ e a s te rn -s ta te s (LIST 'AL 'MD 'NY 'CT))
(AL MD NY CT)

■<-(LDIFFERENCE s ta te s ea s te rn -s ta te s)
(SD CA IL HI)
<-(LDIFFERENCE e a s te rn -s ta te s s ta te s)
NIL

Note that LDIFFERENCE is not a commutative function. LDIFFERENCE
takes the form

Function: LDIFFERENCE

Arguments: 2

Arguments: 1) a l i s t , LSTl
2) a l i s t , LST2

Value: The d iffe rence between the two l i s t s
formed by ex trac ting a l l elements of the
f i r s t l i s t from the second.

We might define LDIFFERENCE as follows:

(DEFINEQ
(Id iffe ren ce (I s t l ls t2)

(COND
((OR

(NULL I s t l)
(NULL ls t2))
(*

I f e i th e r l i s t is empty, the
lo g ic a l d iffe rence with NIL is
NIL.

162 List Manipulation

NIL)
((MEMBER (CAR I s t l) ls t2)

(^
Compare the l i s t s by matching
down LSTl; use recurs ion .

)
(Id if fe ren c e (CDR I s t l) l s t2))

(T
(*

The element is not a member of
LST2, so add i t to the l i s t of
d if fe ren ce s .

)
(CONS (CAR I s t l)

(Id if fe ren ce (CDR I s t l)
l s t 2))))

))

Note that LDIFFERENCE returns a new list containing only the members
of LSTl which are not found in LST2.

LDIFF: Computing the Difference to a Tail
LDIFF computes the difference between LSTl and LST2. LST2 must be a
proper tail of LSTl. That is, LST2 is derived by applying CDR some number of
times to LSTl. Thus, we obtain a list of differences between LSTl and LST2 up
to LST2 in LSTl. It takes the form

Function: LDIFF

Arguments: 3
Arguments: 1) a l i s t , LSTl

2) a l i s t which i s a t a i l of LSTl, LST2
3) a r e s u l t l i s t , LST3

Value: The d if fe ren ces between LSTl and LST2.

If LST3 is not NIL, then the differences between LSTl and LST2 are
NCONCed onto LST3. This provides a mechanism for gathering the differences
among a number of lists into a single list.

Consider the following example:

♦-(SETQ os ' (vms unix vulcan aos m ultics mvs))
(vms unix vulcan aos m ultics mvs)

-^(SETQ bigos (NLEFT os 1 (LAST os)))
(m ultics mvs)

6.6 Logical Operations on Lists 163

<^(LDIFF os bigos)
(vms U n i x vulcan aos)
<-(LDIFF os bigos '(cp/m ms-dos))
(cp/m ms-dos vms unix vulcan aos)

<-(LDIFF os ' (mcp tenex))
LDIFF: NOT A TAIL
(mcp tenex)

<-(LDIFF os)
(vms unix vulcan aos multics mvs)

<-(LDIFF os os)
NIL
♦-(LDIFF os os '(cp/m ms-dos))
(cp/m ms-dos)

LDIFF always returns a new list structure unless LST2 is NIL, in which case
the value is LSTl.

If LST2 is not a tail of LSTl, LDIFF generates an error message “LDIFF:
NOT A TAIL” . LDIFF will terminate on a null check. However, if LSTl is a
circular list and LST2 is not a tail, LDIFF goes into an infinite loop.

We might define LDIFF as follows:

(DEFINEQ
(I d i f f (I s t l l s t2 ls t3)

(COND
((EQUAL I s t l ls t2)

(*
No d iffe rences; re tu rn LST3

)
ls t3)

((AND (NULL ls t2) (NULL ls t3))
(*

LST2 is n u ll ; re tu rn LSTl
)
I s t l)

(T
(PROG (d i f l s t)

(*
DIFLST is the d ifference l i s t ,
which i s in i t i a l i z e d to LST3, i f
p resen t.

)
(SETQ d i f l s t (LAST ls t3))

164 List Manipulation

(SETQ d i f l s t
(CDR

(RPLACD d i f l s t
(RPLACD

(CONS (CAR I s t l)
d i f l s t)))))

(COND
(ls t3 d i f l s t)
(T

(SETQ d i f l s t
(SETQ ls t3

(CONS (CAR
I s t l))))))

loop
(SETQ I s t l (CDR I s t l))
(COND

((EQ I s t l ls t2)
(*

I f l i s t s are
id e n t ic a l ly equal,
the re is no
d if fe ren ce , so re tu rn
LST3.

)
(RETURN ls t3))

((NULL I s t l)
(*

Obviously, LST2 cannot
be a t a i l of the n u l l
l i s t . But, when we
reach here, we have
also exhausted LSTl.

)
(RETURN

(ERROR "LDIFF: NOT A
TAIL"

l s t 2))))
(SETQ d i f l s t

(CDR
(RPLACD d i f l s t

(RPLACD
(CONS (CAR I s t l)
d i f l s t)))))

(GO loop))))
))

6.6 Logical Operations on Lists 165

6.6.2 Logical Intersection
The intersection of two sets, X and Y, is a set consisting of those elements that
are members of both X and Y. Consider the following example:

< -(INTERSECTION s t a t e s e a s te rn - s ta te s)
(AL MD NY CT)
* - (INTERSECTION e a s te r n - s ta te s s ta te s)
(AL MD NY CT)

Note that INTERSECTION is a commutative function; that is, the order of
the arguments does not affect the result.

INTERSECTION takes the form:

Function: INTERSECTION

Arguments: 2

Arguments: 1) a l i s t , LSTl
2) a l i s t , LST2

Value: A l i s t con ta in ing elements th a t appear
e i t h e r in LSTl or LST2.

We might define INTERSECTION as follows:

(DEFINEQ
(in te r s e c t io n (I s t l l s t2)

(COND
((OR

(NULL I s t l)
(NULL l s t 2))
(*

No in te r s e c t io n with the n u l l
l i s t .

)
NIL)

((MEMBER (CAR I s t l) l s t2)
(*

Here we begin to co n s tru c t the
l i s t to be re tu rn e d . We always
choose an element from LSTl.

)
(CONS (CAR I s t l)

(in te r s e c t io n (CDR I s t l)
l s t 2)))

166 List Manipulation

(T
(in te r s e c t io n (CDR I s t l) l s t 2)))

Note that INTERSECTION does not check for duplicates in LSTl. Thus, if
there are two elements with the same value in LSTl, both elements will appear in
the result if there is at least one corresponding element in LST2. Sometimes, we
want to work with unique sets, e.g., those where there is at most one element of a
given value in the set. We can define the function UNIQUE to produce this set as
follows:

(DEFINEQ
(unique (x)

(in te r s e c t io n x x)
))

Consider the following example:

<-(SETQ s ta te s (LIST 'AL ’NY 'CT 'MI 'AL 'FL 'CT))
(AL NY CT MI AL FL CT)

^(UNIQUE s ta te s)
(AL NY CT MI FL)

6.6 Logical Operations on Lists 167

6.6.3 Logical Union
The union of two sets, X and Y, is a set consisting of all elements that appear in
either X or Y. Consider the example:

<-(SETQ n o r th e rn -s ta te s (LIST 'MD 'NY 'PA ’RI))
(MD NY PA RI)

(UNION e a s te rn - s ta te s n o r th e rn -s ta te s)
(AL CT MD NY PA RI)
^(UNION n o r th e rn -s ta te s e a s te rn - s ta te s)
(PA RI AL MD NY CT)

The order of the arguments makes a profound difference in the result. You
should consider this carefully if your application depends on the list elements
occurring in a particular order.

Note that UNION is not commutative. Its value is a new list consisting of the
elements of Y with all elements of X that are not members of Y CONSed to the
front. UNION takes the form

Function: UNION

Arguments: 2

Arguments: 1) a l i s t , LSTl
2) a l i s t , LST2

Value: A new l i s t which i s the union of LSTl and
LST2.

We might define UNION as follows:

(DEFINEQ
(union (I s t l ls t2)

(COND
((NULL I s t l) ls t2)
((MEMBER (CAR I s t l) ls t2)

(union (CDR I s t l) l s t2))
(T

(CONS (CAR I s t l)
(union (CDR I s t l) l s t 2))))

))

Note that if an element appears twice in LST2, it will also appear twice in the
UNION of LSTl and LST2. Sometimes, we want the unique union of two sets.
We may define a function to produce the unique union as follows:

(DEFINEQ
(unique-union (x y)

(in te r s e c t io n (union x y))
))

168 List Manipulation

6.7 SORTING LISTS
Most lists are constructed without regard to the ordering of the elements. Some
applications, however, require a list to be sorted according to some criterion
before processing.

Sorting is the process by which a list of items, normally disordered, is placed
in order according to some criterion based on the contents of the list. For unor
dered lists, there is no better procedure than a serial search. If the list does not
contain the item sought, we must search the entire list to determine this fact. If
the list is ordered, however, certain techniques greatly reduce the searching ef
fort to determine if the item is present. This section will present a number of
sorting functions using different algorithms. Further information on sorting
may be obtained from Knuth [knut68] and Aho, Hopcroft, and Ullman [aho83].

6.7.1 A Basic Sorting Function
INTERLISP provides the basic function SORT to sort lists. It sorts lists by a
brute force method of comparing two items in the list at a time. It has the format

Function: SORT

Arguments: 2

Arguments: 1) a l i s t of items to be so rted , ITEMS
2) a comparison function , FNCOMPARE

Value: A so rted l i s t comprised of the items on
the source l i s t .

SORT uses the function specified by FNCOMPARE, which must be a predi
cate with two arguments, to compare two data items. FNCOMPARE must re
turn T if its first argument belongs before the second, otherwise NIL.

If FNCOMPARE is NIL, SORT uses ALPHORDER (see Section 6.7.3) to
lexically order items. Consider the following example:

<-{SETQ s t a t e s (LIST 'WA 'MD 'AL 'FL 'CO 'ND 'HI))
(WA MD AL FL CO ND HI)

^(SORT s ta te s)
(AL CO FL HI MD ND WA)

SORT expects the elements of ITEMS to be atomic values. However, SORT
allows you to sort a list whose elements are themselves lists. In this case, the CAR
of each list must be atomic. It is passed to ALPHORDER to determine the order
of arrangement. To specify this invocation, you must set FNCOMPARE to T.
Consider the following example:

<-(SETQ items ' ((x 1.0) (b 2.3) (j 3-7) (f 0.4) (q 6 .3)))
((x 1.0) (b 2.3) (j 3.7) (f 0.4) (q 6 .3))

-^(SORT items T)
((b 2.3) (f 0.4) (j 3.7) (q 6.3) (x 1 .0))

SORT is a destructive function. That is, it modifies the list given as its argu
ment rather than creating a new list. Thus, if the initial ordering of the input list
is also important, you should copy the input list before sorting.

We might define SORT as follows:

(DEFINEQ
(s o r t (items fncompare)

(PROG (r e s u l t nxtitems olditems)
(SETQ olditems items)

6-7 Sorting Lists 169

(SETQ items
(CONS (CAR items)

(CDR items)))
loop

(SETQ nxtitems (CDDR items))
(SETQ re s u l t

(CONS
(MERGEl (RPLACD (CDR items))

(RPLACD items)
fncompare)

r e s u l t))
(AND

(SETQ items nxtitems)
(GO loop))

(SETQ items re su l t)
loop2

(SETQ nxtitems items)
loopl

(COND
(nxtitems

(RPLACA nxtitems
(MERGEl (CAR nxtitems)

(CADR nxtitems)
fncompare))

(RPLACD nxtitems
(CDDR nxtitems))

(SETQ nxtitems
(CDR nxtitems))

(GO loop l)))
(AND

(CDR items)
(GO loop2))

(RPLACA olditems (CAAR items))
(RPLACD olditems (CDAR items))
(RETURN olditems))

))

MERGEl is defined in Section 6.9.

170 List Manipulation

6.7.2 Numeric Sorting
A common application for sorting is to arrange a set of numbers in ascending or
descending sequence. We might write a function NUMERIC-SORT as follows

(DEFINEQ
(num eric-sort (items flag)

(SELECTQ flag
(ascending (SORT items (FUNCTION
GREATERP)))
(descending (SORT items (FUNCTION LESSP)))
(PROGN

(PRINl "unknown fla g ”)
(TERPRI)))

))

6.7 Sorting Lists 171

6.7.3 Alphameric Sorting
ALPHORDER is a predicate function that is used when sorting lists according
to their alphabetical sequence. It takes the form

Function: ALPHORDER
Arguments: 2
Arg\iments: 1) an atom, X

2) an atom, Y
Value: T, i f X occurs before Y; otherwise, NIL.

ALPHORDER determines if X occurs before Y. X and Y may be numbers,
atoms, or strings. Numbers come before literal atoms and are ordered by magni
tude (using GREATERP). Literal atoms and strings are ordered by comparing
the character codes of their PRINl-names. Consider the following examples:

(ALPHORDER 'newton 'benatar)
NIL
^(ALPHORDER 3.1^1592 3-141593)
T
^(ALPHORDER " In t e r l is p - lO " "Interlisp/VAX")
T

If neither X nor Y is an atom or a string, ALPHORDER returns T; that is,
they are presumed in order because ALPHORDER can make no determination.
For example,

^(SETQ A1 (ARRAY 3 3))
{ARRAYP}#542224

^(SETQ A2 (ARRAY 5 5))
{ARRAYP}#542231
<-(ALPHORDER A2 Al)
T

even though it is clear, by inspection, that Al occurs physically in memory before
A2.

We might define ALPHORDER as follows:

(DEFINEQ
(alphorder (x y)

(COND
((FIXP x)

(COND
((FIX? y)

(IGREATERP y x))
((FLOATP y)

(FGREATERP y x))
(T T)))

((FLOATP x)
(COND

((FIXP y)
(FGREATERP (FLOAT y) x)))

((FLOATP y)
(FGREATREP y x))

(T T)))
((LITATOM x)

(COND
((NUMBERP y) NIL)
((LITATOM y)

(PROG (index xlen ylen xchar
ychar)

(SETQ index 0)
(SETQ xlen (NCHARS x))
(SETQ ylen (NCHARS y))

(AND
(EQ index xlen)
(RETURN T))

(AND
(EQ index ylen)
(RETURN NIL))

(SETQ index (ADDl index))
(SETQ xchar

(NTHCHAR x index))

172 List Manipulation

loop

(SETQ ychar
(NTHCHAR y index))

(COND
((EQ xchar ychar)

(GO loop)))
(RETURN

(IGREATERP
(CHCON xchar)
(GHCON y c h a r)))))

(T T)))
(T T))

))

The IRM [irm83] notes that ALPHORDER performs no UNPACKS,
CHCONs, or NTHCHARs (even though we show it might be coded above using
these functions!). Thus, it is several times faster than anything that can be writ
ten using these other functions. ALPHORDER is actually implemented in ma
chine language or microcode, but the definition given above (for INTERLISP/
370) suggests how it works.

In FranzLisp, this function is known as ALPHALESSP.

6.7 Sorting Lists 173

6.7.4 Comparing Two Lists
ALPHORDER does not work on lists. Sometimes, we may need to compare two
lists to determine their differences. COMPARELISTS is a function that com
pares two lists and prints their differences. Printing is inherent in the operation
of COMPARELISTS. It takes the form

Function: COMPARELISTS

Arguments: 2
Arguments: 1) a l i s t , LSTl

2) a l i s t , LST2
Value: NIL, but i t p r in ts the d iffe rences between

the two l i s t s .

Consider the following example:

<-(COMPARELISTS os bigos)
(vms U n i x vulcan —)
(m ultics mvs)

Note that COMPARELISTS is subject to the influence of PRINTLEVEL
(see Chapter 15).

We might define COMPARELISTS as follows:

(DEFINEQ
(comparelists (I s t l ls t2)

(RESETFORM (PRINTLEVEL 1)
(PROG (fin ish)

174 List Manipulation

(COND
((EQUAL I s t l ls t2)

(RETURN NIL))
((AND

(COND
((OR

(NLISTP I s t l)
(NLISTP ls t2)
(GETD I s t l)
(GETD ls t2))
(SETQ I s t l (GETD
I s t l))
(SETQ ls t2 (GETD
l s t2))))

(NLISTP I s t l)
(NLISTP ls t2))
(PRINT I s t l T)
(PRINT ls t2 T)
(GO f in ish)))

(PRINl ” (" T)
(*

P rin t LSTl by comparison
with LST2.

)
(GMPLISTS I s t l ls t2)
(PRINl ”) ’' T)
(TERPRI T)
(PRINl " (” T)
(*

And vice versa.
)
(GMPLISTS l s t2 I s t l)
(PRINl ”)" T)
(TERPRI T)

f in ish
(RETURN T)))

))

where CMPLISTS is defined as

(DEFINEQ
(cm plis ts (x l s t y l s t)

(PROG (x y f la g do tflag)
loop l

(COND
((NOT do tflag)

(SETQ X (CAR x ls t))
(SETQ y (CAR y l s t)))

(T
(SETQ X x ls t)
(SETQ y y l s t)))

(COND
(f la g

(COND
(do tflag (PRINl '' . ” T))
(T (PRINl ” '' T)))))

(COND
((EQUAL X y)

(*
I f the two l i s t s are the
same, j u s t p r in t a &.

)
(PRIN2

(COND
((ATOM x) x)
(T '&))

T))
((OR

(NLISTP x)
(NLISTP y))

(*
I f they are unequal
and one i s not a l i s t ,
have PRIN2 disp lay
something a t the
te rm in a l .

)
(PRIN2 X T))

6.7 Sorting Lists 175

(T
(*

Otherwise, p r in t ” ()" and
recurse to analyze the
s u b l i s t s .

)
(PRINl ' ' (” T)

176 List Manipulation

))

(CMPLISTS X y)
(PRINl ")" T)))

(SETQ flag T)
(*

FLAG causes CMPLISTS to p r in t " — "
i f l i s t s are of d if fe ren t lengths;
otherwise, ju s t the CDR.

)
(COND

(dotflag
(RETURN NIL)))

(COND
((NULL (CDR x ls t))

(RETURN NIL)))
(SETQ do tflag (NLISTP (CDR x ls t)))
(COND

((NULL (CDR y ls t))
(*

I f YLST expires f i r s t ,
p r in t the t a i l of XLST.

)
(COND

(dotflag
(PRINl ” . " T)
(PRIN2

(COND
((ATOM (CDR x ls t))

(CDR x ls t))
(T '&))

T))
((NULL (CDDR x ls t))

(SPACES 1 T)
(PRIN2

(COND
((ATOM (CADR x ls t))

(CADR x ls t))
(T '&))

T))
(T

(PRINl ” — T)))
(RETURN NIL)))

(SETQ x l s t (CDR x ls t))
(SETQ y l s t (CDR y ls t))
(GO loopl))

Note that DOTFLAG handles the case where the last element of the list is
really a dotted pair.

6.8 LENGTH FUNCTIONS
An essential feature of INTERLISP is that you almost never need to know the
length of a list when you are writing your program. There usually comes a time,
however, when you must know the length of a list. INTERLISP provides three
functions for determining length.

6.8.1 Finding the Length of a List
LENGTH determines the length of its argument. It takes the form

Function: LENGTH

Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: The length of the l i s t EXPRESSION as an
in te g e r .

The length is determined by taking successive CDRs until a non-list is
found. For example,

•^(LENGTH '(Cavendish Rutherford Becquerel Curie
Roentgen))
5
<-(LENGTH NIL)

0

because NIL is an atom.

“<-(LENGTH ’yankees)
0

because atoms are lists of zero length.

(LENGTH '(a u s t in d a l la s fo rt-w orth))
3
“•-(LENGTH '(a u s t in d a l la s fort-w orth . ga lves ton))
3

because GALVESTON has been CONSed onto the list and so it occupies a CDR
cell.

6.8 Length Functions 177

LENGTH is usually hardwired into the virtual machine for efficiency. How
ever, we might define it as follows:

(DEFINEQ
(length (expression)

(COND
((NULL expression) 0)
((ATOM expression) 0)
(T

(ADDl (LENGTH (CDR expression)))))
))

6.8.2 Counting List Ceils
LENGTH works only on the top-level elements of a list. Some algorithms may
need to know the total number of cells occupied by a list. These include al
gorithms that must recursively process sublists of list elements where the time
required to execute the algorithm is on the order of the size of the list. Various
parsing algorithms fall into this category.

COUNT determines the total number of list cells occupied by its argument.
It takes the form

Function: COUNT

Arguments: 1

Argument: 1) an S-expression, EXPRESSION

Value: The number of l i s t c e l l s required to
represen t EXPRESSION as an in teger.

In effect, it applies LENGTH not only to each element of a list but also to
each sublist which is an element. COUNT applied to a non-list is 0. Consider
these examples;

<-(COUNT NIL)
0

<-(COUNT (CONS 'braves 'brewers))
1

(COUNT (LIST 'hayes-ro th ' le n a t 'brown ' feigenbaum))

(COUNT ''Does i t believe in s tr ings?")
0

♦-(COUNT (ARRAY 10))
0

178 List Manipulation

and let’s look at a complex example:

•<-(SETQ s t ru c tu re
' (noun-phrase

((3 (1000 frame (person sex male)
s ta r t f r a m e)))

NIL
(noun-phrase-head NIL

(numpers (1 3))) he))
••-(LENGTH s tru c tu re)
5

<-(COUNT s tru c tu re)
22

We might define COUNT as follows:

(DEFINEQ
(count (expression)

(GOND
((OR

(NULL expression)
(ATOM expression)
(NLISTP expression))
0)

(PLUS
(GOND

((LIST? (GAR expression))
(GOUNT (GAR expression)))

(T D)
(GOUNT (GDR ex p ress io n)))))

6.8 Length Functions 179

(T

))

6.8.3 Counting Down a List
When you apply COUNT to a list, you must “touch” every list cell in the list in
order to determine the total number. Moreover, COUNT counts every cell in the
list. Many times, you merely want to know if a list occupies a minimum number
of list cells. COUNTDOWN operates like COUNT in that it counts list cells. It
takes the form

Funct io n : COUNTDOWN

Arguments: 2

Arguments’: 1) an S expression, EXPRESSION
2) a l im it , LIMIT

Value: E ither the number of l i s t c e l ls in X or 0.

COUNTDOWN counts the list cells that comprise EXPRESSION. It decre
ments LIMIT as it touches each list cell. COUNTDOWN stops when

1. LIMIT is decremented to 0, whence 0 is returned. This indicates the list
has at least LIMIT cells.

2. The end of EXPRESSION is reached while LIMIT is greater than 0. The
value returned is equivalent to

(IDIFFERENCE l im it (COUNT expression))

Consider the following examples:

(COUNTDOWN (DOCOLLECT 1 NIL) 100)
0

(COUNTDOWN (FOR I FROM 1 TO 10 COLLECT (CONS I)) 50)
30

where the CLISP statement would yield

((1) (2) (3) (4) (5) (6) (7) (8) (9) (10)).
<-(COUNTDOWN (CONS 'baltim ore ’maryland) 10)
9
<-(COUNTDOWN (LIST 'crimson 'red 'magenta 'ochre 'purple) 6)

180 List Manipulation

Using COUNTDOWN, you may determine how far EXPRESSION has
grown toward a predefined limit. This measurement may be used in state space
search algorithms where the order of the size of EXPRESSION, which may be a
representation of the problem states, is a measure of algorithm efficiency. In this
case, we are concerned not only with the LENGTH of EXPRESSION but also
the amount of memory that it consumes.

Note also that COUNT will not work with circular lists as it continually cy
cles through the list. Using COUNTDOWN, you may place a bound on the num
ber of cells to be counted and determine the size of the list relative to that bound.

6.9 MERGING LISTS
In its simplest form, merging is the process of taking two ordered lists and creat
ing a single ordered list out of them. Knuth [knut68] and Aho, Hopcroft, and

Ullman [aho83] present additional material on the theory of merging and a
number of different algorithms for merging two or more lists. INTERLISP pro
vides two basic functions for merging lists: MERGE and MERGEINSERT.

6.9.1 Merging Two Lists
MERGE destructively combines two sorted lists, X and Y, into a single new list.
It takes the format

Function: MERGE

Arguments: 3

Arguments: 1) a so rted l i s t , X
2) a so rted l i s t , Y
3) a comparison function , FNCOMPARE

Value: A l i s t comprising the d es tru c tiv e merger
of X and Y.

MERGE uses FNCOMPARE to merge the elements of the sorted lists X and
Y. FNCOMPARE must be the same function that was used to sort both X and
Y. Consider the following examples:

<^(SETQ X (FOR I FROM 1 TO 10 (COLLECT (RAND 0 1000)))
(844 606 642 606 538 92 883 49 110 865)
^(SETQ y (FOR I FROM 1 TO 10 (COLLECT (RAND 0 1000)))
(533 100 258 677 401 405 104 279 722 926)
<̂ -(SORT X (FUNCTION IGREATERP))
(833 865 844 642 606 606 538 110 92 49)
^(SORT y (FUNCTION IGREATERP))
(926 722 677 533 405 401 279 258 104 100)

(MERGE X y (FUNCTION IGREATERP))
(926 883 865 844 722 677 642 606 606 538 533 405 401 279
258 110 104 100 92 49)

^(MERGE X y (FUNCTION LESSP))
(883 865 844 642 606 606 538 110 92 49 926 722 677 533
405 401 279 258 104 100)

where we see the lists are not merged because the comparison function is differ
ent from the one used to sort the two lists.

(MERGE X y)
(883 865 844 642 606 606 538 110 92 49 926 722 677 533
405 401 279 258 104 100)

6.9 Merging Lists 181

because the comparison function is NIL, so alphabetical order is used to com
pare the elements of the lists.

We might define MERGE as follows:

(DEFIN
(merge (x y fncompare)

(COND
((NULLx)y)
((NULL y) x)
((NLISTP x)

(ERROR "ARG NOT A LIST" x))
((NLISTP y)

(ERROR "ARG NOT A LIST" y))
(T

(SETQ fncompare
(MERGEl (CONS (CAR x) (CDR x))

(CONS (CAR y) (CDR y))
fncompare))

(RPLACA
(RPLACD y (CDR fncompare))
(CAR fncompare))

(RPLACA
(RPLACD X (CDR fncompare))
(CAR fncompare))))

))

MERGEl is defined as follows:

(DEFINEQ
(mergel (x y fncompare)

(PROG (re s u l t l a s t)
(OR X (RETURN y))
(OR y (RETURN x))
(COND

((SELECTQ fncompare)
(NIL

(ALPHORDER (CAR x) (CAR y)))
(T

(ALPHORDER (CAAR x) (CAAR y)))
(APPLY* fncompare (CAR x) (CAR y)))

182 List Manipulation

(T

(SETQ re s u l t x)
(SETQ X (CDR x)))

(SETQ re s u l t y)
(SETQ y (CDR y))))

(SETQ l a s t r e s u l t)
(COND

((NULL x)
(RPLACD l a s t y)
(RETURN r e s u l t)))

(COND
((NULL y)

(RPLACD l a s t x)
(RETURN r e s u l t)))

loop
(COND

((SELECTQ fncompare)
(NIL

(ALPHORDER (CAR x) (CAR y)))
(T

(ALPHORDER (CAAR x) (CAAR y)))
(APPLY* fncompare (CAR x) (CAR y)))
(RPLACD l a s t x)
(SETQ l a s t x)
(SETQ X (CDR x))
(COND

((NULL x)
(RPLACD l a s t y)
(RETURN r e s u l t))))

(T
(RPLACD l a s t y)
(SETQ l a s t y)
(SETQ y (CDR y))
(COND

((NULL y)
(RPLACD l a s t x)
(RETURN r e s u l t)))))

(GO loop))
))

6.9.2 Merging with Insertion
Given a sorted list, X, we often want to insert an item into that list. MERGEIN-
SERT inserts a single item into a sorted list. It takes the format

Function: MERGEINSERT

Arguments: 3
Arguments: 1) a new item, NEW

2) a so rted l i s t , X
3) a f la g , ONEFLAG

6.9 Merging Lists 183

Value: A sorted l i s t with the new element
inserted a t the proper location .

MERGEINSERT attempts to place the new item, NEW, into the list X in
the “best” possible position. Insertion is destructive; that is, X is physically
modified. Consider the following example:

•<-(SETQ players '(cobb evers robinson t in k e r wagner))
(cobb evers robinson t in k e r wagner)

• (̂MERGINSERT 'ru th players)
(cobb evers robinson ru th t in k e r wagner)

Usually, we do not want to insert an item into a list if it is already present. If
ONEFLAG is T, MERGEINSERT will not modify the list if NEW is already
present. For example,

- (̂MERGEINSERT 'evers players T)
(cobb evers robinson ru th t in k e r wagner)

6.T0 ASSOCIATION FUNCTIONS
A common use of lists is to relate one value to another value or list of values.
Usually, this takes the form (<key> <result>). KEY is the item to be searched for
while RESULT is the value sought. If the result is a pointer, these are sometimes
called inverted file indices. INTERLISP calls lists of this form association lists
because they represent an association between a key and a result. The primary
problem with using association lists is searching them.

6.10.1 Searching Lists for Associations
ASSOC searches a list of entries for an item. It returns a list consisting of the
item and its associated value. ASSOC takes the form

Function: ASSOC
SASSOC

Arguments: 2

Arguments: 1) a search item, KEY
2) an assoc ia tion l i s t , ALST

Value: The en try or NIL.

The association list is a list of zero or more entries where each entry has the
form (usually a dotted pair)

(<key> . <r e s u l t))

184 List Manipulation

ASSOC searches ALST one entry at a time. It compares the CAR of each
entry with KEY, If they are EQ, ASSOC returns the entry. Otherwise, it returns
NIL. For example,

^(SETQ games
(LIST (CONS 'b ridge ’cards)

(CONS 'baccara t 'cards)
(CONS 'chess 'men)
(CONS 'c raps 'd ice)
(CONS 'sc rabb le ' l e t t e r s)))

((b ridge . cards) (baccarat . cards) (chess . men) (craps
dice) (scrabble . l e t t e r s))

(ASSOC 'chess games)
(chess . men)

(ASSOC 'backgammon games)
NIL

Because ASSOC uses EQ to compare the key against the CAR of each entry,
the keys must be atoms.

An alternative form, SASSOC, takes the same arguments but uses EQUAL
for the comparison. For example,

<-(SETQ games
(LIST (LIST (LIST 'bridge) 'cards)

(LIST (LIST 'baccara t) 'cards)
(LIST (LIST 'chess) 'men)
(LIST (LIST 'craps) 'd ice)
(LIST (LIST 'scrabb le) ' l e t t e r s)))

(((b rid g e) cards) ((baccara t) cards) ((chess) men)
((c raps) dice) (scrabble) l e t t e r s))

(ASSOC '(b r id g e) games)
NIL
-^(SASSOC '(b r id g e) games)
((b ridge) cards)

We might define ASSOC as follows:

(DEFINEQ
(assoc (key a l s t)

(PROG NIL
loop

(COND
((NLISTP a l s t)

6.10 Association Functions 185

(COND
((NULL a ls t)

(RETURN NIL))))
((EQ (CAAR a ls t) key)

(RETURN (CAR a l s t))))
(SETQ a l s t (CDR a l s t))
(GO loop))

))

6.10.2 Replacing an Association List Value
There are three maintenance operations that we can perform on association lists:

1. Adding a new entry
2. Replacing the value associated with a key
3. Removing an entry

The latter case defaults to setting the value associated with a key to NIL.
PUTASSOC is used for maintaining association lists. It takes the form

Func t io n : PUTASSOC

Arguments: 3

Arguments: 1) a search item, KEY
2) a value, VALUE
3) an associa tion l i s t , ALST

Value: The new value.

PUTASSOC searches the association list using ASSOC. If it finds an entry
with KEY as its CAR, PUTASSOC replaces the associated value with VALUE
using RPLACD since the value is the CDR of the entry. Otherwise, it adds a new
entry to the association list using (CONS KEY VALUE). If ALST is not a list,
PUTASSOC generates an error with the message “ARG NOT LIST For exam
ple,

“̂ (PUTASSOC 'checkers ’men games)
men

games
((bridge . cards) (baccarat . cards) (chess . men) (craps .
dice) (scrabble . l e t t e r s) (checkers . men))

^(PUTASSOC 'chess 'men-and-board games)
men-and-board

186 List Manipulation

games
((b ridge . cards) (baccarat . cards) (chess . men-and-
board) (craps . dice) (scrabble . l e t t e r s) (checkers .
men))

We might define PUTASSOC as follows:

(DEFINEQ
(putassoc (key value a l s t)

(PROG (entry)
(COND

((NLISTP a l s t)
(ERRORX '(4 T)))

((SETQ en try (ASSOC key a l s t))
(RPLACD entry value))

(T
(NCONC a l s t (CONS key value))
(RETURN v a lu e))))

))

6.10 Association Functions 187

6.10.3 Removing an Entry
As we mentioned above, removing an entry from an association list may be con
sidered equivalent to setting the associated value of the key to NIL. Let us create
a function DELASSOC that removes an entry from an association list. It takes
the form

Function: DELASSOC

Arguments: 2
Arguments: 1) a search item, KEY

2) an asso c ia tio n l i s t , ALST

Value: An a s so c ia tio n l i s t with the entry
corresponding to KEY removed i f i t was
p resen t.

We might define a function DELASSOC as follows:

(DEFINEQ
(delassoc (key a l s t)

(PUTASSOC key NIL a l s t))
))

However, this has the unfortunate side effect that, if an entry with KEY as
its CAR is not found, then an entry of the form (CONS KEY NIL) will be added
to the association list. If we are processing sparse association lists (where the
domain of keys is large but the actual key instances are relatively small), the
association list will grow with the addition of many entries of the form (<key> .
NIL). This can have a deleterious effect on program performance since the entire
association list must be searched each time. So, let us redefine DELASSOC as
follows:

(DEFINEQ
(delassoc (key a l s t)

(PROG (entry)
(COND

((NLISTP a ls t)
(ERRORX (LIST 4 'T)))

((SETQ entry (ASSOC key a l s t))
(RPLACD entry NIL))

(T NIL)))
))

This version is somewhat better in that it adds nothing to the association list
if the KEY is not found. However, after some period of time, the list may be
“littered” with entries of the form (<key> . NIL) as a result of setting previous
associations to NIL. What we really intended to do, in many cases, was to re
move the entry entirely. The following definition shows how we can do either
case:

(DEFINEQ
(delassoc (key a l s t dflag)

(PROG (entry)
(COND

((NLISTP a ls t)
(ERRORX (LIST 4 *T)))

((SETQ entry (ASSOC key a l s t))
(COND

(dflag
(RPLACD entry NIL))

(T
(DREMOVE entry a l s t))))))

))

188 List Manipulation

where DFLAG determines whether we set the associated flag to NIL or remove
the entry from the association list. If DFLAG is NIL, the entry will be removed.

6.10.4 Adding a Value to an Association List Entry
Often, the value associated with a key in an association list will be a list itself.
You may want to add a value to that list. Let us define a function ADD ASSOC
that performs this operation. It takes the form

Function: ADDASSOC

Arguments: 3
Arguments: 1) a search item, KEY

2) a value to be added to an en try , VALUE
3) an a sso c ia tio n l i s t , ALST

Value: An a s so c ia tio n l i s t .

ADDASSOC determines if an entry having KEY is present in the associa
tion list. If so, it adds VALUE to the value of the entry, converting it to a list if it
is not already one. If no entry is present, ADDASSOC creates a new entry con
sisting of KEY and VALUE.

We can define ADDASSOC which performs this operation:

(DEFINEQ
(addassoc (key value a l s t)

(PROG (entry)
(COND

((NLISTP a l s t)
(ERRORX (LIST k ’T)))

((SETQ en try (ASSOC key a l s t))
(RPLACD entry

(APPEND (CDR entry)
(COND

((NLISTP value)
(LIST value))

(T v a lu e)))))
(T NIL)))

))

6.11 SEARCHING LISTS
We have seen that we can search lists using MEMBER or ASSOC. MEMBER
(Section 4.8) compares the key with each element in the list and returns the tail
of the list. ASSOC (Section 6.10) compares the key with the CAR of an entry and
returns the associated value. MEMBER works on lists whose elements are at
oms. ASSOC works on lists having the (<key> . <result>) format. In the next
chapter, we shall see that certain functions also search the property lists of at
oms.

6.11 Searching Lists 189

LISTGET and LISTPUT operate on the top-level values of atoms which are
lists that have a property list format:

(key[l] va lue[l] key[2] value[2] . . . key[n] value[n])

190 List Manipulation

6.11.1 Searching Lists in Property List Format
LISTGET searches a list two elements at a time. It takes the form

Function: LISTGET
LISTGETl

' # Arguments: 2
Arguments: 1) a l i s t , LST

2) a search key, KEY

Value: The next value a f te r the key.

LISTGET searches LST using CDDR to access every other element, i.e., it
assumes property list format. If an element is EQ to KEY, it returns the next
element in the list. We might define it as:

(DEFINEQ
(l i s t g e t (1s t key)

(COND
((NLISTP 1st)

(ERROR "ARG NOT LIST" 1 s t)))
(PROG (a l s t entry)

(SETQ a l s t (COPY 1st))
loop

(AND
(EQ key (CAR a l s t))
(RETURN (CADR a l s t)))

(SETQ a l s t (CDDR a l s t)) *
(AND a l s t (GO loop))
(RETURN NIL))

))

An alternative form, LISTGETl, searches the list one CDR at a time. Its
definition differs from LISTGET only slightly in that we change the expression
indicated by * above to

(SETQ a l s t (CDR a l s t))

6.11.2 Replacing Elements in Place in a List
We may modify a list in place by searching for a value and replacing it, LIST-
PUT acts like LISTGET but replaces the next element if the entry is found. It
searches a list using CDDR just like LISTGET. It takes the form

Funct io n : LISTPUT
LISTPUTl

Arguments: 3
Arguments: 1) a l i s t , LST

2) a search key, KEY
3) a new value, VALUE

Value: The new value.

We might define LISTPUT as follows:

(DEFINEQ
(l i s t p u t (1 s t key value)

(COND
((NLISTP 1st)

(ERROR "not a l i s t ")))
(PROG NIL
loop

(AND
(EQ key (CAR 1 s t))
(RPLACD (CAR 1st)

UPPEND (LIST value)
(CDDR 1 s t)))

(RETURN value))
(SETQ 1st (CDDR 1 s t)) *
{Am 1 s t (GO loop))
(RETURN NIL))

))

An alternative version, LISTPUTl, searches the list one CDR at a time. Its
definition differs from LISTPUT only slightly in that we change the expression
indicated by * above to

(SETQ 1 s t (CDR 1 s t))

6.11 Searching Lists 191

7

Property List Functions

So far, we have seen that atoms can have values. These values may be other
atoms, such as numbers, or they may be lists. The value is retrieved by using the
literal name of the atom in a function or just giving it to the top-level READ-
EVAL-PRINT loop of INTERLISP. The problem with this approach is that an
atom standing for some object may really have many characteristics. We want to
be able to associate all those characteristics with the atom itself rather than
building additional data structures in which we have to look up the name of the
atom in order to find the value of the characteristic.

INTERLISP provides us with a convenient method for storing the multiple
attributes of an object with the atom which represents that object. This method
is called the property list. A property list is a conventional list associated with an
atom that is composed of pairs of values. Each pair consists of a property and a
property value. Property names and property values are determined by the user.
INTERLISP uses some predefined properties for internal functions associated
with its utilities.

7.1 CONCEPT OF THE PROPERTY LIST
Suppose we are trying to construct an augmented transition network for natural
language parsing. We need to describe each word in our “dictionary” by several
attributes. We might require that each word have a class—a part of speech, a
number—the person in which that word is used, and a tense—if it is a verb. For
example, the word BOY has CLASS = noun and NUMBER = present tense,
third person.

We can define the following functions to define a word in the dictionary

(DEFINEQ
(define-word (a-w ord-defin ition)

(MAPCAR (CDR a-w ord-defin ition)

193

(FUNCTION define-word-property))
))

(DEFINEQ
(define-word-property (a-property)

(PUTPROP (CAR a-word-definition)
(CAR a-property)
(CDR a-property))

))

To insert BOY into the dictionary, we execute the following function call

(define-word
' (boy

(c lass noun)
(number (1 3))))

This has the effect of placing the property CLASS on BOY’s property list
with the value NOUN and the property NUMBER with the value (1 3). I deter
mined that the names of the properties would be CLASS and NUMBER. I also
determined that the values of the properties would be NOUN and (1 3). Other
values for CLASS might be VERB, ADJECTIVE, ADVERB, and so on. Other
values for NUMBER might be (2 3), (3 3), and so on.

The property list construct allows us to associate many values with a single
atom. With BOY, which represents an object, we can associate many attributes
that describe our knowledge about a boy. You are allowed to select the names of
the properties and the types of their values. Be careful to distinguish between the
value of an atom and the values associated with each of its properties.

Properties would seem to be an efficient way of building a database to de
scribe an object, whether physical or conceptual. Early AI researchers at
tempted to use the notion of properties as a serious analogy to the attributes of
real-world objects. However, they found that representing real-world object
characteristics using properties was a difficult task because of the complexity
required to model these objects to a sufficient degree of detail. Today, properties
are used as a powerful representation mechanism that are used to build complex
data structures that capture real-world object characteristics.

7.1.1 The Uniqueness of Atoms
Atoms are unique entities, but they have a scope in relation to how they are used.
Consider the following example:

^(SETQ color 'black)
black

<-(PUTPROP 'c o lo r 'number 5)
5

194 Property List Functions

^(PROG (color)
(SETQ co lo r 'red)
(RETURN co lo r))

red

color
black

which shows that the atom COLOR used inside the PROG is a local variable
whose existence lasts for the duration of the PROG. However, because it has the
same name as an existing atom, INTERLISP saves its value (BLACK) prior to
binding a new value inside the PROG expression. The mechanics of saving and
restoring values for variables is discussed in Chapter 28.

•*-(PROG (color)
(PUTPROP 'c o lo r 'number 10)
(RETURN

(GETPROP 'c o lo r 'number)))
10

(GETPROP 'c o lo r 'number)
10
Note, however, that changes to a property are not local to a PROG expres

sion or a function definition, even if the atom is a local variable. This is because
each atom is a unique object. It may have different values bound to it throughout
the execution of the program. The atom COLOR inside the PROG expression is
the same atom that was bound at the top level (e.g., external to the PROG).
Thus, changes to the property of the atom are global to the entire program be
cause it is exactly the same atom!.

7.2 Getting a Property 195

7.2 GETTING A PROPERTY
To retrieve a property from the property list of an atom, you use the function
GETPROP. GETPROP takes the following form:

Function: GETPROP

Arguments: 2

Arguments: 1) an atom, ATM
2) a property name, PROPERTY

Value: The value of the property i f i t e x is ts on
ATM's property l i s t ; otherwise NIL.

If ATM is not an atom, GETPROP returns NIL. If the property is found on
the property list of the atom, GETPROP returns the value associated with that

property name. If the atom does not have a property list or no property by that
name exists on the property list, GETPROP returns NIL. Thus, it is not a good
idea to choose NIL as the default value of a property because it is difficult to
distinguish whether the property has been initialized or really has the value NIL.

Suppose I want to retrieve the property CLASS of the word BOY from our
dictionary. I would say

(GETPROP 'boy 'c la ss)
noun

Note that GETPROP returns the value associated with property which, in
this case, is the atom NOUN.

If I wished to retrieve the NUMBER of BOY, I would say

<-(GETPROP 'boy 'number)
(1 3)

Note that GETPROP returns the exact value of the property. In one case, it
was an atom while in the other it was a list.

If I asked for the TENSE of BOY:

GETPROP 'boy 'tense)
NIL

because the word BOY does not have a tense since it is not a verb.
Often, we will initialize the values of properties on a property list to NIL

because we will set them later on in the course of the program. In this case,
GETPROP will return the value NIL when we access that property. To distin
guish whether or not the property exists versus whether it exists with value NIL,
we must use the following form [irm78]:

(MEMBER property (GETPROPLIST atom))

We might define GETPROP as follows:

(DEFINEQ
(getprop (atm property)

(COND
((LITATOM atm)

(PROG (propls t)

196 Property List Functions

loop

(SETQ p ro p ls t (GETPROPLIST
atm))

(COND

((OR
(NLISTP p ro p ls t)
(NLISTP (CDR
p r o p ls t)))
(RETURN NIL))

((EQUAL (CAR p ro p ls t)
property)

(*
E xtrac t value of
property from the
l i s t .

)
(RETURN (CADR
p ro p ls t))))

(SETQ p ro p ls t (CDDR p ro p ls t))
(GO loop)))

(T NIL))
))

7.2.1 Getting the Entire Property List
GETPROP is used for retrieving the value of a single property. Sometimes, I
want to manipulate the entire property list of an atom. I can retrieve the entire
property list by executing GETPROPLIST. GETPROPLIST takes the form

Function: GETPROPLIST
Arguments: 1

Argument: 1) an atom, ATM
Value: A l i s t , possib ly NIL, rep resen ting the

e n t i r e property l i s t associa ted with ATM.

If the argument is not an atom, GETPROPLIST generates an error: ARG
NOT LITATOM. For example,

^(SETQ word 'boy)
boy

(GETPROPLIST word)
((c la s s noun) (number (1 3)))

7.2 Getting a Property 197

but

<-(SETQ word '(boy))
(boy)

<-(GETPROPLIST word)
ARG NOT LITATOM

Here is a more complex example:

^(PRINTDEF (GETPROPLIST 'DECLARE))
(lOMACRO (X (PROGN

(MAPC X
(FUNCTION

(LAMBDA (X MACROX)
(COND

((NEQ (CAR X) 'CLISP:)
(EVALX))))))

(REFRAME)
'INSTRUCTIONS))

CLISPWORD (FORWARD . declare))

which has two properties: lOMACRO and CLISPWORD. The value of
lOMACRO is the macro definition for the atom DECLARE.

198 Property List Functions

7.3 PUTTING PROPERTIES
The corresponding functions for putting properties are PUTPROP and SET-
PROPLIST. PUTPROP takes the following form:

Function: PUTPROP

Arguments: 3

Arguments: 1) an atom, ATM
2) a property name, PROPERTY
3) a value, VALUE

Value: The value of the property .

PUTPROP puts the specified property on the property list of the atom with
the given value. If the property already exists, the given value replaces the old
value. If the first argument is not an atom, PUTPROP generates an error mes
sage, ARG NOT LITATOM. For example,

(PUTPROP 'maryland 'c a p i to l 'annapolis)
annapolis

(GETPROPLIST 'maryland)
(c a p i to l annapolis)

because the property CAPITOL did not previously exist. Now, by applying PUT- *
PROP again

^-(PUTPROP 'maryland 'capitol ’baltimore)
(new CAPITOL property for MARYLAND)
baltimore

because we performed this operation at the top level of the READ-EVAL-
PRINT loop.

(GETPROPLIST 'maryland)
(capitol baltimore)

A Definition for PUTPROP
We might define PUTPROP as follows:

(DEFINEQ
(putprop (atm property value)

(COND
((NULL atm)

(*
If ATM is null, generate an
error.

)
(ERRORX (LIST 7 (LIST atm
property))))

((NOT (LITATOM atm))
(ERROR "ARC NOT LITATOM" atm)))

(PROG (proplst)
(SETQ proplst (GETPROPLIST atm))

loop
(COND

((NLISTP proplst xprop atemp)
(COND

((AND
(NULL proplst)
xtemp)
(*

We have encountered
the end of the
property list where
there are an even
number of entries,
i.e., one value for
every property name.

)
(SETQ atemp

(LIST property
value))

7.3 Putting Properties 199

(RPLACD (CDR xprop) atemp))
(RETURN value)))
(*

Note: the property
l i s t was i n i t i a l l y NIL
or a n o n - l is t , so we
add the new property
a t the beginning.

))
((NLISTP (CDR p rop ls t))

(^
The property l i s t
terminates a t an odd
posit ion , e .g . , a name
followed by no value or a
name with the value CONSed
to i t . So add i t a t the
beginning.
))

((EQ (CAR xprop) property)
(*

The property name is found
in the property l i s t , so
ju s t replace the value.
)
(RPLACA (CDR xprop) value)
(RETURN value))

(T
(SETQ xprop prop lst)
(SETQ p ro p ls t (CDDR xprop))
(GO loop)))

(*
Add new property and value to fron t
of property l i s t .

)
(SETQ atemp

(CONS property
(CONS value

(GETPROPLIST atm))))
(SETPROPLIST atm atemp)
(RETURN value))

))

200 Property List Functions

7.3.1 Assigning Multiple Properties
In many cases, you may wish to assign multiple properties to an atom. This can
be a tedious operation if each assignment requires a single invocation of PUT-
PROP. INTERLISP provides an alternative, PUTPROPS, to perform multiple
property assignments. It takes the form

Function: PUTPROPS

Arguments: 3-N

Arguments: 1) an atom, ATM
2) a property name, PROPERTY
3) a value, VALUE
4-N) property name/value p a irs

Value: NIL

PUTPROPS is an NLAMBDA, nospread function.
PUTPROPS takes successive pairs of property names and values and places

them on the property list of the specified atom. Its value is NIL. Consider the
following example:

PUTPROPS maryland
governor harry-hughes
(sena to rs (charles-m athias paul-sarbanes)
counties (kent harford))

NIL

«-(GETPROPLIST 'maryland)
(c a p i to l annapolis governor harry-hughes senators

(charles-m ath ias paul-sarbanes) counties
(kent harfo rd))

Note that the arguments to PUTPROPS are not evaluated. Thus, you do not
need to quote MARYLAND and any of the arguments.

7.3 Putting Properties 201

7.3.2 Setting the Property List
You may also construct the property list yourself and then assign it to an atom
via SETPROPLIST. SETPROPLIST takes the form

Function: SETPROPLIST

Arguments: 2
Arguments: 1) an atom, ATM

2) an S-expression, EXPRESSION

Value: The property l i s t which is the value of
EXPRESSION.

SETPROPLIST sets the property list of ATM to be the value of its second
argument. If the first argument is not an atom, SETPROPLIST displays the
error message ARG NOT LITATOM. If the first argument is NIL, SETPRO
PLIST displays the error message ATTEMPT TO RPLAC NIL. However, if the
S-expression is also NIL, SETPROPLIST merely returns NIL. For example,

(SETPROPLIST ’maryland
(LIST 'governor 'hughes

'sen a to rs (LIST 'mathias
'sarbanes)))

(governor hughes senators (mathias sarbanes))

(GETPROPLIST ' maryland)
(governor hughes senators (mathias sarbanes))

Note that any property list that previously existed for MARYLAND is com
pletely replaced by SETPROPLIST.

7.3.3 Defining a Property for Multiple Atoms
You may wish to assign the same property to many atoms with the same or dif
ferent values. DEFLIST takes the form

Function: DEFLIST

Arguments: 2
Arguments: 1) a l i s t of atom-value p a irs , LST

2) a property name, PROPERTY

Value: NIL

LST is a list of elements each of which has the form

(<atom> . <value))

DEFLIST puts PROPERTY on the property list of every atom which is the
CAR of an entry on LST with the value which is the CDR of that entry. Consider
the following example:

(DEFLIST ' ((maryland hughes)
(Virginia robb)
(m assachusetts dukakis)
(texas w hite))

'governor)

202 Property List Functions

NIL

^(GETPROPLIST ' maryland)
(c a p ito l annapolis governor hughes)

(GETPROPLIST 'tex a s)
(governor white)

A Definition for DEFLIST
We might define DEFLIST as follows:

(DEFINEQ
(d e f l i s t (1 s t property)

(PROG NIL
loop

(COND
((NLISTP 1st)

(RETURN NIL)))
(PUTPROP (CAAR 1st)

p roperty
(CADAR 1 s t))

(SETQ 1 st (CDR 1 s t))
(GO loop))

))

7.4 MODIFYING PROPERTY LISTS
INTERLISP provides three functions for modifying property lists:

ADDPROP adds a new property
REMPROP removes a property
CHANGEPROP changes the name, but not the value, of a property

7.4.1 Adding a Property
A property may have a list (or other data structure) as its value. Adding a new
value to that list usually requires the creation of a new list structure with the
value added to the front or back of the list. For example,

“̂ (SETQ p roperty -va lue (GETPROP atm prop))
< -(PUTPROP atm prop (CONS property-value newvalue))

or

(PUTPROP atm prop (APPEND property-value newvalue))

7.4 Modifying Property Lists 203

To avoid creating a new list structure, INTERLISP provides ADDPROP to
add a value to a list which is the value of the property. It takes the form

Function: ADDPROP

Arguments: 4-

Arguments: 1) an atom, ATM
2) a property name, PROPERTY
3) a new value, NEW
4) a f lag , FLAG

Value: The value of the new property.

FLAG controls the terminus at which the property will be added. If FLAG is
T, the new property is CONSed to the front of the list; otherwise, it is NCONCed
to the end of it. If no property exists for the atom, the effect is the same as

(PUTPROP atm prop (LIST new))

For example,

♦-(ADDPROP 'maryland 're p re sen ta tiv es ’byron)
(byron)
<-(GETPROP 'maryland ’rep resen ta tiv es)
(byron)

(ADDPROP 'maryland 're p re sen ta tiv e s 'barnes T)
(barnes byron)

■ (̂GETPROP 'maryland 're p re sen ta tiv es)
(barnes byron)

^(ADDPROP 'maryland 're p re sen ta tiv e s 'hoyer)
(barnes byron hoyer)

<-(GETPROP 'maryland 're p re sen ta tiv es)
(barnes byron hoyer)

A Definition for ADDPROP
We might define ADDPROP as follows:

(DEFINEQ
(addprop (atm property value flag)

(COND
((NULL atm)

(ERROR "ATTEMPT TO RPLAC NIL")) ■
((NOT (LITATOM atm))

204 Property List Functions

(ERROR "ARG NOT LITATOM” atm)))
(PROG (x p ro p ls t)

(SETQ X atm)
loop

(COND
((NLISTP (CDR x))

(*
Note th a t the CDR c e l l of an
atom contains the p o in te r to the
p roperty l i s t form th a t atom.

Here, we have reached the end of
the property l i s t , so we ju s t
RPLACD a new en try onto i t s end.

)
(SETQ p ro p ls t

(LIST property
(SETQ value

(LIST v a lu e))))
(RPLACD X p ro p ls t))

((EQ (CADR x) property)
(*

Found the property name in the
property l i s t .

)
(RPLACA (CDDR x)

(SETQ value
(COND

(fla g
(CONS value

(CADDR x)))
(T

(NCONCl (CADDR x)
v a lu e))))

))
((SETQ X (CDDR x))

(*
Have not found property ;
advance along property
l i s t .

7.4 Modifying Property Lists 205

(T

)
(GO loop))

(*
Property l i s t ended on a

206 Property List Functions

property name with no
value.

)
(SETQ p ro p lst

(CONS property
(CONS

(SETQ value
(LIST value))

(CDR atm))))
(RPLACD atm p ro p ls t)))

(RETURN value))
))

7.4.2 Removing a Property
You may remove a property from the property list via REMPROP. It takes the
form

Function: REMPROP

Arguments: 2

Arguments: 1) an atom, ATM
2) a property name, PROPERTY

Value: The property name or NIL.

REMPROP removes all occurrences of the specified property and its value
from the atom’s property list. If any occurrences are found, its value is the name
of the property. Othervi îse, it returns NIL. Note that multiple occurrences of a
property may appear in a property list if the list was assigned to the atom via
SETPROPLIST. Consider the following examples:

<-(GETPROPLIST 'maryland)
(c a p ito l annapolis governor hughes senators
(mathias sarbanes) counties (kent harford))

••-(REMPROP 'maryland 'governor)
governor

<- (GETPROPLIST ' maryland)
(c a p ito l annapolis senato rs (mathias sarbanes) counties
(kent harfo rd))

(REMPROP 'maryland 'population)
NIL

7.4 Modifying Property Lists 207

A Definition for REMPROP
We might define REMPROP as follows:

(DEFINEQ
(remprop (atm property)

(COND
((NULL (LITATOM atm))

(ERROR "ARG NOT LITATOM” atm)))
(PROG (p ro p ls t newproplst value)

(SETQ p ro p ls t
(GETPROPLIST atm))

loop

))

(COND
((OR

(NLISTP p ro p ls t)
(NLISTP (CDR p ro p ls t)))
(RETURN value))

((EQUAL (CAR p ro p ls t) property)
(SETQ value property)
(COND

(newproplst
(RPLACD (CDR newproplst)

(CCDR p ro p ls t)))
(T

(SETPROPLIST atm
(CDDR new proplst)))

))
(T

(SETQ p ro p ls t
(CDDR (SETQ newproplst p ro p ls t)))))

(GO loop))

7.4.3 Removing the Property List
To remove multiple properties, INTERLISP provides the function REMPRO-
PLIST. It takes the form

Function: REMPROPLIST

Arguments: 2
Arguments: 1) an atom, ATM

2) a l i s t of property names, PROPLST

Value: NIL

REMPROPLIST removes all the properties whose names appear in PRO-
PLST from the property list of the specified atom.

To remove the entire property list of an atom, you may use one of the follow
ing function calls:

(SETPROPLIST <atom> NIL)

(REMPROPLIST <atom> (PROPNAMES <atom>))

Note: Many atoms in INTERLISP already have property lists with proper
ties used by various system packages. You should be careful not to delete such
properties as they may cause the system to malfunction (or cease to function).
You may use SYSPROPS to obtain a list of all the system property names.

Heeding this advice, we should rewrite the second expression above as fol
lows

(MAPC (PROPNAMES <atom>)
'(LAMBDA (name)

(COND
((MEMBER name (SYSPROPS)) NIL)
(T (REMPROP <atom> name)))))

Consider the following example where we force the property list to have mul
tiple copies of a property name

^(SETPROPLIST x ' (a b c d a b e f g h a b))
(a b c d a b e f g h a b)

The property name A is repeated three times in this property list. Now, we
may remove A via REMPROPLIST

^(REMPROPLIST 'x '(A))
NIL

<-(GETPROPLIST 'x)
(c d e f g h)

7.4.4 Changing Property Names
The foregoing functions changed the structure of the property list by adding or
deleting a property and its associated value. Sometimes, you want to keep the
value but change the name of the property. CHANGEPROP takes the form

Function: CHANGEPROP

208 Property List Functions

§ Arguments: 3

Arguments: 1) an atom, ATM
2) a p roperty name, PROPERTYl
3) a p roperty name, PR0PERTY2

Value: The atom name.

CHANGEPROP changes the name of property PROPERTYl to the name
given by PROPERTY2 on the property list of ATM. If PROPERTYl does not
exist on ATM’s property list, it returns NIL. If ATM is not a literal atom,
CHANGEPROP generates an error with the message “ARG NOT LITATOM” .

Consider the following example:

<- (GETPROPLIST ' maryland)
(c a p i to l annapolis governor hughes senato rs (mathias
sa rb an es))

Note that we have used the property name SENATORS to represent the
United States senators. However, Maryland has a bicameral legislature in which
the upper house is also called the Senate. So, let us rename the property SENA
TORS to US-SENATORS to avoid confusion.

♦-(CHANGEPROP 'maryland 'sen a to rs ’u s-sena to rs)
maryland
^(GETPROPLIST ' maryland)
(c a p ito l annapolis governor hughes u s-sen a to rs (mathias
sa rb an es))

A Definition for CHANGEPROP
We might define CHANGEPROP as follows:

(DEFINEQ
(changeprop (atm p roperty1 property2)

(COND
((NOT (LITATOM atm))

(ERRORX (LIST "ARG NOT LITATOM"
atm)))

((SETQ p roperty1
(MEMBER p ro p erty l (GETPROPLIST
atm)))
(*

Only change the name i f
p ro p e rty l is a c tu a lly p resen t in
the p roperty l i s t .

)

7.4 Modifying Property Lists 209

(RPLACA property l property2)
atm))

))

7.5 OBTAINING THE PROPERTY NAMES OF AN ATOM
PROPNAMES allows you to obtain a list of the property names associated with
an atom. It takes the form

Function: PROPNAMES

Arguments: 1

Arguments: 1) an atom, ATM

Value: A l i s t of the property names.

PROPNAMES is useful when you want to apply a function to all the proper
ties of an atom. For example, to delete all of the properties associated with an
atom, we can use the following expression:

(REMPROPLIST atm (PROPNAMES atm))

We might print the properties and their associated values using the follow
ing expression

(MAPC (PROPNAMES atm)
'(LAMBDA (name)

(PRINl name)
(SPACES 2)
(PRINTDEF (GETPROP atm name))))

A Definition for PROPNAMES
We might define PROPNAMES as follows:

(DEFINEQ
(propnames (atm)

(PROG (propnamelst p ro p ls t)
(SETQ p ro p ls t (GETPROPLIST atm))
(SETQ propnamelst NIL)

loop
(COND

((NLISTP p ro p lst)
(RETURN propnam elst)))

(SETQ propnamelst
(APPEND propnamelst (CAR p ro p ls t)))

210 Property List Functions

7.6 Extracting a Property Sublist 211

(SETQ p ro p ls t (CDDR p ro p ls t))
(GO loop))

))

7.5.1 Obtaining the System Property Names
INTERLISP has many predefined property names that are used by various sys
tem packages. You may obtain a list of the system property names by executing
SYSPROPS which takes the form

Function: SYSPROPS

Arguments: 0
Arguments: NIL

Value: A l i s t of system property names.

For example, the following list was obtained by executing SYSPROPS un
der the Fugue release on a Xerox 1100 Scientific Information Processor:

♦-(SYSPROPS)
(BYTEMACRO ALTOMACRO JMACRO VAXMACRO DMACRO lOMACRO
VARTYPE HASDEF FILEPKGCONTENTS PROPTYPE ALISTTYPE DELDEF
EDITDEF PUTDEF GETDEF WHENCHANGED NOTICEFN NEWCOMFN
PRETTYTYPE DELFROMPRETTYCOM ADDTOPRETTYCOM ACCESSFN ACS
ADVICE ADVISED ALIAS AMAC ARGNAMES BLKLIBRARYDEF BRKINFO
BROADSCOPE BROKEN BROKEN-IN CLISPCLASS CLISPCLASSDEF
CLISPFORM CLISPIFYISPROP CLISPINFIX CLISPISFORM
CLISPISPROP CLISPNEG CLISPTYPE CLISPWORD CLMAPS CODE
CONVERT COREVAL CROPS CTYPE EDIT-SAVE EXPR FILE
FILECHANGES FILEDATES FILEDEF FILEGROUP FILEHISTORY
FILEMAP FILETYPE GLOBALVAR HISTORY I.S.OPR I.S.TYPE INFO
LASTVALUE LISPFN MACRO MAKE NAMESCHANGED NARGS OLDVALUE
OPD READVICE SETFN SUBR UBOX UNARYOP VALUE DEF
CLISPBRACKET)

7.6 EXTRACTING A PROPERTY SUBLIST
You may extract a sublist of the property list using GETLIS, which takes the
form

Function: GETLIS

Arguments: 2

Arguments: 1) an atom, ATM
2) a l i s t of p ro p erties , PROPLST

Value; The t a i l of the property l i s t fo r ATM.

GETLIS searches the property list of ATM using the values found on PRO
PLST which may be an atom or a list of properties. It returns the tail of the
property list beginning with PROPLST. If PROPLST is an atom, then that
property name is the CAR of the result. If PROPLST is a list, GETLIS uses each
element on PROPLST as a search key until one matches a property of ATM. The
tail of the property list beginning with that element is returned.

If no element of PROPLST is found on the property list of ATM, GETLIS
returns NIL. For example,

^(GETLIS ’maryland ' (u s-sen a to rs))
(us-senato rs (mathias sarbanes) counties (kent harford))

■^(GETLIS 'maryland ’governor)
NIL

(GETLIS 'maryland ’cap ito l)
NIL

Note that if PROPLST is an atom, as in the case above, GETLIS returns |
NIL. Thus, you cannot determine whether or not the property exists. |

A Definition for GETLIS I
We might define GETLIS as follows:

(DEFINEQ i
(g e t l i s (atm p ro p ls t)

(PROG (atm proplst)
(SETQ atm proplst (GETPROPLIST atm))

212 Property List Functions

loop

))

(COND
((OR

(NLISTP atm proplst)
(MEMBER (GAR atm proplst)
p ro p ls t))
(RETURN atm proplst)))

(SETQ atm proplst (GDR atm proplst))
(GO loop))

Note that GETLIS makes no distinction between the property names and
their values when it searches the atom’s property list.

8

Function Definition
and Evaluation

INTERLISP embodies the mathematical definition of a function as a procedure
or specification for action. A function takes zero or more arguments as inputs
and produces one or more values as outputs. Unlike mathematical functions,
however, INTERLISP functions exist within a program—a collection of func
tions gathered to accomplish a purpose—and, so, may have side effects on
global variables defined within the program.

In INTERLISP, there are three ways to create a function for evaluation:

1. Use DEFINEQ or PUTD to attach the definition to an atomic symbol
(Section 8.2.2)

2. Place the definition on an atom’s property list under one of the properties
EXPR, FEXPR, or MACRO (Section 7.3)

3. Dynamically bind a definition to an atom through the FUNARG mecha
nism (Section 12.4)

Because atoms have both value cells and function definition cells, we cannot
determine whether an arbitrary data object is to be used as a variable or a func
tion. Usage is determined by how the data object is evaluated (e.g., which primi
tive functions are applied to it) because the value cell and the function definition
cell may both have non-NIL values.

The primary focus of this chapter is to discuss the definition and evaluation
of user-defined functions. Several system functions allow you to obtain informa
tion about a function and its arguments. Most functions do not retain any histor
ical information about previous invocations unless you explicitly build their
structures to do so. Generators are a simple mechanism for maintaining status
information across function invocations.

8.1 FUNCTION TYPES
INTERLISP provides two types of functions: EXPRs and SUBRs.

213

An EXPR is a function that is written in INTERLISP; it is interpreted. Each
literal atom has a function definition cell in which a function definition may be
stored. A function definition is a pointer to a list that describes the procedure
that the function performs. Note that the atom may also have a defined value
that is independent of its function definition.

A SUBR is a function that is hand-coded in machine language (IN
TERLISP/370) or is provided by the underlying virtual machine firmware (IN-
TERLISP-D). Compiled functions (see below) are treated as SUBRs.

The distinction is important because the functions PUTD and GETD oper
ate differently upon the two types of functions. You cannot define a SUBR with
either DEFINE or DEFINEQ. When you compile an EXPR function, you effec
tively convert it to a SUBR when it is loaded into memory.

Applying GETD to an EXPR function name returns the list comprising the
function definition. Applying GETD to a SUBR returns a dotted pair that has
the following characteristics:

The CAR of the dotted pair is an encoded form of

1. the argument type
2. the number of arguments

The CDR of the dotted pair is the address of the first instruction of the
function.

INTERLISP allows us to modify the basic concept of a function in two re
spects: whether or not the arguments are evaluated, and whether or not the func
tion has a definite number of arguments.

8.1.1 To Evaluate or Not
Normally, arguments passed to functions are evaluated to yield their respective
values which are then used by the function. This is called a LAMBDA-type func
tion. Consider the following example:

-^(SETQ in teg er-1 10)
10
^(SETQ in teg er-2 20)
20
■<-(IDIFFERENCE in teg er-1 in teger-2)
-10
IDIFFERENCE is a LAMBDA-type function. The values that IDIF-

FERENCE receives are the numbers 10 and 20 which are the values of the argu
ments when they are evaluated. This mechanism is known as call by value in
other languages.

214 Function Definition and Evaluation

You may specify that a function’s arguments not be evaluated when the
function is invoked. This is known as an NLAMBDA-type function and the
mechanism is similar to a call by reference in other languages. DEFINEQ (see
below) is an NLAMBDA-type function. Consider the following example:

(DEFINEQ
(exchange (p a ir)

(LIST (CADR p a ir) (CAR p a ir))
))

The argument to DEFINEQ is not evaluated but is passed to DEFINEQ for
internal evaluation. Thus, the value passed to DEFINEQ is the list

(exchange (p a ir) (LIST (CADR p a ir) (CAR p a i r)))

When FNTYP (see Section 8.1.5) is applied to NLAMBDA-type functions,
it returns the type of the function prefixed by the letter F: FEXPR or FSUBR.

8.1 Function Types 215

8.1.2 To Spread or Not
Normally, a function is defined with a definite number of arguments that are
enumerated in its parameter list. INTERLISP matches the arguments specified
in the function invocation with the parameters specified by the function defini
tion (i.e., we say the arguments are spread across the parameters). If there are
not enough arguments to satisfy all the parameters, INTERLISP substitutes
NIL for the remaining parameters. If there are more arguments than parame
ters, the excess arguments are ignored (but there are a few exceptions, e.g., see
QUOTE).

Sometimes, we want to pass an indefinite number of arguments to a func
tion. The number and type of arguments may be dependent on the arguments
themselves. How the arguments are to be evaluated is determined within the
function itself. This is called a nospread function.

To define a nospread function, we give a single variable, not enclosed in
parentheses, after the LAMBDA or NLAMBDA declaration. For example,

(DEFINEQ
(add

(LAMBDA X
(PROG (sum 1st)

(SETQ sura 0)
(SETQ 1 st (copy x))
(AND (NULL 1 s t) (RETURN sum))

loop
(SETQ sum (plus sum (car x)))

(AND
(SETQ 1st (CDR 1st))
(GO loop))

(RETURN sum))
)))

where X is a list of all the arguments presented in the calling sequence to the
function. The arguments are evaluated or not depending on whether the func
tion is defined to be LAMBDA or NLAMBDA. For example,

<-(ADD 10 20 30)

would set X to the list (10 20 30),
When FNTYP is given the name of a function which does not spread its

arguments, it returns the type of the function with an asterisk (*) appended to
the type name.

8.1.3 Compiled Functions
Most INTERLISP functions are interpreted. Even in the best of circumstances,
interpretation can be a lengthy process. Once a function is debugged and ready
for production use, you may compile the function. INTERLISP provides a com
piler (see Chapter 31) that converts the INTERLISP source code into the under
lying computer’s machine language. When FNTYP is given the name of a func
tion that has been compiled, it returns the type of the function preceded by the
letter C: CEXPR or CFEXPR. For the purposes of applying GETD to compiled
functions, they are treated like SUBRs.

8.1.4 Summary of Function Types
In summary, there are 12 types of functions supported by INTERLISP. These
are shown in the following table:

216 Function Definition and Evaluation

EXPR SUER
EXPR SUBR
EXPR̂ ^ SUBR*
FEXPR FSUBR
FEXPR* FSUBR*
CEXPR
CEXPR*
CFEXPR
CFEXPR*

Note that SUBRs, because they are written in machine language, already
exist in a compiled state.

8.1.5 Determining the Function Type
You may determine the type of a function by executing FNTYP. FNTYP takes
the following form

Function: FNTYP
Arguments: 1

Argument: 1) a function name, FN

Value: The function type.

The argument of FNTYP may be either the name of a defined function or a
function definition itself. The value of FNTYP is an atom taken from the table
below. Otherwise, it returns NIL. For example,

FNTYP 'GETD)
CEXPR

FNTYP 'DEFINE)
CEXPR

FNTYP 'DEFINEQ)
CFEXPR*
<-(FNTYP '(LAMBDA (p a ir)

(LIST (CADR p a ir) (CAR pa i r))))
EXPR

where FNTYP has checked the function definition (indicated by the LAMBDA)
to determine the function type.

•^(SETQ a -fu n c tlo n 'GETD)

^(FNTYP a-functlon)
CEXPR

FNTYP may also return the atom FUNARG if the argument is a function
argument expression (see Section 12.4).

The value of FNTYP is one of the following twelve literal atoms, based on
the type of the function:

Expressions Compiled B u ilt - In
Lambda-Spread EXPR CEXPR SUBR
Nlambda-Spread FEXPR CFEXPR FSUBR
Lambda-Nospread EXPR* CEXPR* SUBR*
Nlambda-Nospread FEXPR* CFEXPR* FSUBR*

8.1 Function Types 217

The types in the Built-In column are returned only for INTERLISP-10 and
INTERLISP/370.

A Definition for FNTYP
We might define FNTYP as follows (after INTERLISP/370):

(DEFINEQ
(fntyp (fn)

218 Function Definition and Evaluation

(SELECTQ (NTYP (MKFNI
((0 4) 'FSUBR*)
((1 5) ’FSUBR)
((2 6) 'SUBR*)
((3 7) •SUBR)
(8 'FEXPR*)
(9 'FEXPR)
(10 ’EXPR*)

(11 'EXPR)
(12 ’CFEXPR*)
(13 'CFEXPR)
(14 'CEXPR*)
(15 'CEXPR)
(20 'FUNARG)
NIL)

))

where the number is an indication of the datatype for the atom.

8.2 DEFINING FUNCTIONS
You may define a new function in INTERLISP using either DEFINE or DE
FINEQ. Let us discuss DEFINEQ first and, then, explore the generalized ver
sion represented by DEFINE.

8.2.1 Syntax of a Function Definition
A function definition consists of the following components:

The name of the function
A declaration of function type: LAMBDA or NLAMBDA
A parameter list or NIL
The body of the function

These items are combined together in a list which is passed to either DE
FINE or DEFINEQ.

The name of the function must be a symbolic atom that conforms to the
naming conventions of the particular INTERLISP system that you are using.

LAMBDA or NLAMBDA determines whether the function’s arguments are
evaluated or not when the function is invoked.

The parameter list is a list of the names of symbolic atoms, usually enclosed
in parentheses, that represent the arguments to the function. Each symbolic
atom may appear in the body of the function in which case we say that the atom
is local to the function. The parameter list may be represented by the atom NIL
which means that the function expects no arguments. The parameter list may
consist of a single atom which indicates that the arguments are not spread. In
this case, when the function is invoked, all arguments specified in the argument
list are gathered into a list which is bound to the single atom.

The body of the function is a sequence of INTERLISP statements that speci
fies the procedure of the function. Variables appearing in the function body that
do not appear in the parameter list are assumed to be global variables for this
function, although they may be local and bound in a function which invoked this
function. When the function is executed, if the value of these variables is
changed, we say that the function has a side effect. That is, the value of the
variable persists beyond the execution of the function because the variable is
defined outside the function. The value a function gives back when it is executed
is called the value returned. This value is the result of the last statement executed
within the function body, which may not necessarily be the last physical expres
sion in the function body.

8.2 Defining Functions 219

8.2.2 Defining a Function: DEFINEQ
DEFINEQ is used to define one or more functions. It takes the form

Function: DEFINEQ

Arguments: 1-N
Arguments: 1) a l i s t of one o r more function forms,

FNS
Value: The names of the function th a t are

defined .

DEFINEQ is an NLAMBDA, nospread function. It takes an indefinite
number of arguments that are not evaluated. Each entry in FNS must take the
form required by DEFINE (see below). If it does not, DEFINEQ (or DEFINE)
issues an error message “INCORRECT DEFINING FORM” . The File Package
writes functions to symbolic files using DEFINEQ so that, when read in via
LOAD, they will be defined anew in your virtual memory.

DEFINEQ calls DEFINE with individual entries from FNS.

8.2.3 Defining a Function: DEFINE
DEFINE is the LAMBDA-spread version for defining a function. It takes the
form

Function: DEFINE

Arguments: 1

Arguments: 1) a l i s t of l i s t s , X

Value: The names of functions defined as
described in X.

Each element of the list X is itself a list which takes one of two forms:

1. (<name> (definition))

where <definition) has the structure

(<lambda-declaration> (arguments) <body>)

A <lambda-declaration) is either a LAMBDA or an NLAMBDA.
Functions written by the File Package to symbolic files take this form.
Consider the example

(DEFINEQ
(CUBIC

(LAMBDA (X)
(ITIMES X (ITIMES X X))

)))

2. (<name) (arguments) <body))

The function type is assumed to be LAMBDA. Most functions defined
by type-in take this form. Consider the example

(DEFINEQ
(CUBIC (X)

(ITIMES X (ITIMES X X))
))

The appropriate LAMBDA expression is automatically created by DE
FINEQ as the function definition is read. Thus, when you print the definition of
CUBIC after typing it in, you will see a LAMBDA expression inserted into the
definition.

220 Function Definition and Evaluation

ift
J

The <name> field causes an atom to be created or updated with a function
definition using a LAMBDA or NLAMBDA expression. The function definition
is placed in the atom’s function definition cell. <arguments) is either NIL or a
list of atoms representing arguments to be used by the function. The <body> is
one or more S-expressions that are inspected for proper form (see below) and
comprise the specification of the function.

DEFINEQ works even if the function is broken, advised, or broken-in (see
Chapters 20 and 21).

If time stamping is enabled (see Section 29.6.2), DEFINEQ and DEFINE
stamp the definition with a comment consisting of your initials and the date
when the function was defined.

8.2.4 The Effect of DFNFLG
DFNFLG determines how DEFINE treats the proposed definition:

DFNFLG is NIL
If DFNFLG is NIL and <name> already has a definition, DEFINE displays the
message (<name> REDEFINED). It saves the old definition, via SAVEDEF (see
Section 17.5.7), on <name>’s property list before redefining it.

Consider the following example:

DFNFLG
NIL
<-(DEFINEQ (CUBIC (X) (ITIMES X (ITIMES X X))))
(CUBIC)
♦-(DEFINEQ (CUBIC (X) (EXPT X 3)))
(CUBIC redefined)
(CUBIC)
<-(GETPROP 'CUBIC 'EXPR)
(EXPR (LAMBDA (X) (* ed ited : ”ll-Ju n e-8 4 20:06”)
(ITIMES X (ITIMES X X))))

DFNFLG is T
If DFNFLG is T, the function is simply redefined without the warning message.

Consider the following example if it was executed after the second expres
sion in case 1:

<-(SETQ DFNFLG T)
T
“̂ (DEFINEQ (CUBIC (X) (EXPT X 3)))
(CUBIC)

8.2 Defining Functions 221

222 Function Definition and Evaluation

DFNFLG is PROP
If DFNFLG is PROP or ALLPROP, the new definition is stored on <name>’s
property list under the property EXPR. However, it does not place any definition
in the atom’s function definition cell. Thus, attempting to get the definition of
the function using GETD will return NIL. However, PP will work because it
inspects both the function definition cell and the property list of the atom for a
property named EXPR.

DFNFLG initially has the value NIL. It is reset by LOAD (see Section
17.9.1) when you load functions and variables from a file.

8.2.5 Alternative Defining Forms
INTERLISP/370 provides two alternative forms for defining functions; DE and
DF. DE and DF define LAMBDA and NLAMBDA functions, respectively, in
half-spread format. They take the following form

Function: DE
DF

Arguments: 3-N
Arguments: 1) a function name, FN

2) an argument l i s t , ARGLST
3-N) one or more S-expressions composing

the body of the function , EXPRS

Value: The function name, i f successfu l.

For example, we might define the function DISJOINT as

(DE d is jo in t (la lb)
(COND

((NULL la) T)
((MEMBER (CAR la) lb) NIL)
(T

(d is jo in t (CDR la) l b))))

Basically, these functions provide a shorthand notation for defining func
tions that allow you to eliminate a few of the parentheses required by DEFINEQ.
They have a form similar to DEFUN which is the defining function for the
MACLISP family.

A Definition for DE
We might define DE as follows:

(DEFINEQ
(de (NLAMBDA (x . y)

I

(DEFINE
(LIST

(LIST X

(CONS 'LAMBDA y))))
))

DF merely replaces the ‘LAMBDA in the CONS expression by ‘NLAMBDA
to achieve the same effect.

8.3 RETRIEVING A FUNCTION DEFINITION
You may retrieve the definition of a function from its function definition cell by
invoking GETD. GETD takes the format

Function: GETD

Arguments: 1

Argument: 1) the name of a function , FN

Value: The d e f in it io n of the function .

GETD returns the definition of a function if it exists; otherwise, NIL. For
example,

(DEFINEQ
(exchange (p a ir)

(LIST (CADR p a ir) (CAR p a ir))
))

*- (GETD ' exchange)
(LAMBDA (PAIR) (LIST (CADR p a ir) (CAR pa i r)))

If the function is compiled or a SUER, GETD returns an encoded form
representing the address of the first instruction of the function. For example
(under the Fugue release of INTERLISP-D),

<-(GETD 'ge td)
{(CCODEP)}#!,161244

which is the encoded form of the dotted pair. CCODEP means that GETD is a
compiled code pointer. #1 means that it takes one argument. 161244 is the mem
ory address where the first executable instruction of that procedure is located.

Executing the same function under INTERLISP-10 returns the following
form

<-(GETD 'GETD)
(1 . {STACK}#11271)

8.3 Retrieving a Function Definition 223

which reflects the different memory allocation models used in the two implemen
tations. Note that INTERLISP-10 returns the CONS of the function type with
the address of the function.

Note that INTERLISP returns a pointer to the function. Two successive
calls to GETD will return two different pointers. These pointers are not EQ.
Rather, EQUAL or EQP must be used to compare them.

8.4 SETTING A FUNCTION DEFINITION
We have seen, in Section 8.2, that we can define a function using either DEFINE
or DEFINEQ. The effect of these functions is to place the given definition in the
function definition cell of the symbolic atom that was specified as the name of
the function, INTERLISP provides another mechanism for inserting values into
an atom’s function definition cell. This is the function PUTD and its variations.

PUTD takes the form

Function: PUTD
PUTDQ

224 Function Definition and Evaluation

PUTDQ?

Arguments:
Arguments: 1) the name of a function , FN

2) a d e f in itio n fo r the function,
DEFINITION

Value: The value of DEFINITION.

The first argument must be a literal atom; otherwise, PUTD generates an
error message: ARG NOT LITATOM. If the second argument is not a list,
PUTD generates an error message; ILLEGAL ARG. NIL is a valid value for the
second argument. Unlike DEFINE or DEFINEQ, PUTD does not check the list
to see if it is a valid definition, but merely stores it away. For example,

- -̂(PUTD 'f - to - c
'(LAMBDA (tem perature)

(QUOTIENT
(DIFFERENCE temperature 32.0)
1.8))))

(F-TO-C)

which defines the atom F-TO-C as a function that converts a temperature given
in fahrenheit to an equivalent measure in celsius. Note that the definition of the
function given to PUTD must include either a LAMBDA or NLAMBDA.

Note that PUTD is not sensitive to the value of DFNFLG, but places the
value of DEFINITION directly in the function definition cell. Any contents of
the function definition cell are replaced by the new definition.

8.4.1 Alternative Forms of PUTD
An alternative form of PUTD is PUTDQ. PUTDQ is an NLAMBDA version of
PUTD that assumes that both of its arguments are literal values. Thus, we may
define F-TO-C as follows:

(PUTDQ f - to -c
(LAMBDA (tem perature)

(QUOTIENT
(DIFFERENCE tem perature 32.0)
1.8))))

(F-TO-C)

Another form of PUTD is PUTDQ?. PUTDQ? is an NLAMBDA form of
PUTD that sets the value of the function definition cell of the first argument if
and only if it is not defined. That is, it acts like PUTDQ. Otherwise, it returns
NIL and does nothing.

A Definition for PUTDQ?
We might define PUTDQ? as follows:

(DEFINEQ
(putdq?

(NLAMBDA (fn d e f in itio n)
(AND (NULL (GETD f n))

(PUTD fn d e f in it io n))
)))

8.5 Copying Function Definitions 225

8.5 COPYING FUNCTION DEFINITIONS
Because function definitions are just lists or pointers to sequences of compiled
code, we can copy a function definition from one atom to another. There are two
reasons why you might want to perform this operation.

First, to simplify the definition of several similar functions. In this case, you
define a (perhaps lengthy) function. Then, you copy its definition to another
atom and edit the definition to produce a similar but different function.

Second, you may want to dynamically assign a function definition to an
atom based on the current state of your program.

INTERLISP provides MOVD to copy function definitions between atoms.
An alternative form, MOVD?, copies the function definition to the destination
atom if and only if its function definition cell is NIL; otherwise, it does nothing.

The generic format for invoking these functions is

Function: MOVD
MOVD?

226 Function Definition and Evaluation

Arguments: 3
Arguments: 1) a function name, FROMFN

2) a function name, TOFN
3) a copy flag , COPYFLAG

Value: The name of the TOFN atom (MOVD/MOVD?);
otherwise, NIL.

Note that MOVD works for EXPRs, compiled functions, and SUBRs.
COPYFLAG, which is valid only for EXPRs, indicates that a copy of the func
tion definition will be used if it is T. Otherwise, a pointer to the EXPR list is
placed in the TO-atom’s function definition cell. A new copy of the EXPR list
allows us to edit the function definition as desired in case 1 above.

A Definition for MOVD
We might define MOVD as follows:

(DEFINEQ
(movd (fromfn tofn copyflag)

(PROG (newflag)
(SETQ newflag

(NULL (GETD tofn)))
(PUTD tofn

(COND
(copyflag

(COPY (GETD fromfn)))
(T

(GETD fromfn))))
(RETURN tofn))

))

8.5.1 A MOVD Example
Suppose we can apply one of several disjunction operators to a pair of argu
ments. One way to code this is to assign the name of the disjunction function to
an atom and use that atom as the argument of a SELECTQ statement. For ex
ample

■ (̂SETQ disjunction-operator
(QUOTE < a-d isjunction-function)))

(SELECTQ disjunction-operator
(d is ju n c t l (d is ju n c t l a b))
(d isjunct2 (d isjunct2 a b))

• • •
(disjunctN (disjunctN a b)))

An alternative method would be to copy the function definition of the appro
priate function to the function definition cell of DISJUNCTION-OPERATOR.
Then, we could code DISJUNCTION-OPERATOR uniformly in our program.
The current definition would be applied to the arguments whenever a statement
of the form

(d is ju n c tio n -o p e ra to r a b)

is executed.
Consider the following definitions for possible disjunction functions:

(DEFINEQ
(disjunctO (a b)

(COND
((ZEROP a) b)
((ZEROP b) a)
(T D)

))
(DEFINEQ

(d is ju n c t l (a b)
(MIN 1 (PLUS a b))

))
(DEFINEQ

(d is ju n c t2 (a b)
(DIFFERENCE

(PLUS a b)
(TIMES a b))

))
(DEFINEQ

(d is ju n c t3 (a b)
(MAX a b)

))

To set the current definition of DISJUNCTION-OPERATOR, we might use
the following statement:

(MOVD
(SELECTQ <some cond ition)

(0 (QUOTE disjunctO))
(1 (QUOTE d is ju n c tl))
(2 (QUOTE d is ju n c t2))
(3 (QUOTE d is ju n c t3)))

(QUOTE d is ju n c tio n -o p e ra to r)
T)

8.5 Copying Function Definitions 227

To make this method as general as possible, we could package this state
ment as a function that can be called from anywhere in the program.

8.6 FUNCTION PREDICATES
INTERLISP provides several predicates for testing the type of a function. These
predicates correspond to the values returned by FNTYP as discussed in Section
8.1. Each predicate returns T if and only if its argument is one of the type indi
cated in the following table

Function Predicates
Predicate Truth Condition
SUBRP SUBR, FSUBR, SUER*, FSUBR*
CCODEP CEXPR, CFEXPR, CEXPR*, CFEXPR*
EXPRP EXPR, FEXPR, EXPR*, FEXPR*

a lso , i f the argument has a l i s t
d e f in itio n th a t does not begin with LAMBDA
or NLAMBDA

The general format for invoking these predicates is

228 Function Definition and Evaluation

Function:

Arguments:

Argument:

Value:

SUBRP
CCODEP
EXPRP

1) a function name or a function
d e f in it io n , i . e . , a l i s t beginning with
LAMBDA or NLAMBDA

T, i f the tru th condition in the tab le
above is met; NIL otherw ise.

These predicates may be defined using FNTYP.
Consider the following examples:

« -(EXPRP 'CREATE.NODE)

(CCODEP ’DEFINEQ)

(SUBRP 'CAR)

A Definition for SUBRP
We might define SUBRP as follows:

(DEFINEQ
(subrp (a-func tion)

(COND
((SELECTQ (FNTYP a-function)

((SUBR FSUBR SUBR* FSUBR*) T)
(NIL))))

))

The other functions are defined analogously.

8.7 ARGUMENT LIST FUNCTIONS
An INTERLISP function may or may not have arguments. When it does, it is
sometimes useful to be able to obtain information about the arguments associ
ated with the function. Variable bindings are determined by function type

1. If the function is a LAMBDA, each argument is bound to a value that
results from enumerating and evaluating the expressions given in the ar
gument list of the calling expression.

2. If the function is an NLAMBDA, the expressions in the calling expres
sion are not evaluated, but are bound directly to the atoms in the argu
ment list.

3. If < arguments > in the function definition is NIL, the function receives no
arguments when it is called.

4. If {arguments) in the function definition is a single atom, the arguments
in the calling expression are gathered into a list and assigned as the value
of that atom. Expressions in the calling expression’s argument list are
evaluated or not depending on whether the function is a LAMBDA or
NLAMBDA function.

INTERLISP provides several functions to determine the characteristics of
arguments that are passed to a function.

8.7.1 Determining The Argument Type
You may need to determine the type of arguments a function expects in order to
construct the argument list to be passed to that function. Usually, this case
arises when you are interfacing with code written by another user. ARGTYPE
takes one argument—the name of a function—and returns an integer that speci
fies the type of function that it is or NIL if it is not a function. It takes the follow
ing form;

Func t io n : ARGTYPE

8.7 Argument List Functions 229

Arguments: 1

Argument: 1) a function name, FN

Value: The argument type or NIL.

The value of ARGTYPE is specified by the following table:

Argument Types of Functions
Value Function Type

0 Lambda-spread
1 Nlambda-spread
2 Lambda-nospread
3 Nlambda-nospread

Suppose that we have a function FI that has been defined by another user,
perhaps in a package that has been compiled. We do not know the type of the
function nor do we care to visually inspect the code, if we could, to determine
what the type of the function is. Nevertheless, we must use the function in our
program. To do so properly, we have to construct an argument list to pass to the
function. We might write a function in our own program called BUILD-ARGU-
MENT-LIST that constructs the proper argument list based on the type of func
tion.

A skeletal definition of BUILD-ARGUMENT-LIST might appear as fol
lows:

(DEFINEQ
(bu ild -argum en t-lis t (a-function an-argum ent-list)

(SELECTQ (ARGTYPE a-function)
(0 (m ak e -ls -lis t a rg u m en t-lis t))
(1 (raake-ns-list a rg u m en t-lis t))
(2 (m ake-ln -lis t argum ent-list))
(3 (m ake-nn-list argum ent-list))
(NIL NIL))

))

where each of the functions MAKE... construct the proper argument list for the
appropriate function type.

To call the function FI, we would use APPLY:

(APPLY f l (b u ild -arg u m en t-lis t f l argum ent-list))

Applying ARGTYPE directly to several standard INTERLISP functions, we
see that it returns:

^(ARGTYPE 'DEFINEQ)
3

230 Function Definition and Evaluation

8.7 Argument List Functions 231

0
(ARGTYPE 'ARGTYPE)

(ARGTYPE 'PUTDQ)

(ARGTYPE 'IPLUS)

8.7.2 Determining the Number of Arguments
You may also want to determine how many arguments a function requires when
it is invoked. This knowledge is useful in constructing an argument list for a
function. NARGS returns an integer that is the number of arguments in the
function’s argument list or NIL if its argument is not a function. It takes the
form

Function:

Arguments:
Arguments:

Value:

NARGS

1

1) a function name, FN
The number of arguments or NIL.

Its value is determined by:

1. NIL, if FN is not a function.
2. 0, if the argument list of FN’s definition is NIL.
3. 1, if FN is a nospread function or has a single argument.
4. N, which is the actual number of arguments expected by FN.

Consider the following example:

(NARGS (FUNCTION b u ild -a rg u m e n t- lis t))
2

because BUILD-ARGUMENT-LIST requires two arguments.

<-(NARGS 'RECORDACCESS)

(NARGS 'LOGOUT)
0

NARGS uses EXPRP rather than FNTYP. Therefore, NARGS will work on
S-expressions that are not functions but which are lists. For example.

^(NARGS '(d o - te s t a - l i s t an-operation))
2

where DO-TEST has not been defined as a function. However, it appears to take
two arguments (if it were treated as a function) and so the terms A-LIST and
AN-OPERATION are treated as ^arguments to the presumed function DO-
TEST.

A Definition for NARGS
We might define NARGS as follows (after INTERLISP/370):

(DEFINEQ
(nargs (fn)

(COND
((EXPRP (SETQ fn (CGETD fn)))

(*
I f FN has a function d e fin itio n
or an EXPR property. Extract the
argument l i s t from the function
d e fin itio n .

)
(SETQ fn (CADE fn))
(COND

((NULL fn)
(*

I f the argument l i s t
is NIL, re tu rn zero.

)
0)

((ATOM fn)
(*

I f the argument l i s t
is an atom, i t s a
nospread function .

1)
((NULL (CDR (LAST fn)))

(*
An argument l i s t with
some number of atoms
represen ting
arguments.

)
(LENGTH fn))

(T

232 Function Definition and Evaluation

8.7 Argument List Functions 233

)

The argument l i s t has
a dotted p a ir a t i t s
end.

(ADDl (LENGTH f n)))))
((CCODEP fn)

(*
The function is a compiled
function , so look a t the linkage
to the function . This is machine
dependent.

(T

))

)
(LOGAND

(LRSH
(MKN

8)
255))

(CAR (IPLUS 8
(MKN fn))))

(^

)

Functions defined as p a r t of the
underlying v i r tu a l machine have
only one or two arguments.

(SELECTQ (FNTYP fn)
((SUBR FSUBR) 2)
((SUBR* FSUBR*)
NIL)))

1)

where CGETD is defined as

(DEFINEQ
(cgetd (fn)

(COND

))

((LITATOM fn)
(GETD fn))

(T fn))

CGETD merely distinguishes between an atom, which is assumed to be the
name of the function, and an S-expression, which is assumed to be a LAMBDA/
NLAMBDA form.

8.7.3 Obtaining the Argument List
Given a function that you did not define, but which you wish to invoke, you may
determine the argument list by executing the function ARGLIST. ARGLIST
takes the form

Function: ARGLIST
Arguments: 1

Argument: 1) a function name, FN

Value: The arguments fo r the function.

ARGLIST returns a list of the arguments of the function which it takes as its
argument. This function is particularly useful when you want to prompt the user
for the values of arguments.

The value it returns depends on the function type and definition

1. NIL, if the function definition had NIL as its argument list specification.
2. An atom, if FN is a nospread function.
3. A list of atoms which are the names of the arguments that appeared in

the function definition.
4. An error message, ARGS NOT AVAILABLE, if FN is not a

function.

Consider the following examples:

(ARGLIST 'BREAKIN)
(FN WHERE WHEN BRKCOMS)

^(ARGLIST 'ASKUSER)
(WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG
OPTIONSLST FILE)

Certain functions in various INTERLISP implementations are hardwired
via assembly language (INTERLISP-lO/VAX/370) or microcode (INTERLISP-
D). Thus, the actual names of the arguments are not preserved in the sysout. In
this case, ARGLIST “manufactures” dummy argument names. For example,

(ARGLIST 'LIST)
U

^(ARGLIST 'RPLAGA)
(XY)

If FN is a compiled function, the argument list must be reconstructed from
the arguments. Thus, each call to ARGLIST will cause the construction of a new
list.

234 Function Definition and Evaluation

If FN is an atom with an EXPR property whose value is a list beginning with
LAMBDA or NLAMBDA, ARGLIST returns the CADR of GETD of the value.
ARGLIST also works if it is given a list whose CAR is LAMBDA or NLAMBDA.
For example,

-^(ARGLIST '(LAMBDA (X) (ITIMES X X)))
(X)

8.7.4 Accessing the Arguments of a Nospread Function
A nospread function has a single atom as its argument list specification. Any
expressions appearing after the function name in the calling expression are eval
uated and their values are bundled into a list and bound to that single atom. To
access individual arguments, you may use ARG which takes the form

Function: ARG

Arguments: 2
Arguments: 1) a v a ria b le name, VARX

2) an index in to the argument l i s t , N

Value: The value of the corresponding argument.

ARG is an NLAMBDA function. VARX is the name of the atom that ap
peared in the nospread function’s definition. It may be any atom except NIL or
T. It is not evaluated by ARG. N is an index into the argument list that specifies
the number of the argument that you wish to retrieve. It is evaluated as follows:

1. If N is less than or equal to 0, ARG returns NOBIND.
2. If N is greater than the number of arguments, ARG returns NOBIND.
3. ARG returns the value of the corresponding argument.

Consider the following example (after the IRM):

(DEFINEQ
(xplus

(LAMBDA varx
(PROG ((ARGNUM 0) (ARGVAL O))
loop

(COND
((EQ ARGNUM varx)

(RETURN ARGVAL)))
(SETQ ARGNUM (ADDl ARGNUM))
(SETQ ARGVAL

(PLUS ARGVAL
(ARG varx ARGNUM)))

8.7 Argument List Functions 235

(GO loop))
)))

Note that the variable VARX is bound to the number of arguments for a
LAMBDA nospread function. When XPLUS is called, VARX is bound to 3.
Thus, the test for terminating the loop succeeds. However, you should neyer
reset the LAMBDA variable. Individual arguments may be reset via SETARG
below.

Consider the following example:

(XPLUS 10 30 50)
90

where we have the following correspondences:

<-(ARG varx 1)
10
<-(ARG varx 2)
30
^(ARG varx 3)
50

and the value of VARX is 3.

236 Function Definition and Evaluation

8.7.5 Setting the Arguments of a Nospread Function
SETARG allows you to set the arguments of a LAMBDA nospread function
from within the function. It takes the form

Function: SETARG

Arguments: 3
Arguments: 1) a v a riab le name, VARX

2) an index, N
3) a value to be s e t , VALUE

Value: The new value.

SETARG is an NLAMBDA function. SETARG sets to VALUE the Nth ar
gument of the LAMBDA nospread function whose argument list is given by the
atom VARX. VARX is not evaluated, but N and VALUE are evaluated. It is
primarily used to modify the argument list prior to processing it within the func
tion.

8.8 FUNCTION EVALUATION
INTERLISP operates in a READ-EVAL-PRINT loop. Expressions are read
from the primary input file, evaluated, and the results are printed on the pri
mary output file. EVAL is the function v̂ ĥich evaluates (e.g., “executes") the
expression and returns its value. EVAL takes the form

Function: EVAL
Arguments: 1

Arguments: 1) an S-expression , EXPRESSION
Value: The value, i f any, produced by evaluating

EXPRESSION.

EVAL takes one argument, EXPRESSION, which is an S-expression, that
it gives to the intepreter for execution. Consider the following example:

<-(SETQ ex l '(ITIMES XXX))
(ITIMES XXX)

>^(SETQ X 20)
20

<-(EVAL exl)
8000
<-exl
(ITIMES XXX)

EVAL is a LAMBDA function, so its argument is evaluated before being
bound to EXPRESSION. EVAL is primarily used within functions where we
construct an S-expression and then execute it. The following sections discuss
some situations in which EVAL may be profitably used (some reference is made
to concepts introduced in later chapters).

8.8 Function Evaluation 237

8.8.1 Updating a Database Variable
The File Package (see Chapter 17) uses a variable having the name <file)VARS
to represent a list of variables that are to be “saved” when a new version of the
symbolic file is written. If your program processes several databases, you cannot
hardwire the VARS variable into the code as some of the File Package functions
expect. However, you may create your own updating function as follows:

(DEFINEQ
(add. t o . da tabase .v a riab le s (a .v a r ia b le)

(SET cu rren t.d a tab ase .v a rs

(APPEND (EVAL curren t.da tabase.vars)
(LIST a .v a riab le)))

))

where CURRENT.DATABASE.VARS holds the name of the VARS variable.
Suppose we were maintaining a database about countries of the world. As

sume that we needed to add the variable PUERTO-RICO to the USA database.
When the database is loaded, we would set CURRENT.DATABASE.VARS to
USAVARS. Then, adding Puerto-Rico would merely involve

(add. t o . database.variab les ' puerto-rico)
(maryland puerto -rico)

Note that CURRENT.DATABASE.VARS has as its value the name of the
file package variable. We evaluate this variable to obtain its value for updating.

8.8.2 A-list Evaluation
EVALA simulates a-list evaluation as it was performed in Lisp 1.5 [mcca72]. It
takes the form

Function: EVALA

Arguments: 2

Arguments: 1) an expression, EXPRESSION
2) a l i s t of dotted p a irs , ALST

Value: The value produced by evaluating
EXPRESSION.

EVALA spreads ALST on the stack. Each entry in ALST is a dotted pair
consisting of a variable name and a value. EXPRESSION is evaluated using the
“free” variables that appear on the stack as a result of spreading ALST. This
form of evaluation was used in early LISP implementations. I recommend that
you do not use it since its form and implementation are archaic.

8.8.3 Constant Evaluation
In some applications, you may need to specify functional arguments, but want
them to evaluate to constants. INTERLISP provides functions that evaluate to
the most frequently used constants. They take the form

Function: NILL
TRUE
ZERO

238 Function Definition and Evaluation

Arguments: 0

Arguments: N/A

Value: NIL, T, or 0, re sp e c tiv e ly .

These functions are nospread functions that always produce the specified
constants.

8.9 FUNCTION APPLICATION
One of the nice characteristics of INTERLISP is the ability to define a function
dynamically, and then use that function to accomplish some result. In general,
this capability is not available in most other conventional programming lan
guages. It is available because data structures and functions are just S-expres-
sions in INTERLISP. So, to create a new function, we merely build an S-expres-
sion of its definition and then evaluate it. A problem arises in telling the function
about its arguments; that is, in setting up the proper calling sequence because
the function has not been formally defined to INTERLISP via DEFINE. To
solve this problem, we can use APPLY which takes a function definition and a
list of arguments. It takes the following format:

Function: APPLY

Arguments: 2
Arguments: 1) a function d e f in it io n , FN

2) a l i s t of arguments, ARGS

Value: The r e s u l t of applying FN to ARGS.

FN may take several different forms:

1. It may be the literal name of a function:

^(APPLY 'PLUS '(5 6))
11

2. It may be a FUNCTION specification:

<-(APPLY (FUNCTION TIMES) ’ (5 6))
30

3. It may be a LAMBDA or NLAMBDA definition:

<-(APPLY '(LAMBDA (x y)
(CONS y x))

8.9 Function Application 239

'(app les oranges))
(oranges . apples)

APPLY does not evaluate the individual elements of ARGS. Rather, it sim
ply calls FN with ARGS as the argument list. Thus, LAMBDA and NLAMBDA
functions are treated exactly the same.

APPLY is a LAMBDA function, so it evaluates its arguments before it is
called. Suppose I have a set of functions for computing weighted conjunctions of
two numbers which represent evaluations of two conditions. CONJUNCT com
putes the proper evaluations given two numeric operands, but its operation may
vary with the state of the program. We might define CONJUNCT as follows:

(DEFINEQ
(conjunct (x y)

(COND
((AND

(NUMBERP x)
(NUMBER? y))
(APPLY *conjunct-operator* x y))

(T
(ERROR "Non-numeric Arguments”)))

))

where *CONJUNCT-OPEBlATOR* is a global variable whose value is the name
of a conjunction function.

We might define several conjunction functions as follows:

(DEFINEQ
(conjunctl (x y)

(COND
((EQP X 1.0) y)
((EQP y 1.0) x)
(T 0.0))

))
(DEFINEQ

(conjunct2 (x y)
(fmaximum 0.0 (PLUS x y (MINUS 1.0)))

))
(DEFINEQ

(conjunct3 (x y)
(PLUS 1.0 (TIMES X y))

))

Each function computes a different weighting of the variables X and Y. To
select a function, we set its name as the value of *CONJUNCT-OPERATOR*.

240 Function Definition and Evaluation

♦-(SETQ * co n ju n c t-o p era to r* 'c o n ju n c tl)
c o n ju n c tl

’̂ (c o n ju n c t 1 .0 3 .0)
3 .0

^(SETQ * co n ju n c t-o p era to r* 'con junct2)
conjunct2

♦ -(co n ju n c t 1 .0 3-0)
3 .0

<-(SETQ * co n ju n c t-o p era to r* 'con junct3)
conjunct3

••-(conjunct 1 .0 3 .0)
4 .0

8.9.1 APPLYing to an Indefinite Number of Arguments
Sometimes, the individual arguments to FN are produced separately in the call
ing program. To use these arguments in APPLY, you would have to invoke it in
the following form

(APPLY <FN> (LIST <argl> <arg2> . . . <argN>))

INTERLISP provides APPLY* as a shorthand notation for this form. It
takes the format

Function : APPLY*

Arguments: 1-N

Arguments: 1) a fu n c tio n s p e c if ic a t io n , FN
2-N) arguments fo r FN

Value: The r e s u l t o f applying Fn to ARGS[i]

APPLY* is a nospread function. It is useful where the arguments are calcu
lated prior to applying the function. For example, you may have an expression of
the form

(APPLY* (s e le c t- p r in t - fu n c t io n) (s e le c t-p r in t-a rg u m e n ts))

which determines which printing function to apply to the specified arguments.

8.10 REPETITIVE EXECUTION
Many expressions are executed several times in a program in succession. Usu
ally, the expression maintains internal variables whose values change with each

8.10 Repetitive Execution 241

iteration. Normally, you would have to set up a PROG loop to count the number
of times that the expression is executed with a test to decide when you have iter
ated enough times. A shorthand notation for this mechanism is provided by
RPT, which takes the form

Function: RPT

Arguments: 2

Arguments: 1) a re p e titio n count, RPTN
2) an expression, RPTF

Value: The value re su ltin g from the la s t
evaluation of RPTF.

242 Function Definition and Evaluation

RPT executes the expression RPTF for RPTN times. RPTN is counted down
as each evaluation is performed. RPTF may use the value of RPTN to determine
what to do at any given iteration. If RPTN is less than or equal to zero, RPTF is
not evaluated; RPT returns NIL.

An alternative form, RPTQ, is an NLAMBDA, nospread version of RPT.
Its first argument, RPTN is evaluated to determine the number of iterations.
The remaining N arguments are expressions which are not evaluated prior to
calling RPTQ. At each repetition, RPTQ evaluates each of the RPTF[i] in suc
cession. Its value is the result of the last evaluation of the last expression,
RPTF[N].

Consider the following examples:

<-(RPT 10 '(PRINT RPTN))
10
9
8
7
6
5
4
3
2
1
1 (the returned value)

Note that RPTN is accessible in the expression that is executed by RPT.
We can initialize an array to a specific constant using RPT as follows:

^(SETQ A1 (ARRAY 5 5))
{ARRAYP}#546261

^(RPT (ARRAYSIZE Al) '(SETA A1 RPTN (ITIMES RPTN 100)))
100

which is the last value assigned because RPT counts down from the upper limit.
Inspecting the value of Al[3], we see that it is 300:

^(ELT Al 3)
300

A Derinition for RPT
We might define RPT as follows:

(DEFINEQ
(rp t (rp tn rp tf)

(PROG (rp tv)
loop

(COND
((IGREATERP rp tn 0)

(SETQ rp tv (EVAL rp t f))
(SETQ rp tn (SUBl rp tn))
(GO loop))

(T
(RETURN rp t v))))

))

8.11 GENERATORS
Whenever you call a function in INTERLISP, it creates a stack frame (see Chap
ter 30) that exists for the duration of the function’s execution. When the function
exits, the stack frame is released and all information concerning that activation
is forgotten. If the function’s task is to compute a series of values, you must

1. Compute all values and store them as a global variable. Functions exter
nal to the function that computed these values are responsible for access
ing the individual values. Or,

2. Retain state information about the function in a global variable so that,
at each invocation, the function can reestablish its previous state before
computing the next value.

The former method may be time-consuming if a large number of values
must be computed. Moreover, if the next value to be computed depends upon
some massaging of the previous value by an external function, it may not be
possible to compute all the values at one time. The latter method introduces
substantial complexity into the function which makes it difficult to comprehend
as well as as leading to possible errors due to wrong implementation.

8.11 Generators 243

Generators are a mechanism for circumventing this problem. A generator is
a function that retains state information (e.g., a history of its previous invoca
tions).

8.11.1 Initializing a Generator
GENERATOR is an NLAMBDA function that initializes a generator. It takes
the format

Function: GENERATOR
Arguments: 2

Arguments: 1) an expression, FORM
2) a generator handle, COMPVAR

Value: A generator handle.

GENERATOR creates a stack frame for FORM so that it may be called
repeatedly, it returns a generator handle which is a pair of stack pointers.

Consider the following example taken from the IRM [irm83]:

^(DEFINEQ
(LISTGEN (1st)

(IF 1st
THEN (PRODUCE (CAR 1 st))

(LISTGEN (CDR 1s t)))
))

(LISTGEN)

LISTGEN will produce elements of the list one at a time.

^(SETQ GR (GENERATOR (LISTGEN ' (A B C))))
(#i,13^42/#o . #1, 13444/generator)

Each time GENERATE is called, it invokes PRODUCE to return the next
value.

♦-(GENERATE GR)
A

^(GENERATE GR)
B

<-(GENERATE GR)
C
^(GENERATE GR)
(#1,1342/#0 . #1,13444/#0)

244 Function Definition and Evaluation

When you have exhausted the input list, GENERATE returns the generator
handle to indicate termination.

<-(GENERATE GR)
STACK POINTER HAS BEEN RELEASED

'# 1 ,1 3 4 U /# 0

PRODUCE and GENERATE take the following forms

Function: PRODUCE

Arguments: 1

Argument: 1) a value to be re tu rned , VALUE
V alue: The v a lu e .

PRODUCE is used from within a generator to return a value each time the
generator is called.

Function: GENERATE

Arguments: 2
Arguments: 1) a generator handle, HANDLE

2) a value, VALUE

Value: The value to be re tu rned .

GENERATE restarts the generator given by HANDLE. VALUE is returned
as the value of the PRODUCE which last suspended the operation of the genera
tor. When the generator runs out of values (if it does), GENERATE returns the
value of HANDLE itself.

8.12 MACROS
When a function is called in INTERLISP, a new stack frame is created to estab
lish the environment in which the function will execute. Since INTERLISP does
not distinguish between large and small functions, every function experiences
this overhead. Sometimes, we need to parametrize very small pieces of code to do
simple but diverse operations. Coding these code skeletons as fucntions forces us
to pay the price of the function call.

Macros allow us to create code skeletons which are expanded in-line to pro
duce efficient code. Macros are parametrizable, but invoking them does not
cause a new stack frame to be created. They are akin to the in-line functions
allowed in FORTRAN. Basically, executing a macro results in the creation of
another piece of code which is then evaluated to produce a result. Thus, execut
ing a macro is a two-step process: macro expansion and resultant code evalua
tion.

8.12 Macros 245

Any literal atom may have a macro definition, just as it has a function defi
nition cell. The macro definition is stored on the atom’s property list as a list.
The property name under which the definition is stored depends on the imple
mentation that you are using. Current property names include

MACRO implementation independent macros
lOMACRO macros fo r INTERLISP-10
DMACRO macros fo r INTERLISP-D
VAXMACRO macros fo r INTERLISP-VAX

8.12.1 Defining Macros
A macro is defined by placing a value for a macro property name on the property
list of a literal atom. Macro definitions can take several forms:

1. Lambda or Nlambda forms

When functions are compiled, they generate code that includes the
overhead necessary to create a stack frame. You may force a function to
compile open (e.g., generate in-line code) by placing a macro definition
with LAMBDA or NLAMBDA on the atom’s property list. The defini
tion takes the usual form of a LAMBDA or NLAMBDA S-expression.

Consider the code for REPLACADD which has the definition

(DEFINEQ
(replacaddd (x y)

(RPLACA (LAST x) y)
y))

and a test function, TESTl, defined as

(DEFINEQ (TESTl (X Y) (REPLACADDD X Y)))

We may put the macro definition for REPLACADDD on its prop
erty list using

(PUTPROP 'REPLACADDD 'MACRO (GETD 'REPLACADDD))

Now, compiling TESTl, we see the following code (under IN
TERLISP-10):

(TESTl (x y) NIL)
(ENTERF 2 0 0 0)

-1 (PUSHV X 0)
(PUSHV y 1)
(LAM

246 Function Definition and Evaluation

8.12 Macros 247

2 (RET)
(LDV y A)
(VCLL y 5 RPLACA 2)
(PUSHP)
(VCLL X 4 LAST 1)(J 2)
(BIND (x y) 2 0 2 2 NIL NIL T 2)

)
(RET)

But, if we remove the macro definition from REPLACADDD’s
property list via

(REMPROP 'REPLACADDD 'MACRO)

and recompile TESTl, we see the following code:

(TESTl (x y) NIL)
(ENTERF 2 0 0 0)

-1 (PUSHV X 0)
(VCLL y 1 REPLACADDD 2)
(RET)

In the case of the macro definition, the code for REPLACADDD was
compiled in-line to the definition of TESTl whereas in the second case, a
function call was generated.

2. Substitution Macros

A substitution macro takes one of two forms:

(NIL <expression>)
(<l i s t > (ex p ressio n))

Each argument in the S-expression being evaluated or compiled is
substituted for the corresponding atom in <list>. The resulting expres
sion is used instead of the form. Consider the example given in the IRM
[irm83]

^(PUTPROP 'ADDONE 'MACRO ' ((X) (IPLUS X I)))
((X) (IPLUS X 1))

<-(SETQ y '(5 6))
(5 6)
<-(EXPANDMACR0 (ADDONE (CAR Y)))
6

3. T Macros

When a macro definition has the value T, the compiler ignores the
macro definition and compiles the function definition instead. Normally,
this will be used with atoms that have both a MACRO property and a
specific implementation MACRO property, such as lOMACRO. The
MACRO property has the macro definition. If you want to run the func
tion on INTERLISP but the macro definition is valid only for IN-
TERLISP-D, setting the DMACRO property to T instructs the compiler
to ignore it when compiling the expression on INTERLISP-10 systems.

4. Synonym Macros

You may instruct the compiler to treat one function as if it were an
other when compiling expressions by specifying MACRO properties of
the following form:

(= . <other-function-name>)

For example, INTERLISP-D compiles many of the functions begin
ning with F (for “fast”—see the IRM) exactly like their interpreted
brethren (because of the way they are implemented in INTERLISP-D).
Thus, FRPLACAs are treated exactly like RPLACAs. However, this ap
proach does not work with any of the other implementations because
they compile into machine language.

These types of macros may be used to define synonyms for functions.
Suppose you frequently misspell the name of a function in a file. Rather
than searching the file to replace all of the misspellings, you might place
a synonym macro on the misspelling which specifies the correct function
to be used in compiling the file.

5. Computational Macros

A macro definition beginning with a literal atom other than those
above causes the S-expression value to be evaluated or compiled in place
of the form. This form is specified by

(<literal-atom> (expression))

The literal atom receives the argument list to the macro.
The IRM suggests that LIST could be compiled using the alternative

form

(LIST 'CONS

248 Function Definition and Evaluation

(X

(CAR X)
(AND (CDR X)

(CONS 'LIST
(CDR X)))))

Thus, the expression (LIST ‘MOSES ‘ABRAHAM ‘ISHMAEL)
would be compiled as

(CONS MOSES
(CONS ABRAHAM

(CONS ISHMAEL NIL)))

In this case, the macro expansion contains a recursive expression
that allows it to deal with any number of arguments to LIST.

For example, giving this macro property to TEST2:

^^(PUTPROP 'TEST2
'MACRO
'(X

(LIST 'CONS
(CAR X)
(AND (CDR X)

(CONS 'LIST
(CDR X))))))

(X (LIST 'CONS (CAR X) (AND (CDR X) (CONS 'LIST (CDR
X)))))
^(TEST2 'MOSES 'ABRAHAM 'ISHMAEL)
(MOSES ABRAHAM ISHMAEL)
^(TEST2 10 20 30 40 50)
(10 20 30 40 50)

where X has taken the value (10 20 30 40 50) prior to expanding the
macro definition.

If the literal atom evaluates to the litatom IGNOREMACRO, the
macro is ignored and the compilation or evaluation proceeds as if there
were no macro definition.

8.12.2 Expansion of Macros
Literal atoms may have both a function definition and a macro definition. When
the interpreter evaluates an expression, it inspects the CAR of the expression. If
the CAR of the expression has a function definition, that will be used (via a
function call) to evaluate the expression. If it has a macro definition, then the
expansion of the macro will be used to evaluate the expression.

8.12 Macros 249

The reverse is true during compilation. The macro definition is checked
first. If it exists, it is used to generate the code for evaluating the expression,
subject to the constraints mentioned above. If there is no macro definition, then
the function definition is used.

The IRM suggests that you may want to use a function definition that has a
lot of error handling and debugging code for interpreted expressions during sys
tem development, but replace this by a fast in-line macro expansion when you
compile the same expression (without the debugging code).

Interpreted macros are implemented by the function MACROTRAN (for
macro translation) which is an entry on DWIMUSERFORMS. If DWIM (see
Chapter 22) is not enabled, MACROTRAN will not work.

MACROTRAN is called if the CAR of an expression is undefined; that is,
does not have a function definition. If the CAR of the expression has a macro
definition, it is expanded and the result is evaluated in place of the original
expression. The value of the expansion (an expression itself) is saved by
CLISPTRAN (see Chapter 23) in CLISPARRAY so that the expansion need only
be performed once. On subsequent findings, the expansion is retrieved from
CLISPARRAY without invoking MACROTRAN.

EXPANDMACRO is a function that is used to expand the macro definition
of a literal atom and evaluate it during interpretation. It takes the form

Function: EXPANDMACRO

Arguments: 2

Arguments: 1) an expression, EXPRESSION
2) a qu ie t f lag , QUIETFLAG

Value: The r e s u lt of expanding the macro
d e f in itio n and evaluating i t .

The CAR of EXPRESSION must have a macro definition. This is expanded
by EXPANDMACRO and evaluated. The result will be prettyprinted, unless
QUIETFLAG is T, whence it is just returned.

Consider the definition for TEST2 as demonstrated in the following exam
ple

(EXPANDMACRO ' (TEST2 MATTHEW))
(CONS MATTHEW NIL)

250 Function Definition and Evaluation

8.12.3 A Function for Defining Macros
Other LISP dialects provide functions for defining macros. For example,
FranzLisp provides the function DEFMACRO which takes a form similar to a
function definition. We might define DEFMACRO as follows

«-(DEFINEQ
(defmacro

(NLAMBDA d e f in it io n
(PUTPROP (CAR d e fin itio n)

'MACRO
(CDR d e f in itio n))

(CAR d e fin itio n)
)))

(DEFMACRO)

(̂DEFMACRO NEQ (A B) (NOT (EQ A B)))
NEQ

^(GETPROP ’NEQ 'MACRO)
((A B) (NOT (EQ A B)))

(̂EXPANDMACRO '(NEQ X Y))
(NOT (EQ X Y))
<̂ (EXPANDMACRO (NEQ X Y))
T

with X set to ABC and Y set to DFE.
With this function, we may define two simple macros that treat a list like a

stack. PUSH and POP have the following definitions

<̂ (DEFMACRO PUSH (VALUE STACK)
(SETQ STACK (CONS VALUE STACK)))

PUSH
(̂DEFMACRO POP (STACK)

(PROGl
(CAR STACK)
(SETQ STACK (CDR STACK))))

POP
<-{SETQ STACK NIL)
NIL
<-(SETQ VALUE 'X)
X
<-(PUSH VALUE STACK)
(X)
<-(POP STACK)
X
<-STACK
NIL

8.12 Macros 251

Atom Manipulation

As we mentioned in Section 2.1, a literal atom is an indivisible unit of storage
that is allocated by INTERLISP at the user’s request. Atoms have names, the
PRINl-NAME (PNAME), that are printed by INTERLISP. Two atoms that
have the same PNAME have identical addresses in memory. Atoms are unique.
The PNAME is defined as the sequence of characters that will be displayed by
PRINL

An atom may be characterized by a property list, a value, a function defini
tion, and a PNAME. Property lists and their manipulation are discussed in
Chapter 7. Function definitions and their manipulation are discussed in Chapter
8. This chapter discusses the creation and manipulation of atoms, and the print
ing of their names and values.

The value cell of an atom is a set of memory locations that are allocated and
assigned to an atom when it is given a value. An atom may be given a value in
three ways:

1. Referencing it as a variable via SETQ
2. Specifying it as a function parameter
3. Specifying it as a PROG variable

An atom that has not been assigned a value has the atom NOBIND placed in
its value cell. Thus, a value cell contains either an explicit value (one that fits
into a computer word, such as an integer) or a pointer to a set of memory loca
tions that contain the atom’s value.

Value cells cannot be directly referenced by the user. They must be accessed
by referencing the atom as a variable.

The PNAME of an atom is the collection of characters that represents the
name of the atom as it appears when entered by the user or printed by the sys
tem. The length of the PNAME is implementation dependent. For example,

(SETQ maryland NIL)

253

254 Atom Manipulation

will create the atom MARYLAND if it did not previously exist in the system. The
sequence of characters MARYLAND is the PNAME of the atom. The user refer
ences the value of this atom by typing MARYLAND to the top-level READ-
EVAL-PRINT loop of INTERLISP. For example,

<-maryland
NIL

9.1 RULES FOR ATOM NAMES
The length of the PNAME of a literal atom depends on the implementation.
Currently, this length is 127 for INTERLISP-10, INTERLISP/VAX, and IN
TERLISP/370, and 255 characters for INTERLISP-D. Attempting to create a
literal atom with a PNAME whose length exceeds these limits causes the error
“ATOM TOO LONG” to be generated.

Literal atom names are any sequence of characters that

1. Cannot be interpreted as a number
2. Are delimited by one of the following syntactic characters:

space
EOL end-o f-line
<LF> lin e feed
(l e f t paren thesis
) r ig h t paren thesis
” double quote
[l e f t bracket
] r ig h t bracket

However, any character may be included in a literal atom name if it is pre
ceded by an <ESC> character, %. For example, we may create a rather unusual
atom name via the following expression

<^(SETQ k%{BC%)D NIL)
NIL

which creates the atom A(BC)D. To ask INTERLISP to print its value, we must
explicitly type the escape character before the left and right parentheses to indi
cate they are part of the atom’s name. Thus, we must enter

NIL

A PNAME is a collection of characters that are output when a pointer is
printed using PRINl (see Section 15.1.1) or PRINT (see Section 15.1.3). This is

often referred to as the PRINl-PNAME. PRINl does not print escape characters
that might occur in the name.

An alternative function, PRIN2 (see Section 15.1.2), prints all escape char
acters in the pointer’s name. PRIN2’s action may be modified by the action of a
read table.

The PNAME of an integer depends on the value of RADIX (see Section
15.4.4). Integers are always printed by PRINl using the current value of RA
DIX.

The number of characters permitted in a literal atom name allows you to be
both expressive and creative. It is hard to underestimate the value of using good
mnemonic names, and yet, you will find many INTERLISP programs that re
flect the influence of FORTRAN where only six characters were permitted.

Good names, particularly when they reflect the usage of the variable, make
a program easier to read. You may argue that you have to type in too many
characters time after time, which is a tedious process. True, but given the ten
dency of INTERLISP programmers to fail to document their functions, lengthy
names may help you remember what a function did weeks or months later.

I have found that it helps me read my programs by breaking up the literal
atom names with periods (.) or dashes (-). The latter works most of the time, but
CLISP (see Chapter 23) does have a tendency to interpret such names as the
subtraction of two variables. You might also consider using an underscore (__),
but I have found that some printers do not display that character. Rather, they
substitute a space which often leaves you wondering whether you are looking at
two atoms or a single atom with an unprintable underscore.

Consider some of the following atom names;

candidate.goals
deduce.plan.list
lexical.scanner
sentence.scanner
number.of.characters

It is unfortunate that most of the atom and function names used in IN
TERLISP do not follow this philosophy. You should contrast this with the read
ability of many ZetaLisp programs which use names broken into manageable
segments as suggested above.

9.2 Creating Atoms 255

9.2 CREATING ATOMS
We have mentioned that atoms are normally created in three ways:

1. via SETQ
2. as a function parameter
3. as a PROG variable

In each of these cases, the name of the atom is specified by you when you
execute an INTERLISP statement.

INTERLISP allows you to create atoms using three other functions: GEN-
SYM, PACK, and MKATOM.

9.2.1 GENSYM: Generating a Symbol
You may create an atom using GENSYM, which takes the form

Function: GENSYM

Arguments: 1

Argument: 1) a character sequence, CHAR

Value: A unique (usually) l i t e r a l atom.

GENSYM appends up to four digits to the character sequence to create the
atom name. The form of the atom name is

<characte r sequence><d ig its)

If the (character sequence) is NIL, INTERLISP uses the default character
A.

INTERLISP maintains an internal counter that is initialized to 10000. The
current value of GENNUM, a system variable, represents the value that was
used to create the last atom. GENNUM is incremented each time GENSYM is
executed. Consider the following examples:

-̂ GENNUM
10000

(GENSYM)
AOOOl

^(GENSYM)
A0002

^(GENSYM 'x)
X0003
*̂ -(GENSYM 'help)
HELP4

Note that GENSYM suppresses the appropriate number of leading digits
depending on the number of characters in its argument. Thus, when given the
argument HELP above, GENSYM suppresses all leading zeroes, and merely ap
pends the nonzero digits. This may cause a problem if you use character se

256 Atom Manipulation

quences with four characters in them. Consider the following expression (A
CLISP expression) and its results:

<-(FOR I FROM 1 TO 11 DO (PRINT (GENSYM 'HELP)))
HELPl
HELP2
HELP3
HELP4
HELP5
HELP6
HELP?
HELPS
HELP9
HELPO
HELPl

Note that the last atom name generated is not unique because GENSYM
suppresses leading digits. Caution should be exercised when using GENYSM
with character sequences larger than two or three characters if you expect to
create many atoms.

If the character sequence is five characters in length, GENSYM merely re
turns that character sequence. For example,

^GENNUM
10011
<-(GENSYM 'TRIAL)
TRIAL

but note that GENNUM is still incremented by one:

^GENNUM
10012
If the sequence is longer than five characters, GENSYM generates an error:

(GENSYM ' PROCRASTINATION)
ILLEGAL ARG
PROCRASTINATION

A Definition of GENSYM
One possible definition of GENSYM might be as follows:

(DEFINEQ
(gensym (a -s tr ln g)

9.2 Creating Atoms 257

258 Atom Manipulation

(PROG (atora-prefix)
(SETQ atom -prefix a -s trin g)
(COND

((NULL atora-prefix)

I f no character sequence is
sp ec ified , use the d efau lt.

)
(SETQ atom -prefix 'A))

((GREATERP (LENGTH (UNPACK atom -prefix))
5)

(*
Generate an e rro r i f the
character sequence length is
g rea te r than 5 characte rs .

)
(PRINT "ILLEGAL ARG")
(PRINT atora-prefix)
(RETURN)))

(*
Generate the atom name and increment
GENNUM. Note the use of PROGl.

)
(RETURN

(PROGl
(SET

(PACK
(APPEND

(UNPACK atom -prefix)
(LASTN (UNPACK GENNUM)

(DIFFERENCE 5
(LENGTH

(UNPACK atora-prefix)))
)))

NIL)
(SETQ GENNUM (ADDl GENNUM)))))

))

INTERLISP does not guarantee that the atom it creates will be unique. This
situation may arise if you create atoms having the form specified above. Suppose
the current value of GENNUM is 10056. Further, suppose you have previously
created an atom J0057. If you execute

<-(GENSYM ’j)
J0057

INTERLISP does not create a new atom J0057 because one alreay exists by
that name. Assignment of a value to what you expected to be a new atom may, in
fact, overwrite the value of the existing atom (possibly with disastrous conse
quences). Good programming practice dictates that you do not use atom names
of this form in your programs.

It is permissible to reset the value of GENNUM within your program, but
you do so at some risk. In fact, if you follow the advice regarding the specifica
tion of atom names given above, you should never run the risk of conflict be
tween atom names created by GENSYM and those that you have created.

9.2.2 MKATOM: Creating Atoms from Strings
When executing programs, you may want to create atoms having names that are
dependent on data read in or created by the program. For example, suppose you
have a program that maintains a catalog of books by author. Entries in the cata
log are represented by atoms constructed from the author’s name. New entries in
the catalog are made by reading the author’s name and manipulating it to create
a new atom.

We can create a new atom from the string representing the author’s name
using MKATOM, which takes the following form

Function: MKATOM

Arguments: 1
Arguments: 1) an expression , EXPRESSION
Value: A new atom whose pname is the ch arac te rs

comprising the s tr in g .

If the value of EXPRESSION is not a string, INTERLISP applies MK-
STRING to it. If this succeeds, MKATOM creates an atom, if one does not
already exist, with the PNAME given by the value of the string.

Consider the following examples:

•^(SETQ z "NOW IS THE TIME FOR ALL GOOD MEN”)
"NOW IS THE TIME FOR ALL GOOD MEN"

(̂MKATOM z)
NOŴ IS^ THÊ TIME ̂ FOR̂ ALL̂ GOOD̂ MEN

which is an atom with 32 characters in its name. The %s indicate that the spaces
are valid characters in the name of the atom.

«-(SETQ X (LIST ’ju l iu s 'c a e sa r))
(ju l iu s caesar)

(̂MKATOM x)
^(JULIUS^ CAESAR̂)

9.2 Creating Atoms 259

Note that the parentheses have been included as valid symbols in the name
of the atom. This occurs because the result of evaluating (LIST ‘JULIUS ’CAE
SAR) is (JULIUS CAESAR) v̂ ĥich is then given to MKSTRING. If the string
has a length greater than that allowed for an atom name in the particular imple
mentation, the error “ATOM TOO LONG” will be generated.

<-(SETQ X 3.141592)
3.141592
<-(MKATOM x)
3.141592

<̂ (MKATOM "3.141592")
3.141592

Numbers are literal atoms, by definition. No literal atom can have the
PNAME of a number except the number itself.

A Definition for MKATOM
We can define MKATOM as follows:

(DEFINEQ
(mkatom (a -s tr in g)

(PROG (th e -s tr in g)
(SETQ th e -s tr in g a -s tr in g)
(COND

((NOT (STRINGP a -s tr in g))
(SETQ th e -s tr in g

(MKSTRING a -s tr in g))))
(RETURN

(SET
(GAR

(PACK
(UNPACK th e -s tr in g)))

NIL)))
))

260 Atom Manipulation

9.2.3 Making an Atom from a Substring
Given a string, you may make an atom name from a substring of the string using
SUBATOM, which takes the form

Funct io n : SUBATOM

Arguments: 3

Arguments: 1) an expression , EXPRESSION
2) a s ta r in g index, START
3) an ending index, END

Value: A l i t e r a l atom name crea ted from the
su b strin g ex trac ted from the value of
EXPRESSION.

Usually, START and END are positive and characters are counted from the
beginning of the string. If either START or END is negative, then that index is
counted from the end of the string.

If the value of EXPRESSION is not a string, MKSTRING is applied to it to
create a string to which SUBSTRING is applied.

Consider the following examples:

<-(SETQ s tr in g "Washington was the fa th e r of h is
country")
"Washington was the fa th e r of h is country"

From this string we might extract a few substrings which become atoms in a
database we are building from strings that are read into our program. For exam
ple, the key figure in this string is WASHINGTON, so we can extract his name
as an atom via

SUBATOM s tr in g 1 10)
WASHINGTON

<-(SUBATOM s tr in g 20 25)
FATHER

If START or END is negative, it indicates a position counting backwards
from the end of the string. Thus, we could extract FATHER as follows

<-(SUBATOM s tr in g -21 -16)
FATHER

Note that if the value of the substring could be interpreted as a number, then
the value of SUBATOM would be the corresponding number. Consider the fol
lowing example:

(SUBATOM "Ju ly A, 1776" 9 -1)
1776

A Definition for SUBATOM
We might define SUB ATOM to be

9.2 Creating Atoms 261

(DEFINEQ
(subatom (expression s t a r t end)

(MKATOM (SUBSTRING expression s t a r t end))
))

9.3 PACKING AND UNPACKING ATOMS
As we mentioned, an atom is an indivisible unit. But the name of an atom is
merely a sequence of characters which, themselves, are indivisible units. We can
break an atom name up into its constituent parts using the function UNPACK
(sometimes called EXPLODE in other LISP systems). Conversely, we create
atom names from a sequence of characters (or character codes) using the func
tion PACK (sometimes called IMPLODE in other LISP systems).

PACK and UNPACK allow you to create atom names which represent both
similarity and diversity. For example, the first N characters of a name could be
the same indicating a similarity of purpose of the names, while the remaining
characters are different indicating the different purpose of each of the atoms.

9.3.1 Packing Atoms
PACK concatenates any number of individual atom names into a single atom
name. PACK takes the following form

Function: PACK
PACKC

Arguments: 1

Argument: 1) a l i s t of atoms, LST

Value: An atom.

In fact, PACK really concatenates the PNAMEs of the individual atoms in
LST to form the PNAME of the result. If the argument is not a list, PACK gener
ates an error message: ILLEGAL ARG. Consider the following examples:

<-(PACK 'A)
ILLEGAL ARG
A
^(PACK ' (r e a g a n))
REAGAN

<-(PACK ' (1 3 . ^))
13.4

<-(PACK '(1 E -3))
.001

262 Atom Manipulation

Note that if PACK produces the PNAME of a number as its result, when
that PNAME is printed, it will appear correctly formatted by notation and radix.

If the length of the resulting atom name is longer than the maximum allow
able atom name for your implementation, INTERLISP generates the error
“ATOM TOO LONG” .

A nospread version of PACK, PACK*, takes an indefinite number of argu
ments but avoids the CONSes required to form the result. It takes the form

Function: PACK*

Arguments: 1-N

Arguments: 1-N) LISP ob jec ts

Value: The concatenated r e s u l t of the arguments
as an atom's pname, i f v a l id .

PACK* is a nospread function. Consider the following examples;

<-(PACK* 'A 'Q 'U ' I 'N 'A 'S)
AQUINAS
<-(PACK* 1 7 8 2)
1.782

Another variant, PACKC, takes a list of character codes and returns the
alphanumeric equivalent of the PNAME. For example,

(PACKC '(45 67 89))
-?v

9.3 Packing and Unpacking Atoms 263

9.3.2 Unpacking Atoms
The converse function allows you to UNPACK the PNAME of an atom. Its value
is a list of atoms corresponding to the PNAMEs of the characters comprising the
PNAME of the argument. The generic format of UNPACK is

Function: UNPACK

Arguments: 1-3
Arguments: 1) an atom or s t r in g , ATM

2) a f la g , FLAG
3) a read ta b le , RDTBL

Value: A l i s t of atoms th a t comprise the PNAME of
ATM.

Consider the following examples:

(UNPACK ' (Washington))
(W a s h i n g t o n)

(UNPACK 3.141592)
(3 1 4 1 5 9 2)

(UNPACK "BRIGADOON”)
(B R I G A D 0 0 N)

If FLAG is NIL, UNPACK produces a list of atoms corrsponding to the
PRINl-PNAME of the first argument. However, if FLAG has the value T, then
the result corresponds to the PRIN2-PNAME of the first argument. The inter
pretation of the PRIN2-PNAME is modified by the RDTBL (see Section 14.4).

(UNPACK '(WASHINGTON) T)
W A S H I N G T O N

264 Atom Manipulation

(UNPACK "BRIGADOON" T)
{%" B R I G A D O O N %")
- (̂UNPACK 3.141592 T)
(3 5̂ . 1 4 1 5 9 2)

Note that UNPACK will execute N CONSes where N is the number of char
acters in the argument to be unpacked.

9.3.3 Using PACK and UNPACK
The primary use of UNPACK is to produce a list of atoms that may be manipu
lated by other functions.

Suppose that you have a program that processes an input file to produce an
output file. You prompt the user for the basic file name. Using this name, you
generate an input file name that has the proper extension to distinguish the file
types according to function.

We can construct the function MAKE-INPUT-TEXT-FILE-NAME using
PACK and UNPACK. This function assumes that the input file type is “ .text”

(DEFINEQ
(make-input-text-file-narae (file-name)

(PROG (input-file-nam e temp-file-name)
(SETQ temp-file-name (UNPACK file-name))
(SETQ input-file-nam e NIL)

loop
(COND

((EQUAL (CAR temp-file-name) ' .)
(GO e x i t))

(T
(TCONC input-file-nam e

(CAR terap-file-name))))
(SETQ temp-file-name

(CDR temp-file-name))
(AND

(NULL temp-file-name)
(GO e x i t))

(GO loop)
e x i t

(RETURN
(PACK

input-file-nam e
(UNPACK ' . t e x t))))

))

And, when we execute this function

^(MAKE-INPUT-TEXT-FILE-NAME 'MONDALE-CAMPAIGN)
MONDALE-CAMPAIGN. TEXT

9.4 CHARACTER CONVERSION
Converting between the numeric equivalent of a character and its PNAME for
mat is a useful function. There are two functions to accomplish this; CHCON
and CHARACTER.

9.4 Character Conversion 265

9.4.1 CHCON: Converting to a Number
CHCON converts the PRINl-PNAME equivalent of an atom to a list of its nu
meric equivalents. This function is dependent on the character code used by the
machine on which INTERLISP is implemented. Consider the following example
(assuming EBCDIC):

•<-(CHCON 'tungsten)
(163 16A 1-49 135 162 163 133 149)

The generic format for calling CHCON is

Function: CHCON

Arguments: 1-3

Arguments: 1) an atom or string, ATM
2) a flag, FLAG
3) a read table, RDTBL

Value: A l i s t of the numeric equivalents of the
characters comprising the PNAME of the
f i r s t argument.

If FLAG has a value of T, the PRIN2-PNAME will be used instead of the
PRINl-PNAME. If the read table is non-NIL (see Section 14.4), it is used to
interpret the characters in PRIN2-PNAME.

An alternative form, CHCONl, returns the character code of the first char
acter of the atom or string. CHCONl does not use either the PRIN2-PNAME or
the read table as CHCON does. It takes the form

Function: CHCONl

Arguments: 1

Argument: 1) an atom or s t r in g , ATM

Value: The character code of the f i r s t character
of the PNAME of ATM.

Consider the following example:

•^(CHCONl ’tungsten)
163

A Definition for CHCONl
We might define CHCONl as follows:

(DEFINEQ
(chconl (atm)

(NTHCHARCODE atm 1)
))

9.4.2 CHARACTER: Converting to the PNAME Equivalent
CHARACTER takes a single character code as its argument and returns the
PNAME equivalent. It takes the form

Function: CHARACTER

Arguments: 1

Argument: 1) a charac ter code, CC

Value: The atom with the corresponding character
as i t s PNAME.

Consider the following examples:

266 Atom Manipulation

9.4 Character Conversion 267

^(CHARACTER 149)
N

(CHARACTER 202)
J

(CHARACTER 32)
^<space>

^(CHARACTER 13)

*
because 32 i s th e code fo r a blank!

because 13 i s a l in e - fe e d .

You should experiment with some of the non-printing characters to deter
mine their behavior when the corresponding character codes are given to CHAR
ACTER at the top level.

9.4.3 Character Code Structures
CHARCODE allows you to convert all the elements of an S-expression to charac
ter codes with one function. It takes the form

Func t io n : CHARCODE

Arguments: 1

Argument: 1) an S -ex p ressio n , EXPRESSION

Value: An atom o r l i s t w ith a l l c h a ra c te rs
rep laced by th e i r corresponding c h a ra c te r
codes.

CHARCODE is an NLAMBDA function. Consider the following example:

CHARCODE x)
88
^(CHARCODE "D”)
68
< -(CHARCODE (M I C H E N E R))
(77 73 67 72 69 78 69 82)

CHARCODE is especially useful when you must specify non-printing ASCII
characters. A control character may be represented by preceding a character
with <t>. For example,

<-(CHARCODE <t>B)
2

If an atom or string begins with #, CHARCODE interprets it as an indica
tion of a meta-character. Normally, ASCII uses the integers 0 to 127 to represent
characters. However, bytes are normally accorded a length of 8 bits, so there are
another 128 integers (128-255) that are unused. By preceding a character with #,
the character code that is returned is translated to the extended ASCII range.
For example, *

♦-(CHARCODE #X)
216

CHARCODE provides atoms for the most frequently used non-printing
characters:

Character Code Atom

268 Atom Manipulation

13 CR
10 LF
32 SPACE, SP
27 ESC, ESCAPE

7 BELL
8 BS (e .g . , backspace)
9 TAB
0 NULL

127 DEL

CHARCODE also maps NIL into NIL because some character manipula
tion functions can return NIL as their value.

9.4.4 Character Translation
One of the most difficult problems that many users face in transporting pro
grams from one computer system to another is the translation from one charac
ter set to another. There are two major character sets: ASCII and EBCDIC.
ASCII is used by IN TEm SP-10, INTERLISP/VAX, and INTERUSP-D.
EBCDIC is used by INTERLISP/370. This section describes a character trans
lation function for converting from ASCII to EBCDIC (since it is the least fre
quent direction of conversion).

The translation procedure may be defined as a table lookup procedure. We
will use the character code of the ASCII character as an index into the table to
determine the corresponding EBCDIC value.

We may initialize the EBCDIC array as follows:

(DEFINEQ
(initialize-ebcdic-array NIL

(PROG (ebcdic-table)

(SETQ ebcd ic-tab le (array 256 0 ’FIXP)
(FOR I FROM 0 TO 75

DO
(SETA ebcd ic-tab le I I))

(SETA ebcd ic-tab le 76 (CHCONl '<))
(SETA ebcd ic- tab le 77 (CHCONl ' [))
(SETA ebcd ic-tab le 78 (CHCONl '+))
(SETA ebcd ic- tab le 79 (CHCONl '))
(SETA ebcd ic-tab le 80 (CHCONl '&))
(FOR I FROM 8 TO 89

DO
(SETA ebcd ic-tab le I I))

(SETA ebcd ic-tab le 90 (CHCONl ' !))
(SETA ebcd ic-tab le 91 (CHCONl '$))
(SETA ebcd ic-tab le 92 (CHCONl '*))
(SETA ebcd ic-tab le 93 (CHCONl ')))
(SETA ebcd ic-tab le 9^ (CHCONl ' ;))
(FOR I FROM 95 TO 108

DO
(SETA ebcd ic-tab le I I))

(SETA ebcd ic-tab le 109 (CHCONl '))
(SETA ebcd ic-tab le 110 (CHCONl '>))
(SETA ebcd ic-tab le 111 (CHCONl '?))
(FOR I FROM 112 TO 120

DO
(SETA ebcd ic-tab le I I))

(SETA ebcd ic- tab le 121 (CHCONl "))
(SETA ebcd ic-tab le 122 (CHCONl ' :))
(SETA ebcd ic-tab le 123 (CHCONl '#))
(SETA ebcd ic-tab le 12A (CHCONl '@))
(SETA ebcd ic- tab le 125 (CHCONl "))
(SETA ebcd ic-tab le 126 (CHCONl '=))
(SETA ebcd ic-tab le 127 (CHCONl " '))
(SETA ebcd ic-tab le 128 128)
(FOR I FROM 129 TO 137

DO
(SETA ebcd ic-tab le

I
(CHCONl

(L-CASE
(CHARACTER I)
NIL))))

Now, we have to be able to handle conversion of several different types of
data objects. Our function to perform this translation for atoms is given below;

9.4 Character Conversion 269

(DEFINEQ
(convert.to .ebcdic (x)

(PROG (re su lt)
(COND

((ATOM x)
(RETURN

(PACK
(MAPCONC (UNPACK x)

(FUNCTION lookup)))))))
))

As an exercise, you might consider how to include strings and lists as data
types to be handled by the COND clause.

9.5 DETERMINING PNAME LENGTH
When constructing a formatted buffer for printing, we often need to know the
number of characters comprising the PNAME of an atom or string in order to
avoid overflowing the buffer. INTERLISP provides NCHARS to tell us how
many characters make up the PNAME of its argument. For example,

<<-(NCHARS 'hydrogen)
8

^(NCHARS "einsteinium ” T)
13

because the “s are included as part of the PNAME.

(NCHARS 1756.7)
6

(NCHARS "Now is the time fo r a l l good men")
34

The generic format for calling NCHARS is

Function: NCHARS

Arguments: 1-3

Arguments: 1) an atom or s t r in g , ATM
2) a f la g , FLAG
3) a read ta b le , RDTBL

Value: The number of characters comprising the
PNAME or NIL.

270 Atom Manipulation

If the value of FLAG is T, then NCHARS uses the PRIN2-PNAME of its
first argument. If RDTBL is non-nil (see Section 14.4), it is used to interpret the
characters comprising the PRIN2-PNAME of its first argument.

We can define a basic form of NCHARS for PRINl-PNAMEs as follows:

(DEFINEQ
(nchars (argument)

(COND
((OR

(ATOM argument)
(STRING? argument)
(NUMBER? argument))
(LENGTH (UNPACK argument))))

9.6 Extracting Characters 271

))

9.6 EXTRACTING CHARACTERS
You may want to extract the Nth character of the PNAME of an atom. NTH-
CHAR takes the form

Function: NTHCHAR
NTHCHARCODE

Arguments: -4
Arguments: 1) an atom or s t r in g , ATM

2) an index, N
3) a f la g , FLAG
4) a read tab le , RDTBL

Value: The Nth charac te r of ATM otherwise, NIL.

NTHCHAR returns the Nth character of the PNAME of ATM. N may be
positive, whence the character is extracted relative to the beginning of the name,
or negative, whence it is extracted relative to the end of the name. NTHCHAR
returns NIL if N is greater than (NCHARS x) or less than (MINUS (NCHARS
x)). For example,

(NTHCHAR 'BALTIMORE 5)
I
^(NTHCHAR ’BALTIMORE)
NON-NUMERIC ARG
NIL

because we have not specified any value for N.

^̂ (NTHCHAR "BALTIMORE” 5)

272 Atom Manipulation

An alternative form, NTHCHARCODE, returns the character code of the
Nth character. For example,

(̂NTHCHARCODE 'BALTIMORE 5)
73

(NTHCHARCODE 'BALTIMORE 0)
NIL

(NTHCHARCODE 1 J 4 5 3)
51

(NTHCHARCODE ’BALTIMORE -4)
77

If FLAG is T, either function uses the PRIN2-PNAME of ATM mediated by
the read table (see Section 14.4).

A Definition for NTHCHAR
We might define NTHCHAR as follows:

(DEFINEQ
(nthchar (atm n)

(COND
((OR

(ATOM atm)
(STRING? atm)))

(T
(ERROR "ILLEGAL ARG" atm)))

(COND
((GREATERP (ABS n)

(LENGTH (UNPACK atm)))
NIL)

((GREATERP n 0)
(CADR (LASTN (UNPACK atm) n)))

((LESSP n 0)
(CADR (LASTN (UNPACK atm)

(PLUS (LENGTH (UNPACK
atm))

n)))))
))

9.7 SELECTING ALTERNATIVES BY CHARACTER CODES
Many applications use single characters as commands. SELCHARQ allows you
to branch to different alternatives based on the value of a single character code.
This function is also heavily used in writing communications software to assist in
the deciphering of protocol characters generated by different host systems. It
takes the form

Function: SELCHARQ
Arguments: 2-N

Arguments: 1) an expression, EXPRESSION
2-N) c lauses , CLAUSE[i]

Value: The value of the l a s t expression in the
se lec ted s e t of c lauses.

SELCHARQ operates like SELECTQ (see Section 3.6). However, it uses the
character code equivalent of the value of EXPRESSION rather than the quoted
character itself. Each clause takes the form

(<key> (a c t io n))

where <key> is a single character or a list of characters to be matched against the
value of EXPRESSION. When a match is found, all of the expressions appear
ing in <action) are executed. The value of SELCHARQ is the value of the last
expression executed in the clause. Matching is performed using EQ for single
characters or MEMB for a list of characters. There must be a default clause
which is the last clause in the list of selectors. If no match is found, the expres
sions in the default clause are executed. The value of SELCHARQ is then the
value of the last expression executed in the default clause.

SELCHARQ is an NLAMBDA, nospread function.

9.8 CASE FUNCTIONS
INTERLISP normally operates in upper case. That is, it accepts all commands
and expressions in upper case. However, it makes provision for accepting lower
case characters in certain instances. The body of a comment may be lower case
as may the contents of a string. When matching strings, you must be careful to
ensure that they correspond in case at every character position. Certain CLISP
words may also be entered in lower case, whence CLISP performs the appopriate
translation before executing the statement.

INTERLISP provides several functions for translating from one case to the
other and for testing the case of an object.

L-CASE translates an object to lower case while U-CASE translates an ob
ject to upper case. They take the form

9.8 Case Functions 273

Function: L-CASE
Arguments: 2

Arguments: 1) an ob ject, X
2) a f lag , FLG

Value: The lower case representation of X.

L-CASE produces a lower case version of X. If FLG is T, the first letter will
be capitalized. For example,

(L-CASE 'WICHITA)
Wichita

^(L-CASE 'WICHITA T)
Wichita

^(L-CASE "FILE NOT FOUND")
" f i l e not found"

If X is a list, L-CASE returns a new list with L-CASE applied to each ele
ment of the list. For example,

(L-CASE '(MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY) T)
(Monday Tuesday Wednesday Thursday Friday)

U-CASE takes the form

Function: U-CASE
U-CASEP

Arguments: 1

Argument: 1) an ob jec t, X

Value: An upper case represen ta tion of X.

Consider the following example:

(U-CASE "As I was walking to S t. Ives")
"AS I WAS WALKING TO ST. IVES"

You may test if an object is an upper case representation using the predicate
U-CASEP. U-CASEP returns T if its argument, an object X, contains no lower
case characters. Consider the following example:

(U-CASEP '(SATURDAY SUNDAY))
T

274 Atom Manipulation

10

string Manipulation
Functions

A string is a sequence of zero or more alphanumeric and/or special characters
that represents a literal value. Unlike atoms, strings do not represent memory
locations within INTERLISP and, therefore, do not have values except the string
representation itself. A string is demarcated by " (double quote). A string may
be assigned as the value of an atom.

INTERLISP provides a comprehensive set of functions for creating and ma
nipulating strings. This chapter describes these functions and some applications
demonstrating how strings may be used.

10.1 CREATING A STRING
The basic function for creating a string is MKSTRING, which takes the follow
ing format

Function: MKSTRING

Arguments: 1
Argument: 1) an atom or l i s t , X
Value: A s t r in g corresponding to the PRINl-PNAME

of X.

Consider the following examples:

(MKSTRING)
"NIL"
<-(MKSTRING 'x)
"X"

where the PRINl-PNAME of ‘X is X.

275

When a string is created, INTERLISP builds an internal data structure con
sisting of a string pointer and the sequence of characters that comprise the
string. The string pointer contains the storage location where the sequence of
characters begins and the number of characters comprising the string. Several
string pointers may reference the same set of characters. String pointers may
also point into the middle of a sequence of characters (as a result of CONCAT or
SUBSTRING). This approach guarantees efficient management of string stor
age space.

We may also create a string by assigning it as a value to an atom. For exam
ple,

<-(SETQ a -s tr in g
"Go therefore and make d isc ip les of a l l nations”)

”Go there fo re and make d isc ip les of a l l nations”

implicitly performs an MKSTRING to create the string data structure. The
value of the atom is the string pointer.

If we give MKSTRING a list as its argument, it makes a string of the whole
list (including the parentheses). For example,

<^(SETQ proverb
(LIST 'a ' s t i t c h ' i n 'time 'saves 'n ine))

(a s t i t c h in time save nine)

^(SETQ cliche (MKSTRING proverb))
"(a s t i t c h in time saves n ine”

But, this is not what we want! The result includes the parentheses. To rem
edy the situation, let us write a recursive procedure that converts a list into a
string:

(DEFINEQ
(m ake .S tr ing .from .lis t (1st)

(CONCAT (MKSTRING (CAR 1st)
(COND

((NULL 1st) (MKSTRING))
((m ak e .s tr in g .f ro m .lis t (CDR 1 s t))))

))

Now, let us apply this function to the previous example:

^(SETQ c liche (MAKE.STRING.FROM.LIST proverb))
"a s t i t c h in time saves nine"

276 String Manipulation Functions

10.1.1 Allocating a String Pointer
You may create a string pointer of a given length and initialize it to a default
character value using ALLOCSTRING. It takes the form

Function: ALLOCSTRING
Arguments: 3

Arguments: 1) the length of the s t r in g , N
2) the i n i t i a l i z a t i o n cha rac te r , INITCHAR
3) an old s t r in g p o in te r , OLDPTR

Value: A s t r in g of length N in i t i a l i z e d to
INITCHAR.

INITCHAR must be a character code or an expression that is coercible to a
character code. If INITCHAR is an atom, the first character of the atom is used
as the initialization character. If INITCHAR is NIL, it defaults to the character
code N (from NIL). Consider the following examples:

^(ALLOCSTRING l)
"N"

10.2 Extracting Substrings 277

(ALLOCSTRING 3 0)
tr

^(ALLOCSTRING 5 'B)
"BBBBB"

(ALLOCSTRING 10 'HELP)
"HHHHHHHHHH”

^(ALLOCSTRING 4 (LIST 'a 'b))
” ((((• '
^(ALLOCSTRING)
NON-NUMERIC ARG
NIL

because a string must have a length greater than 0.

10.2 EXTRACTING SUBSTRINGS
Strings, from an external viewpoint, are indivisible objects in INTERLISP. That
is, each function manipulates the entire contents of the string. However, we of
ten need to break strings down into their constituent parts (for example, when
processing textual data). Two major operations are necessary;

1. Extracting a substring
2. Peeling characters from the beginning or end of a string one-by-one

10.2.1 The SUBSTRING Function
Given a string, we can create a new string by extracting a portion of it—the
substring operation. The function SUBSTRING allows us to extract pieces of a
string. The format for SUBSTRING is

Funct io n : SUBSTRING

Arguments: 4

Arguments: 1) an S-expression whose value is a
s t r in g , STRING

2) the index of the f i r s t character of the
intended substring , N

3) the index of the l a s t character of the
intended substring , M

-4) an optional s t r in g po in te r, OLDPTR

Value: The specified substring; otherwise, NIL.

SUBSTRING extracts the Nth through Mth characters of the string. If M is
NIL, SUBSTRING extracts the Nth through last characters of the string. N may
not be NIL. Both N and M may be negative numbers, thus referring to the end of
the string rather than its beginning.

^(SETQ STR ’’WELCOME TO THE THEATRE”)
"WELCOME TO THE THEATRE”

(SUBSTRING STR 9 l4)
”T0 THE”

(SUBSTRING STR 16)
’’THEATRE”

(SUBSTRING STR NIL 7)
NON-NUMERIC ARG
NIL

♦-(SUBSTRING STR l4 9)
NIL

^(SUBSTRING STR -14 -9)
”T0 THE”

If the string is not defined, e.g., then SUBSTRING applies MKSTRING to
the first argument before extracting the subtring.

278 String Manipulation Functions

10.2 Extracting Substrings 279

N and M must be well-defined according to the following conditions:

N < M
N < (NCHARS string) and M < (NCHARS string), if M not NIL
If N or M is negative, then N (or M) < (MINUS (NCHARS string))
If OLDPTR is a string pointer, it is reused to perform the subtring op
eration; otherwise, a new string pointer will be created.

10.2.2 Getting the Next or Last Character
Many parsing programs, particularly command recognizers, need to extract
characters from a string one-by-one. GNC allows you to get the next character
from a string. GNC maintains an internal pointer to the string. It does not physi
cally remove characters from the string, but merely changes the pointer and the
byte count. Thus, when you print the string, it appears as if characters have been
removed because the pointer has been changed.

If the argument is not a string, GNC applies MKSTRING to it before ex
tracting the specified character. If the argument is NIL or the null string, GNC
returns NIL.

GLC allows you to get the last character of a string. As with GNC, the
pointer and the byte count are changed. Together, these two functions allow you
extract characters from either end of the string.

These functions take the following format

Function: GNC
GLC

Arguments: 1

Argument: 1) a s t r in g , X
Value: The next or l a s t charac te r of X.

Consider the following example:

■^(SETQ z "Now is the time fo r a l l good men")
"Now is the time fo r a l l good men"
<^(for I from 1 to 32 do (PRINl (GNC z)) (SPACES 1))
N o w i s t h e t i m e f o r a l l g o o d m e n

< -(fo r I from 1 to 32 do (PRINl (GLC z))(SPACES 1))
n e m d o o g l l a r o f e m i t e h t s i w o N

^(GNC)
N

because it applies (MKSTRING) which yields “NIL” and

^(GLC)
L

for the same reason.

■^(SETQ s tr in g "rum pelstiltsk in")
"rum pelstiltsk in"

•<-(GNC s tr ing)
R
♦ -s tr in g
"um pelstiltsk in"

<-(GLC s tr in g)
N

s tr in g
"um pe ls ti l tsk i"

Thus, if you need to preserve the original value of the argument, you should
copy it before applying either GNC or GLC to it. Consider the following exam
ple:

280 String Manipulation Functions

•^(SETQ s t r in g
"abc”

<-(GNC str in g)
a

< (̂GNC str in g)
b

<̂ (GNC str in g)
c

-^(GNC str in g)
NIL

because the value of STRING is now the null string.

10.3 CONCATENATING STRINGS
The functions in Section 10.2 allow you to take strings apart. CONCAT allows
you to put two or more strings together into a new string. The format for CON
CAT is

Function: CONCAT

Arguments: 1-N

Arguments: 1) a s t r in g , STRING[1]
2-N) s t r in g s , STRING[2] . . . STRING[n]

Value: A new s t r in g composed of the ind iv idual
arguments.

CONCAT is a nospread function. CONCAT creates a new string pointer
and copies each of the argument strings to the new string. If any of the argu
ments are not strings, CONCAT applies MKSTRING to it before copying. Con
sider the following example:

(CONCAT)
e .g . , the n u l l s t r in g .

<-(CONCAT ''Baltimore” " " ' i s " " 'b e s t .)
"Baltimore i s b e s t . "

10.3 Concatenating Strings 281

10.3.1 Concatenating a List of Objects
CONCATLIST concatenates a list of strings or other INTERLISP objects to
form a string. It takes the form

Function: CONCATLIST

Arguments: 1
Argument: 1) a l i s t of o b jec ts , LST
Value: A new s t r in g th a t is the concatenation of

the ind iv idual elements of LST.

If the elments of LST are not strings, MKSTRING is applied to each in turn
to produce a string which is concatenated into the result. Consider the following
examples:

(CONCATLIST)
T t T T

which is the null string.

^(CONCATLIST (LIST 'a 'b 'c 'd 'e ' f))
' 'ABCDEF"

A Definition for CONCATLIST
We might define CONCATLIST as follows:

(DEFINEQ
(c o n c a t l i s t (1st)

(APPLY (FUNCTION CONCAT) 1st)
))

10.4 TESTING STRINGS
There are two types of tests that we would like to apply to strings. The first deter
mines if the argument is a string. The second determines if two strings are equal.

10.4.1 Determining String Existence
STRINGP allows you to determine whether a given S-expression is a string or
not. It returns the value of the S-expression if it is a string; otherwise, NIL. It
takes the form

Function: STRINGP

Arguments: 1

Argument: 1) a s t r in g , STRING

Value: The value of STRING i f i t is a s tr in g ;
otherwise, NIL,

Consider the following examples:

(STRINGP "Baltimore is b e s t . ”)
"Baltimore is b e s t ."

^(STRINGP)
NIL

(STRINGP 1.56)
NIL

10.4.2 Testing the Equality of Strings
STREQUAL allows you to determine if two strings, X and Y, are equal. Equality
is decided by determining whether or not the strings will print the same. Strings
may be equal without satisfying EQ as explained in Section 4.6. STREQUAL
takes the form

Func t io n : STREQUAL

Arguments: 2

Arguments: 1) a s t r in g , X
2) a s t r in g , Y

Value: T, i f the s t r in g s are equal.

282 String Manipulation Functions

Consider the following examples:

•^(STREQUAL "New York" "New York")
T

■*—(EQ "Washington" "Washington")
NIL

^(EQUAL "Washington" "Washington")
T

Two separate string pointers are created by INTERLISP when strings are
read in from the terminal (by RSTRING—see Section 14.2.4). Thus, the two
string pointers in the example above are not EQ, although their contents are
EQUAL. Note that EQUAL uses STREQUAL to determine the equality of two
strings.

10.4.3 Testing String Membership
In many cases, we want to know if one string exists within another string.
STRMEMB determines if its first argument, a string, is contained within its
second argument, another string. It takes the form

Function: STRMEMB
Arguments: 2

Arguments: 1) a s t r in g , X
2) a s t r in g , Y

Value: The substr ing of Y, i f X is contained
w ithin Y; otherwise, NIL.

Consider the following examples:

<-(STRMEMB "X" "TAX YEAR")
"X YEAR"

STRMEMB returns the substring of Y beginning with X if X is included
within Y.

A Definition for STRMEMB
We might define STRMEMB as follows:

(DEFINEQ
(strmemb (x y)

(PROG (achar index)
(SETQ y (SUBSTRING y 1))

10.4 Testing Strings 283

284 String Manipulation Functions

loopl
(SETQ index 1)

loop2
(SETQ achar (NTHCHAR x index))
(COND

((NULL achar)
(RETURN y)))

(COND
((EQ achar (NTHCHAR y index)

(SETQ index (ADDl index))
(GO loop2)))

(COND
((NULL (GNC y))

(RETURN NIL))
(T (GO loop l))))

))

10.5 REPLACING ELEMENTS OF A STRING
In many programs, as we process strings, we want to replace characters in the
string by new characters. RPLSTRING allows you to substitute characters
within strings. The format of RPLSTRING is

Funct io n : RPLSTRING

Arguments: 3

Arguments: 1) an o r ig in a l s t r in g , X
2) the index of su b s t i tu t io n , N
3) the su b s t i tu t io n s t r in g , Y

Value: The modified version of the s t r in g X.

RPLSTRING replaces characters in X beginning at the Nth character with
characters from Y. Substitution continues until either Y is exhausted or the
length of X is exceeded. Replacement is a one-for-one substitution of characters
in X, If there is not enough room in X to accommodate the new string, an error
occurs. X is physically modified by this operation. Note that if X is a substring of
some other string, say Z, then Z is modified also. Thus, you should exercise
caution concerning the indiscriminate modification of strings as a ripple effect
may occur that was not intended.

N may be positive or negative, but may not be greater than (NCHARS x). If
either X or Y is not a string, it is converted to a string before the replacement
operation is executed. In this case, a new string pointer will be returned,

^(SETQ x "ABCDEF”)
"ABCDEF”

^(RPLSTRING X -2 "XYZ”)
ILLEGAL ARC
XYZ

because inserting “XYZ” into X would increase its length, which is not allowed.

^(RPLSTRING X 2 "XYZ”)
"AXYZEF"

Note that “BCD” have been replaced by “XYZ” .

<-(SETQ X "BALITMORE")
"BALITMORE"

which is misspelled!

«^(SETQ y (SUBSTRING x 3 6))
"LITM"

^(RPLSTRING y 2 "TI")
"LTIM"

^ x
"BALTIMORE"

where X is modified because Y was a substring of X.
To insert without modifying the string, see INSERT.STRING in Section

10.7.

10.5.1 Replacing Elements with Character Codes
An alternative form of RPLSTRING is RPLCHARCODE. RPLCHARCODE is
used primarily to insert nonprinting character codes into strings. It takes the
form

Function : RPLCHARCODE

Arguments: 3

Arguments: l) an o r ig in a l s t r in g , X
2) an index, N
3) a c h a ra c te r code, CHARCODE

Value: A m odified v e rs io n o f the s t r in g X.

RPLCHARCODE is used to replace (or place) a single element of a string
with a specified character code. The index N may be positive or negative. If N is
negative, replacement is relative to the end of the string.

10.5 Replacing Elements of a String 285

10.6 SEARCHING A STRING
One of the most common string operations is to search one string looking for an
occurrence of another string. STRPOS, which implements the string searching
operation, takes the form

Function: STRPOS

Arguments: 6

Arguments: 1) a pa t te rn s t r in g , PATTERN
2) a s t r in g , STRING
3) a s ta r t in g position , START
4) a skip (wild card) character, SKIP
5) an anchor f lag , ANCHOR
6) a t a i l f lag , TAIL

Value: The character position in STRING i f the
match is successful.

If either PATTERN or STRING is not a string, it is automatically converted
(using MKSTRING) before searching begins. The search starts at the character
indexed by START. If START is NIL, 1 is assumed. STRPOS looks for a se
quence of characters in STRING that match PATTERN. If a match is found,
the character index of the first matching character of the sequence of characters
is returned as the value of STRPOS. Otherwise, NIL is returned. Consider the
following examples:

^(SETQ X "the quick brown fox jumped over the lazy dog”)
"the quick brown fox jumped over the lazy dog"

^(STRPOS "fox” x)
17
<-(STRPOS ”fox" x 10)
17

^(STRPOS "fox" X 20)
NIL

(STRPOS "fox" X NIL)
17

^(STRPOS "fox" X -30)
17

(STRPOS "" "")
NIL

<-(STRPOS)
1

286 String Manipulation Functions

1. SKIP is a character that acts like a wild card; that is, wherever it occurs
in PATTERN it matches any character in;string in the corresponding
position. SKIP may be any character but it is best to pick one that is not
likely to occur in the string that you are searching. For example,

<-(STRPOS "br&wn" x NIL '&)
11

-^(STRPOS ”dog&” X 1 '&)
NIL

2. If ANCHOR is T, STRPOS searches for a match only at START (or 1, if
START is NIL). If a match fails between PATTERN and the character
sequence of STRING beginning at START, STRPOS returns NIL. For
example,

“̂ (STRPOS "fox” x)
17

(STRPOS "fox” X 17 NIL T)
17
<-(STRPOS "fox” X 15 NIL T)
NIL

3. If TAIL is T, the character index returned by STRPOS is the index of the
first character after the PATTERN was found in STRING, i.e., the tail
string. For example,

^(STRPOS ’’fox” X 1 NIL NIL T)
20

(STRPOS "fox" X 17 NIL T T)
20
^(STRPOS ’’fox” X 15 NIL T T)
NIL

STRPOS may return a character position outside the string. For exam
ple,

(STRPOS "dog” X 1 NIL NIL T)
A5

even though the string is only 44 characters long. Care should be taken in
using this feature of STRPOS in conjunction with RPLSTRING because
of the possibility of errors that may be generated by RPLSTRING.

10.6 Searching a string 287

Searching may be modified in several ways:

A Definition of STRPOS
We might define STRPOS as follows:

288 String Manipulation Functions

(DEFINEQ
(strpos (pa tte rn s tr in g s t a r t skip anchor t a i l)

(*
Make PATTERN a s tr in g no matter what i t is
o r ig ina lly !

)
(COND

((STRINGP patte rn))
((LITATOM pattern)

(SETQ pa tte rn (MKSTRING p a tte rn)))
((NULL (STRINGP patte rn))

(SETQ pa tte rn (MKSTRING p a t te rn))))
(*

Make STRING a s tr in g no matter what
datatype i t is o rig ina lly !

)
(COND

((STRINGP s tr in g))
((LITATOM str ing)

(SETQ s tr in g (MKSTRING s tr in g)))
(T

(SETQ s tr in g (MKSTRING s t r in g))))
(*

The SKIP character must be a single
character which the following code
assures, no matter how many characters are
provided.

)
(COND

(skip
(SETQ skip (NTHCHAR skip 1))))

(*
Orient START, i f i t i s defined, to the
beginning of the s t r in g .

)
(COND

(s t a r t
(COND

((MINUSP s ta r t)
(SETQ s t a r t

(IPLUS s t a r t

(NCHARS
String)

(T
(SETQ. s t a r t 1)))

(*
Now, I so la te the proper substring to be
searched ra th e r than searching from the
beginning of the s t r in g each time.

)
(SETQ s t r in g

(SUBSTRING s t r in g s t a r t))
(*

Search fo r PATTERN in STRING
)
(PROG (achar su b s tr in g .x su b s tr in g .y index)

(SETQ index s t a r t)
loop2

(*
Get the f i r s t charac ter of the
respec tive s t r in g s .

)
(SETQ su b s tr in g .x (SUBSTRING p a t te rn 1))
(SETQ su b s tr in g .y (SUBSTRING s t r in g 1))

loopl
(COND

((SETQ achar (GNC su bs tr ing .x))
(COND

((EQ achar (GNC
su b s t r in g .y))

(GO loopl))
((EQ achar skip)

(GO loopl))
(T

(GO n e x t . c h a ra c te r))))
(t a i l

(RETURN
(IPLUS (NCHARS pa tte rn)

index)))
(T

(RETURN index)))
n e x t .c h a ra c te r

(*
I f no match in the exact p o s it io n a t
START, cease fu r th e r searching.

)

10.6 Searching a String 289

290 String Manipulation Functions

))

(COND
(anchor

(RETURN)))
(*

S trip a character from STRING and
proceed I f any characters l e f t to
search.

)
(COND

((GNC str ing)
(SETQ index (ADDl index))
(GO loop2))

(T
(RETURN))))

10.6.1 Searching a String for a Character
In many cases, you will want to search a string for the first occurrence of a char
acter which may be a member of a set of characters. STRPOSL, which compares
a set of characters against a string until one matches, takes the form

Function: STRPOSL

Arguments: 4

Arguments: 1) a l i s t of characters , CHARSET
2) a s t r in g to be searched, STRING
3) A s ta r t in g index, START
<4) a non-membership f lag , NEG

Value: A character index or NIL.

CHARSET may be a list of characters or character codes. STRPOSL
searches STRING beginning at START (or 1, if START is NIL) for one of the
characters in CHARSET. If one character matches, the character index of the
matching character is returned. If no match occurs, NIL is returned. Consider
the following example:

^(STRPOSL '(Q Z J) x)
5

where X is defined as above.
If NEG is T, then STRPOSL finds the first character which is not a member

of ASET.

^-(STRPOSL ' (A B C D E F G H I K L M N O P Q R S T U V X
Y Z) X 1 T)

4

because SPACE is a legal character. If you insert a space at the end of the first
argument (using the form %<space>), re-executing the expression yields 14,
which is the index of W which does not appear in CHARSET.

A Definition of STRPOSL
We may define a simple form of STRPOSL as follows:

(DEFINEQ
(s t rp o s l (charse t s tr in g)

(PROG (index)
(SETQ s t r in g (MKSTRING s tr in g))
(SOME charse t

(FUNCTION s trp o s l))
(RETURN index))

))

where STRPOSl is defined as

10.6 Searching a String 291

(DEFINEQ
(s t r p o s l (achar)

(SETQ index (STRPOS achar s t r in g))
))

10.6.2 Creating Bit Tables
String searching is enhanced by converting the character codes to bit representa
tions. STRPOSL will automatically convert the characters (or their codes) in
CHARSET into a bit representation if CHARSET is not a bittable. To do so, it
uses the function MAKEBITTABLE, which takes the form

Function: MAKEBITTABLE

Arguments: 3
Arguments: 1) a l i s t of charac ter codes, CHARSET

2) a non-membership f lag , NEG
3) an a rray , A

Value: An array with b i t rep resen ta tions fo r the
charac te rs in LST.

CHARSET is a list of characters or character codes as specified for STR-
POSL. NEG is the same as used by STRPOSL. MAKEBITTABLE returns a bit
table as an array containing the bit representations of the characters in CHAR
SET. For example,

<-(SETQ charset ' (A B C D E F G H I J K))
(A B C D E F G H I J K)

<^(SETQ y (MAKEBITTABLE charset))
{ARRAYP}#542635

If A is an array, it is modified and returned as the new bittable to be used by
STRPOSL.

292 String Manipulation Functions ^

10.7 STRING OPERATIONS
Given a string, we often want to insert, delete, or substitute for elements of the
string. RPLSTRING can be coded to provide these functions, but it smashes the
characters into the string given as its argument. The following functions provide
similar capabilities, but return a new string composed of the appropriate ele
ments of the old. These functions are not part of standard INTERLISP at this
time.

These functions have been defined very simply. No doubt you can increase
their complexity with a little extra thought. They are merely intended to show
that you do not have to rely entirely on RPLSTRING for manipulating strings.

10.7.1 Inserting into a String
Given a string of arbitrary length, we often want to insert a new string into the
middle of the string. INSERT.STRING takes the form

Function: INSERT.STRING

Arguments: 3

Arguments: 1) a s t r in g , X
2) a fragment to be in se rted , FRAGMENT
3) a p o s it io n , POS

Value: A new s t r in g .

INSERT.STRING inserts the fragment immediately after POS. Consider
the example

^(INSERT.STRING "XYZ” "ABC” 1)
"XABCYZ"

10.7 String Operations 293

A Definition for INSERT.STRING
We might define INSERT.STRING as follows:

(DEFINEQ
(i n s e r t . s t r i n g (x fragment pos)

(COND
((NOT (STRINGP x)) NIL))

(COND
((NOT (STRINGP fragment))

(SETQ fragment (MKSTRING fragm ent))))
(CONGAT

(SUBSTRING X 1 pos)
fragment
(SUBSTRING X (addl pos)))

)) %

10.7.2 Deleting from a String
DELETE.STRING deletes a substring from a string and returns a new string
which is the concatenation of the remaining parts. It takes the form

Function: DELETE.STRING

Arguments: 3
Arguments: 1) a s t r in g , OLD

2) a s ta r t in g p o s it io n , N
3) an ending p o s it io n , M

Value: A new s t r in g with the appropriate
charac te rs dele ted .

Consider the following example:

-^(DELETE.STRING "ABGDEFG” 3 5)
”ABFG”

A Definition for DELETE.STRING
We might define DELETE.STRING as follows:

(DEFINEQ
(d e le te .S tr in g (old n m)

(CONGAT
(SUBSTRING old 1 (SUBl n))
(SUBSTRING old (ADDl m)))

))

10.7.3 Substituting into a String
SUBSTITUTE.STRING substitutes a fragment in place of a portion of a string.
It takes the form

Function: SUBSTITUTE.STRING
Arguments: K
Arguments: 1) a s t r in g , OLD

2) a s t r in g to su b s t i tu te , FRAGMENT
3) a s ta r t in g posit ion , N
4) a f in a l position , M

Value: A new s tr in g with FRAGMENT substitu ted for
the substring id e n tif ied by (N,M).

Consider the following example:

<-(SETQ s t r in g "ABCDEFG”)
"ABCDEFG”

<-(SUBSTITUTE.STRING s tr in g "XYZ" 3 5)
"ABXYZFG”

A Definition for SUBSTITUTE.STRING
We might define SUBSTITUTE.STRING as follows:

(DEFINEQ
(s u b s t i tu te .s t r in g (old fragment n m)

(CONGAT
(SUBSTRING old 1 (SUBl n))
fragment
(SUBSTRING old (ADDl m)))

))

294 String Manipulation Functions

10.8 TRIMMING A STRING
Many strings, particularly those created by reading or processing text files, con
tain an excess of blanks. Usually, we would like to eliminate these blanks in
order to tidy up the appearance of the string. TRIM will remove the excess
blanks from a string. It takes the following form

Function: TRIM

Arguments: 1

Argument: 1) a string, STRING

Value: A new s t r in g corresponding to STRING with
a l l excess blanks removed.

TRIM returns NIL if its argument is not a string.

A Definition for TRIM
We might define TRIM as follows:

(DEFINEQ
(trim (a s tr in g)

(COND
((NOT (STRINGP a s tr in g)) NIL)))

(PROG (newstring b flag achar)
(*

Create an empty s t r in g in which to
compose the re tu rn value.

)
(SETQ newstring (MKSTRING))

10.8 Trimming a String 295

loop
(SETQ achar (GNC a s tr in g))
(COND

((NULL achar)
(*

GNC re tu rns NIL when no
more charac ters are l e f t to
process.

)
(RETURN newstring))

((EQUAL (CHCONl achar) (CHARCODE " "))
(COND

(bflag
(^

BFLAG se t i f we
have seen one
blank already.

)
(GO loop))

(T
(*

Have not yet seen
a blank. Set
BFLAG to one and
keep th i s blank.

)
(SETQ bflag T)))

(T
(*

Some character other than a
blank.

)
(SETQ bflag NIL)))

(SETQ newstring (CONCAT newstring achar))
(GO loop))

))

Note: TRIM is not a standard INTERLISP function.

296 String Manipulation Functions

11

Array Manipulation
Functions

Arrays are data structures that were added after the initial definition of LISP
was developed. INTERLISP supports two types of arrays: basic linear arrays and
hash tables. A linear array is a sequence of locations that contain values which
are indexed by numerical position. A hash array is an array that relates two sets
of pointers. The first pointer is known as the hash item while the second is called
the hash value. Hash arrays operate in a manner similar to property lists in that
they establish an association between the hash item and the hash value.

In Section 11.4, we will show you how to define and manage matrices, which
are two-dimensional arrays. INTERLISP does not provide support for this data
type. But, with a few functions, you can develop a comprehensive matrix han
dling package that operates like any other datatype.

11.1 CREATING AN ARRAY: INTERLISP-10
An array may only be created in INTERLISP through a function invocation. To
create an array, you use ARRAY, which takes the following format

Function: ARRAY

Arguments: 3
Arguments: 1) Size of the array , N

2) Number of value c e l l s , P
3) Number of p o in te r c e l l s , V

Value: A p o in te r to the array p r in ted as
{ARRAYP}#<address).

When you execute (ARRAY n p v), INTERLISP allocates a block of storage
of size N + 2 words. The first two words contain descriptive information about
the array that is used internally by INTERLISP. The next P < = N cells contain

297

numeric values. Initially, the numeric cells have the value 0 when the array is
created. Finally, the last N—P = > 0 cells may contain pointers to list cells where
both the CAR and CDR portions are available for storing information. They are
initialized to the value of V.

^(SETQ A1 (ARRAY 10 10 0))
{ARRAYP}#542224

<-(SETA A1 1 (CONS 'X 'Y))
NON-NUMERIC ARG
(X . Y)

because only numeric information may be stored in the numeric (“unboxed”)
region of an INTERLISP-10 array.

If P is NIL, INTERLISP assumes a value of 0 and creates an array of
pointers.

<-(SETQ A2 (ARRAY 10 0 0))
{ARRAYP}#542240

<-(SETA A2 1 (CONS 'X ’Y))
(X . Y)
<-(ELT A2 1)
(X . Y)

<^(SETA A2 1 (LIST 'A 'B 'C))
(A B C)

<-(SETD A2 1 (LIST 'X 'Y *Z))
(X Y Z)

<-(ELT A2 1)
(A B C)

^(ELTD A2 1)
(X Y Z)

In general, INTERLISP allocates storage for arrays from a common array
space. If sufficient space does not exist for the array to be created, INTERLISP
will attempt a garbage collection to gather space. If enough space is still not
available, INTERLISP generates an error with the message “ARRAYS FULL” .

The array facility provided by INTERLISP-10, INTERLISP/370, and IN-
TERLISP-VAX is more primitive than that provided by INTERLISP-D (as dis
cussed below). The number region of an INTERLISP-IO array may only store
numbers, not pointers. These ceils are not inspected during a garbage collection.
All arrays in INTERLISP-lO/370/VAX are indexed beginning with 1.

298 Array Manipulation Functions

11.1.1 Creating an Array: INTERLISP-D
INTERLISP-D does not support the combined numeric value and pointer data
structure. Rather, arrays have been extended so that you may specify the type of
the value to be stored in the array. This approach provides you with more flexi
bility in using arrays to refer to collections of data.

The format for defining arrays in INTERLISP-D is as follows;

Function: ARRAY
Arguments: 4-

Arguments: 1) Size of the array , SIZE
2) Type of the array , TYPE
3) I n i t i a l i z a t i o n value, INIT
-4) Origin of the array , ORIGIN

Value: A p o in te r to the array p r in ted as
{ARRAY}#<address)

INTERLISP-D accepts a type from the following list: BIT, BYTE, WORD,
FIXP, FLOATP, POINTER, or DOUBLEPOINTER. If the value of TYPE is
NIL, INTERLISP-D creates an array with the default type of POINTER. If
TYPE is a number (i.e., SIZE), INTERLISP-D defaults to an array of type FIXP
(i.e., integers).

The initialization value INIT is used to set the value of each element of the
array when it is created. If INIT is NIL, zero is assumed for all numeric type
arrays and NIL for all other types.

Arrays in INTERLISP-D may have their origin indexed by either 0 or L If
no origin is specified, the array will be indexed beginning with 1.

For example, we may create an array called NUMBERS by the following
statement:

<-(SETQ numbers (ARRAY 5 5))
{ARRAYP}#1,2150
-^(SETQ more-numbers (ARRAY 5 'FIX? 4 0))
{ARRAYP}#1,2140

“̂ (ELT more-numbers 0)
A

11.2 MANIPULATING ARRAYS
INTERLISP provides several functions for manipulating arrays. Basically, these
functions provide the user with a foundation for creating a rich and complex
environment for specific applications.

11.2 Manipulating Arrays 299

11.2.1 Obtaining the Array Size
You may obtain the size of an array by invoking the function ARRAYSIZE. It
takes the form

Function: ARRAYSIZE
Arguments: 1

Arguments: 1) an array po in te r, ARRAYPTR

Value: The size of the array.

INTERLISP generates an error, ARG NOT ARRAY, if the argument is not
an array object (i.e., one created by the ARRAY function). For example, using
NUMBERS

(ARRAYSIZE numbers)
5

11.2.2 Obtaining the Array Type
INTERLISP creates arrays that contain either numeric value cells, pointer cells,
or a mixture of both (INTERLISP-IO/VAX). To obtain the type of the array,
you may invoke the function ARRAYTYP with an array object as its argument.
If the argument is not an array object, INTERLISP generates an error, ARG
NOT ARRAY. It takes the form

Function: ARRAYTYP

Arguments: 1

Argument: 1) an array address, XARRAY

Value: The second argument to ARRAY.

ARRAYTYP returns the value of the second argument to ARRAY. If this
value is a positive number greater than zero, it indicates the number of numeric
values that may be stored in the array (INTERLISP-10/VAX). If this number is
0 or NIL, it indicates that the array is composed entirely of pointers (IN
TERLISP-10/VAX).

^(ARRAYTYP A2)
0

which shows that A2 is an array defined to have only pointers as values.
Thus, if you need to determine the number of pointers that may be stored in

an array, you must compute this number by subtracting the value of ARRAY
TYP from ARRAYSIZE. We can encapsulate this in a function as follows

300 Array Manipulation Functions

(DEFINEQ
(a r ra y p tr (a rray -ob jec t)

(IDIFFERENCE
(ARRAYSIZE array-ob jec t)
(ARRAYTYP array-obj e c t))

))

ARRAYTYP is not defined in INTERLISP/370.

INTERLISP-D Convention
INTERLISP-D will return a value (i.e, the name of the datatype) that may be
given to ARRAY (see above) that ŵ ill generate the same type of array again. For
example, using NUMBERS

(ARRAYTYP numbers)
FIX?

11.2 Manipulating Arrays 301

11.2.3 Validating an Array Pointer
You may determine whether or not a pointer points to an array element by invok
ing the function ARRAYP. It takes the form

Function: ARRAYP
Arguments: 1
Arguments: 1) an array p o in te r , ARRAYPTR

Value: The value of ARRAYPTR i f i t i s an array
p o in te r ; otherwise, NIL.

ARRAYP is a predicate that returns the value of the pointer if it points to or
into an array. Otherwise, it returns NIL. INTERLISP does not check to see
whether or not the argument actually points to the beginning of the array. For
example,

(ARRAYP numbers)
{ARRAYP}#!,2150

11.2.4 Obtaining a Pointer to the Beginning of an Array
Given a pointer to an array element, you may obtain a pointer to the beginning
of the array by invoking the function ARRAYBEG. ARRAYBEG takes as its
argument a pointer into an array. It returns a pointer to the beginning of the
array if the pointer is valid. Otherwise, it returns NIL.

INTERLISP-D does not support the function ARRAYBEG since it treats all
arrays as linear objects of a given type. Rather, INTERLISP-D provides the
function ARRAYORIG to return the origin of an array. It takes the form

Function: ARRAYORIG
Arguments: 1

Argument: 1) an array address, XARRAY
Value: The o rig in of the array.

Consider the following examples:

<-(ARRAYORIG numbers) ”INTERLISP-D”
1

(ARRAYORIG A2) "INTERLISP-10"

302 Array Manipulation Functions

ARBIAYORIG generates an error, ARG NOT ARRAY, if its argument does
not satisfy ARRAY?.

In INTERLISP-IO/VAX, ARRAYORIG always returns 1. ARRAYORIG
is not defined in INTERLISP-370.

11.2.5 Setting the Value of an Array Element
You may set the value of the Ith array element by invoking the function SETA. It
has the following format:

Function: SETA
SETD

Arguments: 3

Arguments: 1) an array ob jec t, A
2) an index, I
3) a value, V

Value: The value assigned to the I th array
element.

SETA sets the Ith element of the array A to the value V. If A is not an array
object (i.e., returned by ARRAY), SETA generates an error ARG NOT AR
RAY.

•^(SETA a3 2 156)
156

11.2 Manipulating Arrays 303

<-(ELT a3 2)
156

If I < = P (from ARRAY), then the value of V must be numeric (i.e., satis
fies NUMBER?). I f P < = I < = N , V i s assigned to the CAR of the Ith element.
The latter case determines if the Ith element is in the pointer region of the array.
Note that pointers may not be inserted into the numeric regions of INTERLISP-
10/VAX arrays.

^(SETQ a3 (ARRAY 10 5 0))
{ARRAYP}#542270

^(SETA a3 2 (LIST 'ALEX 'ALICE 'ANDREA))
NON-NUMERIC ARG
(ALIX ALICE ANDREA)

because 2 indicates a cell in the numeric (unboxed) region of A3.

<-(SETA a3 7 (LIST 'ALEX 'ALICE 'ANDREA))
(ALEX ALICE ANDREA)

because 7 indicates a cell in the pointer region of A3.
An alternative form of the function, SETD, will set the CDR of the Ith ele

ment of the array if I is an index within the pointer region of the array. For
example,

^(SETD a3 7 (LIST 'BARRY 'BART 'BILL))
(BARRY BART BILL)

<-(ELT a3 7)
(ALEX ALICE ANDREA)

because this list is stored in the CAR portion of the cell in the pointer region of
A3 indicated by the index 7.

INTERLISP-D Conventions
Since INTERLISP-D supports typed arrays, I must always be less than or equal
toN.

INTERLISP-D supports SETD only to maintain compatibility with IN-
TERLISP-10. It treats SETD as SETA when SETD is invoked.

We can set the elements of the array NUMBERS using the following state
ments:

•<-(SETA numbers 1 1)
1

♦-(SETA numbers 2 2)
2
<-(SETA numbers 3 3)
3
-<-(SETA numbers A A) i
4

•♦-(SETA numbers 5 5)
5

but when we attempt to set element 6:

•^(SETA numbers 6 6)
ILLEGAL ARG

because the array NUMBERS is defined to be only five elements in length begin
ning with the element labeled 1.

11.2.6 Retrieving the Value of an Array Element
You may retrieve the value of the Ith array element by invoking the function
ELT. It has the following format

Function: ELT
ELTD

Arguments: 2

Arguments: 1) an array ob jec t, A
2) an index, I

Value: The value of the I th element of the array

If I < = P (from ARRAY), ELT returns the numeric integer value contained
in the Ith cell. If P < I < = N, ELT returns the CAR of the Ith element of the
array. In the latter case, I is an index into the pointer region of the array. For
example,

^(ELT a3 7)
(ALEX ALICE ANDREA)

If A is not an array object, ELT generates an error ARG NOT ARRAY.
An alternative form, ELTD, returns the CDR of the Ith array element if I is

an index into the pointer region of the array. i't
<-(ELTD a3 7) J
(BARRY BART BILL) 1

304 Array Manipulation Functions

INTERLISP-D Conventions
Since INTERLISP-D supports typed arrays, the value of I must always be less
than or equal to N.

INTERLISP-D supports ELTD to maintain compatibility with IN
TERLISP-10. It returns the same value as ELT. For example, to retrieve ele
ment 3 from NUMBERS,

<-(ELT numbers 3)
3
“«-(ELT numbers 6)
ILLEGAL ARG

11.2 Manipulating Arrays 305

11.2.7 Copying Arrays
You may copy the contents of an array, as opposed to creating a new pointer to
it, by using the COPY ARRAY function. It takes the form

Function: COPYARRAY

Arguments: 1
Arguments: 1) an array address, ARRAYPTR

Value: An array p o in te r to the new array whose
contents are an exact copy of the
argument.

COPYARRAY creates a new array of the same size and type as its argu
ment. Its value is a pointer to the new array. It generates an error message ARG
NOT ARRAY if its argument is not an array.

Consider the example

<<-(SETQ more-numbers (COPYARRAY numbers))
{ARRAYP}#5,33100
•«-(ELT more-numbers 4)
4

but note that the two arrays are not EQUAL (since EQUAL does not perform
these comparisons):

(EQUAL numbers more-numbers)
NIL

11.2.8 Comparing Two Arrays
Two arrays may be tested for equality using EQUAL. EQUAL determines equal
ity by determining if they have the same address. However, EQUAL does not
descend into the two arrays to determine if the corresponding elements are
equal. Thus, two arrays may be equal but not have the same address. Let us
define a function EQARRAYP that determines if two arrays are equal according
to the following criteria:

The two arrays have the same length
The two arrays have the same type of elements
The two arrays have the same origin
The two arrays have equal elements in each position

The first three criteria are relatively easy to check and will probably account
for most of the work performed by our function.

EQARRAYP takes the following form:

Funct io n : EQARRAYP

Arguments: 2
Arguments: 1) an array, ARRAYl

2) an array , ARRAY2

Value: The address of ARRAYl i f the two arrays
are equal; otherwise NIL.

A Definition for EQARRAYP
We might define EQARRAYP as follows:

(DEFINEQ
(eqarrayp (a r ra y l array2)

(COND
((OR

(NOT (ARRAYP array l))
(NOT (ARRAY? array2)))
(*

I f one of the arguments is not
an array , re tu rn NIL.

)
NIL)

((NEQ
(ARRAYSIZE array l)
(ARRAYSIZE array2))

306 Array Manipulation Functions

(*
I f the s ize of the arrays is not
equivalen t, re tu rn NIL.

)
NIL)

((NEQ
(ARRAYTYP array l)
(ARRAYTYP array2))
(*

I f the type of the arrays i s not
equivalen t, re tu rn NIL.

)
NIL)

((NEQ
(ARRAYORIG array l)
(ARRAYORIG array2))
(^

I f the o r ig in of the arrays is
not equ ivalen t, re tu rn NIL.

)
NIL)

(T
(PROG NIL

(FOR I
FROM (ARRAYORIG array l)
TO (SUBl (ARRAYSIZE
a r r a y l))
DO

(IF
(NOT

(EQP
(ELT a r ra y l I)
(ELT array2 I)))

THEN (RETURN NIL)))
(RETURN a r r a y l))))

))

Note: EQARRAYP is not a standard function in INTERLISP, but one that
you can easily define and save.

11.3 HASH ARRAYS
A hash array is an array where information is referenced by a hash item rather
than a strict numeric index. The association between a hash item and the data it

11.3 Hash Arrays 307

refers to is called a hash link. To use a hash array, INTERLISP computes an
address, the hash address, in an array, called the hash array. At that location is
stored the hash value, a pointer to the actual value of the data. The contents of a
cell in the array are the hash item and the hash value, which together form a
hash link.

A hash array is used when the potential universe of items to be represented is
large but the actual number of items to be stored and retrieved is rather small.
Multiple item values may hash to a single cell in the array. It is assumed that the
collision between keys is minimal; otherwise, a regular array representation
might be more profitably used.

When an item is hashed, the resulting hash address may already contain a
hash link. INTERLISP determines if the entry was derived from the item just
hashed. If so, the new value replaces the current contents of the cell. Otherwise,
a new address is generated. This process repeats until an empty cell is found in
which to place the hash link. When a hash array is seven-eighths full, it is either
enlarged or an error is generated.

Retrieving an item works in a similar fashion. A hash item is used to com
pute an address in the hash array. The item is compared against the hash item in
the cell. If they match, the hash value is used to retrieve the desired value. Other
wise, a new address is computed and the process repeats until a hash link con
taining the item is found. If the hashing process generates a cell address whose
entry is NIL, then no hash link exists for the item.

INTERLISP provides a system hash array, SYSHASHARRAY, for you if
you do not wish to create your own. It has an initial size of 512 cells. To use
SYSHASHARRAY in the hashing functions, you must specify NIL as the value
of the hash array address.

308 Array Manipulation Functions

11.3.1 Creating and Testing Hash Arrays
You may create a hash array by executing HARRAY. It takes the form

Function: HARRAY

Arguments: 1

Arguments: l) the number of c e l l s , N

Value: A po in te r to the hash array.

INTERLISP allocates storage for the hash array and returns a pointer to it
of the form {HARRAYP}#x,abcde where the lower-case letters represent the
storage address of the hash array. For example,

^(SETQ a .h ash .a rray (HARRAY 10)) "INTERLISP-D"
{HARRAYP}#7,1030

You may test if a pointer refers to a hash array using the function HAR-
RAYP. It takes the form

Function: HARRAYP

Arguments: 1

Arguments: 1) a hash array address, X

Value: X, i f i t i s a hash array address.

HARRAYP returns the pointer if it indeed points to a hash array; otherwise
NIL. For example,

^(HARRAYP a .h ash .a rray)
{HARRAYP}#?,1030

You may determine the number of cells in a hash array using the function
HARRAYSIZE. It takes the form

Function: HARRAYSIZE

Arguments: 1
Arguments: 1) a hash array address, X

Value: The number of c e l l s in the hash array .

Consider the following example:

^(HARRAYSIZE a .hash .a rray)
15

INTERLISP-D automatically increases the initial size of the hash array by
50% when it is created. Thus, although I created A.HASH.ARRAY of size 10,
INTERLISP-D actually assigned it a size of 15. INTERLISP-IO/VAX use a
function dependent on the size of the hash array to determine the number of
extra cells allocated.

Hash arrays are not implemented in INTERLISP/370.

11.3 Hash Arrays 309

11.3.2 Storing into and Retrieving from a Hash Array
You may put an item into a hash array using PUTHASH. It takes the form

Function: PUTHASH

Arguments: 3

Arguments: 1) a key, KEY
2) a value, VALUE
3) a hash array address, X

Value: The new value.

310 Array Manipulation Functions

PUTHASH computes the hash address from KEY as described above. A
hash link from KEY to VALUE is created and placed at the hash address. If a
hash link already exists at that hash address, it will be overwritten by the new
hash link. You may remove a hash link by specifying VALUE to be NIL. Hash
values of NIL are not allowed. For example,

(PUTHASH "Steve kalsler" "author" a.hash.array)
"author"

• (̂PUTHASH "pete rose" "baseball player" a .hash.array)
"baseball player"

^(PUTHASH "vanessa williams" "miss america"
a .hash .array)
"miss america"

(PUTHASH "rick dempsey" "world se r ie s mvp"
a .hash .array)
"world s e r ie s mvp"

KEY may be any type of INTERLISP pointer—atoms, strings, array ad
dresses, lists, etc. If an INTERLISP object other than an atom is used as a key,
the exact same item must be used to retrieve the hash value. This is required
because INTERLISP compares the hash item stored in the cell with the key to
determine if that key produced the hash value. The comparison is performed
using EQ.

Clearing a Hash Array
You may clear a hash array that has been partially filled by executing the func
tion CLRHASH. It takes the form

Function: CLRHASH

Arguments: 1

Arguments: 1) a hash array address, X

Value: The hash array address.

CLRHASH removes the hash links in all cells of the hash array. It is a good
idea to execute CLRHASH after you have created a hash array before storing the
first hash link.

Retrieving an Element from a Hash Array
You may retrieve a value from a hash array using the function GETHASH. It
takes the form

Func t io n : GETHASH
Arguments: 2

Arguments: 1) a hash key, KEY
2) a hash array address, X

Value: The hash value associa ted with KEY.

GETHASH finds the hash link from KEY. It returns the value associated
ŵ ith the hash value in the hash link. If a hash link does not exist, it returns NIL.
For example,

^(GETHASH "Steve kaisler" a.hash.array)
"author"

•^(PUTHASH (LIST 'a lex) "the g rea t" a .hash .array)
"the g rea t"
<-(SETQ new.key (LIST 'a lex))
(alex)

which is a new list different from the one used in PUTHASH. So,

•«-(GETHASH new.key a .hash .array)
NIL

because the value of NEW.KEY is a different list from that used to create the
hash link.

Enlarging a Hash Array
When a hash array becomes seven-eighths full, it may overflow (see Section
11.3.5) or it may generate an error when you attempt to put a new value into it.
You can catch the error using ERRORSET. If you do not wish to provide an
overflow capability, you may expand the size of your hash array by copying it to
another hash array of a larger size. REHASH hashes all items in one hash array
into a new hash array. It takes the form

Function: REHASH

Arguments: 2
Arguments: 1) an old hash array address, OLDHARRAY

2) a new hash array address, NEWARRAY

Value: The new hash array address.

11.3 Hash Arrays 311

Consider the following example:

<-(SETQ a.new.hash.array (HARRAY 20))
{HARRAYP}#1,2310

(REHASH a .hash .array a.new.hash.array)
{HARRAYP}#1,2310

<-(GETHASH "vanessa williams” a.new.hash.array)
"miss america”

11.3.3 Applying a Function to a Hash Array
MAPHASH allows you to apply a function to each hash link in a hash array. It
takes the form

Function: MAPHASH

Arguments: 2

Arguments: 1) a hash array address, X
2) a mapping function, MAPHASHFN

Value: The hash array address.

MAPHASHFN is a function of two arguments: the hash value and the hash
item. For each hash link in X, MAPHASHFN is applied to the hash value and
the hash item. For example, to prettyprint the entire contents of a hash array, we
might define the function

(DEFINEQ
(pp.hash .array (hasharray)

(MAPHASH hasharray
' (LAMBDA (hashvalue hashitem)

(TERPRI)
(PRINTDEF hashitem)
(TERPRI)
(PRINTDEF hashvalue)))

))

11.3.4 Dumping Hash Arrays
You may dump a hash array using the function DMPHASH. This function is
primarily intended to be used with the File Package to preserve the definitions of
a hash array on a file for subsequent loading. It takes the form

Function: DMPHASH

Arguments: 1-N

312 Array Manipulation Functions

Arguments: 1) the names of hash arrays

Value: The loadable expressions.

DMPHASH is an NLAMBDA, nospread function that prints on the pri
mary output file a set of loadable forms that may be used to redefine a hash array
when the file is subsequently loaded.

If there are no arguments to DMPHASH, it assumes that you want to dump
the system hash array, SYSHASHARRAY.

Care must be exercised when reloading a hash array. READ creates new
structures for each of the items and values that it reads from the file. Thus, all
pointers except atoms and small integers will lose their EQ identities although
they will retain their EQUAL identities.

For example, to dump the system hash array, which you may use as your
default hash array, you would place the following S-expression in your File Pack
age commands:

(E (DMPHASH))

Consider the following example:

<^(SETQ a .h a sh .a r ray (HARRAY 10))
{HARRAYP}#151466

'^(PUTHASH (LIST 'ALEX) ’’the great" a .hash .array)
"the g rea t"
■̂ (DMPHASH a .hash .a rray)
(RPAQ a .h a sh .a r ra y (HARRAY 11))
(PUTHASH '(ALEX) "the g reat" NOBIND)
NIL

11.3 Hash Arrays 313

11.3.5 Overflow Handling
When a hash array is created, it is given a definite size. As entries are made into
the hash array, the hashing process becomes less efficient because new keys hash
to slots that are already occupied by hash links. When a hash array becomes
seven-eighths full (87.5%), INTERLISP considers it to be full. Attempting to
add another hash link will cause a hash table overflow.

When a hash table overflow condition occurs as the result of PUTHASH,
either

1. An error will be generated, or
2. The hash array will be enlarged to accommodate additional keys.

An error results if the last argument to PUTHASH is merely a hash array
created by the user. Note if the hash array argument is NIL, SYSHASHARRAY

is used. It is automatically increased by 50% whenever an overflow condition
occurs.

To prevent an error, you must tell INTERLISP how to enlarge the hash ar
ray when an overflow condition occurs. The last argument to PUTHASH takes
the alternative form

(<hasharray> . (expression))

where <expression) has one of the following values:

<integer) A positive integer indicates that a new hash array is created
whose size is N cells greater than the old table.

(floating #) A floating point number indicates that a new hash array is
created whose size is equal to the size of the old table multiplied
by the number.

(function) A function name or LAMBDA expression that is called upon
hash table overflow. It takes one argument—the value of the
last argument to PUTHASH. If the function returns a number,
that number is used to create a new hash array of the given size.
Otherwise, a new hash array is created that is 50% larger than
the old hash table.

The function may be used to print a warning message, analyze the hash
array and delete some values, or monitor the function (via TRACE, for
example) that makes entries.
NIL A new hash array is created that is 50% larger than the old hash array.

For example, assume that A.HASH. ARRAY is seven-eighths full. Then, let
us execute the following PUTHASH expression:

(PUTHASH "c a r te r" "ex-president" a .hash.array)
HASH TABLE FULL
{HARRAYP}#7,1030

However, if we has used the specification for overflow handling:

<-(PUTHASH "c a r te r" "ex-president" (CONS a .hash .array 5))
"ex-president"

^(HARRAYSIZE a .hash. array)
20

where we remember that even though we specified 10 to HARRAY, IN-
TERLISP-D automatically increased that by 50%.

An alternative might be

314 Array Manipulation Functions

<-(PUTHASH " c a r t e r ” "ex-presiden t" (CONS a .h ash .a rray 2 .0))
"ex -p res iden t"

^(HARRAYSIZE a .hash .a rray)
30

Finally, let us look at an alternative using a function

(PUTHASH " c a r te r "
"ex -p res iden t"
(CONS a .h ash .a rray

'(LAMBDA (x)
(PRIN2 "Hash Array Overflow")
(TERPRI)
(PRIN2 "Increase s ize by 3")
(TERPRI)
(ITIMES (HARRAYSIZE a .hash .array)

3))))
Hash Array Overflow
Increase s ize by 3
"ex -p res iden t"
<-(HARRAYSIZE a .hash .a rray)

Note that the following construction causes an error:

^(PUTHASH " c a r te r " "ex-presiden t" (LIST a .h ash .a rray 2 .0))
undefined function
(2)

because INTERLISP expects to find the value in the CDR cell as a result of
CONSing the two values together.

11.4 A MATRIX PACKAGE
INTERLISP currently supports one-dimensional arrays, e.g., hash arrays.
Many applications require two-dimensional arrays, e.g., matrices, for represent
ing data. This section describes a set of functions that you can use to define and
manipulate matrices. These functions are not supported in standard IN
TERLISP.

11.4.1 Defining a Matrix
A matrix is a two-dimensional array, e.g., a array of arrays. The number of rows
is independent of the number of columns. A special case is the square matrix
where the number of rows is equal to the number of columns.

11.4 A Matrix Package 315

MATRIX creates matrices. It takes the form

Function: MATRIX

Arguments: 4

Arguments: 1) the number of rows, NROWS
2) The number of columns, NCOLUMNS
3) A data type, TYPE
4) An orig in sp ec if ica tio n , ORIGIN

Value: An {ARRAYP} address representing the
storage a lloca tion for the matrix.

MATRIX creates an array of NROWS elements. Each of these elements has
as its value an array of NCOLUMNS elements. The address of the column arrays
are stored as the values of the row elements. The address of the row array is
returned as the address of the matrix.

A matrix will have an origin of (0,0) or (1,1) depending on the value of ORI
GIN. If ORIGIN is NIL, an origin of (1,1) like that of FORTRAN is assumed.
TYPE may be any of the legal values acceptable by ARRAY as specified in the
INTERLISP-D manual.

Consider the following example:

<-(SETQ gnp (matrix 5 2))
{ARRAYP}#7,1044

<-(for I from 1 to 5
do (PRINl I) (SPACES 6) (PRINT (ELT gnp I)))

1 {ARRAYP}#?,1064
2 {ARRAYP}#!,11310
3 {ARRAYP}#?,1070
4 {ARRAYP}#?,1104
5 {ARRAYP}#?,1110
NIL

where each of the elements of GNP is an array as expected.

A Definition for MATRIX
We might define MATRIX as follows:

(DEFINEQ
(matrix (nrows ncolumns type orig in)

(PROG (address index i l im it)
(*

Test fo r inva lid values fo r number of rows
and columns.

)

316 Array Manipulation Functions

(COND
((LEQ nrows 0)

(ERROR "negative or zero rows”))
((LEQ ncolumns 0)

(ERROR "negative or zero columns")))
(*

I f no o r ig in i s sp ec if ied , assume (1 ,1) .
)
(COND

((NULL orig in)
(SETQ o r ig in 1)))

(AND
(NOT (lEQP o r ig in 0))
(NOT (lEQP o r ig in 1))
(ERROR "bad o r ig in sp e c if ic a t io n "))

(SETQ address
(ARRAY nrows 'p o in te r NIL o r ig in))

(SETQ i l im i t
(COND

((ZEROP orig in)
(SUBl nrows))

(T nrows)))
(SETQ index o rig in)

loop
(*

For each element of the matrix row, c rea te
an array which represen ts the columns of
th a t row.

)
(SETA address

index
(ARRAY ncolumns type NIL o r ig in))

(SETQ index (ADDl index))
(AND

(ILEQ index i l im i t)
(GO loop))

(RETURN address))
))

11.4.2 Getting a Matrix Element
To retrieve a matrix element, you need to specify row and column indices.
ELTM retrieves a matrix element. It takes the form

Function: ELTM

11.4 A Matrix Package 317

Arguments: 3

Arguments: 1) a matrix address, NAME
2) a row index, ROW
3) a column index, COLUMN

Value: The value stored a t the row and column
entry of the matrix.

ELTM generates an error if

1. The row index is less than 0 or greater than the number of rows.
2. The column index is less than 0 or greater than the number of columns.
3. NAME is not the address of a matrix.

Consider the following example:

<̂ -(ELTM GNP 1 1)
300

A Definition for ELTM
We might define ELTM as follows:

(DEFINEQ
(eltm (name row column)

(AND
(check.matrix name row column)
(RETURN NIL))

(ELT (ELT name row) column)
))

where CHECK.MATRIX is defined by

(DEFINEQ
(check.matrix (name row column)

(COND
((NOT (matrixp name))

(ERROR name "not a matrix”)))
(COND

((OR
(ILESSP row 0)
(IGREATERP row (ARRAYSIZE name)))
(ERROR "bad row index”))

((OR
(ILESSP column 0)
(IGREATERP column

(ARRAYSIZE (ELT name 1))))

318 Array Manipulation Functions

(ERROR "bad column index”))
(T name))

))

11.4.3 Setting a Matrix Element
To set a matrix element, you need to specify row and column indices. SETM sets
the corresponding matrix element. It takes the form

Function: SETM
Arguments: 4

Arguments: 1) a matrix address, NAME
2) a row index, ROW
3) a column index, COLUMN
4) a value, VALUE

Value: The new value.

SETM operates like ELTM except that it replaces the existing element of
the matrix with the new value.

Consider the following example:

-^(SETM GNP 1 1 300)
300

A Definition for SETM
We might define it as follows:

(DEFINEQ
(SETM (name row column value)

(PROG NIL
(AND

(check.matrix name row column)
(RETURN NIL))

(SETA (ELT name row) column value)
(RETURN value))

))

11.4 A Matrix Package 319

11.4.4 Basic Matrix Operations
The basic operations that you may perform on two arithmetic matrices are addi
tion, subtraction, and multiplication. In addition, a matrix may be multiplied
by a scalar. These operations are subject to certain conditions. Let Ml and M2
be two matrices with dimensions (il,jl) and (i2,j2) respectively. Then,

1. Ml and M2 may be added or subtracted provided il equals jl and i2
equals j2.

2. Ml and M2 may be mutiplied if il equals j2. The result has dimensions
of(ilJ2).

Adding or Subtracting Two Matrices
Given two matrices, Ml and M2, with dimensions (il,jl) and (i2,j2), respec
tively, MPLUS and MDIFFERENCE will add or subtract individual elements of
the two matrices. They take the form

Function: MPLUS
MDIFFERENCE

Arguments: 2

Arguments: 1) a matrix, Ml
2) a matrix, M2

Value: The address of a new matrix whose elements
are the sum or d ifference of the elements
of Ml and M2.

We can define MPLUS and MDIFFERENCE as follows:

(DEFINEQ
(mplus (ml m2)

(add .o r .sub trac t .m atr ices ml m2 T)
))

(DEFINEQ
(mdifference (ml m2)

(add .o r .sub trac t .m atr ices ml m2 NIL)
))

The workhorse function that actually performs the operations is ADD.OR-
.SUBTRACT.MATRICES which is defined as follows:

(DEFINEQ
(ad d .o r .su b trac t .m a tr ices (ml m2 flag)

(PROG (m3 i l j l i2 j2 index)
(AND

(is .m a tr ix ml)
(is .m a tr ix m2))

(SETQ i l (ARRAYSIZE ml))
(SETQ i2 (ARRAYSIZE m2))
(SETQ j l (ARRAYSIZE (ELT ml 1)))
(SETQ j2 (ARRAYSIZE (ELT m2 1)))

320 Array Manipulation Functions

(COND
((NEQ i l i2)

(ERROR "unequal row dimensions"))
((NEQ j l j2)

(ERROR "unequal column
dimensions")))

(COND
((NOT

(MEMBER
(ARRAYTYPE (ELT ml 1))
’ (FIXP FLOAT? . . .)))

(ERROR ml "not an arithm etic m atrix))
((NOT

(MEMBER
(ARRAYTYPE (ELT m2 l))
'(FIX FLOAT? . . .))

(ERROR m2 "not an arithm etic
m a tr ix ")))

(SETQ m3
(MATRIX i l j l (ARRAYTYPE (ELT ml l))
D)

rloop
(SETQ index j l)

cloop
(SETM m3

i l
index
(COND

(fla g
(PLUS (ELTM ml i l index)

(ELTM m2 i l index)))
(T

(DIFFERENCE (ELT ml i l index)
(ELT m2 i l
index)))))

(SETQ index (SUBl index))
(AND

(GREATER? index 0)
(GO cloop))

(SETQ i l (SUBl i l))
(AND

(GREATER? i l 0)
(GO rloop))

(RETURN m3))
))

11.4 A Matrix Package 321

Note that this definition does not consider whether or not both matrices have
the same origin. As an exercise, add the code to test for equivalent origins. You
will need to use the ARRAYORIGIN function to determine the origin.

Multiplying Two Matrices
Another operation that is often performed on matrices is multiplication. The
usual procedure for multiplying one matrix by another is to compute the dot
product of the rows of the first matrix with the columns of the second matrix.
Using a transposition procedure, we can turn the columns of the second matrix
into rows so that they are aligned with the rows of the first matrix. Then, a dot
product procedure may be used on corresponding rows. MATRIX-MULTIPLY
takes the form

Function: MATRIX-MULTIPLY

Arguments: 2
Arguments: 1) a m atrix, MATRIXl

2) a m atrix, MATRIX2

Value: A m atrix th a t is the r e s u lt of m ultiplying
MATRIXl by MATRIX2.

MATRIX-MULTIPLY assumes the two matrices are of equivalent dimen
sions. As an exercise, you might want to recode it to handle two matrices of
different dimensions. We might define MATRIX-MULTIPLY as follows:

(DEFINEQ
(m atrix-m ultip ly (ml m2)

(PROG (m3 i l j l i2 j2 rindex cindex)
(*

RINDEX is the row index.
CINDEX is the column index.
M3 is the re su ltin g m atrix.

)
(AND

(is .m a trix ml)
(is .m a trix m2))

(SETQ i l (ARRAYSIZE ml))
(SETQ i2 (ARRAYSIZE m2))
(SETQ j l (ARRAYSIZE (ELT ml 1)))
(SETQ j2 (ARRAYSIZE (ELT m2 1)))
(*

Check the corresponding dimensions of
the two m atrices.

)

322 Array Manipulation Functions

(COND
((NEQ i l 12)

(ERROR "unequal row dimensions"))
((NEQ j l j2)

(ERROR "unequal column
dim ensions")))

(*
Check th a t the elements of the m atrix
are numeric so th a t the a rith m etic
operation w ill not f a l l .

)
(COND

((NOT
(MEMBER

(ARRAYTYPE (ELT ml l))
'(FIXP FLOAT? . . .)))

(ERROR ml "not an a rith m etic m atrix))
((NOT

(MEMBER
(ARRAYTYPE (ELT m2 l))
'(FIX FLOATP . . .))

(ERROR m2 "not an a rithm etic
m a trix ")))

(*
Transpose m2's columns In to rows.

)
(SETQ m3 (TRANSPOSE m2))

rloop
(SETQ rIndex 1)

cloop
(SETQ clndex 1)

eloop
(SETA m3

rlndex
clndex
(DOT.PRODUCT (ELT ml rlndex)

(ELT m3 clndex)))
(SETQ clndex (ADDl clndex))
(AND

(NOT (GREATERP clndex j l))
(GO eloop))

(SETQ rlndex (ADDl rlndex))
(AND

(NOT (GREATERP rlndex 11))
(GO cloop))

11.4 A Matrix Package 323

(RETURN m3))
))

The TRANSPOSE Function
TRANSPOSE merely exchanges rows for columns in the target matrix. We
might define TRANSPOSE as follows

(DEFINEQ
(transpose (ml)

(PROG (mt i l j l rindex cindex) |
(SETQ i l (ARRAYSIZE ml)) 1
(SETQ j l (ARRAYSIZE (ELT ml 1)))
(SETQ mt I

(MATRIX 11
j l
(ARRAYTYPE (ELT ml 1)) 1))

(SETQ cindex 1)

324 Array Manipulation Functions

rloop

loop
(SETQ rindex 1)

(SETM mt
cindex
rindex
(ELTM ml rindex cindex))

(SETQ rindex (ADDl rindex))
(AND

(GREATERP rindex i l)
(GO loop))

(SETQ cindex (ADDl cindex))
(AND

(GREATERP cindex j l)
(RETURN mt))

(GO rloop))
))

Note that this function could have been defined more easily using CLISP
constructs (see Chapter 23). As an exercise, you may want to recode this function
using CLISP.

The DOT.PRODUCT Function
DOT.PRODUCT merely multiplies elements of vectors together and accumu
lates their sum. We might define DOT.PRODUCT as follows:

(DEFINEQ
(dot.p roduct (v l v2)

(PROG (vsize vsum)
(SETQ v size (ARRAYSIZE v l))
(SETQ vsum 0.0)

vloop
(SETQ vsum

(PLUS (ELT v l vsize)
(ELT v2 v s iz e)))

(SETQ vsize (SUBl v size))
(AND

(ZEROP vsize)
(RETURN vsum))

(GO vloop))
))

Note that DOT.PRODUCT works backward through the two vectors. This
eliminates the need for an additional temporary variable.

11.5 Sorting Using Arrays 325

11.5 SORTING USING ARRAYS
We have already seen a sorting function that works on lists of elements (see Sec
tion 6.7). A typical operation that is often performed upon arrays is to sort their
contents. In conventional programming languages, arrays are more often used
than lists in sorting algorithms. Thus, this section presents a few simple sorting
algorithms using arrays.

11.5.1 BubbleSort
The simplest sorting method known is called the bubblesort method because
items “bubble up” from within the set when it is sorted in ascending order. We
imagine an array of elements depicted in a vertical column. Elements with lower
key values move up the column to the top of the array. Bubblesorting makes
repeated passes over the array. At each pass, two adjacent elements are com
pared. If they are out of order; that is, the lower-valued one follows the higher
valued one, they are exchanged in place. As a result, after each pass the lowest
value has been “bubbled up” to its proper position in the array.

BUBBLE.SORT takes the following form:

Funct io n : BUBBLE.SORT

Arguments: 1
Arguments: 1) an array to be so rted , XARRAY
Value: A new array whose contents are so rted in

ascending o rder.

We might define BUBBLE. SORT as follows:

(DEFINEQ
(bubb le .so rt (xarray)

(PROG (xsize element index)
(*

INDEX keeps track of the current
element in the array th a t we are
inspecting .
ELEMENT keeps track of the s ta r t in g
element on each pass through the
a rray .

)
(SETQ xsize (ARRAYSIZE xarray))
(SETQ element 1)

326 Array Manipulation Functions

loop

te s t
(SETQ index element)

(*
Compare the elements a t INDEX and
INDEX+1; i f they are out of order,
swap them. Note th a t INDEX does not
exceed the lim its of the array
because of the t e s t performed below.

)
(COND

((GREATERP (ELT xarray index)
(ELT xarray (ADDl index)))

(SWAP xarray index)
(SETQ element index)))

(SETQ index (ADDl index))
(*

Determine i f we have completed a pass
through the array .

)
(AND

(LESSP index xsize)
(GO te s t))

(*
Determine i f so rtin g is completed.

)
(COND

((EQUAL element (SUBl x size))
(RETURN xarray))

(T

(SETQ element (ADDl elem ent))))
(GO loop))

))

SWAP merely exchanges two elements of the array in place given the index
of the first element. We might define SWAP as follows:

(DEFINEQ
(swap (xarray index)

(PROG (temp)
(SETQ temp (ELT xarray index))
(SETA xarray

index
(ELT xarray (ADDl index)))

(SETA xarray
(ADDl index)
temp))

))

This definition of BUBBLESORT sorts a single set of numbers. I encourage
you to embellish upon the definition in the following ways:

1. Let the elements of the array be lists. Compare entries in the array based
on the CAR of the list (i.e., the “key”) and exchange them appropriately.

2. Allow BUBBLESORT to accept a function which is the comparison
function for the elements of the array. Since INTERLISP-D arrays can
be different datatypes, you may specify different kinds of functions to
perform the comparison.

3. Attempt to define a recursive form of BUBBLESORT. Trace the opera
tion of this function to determine its behavior.

11.5.2 Selection Sorting
Selection sorting is an equally simple idea. In the Ith pass through the set of
elements, we select the element with the highest key and swap it with the (N-I)th
element (where N is the size of the set). As a result, after I passes through the set,
the last I elements will be those elements with the highest keys sorted in ascend
ing order. SELECTIONSORT takes the following form:

Function: SELECTION.SORT

Arguments: 1
Argument: 1) an array to be so rted , XARRAY
Value: The array XARRAY so rted in ascending

sequence.

11.5 Sorting Using Arrays 327

We might define SELECTION.SORT as follows:

(DEFINEQ
(s e le c tio n .s o r t (xarray)

(PROG (xsize maximum)
(SETQ xsize (ARRAYSIZE xarray))

loop
(SETQ maximum 1)
(PROG (element)

(SETQ element 1)
loop2

(GOND
((GREATERP (ELT xarray element)

(ELT xarray xsize))
(SETQ maximum element)))

(SETQ element (ADDl element))
(AND

(LESSP element xsize)
(GO loop2))

(SWAP2 xarray maximum xsize)
(SETQ xsize (SUBl xsize))
(AND

(EQP xsize 2)
(RETURN xarray))

(GO loop)) ^
))

We might define SWAP2 as follows:

(DEFINEQ
(swap2 (xarray max.index la s t.in d e x)

(PROG (temp)
(SETQ temp (ELT xarray max.index))
(SETA xarray

max. index
(ELT xarray la s t.in d e x))

(SETA xarray la s t.in d e x temp))
))

Note that SWAP2 takes two arguments for the locations of the elements to
be swapped, whereas SWAP merely exchanges adjacent elements.

328 Array Manipulation Functions

%

12

Mapping Functions

INTERLISP provides two mechanisms for iteratively executing a function while
varying the values of its arguments. In Chapter 3, we examined the PROG mech
anism which allowed us to develop models for the basic iterative control struc
tures: Unconditional DO, DO...WHILE, and DO...UNTIL. However, we had
to explicitly set the new values of the arguments to a function before its next
invocation. In this chapter, we shall examine mapping functions that apply a
given function to successive subsets of its first argument. The form of the subset
on each successive iteration is determined by the function.

12.1 GENERIC MAPPING
The basic mapping function is MAP. It has the following format

Function: MAP
MAPLIST

Arguments: 2-3
Arguments: 1) a l i s t , MAPX

2) a func tion , MAPFNl, to be applied to
successive subsets of MAPX

3) a function , MAPFN2, fo r computing the
successive subsets of MAPX

Value: NIL fo r MAP;
a l i s t of values fo r MAPLIST.

MAP operates by applying MAPFNl to the entire list MAPX, and then to
(CDR MAPX) repeatedly until MAPX is exhausted. That is, MAP operates on
the successive tails of MAPX. If MAPFN2 is non-NIL, INTERLISP computes

329

(MAPFN2 MAPX) rather than (CDR MAPX) for the successive subsets.
MAPFNl may take several forms:

1. A LAMBDA expression
2. A FUNCTION expression
3. A QUOTE expression whose argument is a function name or has an

EXPR property value.

Because MAP returns NIL as its value, it is primarily used for the side ef
fects generated by MAPFNl. MAPFNl should do something positive such as
setting a flag or changing a data structure when called from MAP.

MAPFNl and MAPFN2 may be any functions that take one argument.
They may take more but, of course, these are assigned the value NIL. In general,
MAPFNl and MAPFN2 should check that their argument is a list before opera
ting upon the argument.

A Definition for MAP
We might define MAP as follows:

(DEFINEQ
(map (raapx raapfnl raapfn2)

(PROG NIL
loop

(COND
((NLISTP raapx) j

I
MAP applies only to l i s t s . |

) t
(RETURN NIL))) I

(APPLY* mapfnl mapx) |
(SETQ mapx J

(COND I
(mapfn2 t

(* ‘
Use the user-supp lied i
mapping function to <
generate next case. ^

) !
(APPLY* mapfn2 mapx)) |

330 Mapping Functions

))

(T

(GO loop))
(CDR mapx))))

12.1.1 Returning a List of Values
MAPLIST, an alternative form of MAP, executes exactly like MAP except that
it returns a list of the results generated by applying MAPFNl to MAPX.

We might define MAPLIST as follows:

(DEFINEQ
(m aplist (mapx mapfnl raapfn2)

(PROG (m a p .lis t map.expression)
(SETQ m a p .lis t NIL)

loop
(COND

((NLISTP mapx)
(*

MAPLIST works only on
l i s t s .

)
(RETURN m a p .lis t)))

(*
R esults are CONSed to the fro n t of
the re s u lt in g l i s t .

)
(SETQ m ap.expression

(CONS
(APPLY* mapfnl mapx)
m ap.expression))

(COND
(m ap .lis t

(RPLACD (CDR map.expression)
(RPLACD
m ap.expression)))

(T
(SETQ m a p .lis t m ap.expression)))

(SETQ mapx
(COND

(mapfn2
(APPLY* mapfn2 mapx))

(T
(CDR mapx))))

(GO loop))
))

Many alternative forms of MAP, designated in many texts as MAPxxx, are
provided by INTERLISP. These are described in the following sections. It is
useful to inspect the different definitions of the mapping functions to see how

12.1 Generic Mapping 331

minor changes in functions can produce new capabilities. We have included def
initions of the major MAP functions so that you may inspect them and use them
as skeletons for developing more powerful mapping functions.

12.1.2 Mapping on Successive Elements
Many times we want to apply a function to successive elements of a list. IN
TERLISP provides the function MAPC to help us accomplish this task. MAPC
applies MAPFNl to (CAR MAPX) on each iteration. Its value is NIL. If
MAPFN2 is non-NIL, it is used in place of CDR to compute the new value of
MAPX. It takes the form

Function: MAPC
MAPCAR

Arguments: 2-3
Arguments: 1) a l i s t , MAPX

2) a function , MAPFNl, to be applied to
succesive elements of MAPX

3) a function , MAPFN2, fo r computing
successive subsets of MAPX

Value: NIL fo r MAPC;
a l i s t of values fo r MAPCAR.

An alternative form of MAPC is MAPCAR. It executes exactly as MAPC
does, but returns a list of the values of the successive invocations of MAPFNl on
the elements of MAPX. Let us inspect how these functions work using MAP
CAR:

•^(SETQ p resid en ts '(t y l e r polk lin co ln hayes))
(ty le r polk lin co ln hayes)

<-(MAPC p resid en ts 'PRINT)
ty le r
polk
lin c o ln
hayes
NIL

where NIL is returned as the value of MAPC. Alternatively, by invoking MAP
CAR, we obtain

(MAPCAR p resid en ts 'PRINT)
ty le r
polk

332 Mapping Functions

lincoln
hayes
(tyler polk lincoln hayes)

where the final list is the result of invoking MAPCAR because PRINT returns
the value of the object printed.

Because MAPCAR returns a list, it consumes storage to create the list.

A Definition for MAPC
We might define MAPC and MAPCAR as follows:

(DEFINEQ
(mapc (mapx mapfnl raapfn2)

(PROG NIL
loop

(COND
((NLISTP mapx)

(*
MAPC works only on lists.

)
(RETURN NIL)))

(APPLY* mapfnl (CAR mapx))
(SETQ mapx

(COND
(mapfn2

(APPLY* mapfn2 mapx))
(T

(CDR mapx))))
(GO loop))

))
(DEFINEQ

(mapcar (mapx mapfnl mapfn2)
(PROG (map.list map.expression)

(SETQ map.list NIL)
loop

(COND
((NLISTP mapx)

(*
MAPCAR works only on lists.

)
(RETURN map.list)))

(SETQ map.expression
(CONS (APPLY* mapfnl

(CAR map.expression))
map.expression))

12.1 Generic Mapping 333

(COND
(m ap .list

(RPLACD (CDR map.expression)
(RPLACD
map.expression)))

(T
(SETQ m ap .lis t map.expression)))

(SETQ mapx
(COND

(mapfn2
(APPLY* mapfn2 mapx))

(T
(CDR mapx))))

(GO loop))
))

12.1.3 Mapping on Successive Elements: MAPCONC
We noted that MAPCAR always returns a new list containing the results of its
execution. Sometimes, we want to modify the list that is presented as an argu
ment. To do so, we use MAPCON or MAPCONC which NCONC the results of
applying MAPFNl to MAPX onto the original list. They take the form

Function: MAPCON
MAPCONC

Arguments: 2-3

Arguments: 1) a l i s t , MAPX
2) a function , MAPFNl, to be applied to

succesive subsets (MAPCON) or CARs
(MAPCONC) of MAPX

3) a function , MAPFN2, to be used to
compute the succesive subsets of MAPX

Value: A l i s t of values of the successive
ap p lica tio n s of MAPFNl NCONCed toge ther.

MAPCON computes the same values as MAP/MAPLIST but NCONCs the
values to form a list which it returns. MAPCONC computes the same values as
MAPC/MAPCAR in the same manner. Consider the following examples:

^(SETQ X '(P e lee Etna NIL Vesuvius NIL NIL Krakatoa))
(Pelee Etna NIL Vesuvius NIL NIL Krakatoa)

(̂MAPCONC X
'(LAMBDA (x)

334 Mapping Functions

((NULL x) NIL)
(T (LIST x)))))

(Pelee Etna Vesuvius Krakatoa)

This MAPCONC expression strips null elements from a list and returns a
list of the non-null elements.

<-(SETQ X
'((Rome New-York) Milan (Bonn Moscow P aris)
L isbon))

((Rome New York) Milan (Bonn Moscow P aris) Lisbon)
« -(MAPCONC X

'(LAMBDA (X)
(COND

((LISTP x) (APPEND y))
((ATOM x) (LIST x))
(T NIL))))

(Rome New-York Milan Bonn Moscow P aris Lisbon)

This MAPCONC creates a linear list of all elements in lists or atoms which
are present in the argument. Since MAPCONC is NCONCing the results to
gether, it will alter the original input list. To prevent this undesirable side effect,
the APPEND expression returns a top-level copy of the argument.

A Definition for MAPCONC
MAPCONC may be defined using several elementary functions of INTERLISP.
A possible definition for MAPCONC might be

(DEFINEQ
(MAPCONC (mapx raapfnl mapfn2)

(PROG (mapl mape mapy)
loop

(COND
((NLISTP mapx)

(*
MAPCONC works only l i s t s .

)
(RETURN mapl))

((SETQ mapy
(apply* mapfnl (car mapx)))

(COND
(mape

(RPLACD mape mapy))

12.1 Generic Mapping 335

(COND

(T
(SETQ mapl

(SETQ mape m apy)))))
(PROG NIL
loop l

(COND
((SETQ mapy (CDR mape))

(SETQ mape mapy)
(GO lo o p l)))))

(SETQ mapx
(COND

(mapfn2
(APPLY* mapfn2 mapx))

(T
(CDR mapx))))

(GO loop))
))

All of the mapping functions discussed so far work only on lists as their
arguments. These functions return NIL if their argument is not a list. You may
consider modifying the function definitions to make a list of the argument if it is
not a list. To do so, in each function, you should replace the expression

(COND
((NLISTP mapx)

(RETURN . . .)))

by the expression

(COND
((NLISTP mapx)

(SETQ mapx (LIST mapx)))

which makes the argument a list if it is not already one.
You may want to define a new set of mapping functions which operate in this

manner to complement the basic functions provided by INTERLISP.

12.1.4 Mapping over Two Arguments
As we have seen, the mapping functions described above accept only one argu
ment list to be operated upon. Many times you will want to apply a mapping
function to two lists on an element-by-element basis. INTERLISP provides two
functions MAP2C and MAP2CAR that allow you to accomplish this task. Their
formats are

336 Mapping Functions

12.1 Generic Mapping 337

Arguments:
Arguments:

Function:

Value:

MAP2C
MAP2CAR

3-4
1) MAPX, an argument l i s t
2) MAPY, an argument l i s t
3) MAPFNl, the function to be applied
4) MAPFN2, the function used to compute

successive t a i l s of MAPX and MAPY

NIL i f MAP2C;
a l i s t of r e s u l ts i f MAP2CAR.

MAP2C and MAP2CAR operate exactly like MAPC and MAPCAR. How
ever, MAPFNl is applied to successive elements of MAPX and MAPY. That is,
MAPFNl is a function of at least two arguments. MAP2C (respectively MAP-
2CAR) terminates whenever one of the two lists is exhausted; that is, when the
result of MAPFN2 or CDR (the default) is NIL.

-^(SETQ numbers-1 '(1 2 3 4))
(1 2 3 4)

•^(SETQ numbers-2 '(100 200 300 400))
(100 200 300 400)
<-(MAP2CAR numbers-1 numbers-2 (FUNCTION IPLUS))
(101 202 303 404)

<-(MAP2CAR numbers-1 NIL (FUNCTION IPLUS))
NIL
<-(MAP2CAR numbers-2 numbers-2 (FUNCTION ITIMES))
(10000 40000 90000 160000)

A Definition for MAP2CAR
We might define MAP2CAR as follows:

(DEFINEQ
(map2car (mapx mapy mapfnl mapfn2)

(PROG (m a p .lis t map.expression)
(SETQ m a p .lis t NIL)

loop
(COND

((OR
(NLISTP mapx)
(NLISTP mapy))

(*
MAP2CAR works only with
l i s t s .

)
(RETURN m a p .l is t))) .

(SETQ map.expression
(CONS

(APPLŶ t mapfnl
(CAR mapx)
(CAR mapy))

map.expression))
(COND

(m ap .list
(SETQ mapx

(APPLY* mapfn2 mapx))
(SETQ mapy

(APPLY* mapfn2 mapy)))
(T

(SETQ mapy (CDR mapy))
(SETQ mapx (CDR mapx))))

(GO loop))
))

338 Mapping Functfons

12.1.5 Mapping Across Atoms: MAPATOMS
In many applications you may want to apply a function to some set of atoms that
have been created by your program. One way to do this is to build a list of all the
atoms as they are created and apply a function to them using one of the mapping
functions. If your application is very large, this may consume substantial space
to keep track of all the atoms.

MAPATOMS allows you to apply a function to all the literal atoms in the
system. However, its major problem is that it uses both atoms defined or created
by INTERLISP itself as well as all the atoms that you have created. In order to
apply it to a specific subset of atoms, your function, which is passed as an argu
ment, must perform a filtering of all the atoms to select those to be operated
upon.

MAPATOMS takes the following format

Function: MAPATOMS

Arguments: 1

Value: NIL

Argument: 1) a function to be applied, FN

12.1 Generic Mapping 339

The value of MAPATOMS is NIL so it is the responsibility of the function to
generate a result that you may later utilize. If you want to print all of the atoms
in the system (of which there are a great many!), you might use the following
expression

(̂MAPATOMS '(LAMBDA (x) (PRINT x)))
f
/SETPROPLIST
FORKBLOCK
DPROG
CHANGEDFNSLST
DUMPSTATCOMS
DECLARE
INTEGERLENGTH
MERGEINSERT

which are the first few atoms printed from an INTERLISP-10 system.
Note that USERWORDS (see Section 22.7.2) is a list of all the atoms that

you have entered via type-in. You may apply MAPATOMS to this list to operate
only upon the atoms that you have created. Unlike other LISP dialects, such as
FranzLisp or MACLisp, there is no function corresponding to (OBLIST) which
returns a list of all atoms created by the user.

You may print every atom with a function definition using the following ex
pression

(MAPATOMS ’ (LAMBDA (x)
(COND

((GETD x) (PRINT x)))))
/SETPROPLIST
FORKBLOCK
DECLARE
INTEGERLENGTH
MERGEINSERT

If you attach properties to each of the atoms that you create in your program
describing the usage of the atom, then you may code a MAPATOMS expression
to iterate over selected sets of atoms and perform some special operation on
them.

12.1.6 A Generic Printing Function
INTERLISP provides MAPRD^T as a general printing function. Even though it
is an output function, we discuss it in this chapter because it operates as a map
ping function.

MAPRINT has the following format

Function: MAPRINT
Arguments: 7

Arguments: 1) an argument l i s t , MAPX
2) an output f i l e , FILE
3) a l e f t expression demarcator, LEFT
A) a r ig h t expression demarcator, RIGHT
5) an expression separato r, SEP
6) a p r in t function, PFN
7) LISPXPRINTFLG

Value: NIL

MAPRINT applies PFN to successive elements of MAPX. PFN should be a
printing function. If it is NIL, PRINl is assumed. The results produced by MA
PRINT are directed to FILE. If FILE is NIL, then T is assumed (i.e., the termi
nal although it may also be explicitly specified).

You may use LEFT, RIGHT, and SEP to construct expression forms to suit
your application. Before each expression result from applying PFN to an ele
ment of MAPX is printed, MAPRINT will print the value of LEFT. Similarly,
after the expression is printed, MAPRINT will print the value of RIGHT. Indi- I

340 Mapping Functions

I
vidual expressions are separated by the value of SEP or “ ” (a string consisting of |
a single space) if SEP is NIL.

To mimic the application of PRINl for lists, you could execute the following
function call

(MAPRINT p resid en ts NIL %{ %))
(ty le r polk lin c o ln hayes)NIL

at the terminal since the file specification is NIL.

<-(MAPRINT p resid en ts NIL NIL NIL NIL 'PRINT)
ty le r
polk
lin co ln
hayes
NIL

♦-(MAPRINT p resid en ts T NIL
ty le r,p o lk ,lin co ln ,h ay es .N IL

because it is using PRINl to print the output. We can modify this to place spaces
between the entries and print NIL on the following line as follows

•<-(MAPRINT p re s id en ts
T
NIL
(CONCAT (MKSTRING (CHARACTER (CHARCODE CR)))

(MKSTRING (CHARACTER (CHARCODE LF))))
” , ”)

ty l e r , po lk , l in c o ln , hayes
NIL

If the LISPXPRINTFLG is T, then LISPXPRINl will be used in place of
PRINl (see Section 15.1.1).

12.2 Applying Functions to Subsets 341

12.2 APPLYING FUNCTIONS TO SUBSETS
When we apply a mapping function to a list, we often want the result to reflect
only the non-NIL values. In the generic mapping functions described in Section
12.1, a NIL will be explicitly reflected in the resulting list of those functions
returning a list. SUBSET, which returns only the non-NIL values, takes the
form

Func t io n : SUBSET

Arguments: 2-3
Arguments: 1) a l i s t , MAPX

2) a function , MAPFNl, to be applied to
the successive subsets of MAPX

3) a function , MAPFN2, to be used to
compute the successive subsets of MAPX

Value: A l i s t of the non-NIL values re su lt in g
from applying MAPFNl to MAPX.

Consider the following example:

(SUBSET '(a 2 b 6 X 32 i V U) (FUNCTION NUMBERP))
(2 6 32 U)

A Definition for SUBSET
We might define SUBSET as follows:

(DEFINEQ
(subset (mapx mapfnl mapfn2)

(PROG (m a p .lis t map.expression)
(SETQ m a p .lis t NIL)

loop

(COND
((NLISTP mapx)

(*
SUBSET works only on l i s t s .

)
(RETURN m ap .lis t))

((APPLY* mapfnl (CAR mapx))

I f the re s u lt is non-NIL, then
CONS i t to the l i s t of re s u lts .

) ■
(COND

((NULL m ap .list)
(SETQ m ap .list

(SETQ map.expression
(CONS (CAR mapx)))))

(T
(SETQ map.expression

(CDR
(RPLACD map.expression

(RPLACD
(CONS (CAR mapx)
mapexp))))))

)))
(SETQ mapx

(COND
(mapfn2

(APPLY* mapfn2 mapx))
(T (CDR mapx))))

(GO loop))
))

SUBSET returns a list that contains only the non-NIL values produced by
applying a function to successive elements of a list. SUBSET has the same for
mat as MAPCAR. Unlike MAPCAR, however, NIL values produced when
MAPFNl is applied to MAPX are ignored in constructing the resulting list.

12.3 SPECIFYING AN ARGUMENT AS A FUNCTION:
FUNCTION
In many applications we want to pass the name of a function as an argument to
another function. INTERLISP provides the FUNCTION function.to assist us.
FUNCTION is an NLAMBDA function that does not evaluate its arguments. It
has the following format

342 Mapping Functions

Function: FUNCTION
Arguments: 2

Arguments: 1) a function name or d e f in it io n , FN
2) an environment sp e c if ic a tio n ,

ENVIRONMENT

Value: E ith e r the function name or a FUNARG
s p e c if ic a tio n .

If the environment specification is NIL, then FUNCTION operates exactly
like QUOTE by returning the function name or definition. For example,

“̂ (MAPCAR p re s id en ts (FUNCTION PRINT))
ty le r
polk
lin c o ln
hayes
NIL

yields the same results as

'^(MAPCAR p re s id e n ts 'PRINT)
ty le r
polk
lin c o ln
hayes
NIL

Note: the difference in the two forms is that when the expression is compiled
(see Chapter 31), code will be produced for the first form above while in the
second it will not. This is particularly importa’nt when the argument to FUNC
TION is a LAMBDA expression. In this case, the compiler will define and com
pile an auxiliary function for the LAMBDA expression, whereas if the
LAMBDA expression is the argument of QUOTE, it will not. Thus, it is good
programming practice to always specify functions passed as arguments using the
FUNCTION mechanism to ensure that the program operates properly in both
compiled and interpreted modes.

If the environment specification is not NIL, it may be a list of variables that
are used freely by the function specified. By free variables, we mean those vari
ables that are globally accessed by the function but which are not specified in the
function’s parameter list. In this case, FUNCTION returns a FUNARG specifi
cation (see Section 12.4) which defines the stack frame where the values of the
variables specified in the environment are bound.

12.3 Specifying an Argument as a Function: FUNCTION 343

If ENVIRONMENT is an atom, it is evaluated and its value is used as a list
of free variables.

ENVIRONMENT may also be a stack pointer (see Chapter 30) which points
to a stack frame containing bindings for the variables used by by FN.

344 Mapping Functions

12.4 THE FUNARG MECHANISM
When FUNCTION is given an environment specification, INTERLISP must
know where the values of the variables are to be found before it can execute the
function. To do so, it constructs a FUNARG expression that has the form

(FUNARG function stack -position)

where STACK-POSITION is a pointer to a stack frame (see Chapter 30) that
contains the bindings of the variables specified in the environment.

FUNARG is not a function, but like LAMBDA and NLAMBDA, it has a
special meaning that is recognized by INTERLISP when applying a function to a
set of arguments. The virtue of the FUNARG mechanism is that it allows the
user to define the environment in which the variables are bound rather than
INTERLISP itself (which always uses the most recent stack frame).

The FUNARG mechanism is an advanced feature of INTERLISP that re
quires considerable caution in its usa^e. You probably should read and under
stand Chapter 30 concerning the stack before you attempt to use FUNARGs
directly.

12.4.1 Using FUNARGs
Suppose that you have a function that you would like to apply to an argument
and also apply to its result. The IRM [irm83] suggests an example (after which
the following is modeled)

<-(DEFINEQ
(reapply (fn value)

(APPLY* fn (APPLY* fn value))
))

(reapply)

REAPPLY applies FN to VALUE, and then applies FN to the result. That
is, it computes the composition of a function with itself (in mathematical terms).
Consider the example

(REAPPLY (FUNCTION (LAMBDA (X) (ITIMES XX))) 5)

625

Let us trace this activiy to see what happens (tracing is defined in Section
20. 1):

^(TRACE ITIMES)
(ITIMES)

(REAPPLY (FUNCTION (LAMBDA (X) (ITIMES XX))) 5)
ITIMES:
ARG1 = 5
ARG2 = 5
U = 2
ITIMES = 25

ITIMES:
ARG1 = 25
ARG2 = 25
U = 2
ITIMES = 625

625

which is the answer we expect. However, suppose we execute the following ex
pression

^(SETQ value 10)
10

-^(REAPPLY (FUNCTION (LAMBDA (X) (ITIMES X VALUE))) 5)
ITIMES:
ARG1 = 5
ARG2 = 5
U = 2
ITIMES = 25

ITIMES:
*ARG1 = 2 5
ARG2 = 5
U = 2
ITIMES = 125

125

which is not what we expect to see! This should multiply the value of the global
variable VALUE by the argument to the LAMBDA expression. The problem is
that the LAMBDA expression is treated like an EXPR. VALUE is bound within
the context of REAPPLY to its second argument. The solution (as noted by the
IRM) is to pass the value of VALUE as an environment for the EXPR. This
expression would take the form

12.4 The FUNARG Mechanism 345

^(REAPPLY
(FUNCTION (LAMBDA (X) (ITIMES X VALUE))

(VALUE))
5)

ITIMES:
ARG1 = 5
ARG2 = 10
U = 2

. ITIMES = 50

ITIMES:
ARG1 = 50
ARG2 = 10
U = 2
ITIMES = 500

500

which is the correct answer. Note that VALUE now has the correct binding (i.e.,
10) because the second argument to FUNCTION specifies an environment in
which its value is accessible.

As the IRM notes [irm83], this example is somewhat contrived to force the
problem to be demonstrated—namely, the clashing of variable names. Of
course, we could fix the problem by changing the names of the arguments so that
they don’t conflict. However, in large systems with hundreds of functions, you
may not notice problems of this sort until the functions are strongly embedded in
the system. It may not be feasible to edit all of the functions to change argument
names (even with Masterscope). The method described above provides a fix that
allows you to continue working until you are ready to rewrite the affected por
tions of the system.

12.4.2 Constructing FUNARGs to be Passed as Functions
The IRM notes that you may also construct a FUNARG which may be passed to
different functions for application. The FUNARG resides on the stack, and so
consumes no permanent storage. Consider the following example (after [irm83]:

<-(DEFINEQ
(make.counter (count)

(FUNCTION
(LAMBDA NIL

(PROGl count
(SETQ count (ADDl count))))

(coun t))
))

(make.counter)

346 Mapping Functions

<-(SETQ co u n te r-1 (MAKE.COUNTER 1))
(FUNARG (LAMBDA NIL (PROGl COUNT (SETQ COUNT (ADDl
COUNT))))
[STACKP]#152733/FUNARG)

So, MAKE.COUNTER returns a FUNARG that increments the counter
and returns the previous value of the counter. Each call to MAKE.COUNTER
creates a new FUNARG expression with a new, independent environment.
Thus, multiple counters may be generated and used throughout a program.

Now, to apply the FUNARG, we can execute the expression

^(APPLY c o u n te r -1)
1

♦-REDO " th is i s a Programmer's A ss is ta n t
2 command (see Chapter 25)”

Note that the counter’s previous value is maintained in the stack frame, so
that each successive application of the counter produces the correct value.

Let us create a second counter, which is initialized to count from 100:

<^(SETQ co u n te r-2 (MAKE.COUNTER 100))
(FUNARG (LAMBDA NIL (PROGl COUNT (SETQ COUNT (ADDl
COUNT))))
[STACKP]#152732/FUNARG)

This is an independent environment (note change in stack address). Now,
let us apply our new counter:

(APPLY co u n te r-2)
100

<-REDO
101

and, for good measure, let us check to see that COUNTER-1 is independent;

< -(APPLY co u n ter-1)

12.4 The FUNARC Mechanism 347

Thus, by using a FUNARG expression, you can create a function object
(something that acts like a function, looks like a function, but is not a function)
which has updatable bindings and which maintains the value of those bindings
between calls to the function object. The bindings are only accessible through an
instance of that function object (i.e., when you actually execute the function
object)

■♦-count
UNBOUND ATOM
COUNT

You may want to compare and contrast this mechanism with the notion of
generators which was introduced in Section 8.11.

12.5 APPLYING A FUNCTION TO ITS ARGUMENTS
When we pass a function name as an argument, it is usually accompanied by a
list of variables that it will operate on. The function, however, expects its argu
ments to be enumerated such that there is one-to-one correspondence between
the arguments and the parameters. For example, suppose we have a list of num
bers that we want to add together:

<-(SETQ numbers '(10 23 35 46))
(10 23 35 46)

We cannot say (PLUS numbers) because PLUS expects a set of individual
numbers to work with, e.g.,

«-(PLUS 10 23 35 46)
114

Thus, (PLUS numbers) would result in an error because the argument is not
an atom. PLUS does not know how to decompose a list of numbers into the
individual numbers that it will compute with. We, of course, could enumerate
the list, e.g., (PLUS (CAR numbers) (CADR numbers) (CADDR numbers)
(CADDDR numbers)), but this is both tedious and quickly runs into problems if
the list is longer than four items.

INTERLISP provides the function APPLY to deal with this problem (so that
we do not have to do the enumeration!). Its format is

Function: APPLY

Arguments: 2

Arguments: 1) a function
2) a l i s t of arguments

Value: The value of the function operating upon
the argument l i s t

Thus, we can say

^(APPLY ’PLUS numbers)
114

348 Mapping Functions

(APPLY (FUNCTION PLUS) numbers)
114

APPLY performs the appropriate interfacing between the function and the
list of arguments that we would like it to operate upon.

APPLY does not evaluate the elements of the argument list. However, the
arguments given to APPLY are evaluated because it is a LAMBDA function.
The function is responsible for evaluating the arguments that appear in the ar
gument list. For example,

<-(APPLY (FUNCTION SETQ)
’ (FOO (ADDl 3)))

which sets FOO to 4, but

(APPLY (FUNCTION SET)
'(FOO (ADDl 3)))

(ADDl 3)

will set FOO to (ADDl 3).
An alternative form, APPLY*, collects an indefinite number of arguments

(2-N) into a list so that the function may operate upon them. For example,

<-(APPLY* (FUNCTION PLUS) 10 23 35 46)
114

which is equivalent to

(APPLY (FUNCTION PLUS)
(LIST 10 23 35 46)) 114

APPLY and APPLY* have also been described in more detail in Chapter 8
because they are actually functional forms. Please consult Section 8.9 for addi
tional information.

12.5 Applying a Function to its Arguments 349

or better yet

12.5.1 Determining S-expression Depth
As we have seen, S-expressions may be complex structures. Suppose that we
wanted to know the depth of an S-expression, e.g., the level of the deepest sublist
of the given S-expression. We might define a function DEPTH that calculates
the depth as follows:

^(DEFINEQ
(depth (s-expression)

(COND
((NULL s-expression) 1)
((ATOM s-expression) 0)
(T

(ADDl
(APPLY (FUNCTION MAX)

(MAPCAR s-expression
'DEPTH)))))

))

350 Mapping Functions

DEPTH returns 1 if the S-expression is NIL because we treat NIL as the
empty list. It returns 0 if the S-expression is an atom because it is not a list at all.
Otherwise, we apply DEPTH recursively to all of the elements of the S-expres
sion.

13

Arithmetic Functions

As we noted in Chapter 2, there are three different types of numbers in IN
TERLISP; small and large integers, and floating point numbers. The minimum
and maximum values are stored in system variables. For INTERLISP-D, the
following ranges are observed

sm all in teg e rs

la rg e in teg e rs

f lo a tin g p o in t

MIN.SMALLP
MAX.SMALLP
MIN.FIXP
MAX.FIX?
MIN.FLOAT
MAX.FLOAT

-65536
65535

-2147483648
2147483647

-3.402823 E38
3.402823 E38

INTERLISP-10 (version dated 26-SEP-83) does not have these system vari
ables defined as of this writing.

INTERLISP/370 maintains the same values for large integers and floating
point numbers, but treats small integers as 24-bit quantities. Thus, the range for
small integers in INTERLISP/370 is [-2**24,2**24].

A small integer is one which satisfies the predicate SMALLP, but it is also
an integer which may be stored in the pointer field of a word.

Large integers or floating point numbers are stored as full word quantities.
To distinguish these numbers from other INTERLISP pointers, INTERLISP
“boxes” the number. That is, when a large integer or floating point number is
created either by an arithmetic operation or via READ, it is stored into a full
word. A pointer to that word is passed around among functions rather than the
actual numeric quantity itself. We say that the number has been boxed. When
some arithmetic function requires the actual “value,” the converse function of
unboxing, i.e., performing the extra level of addressing, retrieves the number.
Boxing consumes two words of storage for each number that is created; one for
the number and one for the pointer. Unboxing requires no additional storage.

351

13.1 INTEGER FUNCTIONS
INTERLISP provides the standard arithmetic functions for computing on inte
gers, both small and large. Integer functions work only on integers. If they are
given a floating point number, it is first truncated to form the corresponding
integer and then used in the computation. If an integer function is given a non
numeric argument, it will display an error message: NON-NUMERIC ARG.

13.1.1 Integer Addition
You can add two or more integers using IPLUS. It takes the form

Function: IPLUS

Arguments: 1-N

Arguments: 1) a number, XI
2) a number, X2
3-N) numbers, X3 . . . XN

Value: The in teg er sum of the numbers Xi.

IPLUS is a nospread function, meaning it may take an indefinite number of
arguments. Consider the following examples:

•<-(SETQ number-of-oranges 10)
10
<-(SETQ number-of-apples 20)
20

where the numbers are treated as literal atoms (as described in Chapter 2). We
can then add the number of apples and oranges by

■♦-(IPLUS number-of-apples number-of-oranges)
30

IPLUS is commutative, so we can reverse the order of the arguments and
obtain the same answer

^ (IPLUS number-of-oranges number-of-apples)
30

IPLUS treats NIL as zero. Thus, we can use either of the following forms

^ (IPLUS)
0

352 Arithmetic Functions

^(IPLUS 5 10 NIL 15 20 NIL)
50

where the last example demonstrates that IPLUS may take multiple arguments.

Adding One to a Number
An alternative function, ADDl, provides for the very common operation of add
ing one to a number. It takes the form

Function: ADDl

Arguments: 1

Argument: 1) a number, XI

Value: The number plus 1 as an in te g e r.

Consider the example

^(ADDl number-of-oranges)
21

A Definition for ADDl
We might define ADDl as follows:

(DEFINEQ
(addl (x)

(IPLUS X 1)
))

13.1.2 Integer Subtraction
Integer subtraction is provided by the IDIFFERENCE, which subtracts its sec
ond argument from its first argument. It takes the form

Function: IDIFFERENCE

Arguments: 2
Arguments: 1) a number, XI

2) a number, X2
Value: The d iffe ren ce between XI and X2 as an

in te g e r .

Consider the following examples;

< -(IDIFFERENCE number-of-oranges number-of-apples)
10

13.1 Integer Functions 353

♦-(IDIFFERENCE)
"Non-Numeric Arg”

(IDIFFERENCE num ber-of-app les num ber-of-oranges)
-10 I

Note that IDIFFERENCE is not a commutative function; that is, the order
of the arguments matters in computing the result.

A Definition for IDIFFERENCE
We might define IDIFFERENCE as follows:

(DEFINEQ
(id l f f e r e n c e (x y)

(IPLUS X (IMINUS y))
)) i

i
Subtracting One from a Number
A special function is provided for the common operation of subtracting one from '
a number, SUBl. It takes the form 1

F u n c tio n : SUBl
Arguments: 1 j

Argument: 1) a number, XI i

V alue: The v a lu e o f XI minus 1 as an in te g e r . ;

Consider this example:

■<-(SUBl num ber-o f-ap p les)

354 Arithmetic Functions

A Definition for SUBl
We can define SUBl in terms of IDIFFERENCE as follows:

(DEFINEQ
(SUBl (a-num ber)

(COND
((NUMBER? a-number)

(IDIFFERENCE a-number 1))
(T

(ERROR "Non-numeric A rgum ent")))
))

or, alternatively.

(DEFINEQ
(su b l (x)

(IPLUS X -1)
))

Negating a Number
Negation of a number is often treated as the subtraction of that number from
zero. INTERLISP provides the IMINUS function to negate a number. It takes
the form

Function: IMINUS
Arguments: 1

Argument: 1) a number, XI

Value: The negative value o f the number.

Consider the example

-^(IMINUS num ber-of-oranges)
-20

13.1 Integer Functions 355

A Definition for IMINUS
We might define IMINUS as follows:

(DEFINEQ
(im inus (x)

(IDIFFERENCE 0 x)
))

The foregoing examples demonstrate that an INTERLISP kernel actually
needs very few primitive arithmetic functions. From these few primitives, all
other arithmetic functions may be constructed. Selection of the few primitives
should be based on the efficiencies found in the underlying machine architec
ture.

13.1.3 Integer Multiplication
Integer multiplication is performed by the ITIMES. It takes an indefinite num
ber of arguments just as IPLUS does. It takes the form

Function: ITIMES

Arguments: 1-N

Arguments: 1) a number, XI
2) a number, X2
3-N) numbers, X3 . . . XN

Value: The cumulative product of the numbers Xi,

ITIMES is a nospread function. Consider the following examples:

. ■‘-(ITIMES number-of-apples number-of-oranges)
200
^(ITIMES)
1

because ITIMES assumes that NIL is treated as 1.

13.1.4 Integer Division
Integer division is provided through two functions: IQUOTIENT and R E
MAINDER. They take the form

Function: IQUOTIENT
IREMAINDER

§ Arguments: 2

Arguments: 1) a number, XI
2) a number, X2

Value: The quo tien t or remainder of XI and X2,
re sp ec tiv e ly .

Given two numbers, IQUOTIENT produces their truncated quotient. For
example,

< -(IQUOTIENT number-of-oranges number-of-apples)
2
■ (̂IQUOTIENT number-of-apples number-of-oranges)
0

because IQUOTIENT is not commutative.

« -(IQUOTIENT)
"Non-Numeric Arg"
NIL

Meanwhile, IREMAINDER produces the remainder when the first argu
ment is divided by the second. For example.

356 Arithmetic Functions

^(IREMAINDER number-of-oranges number-of-apples)
0

♦ -(IREMAINDER num ber-of-apples number-of-oranges)
10
^ (IREMAINDER)
"Non-Numeric Arg"
NIL

Dividing a Number by Two
A frequent arithmetic operation that is performed is to divide a number by two.
You might define a function called IHALF that returns the integer closest to the
quotient of the argument and 2:

(DEFINEQ
(ih a l f (x)

(IQUOTIENT X 2)
))

13.1.5 Minimum and Maximum
INTERLISP provides functions for finding the minimum and maximum of a
sequence of integers. These are the IMIN and BMAX functions, respectively.
They take the form

Function: IMIN
IMAX

Arguments: 1-N
Arguments: 1) a number, XI

2) a number, X2
3-N) numbers, X3 . . . XN

Value: The minimum or maximum number,
re sp e c tiv e ly , of the numbers Xi as an
in te g e r .

IMIN and IMAX are nospread functions. Consider the following examples:

«-(IMIN 7 32 -1 3 568 91)
-1

^(IMAX 7 32 -1 3 568 91)
568

Note that (IMIN) will return the value of the smallest possible integer and
(IMAX) will return the value of the largest possible integer.

13.1 Integer Functions 357

-2147483648
«-(lMAX)
2147483647

13.1.6 Integer Modulus
You may compute the integer modulus using IMOD, which takes the form

Function: IMOD
Arguments: 2

Arguments: 1) a number, XI
2) a number, X2

Value: The in teger modulus of XI and X2.

The integer modulus differs from the value of IREMAINDER in that it al
ways produces a non-negative integer in the range [0...X2]. For example,

<-(lMOD 42 12)
6

<-(lMOD 128 365)
128

^(IMOD)
"non-numeric arg” I
NIL j

^(IMOD 786 -34) \
4 i

13.1.7 Converting to an Integer
You may convert a number of unspecified type to an integer using FIX, which
takes the form

Function: FIX

Arguments: 1

Argument: 1) a number, X

Value: An in teg e r.

FIX returns X if it is an integer. Otherwise, it converts X to an integer by
truncating the fractional bits of X. Consider the examples

358 Arithmetic Functions

13.2 Integer Predicates 359

<-(FIX 10)
10 ?

This example causes problems because FIX is also a command to the Pro
grammer’s Assistant (see Chapter 25), To properly use FIX from the top level,
you must assign its result to a variable.

^(SETQ X (FIX 1053.456))
1053
-^(SETQ X (FIX))
"non-numeric arg"
NIL

13.2 INTEGER PREDICATES
INTERLISP provides a variety of predicates for comparing integers, testing
their values and their characteristics.

13.2.1 Boolean Predicates
INTERLISP provides four Boolean predicates for comparing the values of two
integers. They take the form

Function: IGREATERP
ILESSP
IGEQ
ILEQ

Arguments: 2
Arguments: 1) a number, XI

2) a number, X2
Value: T, i f XI (r e la t io n) X2; otherw ise, NIL.

The Boolean predicates are defined for two integers [x] and [y] as follows:

P re d ic a te D e fin itio n

IGREATERP T i f [x] > [y]
NIL otherw ise

ILESSP T i f [X] < [y]
NIL otherw ise

IGEQ T if [X] => [y]
NIL otherwise

ILEQ T if [X] <= [y]
NIL otherwise

Consider the following examples:

^(IGREATERP 75.0 123.4)
NIL

^(ILEQ 2K 56)
T

If either or both of XI and X2 is NIL, these Boolean predicates generate an
error message “NON-NUMERIC ARG” and return NIL.

360 Arithmetic Functions

13.2.2 Predicates for Testing Equality
INTERLISP provides several predicates for testing for the equality of two inte
gers, or for testing the equality of an integer to an implied value.

To test if two integers are equal, you should use lEQP. It takes the form

Function: lEQP

Arguments: 2

Arguments: 1) a number, XI
2) a number, X2

Value: T, i f XI is equal to X2; otherw ise, NIL.

lEQP compares the values of the two integers regardless of whether they are
large or small. For examples,

•^(SETQ number-of-hands 2)
2
^(SETQ number-of-legs 2)
2
<-(IEQP number-of-hands number-of-legs)
T

Note that NUMBER-OF-HANDS and NUMBER-OF-LEGS are both small
integers. It is suggested in the IRM [irm83] that you can use EQ if the two argu
ments are known to be small integers. That is because some implementations of
INTERLISP perform a special allocation of small integers to a unique area of

INTERLISP’s address space. For reasons of program portability, I suggest that
you use the general form, lEQP, which is guaranteed to operate correctly for all
implementations even though it may take slightly longer to execute.

A common arithmetic test that is often performed is to test for the equality
of an integer to zero. INTERLISP provides the predicate ZERO? to perform this
test. It takes the form

Function: ZEROP
Arguments: 1

Argument: 1) a number, XI
Value: T, i f XI is zero; otherw ise, NIL.

A Definition for ZEROP
We might define ZEROP as follows:

(DEFINEQ
(zerop (x)

(lEQP X 0)
))

Testing for Equality to One
Some implementations of LISP also provide a predicate for testing the equality
of an integer to the number 1. Strangely, INTERLISP does not contain such a
function. We can easily define such a predicate as follows:

(DEFINEQ
(ONE? (an -in teg e r)

(COND
((NUMBER? an -in teg er)

(COND
((FIX? an -in teger)

(lEQP an -in teg er 1)))
(T

(ERROR "Non-numeric Argument")))
))

Testing for the Maximum or Minimum Integer
You may also wish to test whether or not a variable has the value of the maxi
mum or minimum integer. We might define these functions as follows:

(DEFINEQ
(maxp (x)

(lEQP X MAX.FIXP)
))

13.2 Integer Predicates 361

(DEFINEQ
(minp (x)

(lEQP X (MIN.FIXP)
))

362 Arithmetic Functions

13.2.3 Predicates for Testing Characteristics
INTERLISP provides a number of predicates for testing the characteristics of
integers.

Testing For a Negative or Positive Number
We often want to know whether or not an integer is negative. Using ILESSP, we
have to evaluate the integer with respect to zero as the second argument. Because
this test is so common, INTERLISP provides us with a “hardwired” predicate,
MINUSP, which takes the form

Function: MINUSP
PLUSP

Arguments: 1

Argument: 1) a number, X

Value: T, i f X is negative (i . e . , le s s than 0).

MINUSP returns T if its argument X is less than zero, and NIL otherwise.
INTERLISP does not provide a corresponding predicate for testing if the value
of an integer is positive. However, we can easily define such a predicate as fol
lows:

(DEFINEQ
(PLUSP (an -in teg e r)

(COND
((NUMBERP an -in teg er)

(COND
((FIXP an -in teger)

(IGREATERP an -in teg e r 0))))
(T

(ERROR "Non-numeric Argument”)))
))

Testing for a Small Integer
INTERLISP provides a function for testing whether or not an integer is a small
integer as described above. This predicate is called SMALLP, which takes the
form

Function: SMALLP

Arguments: 1

Arguments: 1) a number, X

Value: T, i f X is a sm all in te g e r .

It returns T if its argument lies within the range of small integers for the
particular implementation of INTERLISP; otherwise, it returns NIL. The ra
tionale for using small integers (and their special allocation procedures) derived
from early implementations of INTERLISP where storage was often limited.
More recent implementations use a virtual storage management procedure
which, I believe, obviates the need for even considering whether or not an integer
is small. Therefore, I suggest that the use of SMALLP be foregone.

Testing for an Integer
INTERLISP provides a predicate for determining whether or not its argument is
an integer. This function is called FIXP and it takes the form

Function: FIXP

Arguments: 1

Arguments: 1) a number, X

Value: X, i f X is an in te g e r (la rg e or sm a ll) .

Unlike the other integer predicates, FIXP returns the number X if its argu
ment is an integer, but NIL otherwise. It does not generate an error if its argu
ment is non-numeric.

^(FIX P)
NIL

A Definition for FIXP
We might define FIXP as follows:

(DEFINEQ
(fix p (number)

(AND (NUMBERP number)
(NOT (FLOATP number))
number)

))

Testing for Even or Odd Integers
INTERLISP provides functions for testing whether an integer is even or odd.
They take the form

13.2 Integer Predicates 363

Function: ' EVENP
ODDP

Arguments: 2
Arguments: 1) a number, XI

2) a number, X2
Value: T, i f the r e s u l t is even or odd,

re sp e c tiv e ly .

EVENP and ODDP are nospread functions. If X2 is not given, EVENP is
equivalent to

(ZEROP (IMOD XI 2))

otherwise, it is equivalent to

(ZEROP (IMOD XI X2))

Consider the following examples:

<-(EVENP 15378)
T

^(ODDP 187237)
T

(EVENP)
T

«-(ODDP)
NIL

<-(EVENP 24 A)
T

(EVENP 128 6)
NIL

^(EVENP 128 -A)
T

Note that NIL is treated the same as 0. These examples, taken from a DEC-
System-20, show that the system treats 0 as an even number. Caution should be
exercised as the notion of even and odd for zero is machine-dependent.

A Definition for EVENP and ODDP
We might define EVENP as follows:

364 Arithmetic Functions

(DEFINEQ
(evenp (x)

(ZEROP (IMOD X 2))
))

and ODDP naturally follows as

(DEFINEQ
(oddp (x)

(NOT (EVENP x))
))

Testing for a Power of Two
POWEROFTWOP tests if its argument is a power of two. It takes the form

Function: POWEROFTWOP

Arguments: 1

Argument: 1) a number, X

Value: T, i f X is equ ivalen t to two ra ise d to a
power.

Consider the following examples:

(̂POWEROFTWOP 1024)
T

•̂ (POWEROFTWOP 103678)
NIL

(̂POWEROFTWOP)
NON-NUMERIC ARG
NIL

(POWEROFTWOP 0)
NIL

<-(POWEROFTWOP 1)
T

13.3 MANIPULATING INTEGERS
INTERLISP provides several functions that manipulate the values of integer ar
guments. These functions appear to correspond to instructions that were preva
lent in early computers where “bit twiddling” was a major concern of the pro
grammer.

13.3 Manipulating Integers 365

13.3.1 Logical Manipulations
INTERLISP provides three functions that perform logical functions on integers
as bit representations. They take the form

Funct ion: LOGAND
LOGOR
LOGXOR

Arguments; 1-N

Arguments; 1) a number, XI
2) a number, X2
3-N) numbers, X3 ... XN

Value; The bitwise logical operation of the Xi as
an integer.

LOGAND, LOGOR, and LOGXOR are nospread functions. The logical
operators are defined by the following table:

Function Definition
LOGAND [xl] and [x2] and

LOGOR [xl] or [x2] or

LOGXOR [xl] xor [x2] xor

The value returned by each of these functions is an integer that represents
the application of the function to its arguments. For example, if we define the
following integers according to their bit representations

27 11011
6 00110

13 01101
10 01010

we obtain the following results:

^(LOGAND 27 10)
10

(LOGAND 6 13)
4

366 Arithmetic Functions

LOGOR 27 13)

31

<-(LOGOR 10 27)
27

^(LOGXOR 27 13)
22

It seems to me that considering the values of integers as particular bit pat
terns defeats the purpose for which INTERLISP was developed. These functions
appear to be historical artifacts that remain from the days of limited memory.

However, as with conventional programming languages, an argument can
be made for the need to manipulate the bits within a word (see bit manipulations
below). The problem is that attempting to port an INTERLISP program to a
machine with a different word size can be very difficult. As a matter of philoso
phy, I suggest that you avoid bit manipulation functions unless absolutely neces
sary.

Logical Negation
INTERLISP-D implements an additional logical operation, LOGNOT, which
takes the form

Function: LOGNOT

Arguments: 1

Argument: 1) a number, X

Value: The lo g ic a l negation of X.

Consider the following examples:

« -(LOGNOT 27)
-28

(LOGNOT 0)
-1

A Definition for LOGNOT
We might define LOGNOT as follows:

(DEFINEQ
(logno t (x)

(LOGXOR X -1)
))

13.3.2 Integer Shift Functions
INTERLISP provides several functions for shifting, both logically and arithmet
ically, the values of integers when they are treated as bit streams. The general
format is

13.3 Manipulating Integers 367

368 Arithmetic Functions

Function:

Arguments:
Arguments:

Value:

LSH
RSH
LLSH
LRSH

1) a number, X
2) the number of b i t s to s h i f t , N

An in te g e r re su lt in g from b i t s h i f t ,
e i th e r a rith m etic or lo g ic a l.

The arithmetic and logical shift functions are defined as follows

LSH
RSH
LLSH
LRSH

Arithm etic Left S h ift
A rithm etic Right S h ift
Logical Left S h if t
Logical Right S h ift

Consider the following examples:

♦-(SETQ a-number 32767)
32767

^(LSH a-number 2)
131068
<-(LLSH a-number 2)
131068

•<-(RSH a-number 8)
127

♦-(SETQ a-number -127)
-127

♦-(RSH a-number 2)
-32

<-(LRSH a-number 2)
1073741792

Note that the last example produces a positive number because a logical
right shift introduces zeroes in the high order bits.

The basic difference between the logical and arithmetic shift functions lies
in their treatment of the sign bit associated with the integer value. For arithmetic
right shifts of negative numbers, the sign bit is propagated to each bit location to
ensure that the result is a negative number. For logical right shifts, zeroes are

propagated. Logical and arithmetic left shifts always propagate zeroes from the
right.

13.3 Manipulating Integers 369

13.3.3 Integer Conversion
INTERLISP provides a function for creating an integer from a floating point
number, FIX. FIX converts a floating point number to an integer by truncating
any fractional bits and generating a new cell with the proper representation. If
the given number is already an integer, INTERLISP merely returns the integer
value without consuming any additional storage.

The generic format for this function is

Function: FIX

Arguments: 1

Argument: a number

Value: The in te g e r value of the number.

Consider the following example:

<-(FIX 1.2578)'
1.2578 ?

<^(SETQ y (FIX 1.2578))
1

The reason that INTERLISP complains is that FIX is also a command rec
ognized by the Programmer’s Assistant. The Programmer’s Assistant intercepts
type-in via LISPXREAD (see Section 25.1) so that you cannot type FIX directly
to the toplevel of INTERLISP.

13.3.4 The Greatest Common Divisor
INTERLISP provides a function, GCD, for calculating the greatest common di
visor of two integers. Its generic format is

Function: GCD

Arguments: 2

Arguments: 1) a number, X
2) a number, Y

Value: The g re a te s t common d iv iso r of the two
numbers.

Consider the following example:

^(GCD 12468 3256)
4

<-(GCD 43.54 12.78)

370 Arithmetic Functions

Note that GCD accepts any two numbers and attempts to find their greatest
common divisor. However, this function makes little sense when applied to float
ing point numbers.

13.4 FLOATING POINT FUNCTIONS
As with integers, INTERLISP also provides functions for operating upon float
ing point numbers. These functions, when given an integer, convert the integer
to a floating point number internally before operating upon it. As with integers,
when these functions are given a non-numeric argument, they respond with an
error message “Non-numeric Arg”

13.4.1 Floating Point Addition
You may add two or more floating point numbers using FPLUS, which takes the
form

Function:

Arguments;

Arguments:

V alue:

FPLUS

1-N

1) a number, XI
2) a number, X2
3-N) numbers, X3 . . . Xn

The cum ulative sum of the numbers Xi as a
f lo a tin g p o in t number.

FPLUS is a nospread function. Consider the following examples:

FPLUS 34.6 123.5 -43 .2)
114.9
^(FPLUS)
0. 0 .

Adding One to a Number
There is no corresponding floating point function to ADDl in INTEBtt-ISP, but
we can easily define one as follows:

(DEFINEQ
(fa d d l (x)

(FPLUS X 1.0)
))

13.4.2 Floating Point Subtraction
You may compute the difference between two floating point numbers using
FDIFFERENCE, which takes the form

Function: FDIFFERENCE

Arguments: 2

Arguments: 1) a number, XI
2) a number, X2

Value: The d iffe re n ce between XI and X2 as a
f lo a t in g p o in t number.

Consider the following examples:

(FDIFFERENCE 123.7 9 8 .A)
24.6

(FDIFFERENCE)
NON-NUMERIC ARG
NIL

Subtracting One from a Number
There is no corresponding floating point function to SUBl in INTERLISP, but
we may easily define one as follows

(DEFINEQ
(fsu b l (x)

(FDIFFERENCE x 1.0)
))

Floating Point Negation
You may also compute the negative value of a floating point number (equivalent
to subtracting it from zero) using FMINUS, which takes the form

Function: FMINUS

Arguments: 1

Argument: 1) a number, X
Value: The negative value of X as a f lo a tin g

p o in t number.

13.4 Floating Point Functions 371

Consider the following examples:

<-(FMINUS 23.6)
-23.6

13.4.3 Floating Point Multiplication
You may multiply two or more floating point numbers together using FTIMES,
which takes the form

372 Arithmetic Functions

Function:

Arguments;
Arguments:

Value:

FTIMES
2-N
1) a number, XI
2) a number, X2
3-N) numbers, X3 . . . xN
The cumulative product of the numbers Xi
as a f lo a tin g po in t number.

FTIMES is a nospread function. Consider the following examples:

^(FTIMES 103.5 12)
1242.0

♦-(FTIMES)
0.0
^(FTIMES 20.3 12.7 0.034)
8.76554

13.4.4 Floating Point Division
INTERLISP provides two functions to support floating point division: FQUO-
TIENT and FREMAINDER, which take the form

Function:

Arguments:

Arguments:

V alue:

FQUOTIENT
FREMAINDER

1) a number, XI
2) a number, X2

The q u o tien t o r rem ainder, re sp e c tiv e ly ,
o f XI and X2 as a f lo a tin g p o in t number.

Consider the following examples:

13.4 Floating Point Functions 373

♦-(FQUOTIENT 196.74 23-54)
8.357689

< (̂FREMAINDER 196.74 23.54)
8.42

<-(FQUOTIENT)
"non-numeric a rg ”
NIL

A Dermition for FREMAINDER
We might define FREMAINDER as follows:

(DEFINEQ
(frem ainder (x l x2)

(FDIFFERENCE x l
(FTIMES x2

(FIX (FQUOTIENT x l x2))))
))

13.4.5 Testing Equality of Floating Point Numbers
You may test whether or not two floating point numbers are equal using FEQP,
which takes the form

Function: FEQP

Arguments: 2

Arguments: 1) a number, XI
2) a number, X2

Value: T, i f XI equals X2 as a f lo a tin g p o in t
number.

Consider the following examples:

<-(FEQP 0.0345 0.034)
NIL

<^(FEQP)
"non-numeric arg"
NIL

Note: this function is defined in INTERLISP-D only, although it is noted in
the IRM [irm83] as being available in all versions of INTERLISP.

13.4.6 Floating Point Boolean Functions
INTERLISP provides the corresponding boolean functions for comparing two
floating point numbers: FGREATERP and FLESSP, which take the form

374 Arithmetic Functions

Function:

Arguments:

Arguments:

V alue:

FGREATERP
FLESSP

1) a number, XI
2) a number, X2

T, i f XI i s g re a te r th an , re s p e c tiv e ly
le s s th an , X2.

Consider the following examples:

FGREATERP 278.7 0.03^5)
T

^(FLESSP 1.0004 1.00038)
NIL

13.4.7 Floating Point Minimum and Maximum
You may determine the minimum or maximum of a sequence of floating point
numbers using FMIN or FMAX, which take the form

Function :

Arguments:

Arguments:

Value:

FMIN
FMAX

1-N

1) a number, XI
2) a number, X2
3-N) numbers, X3 . . . XN

The minimum o r maximum, re s p e c t iv e ly , o f
th e numbers Xi as a f lo a t in g p o in t number.

FMIN and FMAX are nospread functions. Consider the following exam
ples:

•^(FMAX 45.12 0.03 67834.23 -3.1415)
67834.23

Note that FMIN and FMAX return the smallest and largest floating point
numbers, respectively, if their arguments are NIL.

<-(FMIN)
-3.402823 E38

^(FMAX)

3.402823 E38

13.4.8 Converting a Number to Floating Point Format
You may convert a number to floating point format using FLOAT, which takes
the form

Function: FLOAT

Arguments: 1

Argument: 1) a number, X

Value: X, as a f lo a tin g p o in t number.

FLOAT returns X directly if it is a floating point number. Otherwise,
FLOAT converts X to a floating point number, e.g.,

<-(FLOAT 0)
0.0

< -(FLOAT (ITIMES 23 78))
1794.0

<-(FLOAT)
"non-numeric arg"
NIL

13.5 Mixed Arithmetic Functions 375

13.5 MIXED ARITHMETIC FUNCTIONS
INTERLISP provides a set of generic functions whose result takes on the charac
teristics of its arguments. If any argument of these functions is a floating point
number, all arguments are coerced to floating point format and the result is a
floating point number (unless it is T explicitly). Otherwise, these functions act
like integer functions. Rather than give a detailed exposition of these functions,
the following table depicts the correspondences between these generic functions
and those that we have already discussed.

Generic Function Integer F loa tin g Po in t

PLUS IPLUS FPLUS

DIFFERENCE IDIFFERENCE FDIFFERENCE

MINUS IMINUS FMINUS

376 Arithmetic Functions

TIMES ITIMES FTIMES
QUOTIENT IQUOTIENT FQUOTIENT
REMAINDER IREMAINDER FREMAINDER
GREATERP IGREATERP FGREATERP
LESSP ILESSP FLESSP
GEQ IGEQ
LEQ ILEQ
MIN IMIN FMIN
MAX IMAX FMAX

13.5.1 Computing the Absolute Value
You may compute the absolute value of a number using the function ABS, which
takes the form

Function:

Arguments:

Argument:

Value:

ABS

1

1) a number, X

The abso lu te value of X.

ABS returns X if X is greater than zero; otherwise, it returns -X. Consider
the following examples:

<-{ABS 23.0)
23.0
<-(ABS 0.0)
0.0
<^(ABS -432.76)
432.76

The IRM [irm83] notes that ABS uses GREATERP and MINUS to perform
its computations.

A Definition for ABS
We might define ABS as follows:

(DEFINEQ
(abs (x)

(COND
((GREATERP x 0) x)
(T

(MINUS x))) '
))

13.6 SPECIAL ARITHMETIC FUNCTIONS
INTERLISP provides a standard set of functions for performing commonly ac
cepted mathematical functions. These include exponentiation, trigonometric
operations, logarithms, and random number generation.

13.6.1 Trigonometric Functions
INTERLISP provides the standard trigonometric functions. Each function takes
a number, X, and returns its value as a floating point number. Their formats are

Function: SIN
COS
TAN

^Arguments: 2

Arguments: 1) a number, X
2) a f la g , RADIANSFLAG

Value: A f lo a t in g p o in t number.

If RADIANSFLAG is T then X is in radians; otherwise, it is degrees. Con
sider the following examples:

^ (f o r I from 0 .0 to 180.0 by 30.0
do (PRINl I) (SPACES 5) (PRINT (SIN I)))

0.0 0.0
30.0 .^997781
60.0 .8656^72
90.0 1 .0
120.0 .8656472
150.0 .04997779
180.0 -1.87253 E-7

where the values of SIN are small integers.

< -(fo r I from 0 .0 to 180.0 by 30.0
do (PRINl I) (SPACES 5) (PRINT (COS I)))

0.0 1.0
30.0 .8656472

13.6 Special Arithmetic Functions 377

378 Arithmetic Functions

60.0 .4997781
90.0 0 .0
120.0 -.4997784
150.0 -.865647
180.0 -1 .0

where the values for COS are small integers,

• ^ (fo r I from 0 .0 to 180.0 by 30.0

0 .0
do (PRINl I)(SPACES 5) (PRINT (TAN I)))

0.0
30.0 .5773462
60.0 1.732063
90.0 3.402823 E38
120.0 -1.732062
150.0 -.5773461
180.0 1.872535 E-7

13.6.2 Inverse Trigonometric Functions
INTERLISP also provides standard inverse trigonometric functions. Each func
tion takes a floating point number within the function’s input range. Arguments
outside the proper range cause an error to be generated. Their formats are

Function :

Arguments:

Arguments:

V alue:

ARGSIN
ARCCOS
ARCTAN

1) a number, X
2) a f la g , RADIANSFLAG

A f lo a t in g p o in t number.

The ranges for input and output for each of these functions are

Function
ARCSIN
ARCCOS
ARCTAN

Input
[-1.0, +1.0]
[-1.0, +1.0]
[-1.0, +1.0]

Output
[-9 0 .0 , +90.0]
[180 .0 , 0 .0]
[134.9998, 45.0]

RADIANSFLAG determines whether the result is returned in radians (T) or
degrees (NIL).

Consider the following examples:

<-(ARCCOS -1 .3)
ARCCOS: arg not in range
-1 .3

(ARCCOS 0.5)
60.00001

^(ARCCOS 0.0)
90.0

<-(ARCTAN -0 .5)
153.^3^9
•<-(ARCTAN -1 .0)
135.0

<-(ARCTAN 1.0)
44.99999

Another View of ARCTAN
An alternative form of ARCTAN, ARCTAN2, computes the quotient of two
numbers, X and Y. ARCTAN2 has the format

Function: ARCTAN2

Arguments: 3

Arguments: 1) a number, X
2) a number, Y
3) a f la g , RADIANSFLAG

Value: A f lo a t in g p o in t number

ARCTAN2 returns a value in the range —180 to +180 degrees, i.e., the
result is in the proper quadrant as determined by the signs of X and Y.

Consider the following examples:

«-(ARCTAN2 -1 .0 0.5)
-63.43495

«-(ARCTAN2 0 .0 1 .0)
-180.0

<-(ARCTAN2 1 .0 0.0)
90.0

13.6.3 Exponentiation
EXPT returns the value of its first argument, X, taken to the Nth power. Its
format is

13.6 Special Arithmetic Functions 379

Function: EXPT
Arguments: 2
Arguments: 1) a base, X

2) a power, N

Value: An in teg e r or f lo a tin g po in t number.

If X and N are integers, EXPT returns an integer result; otherwise, it re
turns a floating point result.

♦-(EXPT 5 2)
25
^(EXPT -3 5)
-243
<-(EXPT -0 .7 10)
0.2824752

If X is negative (X < 0) and N is fractional (N < 1.0), EXPT generates an
error:

<-(EXPT -4 0.5)
LOG OF NON-POSITIVE NUMBER
-4 , |

If N is floating and either too large or too small, EXPT returns the largest
possible floating point value. For example,

<-(EXPT 150.0 25.0)
3.402823E38 ^

380 Arithmetic Functions

13.6.4 Square Root
SQRT returns the square root of its argument, X, as a floating point number. Its
format is

Function: SQRT

Arguments: 1
Arguments: 1) a number, X

Value: A f lo a tin g p o in t number.

Consider the following examples:

^(SQRT 106754.3)
326.7328

<-(SQRT 81)
9 .0

If X is negative (X < 0), SQRT generates an error:

^(SQRT -100.0)
SQRT OF NEGATIVE NUMBER
- 100.0

SQRT is faster than (EXPT X .5) as the following timing comparisons dem
onstrate (see Chapter 29 for a description of TIME):

<-(TIME (SQRT 100))
0 Conses
.173 seconds
10.0

•^(TIME (EXPT 100 .5))
0 Conses
.42 seconds
10.00009

13.6.5 Logarithms
INTERLISP provides the natural logarithm function and its inverse. Their for
mats are

Function: LOG
ANTILOG

Arguments: 1

Arguments: 1) a number, X

Value: A f lo a t in g p o in t number.

Consider the following examples:

<-(L0G 0.0)
LOG OF NON-POSITIVE NUMBER
0.0
♦-(LOG 10.0)
2.302583
<-(L0G 100000.0)
11.51292

13.6 Special Arithmetic Functions 381

If X is negative (X < 0), LOG and ANTILOG generate an error message:

^(LOG -100.0)
LOG OF NON-POSITIVE NUMBER
- 100.0

(ANTILOG -2.45),
2.000018

. (ANTILOG 0.0)
1.0
-(ANTILOG -0 .7)
.08629356

382 Arithmetic Functions

13.6.6 Random Number Generation
INTERLISP provides a psuedo-random number generator, RAND, and a func
tion for initializing it, RANDSET. The format for RAND is

Function:

Arguments:

Arguments:

Value:

RAND

2

1) lower bound, LOWER
2) upper bound, UPPER

An in te g e r or f lo a t in g po in t number.

Consider the following examples:

-(RAND 1 10)

<-(RAND 2 100)
42

<-(RAND 1000 1050)
1004 .

<-(RAND -150 -175)
-164

RANDSET takes the form

Function: RANDSET

Arguments: 1

Argument: 1) an i n i t i a l i z a t i o n value, X

Value: An in te rn a l s t a t e .

If X is NIL, RANDSET just returns the internal state. For example,

^(HANDSET)
(11996 58248 49267 19460 65470 24561 23941 48766 63093
8937 26494 14191 25348 23161 58999 8788 20454 11637 62780
33784 26916 44822 6238 60538 . . .)

If X is T, the random number generator is initialized using the current value
of the system clocks, and RANDSET returns the new internal state. Otherwise,
X is interpreted as a previous internal state, i.e., a value of RANDSET, which is
used to reset the random number generator. For example,

«-(SETQ o ld s ta te (RANDSET))
• • • •

(RANDSET o ld s ta te)

13.7 More Arithmetic Functions 383

where the internal state is represented as a long sequence of very large integers
(too numerous to display here).

13.7 MORE ARITHMETIC FUNCTIONS
The two major LISP dialects diverged during their formative years. While IN
TERLISP emphasized programming productivity tools, MACLISP was devel
oped with numerical computation in mind. This split reflected the emphasis of
the two communities’ research and development interests. Recently, we have
seen a trend toward convergence of the two dialects (and other offshoots as well)
in COMMONLISP. Neither dialect provides an extensive library of arithmetic
functions beyond the normal ones found in programming languages. It is not
hard, as this section demonstrates, to develop a fairly extensive set of arithmetic
functions.

In this section, we will describe some useful arithmetic functions. Usually, I
will define these functions using arrays and CLISP operators. I leave it as an
exercise for you to write the definitions that will work if the data structure to be
operated upon is a list of numbers.

Note: These functions are not included in the standard INTERLISP as of
this writing.

13.7.1 Statistical Functions
A good set of statistical functions should be in the repertoire of every program
mer. This section describes some definitions for the most commonly used statis
tical functions.

Calculating the Mean
Given an arry of numbers, the mean or average of that array is defined to be the
sum of the elements of the array divided by the length of the array. MEAN takes
the following format:

Function: MEAN

Arguments: 1
Argument: 1) an array , X

Value: The mean of the array X.

We might define MEAN as follows:

(DEFINEQ
(mean (x)

(PROG (xsize xorig in x llm it xsum)
(IF (ARRAYP x)

THEN (RETURN NIL))
xsize<>-(ARRAYSIZE x)
xorigin<-(ARRAYORIG x)
(IF (ZERO? xorigin)

THEN x lim it-^-xslze-l
ELSE x l lm i t^ x s iz e)

xsum<-0
(FOR I FROM xorig in TO x llm it

DO xsum<-xsum+(ELT x 1))
(RETURN

(QUOTIENT xsum x s iz e)))
))

Consider the following example:

<-(SETQ X (ARRAY 5 1))
{ARRAYP}#1,2464

*-{FOR I FROM 1 TO 5
DO (SETA X I (RAND)))

NIL

384 Arithmetic Functions

<-(MEAN X)
38930

where the elements of X are 54985, 50146, 17756, 63115, and 8650.

Calculating the Median
The median of an array of numbers is the value for which half the values are less
than the median and half are greater. Given an array of numbers, we sort it in
ascending order and inspect the midpoint to obtain the value of the median.
MEDIAN takes the form

Function: MEDIAN

Arguments: 1

Argument: 1) an a r ray , X

Value: The median of X.

We might define MEDIAN as follows:

(DEFINEQ
(median (x)

(PROG (xsize y)
(IF "(ARRAYP x)

THEN (RETURN NIL))
y«-(ARRAYSORT x)
xsize<-(ARRAYSIZE x)
(RETURN

(ELT X (IQUOTIENT xsize 2))))
))

Calculating the Variance
The variance of an array is defined as the average of the squares of the deviations
from the mean. A deviation is merely the difference between an individual ele
ment of the array and the mean. VARIANCE takes the form

Function: VARIANCE

Arguments: 1

Argument: 1) an a rray , X

Value: The variance of X.

We might define VARIANCE as follows:

13.7 More Arithmetic Functions 385

(DEFINEQ
(variance (x)

(PROG (xmean xslze xorlg in x lim it xmeansq
xsumsq)

(IF -(ARRAYP x)
THEN (RETURN NIL))

xmean^(MEAN x)
xmeansq<-(TIMES xmean xmean)
xsize<-(ARRAYSIZE x)
xorigin<-(ARRAYORIG x)
(IF (ZERO? xorigin)

THEN xlim it•<-xsize-l
ELSE x lira i t '^x s ize)

(FOR i FROM xorig in to x lim it
DO

xsumsq-^- (DIFFERENCE
(EXPT

(FLOAT (ELT X I))
2 . 0))

xmeansq))
(RETURN xsumsq))

))

Calculating the Standard Deviation
The standard deviation of an array is just the square root of its variance. Thus,
we can define STANDARD.DEVIATipN as

(DEFINEQ
(stan d a rd .d ev ia t io n (x)

(IF ~(ARRAY? x)
THEN NIL
ELSE (SQRT (VARIANCE x)))

))

386 Arithmetic Functions

13.7.2 Complex Arithmetic
INTERLISP does not support complex arithmetic (unlike FORTRAN), but we
can simulate this feature using the Record Package (see Chapter 27). A complex
number will be represented as a dotted pair, but it will be given its own datatype
within INTERLISP.

Defining Complex Numbers
We can declare the definition of a complex number using the following expres
sion

<-(DATATYPE COMPLEX ((REAL FLOATP) (IMAG FLOATP)))
COMPLEX

and we may create a complex number using the following expression

^(SETQ Cl (CREATE COMPLEX))
[COMPLEX]#170000

Note that a new datatype has been created with the name COMPLEX and has
been allocated its own storage pool for creating INTERLISP objects of that type.

Let us create a second complex number, C2.

^(SETQ C2 (CREATE COMPLEX))
[COMPLEX]#170002

But what we would really like to do is capture the creating function plus the
setting of initial values in a single function.

A Definition for Defining Complex Numbers
We might define the function COMPLEX as follows:

(DEFINEQ
(complex (r 1)

(PROG (temp)
(SETQ temp (c rea te COMPLEX))
(RECORDACCESS 'REAL temp NIL 'REPLACE r)
(RECORDACCESS ’IMAG temp NIL 'REPLACE 1)
(RETURN temp))

))
^(SETQ c3 (COMPLEX 7.5 9 .0))
[COMPLEX]#170770

Accessing the Real and Imaginary Parts
We may define two functions, REAL and IMAG, that access the real and imagi
nary parts of a complex number as follows:

(DEFINEQ
(r e a l (cx)

(RECORDACCESS 'REAL cx NIL 'FETCH)
))

(DEFINEQ
(imag (cx)

(RECORDACCESS 'IMAG cx NIL 'FETCH)
))

13.7 More Arithmetic Functions 387

^(REAL c3)
7.5
<-(lMAG c3)
9.0

Complex Addition and Subtraction
Complex addition and subtraction are straightforward. We merely add or sub
tract the corresponding real and imaginary parts of the two complex numbers to
produce a new complex number. We can define CPLUS and CDIFFERENCE as
follows:

(DEFINEQ
(cplus (cx l cx2)

(PROG (cx3)
(SETQ cx3

(COMPLEX
(PLUS (REAL cxl) (REAL cx2))
(PLUS (IMAG cxl) (IMAG cx2))))

(RETURN cx3))
))

(DEFINEQ
(cd iffe rence (cx l cx2)

(PROG (cx3)
(SETQ cx3

(COMPLEX
(DIFFERENCE (REAL cxl) (REAL cx2))
(DIFFERENCE (IMAG cxl) (IMAG cx2))))

(RETURN cx3))
))

^(SETQ c l (COMPLEX 2.0 2 .0))
[COMPLEX]#170002

<^(SETQ c2 (COMPLEX 3-0 3-0))
[COMPLEX]#170000

<-(SETQ c^ (CPLUS c l c2))
[COMPLEX]#170752

^(REAL cA)
5.0

^(IMAG c4)
5.0
^(SETQ c5 (CDIFFERENCE c l c2))
[COMPLEX]#170750

388 Arithmetic Functions

<-(REAL c5)
- 1.0
-^(IMAG c5)
- 1.0

Note that I did not check to see if CXI and CX2 were actually complex num
bers before performing the addition upon them. You can easily add the COND
clause which checks this and prints the appropriate error message if they are not
complex numbers. The conditional part of the COND clause appears as

(TYPE? COMPLEX CXI)

which returns T if CXI is a complex number.
Nor did I check if either of the arguments is NIL. If either (or both) argu

ment is NIL, we would like to assume a complex number equivalent to (0.0, 0.0).

13.7 More Arithmetic Functions 389

Defining Zero as a Complex Number
You may define a function CZERO which creates the complex number having
both parts equal to 0.0 as follows:

(DEFINEQ
(czero n i l

(COMPLEX 0.0 0.0)
))

Then, you may modify both CPLUS and CDIFFERENCE to check if either
argument is NIL. If so, you merely set the argument (internal to the function) to
(CZERO). Here is an example:

(COND
((NULL cxl)

(SETQ cx l (CZERO))))

inside of CPLUS before you perform the addition.

Maltiplying Two Complex Numbers
Multiplying complex numbers requires additional arithmetic because both real
and imaginary parts must be reflected in the final product. Let CXI and CX2 be
complex numbers which have the representation

c x l = (a + b l) cx2 = (c di)

Then, the product of CXI and CX2 is

cx3 = (cx l * cx2)
= (a+bi) * (c+di)
= ac + ad i + bc i + bdi**2
= (ac-bd) + (ad +bc)i

We can define CMULT to multiply two complex numbers as follows

(DEFINEQ
(cmult (cx l cx2)

(PROG (cx3)
(SETQ cx3

(COMPLEX
(DIFFERENCE

(ITIMES (REAL cxl)
(REAL cx2))

(ITIMES (IMAG cxl)
(IMAG cx2)))

(PLUS
(ITIMES (REAL cxl)

(IMAG cx2))
(ITIMES (IMAG cxl)

(REAL cx2)))))
(RETURN cx3))

))
<-(SETQ cx l (COMPLEX 5.0 5 .0))
[COMPLEX]#460000

^(SETQ cx2 (COMPLEX 3-0 3-0))
[COMPLEX]#460002

^(SETQ cx4 (CMULT cx l cx2))
[COMPLEX]#460012

^(REAL cx4)
0.0
'‘-(IMAG cx4)
30.0

You may define a similar function for performing the division of two com
plex numbers. I leave that as an exercise for the reader.

Printing Complex Numbers
The standard printing functions, when faced with a datatype that they do not
know, how to print, will merely print its address representation. For example,

390 Arithmetic Functions

(PRINT cxl)
[COMPLEX]#461000

However, this does not inform us of the contents of CXI. We can define a
method for printing complex numbers using DEFPRINT (see Chapter 15). The
declaration takes the form

^(DEFPRINT 'COMPLEX (FUNCTION PRINT.COMPLEX))
NIL

<-(DEFINEQ
(prin t.com plex (cxl)

(LIST NIL (CONS (REAL cxl) (IMAG c x l)))
))

(PRINT.COMPLEX)

(PRINT cxl)
((5 .0 . 5 .0))

13.7 More Arithmetic Functions 391

13.7.3 Additional Arithmetic Functions
There are many other arithmetic functions which you may easily define that are
not included in the standard INTERLISP loadup. This section describes a few of
these functions.

Truncation and Rounding
You may want to truncate a number to its integer portion. One approach is to
use FIX to yield the integer part of the number. An alternative method uses
IQUOTIENT as shown below. Let us define TRUNCATE as follows:

^(DEFINEQ
(tru n c a te (x)

(IQUOTIENT X 1)
))

(TRUNCATE)

^(TRUNCATE 5.4)
5

You may also want to round a number to the integer nearest a multiple of
that number. We might define the function ROUNDTO as follows:

^(DEFINEQ
(roundto (x y)

(TIMES

(ROUNDED (QUOTIENT x y))
y)

))
(ROUNDTO)

where ROUNDED, which returns an integer nearest the argument, is defined as
follows

(DEFINEQ
(rounded (x)

(TRUNCATE
(PLUS X

(QUOTIENT (SIGN x) 2)))
))

(ROUNDED)

and SIGN, which returns the sign of the argument, is defined as

(DEFINEQ
(sig n (x)

(COND
((GREATER? x 0.0) 1)
((LESSP X 0.0) -1)
(T D)

))
(SIGN)

We can test these functions as follows:

<^(SIGN -5.4)
-1

^(ROUNDED -5.4)
-5
^(ROUNDED 10.23)
10
<-(ROUNDTO 10.23 6)
1

Compating the Reciprocal
The reciprocal of a number is one divided by that number. Obviously, we must
check that we are not dividing by zero, and return an error if it is attempted. The
main reason for defining RECffROCAL is that gives a cleaner appearance to
your functions than repreatedly writing (QUOTIENT 1.0 x). The name RECIP-

392 Arithmetic Functions

ROCAL is easier to understand than the expression above, although they do the
same thing.

We might define RECIPROCAL as follows;

<-(DEFINEQ
(re c ip ro c a l (x)

(COND
((EQP X 0.0)

(ERROR "Zero has no re c ip ro c a l”))
(T

(QUOTIENT 1.0 (FLOAT x))))
))

(RECIPROCAL)

(RECIPROCAL 2)
.5
•^(RECIPROCAL ^5.346)
.02205266

(RECIPROCAL 0.0)
Zero has no re c ip ro c a l
NIL

Obtaining the Floor of a Number
The floor of a number is the nearest integer which is less than the number. We
might define FLOOR as follows

<-(DEFINEQ
(f lo o r (x)

(PROG (tru n ca tio n)
(SETQ tru n c a tio n (TRUNCATE x))
(COND

((GEQ X 0.0)
(RETURN tru n ca tio n))

((EQP X tru n ca tio n)
(RETURN tru n ca tio n))

(T
(RETURN (SUBl t r u n c a t io n)))))

))
(FLOOR)

<-(FLOOR 7.3^5)
7
< -(FLOOR -3^.98)
-35

13.7 More Arithmetic Functions 393

<-(FLOOR -12)
-12

Note that the reason for the last test in the COND expression above is dem
onstrated by the two examples using negative numbers. The floor of —34.98 is
not —34, because that number is greater than the original argument. On the
other hand, the floor of —12 is —12.

Equivalent arguments may be made for constructing a “ceiling” function
which has a similar appearance. I leave this as an exercise for the reader.

This demonstrates that new arithmetic functions may be added to your IN
TERLISP repertoire quite easily. Ideally, you want to collect the functions in a
package, using the File Package commands, so that they may be loaded dynami
cally as needed.

394 Arithmetic Functions

14

Input Functions

INTERLISP provides a rich variety of input functions for bringing data into a
program. Input is mediated by read tables that describe how specific characters
are to be interpreted. Most of the input functions take both an optional read
table and an optional file.

Input is terminated in an INTERLISP symbolic file by the character se
quence <CR><LF> (e.g., a carriage-return, line-feed). INTERLISP-10 auto
matically ignores an <LF> appearing after a <CR> in a file. When you type a
carriage return at your terminal, INTERLISP-10 automatically inserts a line
feed after the <CR>.

Note that the internal representation of “end of line” differs between IN
TERLISP-10 and INTERLISP-D. INTERLISP-D uses the carriage return char
acter (15Q) while INTERLISP-10 uses the EOL character (37Q). By using
(CHARCODE EOL) in your programs to look for end-of-line characters, you
can make your programs implementation independent, since the EOL entry in
the read tables will be set to the appropriate character code.

14.1 READ: THE GENERAL CASE
The most general case that we encounter in INTERLISP is reading S-expres-
sions into a program. READ is the function that performs this operation for us.
Its format appears as follows:

Function: READ

Arguments: 1-3

Arguments: l) a f i l e name, FILE
2) an o p tio n a l read ta b le , RDTBL
3) an o p tio n a l f la g , FLAG

Value: An S -expression read from the f i l e .

395

READ returns a value when one of two conditions is encountered:

1. A carriage return is encountered in the file or has been typed by the user
at the terminal.

2. A right parenthesis is detected that matches a beginning left parenthesis
and completes an S-expression.

READ will properly read atoms, numbers, and strings as S-expressions
when they are typed at the terminal without enclosing parentheses. Strings are
delimited by double quotes as expected. Numbers are interpreted according to
the current radix (normally, base 10). Numbers may be entered in a different
radix by adding an identifying suffix to the number.

READ echoes the characters that are typed at the terminal back to the ter
minal. Thus, when you type a carriage return, INTERLISP echoes both a car
riage return and a line feed so that new output will appear on the next physical
line. If FLAG is T, then the carriage return normally typed after a matching
right parenthesis will be suppressed.

READ inputs an S-expression from the specified file. If the file name is NIL
or empty, READ assumes that you meant the terminal and reads from T. Note
that INTERLISP does not prompt you to enter any data, but merely waits until
you type the proper input to proceed.

^(SETQ X (READ))T
cursor w aits here fo r you to en te r data

<-(SETQ X (READ))
1.23'4<CR>
1.234

-^(NUMBER? x)
1.234

In this case, the atom typed in is interpretable as a number, so INTERLISP
creates a number. The type of number depends on the nature of the atom that
you type. Integers consist of a sequence of numeric characters without a decimal
point. INTERLISP also “understands” scientific notation:

«-(SETQ X (READ))
lE3<cr>
1000.0
The second number printed in the above cases is the result of evaluating the

expression, while the first is just INTERLISP echoing what you typed in.
You may specify the radix of the number that you are typing in by append

ing a radix identifier. INTERLISP assumes all numbers are entered in decimal.
Appending a Q to the number indicates an octal number.

396 Input Functions

^(SETQ X (READ))
21Q
17 Note: rad ix change!

Because INTERLISP/370 maintains numbers in an internal hexadecimal
format (due to the System/370 architecture), prefixing an @ to a number causes
it to be interpreted as a hexadecimal number:

^(SETQ X (READ))
@11
16

Strings are identified to READ by delimiting them by double quotes:

<-(SETQ X (READ))
"An i l l wind blows no good"
"An i l l wind blows no good"

Input from the terminal is line-buffered in order to permit control charac
ters (principally, backspacing and word delete) to be effective. No characters are
passed from the input routines to the program until a <CR> has been typed. But,
merely typing a <CR> indicates no input, and INTERLISP waits for further in
put.

^(SETQ X (READ NIL NIL T))T
typing <CR> does nothing; you must enter) or] to complete an S-expression,
but

<-(SETQ X (READ NIL NIL T))
HELP<CR>
HELP

^(SETQ X (READ NIL NIL T))
)
NIL

because) completes an S-expression, which is in fact the empty list represented
by NIL.

14.1 READ: The General Case 397

14.1.1 Effect of Control Characters
INTERLISP recognizes the effect of several characters (that is, pressing the
CTRL key and a letter key simultaneously) when accepting input from the termi
nal. These control characters affect most input functions, although we discuss

them after READ. Note,that these control characters are often implementation- N
dependent. The following control characters are handled by INTERLISP-D and
INTERLISP-10:

CTRL-A
Erases the last character typed in by you. It echoes \ and the erased character.

^(SETQ X (REEDTaTAAD))

is entered as (SETQ x (READ)) because ED was erased by the pair of CTRL-As
that were typed. Note that what you really see on your terminal is

'^(SETQ X (REED\D\EAD))

CTRL-B
Forces a break in the current computation, whence the stack is backed up to the
last function call and the BREAK package (see Chapter 20) is entered.

^(SETQ X (READ))TB
in te rru p te d below \TTYBACKGROUND
(\TTYBACKGROUND broken)

398 Input Functions

While in INTERLISP-10, you would see

<^(SETQ X (READ))
tB

BREAK
NIL

(READ broken)

There are significant differences in the way the various implementations
handle this interrupt. You should consult the IRM for the current description.

CTRL-C
Forces termination of the current computation and return of control to the oper
ating system.

<-(SETQ X (READ))TC
@ (which i s the TENEX prompt)

CTRL-D
Forces a termination of the current computation, followed by a reset, and re
winds the stack to the top level. Internally, it forces a call to RESET (see Chapter
18).

CTRL-E
Forces an error in the current computation which is backed up to the last error-
set; NIL is returned as its value. Internally, it forces a call to ERROR! (see
Chapter 18).

CTRL-H
For INTERLISP-D, a menu of running processes is displayed from which
you may select one to be interrupted. This will be discussed in more detail in
Volume 2.

For INTERLISP-10, at the next point that a function will be entered, IN
TERRUPT will be invoked instead. It prints the message “ INTERRUPTED
BEFORE <fn>” , constructs an appropriate break expression, and calls
BREAKl (see Section 20.3.3). Break handling is described in Chapter 20. Note
that CTRL-H breaks only when a function is to be entered, as opposed to
CTRL-B which breaks immediately. It is “safer” to use CTRL-H since the envi
ronment is in a relatively clean state from which the computation may be re
sumed.

CNTRL-0
Clears the current contents of the terminal output buffer.

•<-(SETQ X "Now i s the time fo r a l l good men to come to
the a id of t h e i r country”)

(PRINT x)
"Now i s the time fo r a l l goTOod men to come to the aid of
t h e i r country”
"Now i s the time fo r a l l go

The string is placed in the output buffer twice: once, as a result of the
PRINT function, and once as a result of the function evaluation. When I inter
rupted it with a CTRL-O, the first instance had already been passed to PRINT,
but the second remained in the output buffer. It is this second instance that was
abruptly terminated because the output buffer was cleared.

CTRL-0 is not enabled in INTERLISP-D.

CTRL-P
Change the printlevel for the display of S-expressions by clearing and saving the
input buffer, clearing the output buffer, and waiting for the user to enter a num
ber indicating the new printlevel. The input buffer is restored and the program
continues. The printlevel is described in Section 15.3.

14.1 READ: The General Case 399

400 Input Functions

CTRL-Q
Erases the input line buffer contents. It echoes # # and resets the buffer to the
last carriage return. Note that you may type ahead several lines but only the last
physical record is erased:

<-(SETQ X (READ NILtQ##

whence you may start retyping the line. You may not use this character repeat
edly.

CTRL-R
Causes INTERLISP to retype the contents of the input buffer. It is used after
several editing control characters to see where you are.

<-(SELtATQ X 9t(REEtAD NILtR
(SETQ X (READ NILT

c u rso r w aits here fo r you to resume
ty p in g o f c h a ra c te rs to complete th e exp ress ion .

CTRL-S
Allows you to change the minimum amount of storage to be maintained by the
garbage collector. When CTRL-S is typed, the input buffer is cleared and saved,
and INTERLISP waits for you to enter a number which is the amount of storage
to be maintained. It must be terminated by a period; otherwise, it will be ig
nored. After the number is entered, the input buffer is restored and computation
resumes. Storage management is discussed in Chapter 29.

CTRL-S is not enabled in INTERLISP-D.

CTRL-T
Prints the total execution time for the program as well as its status.

running in \TTYBACKGROUND in TTWAITFORINPUT in TTBIN
UTIL, 2% SWAP, 6^ GC

And, in INTERLISP-10

<-TT
10 WAIT IN READ IN LISPXREAD IN EVALQT, LOAD 1.5

CTRL-U
Forces the editor to be invoked for the current expression after it is read (IN
TERLISP-D).

^(SETQ X (READ NILtU NIL T))
(e d i t)
*

In INTERLISP-10, this control character erases the input buffer under
TOPS-20.

CTRL-V
Allows you to enter an atom from the terminal which has a control character
embedded within it. To do so, you type CNTRL-V followed by the character that
you wish interpreted as a control character. Typing CNTRL-V C transmits the
code equivalent to a CNTRL-C.

CTRL-X
Aborts printout, moves to previous expression and prints it; used in the editor
(see Chapter 19).

CNTRL-Y
Returns result of evaluating next expression read as though it had been typed; a
READ macro.

CNTRL-Z
Aborts printout, moves to last expression of current expression and prints it;
used in editor (see Chapter 19).

14.2 READING: SPECIAL CASES
INTERLISP provides several functions for performing specific input functions.
I refer to them as special cases only because they process information in different
formats. They should not be construed as being unusual reading mechanisms.

14.2.1 RATOM: Reading an Atom
RATOM allows you to read a single atom from the specified file. Its format is

Function: RATOM

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a read ta b le , RDTBL

Value: The next atom encountered in the input
stream.

If FILE is NIL, RATOM attempts to read from the current input file. It will
return an atom, determined by its PRINl-PNAME representation, or a number

14.2 Reading: Special Cases 401

if one is read. However, RATOM performs no special processing for strings, so if
” is encountered in the input stream, it will be returned as the next atom. Con
sider these examples:

-^(SETQ X (RATOM))
Come to the high country!
Come
<-No do, c o l le c t , or jo in in
(to (the high country))
u .d . f
to

because DWIM is enabled (see Chapter 22). Let us disable it and see what hap
pens:

<-(DWIM NIL)
NIL

^(SETQ X (RATOM))
Come to the high country!
COME

UNDEFINED CAR OF FORM
TO

because it returns to the READ-EVAL-PRINT loop. Thus, RATOM should be
used primarily within a program where you have control over the input stream.

Note that care must be exercised when reading using RATOM.

<-(SETQ X (RATOM))
"Baltimore i s b es t"

because " is a separator character.
Note that a break or separator character that terminates input to RATOM is

not read, but remains in the buffer to become the first character seen by the next
input function that is called.

402 Input Functions

14.2.2 Reading up to an Atom
A variant of RATOM is RATOMS which reads atoms from the input file until a
specific atom, the first argument, is read. This function allows you to scan the
input stream for specific phrases that are prefaced by demarcating atoms. Its
format is

Function: RATOMS

Arguments: 3

Arguments: 1) an atom, ATM
2) a file name, FILE
3) A read table, RDTBL

Value: A list of atoms from the current file up
to, but not including, the atom ATM.

Consider the following example:

^(SETQ X (RATOMS '$?]))
Washington is a capital city]
(Washington is a capital city)

A Definition for RATOMS
We might define RATOMS as follows:

(DEFINEQ
(ratoms (atm file rdtbl)

(PROG (1st char)
loop

(SETQ char (RATOM file rdtbl))
(COND

((EQ char atm)
(RETURN (CAR 1st)))

((SETQ 1st (TCONC 1st char))
(GO loop))))

))

Generally, you may use RATOMS to read text files up to, but not including,
punctuation marks. Thus, you can read in phrases and sentences without read
ing the punctuation marks.

14.2.3 Testing Atom Demarcators
The action of RATOM is terminated by a break or separator character. Some
times you may want to know what type of character forced the termination of
RATOM. RATEST allows us to determine the nature of this character. RA-
TEST takes the form

Function: RATEST

Arguments: 1

14.2 Reading: Special Cases 403

Value: T, i f a separa to r was encountered
immediately p r io r to the l a s t atom read.

RATEST takes one argument, FLAG, which determines the type of test to
be performed. Its values are

Value of FLAG Type of Test

T Separator character
NIL Break character
1 Escape character

RATEST returns T if the character preceding the last atom read was a sepa
rator or break character, NIL otherwise. For FLAG=1, RATEST returns T if
the last atom contained an escape character. Consider the following examples:

<-(SETQ FLAG T)
T

<-(PRGG (TEMP) ,
(SETQ TEMP (RATOM))
(SETQ TEMP (RATOM))
(RETURN (RATEST FLAG)))

COME TO
T

because the space between COME and TO is a separator character.

-^(SETQ FLAG NIL)
NIL

^(PROG (TEMP)
(SETQ TEMP (RATOM))
(SETQ TEMP (RATOM))
(RETURN (RATEST FLAG)))

GOME (TO
T
UNBOUND ATOM
TO

because the (is a break character.
See Section 14.4 for a discussion of the read tables and the effects of these

different character types.

404 Input Functions

Arguments: 1) a flag, FLAG

14.2.4 RSTRING: Reading a String
RATOM treats " as a separator character that terminates the act of reading.
Thus, RATOM cannot accept a string as input and return it as a string. If your
program expects to receive a string, you should use the function RSTRING
which makes a string of the next atom read. RSTRING takes the following form:

Function: RSTRING

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a read ta b le , RDTBL

Value: A s t r in g from FILE which i s term inated by
the next break or se p a ra to r c h a ra c te r .

The action of RSTRING is terminated by the next break or separator char
acter that is encountered in the input stream. If the next input character hap
pens to be a break or separator character, RSTRING will return ” ” which is the
null string. Your program should explicitly test for the presence of the null string
(otherwise program errors may result).

<-(SETQ X (RSTRING))
"A tla n ta ”
"A tlan ta"

<<-(SETQ X (RSTRING))
<CR>
rf tr

<^(SETQ X (RSTRING))
HELP<OR)
"HELP"

The break or separator character terminating a string is not read, but re
mains in the buffer to be read by the next input function. CTRL-A, CTRL-Q,
and CTRL-V all have the same effect as they do on READ.

14.2.5 READC: Reading a Character
Both RATOM and RSTRING return a complete syntactic unit as their value.
These syntactic units are terminated by break or separator characters, and their
effect is modified by the presence of escape characters (as defined by the read
tables). Sometimes you may want to process the input on a character by charac
ter basis, perhaps taking special action as individual characters are recognized.
One special action might be to read enough characters to recognize a unique
command and then complete the rest of the command for the user.

14.2 Reading: Special Cases 405

READC reads a single character from a file. It takes the form

Function: READC
Arguments: 2
Arguments: 1) a f i l e name, FILE

2) a read ta b le , RDTBL
Value: The next charac ter in the input stream.

READC is unaffected by read tables. That is, it always returns the next
character that it encounters in the input stream. READC is subject to line-buf-
fering (see Section 14.6).

<-(SETQ X (READC))
A
A

<-(SETQ X (READC))
(A)

406 Input Functions

14.2.6 Reading the Last Character
Some algorithms, particularly those that process textual material, need to “back
up” to see the last character that was read. When READC is executed, the char
acter read is removed from the input buffer. However, INTERLISP allows us to
retrieve its value via LASTC, which takes the form

Function: LASTC

Arguments: 1

Arguments: 1) a f i l e name, FILE

Value: The value of the l a s t charac ter read from
FILE.

LASTC returns the last character read from the file which is its argument.
Like READC, LASTC is unaffected by break, separator, or escape characters.
Consider the following example:

<-(PROG (X)
(FOR I FROM 1 to 5 (SETQ x (READC)) (PRINT x)) .
(RETURN (LASTC)))

WATER<CR>
W
A
T
E
R
R

where the last R is returned as the result of LASTC.

14.2.7 Looking Ahead in the Input Stream
In a similar fashion, you may need to look ahead in the input stream to see what
character occurs next. Command or text processors based on LR(k) algorithms
often need to “peek” at the next character to determine what action to take with
the current character. INTERLISP provides PEEKC to look ahead in the input
stream. PEEKC takes the following form

Function: PEEKC

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a read ta b le , RDTBL

Value: The next ch a ra c te r in the f i l e .

PEEKC returns the next character in the line buffer, but does not actually
remove it.

When PEEKC is used with terminal input, it is subject to line buffering. If
the value of RDTBL is NIL, PEEKC returns the character as soon as it is typed.
Otherwise, it waits until the line has been terminated (see Section 14.6). Con
sider the following example:

- -̂(PROG NIL
(FOR I FROM 1 TO 5

(PRINl (READC))
(SPACES 3)
(PRINT (PEEKC))))

WATER
W A
A T
T E
E R
R %
NIL

14.2 Reading: Special Cases 407

where the % above indicates a null character as the next character in the input
buffer.

408 Input Functions

14.2.8 READLINE: Reading a Terminal Line
Many times the input to a program will be a sequence of atoms that are to be
treated as an entire unit. To read this with RATOM or READ would require an
iterative loop encoded in your program. INTERLISP provides us with a conve
nient function, READLINE, that gathers a sequence of atoms up to a line termi
nator and returns it as a list. READLINE takes the following form:

Function: READLINE

Arguments: 3
Arguments: 1) a read ta b le , RDTBL

2) a l in e s p e c i f ie r , LINE
3) a LISPX f lag , LISPXFLAG

Value: The nex t l in e from th e te rm in a l, re tu rn in g
i t as a l i s t .

READLINE terminates when any of the following conditions are met:

1. A carriage return (typed by the user) and not preceded by any spaces is
encountered.
If the terminal screen appears as follows:

E n te r Command: show a l l p a th s from main<CR>

READLINE returns the list

(SHOW ALL PATHS FROM MAIN)

where “Enter command:” was printed by the subsystem as a prompt.

2. A list terminated by], in which case the list is included in the result.
If the terminal screen appears as follows:

E n te r R ule: (Im p lies murder (o r death homicide]<CR>

READLINE returns the list

(IMPLIES MURDER (OR DEATH HOMICIDE))

3. An unmatched) or], neither of which is included in the resulting list.
If the terminal screen appears as follows:

<- DF ADD.TO.DOCUMENT.LIST]

HEADLINE returns the list

(DF ADD.TO.DOCUMENT.LIST)

The action of HEADLINE in case 1 is modified if one or more spaces pre
cedes the carriage return or a list is terminated by a). These spaces indicate that
the input stream is to be continued on succeeding lines. HEADLINE prints “ ...”
and continues reading on the next line.

HEADLINE is a general reading function that is used by LISPXHEAD (see
Section 25.5.1). It may be defined as

(DEFINEQ
(re a d l in e (r d tb l l in e l is p x f la g)

(APPLY* LISPXREADFN T)
))

where LISPXREADFN is initially set to HEAD, but may be redefined by your
program.

Consider the following examples:

^(SETQ X (HEADLINE))
]
(NIL)

This allows you to type a function name followed by a) or] to LISPX (see
Section 25.2). The Programmers Assistant distinguishes between <name>] as a
function invocation and <name><CH> as the evaluation of a variable.

«-EDITF REAL]
e d i t
*

which allows us to edit the function HEAL, because READLINE is used at the
top-level READ-EVAL-PRINT loop.

14.2.9 Reading from a File
You may want to read all of the S-expressions in a file without evaluating them.
READFILE takes the form

14.2 Reading: Special Cases 409

F unction: READFILE

Arguments: 1

Argument: 1) a f i l e name, FILE

Value: A l i s t o f a l l the S -expressions in a f i l e .

READFILE reads successive S-expressions from a file until it encounters an
end-of-file condition, which causes an error, or it reads the single atom STOP.
Let us assume that we have a file named COMPLEX that contains some of the
definitions for complex arithmetic that we described in the last chapter. We
might read that file as follows:

^(READFILE ’COMPLEX)
((FILECREATED ”2i-JUL-8^ 10:52:01” <KAISLER>COMPLEX..8
3^97 changes to : (VARS COMPLEXFNS COMPLEXCOMS) (FNS FLOOR
ROUNDTO SIGN ROUNDEDTO RECIPROCAL TRUNCATE PRINT. COMPLEX
CMULT) (RECORDS COMPLEX) p rev ious d a te : "17-JUL-BA
21:52:16" . . ,

READFILE reads the contents of the file as a single large S-expression. In
this format, the S-expression is not very readable (by humans), so we usually
pass the result of READFILE to PRINTDEF to prettyprint (see Section 15.7)
the output.

< -(PRINTDEF (READFILE 'COMPLEX))
((FILECREATED "21-JUL-84 10:52:01” <KAISLER>COMPLEX..8
34-97 changes to :

(VARS COMPLEXFNS COMPLEXCOMS)
(FNS FLOOR ROUNDTO SIGN ROUNDEDTO RECIPROCAL
TRUNCATE PRINT. COMPLEX CMULT)
(RECORDS COMPLEX)
prev io u s d a te : "17-JUL-8A 21:52:16” . . .

where the ... indicates that there is more in the file that we have not shown here.

14.2.10 Skipping S-expressions in a File
You may process input from a file using a combination of several input func
tions. In some cases, after reading portions of the next S-expression from a file,
you may decide not to read the rest of the expression. This often happens when
you are parsing input expressions and detect an error early in the expression.
Usually, the nature of the error will preclude successful processing of the re
mainder of the expression.

SKREAD, which allows you to skip expressions within a file, takes the fol
lowing form:

410 Input Functions

Arguments: 1) a f i l e name, FILE
2) an input s t r in g , REREADSTRING

Value: A se p a ra to r ch a rac te r or NIL.

SKREAD has the effect of moving the file pointer ahead in the file to the end
of the current S-expression (see Section 16.8). None of the S-expression which is
skipped is transferred to memory.

If you have already read some of the expression using READCs or RA-
TOMs, this input should be assigned as the value of REREADSTRING.
SKREAD assumes that it has already seen this input and traverses the rest of the
expression. REREADSTRING allows you to keep the parenthesis and double
quote counts correct.

SKREAD returns one of three values:

1. %) if the first thing it encounters is a closing parenthesis.
2. %] if the read terminates on an unbalanced], e.g., a] that closes any

number of open left parentheses.
3. NIL, otherwise.

SKREAD always uses FILERDTBL, the File Package read table, as its read
table.

Let us use the file COMPLEX to demonstrate the application of SKREAD.
The first few expressions appear as displayed in Section 14.2.9 above. Thus, by
executing the following sequence, we can see how SKREAD works:

♦-(OPENFILE 'COMPLEX 'INPUT 'OLD)
<KAISLER>COMPLEX..8

because we must open the file before we can read from it.

<-(RATOM 'COMPLEX)
1o{

< (̂RATOM 'COMPLEX)
FILECREATED

«-(SETQ REREADSTRING (RATOM 'COMPLEX))
&"

<-(SKREAD 'COMPLEX REREADSTRING)
NIL

(RATOM 'COMPLEX)
<KAISLER>COMPLEX..8

14.2 Reading: Special Cases 411

Function: SKREAD

Arguments: 2

where we have skipped the remaining characters of the date-time group in the
file header.

<-(READ ’COMPLEX)
3497
'^(READ ’COMPLEX)
changes

<-(SKREAD ’COMPLEX)
NIL

^(READ ’COMPLEX)
(VARS COMPLEXFNS COMPLEXCOMS)

and so on. As you can see, SKREAD allows you to selectively read the expres
sions within a file.

412 Input Functions

14.3 INPUT PREDICATES
Many programs accept input from different sources such as several files, which
may be written during the program’s execution, the terminal, or the Ethernet
interface. The input functions discussed in the previous two sections all wait for
input if none is available when the reading function is executed. If line buffering
is activated for the terminal, a program executing a “read” against the terminal
must wait until you terminate the line with a carriage return. If you must think
about your answer, the program cannot proceed to do anything else. We would
like to be able to test the input file to determine if input is available. If none is
available, the program can do other useful work. A similar situation applies to
reading from files that are dynamically created during program execution
(avoiding deadlock) and the Ethernet interface.

INTERLISP provides two predicates to test for the availability of input from
a file: READP and WAITFORINPUT.

14.3.1 READP: Testing Input
READP tests the input buffer of the specified file to determine if any input is
available. It returns T if input is available, but NIL otherwise. It takes the form

Function: READP

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a f la g , FLG

Value: T, i f th e re i s input waiting in the
b u f fe r .

FLG is used to determine if there is a single EOL (end-of-line) character
remaining in the buffer. Normally, READP returns NIL while assuming that the
EOL character is left over from the previous input. However, if you want to de
tect this condition, set FLG to T and READP will return T.

You must exercise caution when using READP. It will return T if there is
input in the line buffer for a line that has not been terminated by the user. Even
though READP returns T, READ may have to wait until the user terminates the
line.

^(PROG (char)
(SETQ char (READC))
(RETURN (READ?)))

WATER<CR>
T

because the characters ATER remain in the input buffer.

<^(PROG (char)
(SETQ char (READC))
(RETURN (READP)))

M<CR>
T

because it sees the <CR> as a character and treats it as remaining input.

<^(PROG (atm)
(SETQ atm (READ))
(RETURN (READP)))

WATER<CR>
NIL

because the <CR> is required to terminate the atom, is read by READ, and so,
there is no input remaining in the buffer.

<-(PROG (atm)
(SETQ atm (READ))
(RETURN (READP)))

]<CR>
T

because the] terminates an expression, but the <CR> remains in the input
buffer.

If FILE is not open, READP generates an error FILE NOT OPEN (file
name).

14.3 Input Predicates 413

14.3.2 Waiting for Input
At other times a program may not be able to proceed until it receives input from
the terminal or a file. WAITFORINPUT allows you to suspend program execu
tion until input is available. It takes the following form:

414 Input Functions

Function:
Arguments:

Argument:
Value:

WAITFORINPUT
1

1) a f i l e name, FILE
The name of the f i l e for which input is
a v a i la b le .

It waits for input from either the specified file or the terminal. Its value is
either T, indicating input is available at the terminal, or the file name, indicat
ing input is available in the file.

WAITFORINPUT operates as a timed wait routine. That is, it waits for a
specified amount of time, given by DISMISSMAX, and then returns NIL. This
prevents the program from being deadlocked because no input is forthcoming
from the terminal or the file.

Internally, WAITFORINPUT uses the algorithm

1. Suspend execution for a time interval, given by DISMISSINIT, the ini
tial interval.

2. Check for input from file or terminal.
3. If input is available, return T or the file name as appropriate.
4. Add the interval to the total wait time.
5. If the total wait time exceeds DISMISSMAX, return NIL.
6. If no input is available, increase the wait interval by a specified factor

(1/16 according to the IRM). The wait interval increases up to the maxi
mum interval, given by DISMISSMAX.

7. Suspend execution again.
8. Goto 2.

The value of the argument may also be an integer that specifies how long
WAITFORINPUT should wait before returning to the calling function. In this
case it waits until the specified number of milliseconds has elapsed and then
returns NIL if no input has become available at the terminal. Note that this form
overrides the action associated with the value of DISMISSMAX.

WAITFORINPUT will be extremely useful in those environments where you
have multiple cooperating processes running within your INTERLISP environ
ment. As processes are only supported under INTERLISP-D, a demonstration
of WAITFORINPUT will be deferred until Volume 2.

14.4 CONCEPT OF THE READ TABLE
INTERLISP allows you to decide how characters in the input stream are to be
processed. The mechanism for controlling parsing (e.g., interpretation) of input
character sequences is driven by a data structure known as the read table. Read
tables are media-independent. That is, the interpretation of the character is the
same regardless of the device from which the read operation is being performed.

Read tables provide the system with information about the syntax class of
each character. Characters may assume different roles in different functions or
programs depending on their read table descriptions. Roles include specification
of breaks, separators, escapes, and list or string delimiters. You may define mul
tiple read tables within a program. You may switch among them by providing
the address of the read table as an argument to an input function or you may
declare a read table to be effective by a function call.

INTERLISP itself utilizes three default read tables to simplify the interpre
tation of characters in different subsystems:

T fo r te rm inal inpu t/ou tpu t

FILERDTBL fo r f i l e inpu t/ou tpu t

EDITRDTBL fo r e d i to r input from a term inal

INTERLISP provides functions for changing or resetting the default read
tables or copying them to create new specialized ones. You may also create new
read tables by specifying their contents explicitly.

14.4.1 Syntax Classes
A syntax class is a group of characters that have the same effect with respect to a
particular input or output operation. The read table associates a character with
its syntax class. When an input or output operation detects a character, it uses
the syntax class to determine what to do. There are nine syntax classes in all.

Six of the syntax classes form a special group known as format characters.
These classes are

Syntax Class I n i t i a l Value

LEFTBRACKET [
RIGHTBRACKET]
LEFTPAREN (
RIGHTPAREN)
STRINGDELIM ”
ESCAPE 1o

LEFTPAREN and RIGHTPAREN are used to begin and end list struc
tures, respectively.

14.4 Concept of the Read Table 415

LEFTBRACKET and RIGHTBRACKET are used to begin and end list
structures, respectively. RIGHTBRACKET can be used to close any number of
LEFTPAREN lists or back to the last LEFTBRACKET.

STRINGDELIM is used to begin and end a text string. Within a string, all
characters except those assigned to the ESCAPE class are treated as ordinary
characters (i.e., belonging to class OTHER). A STRINGDELIM character may
be included in a text string by prefixing it with an ESCAPE character.

ESCAPE inhibits any special interpretation of the character immediately
following it in the character stream (i.e., the character is treated as belonging to
class OTHER).

If you assign another character to one of these syntax classes, it does not
disable the character that is currently defined. We can make { be interpreted as
a LEFTBRACKET character by

<-(SETSYNTAX '%{ 'LEFTBRACKET)
OTHER

<-(SETSYNTAX '%} ’RIGHTBRACKET)
OTHER

-^(SETQ X (READ))
{ATLANTA IS A PEACH OF A CITY}
(ATLANTA IS A PEACH OF A CITY)

which tells INTERLISP that { is to be treated as a left bracket like [and } as a
right bracket like].

Two syntax classes are used to distinguish atoms in an input stream, princi
pally by RATOM. These classes are BREAKCHAR and SEPRCHAR. In fact,
there are several break characters recognized by INTERLISP and these are
jointly referenced by the syntax class BREAK. BREAK is the union of the
classes LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET,
STRINGDELIM, AND BREAKCHAR.

Both BREAK and BREAKCHAR may be used in SETSYNTAX (see Sec
tion 14.4.3). However, you must be careful in using them to define a break char
acter. Compare the results of the following when the input sequence below is to
be read:

input sequence: (EQ FRUITS '(APPLES ORANGES))

normal mode:

♦-(READ)
(EQ FRUITS '(APPLES ORANGES))

a l te r n a t iv e mode:

^(SETSYNTAX '%{ 'BREAK)
LEFTPAREN

416 Input Functions

^(READ)
(EQ f r u i t s '(a p p le s oranges))
(EQ f r u i t s ' (apples oranges))

t
note the space between ' and the l i s t .

a l t e r n a t iv e mode:

^(SETSYNTAX '$ ('BREAKCHAR)
LEFTPAREN

^(READ)
(EQ f r u i t s '(a p p le s oranges))
%{

. . .) u .b .a
f r u i t s

A given character may be disabled by assigning it the syntax class OTHER.
Disabling a character means that it no longer is interpreted as a specific class.
All characters belonging to the class OTHER have just their literal values when
read by INTERLISP.

14.4 Concept of the Read Table 417

14.4.2 Getting the Syntax Class
You may get the syntax class of a character by executing GETSYNTAX, which
takes the form

Function: GETSYNTAX

Arguments: 2

Arguments: 1) a c h a ra c te r , CHAR
2) a read ta b le , RDTBL

Value: The syntax c la ss of CHAR.

GETSYNTAX returns the syntax class of the character with respect to the
specified read table. If read table is T or NIL, the terminal read table is as
sumed.

<-(GETSYNTAX '5^0
LEFTPAREN

(GETSYNTAX 'A)
OTHER
♦-(GETSYNTAX (CHARCODE &))
OTHER

• (̂GETSYNTAX 13)
SEPRCHAR

You may also specify a syntax class name as the value of the first argument.
If so, GETSYNTAX returns a list of the character codes that comprise that
class.

'^(GETSYNTAX 'BREAK)
(3-4 AO 41 91 93 123 125)
<-(GETSYNTAX 'SEPRCHAR)
(9 10 12 13 31 32)

Special Syntax Functions
Because these expressions are commonly used, INTERLISP provides functions
for accessing the break and separator characters of a read table. They take the
form

Function: GETBRK
GETSEPR

Arguments: 1

Arguments: 1) a read tab le address, RDTBL

Value: A l i s t of the break or separator
c h a ra c te rs , re sp e c tiv e ly , fo r the
sp e c if ied read ta b le .

Consider the following examples:

(GETBRK)
(34 40 41 91 93)

(GETSEPR)
(0 9 10 11 12 13 31 32)
<-(GETBRK EDITRDTBL)
(23 34 40 41 91 93 124)

418 Input Functions

14.4.3 Setting the Syntax Class
You may set the syntax class using the function SETSYNTAX. SETSYNTAX
sets the syntax class of a character for a specified read table. The read table may
be T or NIL or ORIG which means to set the syntax in the terminal read table.
You may also specify either of the other system read tables or one of your own.
Its format is

F u n ctio n : SETSYNTAX

A rgum ents: 3

Arguments: 1) a c h a ra c te r o r c h a ra c te r code, CHAR
2) a syn tax c la s s , CLASS
3) a read ta b le , TABLE

V alue: The p rev io u s syn tax c la s s o f th e
c h a ra c te r .

If CLASS has the value T or NIL or ORIG, SETSYNTAX assumes that you
want to set the syntax class to that defined in the terminal read table:

^(SETSYNTAX 'ORIG)
OTHER

means to set the syntax class of { as it originally was. CLASS may also be another
read table whence the syntax class of the character in that read table is made the
syntax class of the character in the specified read table.

•^(SETSYNTAX FILERDTBL EDITRDTBL)
OTHER

Finally, CLASS may have the form

(<type> (o p t io n s) (fu n c t io n))

as described in the definition of read macros (see Section 14.4.5).

Special Syntax Functions
Because users often want to set the break or separator characters to meet specific
needs, INTERLISP provides two explicit functions for this operation. They take
the form

F u n ctio n : SETBRK
SETSEPR

A rgum ents: 3

Arguments: 1) a l i s t o f c h a ra c te r codes, LST
2) a f l a g , FLAG
3) a read ta b le a d d re ss , RDTBL

V alue: NIL

SETBRK and SETSEPR set LST as the values of the break and separator
characters, respectively, in the specified read table. If LST is T, the separator

14.4 Concept of the Read Table 419

characters in RDTBL are set to be those in T, the system read table for termi
nals, regardless of the value of FLAG.

If FLAG is NIL, RDTBL has only those elements in LST as separator char
acters; all old separator characters are discarded from RDTBL which are not in
LST. If FLAG is 0, it removes from RDTBL as separator characters those char
acters that appear in LST (e.g., it acts like an UNSETSEPR function). If FLAG
is 1, it makes each of the characters in LST be a separator character in RDTBL
(e.g., it acts like an OR between LST and RDTBL with respect to separator
characters).

If RDTBL is T, then the separator characters are set to be those in the origi
nal system table.

The Escape Character
% has a special meaning in INTERLISP to identify non-printing characters.
You may cause % to be interpreted like every other character on input using
ESCAPE, which takes the form

420 Input Functions

Function:
Arguments;

Arguments:

Value:

ESCAPE

2

1) a f la g , FLAG
2) a read ta b le , RDTBL
The previous s e t t in g fo r the escape
cha rac te r .

If FLG is NIL, then % is just another character to be read (e.g., it is set to
class OTHER). Initially, the setting is T. It returns the previous class of %.

14.4.4 Testing the Syntax Class
You may test the syntax class of a character code within a specific read table
using SYNTAXP, which takes the form

Function: SYNTAXP

Arguments: 3
Arguments: 1) a cha rac te r code, CODE

2) a syntax c la s s , CLASS
3) a read ta b le , RDTBL

Value: T or NIL.

SYNTAX? returns T if the character code is a valid member of the syntax
class in the specified read table; otherwise, NIL. The syntax class may be any of
the standard syntax classes or one of the read macro options that are described
in Section 14.4.5. Note that SYNTAXP accepts only character codes.

T
■(SYNTAX? AO 'LEFTPAREN)

14.4 Concept of the Read Table 421

< -(SYNTAX? %{ 'LEFTPAREN)
Non-Numeric ARG
(
^(SYNTAXP 100 'OTHER)
T

The atom BREAK may be used to refer to the class of all break characters;
that is, it is the union of LEFTPAREN, RIGHTPAREN, LEFTBRACKET,
RIGHTBRACKET, STRINGDELIM, and BREAKCHAR as explained above.
In a similar fashion, the atom SEPR corresponds to all separator characters; it is
equivalent to SEPRCHAR.

14.4.5 Read Macros: Defining User Syntax Classes
You may define your own interpretations of characters by associating them with
read macros in a read table. A read macro is a definition that is substituted for a
character when the character is read from an input stream. The definition for a
read macro character is given by a function. The interpretation may be modified
by one of several options.

Types of Read Macros
There are three types of read macros:

MACRO When a c h a ra c te r i s re a d , i t s
d e f in i t io n i s in s e r te d in th e
ex p re ss io n c re a te d by th e in p u t
fu n c tio n in s te a d o f th e read macro
c h a ra c te r . For example, th e IRM
[irm83] n o te s th a t we could d e fin e as
a read macro as fo llo w s:

(MACRO
(LAMBDA (f i l e r d tb l)

(LIST 'NOT (READ f i l e r d t b l))))

so that an expression of the form

(AND a b))

would be returned as

(NOT (AND a b))

SPLICE The d e f in i t io n o f th e macro i s
NCONCed in to th e r e s u l t in g in p u t

expression. The r e s u l t of the macro
should be a l i s t or NIL. The IRM
[irm83] notes th a t we could define $
as follows:

(SPLICE
(LAMBDA NIL

(APPEND <atom>)))

such that if the value of the <atom> is (A B C), then the expression (X $ Y) would
be returned as (X A B C Y) when it is read from the input stream.

INFIX The function th a t is the d e f in i t io n
of the characte r is ca lled with a
l i s t of what has been read. The l i s t
i s passed to the function in TCONC
format as the fu n c tio n 's th i rd
argument. The fu n c tio n 's value is
t re a te d as the new TCONC l i s t . The
IRM [irm83] notes th a t + could be
defined as follows:

(INFIX
(LAMBDA (f i l e r d tb l dummy)

(RPLACA (CDR dummy))
(LIST 'IPLUS

(CADR dummy)
(READ f i l e rd tb l)))

dummy))

If the function returns NIL, the read macro character is ignored, and read
ing of characters continues. Otherwise, if the function returns a TCONC list of
one element, that element is the value of the READ.

Read macro interpretation may be modified by specifying several options.
The options list includes

ALWAYS The cha rac te r w il l always be tre a te d
as a break charac te r (except when
preceded by an escape c h a ra c te r) .
This i s the d e fau lt in te rp re ta t io n of
the macro.

first The cha rac te r i s not a break
ch a ra c te r . I t w i l l be in te rp re te d as
a read macro charac te r only when i t
i s the f i r s t cha rac te r read a f t e r a

422 Input Functions

break ch a ra c te r . For example, '
(s ing le -quo te) i s in te rp re te d as the
abbrev ia tion fo r (QUOTE . . .) only
when i t i s seen as the f i r s t
c h a rac te r in an expression . Thus,
atoms such as DON'T are properly
read.

ALONE The ch a ra c te r i s not a break
c h a ra c te r . I t i s in te rp re te d as a
read macro ch a rac te r only i f i t would
have been read as a separa te atom.
That i s , i t s immediate r ig h t and l e f t
neighbors are e i th e r break or
sep a ra to r ch a ra c te rs . For example, *
i s defined as an ALONE read macro
ch a ra c te r in order to implement the
comment p o in te r fe a tu re .

Note that the three options described above are disjoint; that is, one and
only one may be specified for any macro at any instant.

ESCQUOTE The ch a rac te r w i l l be preceded by an
ESC escape ch a rac te r when i t i s p r in ted

by PRIN2. This i s the d e fau l t
in te rp r e ta t io n .

NOESCQUOTE The ch a rac te r i s p r in ted without a
NOESC preceding escape ch a ra c te r . For

example, ' i s a NOESCQUOTE ch a ra c te r .
The IRM notes th a t you should be
e sp e c ia l ly ca re fu l of dec la ring
NOESCQUOTE read macro ch a rac te rs in
FILERDTBL as they are l ik e ly not to
be read back in properly a f t e r they
have been w ri t te n out.

These two options are obviously mutually exclusive. They control vi^hether or
not the read macro character is protected by the ESCAPE character on input.

IMMEDIATE The ch a rac te r i s t r e a te d as an EOL as
soon as i t i s read . This causes the
r e s t of the l in e to be passed to the
input function . A <CR><LF> is
p r in te d . These ch a rac te rs take e f f e c t

14.4 Concept of the Read Table 423

immediately ra th e r than waiting for
the l in e to be terminated normally.

NONIMMEDIATE The characte r i s not in te rp re ted
u n t i l a carriage re tu rn , matching
r ig h t paren thesis , or matching r ig h t
bracket i s read. This is the defau lt
in te rp re ta t io n .

These two options are obviously mutually exclusive. They determine when a
macro’s function is actually executed.

The default options are ALWAYS, NONIMMEDIATE, and ESCQUOTE.
Read macros are declared via SETSYNTAX. The form of the declaration is

(<type> <options) <function))

14.4.6 Standard Read Macro Characters
INTERLISP defines a number of standard read macro characters: [irm83]:

The sing le-quo te characte r i s defined in the T
and EDITRDTBL read ta b le s . I t re tu rns the next
expression th a t i s read as the argument to the
function QUOTE. I t is defined as a FIRST read
macro so th a t i t has no e f fe c t when encountered
in the middle of a symbol. I t w il l a lso be
ignored i f i t i s immediately followed by a
sep ara to r ch a rac te r .

CTRL-Y This con tro l cha rac te r i s defined in T and
EDITRDTBL. I t s e f f e c t i s to re tu rn the r e s u l t
of evaluating the next expression th a t i s read.
Thus, i f you type CTRL-Y followed by an atom or
expression , the value of the atom or expression
i s re tu rned in the r e s u l t from the input
func tion . For example,

^(SETQ keys (LIST tY(ARRAY 10)))
({ARRAYP}#542635)
' The back-quote cha rac te r ac ts l ik e quote,

except th a t i t causes the expression to be
evaluated . The back-quote read-macro ac ts l ik e
a tem plate . An example of i t s d e f in i t io n i s
given in Section 14-.4.8.

? This read macro cha rac te r implements the ?a
(o n -lin e help) of the Programmer’s A ssis tan t

424 Input Functions

(see chapter 25). I t i s defined in T and
EDITRDTBL.

This read macro ch a ra c te r implements the
comment p o in te r fe a tu re . I t i s defined in
FILERDTBL.

CTRL-W This read macro co n tro l ch a rac te r i s defined in
T and EDITRDTBL. In INTERLISP-10, i t d e le te s
the e n t i r e previous expression th a t was typed
in . In INTERLISP-D i t d e le te s the prev iously
typed "word.”

The v e r t i c a l bar read macro ch a rac te r is
eq u iva len t to the back-quote read macro since
some te rm inals do not have the back-quote symbol
on t h e i r keyboard. I t i s a lso used to support
the p r in t in g and reading of unusual data
s t r u c tu re s (see HPRINT).

14.4.7 Read Macro Functions
Read macro functions allow you to enable or disable the effect of read macros,
and to test whether or not any read macros are in effect.

Enabling or Disabling Read Macros
READMACROS enables or disables the effect of any read macros that are de
fined. It takes the form

Function: READMACROS

Arguments: 2

Arguments: 1) a f la g , FLAG
2) a read ta b le , RDTBL

Value: The previous s e t t in g .

READMACRO is used to enable or disable the effect of read macros in the
specified read table. If FLAG is NIL, the effect of read macros is disabled, A
value of T for FLAG will enable the effect of read macros.

Testing for Read Macro Execution
You may test if your program is executing under a read macro function using
INREADMACROP, which takes the form

Function: INREADMACROP

Arguments: 0

14.4 Concept of the Read Table 425

Value: The number of unmatched parentheses or
brackets; otherwise, NIL.

INREADMACROP returns NIL if you are not currently executing under a
read macro function, Otherwise, it returns the number of unmatched left paren
theses or left brackets.

Setting the Read Macro Flag
SETREADMACROFLG sets the internal system flag that informs READ that it
is under a read macro function. It takes the following form:

Function: SETREADMACROFLG
Arguments: 1

Argument: 1) a f lag value, FLG

Value:' The old value of the f lag .

When the flag is set, unmatched right parentheses or brackets will cause the
error message “READ MACRO CONTEXT ERROR” to be displayed and a
break to occur. This function disables that error message when debugging read
macro functions.

Note that the read macro functions are primarily for use in functions that
are associated with read macros.

426 Input Functions

Arguments: NIL

14.4.8 BQUOTE: An Example of a SPLICE Macro
BQUOTE is a back-quote facility provided as a Lisp User package. It takes
forms having the structure ‘<form> and treats them as ’<form> except that any
expression preceded by a will be evaluated. This facility is similar to a read
macro provided by MACLISP [charSO]. BQUOTE handles several different
forms:

1. An expression preceded by a is merely evaluated and the value substi
tuted in the form for the expression.

2. An expression preceded by is evaluated and spliced in using AP
PEND.

3. An expression preceded by is spliced in using NCONC.

Consider the following example:

'(A ,B ,@C ,.D E)

(CONS 'A
(CONS B

(APPEND C
(NCONC D '(E)))))

BQUOTE is implemented as a read macro. When ‘<form> is read, it is
transformed to (BQUOTE <form>) and evaluated. Loading the BQUOTE pack
age places the read macro in T, FILERDTBL, and EDITRDTBL.

A Definition for BQUOTE
BQUOTE is declared as follows:

(SETSYNTAX '
' (SPLICE

(LAMBDA (f i l e rd tb l)
(SELECTQ (PEEKC f i l e)

(' (READC f i l e)
(LIST (READBQUOTE f i l e
r d tb l)))

NIL)))
FILERDTBL)

READBQUOTE is defined as follows:

(DEFINEQ
(readbquote (f i l e rd tb l)

(RESETLST
(RESETSAVE

NIL
(LIST 'SETSYNTAX

t ^

(SETSYNTAX
I ^

'(MACRO FIRST
(LAMBDA (f i l e rd tb l)

(SETQ comma
(SELECTQ (PEEKC
f i l e)

(^. (READC f i l e)

(, (READC f i l e)

14.4 Concept of the Read Table 427

is equivalent to

428 Input Functions

))

rd tb l)
r d t b l))

(PROG (comma form)
(SETQ form (READ f i l e rd tb l))
(RETURN

(COND
(comma (LIST 'BQUOTE form))
(T

(KWOTE form))))))

(! (READC f i l e)
M)

(@ (READC f i l e)
',@)

' ,))))

14.5 READ TABLE FUNCTIONS
A number of functions are provided to allow you to manipulate read tables. Note
that you may have any number of read tables defined in your applications envi
ronment, but only one may be active for each of the three functional areas: T,
EDITRDTBL, and FILERDTBL. However, you may replace the system default
read tables with ones of your own choosing, and you may do so on a dynamic
basis.

14.5.1 Testing a Read Table
READTABLEP allows you to test whether or not an object is the address of a
read table. It takes the form

Function:

Arguments:

Argument:

Value:

READTABLEP

1

1) a read ta b le address, RDTBL

RDTBL, i f RDTBL is the address of a read
ta b le .

Note that READTABLEP returns T if the terminal read table or system
read table (i.e., ORIG) happens to be the object specified.

14.5.2 Obtaining a Read Table Address
INTERLISP maintains several different read tables which are selected depend
ing on the input function that is to be performed. You may obtain the address of
a specific read table using GETREADTABLE, which takes the following form:

Function: GETREADTABLE
Arguments: 1

Arguments: 1) a read ta b le address, RDTBL

Value: The address of a read ta b le .

If RDTBL is the address of a valid read table, this value is returned as the
result of GETREADTABLE. Usually, RDTBL takes the values T or NIL which
are interpreted as follows:

1. If RDTBL is T, GETREADTABLE returns the address of INTERLISP’s
read table for terminals.

2. If RDTBL is NIL, GETREADTABLE returns the address of the primary
read table.

If RDTBL is not the address of a read table, INTERLISP generates an error
message “ ILLEGAL READTABLE” .

INTERLISP maintains a separate read table for reading data from files.
The address of this read table is stored in the variable FILERDTBL.

14.5 Read Table Functions 429

14.5.3 Setting a Read Table
You may set the primary system read table or the terminal read table using
SETREADTABLE, which takes the form

Func t io n : SETREADTABLE

Arguments: 2

Arguments: 1) a read ta b le address, RDTBL
2) a f la g , FLG

Value: The previous address of the read ta b le .

SETREADTABLE sets the primary read table to the read table whose ad
dress is given as the value of RDTBL. In addition, if FLG is T, SETREAD
TABLE also sets the terminal read table as well.

You may reset the other read tables by assigning the new read table address
to the appropriate variable: EDITRDTBL for the editor or FILERDTBL for the
File Package,

14.5.4 Copying a Read Table
COPYREADTABLE returns the address of a copy of the specified read table. It
takes the form

Function: COPYREADTABLE
Arguments: 1

Argument: 1) a read ta b le address, RDTBL
Value: The address of a new read ta b le .

COPYREADTABLE is the only way by which you can create a new read
table in INTERLISP. RDTBL is interpreted as follows:

1. If RDTBL is the address of a valid read table, a copy of that read table is
created and its address is returned to you.

2. If RDTBL is NIL, a copy of the primary system read table is made and its
address is returned to you.

(COPYREADTABLE)
[READTABLEP] #54222-4

3. If RDTBL is T, a copy of the system terminal read table is made and its
address is returned to you.

• (̂COPYREADTABLE T)
[READTABLEP]#542427

4. If RDTBL is ORIG, a copy of the original system read table is made and
returned to you.

<-(COPYREADTABLE 'ORIG)
[READTABLEP]#542632

5. Otherwise, an error is generated: ILLEGAL READTABLE.

430 Input Functions

14.6 LINE BUFFERING
Characters typed in at your terminal are normally placed in a line buffer. When
an input function requests a character or sequence of characters, they are ex
tracted from the line buffer and transferred to the requesting function when a
carriage return is typed. Until a carriage return is typed, you may delete charac
ters from the line buffer by typing CTRL-As or delete its entire contents by typ
ing CTRL-Q.

An important consideration in line buffering is which function will process
the input. This function determines whether or not parenthesis counting is ob
served.

^(PROGN
(RATOM)
(READ))

(r ig e l be te lgeuse p o la r is)

where you typed in

aldebaran (r i g e l be te lgeuse polaris)<CR>

This expression requires a carriage return at the end of the line before any
action is taken. The first function, RATOM, requires a carriage return before it
receives its input even though that input is already in the buffer.

Alternatively, if you typed in

«-(PROGN
(READ)
(READ))

(r ig e l be te lgeuse p o la r is)

with the same input sequence except for the < CR>, no carriage return is required
because READ will accept the next atom (see Section 14,1).

INTERLISP provides you with a substantial amount of control over line
buffering. Many application programs need to get their data in certain se
quences or ensure that all of the data are entered before they begin to process it.
This section describes how to control line buffering.

Note that the following functions discuss terminal tables, which are de
scribed in more detail in Section 15.5.

14.6.1 Enabling and Disabling Line Buffering
You may enable or disable line buffering by executing CONTROL, which takes
the form

Function: CONTROL

Arguments: 2

Arguments: 1) a co n tro l mode, MODE
2) a te rm ina l ta b le address, TTBL

Value: The previous co n tro l s e t t in g .

If MODE is T, line buffering is disabled for the specified terminal table.
Line buffering will not be effected until TTBL is made the current terminal table
via SETTERMTABLE (unless it already is the current terminal table—when
TTBL is NIL). Normally, CONTROL is invoked with TTBL equal to NIL.

14.6 Line Buffering 431

The current control mode may be obtained by executing GETCONTROL
with a terminal table address, TTBL. GETCONTROL takes the following form:

f
Func t io n : GETCONTROL
Arguments: 1

Argument: 1) a term inal tab le address, TTBL
Value: The curren t con tro l mode for TTBL.

Consider the following example,

<-(GETCONTROL)
NIL

^(SETQ NEW.TTBL (COPYTERMTABLE))
[TERMTABLEP]#1,104640

(CONTROL T NEW.TTBL)
NIL

(GETCONTROL NEW.TTBL)
T

When line buffering is disabled, the function initiating input determines
how the typed-in characters are treated when (CONTROL T) is in effect. There
are several cases:

READ
If the input sequence is a list (determined by a leading "(" or then the input
is buffered until a carriage return or matching closing parenthesis or bracket is
detected. That is, the effect is the same as if CONTROL is NIL.

If the input sequence is not a list, a break character or a separator character
terminates the character sequence and causes it to be transferred to the reques
tor. CTRL-A and CTRL-Q are both operable, but only on the most recent atom.

(DEFINEQ
(read .w ith o u t.b u ffe r in g (t tb l)

(PROG (l in e chars)
(CONTROL T t t b l)
(SETQ l in e NIL)

loop
(SETQ chars (READ))
(COND

((NULL chars)
(PROGN

(CONTROL NIL t t b l)
(RETURN l in e)))

432 Input Functions

((NULL lin e)
(SETQ l in e (LIST ch ars)))

(T
(SETQ l in e

(APPEND l in e (LIST
c h a rs)))))

(GO loop))
))

Now, let us execute this function:

-(READ.WITHOUT.BUFFERING NIL)
Every goode good boy deserves flavour favor <CR>

t t
CTRL-Q CTRL-Q

re tu rn s : Every good boy deserves favor

Note that CTRL-Q only deletes the last character sequence that was entered
because each sequence separated by a blank is transmitted to READ.

14.6 Line Buffering 433

RATOM
A sequence of characters is returned as soon as a break or separator character is
typed in. Until that time, CTRL-A and CTRL-Q have their usual effect.

<-(CONTROL T)
NIL

<-(RATOM)
(<CTRL-A>##

returns (because (is a break character. It would already have been transmitted.
indicates that CTRL-A was typed in while the buffer was empty.

READC/PEEKC
A character is transmitted immediately. No line editing is possible.

<-(CONTROL T)
NIL

-(READCX CTRL-A)
<space)

because CTRL-A forces READC to return NIL, so the result is the null character
code.

14.6.2 Clearing the Line Buffer
CLEARBUF clears the line buffer for a file from which a program is reading. It
takes the form

Function: CLEARBUF
Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a f la g , FLAG

Value: NIL

Input is buffered for every from file from which INTERLISP can read. Usu
ally, a program reading from the terminal discovers that the user has entered
some erroneous expression. At that point, rather than process the expression, it
clears the line buffer and prints a warning message or otherwise handles the
error. To clear the terminal line buffer, the program merely executes

<-(CLEARBUF T T)
NIL

This form of CLEARBUF saves both the line buffer and the system buffer
for later access by the program. However, if both the line buffer and the system
buffer are empty, nothing is stored into the internal save buffers.

Certain control characters also save the line and system buffers. CTRL-D,
CTRL-E, CTRL-H, CTRL-P, and CTRL-S cause INTERLISP to automatically
perform (CLEARBUG T T). After the user has finished his interaction with
CTRL-P or CTRL-S, the line and system buffers are restored.

434 Input Functions

14.6.3 Accessing the Buffer's Contents
After the line and system buffers are saved, you may access their contents by
executing either LINBUF or SYSBUF. They take the form

Function: LINBUF
SYSBUF

Arguments: 1

Arguments: 1) a f la g , FLAG

Value: The contents of the in te rn a l save b u ffe r .

If FLAG is T, the contents of the line buffer or the system buffer are re
turned to the user from the internal save buffers. If FLAG is NIL, the respective
internal buffer will be cleared.

14.6.4 Resetting the Line and System Buffers
After you have cleared the line and system buffers, you may reset them to their
original contents or some modified version of their contents before processing
the input. Two functions, BKLINBUF and BKSYSBUF set the line and system
buffers, respectively, to the values of their arguments. BKSYSBUF takes the
form

F u n ctio n : BKSYSBUF

A rgum ents: 3

Argument: 1) a s t r i n g , X
2) a f l a g , FLAG
3) a read ta b le , RDTBL

V alue: The PRINl-name o f X.

BKSYSBUF set the buffer to the PRINl-name of X. If the length of the
string is greater than 160 characters, only the first 160 characters will be re
stored.

Consider the following examples:

-^(BKSYSBUF "(ADDl 1) ”)
"(ADDl 1)”

^(ADDl 1)
2

(BKLINBUF " I love New York”)
" I love New York”

< -(BKSYSBUF ” (SETQ x (READ)^”)
” (SETQ X (READ))”

which causes the following to appear in the system buffer to be evaluated:

<-(SETQ X (READ))T
c u rs o r w a its fo r you to e n te r som ething, fo r example
(I love New York)
(I love New York)

BKLINBUF takes the form

F u n ctio n : BKLINBUF

A rgum ents: 1

14.6 Line Buffering 435

Argument: 1) a s t r in g , STRING

Value: The value of STRING.

BKLINBUF sets the INTERLISP line buffer to the value of STRING. The
length of the line buffer may be limited in certain implementations by the host
computer operating system, in which case the extra characters are ignored.

14.7 THE ASKUSER PACKAGE
Many programs engage in an interactive dialogue with a user before, during,
and after execution of their primary functions. To facilitate the construction of
dialogues and interpretation of the responses, INTERLISP provides the Askuser
Package.

Askuser is driven by a key list, a list of expressions that describe

what may be entered by the user,
what responses should be given to the user,
what result should be returned to the calling function.

14.7.1 ASKUSER
ASKUSER allows your program to conduct an interactive dialogue with a user
to acquire information about what it should do next. It takes the form

Function: ASKUSER

Arguments: 8

Arguments: 1) a time period , WAIT
2) a d e fau l t answer, DEFAULT
3) a message, MESSAGE
4) a key l i s t , KEYLST
5) a type ahead f la g , TYPEAHEAD
6) a LISPX f lag , LISPXPRINTFLAG
7) an options l i s t , OPTIONSLST
8) a f i l e name, FILE

Value: As described below.

ASKUSER displays MESSAGE at the terminal (unless FILE is non-NIL). It
then issues a READC to get a character from type in. As each character is typed,
it is matched against the keys in KEYLST. If a match is successful, the character
(or its replacement) is echoed or a new prompt is displayed as determined by the
options. If matching is unsuccessful, the character is deemed unacceptable (un

436 Input Functions

less it appears in a MACROCHARS entry) and ASKUSER rings the bell or oth
erwise signals you.

^(ASKUSER 100 '(N NO) "DO YOU WANT TO CONTINUE?” ' (Y N))
N
N "re tu rn ed by ASKUSER”

At any time, you may type ?. ASKUSER will display a list of acceptable
responses either drawn from the key list entries or as determined by EXPLAIN-
STRING if it appears in OPTIONSLST. You may also type one of several con
trol characters (CTRL-A, CTRL-Q, CTRL-X) which will cause ASKUSER to
reinitialize and begin anew.

(ASKUSER NIL
' (RED)
”WHAT IS YOUR FAVORITE COLOR?”
'(RED BLUE ORANGE GREEN YELLOW PURPLE))

one of:
RED
BLUE
ORANGE
GREEN
YELLOW
PURPLE

Keys may be atoms or strings. Thus, ASKUSER will not return a value until
you have entered an acceptable response.

ASKUSER waits for WAIT seconds after printing MESSAGE. If WAIT is
NIL, ASKUSER will wait forever. If the waiting period expires with no user type
in, ASKUSER supplies the default response given by DEFAULT after printing

DEFAULT must be one of the keys in KEYLST. It is treated exactly as if it
had been entered from the keyboard. Typically, N or NO is used as the value of
DEFAULT.

KEYLST is a key list (as described in Section 14.7.2). OPTIONSLST allows
you to define a global set of options for ASKUSER rather than associating op
tions with each key entry.

If you want to type ahead, then TYPEAHEAD should be T. Otherwise,
characters typed in ahead of ASKUSER are cleared and saved.

LISPXPRINTFLAG determines whether or not the interaction is recorded
on the history list (see Chapter 27).

If FILE is non-NIL, characters are read from the file until an unacceptable
input is encountered or a key is complete. FILE may be either a file name or a
string. If it is a string, and all its characters are read without completing a key,
FILE is reset to T and interaction continues with the user via type in.

14.7 The ASKUSER Package 437

14.7.2 Key Completion
ASKUSER attempts to match characters that it reads until it completes a key.
Deciding if a key is complete is more complex than whether or not all of its
characters have been matched. There may be multiple keys with characters in
corresponding positions that would match the most recently read character.
ASKUSER would not know which key to match without reading additional
characters.

. A key is considered complete after N characters have been read if

1. All of its characters have been matched and no other key has the key as a
substring.

2. All of its characters have been matched and you have entered a confirma
tion character. The confirmation character serves both to complete the
key and confirm it even when CONFIRMFLG is NIL.

This allows you to complete a key through confirmation when the key is a
substring of another key, even when CONFIRMFLG is NIL. The confirming
character serves to both complete the key and confirm it.

3. All of its characters have been matched, and CONFIRMFLG is NIL, and
the KEYLST option has a value, then if the next characters matches one
of the keys in the value of the KEYLST option.
The IRM suggests the following example:

(ST "ore and redefine ”
CONFIRMFLG T
KEYLST (F . "orget exprs”))

Suppose there was another key that was STX. If you had typed ST, then
there are still two ways to complete the key. Typing F completes the ST
key because it matches the F of the inner key list.

4. There is only one key left and you have typed a confirming character. If
CONFIRMFLG is T, you must still confirm a key whether or not it is
complete. Confirmation allows you to complete a key even though you
have not entered all of the required characters.

438 Input Functions

14.7.3 Key List Format
A key list is a list of expressions that drive the actions of ASKUSER. A key list
takes the form

(<key> <prom ptstring) (o p t io n s))

where: <key> is an atom or a s t r in g .

<promptstring> i s an atom or s t r in g th a t
i s p r in ted when the key i s
recognized.

(o p t io n s) i s a l i s t of op tions .

Options may be specified in two ways:

1. If an option appears in (options), its value is the next element in the list.
That is, (options) has a property list format.

2. If the option appears in OPTIONSLST, its value is the next element in
OPTIONSLST. OPTIONSLST serves as a default for the entire key list
which may have several levels of structure.

If an option does not appear on (options) or OPTIONSLST, its value is
assumed NIL for this invocation of ASKUSERS.

14.7.4 The Default Key List
If ASKUSER is called with KEYLST having the value NIL, it uses a default key
list. The structure of this key list is

((Y ' ' e s (c r) ”) (N ”o (c r) ' '))

•^(ASKUSER NIL 'N "Type ? fo r Responses”)
Type ? fo r Responses

•

Yes
No

14.7 The ASKUSER Package 439

All other inputs are unacceptable. ASKUSER signals this fact by ringing
the bell (or sounding some other terminal chime). It does not echo the erroneous
character.

14.7.5 Key List Options
The following options may occur in the key list (options) segment or in OP
TIONSLST:

CONFIRMFLG I f t h i s f lag i s T, the key must
be confirmed by typing a (c r) or
a space a f t e r the l a s t
c h a ra c te r . I f i t s value i s a
l i s t , the confirm ation ch a ra c te r

may be any member of the l i s t
(in addition to <cr> and
<space)) .

^(ASKUSER NIL
'N
”Do You Like Ice Cream?"
' ((Y "es") (N "o”) (M "aybe”))
NIL
NIL
'(CONFIRMFLG T))

Do You Like Ice Cream?
Yes<CR>
Y

where the “es” was printed by ASKUSER. Then, I had to terminate the input
with a <GR> because the CONFIRMFLG had the value T.

PROMPTCONFIRMFLG I f T, whenever confirmation i s
required , you w il l be prompted
with the message "[confirm]” .

For example, let us modify the options list above to add (PROMPTCON
FIRMFLG T):

(ASKUSER NIL
'N
”Do You Like Ice Cream?”
' ((Y ”e s”) (N ”0”) (M ”aybe”))
NIL
NIL
'(CONFIRMFLG T PROMPTCONFIRMFLG T))

Do You Like Ice Cream?
Yes [confirm] <CR>
Y
PROMPTON I f non-NIL, the PROMPTSTRING

w il l be p r in ted only when the
key i s confirmed with a member
of i t s value.

COMPLETEON When a confirming charac te r is
read, the value of th i s option
i s used to autom atically
complete the key. These
cha rac te rs are p r in ted only when
the key i s confirmed by a member
of PROMPTON.

440 Input Functions

Let us modify the example above to demonstrate these features:

^(ASKUSER NIL
*N
"Do You Like Ice Cream?”
' ((Y ”es , i f you r e a l ly l ik e i t . ")

(N "o, i f you d o n 't l ik e i t . ")
(M "aybe, i f you are not su re !"))

NIL
NIL
'(CONFIRMFLG ($) PROMPTON ($) COMPLETEON ($)))

Do You Like Ice Cream?
Y$es, i f you r e a l ly l ik e i t .
Y

where the $ is entered by the user, and the remaining characters are used to
complete the answer.

NOCASEFLG I f T, case-independent matching
i s not performed; otherw ise,
c h a rac te rs typed in must match
the case of ch a rac te rs in the
key.

NOECHOFLG I f non-NIL, matched ch a rac te rs
are not echoed. Also, the
confirming ch a rac te r w i l l not be
echoed.

AUTOCOMPLETEFLG I f non-NIL, ASKUSER attem pts to
complete the key a f t e r each
ch a ra c te r i s typed r a th e r than
w aiting fo r the e n t i r e key to be
en tered . ASKUSER w i l l only
attem pt to complete an
unambiguous key.

(ASKUSER NIL
'N
"Do You Like Ice Cream?"
' ((YES " , i f you r e a l ly l ik e i t . ")

(NO " , i f you d o n 't l ik e i t . ")
(MAYB " , i f you are not su re !"))

NIL
NIL
’ (CONFIRMFLG ($) AUTOCOMPLETEFLG T))

Do You Like Ice Cream?
YES, i f you r e a l l y l ik e it.<CR>
YES

14.7 The ASKUSER Package 441

Note that the key was completed automatically once I typed the Y via
ASKUSER printing “ES, if you really like it.” and then waiting for me to termi
nate input.

442 Input Functions

RETURN I f non-NIL, i t s value is
evaluated and returned as the
value of executing ASKUSER.
D iffe ren t keys may have
diff^erent re tu rn values.

(ASKUSER NIL
'N
"Do You Like Ice Cream?"
'((YES ", i f you re a l ly lik e i t . ")

i f you d o n 't l ik e i t . ")
, i f you are not su re !"))

It(NO
(MAYB

NIL
NIL
'(CONFIRMFLG T

AUTOCOMPLETEFLG T
RETURN 'CHOCOLATE))

Do You Like Ice Cream?
YES, i f you r e a l ly l ik e it.<CR>
CHOCOLATE

EXPLAINSTRING

KEYSTRING

MACROCHARS

I f non-NIL, i t s value is p rin ted
when a user types a ? while
ASKUSER expects a key. Normally,
ASKUSER w ill d isp lay the
p o ssib le key values in response
to a ?. Using EXPLAINSTRING, you
may provide d e ta iled
explanations of what is expected
to the u se r.

I f non-NIL, matched charac te rs
in the key are echoed by the
corresponding ch arac te rs in
KEYSTRING. I t s primary use is
fo r echoing lower-case
c h a ra c te rs .

I t s value is a l i s t of d e ta iled
p a irs of the form

(<ch a ra c te r) . (ex p ressio n))

I f a c h a rac te r th a t has been
typed in does not match any of
the keys, but does occur in a
MACROCHAR en try , the expression
i s eva luated . This implements a
read macro c a p a b il ity in sid e
ASKUSER.

EXPLAINDELIMITER I f non-NIL, i t s value is p r in ted
to sep ara te the exp lanation from
?. I n i t i a l l y , i t s value is <cr>.
You may s e t i t to any ch a ra c te r
o r combination of ch a ra c te rs
rep resen ted as a s t r in g .

14.7.6 Key List Construction
Key list construction can be simplified when you do not want to provide prompt
strings or options for key entries. MAKEKEYLST constructs a simple key list
for you. It takes the form

Function: MAKEKEYLST

Arguments: 3

Arguments: 1) a l i s t o f keys, LST
2) a d e fa u lt key, DEFAULTKEY
3) a low er-case f la g , LCASEFLG

Value: The se le c te d key.

MAKEKEYLST takes a list of atoms or strings, LST, and constructs a key
list. DEFAULTKEY, if non NIL, is the last key in the key list. It permits you to
specify “none of the above” conditions. Otherwise, a key which permits you to
specify “No” is included in the key list. If LCASEFLG is T, keys represented as
upper case in the key list will be echoed in lower case.

You may specify a selection by typing the characters of a key or a number
corresponding to its position in the key list. Consider the following example:

(MAKEKEYLST '(CONNECT PRINT LOAD MAKE) 'NO T)
((CONNECT NIL

KEYSTRING "CONNECT”
CONFIRMFLG T
AUTOCOMPLETEFLG NIL
RETURN 'CONNECT

(PRINT NIL
KEYSTRING "PRINT"

14.7 The ASKUSER Package 443

CONFIRMFLG T
AUTOCOMPLETEFLG NIL
RETURN 'LOAD)

(LOAD NIL
KEYSTRING "LOAD”
CONFIRMFLG T
AUTOCOMPLETEFLG NIL
RETURN 'LOAD)

(MAKE NIL
KEYSTRING "MAKE”
CONFIRMFLG T
AUTOCOMPLETEFLG NIL
RETURN 'MAKE)

(1 "CONNECT" NOECHOFLG T
EXPLAINSTRING "1-CONNECT"
CONFIRMFLG T
RETURN (PROGN

(TERPRI T)
’CONNECT))

• • •
("No-none o f the above" " "

CONFIRMFLG T
AUTCOMPLETEFLG T
RETURN NIL))

14.7.7 Special Keys
ASKUSER allows you to use a few symbols to have special meaning in the key
list. These include

& This symbol can be used as a key th a t w ill
match any s in g le ch a rac te r, provided the
ch a rac te r does not match with some o ther key a t
th a t le v e l.

$ This symbol can be used as a key to match with
the r e s u l t of a s in g le invocation of READ. $
allow s you to have a READ th a t is e r ro rs e t
p ro tec ted w ith in ASKUSER, so th a t CTRL-E w ill
allow you to erase the l a s t ch a rac te r and
continue w ith another key.

$$ This symbol can be used as a key to match a
s in g le invocation of READLINE.

< lis t> The < lis t> i s evaluated as an expression . I t s
value is used to match the key. This allows you

444 Input Functions

to provide fo r a rb i t r a ry inpu t opera tions fo r
any ASKUSER re q u es t. That i s , besides the
standard keys, you may a lso allow a u se r to
e n te r o th e r commands th a t are ou tside the
purview of the cu rren t sequence.

" " The empty s t r in g can be used as a key. Because
i t has no c h a ra c te rs , a l l of i t s ch a rac te rs are
au to m atica lly matched. I t u su a lly is used as a
p lace m arker. The IRM notes th a t one o f the
e n t r ie s on the key l i s t fo r ADDTOFILES? appears
as

(It tt n p i i e / L i s t : ”

EXPLAINSTRING "a f i l e name o r name of a function
l i s t "
KEYLST ($))

Thus, i f you type a ch a ra c te r th a t does not
match any of the o th e r ch a ra c te rs in the key
l i s t , the c h a ra c te r completes the " ” key
because i t matches w ith the $ in the inner key
l i s t .

14.7 The ASKUSER Package 445

< \

15

Output Functions

The corollary to entering data into a program is to emit data from it. There are
two aspects to this ability:

1. To present data, possibly formatted, in such a way that it is both read
able and understandable by the program user.

2. To preserve data on an external file system such that its lifetime exceeds
the execution of the program.

This chapter discusses the output functions provided by INTERLISP. Most
functions work equally well whether the output is directed to the terminal (de
fault) or to an external file (specified by an optional argument). Exceptions will
be noted in the text.

Many of the functions discussed below will take an optional argument which
is a file name. If this argument is not present, output is directed to the terminal.
If it is present and the file is open for output, the output will be directed to the
file. Some of the functions also take a read table as an argument. This will en
sure that data written out may be read in properly under control of the same read
table.

INTERLISP will print out the contents of standard objects such as atoms,
lists, strings, and numbers. Other objects are printed in the form

[< data type >]#< address >

where (datatype) is the type of object, such as ARRAY, and (address) is its
location in memory. To display the contents of these objects, you must use DEF-
PRINT to specify functions that know how to print specific objects.

447

15.1 PRINTING S-EXPRESSIONS: PRINX
INTERLISP programs manipulate S-expressions be they atoms or lists. The ba
sic output facility provides for the display of S-expressions. Indeed, most of the
display from your programs will be in the form of S-expressions. Three functions
can support the bulk of your printing requirements. The effect of some of these
functions may be mediated by a read table.

15.1.1 PRIN1
PRINl is a function that prints the value of its first argument. An optional sec
ond argument may specify an external file. Its format is

Function: PRINl
PRIN3

Arguments: 1-2
Arguments: 1) an S-expression, EXPRESSION

2) a f i l e name (o p tio n a l) , FILE

Value: The value of the S -expression.

PRINl prints the value of EXPRESSION on the specified file. If file is not
specified, the primary output file (see Section 16.2) will be used. In most cases,
this will be your terminal.

<-(SETQ f r u i t 'orange)
orange

(PRINl f r u i t)
orange

(PRINl ' ’database engineering")
database engineering

Note that PRINl prints the contents of the string without its enclosing dou
ble-quotes.

'<-(SETQ p re s id en ts
(APPEND (LIST 'kennedy 'johnson)

(LIST 'nixon 'fo rd)))
(kennedy johnson nixon ford)

■<-(PRINl p re s id e n ts)
(kennedy johnson nixon ford)

PRINl’s actions are not mediated by a read table. Thus, it is primarily used
for printing formatting characters.

448 Output Functions

<-(PRINl '%D
[enables us to p r in t a l e f t square b racket

-^(PRINl 100)
100

(RADIX 8)
12

^(P R IN l 100)

Note the change in radix affects the resulting output.
If the value of the argument is something other than an atom, number, list,

or string, PRINl will print the value of the pointer to the INTERLISP object.
The pointer describes the storage location of the object.

< -(PRINl (ARRAY 10))
{ARRAYP}#542224

PRIN3 is a variant of PRINl that does not increment the position counter
for the output line. It may be used to place control characters in the output
buffer. No line length checks are performed when PRIN3 is used.

15.1.2 Printing with Separators
PRIN2 prints S-expressions on a file such that they may be properly read back
into the program by READ using a read table. The format for PRIN2 is

Function: PRIN2
PRINA
SH0WPRIN2

Arguments: 1-3
Arguments: 1) an S -expression , EXPRESSION

2) a f i l e name (o p tio n a l) , FILE
3) a read ta b le (o p tio n a l) , RDTBL

Value: The value of the S -expression .

PRIN2 prints all break and separator characters in the S-expression. Con
trast the printing of strings by PRIN2 with that of PRINl:

<-(PRIN2 "database eng ineering”)
"database eng ineering"

where “ is a break character that denotes a string.

15.1 Printing S-expressions: PRINX 449

^(PRIN2 '%[)
t\. where % is the escape ch arac te r.
^(PRIN2 100)
100
^(RADIX 8)
12

<^(PRIN2 100)
144Q

Note that PRIN2 inserts a Q after the number when the radix has been
changed while PRINl does not. Both functions will print the number in octal.

PRIN2 is used for printing S-expressions to a file that may be read back into
INTERLISP via READ. It is used by most of the File Package functions for
printing various types of S-expressions to a file. The break and separator charac
ters are preceded by % (the escape character) so that they are read back in prop
erly.

If the value of the argument is something other than an atom, number, list,
or string, PRIN2 will print the value of the pointer to the INTERLISP object
exactly like PRINI. The pointer describes the datatype and storage location of
the object.

PRIN4 is a variant of PRIN2 that does not increment the position counter
for the output line. It may be used to place control characters in the output
buffer. No line length checks are performed when PRIN4 is used.

SH0WPRIN2 acts like PRIN2 except that its prettyprints the value of the S-
expression. Prettyprinting (see Section 15.7) is enabled by setting SYSPRET-
TYFLG to T. Initially, the value of SYSPRETTYFLG is NIL.

A Definition of SHOWPRINT
We might define SH0WPRIN2 as follows:

(DEFINEQ
(showprin2 (expression f i l e rd tb l)

(COND
(SYSPRETTYFLG

(*
I f the system p re t ty p r in t f la g is
s e t , the value of the f la g may be the
function to be used to perform the
p re tty p r in t in g operation .

Otherwise, we ju s t use PRINTDEF,
which i s the standard p re tty p r in tin g
fu n c tio n .

450 Output Functions

(RESETFORM (OUTPUT FILE)
(APPLY*

(COND
((GETD SYSPRETTYFLG)

SYSPRETTYFLG)
(T 'PRINTDEF))

expression
T)))

(T
(*

O therwise, ju s t use PRIN2 to do the
job as the u se r in tended.

)
(PRIN2 expression f i l e r d tb l)))

expression
))

15.1.3 Printing with a Carriage Return
Neither PRINl nor PRIN2 terminates the output line after printing the value of
the S-expression. To do so, you must explicitly execute (TERPRI) to place a
carriage return in the output buffer. However, using PRINT, you may combine
the effects of both PRIN2 and TERPRI in one function. PRINT takes the format

Function: PRINT
SHOWPRINT

Arguments: 1-3

Arguments: 1) an S -expression , EXPRESSION
2) a f i l e name (o p tio n a l) , FILE
3) a read ta b le (o p tio n a l) , RDTBL

Value: The value of the S -expression .

PRINT uses PRIN2 to display the value of the S-expression and then places
a carriage return in the output buffer.

<-(PRIN2 (ARRAY 10))
{ARRAYP}#5^2254{ARRAYP}#542254

^(PRINT (ARRAY 10))
{ARRAYP}#5^224D
{ARRAYP}#542240

In the first example, PRIN2 does not insert a < CR>, so the value printed and
the value returned by the function appear on the same line. In the second exam-

15.1 Printing S-expressions: PRINX 451

pie, PRINT has placed a <CR> after the object pointer. Note that INTERLISP
automatically inserts a line feed after a carriage return in the output buffer.

SHOWPRINT acts like PRINT except that it prettyprints the value of the S-
expression. Prettyprinting (see Section 15.7) is enabled if SYSPRETTYFLG has
the value T. Initially, SYSPRETTYFLG is NIL.

15.1.4 Printing Bells
Most users now interact with computer systems via video display units (VDUs)
which are, for the most part, silent. Sometimes, the system or a program that
you have written will want to catch your attention. It can do so by printing a
sequence of bells via PRINTBELLS, which takes the form

Function: PRINTBELLS
Arguments: 0

Argument: NIL

Value: ” ” (e .g . , a s tr in g with non-prin ting b e l l
ch a rac te r codes).

PRINTBELLS is an anachronism remaining from the early days of comput
ing when most interactive usage was performed with Teletypes or similar de
vices. These devices had a physical bell which rang when you reached the end of
the carriage on the printer. The bell could be sounded by a program by sending
the appropriate character code to the device (e.g., hexadecimal 2F for an IBM
System/370 machine). Today, most VDUs have an audible signal (not necessar
ily a bell) which performs the same function. PRINTBELLS sends a sequence of
character codes to the device that result in the audible signal being produced by
the device.

15.1.5 User Defined Printing
As noted above, the printing routines will only print the values of LISP objects
which are atoms, numbers, strings, or lists. Other LISP objects are normally
represented by pointers to their storage locations. You may provide your own
printing routines to handle other types of LISP objects via DEFPRINT, which
takes the form

Function: DEFPRINT

Arguments: 2

Arguments: 1) an INTERLISP o b jec t type, TYPE
2) a fu n ctio n , FN

V alue: T

452 Output Functions

TYPE is either a type name, such as ARRAYP, TERMTABLEP, etc., or a
type number.

DEFPRINT specifies a function that will handle the printing of LISP ob
jects of the specified type. Whenever a LISP object of TYPE is encountered by
one of the printing routines, it calls FN with the LISP object as its argument.
The function must be defined in the normal manner using DEFINE or DE-
FINEQ.

FN may do one of three things:

1. It may return NIL, whence the object will be printed using the system
default.

2. It may print the object according to your specifications in the code. It
should return (NIL) to prevent any further action by the calling routine.

3. It may return a specification for how the object is to be printed. This
specification takes the form

(<iteml> . <item2>)

ITEMl will be printed using PRINl unless it is NIL, whence no action will oc
cur. ITEM2 is then printed using PRIN2 with no intervening spaces between the
two items. The IRM notes that ITEMl will typically be a READMACRO char
acter.

Consider a function for printing an array of numbers. We would like to print
the elements of an array as a list each of whose elements is a CONS cell. The
CAR of the CONS cell is the index and the CDR is the element at that location.
Let us define PRINT.ARRAY to perform this operation.

^(DEFINEQ
(p r in t .a r r a y (x)

(PROG (s iz e)
(COND

((NOT (ARRAYP x))
(ERROR "Not an a rray ” x)))

(SETQ s iz e (ARRAYSIZE x))
(FOR I FROM 1 to SIZE

DO
(PRINT (CONS I (ELT x I)))))

))
(PRINT.ARRAY)
<-(DEFPRINT 'ARRAYP (FUNCTION PRINT.ARRAY))
T
<-(SETQ A1 (ARRAY 5))

(1)
(2)

15.1 Printing S-expressions: PRINX 453

(3)
(^)
(5)
{ARRAYP}#542674

The effect of DEFPRINT is immediate once the function is defined to IN
TERLISP. '

Note that each of the elements is NIL so only the index appears. Now, let’s
populate the array using the following CLISP construct.

<-(FOR I FROM 1 TO 5 DO (SETA A1 I (ITIMES I 100)))
NIL

^(PRINT Al)
(1 . 100)
(2 . 200)
(3 . 300)
{A . 400)
(5 . 500)
{ARRAY?}#542674

DEFPRINT combined with the PRINTOUT package (see Section 15.8) pro
vides you with considerable flexibility in formatting output of extended LISP
objects and structures,

15.1.6 Printing Unusual Data Structures
Some data structures cannot be printed and read in easily. These include re
entrant and circular data structures. INTERLISP provides the HPRINT pack
age to print these data structures. HPRINT is intended for use with the File
Package for dumping the values of variables to files so that they may later be
reloaded.

HPRINT will print and read back any structure containing user datatypes,
arrays, hash tables, and unusual list structures. It does so by following all of the
pointers to the lowest level of the structure and writing each item encountered
during its passage. Data so written are surrounded by special read macro char
acters (see Section 14.4.3) to identify the unusual items in the structure when it is
read back by INTERLISP.

The HPRINT package provides three functions for printing, reading, and
copying unusual data structures. These take the following formats

Function: HPRINT

Arguments: A
Arguments: 1) an S -expression , EXPRESSION

2) a f i l e name, FILE

454 Output Functions

3) a c i r c u la r l i s t f la g , UNCIRCULAR
A) the type o f d a ta , DATATYPESEEN

15.1 Printing S-expressions: PRINX 455

V alue: NIL

HPRINT prints the value of EXPRESSION on FILE. If UNCIRCULAR has
the value non-NIL, HPRINT will not check for circularities in EXPRESSION. If
you do not check for circularities in your data structures, you may miss chances
for greater speed and more efficient use of storage.

HPRINT is usually used to print structures to disk files. The algorithm relies
on an ability to reset the file pointer to indicate duplicate elements in EXPRES
SION. If FILE is not a disk file and UNCIRCULAR is NIL, HPRINT opens a
temporary file, HPRINT. SCRATCH, prints the expression on it, and then cop
ies that file to the primary output file. The temporary file is deleted.

Consider the following example:

•<-(SETQ ra re -g a se s
(LIST 'helium 'k ryp ton 'argon 'xenon 'radon))
(helium krypton argon xenon radon)

Let us make this list circular via the following statement:

<-(RPLACD (LAST ra re -g a se s) ra re -g ase s)
(helium krypton argon xenon radon helium krypton argon
. . .)

which would continue to print forever.
Now, we can print this circular list via

X-(HPRINT ra re -g a se s T NIL)
(helium krypton argon xenon radon . [1])
NIL

where the CDR of the last cell of the list indicates that the foregoing elements
repeat indefinitely.

When HPRINT sees a user datatype for the first time, it will print a sum
mary of that datatype’s declaration. When this is read in the datatype is rede
clared. If DATATYPESEEN is non-NIL, HPRINT assumes that the same data
type declaration is to be used at read time that was used at print time, and does
not print the declarations. Consider the example based on complex numbers (see
Section 13.7.2):

<-(SETQ X (COMPLEX 1.0 3-0))
((1 .0 . 3 .0)) because we already have a DEFPRINT

d e c la ra tio n in force

♦-(HPRINT X T NIL NIL)
{$COMPLEX (FLOATP FLOAT?) 1.0 3.0] ‘
^(HPRINT X T NIL T)
{COMPLEX 1.0 3.0)

To invoke HPRINT from the File Package, you may use the file package
commands HORRIBLEVARS and UGLYVARS (see Section 17.2.2).

Reading Unusual Data Structures
The corresponding function for reading an unusual data structure is HREAD. It
takes the form

'
Function: HREAD

Arguments: 1

Arguments: 1) a f i l e name, FILE
V alue: NIL

HREAD reads in an unusual data structure from a file. Consider the follow
ing example:

^(OPENFILE 'JUNK 'OUTPUT)
<KAISLER>JUNK..l

< -(HPRINT X 'JUNK NIL NIL)
NIL

^(CLOSEF ’JUNK)
<KAISLER>JUNK..l

Now, we can read the contents of the file using READFILE to see what has
been printed out:

(READFILE 'JUNK)
([$C0MPLEX (FLOATP FLOATP) 1.0 3-0])

And, to set Y to the value in the file JUNK, we can use HREAD as follows:

•^(OPENFILE 'JUNK 'INPUT 'OLD)
<KAISLER>JUNK..l

<-(SETQ y (HREAD 'JUNK))
((1.0 . 3 .0))
<-(REAL y)
1.0

456 Output Functions

15.1 Printing S-expressions: PRINX 457

^(IMAG y)
3 .0

Copying Unusual Data Structures
Finally, you may use the function HCOPYALL to copy an unusual data struc
ture. It takes the form

Function: HCOPYALL

Arguments: 1

Arguments: 1) an S -expression , EXPRESSION

Value: The value of EXPRESSION.

To set Z to the value of Y, we can use the expression

<-(SETQ z (HCOPYALL y))
((1.0 . 3 .0))

15.1.7 Writing Expressions to a File
You may write a sequence of one or more expressions to a file using WRITE-
FILE, which takes the form

Function: WRITEFILE

Arguments: 2

Arguments: 1) a l i s t of one o r more S -exp ressions,
EXPRESSION

2) a f i l e name, FILE

Value: The f i l e name.

WRITEFILE writes a date expression to FILE. It then writes the successive
S-expressions that are the value of EXPRESSION to the file using FILERDTBL
as its read table. If EXPRESSION is an atom, its value is used (for example, the
name of a variable whose value is a list of functions). If FILE is not open, it is
opened prior to writing.

If FILE is a list, (CAR FILE) is used as the name of the file to be written and
it is left open. Otherwise, the atom STOP is written to the file after the value of
EXPRESSION and the file is closed.

Consider the following example:

<-(OPENFILE 'TEST 'OUTPUT)
<KAISLER>TEST..l

♦-(WRITEFILE COMPLEXCOMS 'TEST)
<KAISLER>TEST..l

Now, to check what has been written to the file, we may use READFILE (see
Section 14.2.9).

^(READFILE 'TEST)
((PRINl

(QUOTE
"WRITEFILE of <KAISLER>TEST..1 MADE BY KAISLER
ON 29-Ju l-84 13:27:30” T)

(FNS * COMPLEXFNS)
(RECORDS COMPLEX)(P

(DEFPRINT (QUOTE COMPLEX) (FUNCTION
PRINT.COMPLEX))))

Note that READFILE does not return the atom STOP which signals the end
of the file.

Temunating a File
ENDFILE merely writes STOP on the file and closes it. It takes the form

Function: ENDFILE

Arguments: 1

Argument: l) a f i l e name, FILE
Value: The f i l e name.

If FILE is not opened for output, ENDFILE generates an error.

15.2 PRINT CONTROL FUNCTIONS
INTERLISP provides several functions to control the positioning of information
in an output line. These include printing multiple spaces, tabbing, and inserting
carriage returns.

15.2.1 Printing Multiple Spaces
SPACES prints N spaces from the current position counter in the output line. It
takes the form

Funct io n : SPACES

Arguments: 2

458 Output Functions

Arguments: 1) th e number of spaces, NUMBER
2) a f i l e name (o p tio n a l) , FILE

V alue: NIL

SPACES is subject to line length checking. The value returned by SPACES
is NIL, so SPACES may be the last function called in a function. Assuming we
begin in position 1:

<-(PRINl " H e l lo ,")
^(SPACES 10)
<-(PRINl ” Tom!”)

12345678901234567890
H ello , Tom!

A Definition for SPACES
A simple definition of SPACES (assuming printing is directed to the primary
output file) might appear as

(DEFINEQ
(spaces (number)

(COND
((NOT (NUMBERP number))

(*
Generate an e r ro r i f the
argument i s not a number.

)
(ERROR "Argument not a number")
(BREAK))

((ZEROP number)
(*

Do nothing i f zero spaces are
requested .

)
NIL)

((GREATERP number 0)
(*

Use a sim ple loop to PRINl the
blank c h a ra c te r .

)
(PROG (a-number)

(SETQ a-number 0)
LOOP

(PRINl " ")
(AND

15.2 Print Control Functions 459

(IGREATERP a-nuraber number)
(RETURN))

(SETQ a-number (ADDl a-number))
(GO LOOP))))

))

5.2.2 Printing a Carriage Return
PRINl and PRIN2 both print their results without forcing a new line. The user
must explicitly place a carriage return in the output buffer to start a new output
line. TERPRI, for terminate printing, places a carriage return followed by a line
feed in the output buffer. It takes the form

Function: TERPRI

Arguments: 1

Argument: 1) a f i l e name (o p tio n a l) , FILE
V alue: NIL

Consider the following example:

(PRINl "An example o f TERPRI”)
<-(TERPRI)

would result in output appearing as

----------------- beginning of the lin e

V
An example o f TERPRI<CR>
<beginning of next output l in e)

TERPRI may take an optional file name whence the carriage return and line
feed are placed in the file.

15.2.3 Tabbing
Most formatted output requires that the program be able to specify position of
the output line in which to place the resulting characters. TAB allows you to
move the position cursor to the proper place in the output buffer. Its format is

Function: TAB

Arguments: 1-3

460 Output Functions

Arguments: 1) a p o s it io n , POS
2) minimum spaces to p r in t , MINSPACES
3) a f i l e name (o p tio n a l) , FILE

Value: NIL

TAB moves the position cursor in the current output line to POS. MIN
SPACES indicates the minimum number of spaces by which the cursor is to be
displaced. If MINSPACES is NIL, 1 is assumed.

If the current position plus MINSPACES is greater than POS, TAB exe
cutes TERPRI and then (SPACES POS). If MINSPACES is T and the current
position is greater than POS, TAB does nothing.

Consider the following example:

-^(PROGN (PRINl "HELLO,”) (TAB 25) (PRINl "JERRY!"))

111111111122222222223
123^56789012345678901234567890
HELLO, JERRY!

But, consider using MINSPACES:

«-(PROGN (PRINl "HELLO,") (TAB 25 20) (PRINl "JERRY!"))

11111111112222222222
12345678901234567890123456789
HELLO,

JERRY!

because 20 plus the current position (6) yields 26, which is greater than the posi
tion specified for TAB. Thus, it prints a <CR><LF> and spaces to the proper
position on the following line.

A Definition for TAB
We might define TAB as follows:

(DEFINEQ
(tab (pos minspaces f i l e)

(PROG (p o s it)
(*

Determine ch a ra c te r p o s itio n in the
cu rren t l in e of the f i l e .

)
(SETQ p o s it (POSITION f i l e))
(SPACES

(COND

15.2 Print Control Functions 461

462 Output Functions

((IGREATERP
(IPLUS p o s it (OR minspaces
D)
pos)
(*

I f the curren t
p o sitio n plus
MINSPACES is g rea te r
than the p o sitio n to
tab to , move to the
next output l in e .

)
(TERPRI f i le)
pos)

(T

f i l e))
))

(*
Otherwise, ju s t move
the re q u is i te number
of p o s itio n s .

.)
(IDIFFERENCE pos x)))

15.3 SETTING THE PRINT LEVEL
Printing functions are affected by an internal parameter that determines the
level to which lists are to be displayed on the terminal. This parameter is set by
PRINTLEVEL, whose format is

Function: PRINTLEVEL

Arguments: 2

Arguments: 1) CAR p r in t le v e l value, CARLVL
2) CDR p r in t le v e l value, CDRLVL

Value: The previous param eter values fo r p r in t
l e v e l .

The print level parameter determines how much of a list is displayed at the
terminal when one of the printing functions is executed. The CAR print level
controls the number of unpaired left parentheses that will be printed. Below that
level, all lists are denoted by the symbol &. The CDR print level controls the
number of list elements that will be printed. Remaining elements are indicated
by — followed by a right parenthesis. In effect, list printing is truncated. Initial
values for the CAR and CDR print levels are 1000 and —1, respectively.

Consider the following examples;

<-(SETQ SYSPRETTYFLG 'T)
NIL

■*-(SETQ s ta te s
' (maryland

(ohio idaho
(V irg in ia

(new-york texas)
maine)

oregon)
iow a))

(maryland (ohio idaho (V irg in ia (new-york texas) maine)
oregon) iowa)

With the inital setting, where 1000 implies a (virtually) infinite print level,
SHOWPRINT displays the following output:

♦-(SHOWPRINT s ta te s)
(maryland (ohio idaho (V irg in ia (new-york texas) maine)
oregon) iowa)

Now, let us set the print level for CAR to 2:

^(PRINTLEVEL (CONS 2 -1))
(1000 . -1)
^(SHOWPRINT s ta te s)
(maryland (ohio idaho & oregon) iowa)

<-(PRINTLEVEL (CONS 2 2))
(2 . - 1)

(SHOWPRINT s ta te s)
(maryland (ohio —) —)

«-(PRINTLEVEL (CONS 0 0))
&

because the print level also affects system output.

(SHOWPRINT s ta te s)
&

You may change the CAR and CDR print levels independently by executing

(PRINTLEVEL n NIL) change CAR p r in t le v e l
(PRINTLEVEL NIL n) change CDR p r in t le v e l

15.3 Setting the Print Level 463

If the CAR print level is negative, a carriage return will be inserted between
all occurrences of a right parenthesis immediately followed by a left parenthesis.

<-(SETQ f r u i t s '(orange (apple lime) (lemon grape)))
(orange (apple lime) (lemon grape))
<^(PRINTLEVEL -2 NIL)
(1000 . - 1)

(PRINT f ru i t s)
(orange (apple lime)
(lemon grape))

If the CDR print level is negative, then actions concerning CDR printing are
disabled, i.e., lists will be printed in their entirety.

PRINTLEVEL normally affects only terminal output. Usually, output to
other files acts as though an infinite print level existed. You may force print
levels to be applied to file output other than the terminal by setting PLVLFILE-
FLG to T. Initially, PLVLFILEFLG has the value NIL.

Dynamically Setting the Print Level
If some of your functions are particularly long, you may wish to shorten the
printing cycle by redefining the print level. To do so while a function is printing,
you must type CTRL-P followed by a number which is terminated by a period or
an exclamation point. The CAR print level is immediately set to this number.

When a CTRL-P is typed, it causes an interrupt to INTERLISP, IN
TERLISP immediately takes the following steps:

1. Saves and clears the input buffer
2. Clears the output buffer
3. Rings the bell (see PRINTBELLS) to notify you that it has seen the

CTRL-P
4. Waits until you enter a number for the new print level
5. Restores the input buffer
6. Continues printing

Upon return from the CTRL-P, the print level may have been changed. If
the expression being printed is currently at a deeper level than the new print
level, all unfinished lists are terminated by '•—)•'. You may terminate a particu
larly long expression by typing CTRL-P 0.

If the number following the CTRL-P is followed by a comma, you may then
type another number which specifies the new value of the CDR print level.

The period terminating the CTRL-P input indicates that the print level
should be returned to its previous setting after completing the printing of the
current expression. Terminating the CTItt.-P input with an exclamation point
(!) causes the change to be permanent (at least, until it is changed again!).

464 Output Functions

15.4 PRINTING NUMBERS
Numbers, like other atoms, have standard print names. The display of these
names is sensitive to the values of two variables:

RADIX which determ ines the b a s is of
conversion fo r the re p re se n ta tio n of
numbers.

FLTFMT which s p e c if ie s the f lo a tin g p o in t
fo rm at.

PRINTNUM allows you to control the formatted printing of both fixed and
floating point numbers. PRINTNUM takes the following form:

Function: PRINTNUM

Arguments: 3

Arguments: 1) a format s p e c if ic a t io n , FORMAT
2) a number, NUMBER
3) a f i l e , FILE

Value: The p r in t name of the number.

Format specifications are described in the following sections.
If NUMBER is not a number (e.g., not NUMBER?) and non-NIL,

PRINTNUM displays the error message NON-NUMERIC ARG. If NUMBER is
NIL, PRINTNUM uses the value of NILNUMPRINTFLG to decide what to do.
If NILNUMPRINTFLG is NIL, an error is generated. Otherwise, the value of
NILNUMPRINTFLG is displayed right-justified in the field.

If the full print name of NUMBER will not fit into the specified field, it will
be printed in its entirety. Then, a TAB is executed to properly place the line
position in the output file.

15.4.1 Format Conversion
PRINTNUM may use intrinsic operating system routines to assist in printing
formatted numbers when the format can be specified by some sort of special
code (e.g., INTERLISP-10 and INTERLISP/370). FORMAT is converted from
its machine-independent list form into a sequence of codes that are used by oper
ating system routines to print numbers of the appropriate type.

In most cases, your program will use a several different formats, but will use
them repeatedly throughout its execution. Each time your program calls
PRINTNUM, FORMAT will be converted anew. You may improve the effi
ciency of your program by converting the formats once and storing the resulting
format code for usage by PRINTNUM. NUMFORMATCODE performs this
conversion for you. It takes the form

15.4 Printing Numbers 465

Funct io n : NUMFORMATCODE

466 Output Functions

Arguments:
Argument:

Value:

1) a format sp e c if ic a tio n , FORMAT
2) a smashflag, SMASHFLAG

A format code fo r the p a r tic u la r operating
system under which your INTERLISP is
running.

Consider the following example (from INTERLISP-10):

(̂NUMFORMATCODE '(FIX 3 NIL T))
(FIX . 15033171978)

(NUMFORMATCODE '(FLOAT 11 2 2))
(FLOAT . 721^36804)

(̂NUMFORMATCODE)
(NIL . 10000)

Executing NUMFORMATCODE with no arguments returns an uninitial
ized data element that can later be smashed into by succeeding calls.

If SMASHFLAG is a format-code data structure, the new format code will
be placed into that represented by SMASHFLAG rather than being allocated
new storage.

Note that in INTERLISP-D this function is a no-op since there is no special
internal representation for number formats.

15.4.2 Fixed Point Format
The FORMAT for a fixed point number is a list structure comprising the follow
ing items:

FIX

<width>

<ra d ix)

<pad>

< le ftf lu sh >

An id e n t i f ie r specify ing format type. ,

The number of ch a rac te rs comprising the
f ie ld in which to d isp lay the number.

The b a s is fo r numeric conversion.

I f NIL, the f ie ld is padded w ith spaces. I f
T, the f ie ld is padded with ”0” (ze ro).

I f NIL, the number i s r ig h t - ju s t i f ie d in
the f ie ld . I f T, the number is l e f t -
j u s t i f i e d in the f ie ld with t r a i l i n g spaces
f i l l i n g the f ie ld .

15.4 Printing Numbers 467

Numbers, if not FIXP, are rounded to the nearest integer. Consider the fol
lowing examples:

R esult
27

006

0000000012
23bbb

Function C all
(PRINTNUM '(FIX 2) 27)

(PRINTNUM '(FIX 3 NIL T) 6)

(PRINTNUM '(FIX 10 8 T) 10

(PRINTNUM '(FIX 6 NIL NIL T) 23)

where ‘b’ indicates a blank or space.

15.4.3 Floating Point Format
A floating point number is always printed as a decimal number. FORMAT is a
list structure comprising the following items:

FLOAT

<width>

<decpart>

< exppart >

<pad>

<round)

An id e n t i f i e r sp ec ify in g format type.

The number o f ch a rac te rs comprising
the f ie ld in which to d isp lay the
number; i t must account fo r the
decimal p o in t.

The number of d ig i t s to the r ig h t of
the decimal p o in t. I f NIL, <decpart>
i s assumed to be zero (e .g . , no d ig i t s
to the r ig h t of the decimal p o in t) .

I f non-NIL, the number is p r in ted
using exponent n o ta tio n . I t s p e c if ie s
th e f ie ld s iz e of the exponent
inc lud ing E and a p o ss ib le sign
p re fac in g the exponent.

I f NIL, padding on the l e f t of the
f ie ld i s w ith spaces; o therw ise , 'O'
(zero) i s used.

I f non-NIL, i t in d ic a te s the d ig i t
p o s it io n a t which rounding w il l take
p la ce .

Consider the following examples:

Function C all

(PRINTNUM '(FLOAT 7 2) 15-375)

R esult

bbl5.38

(PRINTNUM '(FLOAT 7 2 NIL T) 15.375)
(PRINTNUM ’ (FLOAT 7 2 NIL NIL 1) 18.76)

(PRINTNUM '(FLOAT 11 2 2) 175.3^)

468 Output Functions

0015.37

20.00
bbbbbl.75E2

15.4.4 Changing the Integer Radix
The INTERLISP printing functions assume a radix (or base) of 10 for printing
integers. You may change the radix to another base via RADIX. It takes the
form

Function:
Arguments:

Argument:
Value:

RADIX

1

1) an in te g e r , N
The old rad ix .

RADIX resets the output radix for integers to the absolute value of N. If N is
negative, integers are interpreted by the printing routines as unsigned numbers
(e.g., as positive numbers in an infinite precision machine). Numeric output un
der a negative radix varies with the implementation. Consider the following ex
amples (from INTERLISP-10):

(RADIX)
10

(PRINT -128)
-128
<-(RADIX 8)
12Q

(PRINT -128)
-200Q

< -(RADIX 2)
1000

(PRINT -128)
-10000000
^(RADIX -16)

<-(PRINT -128)
???????80

because numeric output under a negative radix varies with implementation, and
may be questionable in interpretation.

15.4.5 Changing the Floating Point Output Format
You may change the format for printing floating point numbers via FLTFMT,
which takes the form

15.5 Terminal Tables 469

Function:

Arguments:

Argument:

V alue:

FLTFMT

1

1) a format s p e c if ic a t io n , FORMAT

The cu rren t form at.

FLTFMT sets the value of the variable FLTFMT to FORMAT which is a
specification as described in Section 15.4.3. If FORMAT has the value T, the
default floating point format is used. To set the value of FLTFMT. (FLTFMT)
returns the current specification without changing it.

(FLTFMT)
536870912

15.5 TERMINAL TABLES
A terminal table is used to specify the syntax classes associated with characters
for output operations. Terminal tables may be made device dependent to ac
count for the particular display features of different terminals. The system ter
minal table has the following values:

CHARDELETE 1 ch a rac te r d e le tio n
LINEDELETE 17 lin e d e le tio n code
RETYPE 18 retype l in e code
CTRLV 2

EOL 13 en d -o f-lin e code
RAISE NIL do not " ra is e " input
LINEDELETESTR response to l in e d e le te

code
ISTCHDEL M I I

NTHCHDEL M I I

POSTGHDEL I I I I

EMPTYCHDEL I I I I

ECHODELS? NIL
CONTROL NIL
0 REAL

470 Output Functions

1 IGNORE
2 IGNORE
3 IGNORE
4 IGNORE
5 IGNORE
6 IGNORE
7 SIMULATE
8 INDICATE
9 SIMULATE
10 SIMULATE
11 INDICATE
12 INDICATE
13 REAL
14 IGNORE
15 INDICATE
16 INDICATE
17 IGNORE
18 IGNORE
19 INDICATE
20 INDICATE
21 INDICATE
22 INDICATE
23 IGNORE
24 IGNORE
25 INDICATE
26 IGNORE
27 SIMULATE
28 INDICATE
29 INDICATE
30 INDICATE
31 SIMULATE

The functions GETSYNTAX, SETSYNTAX, and SYNTAXP (see Section
14.4.2) all operate with terminal tables. In general, the syntax class will define
which type of table to use. When GETSYNTAX or SETSYNTAX are given ta
bles with incompatible syntax classes, they generate error messages.

(GETSYNTAX 'BREAK (GETTERMTABLE))
ILLEGAL READTABLE
[TERMTABLEP]#!,104740

(SETSYNTAX 52 'CHARDELETE (GETREADTABLE))
ILLEGAL TERMINAL TABLE
[READTABLEP]#112203

A terminal table also contains information about terminal control including
line buffering, character echoing, and case conversion.

Note that, unlike read tables, terminal tables cannot be passed to input or
output functions. Consider what happens:

^(READ 'T (GETTERMTABLE))
ILLEGAL READTABLE
[TERMTABLEP]#!, lOW O

15.5 Terminal Tables 471

15.5.1 Terminal Syntax Classes
There are seven terminal syntax classes:

Class

CHARDELETE

LINEDELETE

RETYPE

CTRLV

EOL

NONE

Function

C haracter D eletion

Line D eletion

R eprin t Line

End o f Line

A ssociation

CTRL-A

CTRL-Q

CTRL-R

CTRL-V

CR/LF

A ll o th e r ch a ra c te rs none

Characters are assigned to a syntax class by SETSYNTAX (see Section
14.4.3). Assigning a character to a syntax class disables the previous character.
That character is automatically assigned to NONE. That is, only one character
may be assigned to the first five syntax classes mentioned above.

CHARDELETE deletes the previous character in the input buffer when it is
typed. Repeated uses will delete successive characters back to the beginning of
the buffer.

LINEDELETE deletes the current line when it is typed. It cannot be used
repeatedly.

WORDDELETE deletes the previous “word” (e.g., symbol in the input
buffer) where “word” is interpreted to be a sequnce of non-separator characters.

RETYPE causes the current line to be retyped when it is typed in. It is par
ticularly useful when you have made repeated character and word deletions in a
line.

CTRL-V causes the corresponding control character to be input when it is
followed by the appropriate control character letter.

EOL signals to the line buffering routine that the line has been terminated
when it is typed in. If there is an outstanding READ or READLINE, the con
tents of the buffer are transferred to the program.

470 Output Functions

1 IGNORE
2 IGNORE
3 IGNORE
4 IGNORE
5 IGNORE
6 IGNORE
7 SIMULATE
8 INDICATE
9 SIMULATE
10 SIMULATE
11 INDICATE
12 INDICATE
13 REAL
14 IGNORE
15 INDICATE
16 INDICATE
17 IGNORE
18 IGNORE
19 INDICATE
20 INDICATE
21 INDICATE
22 INDICATE
23 IGNORE
24 IGNORE
25 INDICATE
26 IGNORE
27 SIMULATE
28 INDICATE
29 INDICATE
30 INDICATE
31 SIMULATE

The functions GETSYNTAX, SETSYNTAX, and SYNTAXP (see Section
14.4.2) all operate with terminal tables. In general, the syntax class will define
which type of table to use. When GETSYNTAX or SETSYNTAX are given ta
bles with incompatible syntax classes, they generate error messages.

•<-(GETSYNTAX 'BREAK (GETTERMTABLE))
ILLEGAL READTABLE
[TERMTABLEP]#1,104740

^(SETSYNTAX 52 'CHARDELETE (GETREADTABLE))
ILLEGAL TERMINAL TABLE
[READTABLEP]#112203

A terminal table also contains information about terminal control including
line buffering, character echoing, and case conversion.

Note that, unlike read tables, terminal tables cannot be passed to input or
output functions. Consider what happens;

^(READ 'T (GETTERMTABLE))
ILLEGAL READTABLE
[TERMTABLEP]#!,10^740

15.5 Terminal Tables 471

15.5.1 Terminal Syntax Classes
There are seven terminal syntax classes:

Class

CHARDELETE

LINEDELETE

RETYPE

CTRLV

EOL

NONE

Function

C haracter D eletion

Line D eletion

R eprin t Line

End of Line

A ssociation

CTRL-A

CTRL-Q

CTRL-R

CTRL-V

CR/LF

A ll o th e r ch a rac te rs none

Characters are assigned to a syntax class by SETSYNTAX (see Section
14.4.3). Assigning a character to a syntax class disables the previous character.
That character is automatically assigned to NONE. That is, only one character
may be assigned to the first five syntax classes mentioned above.

CH A I^ELETE deletes the previous character in the input buffer when it is
typed. Repeated uses will delete successive characters back to the beginning of
the buffer.

LINEDELETE deletes the current line when it is typed. It cannot be used
repeatedly.

WORDDELETE deletes the previous “word” (e.g., symbol in the input
buffer) where “word” is interpreted to be a sequnce of non-separator characters.

RETYPE causes the current line to be retyped when it is typed in. It is par
ticularly useful when you have made repeated character and word deletions in a
line.

CTRL-V causes the corresponding control character to be input when it is
followed by the appropriate control character letter.

EOL signals to the line buffering routine that the line has been terminated
when it is typed in. If there is an outstanding READ or READLINE, the con
tents of the buffer are transferred to the program.

15.5.2 Establishing a Terminal Table
You may establish a terminal table by executing SETTERMTABLE, which
takes the form

Funct io n : SETTERMTABLE
Arguments: 1

Argument: 1) the address of a term inal ta b le , TTBL

Value: The address of the previous term inal
ta b le .

If TTBL is not a real terminal table, SETTERMTABLE displays the error
message “ILLEGAL TERMINAL TABLE” . Otherwise, it sets the primary ter
minal table to TTBL. It returns the address of the previous terminal table.

472 Output Functions

15.5.3 Getting a Terminal Table Address
GETTERMTABLE obtains the address of a terminal table. It takes the form

Function: GETTERMTABLE

, # Arguments: 1

Argument: 1) the address of a term inal ta b le , TTBL

Value: TTBL, i f i t i s a r e a l term inal ta b le ;
o therw ise, an e r ro r message.

If TTBL is non-NIL and represents a real terminal table, the value of GET
TERMTABLE is TTBL. If TTBL is not the address of a real terminal table,
GETTERMTABLE displays the error message “ILLEGAL TERMINAL TA
BLE” . In this case, GETTERMTABLE serves as a predicate to determine if
TTBL is really a terminal table.

(GETTERMTABLE)
[TERMTABLEP]#112406

When TTBL is NIL, GETTERMTABLE returns the address of the primary
terminal table. This is the mode in which it is most often used. Generally, you
will want to check if the current primary terminal table is the same as the origi
nal system terminal table or one you have created.

We might define the following function to check if the current terminal table
is equal to the original system terminal table (e.g., the one supplied with the
SYSOUT):

(DEFINEQ
(o r ig te rm ta b le ? (t t b l)

(EQUAL o r i g t t b l
(COND

((NULL t t b l)
(GETTERMTABLE))

(T t t b l)))
))

where ORIGTTBL was set upon entry to INTERLISP at session initiation via

(SETQ o r i g t t b l (GETTERMTABLE))

15.5.4 Testing a Terminal Table
You may test whether or not a data structure is a terminal table by executing
TERMTABLEP, which takes the form

F unction : TERMTABLEP

A rgum ents: 1

Argument: 1) th e address o f a te rm in a l ta b le , TTBL

V alue: TTBL, i f i t i s a te rm in a l ta b le ;
o th e rw ise , NIL.

It returns the address if the data structure is a terminal table, otherwise
NIL. This function may seem redundant given the effect of GETTERMTABLE
when it is supplied with a non-NIL argument. Note that TERMTABLEP returns
NIL if its argument is not a valid terminal table whereas GETTERMTABLE
causes an error.

(TERMTABLEP (GETREADTABLE))
NIL

< -(TERMTABLEP)
NIL

(TERMTABLEP (GETTERMTABLE))
[TERMTABLEP]#112406

15.5 Terminal Tables 473

15.5.5 Copying Terminal Tables
You may copy a terminal table in order to modify it for your own use by execut
ing COPYTERMTABLE, which takes the form

Function: COPYTERMTABLE
Arguments: 1
Argument: 1) the address of a term inal ta b le , TTBL
Value: The address of a new term inal ta b le .

It returns the address of a new data structure that is a copy of the specified
terminal table.

If TTBL is NIL or ORIG, a copy of the original system terminal table will be
returned.

<-(SETQ copy ttb l (COPYTERMTABLE))
[TERMTABLEP]#5^3173

COPYTERMTABLE is the only function that can create a new terminal
table for you. Moreover, you may only modify the terminal table via the function
SETSYNTAX.

15.5.6 Resetting the Terminal Table
You may reset the terminal table from another terminal table using RESET-
TERMTABLE, which takes the form

Function: RESETTERMTABLE

Arguments: 2
Arguments: 1) the address of a term inal ta b le , TTBL

2) another te rm inal ta b le , FROM

Value: TTBL, i f i t i s a term inal ta b le .

RESETTERMTABLE copies FROM into TTBL. FROM and TTBL may be
NIL or real terminal tables. FROM may have the value ORIG indicating that the
original system terminal table should be used.

15.6 TERMINAL CONTROL
INTERLISP provides you with several functions that allow you to control the
display portion of your terminal. These functions control the echoing of charac
ters that you have typed at the keyboard.

15.6.1 Echo Modes
When a character is typed at the keyboard, low-level routines in the operating
system read the character (usually via interrupts) and transfer it to the IN-

474 Output Functions

TERLISP terminal handler. Normal characters will be echoed immediately.
Control characters, which are signified by pressing the CONTROL or CTRL key
and another key simultaneously, may or may not be echoed.

Normally, control characters will be echoed using a format specified by
ECHOCONTROL (see below). You may disable echoing for a terminal table by
executing ECHOMODE, which takes the form

Function: ECHOMODE

Arguments: 2

Arguments: 1) an echo f la g , ECHOFLAG
2) a te rm in a l ta b le address, TTBL

Value: The previous echo mode fo r TTBL.

Echoing is enabled when ECHOFLAG is T; otherwise, it is disabled. Note
that changes in the echo mode do not take effect until the terminal table is made
the primary terminal table (unless it is the primary terminal table). Consider the
following example:

<-(PRINT\T\l 'HELP)
HELPHELP

(ECHOMODE NIL)
T

HELPHELP

even though I typed (PRINl ‘HELP) because the input is not echoed, since I
turned it off for the primary terminal table.

Obtaining the Current Echo Mode
You may determine the current echoing mode of a terminal table by executing
GETECHOMODE, which takes the form

Funct io n : GETECHOMODE

Arguments: 1
Argument: l) the address of a te rm inal ta b le , TTBL

Value: The c u rren t echo mode fo r the in d ica ted
te rm in a l ta b le .

Consider the following example:

(GETECHOMODE)

15.6 Terminal Control 475

where we assume the terminal tabte has not been changed from the original sys
tem terminal table.

When TTBL is NIL, the primary terminal table is assumed:

(ECHOMODE NIL)
T

will disable echoing on the primary terminal table.

15.6.2 Echo Control
ECHOCONTROL allows you to determine how control characters will be dis
played at your terminal when they are typed in. The format of ECHOCONTROL
is

Function: ECHOCONTROL

Arguments: 3

Arguments: 1) a character, CHAR
2) a mode, MODE
3) a terminal table address, TTBL

Value: The previous mode for the character.

CHAR may be either a character or a character code. MODE takes one of
the following values:

Value E ffe c t

476 Output Functions

IGNORE The character is never printed.

REAL The character is printed as itself.

SIMULATE Output is simulated.

INDICATE The character is printed, but preceded by
an "up arrow”.

NIL The mode is not changed.

TTBL is the address of a terminal table for which the mode control is to be
changed. If TTBL is NIL, the current terminal table is assumed. Any mode
change does not take effect until a terminal table is made the current terminal
table via SETTERMTABLE. Of course, if TTBL is NIL, the effect is immediate
because the current terminal table is assumed.

You may force CONTROL-B to echo with an t as follows:

(ECHOCONTROL 'B 'INDICATE)
IGNORE

15.6 Terminal Control 477

^<CTRL-B>tB
BREAK

Echoing information may be specified for control characters only. Any other
character will generate an error with the message “ILLEGAL ARG” . The effect
of this function applies to all displays of the control character including the
printing of the control character from within a program as well as echoing it on
input.

Note that different terminals respond to control characters in interesting
ways. Some of the control characters may be intercepted and intepreted by the
terminal itself, particularly with the new “smart” terminals. Some judicious ex
perimentation may be necessary to make control characters acceptable at your
terminal.

General Echo Control
INTERLISP-D and INTERLISP/VAX allow you to specify echoing for any
character, not just control characters. ECHOCHAR takes the form

Funct io n : ECHOCHAR

Arguments: 3

Arguments: 1) a ch a ra c te r code, CHARCODE
2) an echo mode, MODE
3) a te rm in a l ta b le address, TTBL

Value: The o ld mode fo r the ch a ra c te r code.

ECHOCHAR allows you to specify echoing for any character code. CHAR
CODE may be a list of character codes, whence ECHOCHAR is applied to each
character code with the same values of MODE and TTBL.

15.6.3 Character and Line Deletion Control
Two control characters, namely CTRL-A and CTRL-Q, control the deletion of
characters and lines on typein. Normally, the system will backspace over the
character (for CHARDELETE) or signify by printing ## to indicate that the re
spective deletions have taken place. You may modify the response to these two
control characters to suit your application needs. In particular, you may want to
display certain messages depending on the context in which a user attempts to
delete characters.

To modify deletion control for a terminal table, you must execute DELETE-
CONTROL, which takes the form

Function: DELETECONTROL

Arguments: 3

478 Output Functions

Arguments:

Value:

1) a type of d e le tio n , TYPE
2) a s tr in g , MESSAGE
3) a term inal ta b le address, TTBL
The previous message as a s tr in g .

TYPE specifies the output protocol to be observed when a deletion control
character is typed in. TYPE may take one of the following values:

Value
LINEDELETE

ISTCHDEL

NTHCHDEL

POSTCHDEL

EMPTYCHDEL

ECHO

NOECHO

E ffec t

MESSAGE is p rin ted when a LINEDELETE
co n tro l charac te r is typed in . The
i n i t i a l s e t t in g is "##<cr>".

MESSAGE is p rin ted the f i r s t time a
CHARDELETE con tro l characte r is
typed. The i n i t i a l s e tt in g is ”\ ” .
MESSAGE is p rin ted on subsequent
e n tr ie s of the CHARDELETE con tro l
ch a rac te r without in tervening
ch a rac te rs . The i n i t i a l s e t t in g is
” ” (e .g . , the n u ll s t r in g) .
MESSAGE is p rin ted when a characte r
o th e r than a co n tro l charac te r is
en tered follow ing ch arac te r or l in e
d e le tio n . The i n i t i a l s e tt in g is ”\ ” .

MESSAGE is p rin ted when a CHARDELETE
co n tro l ch a rac te r is typed and the
lin e b u ffe r is empty. The i n i t i a l
s e t t in g is ”##<cr>''.

Any ch a rac te rs dele ted by CHARDELETE
are echoed a t the te rm inal.

Any ch arac te rs dele ted by CHARDELETE
are not echoed a t the te rm inal.

The combined effect of ISTCHDEL and NTHCHDEL is to display a " \"
(e.g., a backslash) when the first of a sequence of characters is deleted and then
the empty string. However, since ECHO is usually enabled for character dele
tion, the sequence of characters deleted will appear in reverse order on your dis
play.

15.6 Terminal Control 479

(SETQ k e y s to n e .s ta te ’pennslyv \vy l\y lvan ia)

Here I typed CTRL-As to
d e le te th ree ch a ra c te rs .

Note that the deleted characters are both echoed and surrounded by " \" to
delineate them from the correct text.

For all but, ECHO and NOECHO, the value of DELETECONTROL is the
previous value of the message to be printed. ECHO and NOECHO return the
previous mode. MESSAGE must be less than five characters due to timing con
siderations in responding to user inputs.

The IRM suggests that you may backspace over characters rather than
echoing them if you have a video display terminal. To do so, you may specify the
following sequence of commands:

(ECHOCONTROL 8 'REAL) S p ec ifie s th a t CTRL-H, which
is backspace, w ill be
d isp layed as i s .

(DELETECONTROL 'NOECHO) E lim inates echoing of
d e le ted ch a ra c te rs .

(DELETECONTROL 'ISTCHDEL "tH TH")

(DELETECONTROL 'NTHCHDEL "tH tH")

Obtaining the Current Deletion Control Message
You may determine the current deletion control message by executing GETDE-
LETECONTROL. It takes the form

Function: GETDELETECONTROL

Arguments: 2
Arguments: 1) a type o f d e le tio n , TYPE

2) a te rm in a l ta b le address, TTBL

Value: The cu rren t d e le tio n co n tro l message fo r
TYPE in TTBL.

Consider the following examples;

(GETDELETECONTROL ' LINEDELETE)
"##<CR>
It

(GETDELETECONTROL ' NTHCHDEL)
! t t t

<̂ (GETDELETECONTROL 'POSTCHDEL)
t i \ t t

Note that when TTBL is NIL, the current terminal table is assumed.

15.6.4 Converting to Upper Case on Typein
INTERLISP accepts S-expressions and commands in upper-case format only
(comments and a few other words being exceptions). Most computer systems,
however, support both upper- and lower-case data entry. Many times, you will
find it confusing to keep switching between lower and upper case. To remedy
this, you may direct INTERLISP to convert all characters entered on typein to
upper case. To do so, you must execute RAISE. It takes the form

Function: RAISE
Arguments: 2

Arguments: 1) a f la g , FLAG
2) a te rm inal ta b le address, TTBL

Value: The previous s e tt in g of FLAG.

If FLAG is T, all characters are echoed as they are typed in, but lower-case
characters are converted to upper case when they are passed to INTERLISP
functions. Otherwise, all characters are passed through exactly as they are
typed.

Determining the Current Raise Mode
You may determine the current raise mode for a terminal table by executing
GETRAISE, which takes the form

Function: GETRAISE

Arguments: 1
Argument: 1) a te rm inal ta b le address, TTBL

Value: The cu rren t RAISE mode fo r TTBL.

Consider the following example:

^(GETRAISE)
NIL

15.6.5 Line Length Control
The length of the output line is usually determined by the operating system.
Standard line length on terminals is 80 columns, but most operating systems

480 Output Functions

allow you to vary the line length from 1 to 132 columns. INTERLISP provides
access to the functions that allow you to vary terminal line length.

Setting the Terminal Line Length
SETLINELENGTH allows you to set the terminal line length. It takes the form

Funct io n : SETLINELENGTH

Arguments: 1

Argument: 1) a l in e len g th , N

Value: The former s e t t in g of TTYLINELENGTH.

If N is NIL, INTERLISP sets to the variable TTYLINELENGTH to the
value of the terminal line length returned by the operating system. If N is not
NIL, INTERLISP sets TTYLINELENGTH to N and calls upon the operating
system to set the terminal line length to this value.

(SETLINELENGTH)
72

which determines the current logical record size of the terminal.
Now, if we set the terminal line length to 10,

(SETLINELENGTH 10)
72

<-TTYLINELENGTH
10

(PRINT "The quick red fox jumped over the lazy brown dog”)
"The quick
red fox j

umped over
th e lazy

brown dog"

Notice that INTERLISP automatically inserted <LF><CR> after the proper
number of characters while printing the string.

You should note that TTYLINELENGTH also affects typing in input com
mands, but I have not shown this feature in order to make the example above
more readable.

15.6 Terminal Control 481

Setting the File Line Length
A corresponding function is LINELENGTH, which allows you to set the line
length (i.e., the logical record length) for an output file. It takes the form

Function: LINELENGTH
Arguments: 2
Arguments: 1) a l in e leng th , N

2) a f i l e name, FILE

Value: The former s e tt in g of FILELINELENGTH.

LINELENGTH sets the logical record size of the output file FILE to N. If
FILE is NIL, INTERLISP assumes that you meant the primary output file. The
file must be open for output in order to determine or set the line length.

<-(LINELENGTH NIL ’COMPLEX)
FILE NOT OPEN
COMPLEX

Let us open the file first:

«-(IOFILE 'COMPLEX)
<KAISLER>COMPLEX..9

(LINELENGTH NIL ’COMPLEX)
72

Note that if N is NIL, LINELENGTH determines the current logical record
size of the file.

When a file is first opened, its line length is set to the value of FILELINE
LENGTH. You may reset the line length at any time. You may also adjust the
value of FILELINELENGTH for all newly opened files by resetting FILELINE
LENGTH via SETQ.

Determining the Read or Write Position
POSITION allows you to determine the character position in the current input
or output line of a file. It takes the form

Function: POSITION

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a column number, N

Value: The previous column number.

If N is NIL, POSITION determines the column number of the next charac
ter to be read or printed on the specified file. Note that the file must be opened
for input or output. If FILE is NIL, INTERLISP assumes that you mean the
current primary input or output file.

482 Output Functions

(POSITION)

15.7 Prettyprinting 483

0

A 0 is returned after an EOL has been read or printed indicating the start of
a new line. If N is non-NIL, the column number is reset to the value of N.

<-(lOFILE 'TEST)
<KAISLER>TEST..1

^(POSITION 'TEST 20)
0

<-(PRINl "BEGIN AT COLUMN 20")
"BEGIN AT COLUMN 20"

<-(CLOSEF 'TEST)
<KAISLER>TEST..l

And TEST would have the appearance on disk

222222222233333333334
12345678901234567890123-45678901234567890

BEGIN AT COLUMN 20

15.7 PRETTYPRINTING
The syntax of S-expressions often becomes an obtuse jumble of symbols and
parentheses. If you are not careful, running together pieces of different expres
sions makes your code unreadable. Prettyprinting is the process of displaying S-
expressions in a structured format that makes them both readable and under
standable.

INTERLISP includes three functions for handling prettyprinting chores.

15.7.1 Generalized Prettyprinting
PRETTYPRINT is the standard system prettyprinting function. It takes the
form

Function: PRETTYPRINT

Arguments: 2

Arguments: 1) a l i s t of fu n c tio n s , FNS
2) a p re t ty d e f in it io n f la g , PRETTYDEF

Value: The value of FNS.

PRETTYPRINT always directs its output to the current primary output file
(which was set by OUTPUT if not the default). Consider the following example:

(PRETTYPRINT ' (dep th))
(depth

(LAMBDA (1st)
(COND

((NULL 1st) 0)
((ATOM (CAR 1 s t))

(depth (CDR 1 s t)))
((GREATERP (ADDl (depth (CAR 1 s t)))

(depth (CDR 1 s t)))
(ADDl(depth (CAR 1 s t))))

(T
(depth (CDR 1 s t)))))

You will note that we have prettyprinted the functions and examples de
scribed in this text because it makes them both readable and understandable as
well as pleasing to the eye.

PRETTYPRINT works on functions that have been broken or advised. It
also works on functions which have been compiled but whose source has been
saved on their property list.

If PRETTYPRINT is given an atom which is not the name of a function, but
which has a value, it will treat the value of the atom as a sequence of function
names.

♦-(SETQ X '(EQUAL (CAR y) (CDR z)))
(EQUAL (CAR y) (CDR z))

<-(PRETTYPRINT x)
(EQUAL not p r in ta b le)
((CAR y) not p r in ta b le)
((CDR z) not p r in ta b le)
(EQUAL (CAR y) (CDR z))

Functions, whose names are given to PRETTYPRINT, may not have their
definitions loaded into memory. However, if the function resides in a file that is
currently noticed by the File Package, INTERLISP will load the function defini
tion using LOADFNS (see Section 17.9.2). It will then print the definition as
described above.

As a last resort, PRETTYPRINT attempts spelling correction on an argu
ment. If this fails, PRETTYPRINT returns the error message (<atom> NOT
PRINTABLE).

PRETTYDEFFLG has the value T when PRETTYPRINT is called from
PRETTYDEF (see Section 17.8.1). This flag causes PRETTYPRINT to print
the name of the current function it is writing to the output file as an indication of
its progress.

484 Output Functions

15.7 Prettyprinting 485

A Definition for PRETTYPRINT
We might define PRETTYPRINT as follows:

(DEFINEQ
(p re t ty p r in t (1 s t p re tty d e ff lg)

(PROG (expression fn d e f in it io n)
(COND

((ATOM 1st)
(*

I f given an atom, l i s t i f y
i t so th a t PRETTYPRINT may
attem pt to work c o r re c tly .

)
(SETQ 1 s t (LIST 1 s t))))

loop
(COND

((NULL 1 st)
(RETURN NIL))

((AND p re t ty d e f f f lg
(NEQ (OUTPUT) T)
(*

I f the cu rren t output f i l e
i s not the te rm in a l, p r in t
the f i r s t function name on
the te rm inal to l e t the
u se r know what p rogress we
are making in p r in tin g the
l i s t of fu n c tio n s .

)
(PRINT (CAR 1 st) T)))

(SETQ fn (CAR 1 s t))
lo o p l

(*
Get the d e f in it io n of the function
fo r p r in tin g .

)
(SETQ d e f in it io n

(COND
((CDR fn)

(VIRGINFN fn))
(T

(GETD fn))))
(COND

((AND (NULL d e f in it io n)
(SETQ expression

486 Output Functions

(FNCHECK fn
T
p re tty d e ff ig)))

(RPLACA 1st (SETQ fn
expression))
(GO loop l))

((NULL (EXPRP d e fin itio n))
(*

I f the function does' not
have an d e f in itio n or an
EXPR property , then i t is
not p r in ta b le .

)
(PRINl fn)
(SPACES 1)
(PRINl "not p rin tab le")
(TERPRI)
(RETURN NIL))

(T

FN is not the name of a
function , but i t may be
m isspelled , so attem pt
sp e llin g co rrec tio n i f DWIM
is enabled.

)
(AND DWIMFLG

(SETQ fn (ADDSPELL fn)))
(*

GLISPIFY the d e f in it io n as
w ell.

)
(SETQ d e f in it io n

(GLISPIFY d e f in it io n)))
(TERPRI)
(PRINl '%{))
(PRINT fn)
(PRINTDEF d e f in itio n)
(PRINl '%)))
(TERPRI)))

(SETQ 1 st (CDR 1 s t))
(GO loop))

))

I

15.7.2 Prettyprinting to the Terminal
PP prettyprints the value of its argument to the terminal. It takes the form

Function: PP

Arguments: 1-N

Arguments: 1) a function name, FN
2-N) function names, FN[2]

. . . FN[N]

Value: A l i s t of the function names.

PP is an NLAMBDA, nospread function. Consider the following example:

<-(PP ’REAL 'IMAG)
(REAL

(LAMBDA (CX) **COMMENT**
(RECORDACCESS (QUOTE REAL)

CX NIL (QUOTE FETCH))))

(IMAG
(LAMBDA (CX) **COMMENT**
(RECORDACCESS (QUOTE IMAG))

CX NIL (QUOTE FETCH))))

(REAL IMAG)

In effect, PP could be defined as follows:

(DEFINEQ
 ̂ (pp (fn)

(OUTPUT T)
(SETREADTABLE T)
(LINELENGTH TTYLINELENGTH)
(PRETTYPRINT fn)

))

A much better definition of PP appears as follows;

(DEFINEQ
(pp

(NLAMBDA f n s ls t
(PROG ((y (OUTPUT T)))

(OR
(ERSETQ

15.7 Prettyprinting 487

488 Output Functions

)))

(PRETTYPRINT
(COND

((ATOM fn s ls t)
(LIST fn s ls t))

(T fn s ls t))))
(TERPRI T))

(OUTPUT y)
(RETURN fn s ls t))

Note that this definition saves and restores the primary output file while
printing the specified function to the terminal.

PP treats unknown functions in a fashion similar to PRETTYPRINT.

15.7.3 Displaying Prettyprinted Definitions from a File
PF allows us to display a prettyprinted definition from a file without actually
loading the definition into memory. Note that both PRETTYPRINT and PP will
load a function prior to displaying it if the function is noticed on a file. PF merely
copies the bytes from a file to another file (typically the terminal without con
suming space to store the function definition. It takes the following format:

Function: PF ;

Arguments: 3

Arguments: 1) a function name, FN
2) a l i s t of f i l e name, FROMFILES
3) a f i l e name, TOFILE

Value: NIL

PF is an NLAMBDA, nospread function. PF copies the definition of FN
from each file named in FROMFILES to TOFILE. There are two cases:

1. If TOFILE is NIL, PF displays the definition(s) on the terminal.
2. If FROMFILES is NIL, PF invokes WHEREIS (see Section 17.3.8) to

locate the file definition (if it resides in any of the noticed files).

Consider the following example:

COMPLEX COMPLEX T)
[from <KAISLER>COMPLEX..9]
(COMPLEX

(LAMBDA (R I) **COMMENT**

NIL

When PF prints to a terminal, it transforms the characters read from the
file. Transformations occur because source definitions may be written to files in
a variety of formats. PF does the following:

1. Removes font information.
2. Does not print the change character that marks revisions to the function

definition.
3. Reduces the left margin to accommodate long expressions that may have

been written to the file (e.g., those exceeding TTYLINELENGTH).
4. Suppresses comments, if **COMMENT**FLG is non-NIL.

15.7.4 Prettyprinting Symbolic Files
A generalized prettyprinting function is PRINTDEF, which takes the form

Function: PRINTDEF

Arguments: 6

Arguments: 1) an S -expression , EXPRESSION
2) a le ft-h a n d margin, LEFT
3) a d e f in i t io n f la g , DEFFLAG
4) a t a i l f la g , TAILFLAG
5) a l i s t of fu n c tio n s , FNSLST
6) a f i l e name, FILE

Value: The value of EXPRESSION.

PRINTDEF is described in more detail in Section 17.8 because it is used to
place symbolic information in files.

15.7.5 Prettyprinting Control Variables
You may set the values of several variables to control the appearance of the pret-
typrinted output:

#RPARS Determines how many r ig h t
paren theses are necessary fo r
s u b s t i tu tio n by square b rack e ts .
#RPARS is in i t i a l i z e d to 4. I f
#RPARS is s e t to NIL, no square
b rack e ts w il l be su b s titu te d fo r
r ig h t paren theses.

Consider the following example:

♦-(SETQ #RPARS NIL)
NIL

15.7 Prettyprinting 489

^ (P P 'power)
(power

(LAMBDA (x y)
(COND

((ZEROP Y) 1)
(T

(TIMES X
(power X (SUBl y)))))

))
(POWER)

But, if we reset #RPARS

-^(SETQ #RPARS 3)

490 Output Functions

<-(PP 'power)

(power
(LAMBDA (x y)

(power X (SUBl y)

(POWER)

#CAREFULCOLUMNS

CHANGECHAR

PRETTYPRINT approximates the
number of charac te rs in each
atom ra th e r than ac tu a lly
counting them. This approach
work w ell in most cases, but
unusually long atom names w ill
cause your output to assume a
ra th e r ragged appearance because
PRETTYPRINT wraps around to the
next l in e . S e ttin g
#CAREFULCOLUMNS to a non-zero,
non-negative number causes
PRETTYPRINT to compute the
number of ch arac te rs from the
r ig h t hand margin. A value of 20
is probably s u f f ic ie n t .
#CAREFULCOLUMNS is in i t ia l iz e d
to 0.

When PRETTYPRINT p r in ts to the
te rm in a l, you may annotate the
l i s t i n g to show changes made to

CLISPIFYPRETTYFLG

the S -expressions. PRETTYPRINT
d isp lay s the value of
CHANGECHAR, i f non-NIL, in the
righ t-hand margin fo r a l l S-
expressions th a t the e d ito r has
marked as changed. CHANGECHAR
i n i t i a l l y has the value \.
I f th is v a ria b le is non-NIL,
PRETTYPRINT invokes CLISPIFY to
transform the S -expression
before p r in tin g them (see
Chapter 23).

15.7 Prettyprinting 491

(SETQ CLISPIFYPRETTYFLG T)

<-(PP POWER)
(power

(LAMBDA (x y)
(i f Y=0

then 1
e lse (TIMES X (POWER x Y-1)

(POWER)

COMMENTFLG

FIRSTCOL

PRETTYPRINTMACROS

PRETTYPRINT compares the CAR of
each S-expression to th is
v a r ia b le . I f they are EQ, the S-
expression is tre a te d as a
comment (see Section 16.10).
COMMENTFLG i n i t i a l l y has the
value

S p ec ifie s the s ta r t in g column
fo r p r in tin g comments. I t s
i n i t i a l value is 48. (See
Section 16.10 fo r a d iscussion
o f how comments are p r in te d .)

I t s value is an a sso c ia tio n l i s t
th a t allows you to format
se lec ted S -expressions.
PRETTYPRINT compares the CAR of
each S-expression to be p rin ted
w ith the CAR of the e n tr ie s on
the a s so c ia tio n l i s t . I f a match
is found, the CDR of the
a s so c ia tio n l i s t en try is

492 Output Functions

PRETTYPRINTYPEMACROS

applied to the S-expression. I f
the r e s u lt is NIL, PRETTYFRINT
ignores the S-expression;
otherw ise, i t p r in ts i t in the
normal fashion. Thus, you may
su b s titu te one S-expression fo r
another during p r in tin g . I t s
value is i n i t i a l l y NIL.

I t s value is a l i s t of elements
having the form

(<typename> . (fu n c tio n))
For each datatype o ther than
l i s t s and atoms, the type name
is looked up on
PRETTYPRINTYPEMACROS. I f found,
the function is applied to the
expression. This allows you to
format d if fe re n t datatypes such
as a rray s . I t s value is
i n i t i a l l y NIL.

For example, to print an array using PP, we could define PRETTYPRIN
TYPEMACROS as follows;

<-(SETQ PRETTYPRINTYPEMACROS ' (ARRAYP . PRINT.ARRAYP))
(ARRAYP . PRINT.ARRAY)

PRETTYEQUIVLST

PRETTYFLG

I ts value is an asso c ia tio n l i s t
to t r e a t c e r ta in S-expressions
l ik e o ther S -expressions. For
example, many F ile Package
functions define forms using
NLAMA. tou can t e l l PRETTYPRINT
to t r e a t these expressions lik e
NLAMBDAs using the follow ing
form:

(NLAMA . NLAMBDA)
I f PRETTYFLG is NIL, PRINTDEF
w ill use PRIN2 to p r in t an
expression in stead of
p re tty p r in t in g i t . I t is
i n i t i a l l y s e t to T.

PRETTYTABFLG F ile space is o ften of
s ig n if ic a n t concern to many
u se rs . The p re tty p r in t in g
functions normally put spaces in
the f i l e to p roperly a lig n the
ou tpu t, but a t the co s t of
s u b s ta n tia l q u a n ti t ie s of space.
You may save th is space by
rep lac in g the spaces w ith tabs
(assuming one tab i s equ ivalen t
to 8 sp a ce s) . Tabs are not used
i f PRETTYTABFLG is NIL; i t is
i n i t i a l l y s e t to T.

15.8 THE PRINTOUT PACKAGE
INTERLISP provides a set of standard printing functions including

PRINl, PRIN2, PRINT p r in t an o b jec t on the sp e c if ied
output f i l e

TAB p o s itio n the cu rso r a t a
sp e c if ie d lo c a tio n in the
cu rren t p r in t l in e

SPACES in s e r t 1 o r more spaces a t the
cu rren t p r in t p o s itio n

PRINTNUM p r in t numbers in app rop ria te
format

PRINTDEF p re t ty p r in t expressions

By executing various combinations of these functions, you may format your
output in any number of ways. To simplify the creation of certain formats, IN
TERLISP provides the Printout Package which implements a formatting lan
guage that specifies complicated sequences of the basic printing functions.

The Printout Package is implemented through CLISP (see Chapter 23),
PRINTOUT is a CLISP word which is translated by DWIMIFY to the appropri
ate set of functions that achieve the desired effect. PRINTOUT takes a descrip
tion of the desired format and prints it on the specified output file. A PRINT
OUT description has the form:

(PRINTOUT < file>
<printcoml>
<printcom2>
• • •
<printcomN>)

15.8 The Printout Package 493

The <file> parameter specifies the file to which the output will be sent. The
terminal must be explicitly specified as T in this form. The <printcom> parame
ters are forms that describe the individual printing events. A <printcom> may be
a Printout Package command or an S-expression that is evaluated and whose
value is to be printed.

If <file> is not the primary output file, the primary output file is “remem
bered” and <file> becomes the primary output for the duration of the PRINT
OUT expression execution.

PRINTOUT commands may be divided into several logical categories. Fol
lowing the IRM, these commands are discussed in the following sections.

494 Output Functions

15.8.1 Horizontal Spacing Commands
A horizontal spacing command provides a mechanism for moving the cursor to a
new position within the current print line. In general, these commands will be
translated to expressions that use TAB or SPACES. The horizontal spacing
commands are

<n>

-n>

.TAB <position>

.TABO <position>

<n> is a p o s itiv e in te g e r. The cursor
is moved to the absolute p o sitio n <n>
w ith in the cu rren t p r in t l in e . I f the
p r in t l in e cursor l i e s beyond <n>,
the f i l e w ill be positioned a t <n> on
the next l in e (e .g . , following an
im p lic it TERPRI).

A negative in teg e r in d ica te s r e la t iv e
spacing forward in the p r in t l in e .
The p r in t l in e cursor is moved
forward <n> p o s itio n s .

This command is equivalen t to <n>,
but makes the PRINTOUT expression
e a s ie r to read and understand.
<position> is an expression th a t is
evaluated to produce an in teg e r th a t
is the abso lu tion p o s itio n . The p r in t
l in e cursor i s moved to the sp ec ified
p o s itio n . I f the p r in t l in e cursor
l i e s beyond the value of <position>,
the f i l e w ill be placed a t the value
of <position> on the next l in e .

S im ilar to .TAB but the value of
<position> may be zero whence the
p r in t l in e cursor is not moved.

One, two, o r th ree apostrophes are a
shorthand mechanism fo r specify ing
th a t one, two, or th ree spaces should
be in se rte d in the cu rren t p r in t
l in e . They are equ ivalen t to -1 , -2 ,
-3 re sp e c tiv e ly .

.SP (d is ta n c e) Moves the p r in t l in e cu rso r a t o t a l
o f (d is ta n c e) spaces where (d is ta n c e)
is an S-expression to be evaluated .
I f (d is ta n c e) i s an in te g e r , then .SP
n and ^ n) are eq u iv a len t.

.RESET Resets the cu rren t l in e by moving the
p r in t l in e cu rso r to the beginning of
the l in e (v ia a ca rriag e re tu rn
w ithout a l in e fe e d) . You may use
.RESET to p o s itio n the cu rso r fo r
o v e rp rin tin g of a l in e .

15.8.2 Vertical Spacing Commands
A vertical spacing command inserts a number of carriage returns or form-feeds
in the output file. If you are printing to T, the effect is to see your output move up
the screen. The vertical spacing commands are:

T In s e r ts a ca rriag e re tu rn and lin e
feed in to the f i l e . I t is equ ivalen t
to executing (TERPRI). The same
e f f e c t may be achieved by in s e r t in g a
0 as a PRINTOUT command as th is
fo rces the f i l e to move to p o s itio n 0
(i . e . , column 1) of the next l in e .

•SKIP (l in e s) In s e r ts a number of ca rriag e re tu rn s
in to the output f i l e , (l in e s) i s an
S -expression th a t is evaluated to
produce the d is tan ce to be skipped.

.PAGE In s e r ts a form-feed in to the output
f i l e th a t causes a page to be e jec ted
to the top of form when i t is
encountered .

15.8 The Printout Package 495

15.8.3 Printing Specifications
PRINTOUT will use PRINl to print the values of expressions that are contained
in a PRINTOUT form. PRINl may not be appropriate for every expression.

Additional printing commands are provided to allow you to choose alternative
modes of output. The printing specifications are

496 Output Functions^

.P2 (expression)

.PPV {expression)

•FFF (expression)

.PPVTL (expression)

.PPFTL (exp ression)

The value of (expression) is
p rin ted using PRIN2.
The value of' (expression) is
p re ttjrp rin ted beginning a t the
cu rren t p r in t lin e p o sitio n
using PRINTDEF. PPV tr e a ts
(expression) as a variab le
ra th e r than a function .
The value of (expression) is
p re tty p rin ted as p a r t of a
function d e f in it io n . Various
INTERLISP functions th a t
id e n tify s ig n if ic a n t expressions
in a function (such as PROG,
SELECTQ, CLISP words) receive
sp ec ia l form atting treatm ent.
The value of (expression) is
p rin ted as a t a i l , i . e . , w ithout
the surrounding parentheses i f
i t is a l i s t . I t is o ften used
fo r p re tty p r in tin g s u b lis ts of a
l i s t whose o ther elements are
form atted with o ther commands.
The value of (expression) is
p re tty p r in te d as a t a i l , but is
tre a te d as p a r t of a function
d e f in it io n .

15.8.4 Structure Specifications
The prettyprinting routines will display the structure of S-expressions but are
not designed to handle formatted text. Text is generally printed as a series of
paragraphs whose left and right margins are defined to alter its shape. If you
think of the page as a window in which you place blocks of text, then much of the
time you will try to place your text so that is both appealing and pleasant to the
reader as well as functional in purpose. The following commands are concerned
with the shape and placement of a block of text.

Paragraph Specifications
You may specify a paragraph using the .PARA command. It takes the form

15.8 The Printout Package 497

.PARA <lmargin> <rmargin> < lis t>

where <list> is printed as a paragraph within the boundaries specified by
<lmargin> and <rmargin>, respectively. In general, <list> is a list of individual
atoms arrayed as a stream to be printed. .PARA uses PRINl to print the list. An
alternate form, .PARA2, uses PRIN2 instead.

Right Margin Flushing
In general, the PRINTOUT package will print paragraph lines with a right jag
ged edge. Many technical publications require contents of a paragraph to be
flush against the right margin. Usually, text processors accomplish this by hy
phenating words or introducing spaces between words to ensure that the line
appears to be properly proportioned. The Printout Package allows you to per
form right-flushing using the .FR command. It takes the form

.FR (p o s i t io n) (ex p ressio n)

where (position) determines the position where the right end of (expression)
will line, (position) is interpreted as follows:

1. 0 indicates the right margin
2.)0 indicates the absolute position in the line
3. (0 indicates a number of positions to the right of the current position

An alternative form, .FR2, uses PRIN2 rather than PRINl to print the value
of the expression.

Centering an Expression
Titles and other significant expressions are usually centered in a line to draw
attention to their content. You may center an expression using the .CENTER
command. It takes the form

•CENTER (p o s it io n) (ex p ressio n)

which centers the value of (expression) between the current position and (posi
tion). (position) is interpreted as described in 15.8.4.2.

An alternative form, .CENTER2, uses PRIN2 to print the value of (expres
sion).

Printing Numbers
When you print numbers using the INTERLISP printing functions, they do their
own internal formatting of the string representing the number. We described the
Printnum Package in Section 15.4; it allows you to specify different formats for
printing both integer and floating point numbers. The Printout Package allows

you to use some of the features of the Printnum Package via the following com
mands:

498 Output Functions

,I<form at) <number>

,F<format) <number)

P rin t <number) as an in teger
using PRINTNUM with a FIX format
l i s t constructed from <form at).
P rin t <number) as a flo a tin g
po in t number using PRINTNUM with
a FLOAT format l i s t constructed
from <form at).

Note that the format specification immediately follows the command name.

. I 5 . - 8 .T

is translated to the format list (FIX 5 -8 T).
Individual elements of the format specification are separated from each

other by periods.

,N <form at) <number) Both .1 and .F tr a n s la te to
PRINTNUM c a lls with quoted
format sp e c if ic a tio n s . .N allows
you to c a l l PRINTNUM with an
expression which is evaluated to
produce a format sp e c if ic a tio n .

Note that the expression which produces the format is a separate list element
rather than immediately following the .N command.

16

File Management and
Operations

Most programs require external storage for data. To accomplish this, IN
TERLISP provides a set of functions for declaring external files to the system
and performing operations upon them. This chapter discusses the basic file
management functions and operations.

Most of the input/output functions described in the previous chapters may
specify an optional file name as an argument. Most of these function require that
the file already be open before it can be operated upon. INTERLISP maintains
an internal data structure which describes open files and their status. Some im
plementations of INTERLISP utilize the capabilities of the underlying operating
system to provide file management services. Thus, certain features of the file
management software may not be available in every implementation.

16.1 FILE STRUCTURES AND NAMES
INTERLISP uses the file management functions of the host operating system
whenever possible. In INTERLISP/370, the file management functions of the
VM/SP operating system are used. Similarly, INTERLISP-10 and IN
TERLISP/VAX use the features of TENEX and UNIX, respectively. In IN-
TERLISP-D, which provides its own operating system, many of these functions
are encoded into the virtual machine that supports INTERLISP-D.

16.1.1 The VM/SP File System
The VM/SP file system is a flat file system. Files reside on minidisks which are
logical entities that are subsets of a physical disk drive. VM/SP manages one or
more minidisks for each user. Minidisks are identified by letters. The primary
minidisk associated with a user identifier is labeled A. Subsequent disks are la
beled B, C, D, and so on. Depending on the configuration data, a user may have
from 1 to 26 minidisks accessible at any time, although he may have more mini
disks associated with his virtual machine.

499

File names in the VM/SP operating system consist of up to eight characters,
of which the first cannot be a number but all others may be; an eight-character
file type such as FORTRAN, MODULE, etc.; and a minidisk identifier. Sub
directories and rooted tree structures common in other operating systems are not
possible under VM/SP. You should consult the appropriate IBM manuals for
further details about the VM/SP operating system.

16.1.2 The INTERLISP-D and INTERLISP-10 File Systems
INTERLISP-D supports a flexible file system where files may reside on the disk
local to the Xerox llxx Scientific Information Processor or on a file server acces
sible through the Ethernet.

Each file has a name that may consist of up to 40 alphanumeric characters
including the punctuation marks + —$. Blanks are not allowed in a file name.
Upper- and lower-case characters may be intermixed in a file name. However,
they are not distinguished. INTERLISP-D translates all file name characters to
upper case internally in order to operate upon them. When INTERLISP-D cre
ates a file name, it will do so in upper-case letters.

Users of the TENEX version of INTERLISP will recognize that the file
names have the same form except for a device/host name prefix. In IN
TERLISP-10, the file name may be prefixed by a directory name which is en
closed in angle brackets. Thus, a file name has the following format:

INTERLISP-D:

{device/host nam e}flie nam e.file tjrpe;version

INTERLISP-10:

<directory-nam e>file nam e.file type;version

Files that reside on a Xerox 1 Ixx processor’s local disk belong to the device/
host [DSK]. Files residing on other hosts will have the name of that host prefixed
to the file name. For example, if files resided on a host whose name is RE
SEARCH, then to access those files you would prefix the host name [RE
SEARCH] to the file name.

File types are used to distinguish instances of a file name according to its
contents, e.g., if you are working on a major INTERLISP project, you will prob
ably keep several files containing various sorts of information. This information
includes a SYSOUT which is the executable file, a LISPIN containing your pro
gram’s source code, and perhaps a DATA file. By appending the file type (either
SYSYOUT, LISPIN, or DATA) to the file name, you can distinguish the con
tents of the file and yet maintain uniformity in your file naming conventions.

The version of a file merely marks the current instance of the file. Any num
ber of versions may reside on the disk or the file server. The INTERLISP func-

500 File Management and Operations

tions and predicates that manipulate files always retrieve the latest version of the
file unless a version is explicitly specified in the argument to one of these func
tions. It is good practice to always keep at least one or two old versions of a file on
the disk. More than that tends to clutter the disk and consume space that may
otherwise be needed for data.

Unlike INTERLISP-10, [DSK] and the file servers do not support tempo
rary files. Files that are created remain in place until you specifically delete
them. However, you can simulate temporary files by defining them to reside in
your virtual memory. To do so, prefix the file name with the host name [CORE].
All files defined in this manner reside within the user’s virtual memory; they are
saved with a SYSOUT of your virtual memory and are only lost when your virtual
memory is abandoned.

16.2 File Declaration 501

16.2 FILE DECLARATION
Before a program can use a file, it must declare it to the system. A file may be
declared to be input, output, or both upon its opening. After a file has been
opened, the program may specify a file to be either its primary input or output
file. When this occurs, all input will be accepted from or output directed to that
file until a new declaration is executed.

16.2.1 The Primary File'T'
When an INTERLISP program is initiated, it has associated with it a primary
file for input and output operations. This file is commonly known as the file ‘T’
and is associated with the user’s terminal. Until this primary file is changed, all
input is accepted from and all output is directed to the user’s terminal unless an
optional file name is specified in the I/O function. For example, executing the
PRINT function produces the indicated string on the user’s terminal:

(PRINT "Welcome to INTERLISP”)
"Welcome to INTERLISP"

T is always considered to be open.

16.2.2 Declaring the Primary Input File
You may declare new primary files for input or output using two functions pro
vided by INTERLISP.

To declare a new primary input file, you use INPUT, which takes the form

Function: INPUT
INFILE

Arguments: 1

File names in the VM/SP operating system consist of up to eight characters,
of which the first cannot be a number but all others may be; an eight-character
file type such as FORTRAN, MODULE, etc.; and a minidisk identifier. Sub
directories and rooted tree structures common in other operating systems are not
possible under VM/SP. You should consult the appropriate IBM manuals for
further details about the VM/SP operating system.

16.1.2 The INTERLISP-D and INTERLISP-10 File Systems
INTERLISP-D supports a flexible file system where files may reside on the disk
local to the Xerox llxx Scientific Information Processor or on a file server acces
sible through the Ethernet.

Each file has a name that may consist of up to 40 alphanumeric characters
including the punctuation marks + —$. Blanks are not allowed in a file name.
Upper- and lower-case characters may be intermixed in a file name. However,
they are not distinguished. INTERLISP-D translates all file name characters to
upper case internally in order to operate upon them. When INTERLISP-D cre
ates a file name, it will do so in upper-case letters.

Users of the TENEX version of INTERLISP will recognize that the file
names have the same form except for a device/host name prefix. In IN-
TERLISP-10, the file name may be prefixed by a directory name which is en
closed in angle brackets. Thus, a file name has the following format:

INTERLISP-D:

{dev ice/host nam e}flie nam e.file tjrpe;version

INTERLISP-10:

<directory-nam e>file nam e.file type ;version

Files that reside on a Xerox llxx processor’s local disk belong to the device/
host [DSK]. Files residing on other hosts will have the name of that host prefixed
to the file name. For example, if files resided on a host whose name is RE
SEARCH, then to access those files you would prefix the host name [RE
SEARCH] to the file name.

File types are used to distinguish instances of a file name according to its
contents, e.g., if you are working on a major INTERLISP project, you will prob
ably keep several files containing various sorts of information. This information
includes a SYSOUT which is the executable file, a LISPIN containing your pro
gram’s source code, and perhaps a DATA file. By appending the file type (either
SYSYOUT, LISPIN, or DATA) to the file name, you can distinguish the con
tents of the file and yet maintain uniformity in your file naming conventions.

The version of a file merely marks the current instance of the file. Any num
ber of versions may reside on the disk or the file server. The INTERLISP func

500 File Management and Operations

tions and predicates that manipulate files always retrieve the latest version of the
file unless a version is explicitly specified in the argument to one of these func
tions. It is good practice to always keep at least one or two old versions of a file on
the disk. More than that tends to clutter the disk and consume space that may
otherwise be needed for data.

Unlike INTERLISP-10, [DSK] and the file servers do not support tempo
rary files. Files that are created remain in place until you specifically delete
them. However, you can simulate temporary files by defining them to reside in
your virtual memory. To do so, prefix the file name with the host name [CORE].
All files defined in this manner reside within the user’s virtual memory; they are
saved with a SYSOUT of your virtual memory and are only lost when your virtual
memory is abandoned.

16.2 File Declaration 501

16.2 FILE DECLARATION
Before a program can use a file, it must declare it to the system. A file may be
declared to be input, output, or both upon its opening. After a file has been
opened, the program may specify a file to be either its primary input or output
file. When this occurs, all input will be accepted from or output directed to that
file until a new declaration is executed.

16.2.1 The Primary File 'T'
When an INTERLISP program is initiated, it has associated with it a primary
file for input and output operations. This file is commonly known as the file ‘T’
and is associated with the user’s terminal. Until this primary file is changed, all
input is accepted from and all output is directed to the user’s terminal unless an
optional file name is specified in the I/O function. For example, executing the
PRINT function produces the indicated string on the user’s terminal:

(PRINT "Welcome to INTERLISP")
"Welcome to INTERLISP"

T is always considered to be open.

16.2.2 Declaring the Primary Input File
You may declare new primary files for input or output using two functions pro
vided by INTERLISP.

To declare a new primary input file, you use INPUT, which takes the form

Function: INPUT
INFILE

Arguments: 1

Arguments: 1) a f i l e name, FILE

Value: The cu rren t primary input f i l e .

For example, to declare the card reader to be the primary input file, we can
use the following expression (in INTERLISP/370):

<-(INPUT 'rd r)
T

INPUT returns as its value the name of the old primary input file. It is gen
erally a good idea to retain the name of the old primary input file (via SETQ) if
you switch among several input files.

Note that (INPUT) returns the name of the current primary input file with
out changing its name.

<-(INPUT)
< KAISLER > MY-INPUT.DAT;4

Executing (INPUT T) makes the primary input file the user terminal.
The file that you declare as the primary input file must already be open for

input:

< -(INPUT 'TEST.DAT)
FILE NOT OPEN
TEST.DAT

If the file is not open, an error message is printed and the primary input file
is not changed.

You may specify a string as an input “file” without needing to open it. Con
sider the following example:

< -(INFILE "JUNK")
T

<-(INPUT)
"JUNK"
<-(READ)
END OF FILE
NIL

502 File Management and Operations

(INPUT)
f t f t

because the input operation has removed characters from the string. Reading
against the string will cease if it encounters the characters STOP in the string.

< -(INFILE "JUNK STOP”)
”JUNK STOP"

^(READFILE)
(JUNK)

I do not recommend that you use the feature of the INFILE/READ func
tions to obtain data.

Opening a File as the Primary Input File
An alternative function, INFILE, opens the file for input and makes it the pri
mary input file.

x-(INFILE 'COMPLEX)
T

<-(INPUT)
<KAISLER>COMPLEX..9

In INTERLISP-D, if the file will not open, INFILE generates an error mes
sage:

•<-(INFILE (some f i l e narae>)
File Won't Open

and the primary input file is not changed.

A Definition for INFILE
We might define INFILE as follows:

(DEFINEQ
(i n f i l e (f i l e)

(PROG (name)
(COND

((SETQ name (INFILEP f i l e))
(OPENFILE name 'INPUT 'OLD)
(RETURN (INPUT name)))

(T
(ERROR "FILE NOT FOUND" f i l e))))

))

16.2 File Declaration 503

16.2.3 Declaring the Primary Output File
The corresponding function for redeclaring the primary output file is OUTPUT,
which takes the form

Function: OUTPUT
OUTFILE

Arguments: 1
Arguments: 1) a f i l e name, FILE

Value: The cu rren t primary output f i l e .

OUTPUT and OUTFILE operate in the same manner as INPUT and IN
FILE:

I

<- (OUTPUT ' SCORES.DAT)
FILE NOT OPEN
SCORES.DAT

(OUTFILE 'SCORES.DAT)
T

<-(OUTPUT)
<KAISLER)SCORES.DAT;1

Note that if the file does not previously exist, INTERLISP creates the file
name in its internal file list with the version number of 1. The file is also created
on disk. If the file already exists, a new file with the next higher version number
is created and opened for output.

A string may not be used to specify the file name for either OUTPUT or
OUTFILE:

(OUTFILE "JUNK”)
ARC NOT LITATOM
''JUNK”

A Definition for OUTFILE
We might define OUTFILE as follows:

(DEFINEQ
(o u tf i le (f i l e)

(PROG (name)
(COND

((NOT (LITATOM f i l e))
(ERROR "ARG NOT LITATOM" f i l e)))

(COND
((SETQ name (OUTFILEP f i l e))

(OPENFILE name 'OUTPUT 'NEW)
(RETURN (OUTPUT name)))

(T
(ERROR "FILE NOT FOUND" f i l e))))

))

504 File Management and Operations

16.2.4 Testing Input/Output Files
Generally, you do not want to attempt to open a file if such an action will result
in an error because the file does not exist. INTERLISP provides predicates for
testing whether a file may be opened for input or output. They take the form

Function: INFILEP
OUTFILEP

Arguments: 1

Arguments: 1) a f i l e name, FILE

Value: The f u l l name o f the f i l e ; o therw ise , NIL.

INFILEP and OUTFILEP return the full name of the file that is the argu
ment to the predicate if the file could be opened for input or output, respectively.
For example, assume that our program required a data file named PRESI
DENTS.LISPIN that contained some INTERLISP S-expressions concerning
presidents. Before opening this file for input, we would like to ensure that the file
actually exists. By using the INFILEP predicate, we can test whether or not IN
TERLISP recognizes the file:

•<-(INFILEP ' p re s id e n ts . l i s p in)
[D SK]presidents. l i s p i n ; 1

Note that both INFILEP and OUTFILEP return the full name of the file if it
is recognized by the system. In this case, the full name form corresponds to that
recognized by INTERLISP-D as the name of the file residing on the disk or file
server.

In INTERLISP-10, if no version number is specified, INTERLISP seeks out
the highest version number of the file and returns its full name for INFILEP and
one version greater than the highest existing version for OUTFILEP.

16.2.5 File Name Recognition
INTERLISP provides a generic function for recognizing a file, FULLNAME,
which takes the following form:

Function: FULLNAME

Arguments: 2

Arguments: 1) a f i l e name, NAME
2) a reco g n itio n mode, RECOG

Value: The f u l l name of the f i l e .

FULLNAME attempts to locate a file on local disk or file server (IN
TERLISP-D) or in a system directory (INTERLISP-10) with the specified file

16.2 File Declaration 505

name. If the file is found, its full name is returned as the result of the function
call.

There are four possible recognition modes accepted by FULLNAME: OLD,
NEW, OLDEST, and OLD/NEW. OLD/NEW is interpreted to mean that if
recognition fails because no old version of the file exists, then recognize the file
as NEW. This mode is useful only when attempting to recognize a file for writ
ing.

Consider the following examples, given that there are several versions of the
file PRESIDENTS.LISPIN (numbered 1 to 3) residing on [DSK].

FULLNAME 'p re s id e n ts .l i s p in OLD)
[DSK]pres id e n ts . l i s p in ;3

returns the most recent of the old versions of the file.

^(FULLNAME 'p re s id e n ts .l i s p in NEW)
[DSK] pres id e n ts . 1 isp in ;

returns the next version of the file.

(FULLNAME 'p re s id e n ts . l i s p in OLDEST)
[DSK]presidents. l i s p i n ; 1

returns the oldest existing version of the file.

(FULLNAME 'p re s id e n ts . l i s p in OLD/NEW)
[D S K]presiden ts.lisp in ;3

Note that specifying NEW as the recognition mode always returns a version
that is one greater than the current oldest version of the file. This mode succeeds
even if the file does not exist.

Note that the recognition modes do not have to be quoted as FULLNAME
does not evaluate them. Any other mode specification results in the error mes
sage ILLEGAL ARG. The first argument must have a literal atom as its value;
otherwise, the error message ARG NOT LITATOM is returned.

506 File Management and Operations

16.3 OPENING A FILE
Using INFILE and OUTFILE, we have seen that we can open a file for input or
output, respectively, with a number of default attributes set by the system. IN
TERLISP provides two general functions for opening a file, OPENFILE and
lOFILE, that allow you to establish the attributes of the file, and a predicate for
testing if a file is open, OPENP.

16.3.1 A General File Open Function
OPENFILE takes a varying number of arguments depending on the attributes
that you wish to set. Let us define the generic format for the function and then
discuss each argument in detail:

Function: OPENFILE

Arguments: 2-5

Arguments: 1) an S -expression specify ing a f i l e name,
NAME

2) an access mode, ACCESS
3) a reco g n itio n mode, RECOGNITION
4) the byte s iz e fo r the f i l e , SIZE
5) a l i s t o f machine-dependent param eters,

FARMS

Value: The f u l l name of the f i l e i f i t recognized
and opened; otherw ise NIL.

At a minimum, you must specify a file name and an access mode to OPEN
FILE; other arguments are optional whence the system will assume defaults.

Access mode may take one of four values: INPUT, OUTPUT, BOTH, or
APPEND. These define the operations a user may perform upon the file. If the
file is opened in APPEND mode, the system automatically positions the file
pointer at the end of the file.

INPUT access mode limits operations upon the file to reading from the file.
Attempts to write to the file will cause an error. OUTPUT or APPEND access
mode limits operations upon the file to writing to it (including moving the file
pointer). Note that OUTPUT access mode always implies that you want to create
a new version of the file even if you specified a version number in the file name.
BOTH allows you to both read and write to the file. If you want to read and write
to a file, and preserve the contents of the version specified in the file name, you
must open the file using BOTH and APPEND.

(OPENFILE 'complex 'in p u t 'o ld)
<KAISLER>COMPLEX..9
♦-(OPENFILE 'complex 'in p u t 'new)
FILE WON'T OPEN
COMPLEX

The recognition modes are OLD, NEW, OLDEST, and OLD/NEW. When
opening a file, INTERLISP first attempts to recognize the file (in the
FULLNAME sense) using the specified recognition mode. If the file cannot be
recognized for the given pair ({access mode), (recognition mode)), IN-

16.3 Opening a File 507

TERLISP returns the error message FILE NOT FOUND. Otherwise, the file is
opened according to the access mode.

If the recognition mode is NIL, INTERLISP assumes a default based on the
access mode. The current defaults are

Access Mode Recognition Mode

INPUT OLD
OUTPUT NEW
BOTH OLD/NEW
APPEND OLD/NEW

We can see that the functions discussed in the previous sections are special
cases of the execution of OPENFILE.

INFILE < f ile name))

is equivalent to

<<-(INPUT (OPENFILE < f ile name) 'INPUT 'OLD))

and

^(OUTFILE < f ile name))

is equivalent to

<-(OUTPUT (OPENFILE < f ile name) 'OUTPUT 'NEW))

SIZE is used to determine the byte size in which to open the file. If it is NIL,
the default value is used (for IN TE^ISP-10, it is 7; for INTERLISP-D, it is 8).
A value of 7 results in the high-order bit of the byte being set to zero. This corre
sponds to the ASCII character instruction set. A byte size of 8 allows you to read
all 8 bits of a standard byte; it is useful for processing EBCDIC files.

The fifth parameter, FARMS, is used to specify a list of machine-dependent
parameters. Currently, two parameters are supported by all versions of IN
TERLISP:

WAIT w ait i f the f i l e is busy

DON'T.CHANGE.DATE d o n 't change the access date

INTERLISP-IO supports an ad d itio n a l param eter:
THAWED open the f i l e in the "thawed"

mode

508 File Management and Operations

OPENFILE does not change the definition of the primary input or output
files whereas INFILE and OUTFILE do.

OPENFILE is not currently available in INTERLISP/370.

Opening a File for Both Input and Output
lOFILE is a function that opens a file for both input and output. As such, it is
just another shorthand version of the more general OPENFILE. It takes the
form

Function: lOFILE

Arguments: 1

Argument: 1) a f i l e name, FILE

Value: The f u l l name of the f i l e i f i t is opened.

lOFILE opens an existing file for both input and output, but does not
change the current primary input or output files.

<-(IOFILE 'complex)
<KAISLER>complex..9

A Definition for lOFILE
We might define lOFILE as follows:

%
(DEFINEQ

(io f i l e (f i l e)
(COND

((FULLNAME f i l e)
(OPENFILE f i l e 'BOTH 'OLD)))

))

IOFILE is not currently available in INTERLISP/370.

16.3.2 A Predicate for Testing Open Files
INTERLISP provides a predicate for testing if a file is already open. This test is
often required in multiprocessing environments or after an error has occurred
(to prevent reinitialization of the file). OPENP expects a file name and an access
mode. It returns the full name of the file if the file is open in the specified mode,
but otherwise returns NIL. Thus, if the file is not recognized, OPENP will not
generate an error.

OPENP takes the following form

Function: OPENP

Arguments: 2

16.3 Opening a File 509

Arguments: 1) a f i l e name, FILE
2) an access mode, ACCESS

Value: The f u l l name of the f i l e .

ACCESS may be INPUT, OUTPUT, or BOTH. If the access mode is NIL,
then the file is validated for input or output, but not both.

<-(OPENP 'p re s id e n ts .l i s p in INPUT)
[D SK]presiden ts.lisp in ;3
<-(OPENP ' p re s id e n ts .l is p in)
NIL

The latter case is a possibility if PRESIDENTS.LISPIN was opened in the
BOTH access mode.

If no file name is specified as an argument to OPENP, then OPENP returns
a list of the open files, excluding T which is always opened by the system. Thus,
if we executed the following commands, we would see

INPUT (INFILE 'm e tro .l isp))
[DSK]metro. l i s p ;1

<-(OPENP)
([D SK]m etro.lisp;1)

510 File Management and Operations

16.4 GETTING AND SETTING FILE ATTRIBUTES
Most operating systems maintain a substantial amount of information about
files in their directories. This information is used for different types of file man
agement operations. INTERLISP allows the user to obtain or set this informa
tion in order to determine how to manipulate files.

GETFILEINFO is used for obtaining information about a file. It takes the
following form

Function: GETFILEINFO

Arguments: 2

Arguments: 1) an S -expression specify ing a f i l e name,
FILE

. 2) an a t t r ib u te name, ATTRIBUTE

Value: The cu rren t value of the a t t r ib u te fo r the
given f i l e .

INTERLISP accepts the following attribute names for all implementations:

A ttr ib u te Name Meaning
WRITEDATE The data and time when the f i l e was
READDATE l a s t w ritte n , l a s t read , or

o r ig in a l ly
CREATIONDATE c re a ted , re sp e c tiv e ly .

Consider the following example:

<^(GETFILEINFO 'complex 'CREATIONDATE)
"28-Ju l-8 4 10:48:02"

IWRITEDATE The in te g e r form of the above
IREADDATE a t t r ib u te s .
ICREATIONDATE

Consider the following example:

^-(GETFILEINFO 'complex ’IREADDATE)
12036747520

BYTESIZE The byte s iz e of the f i l e .

-^(GETFILEINFO 'complex ’BYTESIZE)
7

OPENBYTESIZE The byte s iz e w ith which the f i l e was
opened.

LENGTH The byte p o s itio n of the end of the
f i l e (the f i l e does not have to be
opened).

Consider the following example:

<^(GETFILEINF0 ’complex ’LENGTH)
4522

ACCESS The cu rren t access mode of the f i l e ;
o therw ise , NIL.

IWRITEDATE, etc. are equivalent to applying the function IDATE to the
value returned by GETFILEINFO for the corresponding attribute.

<-(GETFILEINF0 ’COMPLEX ’IWRITEDATE)
12036747270

is equivalent to

16.4 Getting and Setting File Attributes 511

^(IDATE (GETFILEINFO < file name) WRITEDATE))
12036747270

OPENBYTESIZE is provided because INTERLISP-10 allows you to open a
file with a byte size different from its permanent byte size (that is, the one with
which it was created). Note that INTERLISP-D assumes eight-bit bytes and cre
ates files in this manner.

The information for all of these parameters is also stored in the file header
written by INTERLISP using the File Package commands.

INTERLISP-D Attributes
The IRM [irm83] notes that INTERLISP-D distinguishes the type of the file
using the following attribute:

TYPE e i th e r TEXT or BINARY

TEXT files are standard ASCII files while BINARY files are compiled code
or files containing bit-map data for INTERLISP-D’s window support functions.

INTERLISP-10 Attributes
The IRM [irm83] notes that INTERLISP-10 running under TENEX or TOPS-
20 will accept additional attributes. These are given below:

SIZE The s iz e of the f i l e in pages.

-^(GETFILEINFO 'complex ’SIZE)
2
PROTECTION The "p ro tec tio n code” of the f i l e ;

re tu rned as an in te g e r value.

(GETFILEINFO 'complex 'PROTECTION)
262080

DELETED T, i f the f i l e has been dele ted ;
o therw ise, NIL.

And for TOPS-20

INVISIBLE T, i f the f i l e has the in v is ib le
a t t r ib u te s e t ; otherw ise, NIL.

ARCHIVED T, i f the f i l e has been archived;
o therw ise, NIL.

OFF-LINE T, i f the f i l e ' s contents are o f f
l in e ; o therw ise, NIL.

512 File Management and Operations

j

Note that these attributes depend on specific features supported by the host
operating system. For further explanation, you are encouraged to consult the
manufacturer’s operating system manuals.

16.4.1 Setting File Attributes
The corresponding function for setting the values of file attributes is SETFILE-
INFO, which takes the following form

Function: SETFILEINFO

Arguments: 3

Arguments: 1) a f i l e name, FILE
2) an a t t r ib u te name, ATTRIBUTE
3) a value, VALUE

Value: T, i f the a t t r ib u te can be changed;
o therw ise , NIL.

SETFILEINFO returns T if is successful in changing the value of the file’s
attribute; otherwise, it returns NIL. Attribute values are defined by the host op
erating system. You should refer to the manufacturer’s manuals to determine
what values may be changed. You should also note that the host operating sys
tem may support other file attributes that are not accessible by INTERLISP.
Thus, you may have to perform some modification of the file’s attributes under
the aegis of the host operating system’s command language or utilities.

16.5 Closing Files 513

16.5 CLOSING FILES
The corresponding operation to opening a file is closing it. INTERLISP provides
three functions for closing files: CLOSEF, CLOSEF?, and CLOSEALL.

16.5.1 Basic Closing Functions
The general file close function is CLOSEF, which takes the form

Function: CLOSEF
CLOSEF?

Arguments: 1
Argument: 1) a f i l e name, FILE
Value: The f u l l name of the f i l e i t has closed;

o therw ise , NIL.

If the file is successfully closed, its name is returned as the value of CLO-
SEF:

•«-(CLOSEF ' p re s id e n ts .l ls p in)
[DSK]presidents. l i s p in j1

If the file is not currently open, CLOSEF returns the error FILE NOT
OPEN.

CLOSEF may be given a null argument. If so, it performs the following op
erations:

1. It attempts to close the primary input file if it is not T.
2. Failing that, it attempts to close the primary output file if it is not T.
3. Failing that, it returns NIL.
4. If either of operations 1 or 2 succeeds, the respective primary file is reset

to T.

CLOSEF? is an alternative form that closes the specified file if it is open.
Otherwise, it returns NIL. That is, it does not generate an error, as CLOSEF
does, if the files is not open. If it does succeed in closing the file, it returns the
full name of the file as its value.

514 File Management and Operations

16.5.2 Closing All Flies
Many applications open several files during their execution. When the execution
terminates normally, good housekeeping requires that all files be closed to en
sure their integrity. The function CLOSEALL provides a means for closing all
open files except T and any typescript file that is recording your session. The
value returned by CLOSEALL is a list of files that have been closed. It takes the
following form:

Function: CLOSEALL

Arguments: 0

Arguments: NIL
Value: A l i s t of f i l e s th a t I t has closed.

Consider the following example:

<-(lOFILE ’COMPLEX)
<KAISLER>COMPLEX..9

<-(lOFILE ’SHK)
<KAISLER>SHK..19

^(CLOSEALL)
(<KAISLER>COMPLEX..9 <KAISLER>SHK..19)

Note that certain files may be protected from the operation of CLOSEALL
by the Whenclose Package, which is discussed in the next section.

16.5.3 The Whenclose Package
Closing a file is a serious matter in a program—one not to be taken lightly be
cause it removes all knowledge of the file from the system. It can be disastrous to
close a file before you have updated it with the last changes to its contents. Also,
if you have written a program that others may use, you may want to perform
certain housekeeping operations on the file of which they should remain igno
rant. INTERLISP provides a convenient function for handling this problem,
WHENCLOSE.

WHENCLOSE is a function that assigns values to certain properties associ
ated with a file name that has been recognized by the system. These properties
are inspected prior to closing the file (by any of the functions mentioned above or
by a SYSOUT) to ensure that the appropriate actions are taken.

The generic format for WHENCLOSE is

Function: WHENCLOSE

Arguments: 3 -H

Arguments: 1) a f i l e name, FILE
2) a p roperty name, PROPERTY
3) a value fo r the p ro p erty , VALUE
-4-11) rep ea t 2 & 3 by p a irs

Value: The f u l l name of the f i l e .

WHENCLOSE is a nospread function. FILE must be the name of a file
other than T (the terminal). If file is NIL, WHENCLOSE assumes you refer to
the primary input and output files if they are other than T.

WHENCLOSE currently recognizes the following properties:

BEFORE
The property value specifies a function that is to be executed immediately prior
to the closing of the file. The function is passed the full name of the file as its
argument by INTERLISP. For example, if you are writing a file by means of
WRITEFILE, before you close it you may want to write the atom STOP at the
end of the file. You can specify this operation as follows:

^(WHENCLOSE (filen am e) 'BEFORE (FUNCTION ENDFILE))
(filen am e)

16.5 Closing Files 515

You may assign multiple BEFORE functions to a file, whence they will be
executed in sequence of declaration.

AFTER
The property value specifies a function that is to be executed immediately after
the file has been closed. The function is passed the full name of the file as its
argument by INTERLISP.

An application program may open and close files for you without your being
aware that the program has done so. Sometimes, it is useful to reassure the user
when a file has been closed successfully. Because WHENCLOSE uses CLOSEF,
you are assured that the file was closed successfully if CLOSEF returns the file
name. Thus, you can provide a function that notifies the user that the file has
been closed.

(̂WHENCLOSE < f ile name) 'AFTER (FUNCTION n o tify -u se r))
(filenam e)
<-(DEFINEQ

(n o tify -u se r (filenam e)
(PRINl filename)
(PRINl ” has been c lo se d .”)
(TERPRI)

))
(n o tify -u se r)

You may assign multiple AFTER functions to a file, whence they will be
executed in sequence of declaration.

STATUS
The property value specifies a function that is to be executed immediately prior
to executing a SYSOUT. The value of the function is a list consisting of two
parts:

CAR-portion: The name of a function th a t is to be
APPLY' d when the sysout f i l e is
r e s ta r te d .

CDR-portion: An S-expression to which the above
function is APPLY'd to re -e s ta b lis h
the s ta tu s of the f i l e .

Thus, the function associated with the property value is expected to create
the S-expression that is to be executed when the sysout file is reloaded for execu
tion.

INTERLISP checks the value of the APPLY’d function. If it is NIL, IN
TERLISP assumes that the file’s status could not be restored. It prints a warning

516 File Management and Operations

message to the user and executes any functions associated with the file are exe
cuted.

CLOSEALL
The property value is either YES or NO. If it is YES, then this file may be closed
by CLOSEALL (the function!). If it is NO, then CLOSEALL (the function!) will
ignore the file. Thus, even though you use CLOSEALL to close all open files, you
may protect some of them from its actions by assigning YES to this property for
the respective files.

EOF
The property value specifies a function that is executed when an end-of-file con
dition is detected by INTERLISP. The function can determine what action to
take given the condition and the state of the program.

There are two exits from the specified function. A normal exit will cause the
normal error handling machinery to be invoked by INTERLISP. Alternatively,
you may use RETFROM (see Section 30.8) to return from the function, whence
the error handling machinery is bypassed. Note that the file will not be closed if
the EOF function does not close it.

When a file is opened by INTERLISP, it is automatically initialized with the
values of YES for the CLOSEALL property and CLOSEF for the EOF property.

16.6 OTHER FILE OPERATIONS
Most operating systems provide a rich set of functions for managing the file
space of the user. INTERLISP provides access to the underlying operating sys
tem functions for deleting and renaming files.

16.6.1 Deleting Files
INTERLISP allows a user to delete a file by executing DELFILE, which takes
the following form

Func t io n : DELFILE

Arguments: 1

Argument: l) a f i l e name, FILE

Value: The f i l e name, i f d e le ted ;
o therw ise , NIL.

In order to properly delete files, you usually must be specific about the ver
sion to be deleted. If the version is omitted, INTERLISP attempts to delete the
oldest version of the file that is recognized in the directory. To delete a specific
version, you must supply the version number as part of the file name.

16.6 other File Operations 517

<-(DELFILE 'COMPLEX)
<KAISLER>COMPLEX..6

^(DELFILE 'COMPLEX..5)
FILE NOT FOUND ^
COMPLEX..5

because I have previously deleted it.

16.6.2 Renaming Files
You may rename a file using RENAMEFILE, which takes the following form

Function: RENAMEFILE
Arguments: 2

Arguments: 1) the old f i l e name, OLD
2) the new f i l e name, NEW

Value: The new f i l e name i f renaming is
su ccessfu l.

If the version is omitted, RENAMEFILE attempts to rename the most recent
version of the file found in the directory. The new file name is created with its
version number set to 1. If the new file name already exists in the directory,
RENAMEFILE returns NIL.

^(FULLNAME 'COMPLEX)
<KAISLER>COMPLEX..9
<-(RENAMEFILE 'COMPLEX ' COMPLEXARITH)
<KAISLER>COMPLEXARITH..1
<-(FULLNAME 'COMPLEX)
<KAISLER>COMPLEX..8

where version 9 of COMPLEX was renamed to COMPLEXARITH.

16.7 MANIPULATING FILE NAMES
Each operating system has its own conventions for constructing file names, and
for specifying them to file management functions. A full file name, as discussed
above, consists of several fields. Dynamic construction of a file name can be a
tedious process involving extensive string manipulation. It is often prone to er
ror, usually due to misplaced punctuation or field markers, that can lead to cata
strophic results for your files. INTERLISP provides several functions for manip
ulating file names.

518 File Management and Operations

16.7.1 Unpacking a File Name
You may unpack a file name using UNPACKFILENAME, which takes the form

Function: UNPACKFILENAME
Arguments: 1

Argument: 1) a f i l e name, FILE

Value: A l i s t d escrib in g the f ie ld s and values of
th e f i l e name.

UNPACKFILENAME produces a list consisting of alternating/teW names
and field values. The field values are the appropriate constituents of the given
file name.

(UNPACKFILENAME 'p re s id e n ts . l i s p in)
(NAME p re s id e n ts EXTENSION lis p in)

Note that UNPACKFILENAME does not attempt to recognize the file.
The fields that may be produced by UNPACKFILENAME are HOST, DI

RECTORY, NAME, EXTENSION, and VERSION in INTERLISP-D. IN
TERLISP-10 recognizes the additional fields of PROTECTION, ACCOUNT,
and TEMPORARY.

(UNPACKFILENAME ' <KAISLER>COMPLEX;9)
(DIRECTORY KAISLER NAME COMPLEX VERSION 9)

16.7 Manipulating File Names 519

16.7.2 Constructing File Names
You may construct a file name for submission to a file management function
using PACKFILENAME, which takes the form

Function: PACKFILENAME

Arguments: 2-N

Arguments: 1) a f ie ld name, FIELD
2) a f ie ld co n ten t, CONTENT
3-N) p a irs of f ie ld and content

Value: A f u l l f i l e name.

The argument to PACKFILENAME is a list consisting of alternating field
names and field values.

<-(PACKFILENAME (LIST 'DIRECTORY 'l i s p
'NAME " a s s e r t io n s "
'EXTENSION ’l is p))

<l is p) a s s e r t io n s . l is p

Note that the field values may be specified as either atoms or strings.

16.7.3 Accessing a File Name Field
Given a file name, you may want to extract a specific field. FILENAMEFIELD
allows you to extract the field value from a file name. It takes the form

Function: FILENAMEFIELD
Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a f ie ld name, FIELD

Value: The value of the f ie ld fo r the given f i l e
name.

INTERLISP recognizes the field names mentioned in Section 16.7.1. Con
sider the following example to retrieve the extension of a file:

<-(SETQ a-file-nam e
(PACKFILENAME (LIST 'NAME 'a s s e r tio n s

'EXTENSION 'l i s p)))
a s s e r t io n s . l i s p

(FILENAMEFIELD a-file-nam e 'EXTENSION)
l is p

A special field value, BODY, allows you to splice values into the argument
list to PACKFILENAME. Suppose that you merely wanted to change the direc
tory name of a file. You could use the following form:

<-(SETQ new -directory ’k a is le r)
k a is le r

^(PACKFILENAME 'DIRECTORY new -directory
'BODY a-file-nam e)

< k a is le r> a s s e r t io n s .l is p

If the same field name is given twice in the argument list, INTERLISP uses
only the first occurrence. Suppose you wanted to provide an extension to a file
only if there is no current extension in the file name. You might use the following
statement:

520 File Management and Operations

16.8 Random Access Files 521

^(SETQ a-file -n am e (LIST ’NAME 'a s s e r t io n s))
(NAME a s se r tio n s)

<-(SETQ a -d e fa u lt ’l is p in)
l i s p in

<-(PACKFILENAME 'BODY a-file-nam e
'EXTENSION a -d e fa u lt)

a s s e r t io n s . l i s p in

This statement produces the given result because there is no extension speci
fied for the file name.

16.8 RANDOM ACCESS FILES
INTERLISP reads and writes most files as if they were serial byte streams. In
this mode, a file is read starting from the initial byte. Successive bytes are ac
cessed in order until the last byte has been read. A file is written by sequentially
placing bytes one after the other on the output stream until output is terminated.
The length of the file is the number of bytes that currently reside in it.

Serial files are not very efficient when the file is very large and only portions
of its contents are required for processing. To remedy the situtaion, INTERLISP
provides a limited random access capability to files. Underlying this mechanism
is the notion of a file pointer. The value of the file pointer, when valid, corre
sponds to a byte location in the file. By assigning different values to the file
pointer, you may specify the beginning address where data will be read from or
written to. Thus, random accessing allows you to jump around the file gathering
data from or scattering data to different locations.

Unlike serial files, random access files require that you exercise additional
caution: When you set the file pointer to the end of the file and begin to write,
the file grows as succesisve bytes are placed in the output stream. It is possible to
place the file pointer beyond the end of the file (by specifying a nonexistent byte
address). When you commence writing, the bytes are placed at successive loca
tions beginning with the current value of the file pointer. However, a “hole” has
been created, namely the sequence of bytes between the former end of the file
and the new value of the file pointer. You may later write into these locations. If
you do not, errors may result when you later attempt to read from them.

Specifying a location in the file for writing will cause the new bytes to over
write the existing bytes. Careful control of where you read and write in a file
must be exercised in order to prevent the obliteration of data. A number of au
thors have described random access techniques in considerable detail, including
[knut68] and [wied77].

In the following sections, we discuss functions that allow you to manipulate
the file pointer and randomly access files.

16.8.1 Manipulating the File Pointer
You may get or set the file pointer. GETFBLEPTR returns the current byte ad
dress in the file. The next input or output operation will begin at this location if
the file pointer remains unmodified.

GETEOFPTR returns the byte address of the last byte in the file. You may
think of it as determining the length of the file (remembering that the first byte’s
address is 0), These functions take the form

Function: GETFILEPTR
GETEOFPTR

Arguments: 1
Argument: 1) a f i l e name, FILE

Value: The cu rren t or l a s t byte address,
re sp e c tiv e ly , of FILE.

If the file is not open, both functions will generate an error “FILE NOT
OPEN” . Consider the following example:

<-(OPENFILE 'JUNK 'OUTPUT 'NEW)
• <KAISLER>JUNK..l

^(GETFILEPTR ’JUNK)
0

Now, let us write an expression to the file:

<^(WRITEFILE (GETD 'COMPLEX) 'JUNK)
<KAISLER>JUNK..1

(GETEOFPTR 'JUNK)
370

Setting the File Pointer
SETFILEPTR allows you to modify the value of the file pointer. Three cases are
possible:

1. ADDRESS < 0, causes the file pointer to be set to the end of the file.
2. 0 < = ADDRESS < EOF, causes the file pointer to be set to the corre

sponding location.
3. ADDRESS = > EOF, causes the file pointer to be set to the correspond

ing location, but a hole is created. The file is not enlarged until you actu
ally write data at the new location.

SETFILEPTR takes the format

522 File Management and Operations

Function: SETFILEPTR

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) an address, ADDRESS

Value: The new value of the f i l e p o in te r .

Consider the following example:

(SETFILEPTR 'JUNK 100)
100

<-(READ 'JUNK)(R I)
which are the arguments to the function COMPLEX that was written to the file
(see Section 13.7.2 for the full definition).

<-(READ 'JUNK)
(* e d ite d : "17-Ju l-84 21:02")

<-(GETFILEPTR 'JUNK)
138

16.8.2 Testing for Random Accessibility
You may test whether or not a file is randomly accessible using RANDAC-
CESSP, which takes the form

Function: RANDACCESSP

Arguments: 1

Argument: 1) a f i l e name, FILE

Value: FILE, i f i t is randomly a c ce ss ib le ;
o therw ise , NIL.

Certain files are inherently not randomly accessible: T or NIL. Certain site-
specific files (such as LPT) which correspond to psuedo-devices may also have a
serial nature. FILE must be open or an error will be generated.

•<-(RANDACCESSP 'JUNK)
<KAISLER>JUNK..l

^(RANDACCESSP T)
NIL

16.8 Random Access Files 523

16.8.3 Searching a File
You may search a file for a specified pattern using either FILEPOS or FFILE-
POS, which take the form

Function: FILEPOS
FFILEPOS

Arguments: 7

Arguments: 1) a p a tte rn , PATTERN
2) a f i l e name, FILE
3) a s ta r t in g address, START
4-) an ending address, END
5) a wild card ch a rac te r, SKIP
6) a t a i l f la g , TAIL
7) a case array , CASE

Value: A byte address in FILE; otherw ise, NIL.

FILEPOS and FFILEPOS correspond to STRPOS (see Section 10.6) except
that they search files rather than in-meniory strings.

(F)FILEPOS searches a file from START to END. If START is NIL, the
current file pointer value is used. If END is NIL, the search will proceed to the
end of the file.

If the search is successful, the address of the byte sequence corresponding to
PATTERN in the file is returned. If TAIL is T, the address of the first byte after
the matching pattern is returned instead. If the search fails, NIL is returned.
The file pointer is set to either of the byte addresses returned so that the next
input or output operation may commence from that point. It is not modified if
the search fails.

SKIP is a character that matches any byte in the file at the corresponding
location in PATTERN.

Suppose we want to search the file JUNK for the sequence of characters
(R I). We can use the following call:

^(OPENFILE 'JUNK 'INPUT 'NEW)
<KAISLER>JUNK..1

^-(FILEPOS '(R I) 'JUNK 0 NIL)
102

FFILEPOS differs from FILEPOS in that it uses a different search al
gorithm. The IRM [6.1.4] notes that FFILEPOS will be significantly faster for
larger strings. You should consult the IRM for more details.

Case Arrays
Searching may distinguish between upper- and lower-case alphameric charac
ters or it may map several characters, which are usually ignored, into a single

524 File Management and Operations

character. To do so, you must supply a case array, an array of 128 integers. Each
byte in FILE that is to be matched will be mapped through CASE, if non-NIL,
before matching. Character code i in FILE becomes j via (ELT CASE (ADDl i)).
You may create a case array using CASEARRAY, which takes the form

Function: CASEARRAY

Arguments: 1

Arguments: 1) An o ld case array address, OLDARRAY

Value: The address of a new case a rray .

CASEARRAY creates and returns the address of a new case array with all
elements set to themselves to indicate the identity mapping.

<-(SETQ e a se l (CASEARRAY))
{ARRAYP}#542621

<-(ELT e a se l 2^) "INTERLISP-IO”
23

because INTERLISP-10 arrays begin at 1.

Setting a Case Array
You may set an element of a case array using SETCASEARRAY, which takes
the form

Function: SETCASEARRAY

Arguments: 3

Arguments: 1) a case array address, CASEARRAYX
2) a c h a ra c te r code, FROMCODE
3) a c h a ra c te r code, TOCODE

Value: The value o f TOCODE.

SETCASEARRAY inserts the value of TOCODE into the element given by
FROMCODE in CASEARRAYX. Thus, when CASEARRAYX is used in a file
search, all bytes having the value FROMCODE will be translated to TOCODE.

Setting Break or Separator Characters
If you do not want to match break or separator characters, SEPRCASE returns a
case array in which all break or separator characters identified in FILERDTBL
are mapped into the same character, a blank or space. SEPRCASE takes the
following form

16.8 Random Access Files 525

Function: SEPRCASE
Arguments: 1
Argument: 1) a c l lsp f la g , CLISPFLG
Value; The address of a case array .

The case array which is returned by SEPRCASE has all break and separator
characters mapped into the character code 0. If CLISPFLG is not NIL, all
CLISP characters are mapped into that same character as well.

16.8.4 Copying Bytes from File to File
You may copy bytes from one file to another using COPYBYTES, which takes
the form

Function: COPYBYTES

Arguments: 4

Arguments: 1) a source f i l e name, SRCFILE
2) a d e s tin a tio n f i l e name, DSTFILE
3) a s ta r t in g byte address, START
4) an ending byte address, END

V alue: T

COPYBYTES generates an error “FILE NOT OPEN” if either or both of
SRCFILE or DSTFILE are not open.

COPYBYTES copies bytes from SRCFILE to DSTFILE beginning at
START and continuing up to but not including END. If END is NIL, START is
the number of bytes to be copied from SRCFILE’s current file pointer. If
START is also NIL, bytes are copied from the current file pointer of SRCFILE to
the end the file. Consider copying bytes from JUNK to the terminal:

<-(OPENFILE 'JUNK 'INPUT)
<KAISLER>JUNK..l

(COPYBYTES 'JUNK T 100 138)
(R I)
(* ed ited : "1 7 -Ju l-8 4 21:02")
T

^(COPYBYTES 'JUNK T 200 225)
ORDACCESS (QUOTE REAL)
T

OPYBYTES begins copying at the exact byte that you specify. Thus, if you
do properly specify a valid starting byte in the source file, you may put ga:rbage
into the destination file.

526 File Management and Operations

16.8.5 Testing for an End of File
Before writing, you usually want to know if the file pointer is at the end of the
file. EOFP allows you to test for an end of file. It takes the form

Function: EOFP

Arguments: 1

Argument: 1) a f i l e name, FILE

Value: T, i f the f i l e p o in te r p o in ts to the l a s t
byte in FILE.

FILE must be open (at least for input) in order to test for the end-of-file
condition. Consider the following example:

<^(EOFP ’JUNK)
NIL

<-(SETFILEPTR 'JUNK -1)
-1

<-(EOFP 'JUNK)
T

16.9 Saving and Restoring a User's Virtual Memory 527

16.9 SAVING AND RESTORING A USER'S VIRTUAL
MEMORY
Each INTERLISP user works with his own private memory. Because the IN
TERLISP address space is greater than most physical memories, a virtual mem
ory management scheme is used. However, this private memory is treated as a
large linear name space. That is, a user may access any symbol defined within
the name space. Partitions of symbols into collections are defined by the user
according to the functions he has built or used.

This linear name space means that, in most cases, a user may work profit
ably at only one problem at a time. However, many users tend to work on several
problems. A linear name space prevents these different problems from having
the same symbol names without conflict in meaning.

In addition, only one copy of the virtual memory file is maintained on mass
storage for each user. This virtual memory file is used to temporarily store por
tions of a user ‘s program until they are referenced by the CPU. A single copy of
the virtual memory file is required because INTERLISP manages that file in a
manner transparent to the user except for some small performance degrada
tions.

If you are working on multiple independent problems, each problem should
be physically separate in order to avoid name space conflicts. You may do this by
creating separate copies of each problem’s environment (called saving). To rees

tablish an evironment, you reload a copy into the INTERLISP virtual memory
(called restoring).

16.9.1 Saving Your Virtual Memory
SYSOUT is used to save your private memory in a permanent disk file. SYSOUT
takes the form

Function: SYSOUT
SYSOUTP

Arguments: 1
Argument: 1) a f i l e name, FILE

Value: The value of FILE.

FILE specifies the disk file where a copy of your INTERLISP environment
will be saved.

(SYSOUT ' < kaisler> a i¥o rk .sysou t)
<KAISLER>AIWORK>SYSOUT..1

will save a copy of my current INTERLISP environment (which presumes an AI
flavor) in the file AIWORK.SYSOUT in my current directory.

If FILE is non-NIL, SYSOUTFILE is set to FILE. Normally, if FILE is NIL,
the value of SYSOUTFILE will be used to store the virtual memory. The default
value for SYSOUTFILE on INTERLISP-D is VIRTUALMEM. The default
value for SYSOUTFILE in TENEX is WORK.EXE. If no extension is specified
for the file name in FILE, the value of SYSOUT.EXT is used. It has the value
SYSOUT for INTERLISP-D and EXE for INTERLISP-10 (TENEX).

SYSOUT does not save the state of any open files. WHENCLOSE (see Sec
tion 16.5.3) may be used to specify the operations necessary to re-establish the
file environment when the sysout is reloaded at a later time.

SYSOUT returns NIL if the save operation fails for any reason; otherwise, it
returns the file name of the file which was created.

Note: Failure may occur at the operating system level rather than within
INTERLISP in which case SYSOUT never returns. For example, errors may
result due to bad disk sectors, invalid virtual memory structure after a crash, or
lack of sufficient disk space to accommodate the entire virtual memory file.

Determining if a File is a SYSOUT
You may determine whether or not a file that already exists was written by SYS
OUT by executing the predicate SYSOUTP. SYSOUTP takes one argument—
the file name to be checked. SYSOUTP returns ? if the file was previously cre
ated by SYSOUT; otherwise, NIL. SYSOUTP is defined only for INTERLISP-
10.

528 File Management and Operations

In INTERLISP-10, SYSOUT saves only those portions of the virtual mem
ory vî hich you have modified. Unchanged pages are retrieved from the makesys
file of the INTERLISP system. This is because many users share a single com
mon makesys file in INTERLISP-10, w^hich is a large, multi-user, timesharing
system.

In INTERLISP-D, a sysout file contains a copy of the entire allocated mem
ory. This is because Xerox llxx machines are single-user workstations. For more
information concerning the Xerox llxx machines, consult the IRM.

16.9 Saving and Restoring a User's Virtual Memory 529

16.9.2 Restoring Your Virtual Memory
You may restore an INTERLISP environment by executing the function SYSIN,
which takes the form

Function: SYSIN

Arguments: 1

Argument: 1) a f i l e name, FILE

Value: The name o f the f i l e .

SYSIN copies the environment contained in the argument file into the IN
TERLISP virtual memory. Execution begins immediately after the SYSOUT in
vocation.

(SYSIN ' < kaisler> a iw ork .sysou t)

would restore my AI working environment.
Note that SYSIN resumes execution immediately after the SYSOUT which

created the permanent file. Thus, an expression of the following form would
print the specified message upon return from a SYSIN:

(PROGN
(SYSOUT ' < kaisler> aiw ork .sysou t)
(PRINl "H ello , S tev e !”)
(TERPRI)
(PRINl "Ready to begin work again , are yon?")
(TERPRI))

would print, after a SYSIN,

(SYSIN ' < kaisler> aiw ork .sysou t)
H ello , Steve!
Ready to begin work again , are you?

SYSIN is defined for INTERLISP-10 only because it is a multi-user, time
sharing system. On INTERLISP-D, you may save and restore your virtual mem
ory from the default value of SYSOUTFILE unless multiple users share a single
Xerox llxx machine. Consult the IRM for details concerning loading sysouts
under INTERLISP-D.

16.9.3 Advising SYSOUT Before Saving
SYSOUT is advised (see Chapter 21) to evaluate the S-expressions which are
contained on BEFORESYSOUTFORMS. BEFORESYSOUTFORMS may
contain expressions to

1. Set SYSOUTDATE to (DATE) to record the time and date that the SYS-
OUT was performed,

2. If the argument is NIL, then the value of SYSOUTFILE is used as the
destination of the SYSOUT. After the SYSOUT, SYSOUTFILE will be
set to the value of the argument. SYSOUTFILE allows a user to issue the
functional form (SYSOUT) for any saves subsequent to the initial one.

3. Perform any operations associated with open files as specified by invoca
tions of WHENCLOSE (see Section 16.5.3),

4. Any other S-expressions that you may wish to execute immediately prior
to a SYSOUT necessary to record environmental information.

Note that SYSOUT does not save the status of open files in an environment.
Thus, you must record their status using the WHENCLOSE package prior to the
SYSOUT in order that their status may be restored when the environment is
restored.

The initial value of BEFORESYSOUTFORMS is

((SETQ SYSOUTDATE (DATE))
(PROGN

(COND
((NULL FILE)

(SETQ FILE SYSOUTFILE))
(T

(SETQ SYSOUTFILE
(PACKFILENAME 'VERSION NIL 'BODY
FILE))))

(COND
((AND

(NULL (FILENAMEFIELD FILE 'EXTENSION))
(NULL (FILENAMEFIELD FILE 'VERSION)))
(SETQ FILE

(PACKFILENAME 'BODY

530 File Management and Operations

FILE
'EXTENSION
SYSOUT.EXT)))))

(RESTOREFILES T))

16.9.4 Advising SYSOUT After Restoring
After a SYSIN is completed, SYSIN is advised to execute the S-expressions con
tained on AFTERSYSOUTFORMS. Usually, AFTERSYSOUTFORMS will
contain expressions to

1. Reset the terminal line length to the appropriate value.
2. Reset any terminal control characters (using RESETFORMS).
3. If SYSOUTGAG is NIL, and the same user is executing the SYSIN as

performed the SYSOUT, then the user is greeted with the value of
HERALDSTRING followed by a greeting message. If the user perform
ing the SYSIN is different, INTERLISP prints the following message to
the user:

**** ATTENTION USER <userid>:
THIS SYSOUT US INITIALIZED FOR USER <other-
u se r id)
TO REINITIALIZE, TYPE (GREET).

This allows the new user to execute his or her own personalized
greeting file (see Section 29.5) to customize the environment for his or
her work.

If SYSOUTGAG is a list, the list is evaluated in lieu of printing the
above messages. This allows a user to create and print his or her own
greeting messages.

If SYSOUTGAG is non-NIL and not a list (typically T), no message
is printed.

4. Invokes SETINITIALS to reset the user’s initials that are used for time-
stamping (see Section 29.6.3).

5. Perform any operations associated with previously opened files as speci
fied by invocations of WHENCLOSE (see Section 16.5.3).

AFTERSYSOUTFORMS has the following structure:

((SETQ TTYINEDIT.SCRATCH NIL)
(RESTOREFILES)
(COND

((LISTP SYSOUTGAG)
(EVAL SYSOUTGAG))

16.9 Saving and Restoring a User's Virtual Memory 531

(SYSOUTGAG)
((OR

(NULL USERNAME)
(EQ USERNAME (USERNAME NIL T)))
(TERPRI T)
(PRINl HERALDSTRING T)
(TERPRI T)
(TERPRI T)
(GREETO)
(TERPRI T)

(T
(LISPXPRINl "****ATTENTION USER ”

T)
(LISPXPRINl (USERNAME)

T)
(LISPXPRINl th is sysout is in i t ia l iz e d fo r
user" T)
(LISPXPRINl USERNAME

T)
(LISPXPRINl ” ” T)
(LISPXPRINl "To r e in i t i a l i z e , type GREET()"

T)))
(SETINITIALS))

16.10 COMMENTING FUNCTION DEFINITIONS
INTERLISP can be a difficult language to read, even when it is prettyprinted.
Many users, hardened by experiences with previous conventional languages,
tend to choose abbreviations or names for variables, properties, and functions
that are often obscure and non-mnemonic. Even when mnemonic names are
chosen for user variables, properties, and functions, the wealth of system vari
ables, properties, and functions (whose names tend to be non-mnemonic) can be
quite confusing.

To make source code readable and understandable, INTERLISP provides
you with a flexible commenting feature that allows you to annotate functions and
files.

A comment is indicated by an S-expression beginning with the character ♦.
It has the general form

(* (comment te x t))

Comments are treated like other S-expressions. Thus, * is defined as an
NLAMBDA, NOSPREAD function that merely returns its argument as its
value.

532 File Management and Operations

Comments included in function definitions are part of the definition. Com
ments should be placed where they cannot affect the computation. Examples
include

1. Outside of COND expressions.
2. If inside a COND expression (due to complexity or length), then within

one of the COND cases.
3. Outside logically complete S-expressions, particularly those that might

take an indefinite number of arguments (as many File Package functions
do).

4. Outside of function definitions.

Comments are intended mainly for documenting listings. When a function
is prettyprinted at your terminal, comments are suppressed (presumably be
cause you know what you are doing—not always a good idea, though!). Instead,
they are replaced by the string **COMMENT**.

16.10 Commenting Function Definitions 533

16.10.1 Printing Comments
PRETTYPRINT (see Section 15.7.1) provides standard treatment for com
ments. In many cases, this suffices to meet your documentation needs. Some
times, you may want to emphasize a particular aspect of documentation. To do
so, you need to display comments in a certain way.

You may intercept comment printing from within PRETTYPRINT in order
to perform special processing on the text. To do so, you must define * as a
PRETTYPRINTMACRO:

<-(SETQ PRETTYPRINTMACROS
'(* (LAMBDA (x)

(RESETFORM (LINELENGTH 132)
(COMMENT! x))))

which allows you to reset the line length, print the comment, and restore the line
length. The form for a PRETTYPRINTMACRO is

((c h a ra c te r) <fu n c tio n))

The function is defined as a LAMBDA expression taking one argument, X,
which is the text of the comment as it occurs in the S-expression. You may pro
cess the string in any manner you choose before printing it.

Comment printing is controlled by a system variable **COMMENT**FLG.
If this variable is NIL, the entire text of the comment is printed by PRETTY
PRINT exactly as it appears in the S-expression. If it is non-NIL, PRETTY-

PRINT substitutes its value in place of the comment text in a list. Initially,
COMMENTFLG is set to **COMMENT**.

534 File Management and Operations

16.10.2 Comment Pointers
When programs are heavily commented, considerable storage may be consumed
to represent the comment text. Comments are needed only for documentation
and are usually manipulated during editing. If many comments appear inside a
function, each is evaluated as an S-expression even though it only returns the
comment text as a value. A substantial penalty is paid for setting up the system
stack each time a comment S-expression is evaluated.

Rather than loading comment text into memory, INTERLISP creates a
pointer to it in memory. This allov̂ ŝ the comment to be retrieved from the file
when necessary. Otherwise, it consumes a minimal amount of memory.

You may enable this feature by resetting the system variable NOR-
MALCOMMENTSFLG to NIL. It is initially T meaning comment text is loaded
into memory.

You may get the comment text from a file by using GETCOMMENT, which
takes the form

Function: GETCOMMENT

Arguments: 2
Argument: 1) a comment p o in te r , COMMENTPTR

2) a d e s tin a tio n f i l e , DSTFIL

Value: The value of COMMENTPTR.

is defined as a read macro (see Section 14.4) in FILERDTBL, the read
table used by the File Package. When a * is encountered, the loading routines
construct an expression containing

1. The name of the file.
2. The address of the first byte where the comment is located.
3. The length of the comment text.

Reading a Comment
READCOMMENT is used to implement * as a read macro. It takes the form

Function: READCOMMENT

Arguments: 3
Arguments: 1) a f i l e name, FILE

2) a read ta b le , RDTBL
3) a l i s t , LST

Consult Section 14.4.5 for the definition of read macros.
* defined as a read macro appears as

(lOMACRO
(X

(AND
(OR NCF PCF VCF)
(COMPEM

(CONS (LIST (CAR X) ')
'(COMMENT USED FOR VALUE))))

(KWOTE (CAR X)))

Printing a Comment
On output, * is defined as a prettyprint macro. Its effect is to copy the comment
text from one file to another. It is defined using PRINTCOMMENT

Funct io n : PRINTCOMMENT

Arguments: 1

Argument: 1) a comment p o in te r , COMMENTPTR

Value: The value o f X.

Thus, on PRETTYPRINTMACROS, we find

PRETTYPRINTMACROS
((* . PRINTCOMMENT))

16.10 Commenting Function Definitions 535

■ r , - r r ' ^

.

17

The File Package

INTERLISP attempts to provide you with a wholly self-contained programming
environment. To this end, it provides a comprehensive package of file manage
ment functions. This package treats a symbolic file as a database that may con
tain function definitions, variable values, and record declarations, among other
data elements. The symbolic file serves as a repository for this information. To
process it, you load the symbolic file (or portions of it) into memory. In one
sense, INTERLISP provides you with the illusion of a single level of memory,
although this is not fully implemented.

The File Package is a set of functions, conventions, and interfaces for facili
tating the bookkeeping involved in developing and maintaining a large system
comprised of many files—both code and data. The File Package is interfaced, at
a lower level, to the host operating system under which INTERLISP executes.
However, unlike most conventional operating systems, the File Package relieves
the user of the burden of worrying about many trivial details concerning where
data are located, what the structure of data is, and which files have been modi
fied.

17.1 FEATURES OF THE FILE PACKAGE
The File Package maintains knowledge of the functions and variables contained
within the file. It also will maintain information on property lists, record decla
rations, edit macros, hash arrays, and other INTERLISP data structures. Asso
ciated with each file is an atom whose prefix is the file name and whose suffix is
COMS. For example, a file describing an augmented transition network named
ATN would have an atom named ATNCOMS. The -COMS atom is a list of com
mands that describe how to write out the file.

The File Package provides functions for performing the following operations
(which are described in the following sections)

537

Creating and destroying definitions of data structures associated with the
file.
Methods for augmeiiting the command list to include new items or deleting
existing items.
A method for determining whether or not an item of a given type resides on a
file or any file.
A method for determining what files, if any, contain definitions for a given
type of data structure.
A method for determining what files need to be updated to ensure a
consistent permanent version of data structure definitions currently defined
in memory.

The File Package supports three categories of operations:

1. Marking changes to files.
2. Noticing the existence of files.
3. Updating files.

17.1.1 Marking Changes to Files
Whenever an object is modified by a system function that appears in a File Pack
age command, that function invokes MARKASCHANGED (see Section 17.3.9)
to mark the object as changed. For example, modifying the definition of a func
tion via EDITF causes that function to be marked as modified and of type FNS.
The File Package needs to know what objects have been changed so it can prop
erly update the file on disk when a MAKEFILE is issued.

The marking function’s effects are not always obvious, as evidenced by the
following examples:

Only those properties of an atom whose values have changed will actually be
marked as changed.
Changing the value of the property EXPR of an atom really effects a change
in an object that would appear in an FNS command.
Advising a function causes a change in the function’s definition that results
in it being marked as changed.
Modifying a variable’s value by a program is not noticed by the File
Package, and so must be explicitly declared.

17.1.2 Noticing Files
A file is noticed when it is referenced by a load function, an open function, by
MAKEFILE, or when definitions are first associated with a file name via
FILES? or ADDTOFILES?. The act of noticing causes the root file name to be
added to FILELST.

538 The File Package

The property FILE with value ((< filename >COMS type)) is added to the
property list of the root file name, “type” indicates how the file was loaded, e.g.,
what function was used to access it. When FILE appears on the property list of
an atom, it implies that the corresponding file has been modified since the last
time it was loaded or dumped.

17.1.3 Updating Files
UPDATEFILES is invoked, periodically, to determine which files contain those
items that have been changed during the session. It scans FILELST. When (or
if) any files are found that contain an item that has been changed, the name of
the item is added to the property FILE on the root file name. After UPDATE
FILES has been executed, the files that must be dumped to ensure a permanent
record of changes are just those files on FILELST whose FILE property CDR is
non-NIL.

Whenever a file is (re)wTitten by MAKEFILE, all items that have been
changed are removed from the FILE property list and placed on the FILE-
CHANGES property list. The CDR of the FILE property is set to NIL.

17.1.4 File Package Properties
The File Package keeps certain information about the status of a noticed file on
the property list of the atom corresponding to the root file name. The following
property names are used

FILE When a f i l e is n o ticed , the p roperty FILE
is added to the ro o t f i l e name's p roperty
l i s t . I t i s given a value of
((< filecom s> . < loadtype>)) . <filecoms> is
the naine of the v a ria b le th a t contains
the F ile Package commands fo r the f i l e .
<loadtype> in d ic a te s how the f i l e was
loaded in to the INTERLISP environment
(see S ection 1 7 .9).

FILECHANGES This p roperty con tains a l i s t of a l l
changed items since the f i l e was loaded.
When the f i l e i s dumped, the changes in
the CDR of the FILE p roperty (see Section
17 .1 .3) are added to the FILECHANGES
p ro p erty .

FILEDATES This p ro p erty con tains a l i s t of the
v ers io n numbers and corresponding f i l e
d a tes fo r th is f i l e . The version numbers
and dates are used when remaking a f i l e .

17.1 Features of the File Package 539

FILEMAP This property s to re s a f i l e map fo r the
f i l e . F ile maps are used to d ire c tly load
ind iv idual functions from sp ec if ic
lo ca tio n s w ithin the f i l e . The following
sec tio n d iscusses f i l e maps in more
d e ta i l .

Consider the following example;

<-(LOAD 'FRAMES)
<KAISLER>FRAMES..18
^(GETPROPLIST 'FRAMES)
(FILEDATES ((" l l - J u l-8 4 19:50:48" . <KAISLER)FRAMES..18))
FILEMAP (<KAISLER)FRAMES..18 (NIL (664 7916 (CREATE.NODE
676 . 926) (INITIALIZE.NODE 930 • 19-41) . . .))) FILE
((FRAMECOMS . T)))

where the ... indicates a lot of extraneous material.

17.1.5 File Maps
Kfile map is a data structure that describes the contents of a file. Within the
filemap is a sequence of expressions that identifies each function, whether sym
bolically defined via DEFINE/DEFINEQ or compiled, and its beginning and
ending byte addresses. These byte addresses may be used with SETFILEPTR to
retrieve individual functions in the file.

Many of the File Package functions depend on the file map for correct and
efficient operation. Loading selecting functions via LOADFNS is accomplished
by looking up each function in the file map and retrieving it using its beginning
and ending byte addresses. When you remake a file, only the functions that have
been changed are written from memory to the new version of the file. Unchanged
functions are merely copied from the old version to the new one.

A file map is created by MAKEFILE when it writes a new file. MAKEFILE
assumes that the expressions that it is writing to the file are DEFINEQ forms.
PRETTYPRINT, which actually writes the expressions to the file, must know
that it is writing DEFINEQ expressions. Thus, you should never print a DE
FINEQ expression onto a file yourself, but always use the FNS command (see
Section 17.2.1).

File maps are written as the last expression on the file. The location of the
file map is overwritten into the FILECREATED expression that appears at the
beginning of the file. This allows rapid access to the file map without reading the
entire file.

Two variables affect the use and creation of file maps:

BUILDMAPFLG I f BUILDMAPFLG is s e t to NIL, a f i l e map
w ill not be b u i l t by LOAD or LOADFNS, or

540 The File Package

w ritte n by MAKEFILE. I t s i n i t i a l value
i s T.

When exporting symbolic f i l e s ou tside
the INTERLISP environment, you may not
want to include a f i l e map. S e ttin g
BUILDMAPFLG to NIL allows you to omit
these data in the f i l e .

USEMAPFLG I f USEMAPFLG is T, the functions th a t
norm ally use f i l e maps check to see i f a
f i l e map e x is ts fo r the f i l e th a t is to
be operated upon. Three checks are
perform ed:

1. They check to see i f a f i l e map
already e x is ts in memory.

2. I f n o t, they check the FILECREATED
expression to see i f i t has the
address of a f i l e map which can be
read from the f i l e ,

3- I f n o t, they b u ild a f i l e map, un less
BUILDMAPFLG is NIL.

I f USEMAPFLG is NIL, the FILEMAP
p roperty and the f i l e w ill not be
checked fo r the f i l e map. This allows
you to recover from e rro rs or problems
caused by opera ting upon symbolic f i l e s
ou ts id e of the INTERLISP environment.
The IRM suggests th a t e d itin g a symbolic
f i l e th a t has a f i l e map w ith a te x t
e d i to r by adding or d e le tin g one
ch a ra c te r d is to r ts the f i l e map with
(o ften) ca ta s tro p h ic r e s u l t s .

The value o f USEMAPFLG is i n i t i a l l y NIL.

17.1 Features of the File Package 541

17.1.6 File Package Variables
The operation of the File Package is controlled by several variables. These are
described below:

FILEPKGFLG When you e n te r the INTERLISP
environment, a l l F ile Package
o pera tions are normally enabled.
S e ttin g FILEPKGFLG to NIL d isab les the

n

542 The File Package

n o tic in g of f i l e s and marking of
changes. However, the F ile Package
functions w ill s t i l l operate, but th e ir
r e s u lts are not guaranteed to be
c o r re c t .

FILELST I t s value is a l i s t of a l l f i l e s
(a c tu a lly , th e i r roo t f i l e names) th a t
have been noticed by the F ile Package.

Consider the following example;

<-FILELST
(FRAME COMPLEX)
LOADEDFILELST I t s value is a l i s t of the ac tu a l names

of a l l f i l e s th a t have ac tu a lly been
loaded by one of the F ile Package
loading functions (see Section 17 .9).
This v a riab le is not used by the F ile
Package, but maintained by i t so th a t
you may determine which f i l e s have been
loaded.

Consider the following example:

<-LOADEDFILELST
(<KAISLER>FRAME..19 <KAISLER>COMPLEX.9)

Note that FILELST and LOADEDFILELST are not affected by the func
tions CLOSEF or CLOSEALL described in Chapter 16. INTERLISP distin
guishes between files that have been opened for reading and writing and files
that have been accessed to load functions.

Using the File Package, you may consider that you have a virtually unlim
ited one-level memory. Functions may be stored in disk files and loaded as they
are needed by other functions or programs. Unfortunately, the virtual storage
limit of INTERLISP (all versions) prevents you from deleting functions in your
environment once you have loaded them. The only solution is to save everything
and reinitialize the environment.

17.2 FILE PACKAGE COMMANDS
The <file>COMS atom is a list of commands that describe how a file is to be
written when the appropriate function is executed. In effect, these commands
determine how to update the contents of the file which represents a (more or less)
permanent version of a portion of your INTERLISP environment. A wide variety

of commands are provided that allow the user to maintain a comprehensive rec
ord of his environment between INTERLISP sessions. This section describes the
form and interpretation of each File Package command.

17.2 File Package Commands 543

17.2.1 Functions
You may specify which function definitions are to be written to the file by adding
a function command to the <file>COMS list. ThQ function command is a list
having the form

(FNS f u n c t io n [l] functlon [N])

where “function[...]” are the names of functions whose definitions are to be
written to the file. When the FNS command is interpreted, a DEFINEQ expres
sion is written to the file for the current function definition. For example,

(FNS CLEANUP COMPILEFILES COMPILEFILESO CONTINUEDIT
LISTFILES LISTFILESl MAKEFILE MAKEFILES ADDFILE
ADDFILEO)

For each file name in an FNS command, new definitions of those functions
will be written to the file when it is created. If the definition has been modified in
memory after the function has been defined or loaded, that definition will be
used. If the definition has not been modified, it will be copied from the existing
file image on disk.

Let us assume a file of functions that operate on points. We set up the FNS
command as

(FNS * POINTFNS)

and define POINTFNS by

(SETQ POINTFNS
(LIST 'p o in t.su m 'p o in t .d i f f e r e n c e 'p o in t .t im e s

'p o in t .q u o t ie n t 'p o in t .r a d iu s
'p o in t .s c a le b y))

When POINT is created by MAKEFILE, a definition for POINTFNS will
be written to the file as follows:

(RPAQQ POINTFNS
(po in t.su m p o in t .d i f f e r e n c e p o in t .t im e s
p o in t .q u o t ie n t p o in t .r a d iu s p o in t .s c a le b y))

Each function will have a definition written to the file such that the function
will be redefined when the file is loaded. The form of this definition is

(DEFINEQ
(point.sum . . .)
(p o in t.d iffe re n c e . . .)

544 The File Package

(p o in t.sca leb y . . .))

where ... indicates the remainder of the function’s definition.
MAKEFILE (see Section 17.3.1) uses the FNS command to build the file

map.

17.2.2 Variables
You may write the values of variables to a file by including a variable command
in the <file>COMS list. A variable command takes the following form:

(VARS v a r [1] . . . var[N])

where the “var[...]” may have one of two formats:

1. If var[...] is an atom, then the value of the variable is written onto the file
using the S-expression

(RPAQQ v a r [. . .] value)

2. If var[...] is not an atom, it is treated as an S-expression of the form
(var[...] value-definition) and it is written onto the file using the S-ex
pression

(RPAQ v a r [. . .] v a lu e -d e fin itio n)

Consider the following example:

(VARS (FONTCHANGEFLG)
(LISTFILESTR (QUOTE " ”))
(FILELINELENGTH 72)
(MAKEFILEREMAKEFLG T)
(CLEANUPOPTIONS (QUOTE (LIST RC)))
(#LISTFILESCHARS 110))

In each of the instances above, the value of var[...] is not an atom, but an S-
expression. Thus, the value will be written to a file with an RPAQ expression.
Note that the value for FONTCHANGEFLG will be NIL.

Note that if you create a shorthand form of a command, such as (FNS *
POINTFNS) above, each variable containing the names of objects to be written
to the file will have a VARS expression also placed in the file to re-establish its
value. Thus, you should expect to see in your symbolic file an expression of the
form

(VARS POINTFNS) (RPAQQ POINTFNS (. . .))

Suppose we are creating a database in INTERLISP for a frame application.
Each node in the net is represented by an atom. When we “save” the database
via MAKEFILE (see Section 17.3.1), we want to place definitions in the file that
will recreate the node when the file is loaded. To do so, we define the VARS
variable as (assuming a database for the USA):

(VARS * u sav a rs)

and set its value by

(SETQ u sav ars
(LIST 'maryland 'Idaho 'Virginia ...))

A definition for creating the value of USAVARS is written to the file as

(RPAQQ u sav ars NIL)
(ADDTOVAR usavars maryland idaho Virginia ...)

Each variable will be defined in the file by an expression of the form

(RPAQ? maryland NIL)
(RPAQ? idaho NIL) and so on.

There are several variations on the VARS command that depend on the na
ture of the environment or the data.

You may wish to specify variables in the form of a compiler declaration
within the file. There are three commands that allow you do so:

(SPECVARS v a r s [l] . . . vars[N])
(LOCALVARS v a r s [l] . . . vars[N])

(GLOBALVARS v a r s [l] . . . vars[N])

Each of the variables associated with the commands is included in an ex
pression of the form

(DECLARE: DOEVAL@COMPILE DONTCOPY var)

17.2 File Package Commands 545

546 The File Package

Ugly Variables
In general, you may assume that each S-expression that is printed by IN
TERLISP may be read by INTERLISP in the same form. Some data structures
exist for which a “read” operation is not the inverse of a “print” operation.
These include arrays, read tables, and user-defined data types. To handle these
variables, you may include the command

(UGLYVARS v a r [l] . . . var[N])

Suppose that you want to save the value of an array on a file so that it may
later be read in. Let the name of the array be RBIS, and let the contents be
expressions of the form

(<year> . <rbis>)

Let the array contents have the following form:

^(FOR I FROM 1 TO 5 (PRINT (ELT RBIS I)))
(1971 . 53)
(1972 . 55)
(1973 . 38)
(1974 . 9)
(1975 .4 1)

To save the array in a file call RBISTATS, we need to create a variable
RBISTATSCOM with the following value:

<-(SETQ rb ista tscom (LIST (LIST 'UGLYVARS 'RBIS)))
((UGLYVARS RBIS))

and we make the file using the following expression:

(MAKEFILE 'r b i s t a t s)
<KAISLER>rbistats..1

^(PRINTDEF (READFILE ’r b is ta t s))
((FILECREATED ”25-Aug-84 10:07;13” <KAISLER>RBISTATS..1
313 changes to : (VARS RBISTATSCOMS RBIS))
(PRETTYCOMPRINT RBISTATSCOMS)
(RPAQQ RBISTATSCOMS ((UGLYVARS RBIS)))
(READVARS RBIS)
([Y5 0 1 (1971 . 53)

(1972 . 55)
(1973 . 38)
(1974 . 9)

(1975 . 41)
[R5 5]])

(DECLARE: DONTCOPY (FILEMAP (NIL))))

READVARS is an implementation-dependent internal function used to
read special forms from a file to ensure that they are properly recreated in your
INTERLISP environment.

Note that UGLYVARS does not do any checking for circular data struc
tures. If you know that your data structures do not contain any circularities, the
IRM recommends that you use UGLYVARS to print unusual data structures to
files because of the savings in execution time and internal storage usage.

Horrible Variables
Some data structures are inherently circular. Attempting to print them in the
normal fashion may result in infinite loops. INTERLISP provides the HPRINT
package (see Section 15.1.6) to handle the printing of circular structures. To
print circular structures on the file, you may include the following command:

(HORRIBLEVARS v a r [l] . . . var[N])

which uses the HPRINT package rather than PRINT to write S-expressions on
the file.

Consider the following circular data structure:

-^(SETQ ra re -g ase s
(LIST 'helium 'k ryp ton 'argon 'xenon 'radon))

(helium neon krypton argon xenon)

-<-(RPLACD (LAST ra re -g a se s) ra re -g ases)
(helium neon krypton argon xenon . . .)

Suppose you want to put this list on a file called ELEMENTS. We create the
File Package command variable as follows:

<-(SETQ ELEMENTSCOMS
(LIST (LIST 'HORRIBLEVARS 'ra re -g a s e s)))

((HORRIBLEVARS ra re -g a se s))

^(MAKEFILE 'ELEMENTS)
<KAISLER>ELEMENTS..1

<-(PRINTDEF (READFILE 'ELEMENTS))
((FILECREATED "25-Aug-8-4 10:22:54" <KAISLER)ELEMENTS. .1
295 changes to :

(VARS ELEMENTSCOMS RARE-GASES))
(PRETTYCOMPRINT ELEMENTSCOMS)
(RPAQQ ELEMENTSCOMS ((HORRIBLEVARS RARE-GASES)))

17.2 File Package Commands 547

(READVARS RARE-GASES)
(t (HELIUM NEON KRYPTON ARGON XENON . [1]))
(DECLARE: DONTCOPY (FILEMAP (NIL))))

Initializing Variables
When you load a file into your INTERLISP environment, it may contain defini
tions for variables that may also have been defined in previous files. By loading
the new file, you would overwrite those previous definitions with the values con
tained in VARS commands in the new file. To prevent this, you would have to
carefully structure your file loading sequence to ensure that variable definitions
are not repeated in more than one file or, if they are, do not cause damage by
overwriting one another. INTERLISP provides a File Package command to as
sist in this process.

You may cause a variable to be defined during file loading only if the current
value of the variable is NOBIND in the environment (meaning it is undefined).
To do so, you include an initialize variables command in your <file>COMS list.
It takes the form

(INITVARS v a r [l] . . . var[N])

Variables specified in an INITVARS command will have their values de
fined when a file is loaded, if and only if the variable has the value NOBIND in
the environment. Thus, if the variable already has a value in the environment, its
value will not be changed.

INITVARS causes an RPAQ? expression to be written on the file instead of
an RPAQ expression.

17.2.3 Adding Variables to a File
Once a file is established, you may wish to add new values to those currently
defined for variables in the file. To do so, you include an add-to-variable com
mand in the <file>COMS list. It has the format

(ADDVARS (v a r [l] . l s t [l])
• • •
(var[N] . ls t[N]))

Each sublist (var. 1st) writes an S-expression on the file. For each variable, if
there is a value in LST that is not a member of the current value of the variable
when the file is loaded, that value will be added to the value of the variable. The
new value of the variable is the union of its old value from the file and the value to
be added as a result of the ADDVARS expression. An example of an ADD
VARS expression is

(ADDVARS (FILELST)
(LOADEDFILELST)

548 The File Package

(CFILELST)
(NOTLISTEDFILES)
(NOTCOMPILEDFILES)
(MAKEFILEFORMS

(COND
((MEMB 'NOCLISP OPTIONS)

(RESETSAVE PRETTYTRANFLG T))
((MEMB 'CLISP^ OPTIONS)

(RESETSAVE PRETTYTRANFLG 'BOTH)))
(COND

((MEMB 'FAST OPTIONS)
(RESETSAVE PRETTYTRANFLG NIL)))

17.2 File Package Commands 549

(COND
((OR

((OR

(AND

(MEMBER 'CLISPIFY OPTIONS)
(MEMBER 'CLISP OPTIONS))
(RESETSAVE CLISPIFYPRETTYFLG T))

(EQ FILETYPE 'CLISP)
(MEMBER 'CLISP (LISTP FILETYPE)))
(RESETSAVE CLISPIFYPRETTYFLG
'CHANGES)))

(NEQ (LINELENGTH) FILELINELENGTH)
(RESETSAVE (LINELENGTH
FILELINELENGTH))))

(MAKEFILEOPTIONS RC C LIST FAST CLISP
CLISPIFY NIL
REMAKE NEW NOCLISP CLISP^ F
ST STF
(REC . RC)
(BREC . RC)
(TC . C)
(BC . C)
(TCOMPL . C)
(BCOMPL . C))

(NILCOMS))

If LST is not specified, the variable is initialized to NIL if its current value is
NOBIND. This prevents errors of the form UNBOUND ATOM that might oc
cur later in your program where you assumed the variable had been initialized to
some value.

Consider the rare gases example from the last section. Let us add the gas
RADON to the list of RARE-GASES. To ensure that the variable is properly
updated, we add the following expression to ELEMENTSCOMS;

(ADDVARS (RARE-GASES . RADON))

You may do this as follows: /

^(SETQ ELEMENTSCOMS
(APPEND ELEMENTSCOMS

(LIST
(LIST 'ADDVARS

'(RARE-GASES . RADON)))))
((HORRIBLEVARS RARE-GASES) (ADDVARS (RARE-GASES . RADON)))

(MAKEFILE 'ELEMENTS)
<KAISLER>elements..2

<-(PRINTDEF (READFILE 'ELEMENTS))
((FILECREATED "25-Aug-84 10:52:05" <KAISLER>ELEMENTS..2
432 changes to :
(VARS ELEMENTSCOMS RARE-GASES)
previous date: "25-Aug-84 10:22:54" <KAISLER>ELEMENTS..1)
(PRETTYCOMPRINT ELEMENTSCOMS)
(RPAQQ ELEMENTSCOMS ((VARS RARE-GASES))

(ADDVARS (RARE-GASES RADON)))
(RPAQQ RARE-GASES (HELIUM NEON KRYPTON ARGON XENON))
(ADDTOVAR RARE-GASES RADON)
(DECLARE: DONTCOPY (FILEMAP (NIL))))

^(LOAD 'ELEMENTS)
<KAISLER>ELEMENTS..2
FILE CREATED 25-Aug-84 10:52:05
ELEMENTSCOMS
<KAISLER>ELEMENTS..2

<-RARE-GASES
(radon helium neon krypton argon xenon)

where RADON was added to the front of the list of rare gases by the ADD
TOVAR expression contained within the file.

17.2.4 Association Lists
The association list command allows you to specify a set of association lists. Its
format is

(ALISTS (a l i s t [l] atom . . .)
• • •
(a lis t[N] atom . . .))

550 The File Package

Each alist is the name of an association list. That is, a variable whose value
is an association list. The atoms are the CARs of the association list entries. For
each atom found in an association list, its definition will be written to the file if
the atom is found on the association list. The expression written to the file en
sures that the association list will be recreated when the file is loaded.

Consider the association list GAMES:

•«-(SETQ games
(LIST (CONS 'b rid g e 'ca rd s)

(CONS 'b ac c a ra t 'ca rd s)
(CONS 'chess 'p ieces)
(CONS 'c rap s 'd ice)
(CONS 'sc rab b le ' t i l e s)))

((b rid g e . cards) (b accara t . cards) (chess . p ieces)
(craps . d ice) (scrabb le . t i l e s))

Let us write the card games to a file called CARDGAMES. We set up the
File Package command as follows:

^(SETQ cardgamescoms
(LIST

(LIST 'a l i s t s '(games bridge b a c c a ra t))))
((ALISTS (GAMES bridge b acca ra t))

< -(MAKEFILE 'cardgames)
<KAISLER>CARDGAMES..l

<-(PRINTDEF (READFILE 'cardgames))
((FILECREATED "25-Aug-84 11:04:35" <KAISLER)CARDGAMES..1
285 changes to :

(VARS CARDGAMESCOMS))
(PRETTYCOMPRINT CARDGAMESCOMS)
(RPAQQ CARDGAMESCOMS ((ALISTS (GAMES BRIDGE BACCARAT))))
(ADDTOVAR GAMES (BRIDGE . CARDS)

(BACCARAT . CARDS))
(DECLARE: DONTCOPY (FILEMAP (NIL))))

Note that when CARDGAMES is loaded, the card games (namely,
BRIDGE and BACCARAT) are added to the current value of the variable
GAMES. Thus, you may incrementally build the value of a variable by loading
different files.

17.2.5 Properties
You may save the values of properties of atoms by including a property com
mand in the <file)COMS list. The format of this command is

17.2 File Package Commands 551

(PROP propname atom[l] . . . atom[N])

A PUTPROPS expression (see Section 7.3) is written onto the file for each
atom in the command that has the specified property. When the file is loaded,
the effect of this command is to restore the value of the property for each atom.

If PROPNAME is a list, PUTPROPS expressions will be written for each
property in the list. If PROPNAME has the value ALL, then all of the properties
of each atom will be saved in the file.

Consider the following example in which we have defined several properties
for states. We want to save just the GOVERNOR property of VIRGINIA, but all
of the properties of MARYLAND. The File Package command is defined as
follows:

^(PUTPROP 'Virginia 'governor 'robb)
robb

“̂ (PUTPROP 'maryland 'governor 'hughes)
hughes
<-(PUTPROP 'maryland 'c a p ito l 'annapolis)
annapolis
•«-(PUTPROP 'maryland 'sen a to rs ' (mathias sarbanes))
(mathias sarbanes)

Let us save this information in a file called STATES. The File Package com
mand is set up as follows:

•<-(SETQ statescom s
(LIST

(LIST 'PROP 'GOVERNOR 'VIRGINIA)
(LIST 'PROP 'ALL 'MARYLAND)))

((PROP GOVERNOR VIRGINIA) (PROP ALL MARYLAND))

(MAKEFILE 'STATES)
<KAISLER>STATES..l

<-(PRINTDEF (READFILE 'STATES))
((FILECREATED "25-Aug-84 21:5^:15'' <KAISLER)STATES..1
Kl2 changes to :

(VARS STATESCOMS))
(PRETTYCOMPRINT STATESCOMS)
(RPAQQ STATESCOMS ((PROP GOVERNOR VIRGINIA)

(PROP ALL MARYLAND)))
(PUTPROPS VIRGINIA GOVERNOR ROBB)
(PUTPROPS MARYLAND GOVERNOR HUGHES CAPITOL ANNAPOLIS
SENATORS (MATHIAS SARBANES))
(DECLARE: DONTCOPY (FILEMAP (NIL))))

552 The File Package

If an atom does not have the specified property, the File Package prints a
warning message “NO propname PROPERTY FOR atom” . Note that if the
atom has the property but its value is NIL, a PUTPROPS expression will be
generated for that property.

An alternative version of the property command will save only the properties
that actually appear on the property list of the corresponding atom. Thus, while
PROP causes a NIL to be written if the value of the property for a given atom is
NIL, IFPROP will produce a PUTPROPS expression only if the property explic
itly appears on the atom’s property list. The format of IFPROP is

(IFPROP propname atom[l] ... atom[N])

where the parameters have the same values as the PROP command.
Another version of the property command is PROPS. PROPS specifies pairs

of atoms and properties where each atom will have its associated property writ
ten to the file via a PUTPROPS expression. The format is

(PROPS (atom[l] propname[l])
• • •
(atom[N] propname[N]))

where the CDR of each sublist is the property of the atom whose value is to be
saved in the file. Note that each of the atoms must be a LITATOM.

17.2 File Package Commands 553

17.2.6 S-expressions
You may specify arbitrary S-expressions to be written to the file using the print
command. Its format is

(P expression[l] ... expression[N])

Each S-expression following P will be printed on the output file. Each S-
expression will be evaluated when the file is loaded.

Suppose we want to initialize application program menus when a file is
loaded. We may set up the print commands as follows:

(P
(SETQ data.management.menu

(create.data.management.menu))
(SETQ database.functions.menu

(create.database.functions.menu))
(MASTERSCOPE ’ERASE)
(SETQ COMMENTFONT (COPY BOLDFONT))

. . .)

Each of the expressions is written to the file just prior to the file map. They
are the last expressions read from the file. Each expression is evaluated as it is
read, and thus sets the corresponding variable.

Since these expressions are evaluated as they are read in, you may cause a
program to be initiated by reading in a file. This has the effect of placing the user
of the program in a specific environment governed by the program.

17.2.7 Evaluation of S-expressions
You may specify arbitrary S-expressions to be evaluated when a MAKEFILE is
executed by including an evaluation command in the <file>COMS list. When
MAKEFILE encounters an evaluation command, it evaluates the expressions
following it. This command is useful for determining whether or not certain data
should be written to the file. Evaluation commands may appear anywhere in the
<file>COMS list, so they may be used to control whether or not other commands
are executed based on the current state of your application. The format of an
evaluation command is

(E expression[1] ... expression[n])

For example, hash arrays have an internal format that is difficult to repre
sent as an S-expression. Rather, we would like to save expressions on the file that
allow us to recreate the hash arrays when the file is loaded. We may do so using
the following forms:

(E
(DMPHASH CLISPARRAY)
(DMPHASH SYSHASHARRAY))

which places PUTHASH expressions for creating all of the non-NIL entries of
the hash array on the file.

17.2.8 Commands
You may specify arbitrary lists as commands by including a command command
in the <file>COMS list. Its format is

(COM3 command[1] ... command[N])

where each command[...] will be interpreted as a File Package command when
this command is encountered by MAKEFILE.

Here is an example of how a COMS File Package command might appear:

(COMS
(FNS DO? D0?= ERRORCONTEXT WHY WHYO WHYSETUP WHYSPACE

554 The File Package

WHYVARS GETARG# EXPLAINl EXPLAINARG EXPLAINARGl
EXPLAINARG2)

(VARS ORDINALS (LAST?))
(P (SETSYNTAX (QUOTE ?)

(QUOTE (INFIX FIRST NOESC DO?))
T)

(SETSYNTAX (QUOTE ?)
(T EDITRDTBL))

(ADDVARS (LISPXHISTORYMACROS (? (WHY LISPXLINE)))
(LISPXCOMS ?))

(USERMACROS ?=))

17.2.9 Comments
You may include comments in your file by including a comment command in the
<file>COMS list. Its format is

(* . text)

where “text” is the comment to be printed in the file.
For example, let us amend the File Package command variable STATES-

COMS to read as follows:

((* SAVE ONLY THE GOVERNOR OF VIRGINIA)
(PROP GOVERNOR VIRGINIA)
(* SAVE ALL OF MARYLAND'S PROPERTIES)
(PROP ALL MARYLAND))

Then, after making the file and printing it back, we see the following for
mat:

<-(PRINTDEF (READFILE ’STATES))
((FILECREATED ”25-Aug-8<4 21:54:15” <KAISLER>STATES. .1
472 changes to:

(VARS STATESCOMS))
(PRETTYCOMPRINT STATESCOMS)
(RPAQQ STATESCOMS ((* SAVE ONLY THE GOVERNOR OF VIRGINIA)

(PROP GOVERNOR VIRGINIA)
(* SAVE ALL OF MARYLAND'S PROPERTIES)
(PROP ALL MARYLAND)))

(* SAVE ONLY THE GOVERNOR OF VIRGINIA)
(PUTPROPS VIRGINIA GOVERNOR ROBB)
(* SAVE ALL OF MARYLAND'S PROPERTIES)
(PUTPROPS MARYLAND GOVERNOR HUGHES CAPITOL ANNAPOLIS
SENATORS (MATHIAS SARBANES))
(DECLARE: DONTCOPY (FILEMAP (NIL))))

17.2 File Package Commands 555

Comments are ignored when the file is loaded, so they help merely to explain
the contents of the file. I urge you to place as many comments as you can in your
files to help both yourself and others read them.

If the first element of TEXT is a *, then MAKEFILE prints a form-feed on
the file before printing the comment. This allows you to place page breaks within
the file so that it is neatly formatted for later printing.

17.2.10 Advice
You may specify that functions that are “advised” when the file is created will
return to that state when the file is loaded. To do so, you include an advised
command on the <file>COMS list. Its format is

(ADVISED function[l] ... function[N])

An appropriate expression will be written on the file to reinstate the “ad
vised” state of the function when the file is loaded.

To reinstate the “advice” associated with the function, you may include an
advice command in the <file>COMS list. Its format is

(ADVICE function[l] ... function[N])

A PUTPROPS expression will be written to the file for each function that
will put the advice onto its property list when the function is loaded. To reinstate
the “advised” state of the function, you may execute READVISE in lieu of in
cluding advise commands.

Suppose we advise the function REAL as follows:

(ADVISE 'REAL
'BEFORE

556 The File Package

'FIRST
(PRINT "Invoking RECORDACESS”))

REAL

Now, let us make sure the function is really advised by asking it to work on a
complex number (see Section 13.7.2).

^(SETQ X (COMPLEX 1.0 3-0))
"Invoking RECORDACCESS"
((1.0 . 3 .0))

We obtain this output because we defined a DEFPRINT expression for
complex numbers which is described in Section 13.7.2. In order to do the print
ing, we must access the REAL portion of the complex number we created, so we
see that REAL has been advised.

Let us write the advised function to a file called TEST. The File Package
commands appear as follows:

<-(SETQ test corns
(LIST

(LIST 'FNS 'REAL)
(LIST 'ADVISE 'REAL)))

((FNS REAL) (ADVISE REAL))

Now, let us create the file TEST with the definition of REAL and its advice
via

<-(MAKEFILE 'TEST)
<KAISLER>TEST..1

-^(PRINTDEF (READFILE 'TEST))
((FILECREATED "25-Aug-84 22:01:20" <KAISLER>TEST..1
609 changes to:

(VARS TESTCOMS)
(ADVICE REAL))

(PRETTYCOMPRINT TESTCOMS)
(RPAQQ TESTCOMS ((FNS REAL)

(ADVISE REAL)
(ADVICE REAL)))

(DEFINEQ (REAL
(LAMBDA (X)

(* edited: "17-Jul-8^ 21:03:3'4")
(RECORDACCESS (QUOTE REAL)

CX NIL (QUOTE FETCH)))))
(PUTPROPS REAL

READVICE
(NIL (BEFORE FIRST
(PRINT "Invoking RECORDACESS"))))

(READVISE REAL)
(DECLARE: DONTCOPY

(FILEMAP (NIL (218 384 (REAL 230 . 381)))))

Note that when you specify an ADVISE File Package command, IN
TERLISP automatically readvises the function when the file is loaded by writing
a call to READVISE into the file. If you use ADVICE instead, then the advice is
place on the function’s property list, but you must explicitly readvise the func
tion.

17.2.11 Macros
INTERLISP provides three types of macro definitions. The File Package pro
vides commands for writing each type of macro definition to a file.

17.2 File Package Commands 557

To save user macros, you may include a user macro command in the <file>-
COMS list. Its format is

(USERMACROS atom[l] . . . atom[N])

where each atom corresponds to a user edit macro. An S-expression is written to
the file to add the edit macro definition to USERMACROS. An S-expression
will also be written to place the atom name on the appropriate spelling lists.

To save “lispxmacros” , you may include a lispx macro command in the
<file>COMS list. Its format is

(LISPXMACROS atom[l] . . . atom[N])

Each atom is either a “lispxmacro” or a “lispxhistorymacro” (see Section
25.2.1). An expression will be written to the file which saves the definition of the
macro so that it may be restored when the file is loaded. An expression will also
be written to the file to add the macro definition to LISPXCOMS.

You may save the MACRO properties of an atom by including a macro com
mand in the <file>COMS list. Its format is

(MACROS atom[l] . . . atom[N])

For each atom, an expression will be written that embeds the macro prop
erty in a form of the following type:

(DECLARE: EVAL@COMPILE atom)

where these expressions are used by the compiler.
Consider the usermacro M. We would place an entry in the <file>COMS list

to sa:ve M as follows:

(USERMACROS M)

In the file, an expression to add the definition of M to USERMACROS, the
variable, would appear as

(APDTOVAR USERMACROS
(M (X . Y)

(E (MARKASCHANGED (COND
((LIST? (QUOTE X))

(CAR (QUOTE X)))
(T (QUOTE X)))

(QUOTE USERMACROS))
T)

(ORIGINAL (MX . Y))))

558 The File Package

17.2.12 File Package Commands
You may save user-defined file package commands or types in a file by including
a user file package command in the <file>COMS list. An S-expression is written
to the file that restores the definition of the command or type when the file is
loaded. Its format is

(FILEPKGCOMS atom[l] . . . atora[N])

For example, several of the File Package commands are defined in terms of
other commands. Here are several:

(FILEPKGCOM
'MACROS
'MACRO
'(X

(DECLARE:
EVAL@COMPILE
(PROPS *

(MAPCAR
(QUOTE X)
(FUNCTION (LAMBDA (Y)

(CONS Y
(OR

(INTERSECTION
(PROPNAMES Y)
MACROPROPS)
(CAR
MACROPROPS)))))))))

17.2.13 Records
You may save the declarations of record types on the file by including a record
command in the <file>COMS list. Its format is

(RECORDS re c o rd [l] . . . record[N])

where each record [...] is the name of a record declaration. An S-expression is
written to the file that will establish the record declaration when the file is
loaded.

Consider the definition of a complex number whose data structure was de
fined as a record (see Section 13.7.2). The File Package command for saving this
data structure is

(RECORDS COMPLEX)

17.2 File Package Commands 559

and the expressions appearing in the file that redefines the record when the file is
loaded is

(DECLARE: EVALgCOMPILE (DATATYPE COMPLEX ((REAL FLOATP)
(IMAG FLOATP))))

(/DECLAREDATATYPE (QUOTE COMPLEX)
(QUOTE (FLOATP FLOATP)))

17.2.14 Arrays
You may save the definitions of arrays by including an array command in the
<file>COMS list. Its format is

(ARRAY v a r i a b le [1] . . . variab le[N])

Each variable[...] should have an array specification as its value. An S-ex-
pression is written to the file that will re-establish the array specification when
the file is loaded, this expression also resets the contents of the array to the
proper values as they were when the file was written.

For example, let us define an array X and initialize it as follows:

<-(SETQ X (ARRAY 5 0 5))
{ARRAYP}#52664l

<-(FOR I FROM 1 TO 5 DO (SETA X I (RAND I (PLUS I 100))))
NIL

<-(FOR I FROM 1 TO 5 DO (PRINT (ELT X I)))
lA
45
69
43
35
NIL

Now, we can save X in a file TEST by defining its File Package commands to
be

<-(SETQ TESTCOMS (LIST (LIST 'ARRAY 'X)))
((ARRAY X))

Then, we can make the file and inspect it as follows:

(MAKEFILE 'TEST)
<KAISLER>TEST..l

560 The File Package

"^(PRINTDEF (READFILE ’TEST))
((FILECREATED ”25-Aug-84 22:^9:35” <KAISLER>TEST..1
346 changes to :

(VARS TESTCOMS X))
(PRETTYCOMPRINT TESTCOMS)
(RPAQQ TESTCOMS ((ARRAY X)))
(RPAQ X (READARRAY 5 (QUOTE 0) 1))
(14 45 69 43 35 T 5 5 5 5 5)
(DECLARE: DONTCOPY (FILEMAP (NIL))))

Note that READARRAY is an internal, implementation-dependent func
tion that reads array definition data and values from a file.

17.2 File Package Commands 561

17.2.15 CLISP Expressions
You may save CLISP expressions that define new iterative statement operators
in a file by including a clisp command in the <file>COMS list. Its format is

(I.S.OPRS o p e ra to r [l] . . . operator[N])

An S-expression is written to the file that redefines the value of the user-
defined “i.s.opr” when the file is loaded (see Section 23.5).

17.2.16 Templates
You may save MASTERSCOPE templates in the file by including a template
command in the <file>COMS list. Its format is

(TEMPLATES atom[l] . . . atom[N])

Each atom must have a MASTERSCOPE template (see Section 26.6). An S-
expression is written to the file that restores the template when the file is loaded.

17.2.17 Blocks
You may save the definitions of blocks that are used by the compiler’s block
compile function in the file by including a block command in the <file>COMS
list. Its format is

(BLOCKS b lo c k [l] . . . block[N])

For each block[...], a DECLARE expression is written to the file that will be
used by the block compile functions.

17.2.18 Declarations
Expressions written to a symbolic file are either evaluated when the file is loaded,
copied to the compiled file when the file is compiled (see Section 31.2), or not
evaluated at compile time. You may determine when an expression is to be eval
uated by including a declaration command in the <file>COMS list. Its format is

(DECLARE: t a g [l] . . . tag[N]
filepkgcom [l]
• • •

filepkgcom[N])

Each tag[...] is a flag recognized by the compiler (see Chapter 31) to control
evaluation. The filepkgcom[...]’s are specifications for any of the commands in
this Section that describe how those commands are to be treated when a file is
compiled.

562 The File Package

17.2.19 Files
A file is loaded using the function LOAD (see Section 17.9.1). When the file is
loaded, its contents are evaluated as they are read and serve to initialize your
INTERLISP environment. For large programs, you may have segmented the ap
plication into many files to make it more manageable for editing and printing.
Manually specifying the loading of a large number of files becomes tedious and
error-prone. INTERLISP provides a File Package command that allows you to
specify the automatic loading of files from within a file. It takes the form

(FILES f i l e [l] . . . f i l e [2])

where “file” may be either a file or a list. If file[..] is an atom, it must be the
name of a file, properly qualified, that is to be loaded. If it is a list, it must take
the form

(keyword[l] . . . keyword[N])

Several keywords may appear in a single list. Keywords allow you to condi
tionally modify the loading process. The currently recognized keywords are

FROM <d ire c to ry) The f i l e names appearing a f t e r the l i s t
a re to be loaded from the sp e c if ie d
d ir e c to ry . For example,

(FILES (FROM LISPUSERS) MULTIFILEINDEX)

SOURCE

COMPILED

LOAD

LOADCOMP

LOADFROM

SYSLOAD

PROP

ALLPROP

The source vers ion r a th e r than the
compiled version of the f i l e w i l l be
loaded.

The compiled version of the f i l e w i l l be
loaded. This Is the d e fau l t keyword.
Each Implementation d is t in g u ish es I t s
compiled versions from I t s source
vers ions In a d i f f e re n t manner.
INTERLISP-10 appends the extension .COM
to a f i l e th a t Is compiled. Thus, th i s
keyword d i r e c ts the LOAD to look fo r
f i l e s having th a t ex tension.

Load the f i l e using the functions LOAD?
(see Section 1 7 .9 .1) . This keyword loads
a f i l e only i t i t has not prev iously
been loaded. I t i s the d e fa u l t mode.

Load the f i l e using the function
LOADCOMP? This keyword au tom atica lly
im plies SOURCE.

Load the f i l e using the function
LOADFROM (see Section 17.9.4) r a th e r
than LOAD?.

Set LDFLG to SYSOUT and load the
sp e c if ie d f i l e s . This keyword i s used
mainly to load system f i l e s .

Set LDFLG to PROP. This forces a l l
function d e f in i t io n s to be s to red under
the EXPR property on property l i s t s
r a th e r than being placed in function
c e l l s (see Chapter 8 fo r more d e t a i l) .

Set LDFLG to ALLPROP. Both function
d e f in i t io n s and v a r ia b le values w i l l be
s to red on property l i s t s r a th e r than
being s to red in function c e l l s or value
c e l l s , re sp e c t iv e ly .

17.2 File Package Commands 563

17.2.20 Variations on Command Structure
The preceding sections have described a rigid format for each of the File Pack
age commands. In each case, the arguments associated with the command must

be explicitly coded within the command. However, we do not always know what
is to be saved because this is a function of the dynamic environment. The File
Package provides a method for determining what is to be done during the execu
tion of MAKEFILE.

Each of the commands previously mentioned may be followed by the atom *.
If so, the expression following the * is evaluated. Its value is used to determine
the arguments to the command. For example, we might say

(FNS makenode makeslot . . .)

to save functions of a program on the symbolic file. But, if we create functions
during the session, we would like to have those saved on the file as well. To do so,
we must be able to update the parameters of the commands as we create the
functions. Thus, we can define an alternative form for the FNS command as
follows:

(FNS * <filename)FNS)

where {filename) is the name of the file in which the function definitions are to
be saved.

We would define the command list as follows:

(RPAQQ <filename)COMS
((VARS < l i s t o f v a r ia b le s))

(FNS * <filename)FNS)))

(RPAQQ (filename)FNS
(makenode makeslot -----))

If the expression following the * is an atom, its value must be a list that
specifies the names of the functions whose definitions are to be saved. We say
that the atom is itfilevar. The name of the atom is composed of the file name
concatenated with FNS. If the expression is a list, the list is evaluated to to pro
duce a list of function names.

Each of the commands mentioned above may utilize this alternative form of
argument specification for the command. Exceptions are made for the PROP
and IFPROP commands where the * must follow the property name. For exam
ple,

(PROP MACRO * (filename)MACROS)

564 The File Package

17.3 FILE PACKAGE FUNCTIONS
This section describes the File Package functions that are used to manipulate
files. The primary function that you need is to be able to make a file that is

composed of the various INTERLISP object definitions in your environment.
Other functions include listing and compiling files, and determining where (on
which noticed file) an object definition resides.

17.3 File Package Functions 565

17.3.1 Making Files
Whenever you modify a file, you want to ensure that the changes are reflected in
the permanent copy of the file that is stored on disk. The process of creating a
new file on disk is known as making a file. MAKEFILE allows you to create a
new version of the file at any time, even when the file does not yet exist. The
format of MAKEFILE is

Function: MAKEFILE

Arguments: 4

Arguments: 1) a filenam e, FILENAME
2) an options l i s t , OPTIONS
3) zero or more r e p r in t functions ,

REPRINTFNS
4) a source file, SOURCEFILE

Value: The f u l l f i l e name (includ ing version) of
the new f i l e .

FILENAME is the name of the file to be created. A new version of the file
will always be created, even if an existing version is specified as the value of
FILENAME. If FILENAME has not previously been noticed, MAKEFILE no
tices the file. To make a file, there must be a corresponding File Package com
mand variable of the form <filename>COMS defined in your INTERLISP envi
ronment. MAKEFILE uses the commands found as the value of this variable to
write the proper symbolic information to the file. In most cases, PRETTYDEF
(see Section 17.8.1) will be used to place symbolic information in the file.

OPTIONS is a list of arguments that direct the creation of the new file. The
following options are available:

FAST Forces PRETTYDEF to be invoked with
PRETTYFLG s e t to NIL (see Section 1 7 .8 .1) .
The d e f in i t io n s of INTERLISP ob jec ts are
p r in te d r a th e r than p re t ty p r in te d which
r e s u l t s in a f a s t e r execution r a te .

RC Invokes RECOMPILE a f t e r PRETTYDEF to compile
a new vers ion of the f i l e .

C Invokes TCOMPL a f t e r PRETTYDEF.

566 The File Package

CLISPIFY

NOCLISP

LIST

REMAKE

NEW

In both cases , i f the f i l e has block
d e f in i t io n s , BCOMPL or BRECOMPILE w il l be
c a l le d to compile the f i l e .
These options may be followed by a s in g le
l e t t e r from the s e t {F, ST, STF, S} which
provides d i re c t io n to the compiler (see
Section 31*1)•
Sets CLISPIFYPRETTYFLG to T while PRETTYDEF
executes. Each function i s CLISPIFYed before
being p re t ty p r in te d (see Section 23 .8) .

Sets PRETTYTRANFLG to T and c a l l s PRETTYDEF.
CLISP t r a n s la t io n s r a th e r than CLISP
expressions are p r in te d on the f i l e . This is
u se fu l i f you are attem pting to export the
code to another LISP environment which does
not support CLISP.

Invokes LISTFILES on FILENAME (see Section
1 7 .3 .^) .
P r e t ty p r in ts only those functions th a t have
been changed. Functions whose d e f in i t io n s
are unchanged from previous versions of a
f i l e are merely copied from the e a r l i e r
v e rs io n . In many cases , t h i s option w i l l
cause MAKEFILE to execute f a s t e r because
most sess ions make very few changes in a
given f i l e in a reasonably mature
a p p l ic a t io n . This i s the d e fa u l t option fo r
MAKEFILES as sp e c if ie d by a value of T fo r
MAKEFILEREMAKEFLG.

Forces a new v ers ion of the f i l e to be
c rea ted . That i s , a l l functions are
p r e t ty p r in te d whether they have been changed
or n o t .

REPRINTFNS and SOURCEFILE are used in remaking files as described
in Section 17,3.2.

Consider the following example:

<-(MAKEFILE 'SHK)
<KAISLER>SHK..l

where SHKCOMS was previously initialized as

((FNS * SHKFNS) (VARS * SHKVARS) . . . o the r commands)

You cannot make a file without a File Package commands variable, e.g.,

« - (MAKEFILE 'shksys)
SHKSYS not a f i l e name

If the file was loaded from a compiled version, certain information is not
present in memory to create a new symbolic file. MAKEFILE displays the warn
ing message “ CANT DUMP; ONLY THE COMPILED FILE HAS BEEN
LOADED” . This is because the noticed version of the file is the compiled code
which does not contain the File Package commands to remake the file.

If only the function definitions were loaded via LOADFNS or LOAD-
FROM, MAKEFILE displays the warning message “CANT DUMP: ONLY
SOME OF ITS SYMBOLICS HAVE BEEN LOADED” . In either case,
MAKEFILE seeks your approval to perform the dump anyway. If you decline,
MAKEFILE returns the value “NOT DUMPED” .

A Definition for MAKEFILE
The following skeleton provides an example of the complexity of the File Pack
age functions. The function calls are merely the “tip of the iceberg” of a power
ful environmental control mechanism.

(DEFINEQ
(m akefile (filenam e options re p r in t fn s
so u rc e f i le)

(PROG (f i l e - ty p e x f i l e changes f i l e -
dates)

(^
Add filename to the l i s t of
no ticed f i l e s .

)
(a d d f i le filename)
(u p d a te f i le s)
(*

I f OPTIONS is a s in g le atom,
make i t a l i s t ; otherw ise, do
nothing.

)
(SETQ options (MKLIST op tions))
(*

Get the changes, i f any, and the

17.3 File Package Functions 567

568 The File Package

c u rren t date of the f i l e , i f i t
e x i s t s .

)
(SETQ changes

(GETPROP filename
'FILECHANGES))

(SETQ f i l e - d a te s
(LISTP (GETPROP filename
'FILEDATES)))

(SETQ f i l e - ty p e (GETPROP filename
'FILETYPE))

loopO
(GOND

((OR
(MEMBER 'NEW options)
(AND

(NULL
make fileremake fig)
(NOT

(MEMBER 'REMAKE
o p tio n s))))

(PRIN2 filename)
(PRINl

(SELECTQ loadtype
(COMPILED

" —only the
compiled f i l e has
been loaded")

(LOADFNS
" —only some of
i t symbolics have
been loaded")

(help)))
(GOND

((NEQ
(ASKUSER DWIMWAIT 'n

" s h a l l I
go ahead
and dump
anyway?"
NIL T)

'Y)
(GO o u t)))

(SETQ s o u rc e f i le NIL)
(SETQ re p r in t fn s NIL))

((NULL f i le - d a te s)
(*

No FILE-DATES, so
perhaps user made the
COM3 in memory.

)
(SETQ so u rc e f i le T)
(OR

re p r in t fn s
(SETQ re p r in tfn s
changes)))

((EQUAL (f i l e d a te (CDAR f i l e -
dates))

(CAAR f i l e - d a te s))
(^

The previous version
of the f i l e i s gone,
so we must use the
o r ig in a l and dump
everything th a t has
been changed.

)
(SETQ so u rc e f i le (CDAR
f i l e - d a t e s))
(OR

re p r in tfn s
(SETQ re p r in t fn s
changes)))

17.3 File Package Functions 569

((AND
(CDR f i le - d a te s)
(EQUAL (f i l e d a te (CDADR f i l e -
dates))

(CAADR f i l e - d a t e s)))
(*

The previous version
of the f i l e has
disappeared, so find
the most recen t
vers ion and dump a l l
changes.

)
(SETQ so u rc e f i le (CDADR f i le -
dates))
(SETQ changes

570 The File Package

(SETQ re p r in tfn s
(UNION (CDR z)

(GETPROP
filename
' FILECHANGES)

))))
(T

(PRINl " c a n 't f ind e i th e r
the previous version
or the o r ig in a l
version o f)

(SPACES 1)
(PRIN2 filename)
(PRINl ” , so i t w i l l have

to be w ri t te n anew”)
(SETQ so u rc e f i le NIL)
(SETQ re p r in t fn s NIL)
(SETQ options

(CONS 'NEW options))
(SETQ changes

(GETPROP filename
'FILECHANGES))

(GO loopO)))
(AND

(OR so u rc e f i le re p r in t fn s)
(SELECTQ f i le - ty p e

(*
F ile was o r ig in a l ly
loaded in compiled
form, so do a LOADFROM
to get d ec la ra t io n s

)
(COMPILED

(LOADVARS
'((DECLARE: — DONTCOPY
- -))

(OR
(CDAR f i l e - d a te s)
f ilenam e)))

(LOADFNS
(*

For REMAKE, not a l l
v a r ia b le d e f in i t io n s
w i l l have been loaded,

so we must ob ta in
them.

)
(LOADVARS T

(OR (CDAR f i l e -
dates)

filenam e)))
NIL))

(SETQ filename
(PRETTYDEF NIL filename NIL

re p r in t fn s
s o u rc e f i le
changes))

(SETQ l a s t f i l e NIL)
(COND

((NOT
(OR

(EQMEMB 'DON'TLIST
f i le ty p e)
(MEMBER filename

NOTLISTEDFILES)))
(SETQ NOTLISTEDFILES

(CONS filename
NOTLISTEDFILES))))

(COND
((AND

(NOT
(EQMEMB 'DON'TCOMPILE
f i le ty p e)
(INFILECOMS? T 'FNS (CAAR
z))
(NOT

(MEMBER filename
NOTCOMPILEDFILES)))

(SETQ NOTCOMPILEDFILES
(CONS filename

NOTCOMPILEFILES))))
loop l

(COND
((NULL options)

(RETURN filenam e)))
(SETQ X options)
(SETQ options (CDR op tions))
(SELECTQ (CAR x)

17.3 File Package Functions 571

(RC
(AND

(MEMBER filename
NOTCOMPILEDFILES)
(MAKEFILEl filename T)))

(C
(AND

(MEMB filename
NOTCOMPILEDFILES)

I (MAKEFILEl filenam e)))
(LIST

(AND
(MEMBER filename
NOTLISTEDFILES)
(APPLY (FUNCTION LISTFILES)

(LIST filenam e))))
(OR

(MEMBER (CAR x)
MAKEFILEOPTIONS)
(RETURN

(CONS (CAR x)
' (- MAKEFILE
CONFUSED))

)))
(GO loopl)

out
(RETURN

(CONS filename
’ (NOT DUMPED))))

)) ■

17.3.2 Remaking Files
Most symbolic files change slowly over time. That is, only a few of the function
definitions change as a system is being developed. When symbolic files are large,
considerable time may be consumed in creating a new version of the file. Time
may be saved by rewriting only the definitions of those functions that have actu
ally been changed. This process is called remaking a file. MAKEFILE operates
in this mode when REMAKE is specified as an option.

You may tell MAKEFILE what is to be done. REPRINTFNS, the third ar
gument to MAKEFILE, is a list of those functions that are to be explicitly pretty-
printed on the new version of the file. SOURCEFILE, the fourth argument,
specifies where the remaining definitions will be copied from. Typically, you will
set both REPRINTFNS and SOURCEFILE to NIL whence MAKEFILE pretty-

572 The File Package

prints those functions that have been changed since the last MAKEFILE or
LOAD execution.

When SOURCEFILE is NIL, MAKEFILE determines the most recent ver
sion from the FILEDATES property of FILENAME. It checks to see that that
version still exists. If it does not, it attempts to locate the original version of the
file that was used when the session was initiated. This allows a user, during a
lengthy session, to create many versions of a file via MAKEFILE without fear of
losing any information in the file. Rarely does a user delete a source file after
loading, so the presumption of going back to the original file is a valid one. If
MAKEFILE must return to the original file, it determines which files must be
prettyprinted by taking the union of all the files from the FILECHANGES prop
erty with those contained in the original file.

If MAKEFILE cannot find either the most recent version of the file or the
original version, it displays the error message “CAN’T FIND EITHER THE
PREVIOUS VERSION OR THE ORIGINAL VERSION OF (filename), SO
IT WILL HAVE TO BE WRITTEN ANEW” . In this case, all functions are
prettyprinted.

Because function definitions may be loaded from files in several different
ways (see Section 17.9), MAKEFILE must be cognizant of how these definitions
were loaded. If the file was loaded from a compiled version, MAKEFILE must
reload the declarations in order to write the new symbolic file. If only functions
were loaded via LOADFNS, then MAKEFILE executes LOAD VARS to obtain
the variables as well.

17.3 File Package Functions 573

17.3.3 Making Multiple Files
MAKEFILES allows you to process several files at once. MAKEFILES takes the
form

Function: MAKEFILES

Arguments: 2

Arguments: 1) an op tion l i s t , OPTIONS
2) a l i s t of f i l e s , FILES

Value: A l i s t of a l l f i l e s th a t are made.

For each file on FILES, MAKEFILES invokes MAKEFILE with OP
TIONS. That is, it performs

(MAKEFILE (CAR f i l e s) options NIL NIL)

If FILES is NIL, then MAKEFILES uses FILELST. If any typed definitions
have been defined or changed that do not appear on any of the files in FILELST,

MAKEFILES asks you, via ADDTOFILES?, about which files these definitions
should go to.

MAKEFILES returns a list of all the files that it has made.

A Definition for MAKEFILES
We might define MAKEFILES as follows:

(DEFINEQ
(m akefiles (options f i l e s)

(PROG (temporary)
(*

F i r s t , ensure th a t a l l updates are
posted the proper f i l e s .

)
(u p d a te f i le s)
(COND

((NULL f i l e s)
(*

^If th e re i s a F i le Package
type o b jec t th a t has been
defined , but which has not
been assigned to a f i l e ,
ADDTOFILES? i s invoked to ask
you where to put the o b jec t .

)
(MAPC FILEPKGTYPES

(FUNCTION n o - r e s id e n t - f i le))
(AND temporary (a d d to f i le s ?))))

(AND
(ATOM options)
options
(SETQ op tions (LIST o p tio n s)))

(RETURN
(MAPCONC

(COND
((NULL f i l e s)

(*
I f FILES i s n u l l ,
use FILELST.

)
FILELST)

((ATOM f i l e s)
(LIST f i l e s))

(T f i l e s))
(FUNCTION m ak e-each -f i le))))

))

574 The File Package

The function NO-RESIDENT-FILE determines if a File Package type has
been defined that is not present in any file of FILES. It will cause the printing of
a warning message to the user.

(DEFINEQ
(n o - r e s id e n t - f l l e (type)

(AND
(FILES?1 type

(COND
((NULL temporary)

"Note: The following
are not contained on
any f i l e : ”))

(T (SPACES 4))))
(SETQ temporary T))

))

MAKE-EACH-FELE determines if the name passed to it is really that of a
file. If so, it invokes MAKEFILE with that name; otherwise, it merely returns
NIL.

(DEFINEQ
(m ake-each-file (filename)

(PROG (property)
(COND

((OR
(NLISTP

(SETQ property
(GETPROP filename
'FILE)))

(NULL (CDR p ro p er ty)))
(RETURN NIL)))

(PRIN2 filename)
(PRINl ' . . .)
(RETURN

(PROGl
(LIST (makefile filename
o p t io n s))
(TERPRI))))

))

17.3 File Package Functions 575

17.3.4 Listing Files
LISTFILES displays the contents of files. It takes the following form

Function: LISTFILES
Arguments: 1

Argument: 1) A l i s t of f i l e s to be d isplayed, FILES
Value: NIL.

LISTFILES is an NLAMBDA, nospread function.
If FILES is NIL (the normal case), the File Package variable NOTLISTED-

FILES is used. The purpose of this function is to see the files which have been
changed since the last MAKEFILE. As each file name is printed, it is removed
from NOTLISTEDFILES. If a file is not found, LISTFILES displays the warn
ing “ (filename) NOT FOUND” and proceeds.

Consider the following example:

^(LISTFILES complex)
f i l e <KAISLER)COMPLEX..1 sen t to the penguin
NIL

The IRM notes that the implementation of LISTFILES depends on the un
derlying operating system. INTERLISP-10 uses the printing utility of the
TENEX operating system, while INTERLISP-D uses the EMPRESS utility.

17.3.5 Compiling Files
COMPILEFELES executes the RC option of MAKEFILE for each member of its
argument, FILES. It takes the form

Function: COMPILEFILES

Arguments: 1-N

Arguments: ■ 1-N) a l i s t o f filenam es, FILE[1] . . .
FILE[N]

Value: NIL.

COMPILEFILES is an NLAMBDA, nospread function.
If FILES is NIL, NOTCOMPILEDFILES is used. The purpose of this func

tion is to allow a user to make changes in a number of files and then recompile
them all at once. When multiple files are used in a program and changes have to
be made in several files, this provides a convenient method for ensuring recompi
lation of all the necessary files.

Consider the following example:

(COMPILEFILES complex)
compiling COMPLEX

576 The File Package

COMPLEX.COM not found, s h a l l I TCOMPL <KAISLER)COMPLEX..1
in s tead? . . . Yes

l i s t i n g ? . . . F i l e only
(COMPLEX (R I) NIL)
(REAL (CX) NIL)
(IMAG (CX) NIL)
(CPLUS (CXI CX2) NIL)
(CDIFFERENCE (CXI CX2) NIL)
(CZERO NIL NIL)
(CMULT (CXI CX2) NIL)
(PRINT.COMPLEX (CXI) NIL)
NIL

^(COMPILEFILES t e s t)
compiling TEST
FILE NOT FOUND
TEST
(OPENF broken)

17.3 File Package Functions 577

If COMPILEFILES cannot open the specified file, it forces an error and
enters the Break Package (see Chapter 20).

17.3.6 Cleaning Up Files
CLEANUP is a general workhorse that performs a MAKEFILE, LISTFILES,
and COMPILEFILES for any files that appear on its argument, FILES. It takes
the form

Function: CLEANUP

Arguments: 1-N

Arguments: 1-N) a l i s t o f filenam es, FILE[1] . . .
FILE[N]

Value: NIL.

CLEANUP is an NLAMBDA, nospread function.
If FILES is NIL, FILELST is used. It returns a value of NIL. CLEANUP is

driven by its own options list, CLEANUPOPTIONS. Initially, this variable has
as its value (LIST RC). You may change the value to direct its execution.

If a file is not loaded, CLEANUP does nothing. For example,

(CLEANUP complex)
NIL

♦-(LOAD 'COMPLEX)
<KAISLER>COMPLEX..1
FILE CREATED 28-Ju l-84 10:48:03
COMPLEXCOMS
<-(CLEANUP complex)
COMPLEX...file <KAISLER>COMPLEX..2 sen t to the penguin

compiling <KAISLER>COMPLEX..2

COMPLEX.COM not found, s h a l l I compile
<KAISLER>COMPLEX..2 instead? . . . Yes
(COMPLEX (R I) NIL)
(REAL (CX) NIL)
(IMAG (CX) NIL)
(CPLUS (CXI CX2) NIL)
(CDIFFERENCE (CXI CX2) NIL)
(CZERO NIL NIL)
(CMULT (CXI CX2) NIL)
(PRINT.COMPLEX (CXI) NIL)
NIL

578 The File Package

17.3.7 Determining File Status
After you have been working on a program for awhile, you may want to deter
mine the status of the files that you have been working with. FILES? displays on
the terminal the names of those files that

Have been modified, but not dumped
Dumped, but not listed
Dumped, but not compiled
The names of any functions and types that have been defined but are not
contained in any file.

It takes the following form

Function: FILES?

Arguments: 0

Arguments: N/A

Value: A l i s t o f func tions and v a r ia b le s which
have no t been assigned to f i l e s and a l i s t
o f f i l e s t h a t have not been made (see
example below).

If there are any functions or types that have not been assigned to files,
FILES? invokes ADDTOFILES? to allow you to specify where these functions
and types are to be assigned.

Consider the following example:

<-(RECORD t e s t (a b o d e))
TEST

<-(DEFINEQ (ADD3 (a b c) (IPLUS a b c)))
(ADD3)

^ (FILES?)
the reco rds: TEST...to be dumped
the fu n c tio n s : ADD3...to be dumped
want to say where the above go? . . . No
NIL

INTERLISP queries you about where the files should go via ASKUSER. If
you fail to respond within the specified period, it automatically assumes NIL and
exits.

A Definition for FILES?
We might define FILES? as follows:

(DEFINEQ
(f i l e s ? NIL

(^
Make sure a l l updates are posted to the
f i l e s .

)
(u p d a te f i le s)
(PROG (f i l e s temporary)

(SETQ f i l e s
(MAPCONC f i l e l s t

(FUNCTION f i l e s - 1 ?)))
(COND

(f i l e s
(*

I f th e re are any f i l e s th a t
have been changed, n o t i fy
the user of the ac tion to
be performed fo r each f i l e .

)
(MAPRINT f i l e s T NIL

” . . . to be dumped.”
NIL T)))

17.3 File Package Functions 579

(*
Inspec t a l l o b jec ts to see i f the re
are any which have not been assigned
to f i l e s .

)
(MAPC FILEPKGTYPES (FUNCTION f i le s -2 ?))
(AND temporary (ADDTOFILES?))
(AND

(SETQ f i l e s NOTLISTEDFILES)
(MAPRINT f i l e s T NIL

” . . . to be l i s t e d . "
NIL T))

(AND
(SETQ f i l e s NOTCOMPILEDFILES)
(MAPRINT f i l e s T NIL

" . . . to be compiled."
NIL T))

(RETURN))
))

FILES-1? and FILES-2? are utility functions defined as follows:

(DEFINEQ
(f i l e s - 1? (x)

(AND
(CDR (GETPROP x 'FILE))
(LIST x))

))
(DEFINEQ

(f i l e s - 2? (type)
(AND

(f i l e s ? l type (AND f i l e s " p lu s"))
(AND (NULL f i l e s)

" . . . to be dumped.")))
(SETQ temporary T))

))

FILES? 1 handles the printing chores for examining FILEPKGTYPES. It
may be defined as

(DEFINEQ
(f i l e s ? l (type x y)

(PROG (a - s t r i n g a - l i s t)
(COND

580 The File Package

((NOT
(AND

(LITATOM type)
(SETQ a - s t r in g

(fe tc h DESCRIPTION of type))
(LISTP

(SETQ a - l i s t
(fe tc h CHANGED of
ty p e)))))

(RETURN NIL)))
(AND X (PRINl X T))
(PRINl "the ” T)
(PRINl a - s t r ln g T)
(COND

(NIL
(IGREATERP (LENGTH a - l i s t) 6)
(PRINl ” on ” T)
(PRIN2 (CAR type) T))

(T
(MAPRINT a - l i s t T ”

NIL
(FUNCTION f i l e s ? l - i n d e n t))))

(AND y (PRINl y T))
(TERPRI T)
(RETURN T))

))

where FILES?1-INDENT is defined as

(DEFINEQ
(f l i e s ? 1- in d en t (x)

(COND
((NOT

(ILESSP (IPLUS (POSITION T)
(NCHARS X T T)
3)

(LINELENGTH)))
(TERPRI)
(SPACES 8)))

(PRIN2 x)
))

17.3.8 W HEREIS: Finding Types in Files
WHEREIS allows you to locate an instance of a file package type in a list of files
that you specify. WHEREIS has the following format

17.3 File Package Functions 581

Function; WHEREIS

Arguments: 3

Arguments: 1) the name of an o b je c t , NAME
2) the type of the o b je c t , TYPE
3) A l i s t of f i l e s , FILES

Value: A l i s t of a l l f i l e s th a t contain NAME as a
TYPE.

WHEREIS looks at all the files in FILES to see if the object NAME is in
cluded in the file with specified TYPE. If TYPE is NIL, WHEREIS assumes the
type to be FNS, i.e., looking for a function list. If FILES is NIL, FILELST is
used. Since FILELST is a list of all files “noticed” by the user as a result of
loading or making files, the search may require considerable amounts of time.

Consider the following examples:

(WHEREIS 'CMULT) ^
(COMPLEX)

« - (WHEREIS ’JUNK)
NIL

« - (WHEREIS 'CREATE.NODE 'FNS)
(FRAME)

If an object of the specified type cannot be located in any of the specified
files, WHEREIS returns NIL.

582 The File Package

17.3.9 Marking Changes in a File
Whenever a function is defined or modified, MARKASCHANGED is invoked to
keep track of the change. This works as well for records and other file package
types. Its purpose is to keep a consistent record of all modifications to a file so
that the file may be written properly at the end of a session. The object is to
ensure that you never lose work that you have performed during the session.

The format of MARKASCHANGED is

Function: MARKASCHANGED

Arguments: 3

Arguments: 1) the name o f an o b je c t , NAME
2) the type o f the o b je c t , TYPE
3) a reason fo r the change, REASON

Value: The name o f the o b je c t .

17.3 File Package Functions 583

MARKASCHANGED marks NAME of type TYPE as being changed,
REASON is a literal atom that specifies how the object was changed. Currently,
MARKASCHANGED recognizes the following values:

DEFINED

CHANGED

DELETED

CLISP

An o b jec t of type TYPE c a lle d NAME
has been defined in your v i r t u a l
memory.

An o b jec t of type TYPE ca lle d NAME
has been modified v ia the E d ito r .

An o b jec t of type TYPE c a l le d NAME
has been de le ted by DELDEF.

An o b jec t of type TYPE ca lle d NAME
has been modified by a CLISP
t r a n s la t io n .

T is interpreted in the same way as DEFINED, while NIL is interpreted as
CHANGED. Earlier versions of INTERLISP did not accept reasons, but merely
noted whether the object was defined or changed.

Changes to objects are recorded in the Masterscope (see Chapter 26) data
base.

Consider the following example:

(̂MARKASCHANGED
ADD3

'ADD3 'FNS 'CHANGED)

You may call MARKASCHANGED directly to record changes to objects.
Generally, however, you will use MARKASCHANGED to record changes for
user-defined datatypes.

A corresponding function, UNMARKASCHANGED, allows you to undo
the effects of MARKASCHANGED. It takes the form

Function:

Arguments:

Arguments:

Value:

UNMARKASCHANGED

2
1) the name of an o b je c t , NAME
2) the type of the o b je c t , TYPE

The name of the o b jec t i f i t was marked as
changed and i s now unmarked; otherw ise,
NIL.

UNMARKASCHANGED erases the entry in the Masterscope database that
marked the object NAME of type TYPE. If no NAME of type TYPE was
marked, UNMARKASCHANGED returns NIL, otherwise NAME.

♦-(UNMARKASCHANGED 'ADD3 ’FNS)
ADD3

17.3.10 Determining What has been Changed
After you have made many changes to a file or have not modified a file for a long
period of time, it is useful to find out what changes have been made. The File
Package function FILEPKGCHANGES prints the contents of the “changes to:”
section of the file header. It takes the following form:

Funct io n : FILEPKGCHANGES

Arguments: 2

Arguments: 1) a F i le Package type , TYPE
2) a l i s t o f o b je c ts , LST

Value: A l i s t of o b jec ts th a t have been marked as
changed.

FILEPKGCHANGES is a LAMBDA, nospread function.
It examines all objects that have been changed (i.e., marked) but which

have not yet been associated with their corresponding files. If LST is specified,
the value of FILEPKGCHANGES is assigned as the value of that list.
FILEPKGCHANGES returns a list of all objects marked as changed as a list of
the form (typename . changedobjects).

<-(FILEPKGCHANGES) «
((RECORDS TEST) (VARS X) (FNS ADD3))

«-(FILEKGCHANGES 'FNS)
(ADD3)

17.3.11 Adding to Files
ADDTOFILES? is a general housekeeping function. After performing a
MAKEFILES, CLEANUP, OR FILES?, there may remain objects that are, as
yet, unassociated with files. Often, this happens during a particularly productive
programming session. In order to ensure that all these changes and creations are
saved, you have to identify what files they are associated with.

ADDTOFILES? takes the following form:

Function: ADDTOFILES?

Arguments: 0

Arguments: N/A
Value: NIL, bu t has s id e e f f e c t s (see below).

584 The File Package

ADDTOFILES? asks you about the various changed, but unassociated,
items, concerning what files they should belong to. You may give one of seven
responses to each question (which is actually the name of an object):

1. A file name or the name of a list, such as SHOWGRAPH or SHOW-
GRAPHCOMS, whence the File Package uses ADDTOFILE to add the
item to the corresponding file or list.

2. A <line-feed) indicating that the previous response should be used
again.

3. A <space) or <carriage-return> indicating that no action should be
taken for this item.

4. A] (<right-square-bracket)) that indicates that the item is a dummy.
The item is added to NILCOMS in the file.

5. A [(<left-square-bracket)) which indicates that the definition of the
item is to be prettyprinted to the terminal and the question reasked. If
you had forgotten about the value of the item, this allows you to review it
before deciding where it should go.

6. A (whence you are prompted with “LISTNAME: (“ . You must enter the
name of a File Package command list. If such a list is found in the
-COMS definition of the file, then the item and its definition will be
added to the appropriate list. Otherwise, an error message will be
printed and you will be reprompted.

7. An @ (<at-sign)) whence you are prompted with “NEAR: (” . You must
type in the name of another object. The specified item is inserted into the
command list associated with that object. Thus, if you don’t want to in
spect the definition of an item but know that it is similar to one previously
associated, you may simply direct the File Package to place it with the
former item.

Consider the following example (assuming some unassociated objects):

(ADDTOFILES?)
want to say where the above go? Yes
(v a r ia b le s)
X Nowhere "because I typed] ”
(records)
TEST F ile Name: COMPLEX
(func tions)
ADD3 (DEFINEQ "because I typed ["
(ADD3

(LAMBDA (ABC) **COMMENT**
(IPLUS A B C))))

ADD3 L is t : (TESTCOMS
new l i s t ? Yes

17.3 File Package Functions 585

put l i s t TESTCOMS on f i l e :
(NIL)

<-testcoms
(ADD3)

17.4 DEFINING NEW FILE PACKAGE TYPES
The previous section described a set of functions for manipulating the defini
tions of objects in a file regardless of their type. However, INTERLISP allows
you to manipulate individual objects within a file. To manipulate new objects,
you merely define how they are treated by the type-independent functions de
scribed in the following section.

17.4.1 FILEPKGTYPE
FILEPKGTYPE allows you to create new file package types. You will use it pri
marily to define commands that store user-defined data structures on a file. It
takes the form

586 The File Package

Function:

Arguments;

Arguments:

Value:

FILEPKGTYPE

1-N

1) a type name, TYPE
2) a p ro p er ty , PROP
3) a va lue , VALUE
4-N) p roperty and value p a i rs

The type name.

FILEPKGTYPE is a LAMBDA, nospread function.
TYPE is the name of the new file package type. PROP and VALUE have the

meanings described below:

GETDEF

PUTDEF

Defines a function t h a t , i s used to
r e t r i e v e the d e f in i t io n of an o b jec t
from the f i l e . GETDEF (see Section
17 .5 .1) uses t h i s fu n c tio n . I t takes
th re e arguments: NAME, TYPE, and
OPTIONS.

Defines a func tion th a t i s used to
s to re the d e f in i t io n of an o b je c t on
a f i l e . PUTDEF (see Section 17 .5 .2)
uses t h i s fu n c tio n . I t takes th re e
arguments: NAME, TYPE, and
DEFINITION.

DELDEF

NEWCOM

WHENCHANGED

Defines a function th a t i s used to
remove the d e f in i t io n of an ob jec t
from a f i l e . DELDEF (see Section
17 .5 .4) uses t h i s function . I t takes
two arguments: NAME and TYPE.

Defines a function th a t sp e c if ie s how
to make a f i l e package command to
dump an o b jec t of a given type. This
function i s used by ADDTOFILE and
SHOWDEF. I t takes four arguments:
NAME, TYPE, LISTNAME, and FILE.

I f t h i s p roperty i s not sp e c if ie d ,
DEFAULTMAKENEWCOM is c a l le d to
co n s tru c t an expression of the form

(<type> * < filevar>)

where < filevar> e i th e r has the value
of LISTNAME, i f non-NIL, or the value
of (FILECOMS < f i le >) .

I t s value i s a l i s t of functions to
be applied when an ob jec t NAME of
TYPE i s changed or defined . Each
function takes th ree arguments: NAME,
TYPE, and NEWFLG.

17.4 Defining New File Package Types 587

(FILEPKGTYPE 'I.S.OPRS
'DESCRIPTION " i t e r a t i v e statem ent
o p e ra to rs”
' WHENCHANGED ' (CLEARCLISPARRAY))

WHENFILED

WHENUNFILED

DESCRIPTION

I t s value i s a l i s t of functions to
be applied to an o b jec t NAME of TYPE
when i t i s added to a f i l e . Each
function takes th ree arguments: NAME,
TYPE, and FILE.

I t s value i s a l i s t of functions to
be applied to an o b jec t NAME of TYPE
when NAME is removed from a f i l e .
Each function takes th ree arguments:
NAME, TYPE, and FILE.

I t s value i s a s t r in g th a t describes
what in s tances of t h i s type a re .

(FILEPKGTYPE 'USERMACROS
'DESCRIPTION " e d i t macros")

Where VALUE defines a function, the function may be defined as
LAMBDA or NLAMBDA expression, as a FUNCTION expression, or as a list
with the file name as its sole element.

You may determine the current value of a property by executing the expres
sion:

(FILEPKGTYPE <type> (p ro p e r ty))

You may determine the defined properties for a given type using the expres
sion:

(FILEPKGTYPE <type>)

Consider the following example:

(FILEPKGTYPE 'FNS)
(DESCRIPTION "fu nc tions")

< -(FILEPKGTYPE 'ALISTS)
(DESCRIPTION " a l i s t e n t r i e s " WHENCHANGED
(ALISTS.WHENCHANGED))

588 The File Package

17.4.2 File Package Type Definitions
In this section, we give a few examples from the File Package to demonstrate
how it uses the command FILEPKGTYPE to define some of the file package
types that are described in Section 17.2.

(FILEPKGTYPE 'PROPS
'DESCRIPTION "property l i s t s "
'WHENCHANGED (FUNCTION PROPS.WHENCHANGED))

where PROPS.WHENCHANGED might be defined as follows

(DEFINEQ
(props.whenchanged (name type reason)

(PROG (p ro perty - type)
(SETQ p ro p er ty - ty p e

(GETPROP (CADR name) 'PROPTYPE))
(COND

(pro p erty - ty p e

(T

(MARKASCHANGED (CAR name)
property -type
reaso n))

(SELECTQ (CADR name)
(CLISPWORD

(CLEARCLISPARRAY (CAR name)))
NIL))))

17.5 Manipulating File Package Types 589

))
(FILEPKGTYPE ' EXPRESSIONS

'DESCRIPTION "expressions”
'WHENCHANGED (FUNCTION
EXPRESSIONS.WHENCHANGED)
’EDITDEF (FUNCTION NILL))

where EXPRESSIONS.WHENCHANGED might be defined as follows

(DEFINEQ
(ex p re ss io n s .whenchanged (express ion)

(SELECTQ (CAR expression)
((SETQ SETQQ)

(UNMARKASCHANGED (CADR expression)
'VARS))

((PROGN PROG)
(MAPC (CDR expression)

(FUNCTION
(LAMBDA (x)

(EXPRESSIONS.WHENCHANGED x)))))
(ADVISE

(AND
(EQUAL (CAADR expression)

(QUOTE QUOTE))
(MAPC (PACK-IN (CADR (CADR express ion)))

(FUNCTION
(LAMBDA (fn)

(UNMARKASCHANGED fn
'ADVICE))))))

NIL))
))

17.5 MANIPULATING FILE PACKAGE TYPES
As we have seen, the File Package provides a powerful and flexible environment
for managing your applications. The structure of a file created using the File

Package may become very complex if you take advantage of all the facilities pro
vided by it. Consequently, the File Package inlcudes many functions to manage
the type definitions that describe the environemnt and processing of a file.

Conventions
The File Package functions observe several conventions concerning the nature
and processing of arguments:

1. When an <atom> is given where a list is expected, the functions convert
the argument to (LIST <atom>). This allows processing to proceed with
out causing errors on trivial mistakes (one interpretation) and makes the
File Package rather user-friendly (second interpretation).

2. Singular forms of file package types are also recognized, e.g.,

VAR VARS
RECORD RECORDS
COM COMS
FILE FILES

3. If TYPE (see below) has the value NIL, a default of FNS is assumed.
4. If FILES (see below) has the value NIL, the function uses the value of

FILELST (a list of all noticed files) instead.
5. The location of the definition, SOURCE, will be interpreted as follows:

? Use the d e f in i t io n determined by:

a. th a t c u r re n t ly in e f f e c t
b. a saved d e f in i t io n
c. a d e f in i t io n read from a f i l e th a t i s

id e n t i f i e d by WHEREIS (see Section 17.3.8)
in th a t o rd er .

CURRENT Use the d e f in i t io n c u r re n t ly in e f f e c t . .

SAVED Use the saved d e f in i t io n (i . e . , one th a t was
s to red by SAVEDEF).

FILE Use the d e f in i t io n found in the f i r s t f i l e
th a t i s i d e n t i f i e d by WHEREIS.

< file> Use the d e f in i t io n , i f any, th a t may be
found in the s p e c if ie d f i l e . < file> may be a
l i s t o f f i l e s which are searched in o rder of
occurrence in the l i s t .

NIL E quivalen t to ?.

590 The File Package

Note that NIL subsumes the values CURRENT, SAVED, and FILE
in the order indicated. These alternatives exist to allow you to force a
specific instance of a definition.

6. All functions that make destructive changes to the contents of the file are
undoable.

17.5 Manipulating File Package Types 591

17.5.1 Getting a Type Definition
You may obtain the definition of an item associated with a particular type using
GETDEF, which takes the format

Function: GETDEF

Arguments: K
Arguments: 1) an item, NAME

2) a type i d n t i f i e r , TYPE
3) the lo c a tio n of the d e f in i t io n , SOURCE
4) an option l i s t , OPTIONS

Value: An S-expression th a t i s the d e f in i t io n of
the item.

GETDEF reads an S-expression from SOURCE for NAME of the given
TYPE. There are several cases:

FNS
If TYPE is FNS, GETDEF returns a LAMBDA/NLAMBDA expression, e.g.,

«-(OPENFILE 'AMISMAP 'INPUT 'OLD)
[DSK]AMISMAP!5

(GETDEF 'POINT.SUM 'FNS)
(LAMBDA (p o in t l point2)

(point.new
(PLUS

(fe tc h XCOORD of p o in t l)
(fe tc h XCOORD of po in t2))

(PLUS
(fe tc h YCOORD of p o in t l)
(fe tc h YCOORD of p o in t2))))

where with SOURCE = NIL and no current saved definition, WHEREIS has
identified AMISMAP as the source of the definition. AMISMAP was noticed
when it was opened.

Alternately, we can just get the arguments list via

♦-(GETDEF 'POINT.SUM 'FNS 'AMISMAP '(FAST ARGLIST))
(LAMBDA (p o in t l po in t2))

VARS
If TYPE is VARS, GETDEF returns the value of NAME, e.g.,

^(GETDEF 'RADIANS.PER.DEGREE 'VARS)
.017^5328

RECORDS
If TYPE is RECORDS, GETDEF returns the structure of the record, e.g.,

(GETDEF 'RECTANGLE 'RECORDS)
(RECORD RCETANGLE (ORIGIN . CORNER))

FIELDS
If TYPE is FIELDS, GETDEF returns a list of all record declarations that con
tain NAME as a field, e.g.,

(GETDEF 'ORIGIN 'FIELDS)
(RECORD RECTANGLE (ORIGIN . CORNER))

FILES
If TYPE is FILES, GETDEF returns the command list for the file whose name is
the value of NAME, e.g.,

^(GETDEF 'AMISMAP 'FILES)
(((FNS * AMISMAPFNS)

(VARS * AMISMAPVARS)
(RECORDS RECTANGLE)
(CONSTANTS (PI 3-15159))
(INITVARS

(RADIANS.PER.DEGREE
(QUOTIENT PI 180.0))

. . .)
(("3-N0V-83 05:17:38" . [DSK]AMISMAP.;1))

))

Other Types
For all other types, GETDEF returns the S-expression that would be printed if
NAME were dumped to the file as TYPE, e.g.,

(GETDEF 'EDITHIST 'SPECVARS 'DEDIT)

592 The File Package

Otherwise
Otherwise, if GETDEF cannot find a definition for NAME, an error is caused,
e.g.,

(GETDEF 'POINT.MULTIPLY)
POINT.MULTIPLY
(FNS d e f in i t io n not found)

OPTIONS is an atom or a list of atoms that direct the function to adhere to
certain restrictions. These include:

NOCOPY Does not re tu rn a new copy of the
d e f in i t io n .

NODWIM Does not DWIMIFY (see Section 22.5) the
d e f in i t io n .

NOERROR Returns NIL i f no d e f in i t io n i s found.

<s t r in g) I f OPTIONS i s or contains a s t r in g , i t i s
re tu rned when a d e f in i t io n fo r a name is
not found.

17.5.2 Creating a Definition
You may create a definition for an item according to a given file package type
using PUTDEF, which takes the form

Function: PUTDEF

Arguments: 3

Arguments: 1) an item, NAME
2) a type i d e n t i f i e r , TYPE
3) a d e f in i t io n , DEFINITION

Value: NAME, i f su ccessfu l .

PUTDEF associates DEFINITION with NAME according to TYPE. There
are several cases:

FNS
If TYPE is FNS, PUTDEF executes a DEFINE, i.e.,

^(PUTDEF 'POINT.SUM
'FNS
'(LAMBDA (p o in t l point2)

17.5 Manipulating File Package Types 593

(point.new
(PLUS po in tlrxcoord point2:xcoord)
(PLUS po in tl :ycoord

p o ln t2:ycoord))))
POINT.SUM

594 The File Package

is equivalent to (DEFINE ’point.sum ...).

VARS
If TYPE is VARS, PUTDEF executes a SAVESET (see Section 25.4.1), i.e.,

“̂ (PUTDEF 'X 'VARS (LIST 'a 'b »c))
X

is equivalent to

(SAVESET 'X (LIST 'a 'b 'c) T)
(A B C)

Note that using SAVESET makes the PUTDEF operation undoable (see
Section 25.4).

FILES
If TYPE is FILES, PUTDEF establishes a command list (e.g., -COMS expres
sion) and notices the file. For example,

< -(PUTDEF 'TEST
' FILES
(LIST (LIST 'FNS 'TESTFNS)))

TEST

<^FILELST
(TEST)

<-TESTCOMS
((FNS * TESTFNS))

ADVISE
If TYPE is ADVISE, PUTDEF will put DEFINITION under the property
READVICE on NAME’S property list and invoke READ VISE to advise the item
(see Section 21.3).

17.5.3 Copying Definitions
You may copy a definition from one item to another via COPYDEF, which takes
the format

Arguments: 5

Arguments: 1) the source atom, OLD
2) the d e s t in a t io n atom, NEW
3) a type i d e n t i f i e r , TYPE
A) the lo c a t io n of the d e f in i t io n , SOURCE
5) a l i s t of op tions , OPTIONS

Value: The name of the new o b je c t .

COPYDEF copies the appropriate definition from OLD to NEW. COPY
DEF is usually used to produce a new copy of a file. When TYPE is FILES,
COPYDEF performs the following operations:

1. Establishes the command list for the file <NEW>COMS.
2. Notices NEW.
3. Modifies the individual -COMS expressions such as VARS and FNS

(e.g., <OLD)VARS becomes <NEW)VARS).
4. Invokes MAKEFILE to create the new file.

Consider the following example:

<-(COPYDEF 'TEST 'GOOD 'FILES)
GOOD

<-FILELST
(GOOD TEST)

^GOODCOMS
((FNS * GOODFNS))

Applying COPYDEF to a function definition, we obtain:

< -(COPYDEF 'SIGN 'LSEQGTO 'FNS 'COMPLEX)
LSEQGTO

^ (P P LSEQGTO)
(LSEQGTO

(LAMBDA (X)
(COND

((GREATERP x 0.0) l)
((LESSP X 0.0) -1)
(T 0))))

(LSEQGTO)

17.5 Manipulating File Package Types 595

Function: COPYDEF

17.5.4 Deleting a Definition
You may delete the definition associated with an atom via DELDEF, which
takes the format

Function: DELDEF

Arguments: 2

Arguments: 1) an item, NAME
2) a type i d e n t i f i e r , TYPE

Value: NAME, i f su ccess fu l .

DELDEF removes the definition of TYPE associated with NAME that is
currently in effect. Consider the following example:

(DELDEF 'LSEQGTO 'FNS)
LSEQGTO

^ (P P LSEQGTO)
(LSEQGTO not p r in ta b le)
(LSEQGTO)

because the contents of the function definition cell have been erased.

♦-(SETQ X (LIST 'reagan *bush 'mondale ' f e r r a r o))
(reagan bush mondale fe r ra ro)

(DELDEF ’X 'VARS)
X

<-x
UNBOUND ATOM
X

596 The File Package

17.5.5 Showing Definitions
You may want to see how a definition would appear when it is written to a file.
SHOWDEF prettyprints the definition for you. It takes the format

Function: SHOWDEF

Arguments: 3

Arguments: 1) an item, NAME
2) a type i d e n t i f i e r , TYPE
3) a f i l e name, FILE

Value: The p re t ty p r in te d form of the d e f in i t io n .

SHOWDEF is used by several File Package functions when they do not
know where to place a function. If you do not tell them, these functions show you
the definition and re-ask you where to place it. It is primarly used by ADDTO-
FILES? (see Section 17.3.11).

Consider the following example:

^(SHOWDEF 'CZERO 'FNS)
(DEFINEQ

(CZERO
(LAMBDA NIL

(COMPLEX 0.0 0 . 0))))
T

17.5.6 Editing a Definition
EDITDEF allows you to edit the definition of an item of a given type. It takes the
form

Function: EDITDEF

Arguments: 4

Arguments: 1) an item, NAME
2) a type i d e n t i f i e r , TYPE
3) the lo c a t io n of the d e f in i t io n , SOURCE
4) an o p tio n a l l i s t of e d i to r commands,

COMMANDS

Value: The name of the o b je c t .

EDITDEF is equivalent to:

Using GETDEF to obtain the definition form SOURCE.
Applying the editing commands via EDITE to the definition.
Using PUTDEF to replace the definition at SOURCE.

EDITDEF is particularly convenient because you do not have to load the file
contents (if the definition resides on an noticed file) in order to edit the defini
tion. Moreover, no memory is consumed because the function is only loaded
within the editor environment.

If SOURCE is NIL, EDITDEF uses the definition of the object in memory.

*«-(EDITDEF 'SLOTRECORD 'RECORD NIL ’ (R ID IDENTIFIER))
SLOTRECORD

^-(RECLOOK 'SLOTRECORD)
(RECORD SLOTRECORD

(IDENTIFIER VALUE TYPE RELATION OFFSPRING))

17.5 Manipulating File Package Types 597

If COMMANDS is NIL, EDITDEF places you in the Editor where it waits
to receive commands that you type in. See Chapter 19 for a discussion of the
Editor.

17.5.7 Saving and Unsaving Definitions
You may save the definition of an item for later retrieval. You may either provide
a definition as an argument or use the definition currently in effect. SAVEDEF
takes the form

Function: SAVEDEF

Arguments: 3

Arguments: 1) an item, NAME

598 The File Package

X) a i i X ueiii f iNHi'ir,

2) a type i d e n t i f i e r , TYPE
3) a d e f in i t io n , DEFINITION

Value: The name of the p roperty under which the
d e f in i t io n i s saved.

SAVEDEF takes either DEF or the current definition in effect, if DEFINI
TION is NIL, and stores it such that it may later be retrieved by either GETDEF
or UNSAVEDEF.

If TYPE is FNS or NIL (whence FNS is assumed), SAVEDEF stores the
definition on the item’s property list under the property EXPR, CODE, or
SUBR depending on whether source or compiled format, e.g.,

^SAVEDEF 'SIGN ’FNS)
EXPR

<-(GETPROPLIST 'SIGN)
(EXPR (LAMBDA (X) (GOND ((GREATERP X 0.0) 1) ((LESSP X
0.0) -1) (T 0))))

If TYPE is VARS, the definition is stored on the property list under the
property VALUE. Otherwise, it is saved in an internal data structure, SAVED-
DEFS, e.g.,

(SAVEDEF 'COMPLEX 'RECORD)
RECORDS

<-SAVEDDEFS
((RECORDS (COMPLEX DATATYPE COMPLEX ((REAL FLOATP) (IMAG
FLOATP)))))

UNSAVEDEF is the corresponding function that allows you to unsave defi
nitions that you have saved in the past. When you unsave a definition, the defini-

tion found on the property list or the internal data structure becomes the defini
tion currently in effect for the item (i.e., it replaces the current definition in
effect). UNSAVEDEF takes the form

Function: UNSAVEDEF

Arguments: 2

Arguments: 1) an item, NAME
2) a type I d e n t i f i e r , TYPE

Value: The type i d e n t i f i e r , i f su ccessfu l .

If TYPE is NIL, UNSAVEDEF looks for a definition under the EXPR prop
erty on the item’s property list. If no EXPR property exists, it will look for a
CODE or SUBR property, and use their values, respectively, as the definition.
UNSAVEDEF recognizes EXPR, CODE, and SUBR as values for TYPE to in
dicate that it should explicitly unsave a value only for that property.

For example, we have saved the definition of SIGN under the EXPR prop
erty. Now, if we try to unsave a SUBR definition::

^(UNSAVEDEF 'SIGN 'SUBR)
(SUBR not found)

SAVEDEF and UNSAVEDEF are used by several INTERLISP subsystems
to preserve the original body of the function. You may want to use them to pre
serve a definition via SAVEDEF before you modify it. Thus, if the modification
is unsuccessful, you may recover the original definition via UNSAVEDEF.

17.5 Manipulating File Package Types 599

17.5.8 Loading a Definition
You may load an arbitrary definition from the file using LOADDEF, which
takes the form

Func t io n : LOADDEF

Arguments: 3

Arguments: 1) the name of an o b je c t , NAME
2) the type of the o b je c t , TYPE
3) the source f i l e , SOURCE

Value: The d e f in i t io n of the o b jec t .

LOADDEF retrieves the definition of the object NAME with the given type
from SOURCE and assigns that definition to the object in memory.

Consider the following example:

♦-(OPENFILE 'AMIS 'INPUT ’OLD)
[DSK]AMIS:5
<-(LOADDEF 'SLOTRECORD 'RECORD 'AMIS)
SLOTRECORD

<-(RECLOOK 'SLOTRECORD)
(RECORD SLOTRECORD

(ID VALUE TYPE RELATION OFFSPRING))

A Definition for LOADDEF
We might define LOADDEF as follows:

(DEFINEQ
(loaddef (name type source)

(PUTDEF name
type
(GETDEF name

type
source
'(NODWIM NOCOPY)))

))

17.5.9 Renaming an Object
You may rename an object while preserving its value using RENAME, which
takes the form

Function: RENAME

Arguments: 5

Arguments: 1) the o ld name, OLD
2) the new name fo r the o b je c t , NEW
3) a l i s t o f types fo r which o b je c ts are

to be renamed, TYPES
4) a l i s t o f f i l e s where renaming w i l l be

performed, FILES
5) how the o b je c t w i l l be renamed, METHOD

Value: NEW, i f su c c e ss fu l .

RENAME performs its function in three steps:

1. Copies all instances of OLD to NEW for each type in TYPES.
2. Calls CHANGECALLERS to change all occurrences of OLD to NEW.
3. Deletes all instances of OLD via DELDEF.

600 The File Package

Consider the folIo\\ing example. In our frame-based example, we have a
function that we called CREATE.NODE. Suppose we want to change that func
tion to CREATE.FRAME. We do so via the following function call:

♦-(LOAD 'FRAME)
<KAISLER)FRAME..1

RENAME 'CREATE.NODE ' CREATE. FRAME 'FNS)
<KAISLER)FRAME..1: 276 CREATE.NODE 8091
e d i t in g the v a r ia b le s SHKFNS:
CREATE.FRAME

FILES and METHOD are described in the following section.

17.5 Manipulating File Package Types 601

17.5.10 Changing Calling Function Names
When editing a large application, you may want to change the name of a func
tion to reflect a new capability, to reduce conflict with another name, or to be
more semantic. However, the function may be utilized by many other functions
in the program, particularly if it is a kernel function. Editing all functions that
call the function can be a labor-intensive task. However, using Masterscope (see
Chapter 26), INTERLISP can keep track of how a function is used and where it
is used. CHANGECALLERS makes use of this knowledge about the structure of
your program to perform these editing chores. It takes the form

Function: CHANGECALLERS

Arguments: 5

Arguments: 1) an old name, OLD
2) a new name, NEW
3) a l i s t o f o b jec t types, TYPES
4) a l i s t of f i l e s in which the o b jec ts

may occur, FILES
5) an e d i t in g method, METHOD

Value: NIL.

CHANGECALLERS finds all places where OLD is used as a type in
TYPES. It changes all occurences of OLD to NEW in those locations. It also
changes occurrences of OLD to NEW in all File Package commands so that you
can remake the file easily. For example.

<-(CHANGECALLERS 'ADD.TO.NET
'ADD.TO.FRAME.LIST
'FNS

NIL
'MASTERSCOPE)

.e d i t in g the functions CREATE. FRAME:

.e d i t in g the v a r ia b le s FRAMEFNS

.NIL

CHANGECALLERS determines if OLD might be used as more than one
type in a program. If so, it asks you if you want to edit each occurrence type
rather than automatically making the change for you. For example, in our com
plex arithmetic example, suppose I wanted to change the object COMPLEX to
CMPLX. I would do so as follows:

602 The File Package

<-(CHANGECALLERS 'COMPLEX 'CMPLX)
Warning — COMPLEX is a lso used as (RECORDS FILES)
<KAISLER>COMPLEX..2 263 299 362 COMPLEX CMULT CDIFFERENCE
CZERO CPLUS 3852 3926 3983 -^070
e d i t in g the func tions CMULT:
(COMPLEX (DIFFERENCE & &) (PLUS & &))

Replace?
• • •

e d i t in g the records COMPLEX:
(DATATYPE COMPLEX (& &))

Replace?
COMPLEX changed to CMPLX on COMPLEX
NIL

Note that you must also rename any object via RENAME if you use
CHANGECALLERS as it only modifies those objects where the given object is
used, but not the object itself.

METHOD provides you with two alternatives in making the changes:

1. If METHOD is EDITCALLERS, EDITCALLERS (see Section 19.1) is
used to search FILES for all occurrences of OLD.

2. If METHOD is MASTERSCOPE (see Chapter 26), the Masterscope da
tabase, if any, is used to locate all occurrences of OLD. If no MASTER
SCOPE database exists, it defaults to EDITCALLERS.

If METHOD is NIL, the default is MASTERSCOPE. However, the default
may be specified by the system variable DEFAULTRENAMEMETHOD which
is initially NIL. You may force a default to MASTERSCOPE by setting the value
of DEFAULTRENAMEMETHOD to MASTERSCOPE and creating a Mas
terscope database. Otherwise, it defaults to EDITCALLERS.

17.5.11 Comparing Definitions
You may compare the definitions of two objects of a given type in two versions of
a file, or you may compare all the definitions of a given name for all object types
across all sources. Two functions support this capability: COMPARE and
COMPAREDEFS.

COMPARE takes the form

Function: COMPARE

Arguments: 5

Arguments: 1) an o b jec t name, NAME-1
2) an o b jec t name, NAME-2
3) an o b jec t type, TYPE
4) a source, SOURCE-1
5) a source, SOURCE-2

Value: T, i f any d if fe re n c e s ; otherw ise, NIL.

COMPARE prints a list of differences, if any, to your terminal. COMPARE
invokes COMPARELISTS to perform a comparison of the two definitions. It
might be defined as:

(DEFINEQ
(compare (name-1 name-2 type source-1 source-2)

(PROG (d e f in i t io n -1 d e f in i t io n -2)
(SETQ d e f in i t io n -1

(GETDEF name-1 type source-1))
(SETQ d e f in i t io n -2

(GETDEF name-2 type source-2))
(COND

((COMPARELISTS d e f in i t io n -1 d e f in i t io n -2)
(*

I f no d if fe ren ces between the
two d e f in i t io n s , merely re tu rn
NIL.

)
(RETURN)))

(PRIN2 name-1 T T)
(COND

(source-1
(SPACES 1 T)
(PRINl "from” T)
(PRIN2 source-2 T T)))

(SPACES 1 T)

17.5 Manipulating File Package Types 603

604 The File Package

(PRINl."and" T)
(PRIN2 name-2 T T)
(COND

(source-2
(SPACES I T)
(PRINl "from" T)
(PRIN2 source-2 T T)))

(SPACES 1 T)
(PRINl " d i f f e r " T)
(TERPRI T)
(COMPARELISTS d e f in i t io n -1 d e f in i t io n -2)
(RETURN T))

))

COMPAREDEFS takes the form

Function: COMPAREDEFS

Arguments: 3

Arguments: 1) an o b je c t name, NAME
2) a l i s t of o b jec t types, TYPES
3) a l i s t of o b jec t sources, SOURCES

Value: An in d ic a t io n of the comparison of a l l
occurrences of NAME.

COMPAREDEFS uses COMPARELISTS to compare all occurrences of
NAME as a type of TYPES in any source of SOURCES. It returns one of several
values:

1. If NAME is not found in any source in SOURCES, it returns (QUOTE
(NOT FOUND)).

2. If NAME occurs only once in any source of SOURCES, it returns
(QUOTE (ONCE ONLY)), and there is no comparison to be made.

3. If COMPARELISTS detects any differences, which are printed to your
terminal, it returns (QUOTE DIFFERENT).

4. Otherwise, it returns (QUOTE SAME).

17.5.12 Determining Type Existence
HASDEF allows you to determine if an object is a certain type. It takes the form

Function: HASDEF

Arguments: 4

Arguments;

Value:

1) an o b je c t , NAME
2) a type s p e c i f i e r , TYPE
3) an o b jec t source, SOURCE
4) a s p e l l in g f la g , SPELLFLAG

T, i f NAME has a d e f in i t io n of TYPE.

17.5 Manipulating File Package Types 605

If HASDEF does not find any object with NAME of TYPE, it attempts
spelling correction on NAME, and returns the spelling-corrected name. Other
wise, it returns NIL. Spelling correction is attempted only if SPELLFLAG is T.
Consider the example:

^(HASDEF 'CMULT 'FNS 'COMPLEX)
T

<-(HASDEF 'CDIFERENCE *FNS 'COMPLEX T)
=CDIFFERENCE
NIL

17.5.13 Determining the Types of an Object
TYPESOF allows you to determine the types of an object. It takes the form

Function:

Arguments;

Arguments:

Value:

TYPESOF

4

1) an o b je c t , NAME
2) a l i s t of p o ss ib le types, POSSIBLE-

TYPES
3) a l i s t o f impossible types, IMPOSSIBLE-

TYPES
4) an o b jec t source, SOURCE

A l i s t of the types th a t are defined fo r
NAME.

TYPESOF returns a list of the types in POSSIBLE-TYPES, but not in IM-
POSSIBLE-TYPES, for which NAME has a definition. If POSSIBLE-TYPES is
NIL, FILEPKGTYPES is used. Consider the example:

(TYPESOF 'COMPLEX NIL NIL 'COMPLEX)
(COMPLEX — no en try on USERMACROS)
(I.S.OPR COMPLEX not defined)
(no READVICE p roperty fo r COMPLEX)
(RECORDS I.S.OPRS FNS FILES EXPRESSIONS ADVICE
FILEPKGCOMS)

Note that what TYPESOF returns is what COMPLEX could possibly be
used as in COMPLEX, not how it is actually used.

A Definition for TYPESOF
We might define TYPESOF as follows:

(DEFINEQ
(typesof (name)

(fo r TYPE in s id e FILEPKGTYPES
when

.(HASDEF name TYPE)
c o l le c t TYPE)

))

17.6 DEFINING NEW FILE PACKAGE COMMANDS
The File Package includes a large number of types that have been developed and
defined based on the experience of the INTERLISP developers. In most cases,
these types will cover the data structures that you are likely to build in your pro
grams. However, should you create unusual data structures, you may wish to
build your own File Package commands to save and restore these data structures
on a symbolic file.

606 The File Package

17.6.1 FILEPKGCOM
FELEPKGCOM is the function that allows you to specify the characteristics of a
new file package command. It takes the following form

Function: FILEPKGCOM

Arguments: 1-N

Arguments: 1) a command name, COMMAND
2) a p roperty name, PROPERTY
3) a value fo r the p roperty , VALUE
4-N) p roperty -va lue p a i r s

Value: A l i s t o f the commands.

FILEPKGCOM is a Lambda, Nospread function that will define new file
package commands or change the attributes of existing commands. The proper
ties of the command are drawn from the following .list:

macro This p roperty defines how to dump the
command i t s e l f to a symbolic f i l e . I t

Isused by MAKEFILE when w riting an
expression to the symbolic f i l e .
VALUE has the form

(< arguments > . < commands >)

The arguments given to the command
name are s u b s t i tu te d fo r the
(arguments) throughout (commands).
The r e s u l t i s a l i s t of F ile Package
commands.

For example,

(FILEPKGCOMS ' LISPXMACROS
'MACRO
'(X (COM3 * (MAKELISPXMACROSCOMS .
X)))
' CONTENTS
'NILL)

ADD This property s p e c if ie s how to add an
instance of an ob jec t to a given F ile
Package command. I t i s used by
ADDTOFILE to update the (f i l e) COM3
l i s t of a f i l e . VALUE is a function ,
FN, of four arguments:

1. COM, a f i l e package command
2. NAME, a typed ob jec t
3. TYPE, a type s p e c i f ie r
4. NEAR, a f lag

FN should re tu rn T i f i t adds NAME to
COM; otherw ise, NIL.

Two p o s s i b i l i t i e s e x is t :

1. COM has the form

(<com) * (f i l e v a r))

whence NAME is added to (CADDR
COM) which should be a l i t e r a l
atom.

17.6 Defining New File Package Commands 607

608 The File Package

DELETE

CONTENTS

2. COM has the form

(<com> < v arlis t>)

whence NAME i s added to the (CDR
COM).

3. TYPE i s the type of the named
o b je c t .

4. NEAR, i f non-NIL, s p e c if ie s near
which item ADDTOFILE should
attem pt to in s e r t NAME (see
ADDTOFILES?).

This p roperty s p e c if ie s how to de le te
an in s tance of an ob jec t from a F ile
Package command. I t i s used by
DELFROMFILES (see Section 1 7 .7 .2) .
VALUE is FN which i s a function of
th re e arguments corresponding to the
f i r s t th re e arguments of ADD. FN
re tu rn s T i f i t d e le te s NAME from
COM, e lse NIL. I f i t re tu rn s ALL, COM
should be in te rp re te d as empty and
may be de le ted e n t i r e ly from the
command l i s t .

This p roperty s p e c if ie s whether or
not an in s tance of an o b jec t of a
given type i s contained w ith in a
given F i le Package command. I t i s
used by WHEREIS (see Section 17.3*8)
and INFILECOMS? (see Section 1 7 .7 .3) .
VALUE i s FN which i s a function of
th re e arguments corresponding to the
th re e arguments of ADD.

NAME is in te rp re te d as follows:

1. I f NAME i s NIL, FN re tu rn s a l i s t
o f elements of type TYPE contained
in COM.

2. I f NAME i s T, FN re tu rn s T i f
th e re are any elements of type
TYPE in COM.

3. I f NAME i s any l i t e r a l atom o th e r
than T o r NIL, FN re tu rn s T i f

NAME of type TYPE i s contained in
COM.

4. I f NAME i s a l i s t , FN re tu rn s a
l i s t of those elements of type
TYPE contained in COM th a t are
a lso contained in NAME.

17.7 MANIPULATING FILE PACKAGE COMMANDS
How a file is to be loaded is described by the File Package commands. A list of
commands is usually stored as the value of the variable <filename >COMS. To
create a file, you establish the content of <filename>COMS and execute MAKE
FILE (see Section 17.3.1). It uses the expressions found in the <filename>COMS
expression as a guide to writing the symbolic form of the file.

File Package commands may be very complex for large files containing
many functions and initializing many variables. Moreover, the creation of un
usual structures often requires some ingenuity in describing them using stan
dard data structures or writing new functions to properly write them out and
read them in. Managing these command lists may be quite difficult. To ease the
burden, the File Package provides a set of functions for manipulating the
<filename>COMS lists.

Note that most if these functions are undoable.

17.7 Manipulating File Package Commands 609

17.7.1 Adding To a File's COMS
ADDTOFILE adds an entry to the COMS list of a file. It takes the form

Function: ADDTOFILE

Arguments: 3

Arguments: 1) an o b je c t , NAME
2) a f i l e name, FILE
3) a command type, TYPE

Value: The f i l e name.

ADDTOFILE adds NAME of TYPE to the file package commands for
FILE. For example, suppose I had an ugly variable that I wished to add to the
file SHK.

<-(ADDTOFILE 'x ’shk ’uglyvars)
SHK

<-SHKCOMS
((FNS * SHKFNS) (VARS * SHKVARS) (UGLYVARS X))

610 The File Package

Adding to a Command List
ADDTOCOMS adds an entry to a COMS list. It takes the form

Function: ADDTOCOMS
Arguments: 3

Arguments: 1) a command l i s t , COMS
2) an o b je c t , NAME
3) a type , TYPE

Value: T.

The command list, COMS, may take one of two values;

1. A variable whose value is a list of file package commands, i.e., MAP-
COMS.

2. A list of file package commands.

(ADDTOCOMS SHKCOMS ’X 'RECORD)
NIL

because ADDTOCOMS was unable to find a command of type RECORD in
which to add X. On the other hand,

(ADDTOCOMS SHKCOMS 'Y ’VARS)
T

SHKCOMS
((FNS * SHKFNS) (VARS * SHKVARS) (UGLYVARS X))

<-SHKVARS
(CURRENT.NETWORK.NODE Y)

ADDTOCOMS “understands” how to add an entry to a particular file
package command based on its form.

17.7.2 Deleting from a File's COMS
DELFROMFILES deletes all instances of an object of a given type from the File
Package commands associated with a file name. It takes the form

Function: DELFROMFILES

Arguments: 3

Arguments: 1) the name of an o b je c t , NAME
2) an o b je c t type , TYPE
3) a l i s t o f f i l e s , FILES

Value: A l i s t of f i l e s from which NAME has been
d e le ted .

DELFROMFILES inspects the file package commands of all files that are
named in FILES. It deletes NAME of TYPE from the appropriate commands in
which it appears. If FILES is NIL, DELFROMFILES uses FILELST as its de
fault value. FILES may also be an atom whence (LIST FILES) is used.

Consider the following example:

(DELFROMFILES 'X 'UGLYVARS (LIST 'SHK))
(SHK)

<-SHKCOMS
((FNS * SHKFNS) (VARS * SHKVARS)(UGLYVARS))

Deleting from a Command List
DELFROMCOMS is used by DELFROMFILES to delete an object from a spe
cific file package command list. It takes the form

Function: DELFROMCOMS

Arguments: 3

Arguments: 1) a command l i s t , COMS
2) an o b jec t name, NAME
3) an o b jec t type, TYPE

Value: T.

COMS is usually the name of a (file)COMS variable that contains the defi
nition of the File Package commands for a file. DELFROMCOMS removes
NAME from the specific command (e.g., sublist) within COMS according to its
type.

Consider the following example:

<-(DELFROMCOMS SHKCOMS 'Y 'VARS)
T

<-SHKVARS
(CURRENT.NETWORK.NODE)

17.7.3 Determining if an Object is in a Command
INFILECOMS? searches a File Package command list to determine if an object
of a given type appears in the command list. It takes the form

Function: INFILECOMS?

Arguments: 3

17.7 Manipulating File Package Commands 611

Arguments: 1) an o b jec t name, NAME
2) a command l i s t , COMS
3) an o b jec t type, TYPE

Value: T, i f NAME of TYPE appears in COMS.

COMS is usually a variable whose value is a list of File Package commands.
INFILECOMS? searches its value looking for an instance of NAME in a com-
miand associated with TYPE. It returns T if NAME is found. Consider the exam-
ple:

INFILECOMS? 'MEDIAN AMISUTILCOMS *FNS)
T

If NAME has the value NIL, INFILECOMS? will return a list of all objects
with the type TYPE. Consider the example:

^(INFILECOMS? NIL AMISUTILCOMS 'FNS)
(INSERT.STRING DELETE.STRING SUBSTITUTE.STRING
MAKE. STRING. FROM. LIST . . .)

If NAME has the value T, INFILECOMS? returns T if there are any objects
of type TYPE in the command list.

< -(INFILECOMS? T AMISUTILCOMS 'RECORD)
NIL

612 The File Package

Obtaining A List of Object Types
FILECOMSLST returns a list of the objects of type TYPE that appear in a file.
It takes the form

Function: FILECOMSLST

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) an o b je c t type , TYPE

Value: A l i s t o f o b je c ts of type TYPE.

FILECOMSLST searches the File Package commands associated with FILE
for objects of type TYPE. It returns a list of all such objects, e.g.,

(FILECOMSLST 'AMIS 'RECORDS)
(GRAPH.NODE SLOTRECORD DEMONRECORD)

17.7 Manipulating File Package Commands 613

Obtaining a List of Functions in a File
We frequently ask for a list of all the functions in a file. FBLEFNSLST returns a
list of all functions that are named in File Package commands. It takes the form

Function: FILEFNSLST

Arguments: 1

Argument: 1) a f i l e name, FILE

Value: A l i s t o f functions named in the F ile
Package commands.

Consider the following example:

<-(FILEFNSLST 'AMIS)
(CREATE.DATABASE. FUNCTIONS.MENU CREATE.DATA.MODELS
MAKE.DB.COMS MAKE.DB. FILENAME . . .)

17.7.4 Making a New File Package Command
MAKENEWCOM creates a new file package command that will dump an object
of a type to a file when the file is (re)made. It takes the form

Function: MAKENEWCOM

Arguments: 2

Arguments: 1) an o b jec t name, NAME
2) an o b jec t type, TYPE

Value: The F i le Package command fo r dumping NAME
of TYPE to a f i l e .

The command returned by MAKENEWCOM is usually appended to the
File Package commands associated with a file, e.g.,

^(SETQ AMISUTILCOMS
(APPEND AMISUTILCOMS (MAKENEWCOM 'VARIANCE

'FNS)))
(• • • • •

(FNS VARIANCE))

17.7.5 Creating a COMS Variable Name
An operation that must frequently be performed is to create the name of the
variable whose value is the list of File Package commands. This operation is

required because many File Package functions require that you only submit the
name of the file. FILECOMS takes the form

Function: FILECOMS
Arguments: 2

Arguments: 1) a f i l e name, FILE
2) an o b jec t type, TYPE

Value: An atom which i s a v a r iab le name.

If TYPE is NIL, then FILECOMS returns an atom of the form
<file>COMS. Otherwise, it returns an atom composed from the file name and
the object type. Consider the examples:

(FILECOMS ' AMISMODELS)
AMISMODELSCOMS
-^(FILECOMS ’AMISNET *VARS)
AMISNETVARS

614 The File Package

17.7.6 Smashing a File's COMS
SMASHFILECOMS sets all file variables to NOBIND in a command list. It
takes the form

Function: SMASHFILECOMS

Arguments: 1
Argument: 1) a f i l e name, FILE
Value: The f i l e name.

SMASHFILECOMS sets all file variables that appear in File Package com
mands to NOBIND. These variables take the form

(<command) * < f i l e v a r ia b le))

It also sets the name of the command list variable to NOBIND. Consider the
following example:

-̂SHKCOMS
((FNS * SHKFNS) (VARS * SHKVARS))

-^SHKFNS
(CREATE.FRAME INITIALIZE.FRAME DEFINE.ATTRIBUTE . . .)

<-SHKVARS
(CURRENT.NETWORK.NODE)

<-(SMASHFILECOMS 'SHK)
SHK

<-SHKCOMS
UNBOUND ATOM
SHKCOMS

as are SHKFNS and SHKVARS.

17.7.7 Moving an Item Between Files
MOVETOFILE allows you to move an object of a given type from one file to
another. It takes the form

Function: MOVETOFILE

Arguments: 4

Arguments: 1) a d e s t in a t io n f i l e , DSTFILE
2) an o b je c t , NAME
3) an o b jec t type, TYPE
4) a source f i l e , SRCFILE

Value: The o b jec t name.

MOVETOFILE is a shorthand notation for using DELFROMFILE and
ADDTOFILE in the proper way to update the File Package commands of the
two files.

17.8 PRETTYPRINTING SYMBOLIC FILES
In Section 15.7, we examined the functions for prettyprinting function defini
tions to a file or a terminal. When you make a symbolic file, the S-expressions
comprising the function definitions and other forms are compressed to eliminate
superfluous blanks and end-of-line characters. While storage efficient, these
files are extremely difficult to read. You may create a symbolic file in pretty-
printed format using the PRETTYDEF package.

17.8.1 Prettyprinting Function Definitions
PRETTYDEF writes a symbolic file, suitable for loading, in prettyprint format.
It has the following form

Function: PRETTYDEF

Arguments: 6

17.8 Prettyprinting Symbolic Files 615

Arguments: 1) an l i s t of func tions , PRETTYFNS
2) a f i l e name, PRETTYFILE
3) f i l e package commands, PRETTYCOMS
A) a l i s t o f func tions , REPRINTFNS
5) a f i l e name, SOURCEFILE
6) a l i s t , CHANGES

Value: The f u l l name of the symbolic f i l e .

PRETTYDEF creates a symbolic file using the value of PRETTYFILE. If
PRETTYFILE is NIL, the primary output file is used. If PRiETTYFILE is an
atom, its value is used as the file name. If the symbolic file is not already open, it
will be opened by PRETTYDEF. It is automatically closed when PRETTYDEF
terminates.

(PRETTYDEF (LIST ’IMAG))
(DEFINEQ

(IMAG (LAMBDA (GX) **GOMMENT**
(REGORDACGESS (QUOTE IMAG)

GX NIL (QUOTE FETGH)))))
T

where the primary output file is used.
If PRETTYFILE is a list, the symbolic file name is assumed to be the CAR

of the list. Processing is the same except that the file will not be closed when
PRETTYDEF terminates.

PRETTYFNS is an optional list of functions that are to be printed on the
symbolic file. If PRTTYFNS is NIL, PRETTYDEF assumes the form (FNS *
<prttyfns>) will appear in the file package commands.

^(PRETTYDEF NIL NIL GOMPLEXGOMS NIL 'COMPLEX)
(RPAQQ GOMPLEXGOMS (COMPLEX REAL IMAG CPLUS CDIFFERENGE
• • •

RECIPROCAL TRUNCATE PRINT.ARRAY)) ■
(DEFINEQ

(COMPLEX (LAMBDA (R I) **GOMMENT**

616 The File Package

All of the functions in COMPLEXCOMS will be prettyprinted to the pri
mary output file, since no functions are specifically identified.

PRETTYCOMS is a list of file package commands. If PRETTYCOMS is an
atom, its value is used. PRETTYDEF writes an RPAQQ on the file which sets
the atom to the command list when the file is loaded.

REPRINTFNS and SOURCEFILE are used when a file is remade (see Sec
tion 17.3.2). REPRINTFNS is a list of functions to be printed. If its value is

EXPRS, all functions with EXPR definitions will be prettyprinted. If its value is
ALL, all functions with EXPR definitions or EXPR properties will be printed.

SOURCEFILE is the name of a file from which to copy the definitions of
those functions that are not going to be prettyprinted, i.e., those not specified by
REPRINTFNS. If SOURCEFILE is T, the most recent version of PRETTY-
FILE is used. Thus, when you make the next version of PRETTYFILE, you can
directly copy the definitions of any functions that have not changed from the
previous version. If there is no previous version, PRETTYDEF prints the mes
sage “ <prettyfile> NOT FOUND, SO IT WILL BE WRITTEN ANEW” . It then
proceeds as if REPRINTFNS and SOURCEFILE were both NIL.

CHANGES is for internal use by the File Package.

A Definition for PRETTYDEF
We might define a simple version of PRETTYDEF as follows;

(DEFINEQ
(p re t ty d e f (p re t ty fn s p r e t t y f i l e prettycoms)

(PROG (sa v e -o u tp u t - f i le c lo s e f i le ?
p re t ty c o m lis t p re t ty d a te)

(*
Save the output f i l e name.

*)
(SETQ s a v e -o u tp u t- f i le (OUTPUT))
(COND

((LISTP p r e t ty f i l e)
(*

I f PRETTYFILE is a l i s t ,
get i t s CAR which i s the
ac tu a l f i l e name, and note
th a t i t should not be
closed when PRETTYDEF
te rm in a te s .

*)
(SETQ p r e t t y f i l e (CAR
p r e t t y f i l e))
(SETQ c lo s e f i le ? T)))

(*
I f PRETTYFNS is NIL or an atom which
i s not a l i s t and PRETTYCOMS is NIL
or an atom which i s not a l i s t , th e re
is no s p e c if ic a t io n from which
PRETTYDEF can work. Declare an e r ro r .

)
(AND

(NLISTP p re t ty fn s)

17.8 Prettyprinting Symbolic Files 617

618 The File Package

(NLISTP (EVALV p re t ty fn s))
(NLISTP prettycorns)
(NLISTP (EVALV prettycom s))
(ERROR "ILLEGAL OR MEANINGLESS GALL:”

(LIST 'PRETTYDEF
p re t ty fn s
p r e t ty f i l e
prettycom s)))

(COND ^
((NULL p r e t ty f i l e)

(*
I f PRETTYFILE i s NIL,
output i s d irec ted to the
primary output f i l e , which |
you cannot c lose .

)
. (SETQ c lo s e f i le ? T))

((OPENP p r e t t y f i l e 'OUTPUT)
(*

Attempt to open the output
f i l e .

)
(OUTPUT p r e t t y f i l e))

(T
(OUTFILE p r e t ty f i l e)
(SETQ p re t ty d a te

(PRINTDATE
(NAMEFIELD
p r e t t y f i l e)
’PRETTYDEF))))

(SETQ p r e t t y f i l e (OUTPUT))
(COND

((OR
(LISTP p re t ty fn s)
(LISTP (CAR p re t ty fn s)))

(PRINTFNS p re t ty fn s)
(PRETTYCOM p re t ty fn s T)))

(COND
((AND

(NLISTP prettycoms)
(NLISTP (CAR prettycom s)))
(GO o u t)))

(*
P r in t the F i le Package commands in a
p re t ty p r in te d form at. Each command

loop

out

))

type must be t r e a te d according to i t s
own c h a ra c te r i s t i c s .

)
(PRETTYCOM prettycorns T)
(COND

((ATOM prettycoms)
(SETQ prettycoms (CAR prettycom s))))

(SETQ p re tty c o m lis t prettycoms)

(COND
((NLISTP p re tty co m lis t)

(GO o u t)))
(PRETTYCOM (CAR p re t ty c o m lis t))
(SETQ p r e t ty l (CDR p re t ty c o m lis t))
(GO loop)

(*
Restore the primary output f i l e .

)
(OUTPUT saveout)
(COND

((NULL c lo s e f i le ?)
(*

I f NIL, close the output
f i l e .

)
(ENDFILE p r e t ty f i l e)
(EVAL p r e t ty d a te)))

(RETURN p r e t t y f i l e))

17.8 Prettyprinting Symbolic Files 619

17.8.2 Printing a Definition
PRINTDEF prints any expression in pretty format on the primary output file. It
takes the form

Function: PRINTDEF

Arguments: 6
Arguments: 1) an expression , EXPRESSION

2) a l e f t hand margin, LEFTMARGIN
3) a d e f in i t io n f la g , DEFFLG
4) a t a i l f la g , TAILFLG

5) a fon t l i s t , FONTLST
6) a f i l e name, FILE

Value: NIL.

PRINTDEF usually prints the value of EXPRESSION on the primary out
put file using the primary readtable. If FILE is non-NIL, the output from
PRINTDEF will be directed to the specified file, which must be opened for out
put.

LEFTMARGIN determines the number of spaces from the logical left end
of the output display. Thus,

(PRINTDEF <expression))

will result in the expression being printed abutting the left edge of your display
terminal. The value of (LINELENGTH) determines the right hand margin.

If DEFFLG has the value T, then the value of EXPRESSION is treated as a
function definition. Special action is taken for LAMBDAs, PROGs, CONDs,
comments, and CLISP words. Otherwise, no special action is taken. DEFFLAG
is NIL when PRINTDEF calls PRETTYPRINT to print variables and property
lists or when the editor calls PRINTDEF via PPV.

If TAILFLG has the value T, then EXPRESSION is treated as the tail of a
list which should be printed without parentheses.

FONTLST is used by the Font Package which is not discussed in this text.
Consider the following example:

(PRINTDEF complexcoms 10 NIL T)
(FNS * COMPLEXFNS)
(RECORDS COMPLEX)
(P (DEFPRINT (QUOTE COMPLEX)

(FUNCTION PRINT. COMPLEX)))
NIL

(PRINTDEF (GETD 'RECIPROCAL) 5 T T)
LAMBDA (X) **COMMENT**
(COND

((EQP X 0.0)
(ERROR "ZERO HAS NO RECIPROCAL"))

(T
(QUOTIENT 1.0 (FLOAT X))))

NIL

17.8.3 Making a File Creation Slug
FILECREATED prints a message followed by the time and date the file was
made. FILECREATED takes the following form

620 The File Package

17.8 Prettyprinting Symbolic Files 621

Function:

Arguments:

Argument:

Value:

FILECREATED
1

1) an expression , EXPRESSION

NIL.

FILECREATED is an NLAMBDA, nospread function.
The time and date of file creation are found in the CAR of EXPRESSION.

The message is the value of the variable PRETTYHEADER, which is initially
set to the string “FILE CREATED:” . If PRETTYHEADER is NIL, nothing will
be printed.

The CDR of EXPRESSION contains information about the file. Since
FILECREATED is usually called by PRINTDATE, this information is already
properly formatted.

FILECREATED stores the time and date the file was made on the file’s
property list under the property FILED ATE.

Consider the following example:

<-(SETQ f i l e - i n f o (CONS (DATE) NIL)))
("18-SEP-84 20:09:06”)

(APPLY (FUNCTION FILECREATED) f i l e - in f o)
FILE CREATED 18-SEP-84 20:09:06
NIL

17.8.4 Obtaining the File Date
You may obtain the file date by invoking FILED ATE, which takes the following
form

Function:

Arguments:

Argument:

Value:

FILEDATE

1

1) a f i l e name, FILE

The f i l e date in the FILE CREATED
expression .

FILEDATE returns the date contained in the FILE CREATED expression
stored in the file header, e.g.,

< -(FILEDATE ’COMPLEX)
"30-AUG-84 20:44:36”

17.8.5 Printing the File Date
PRINTDATE is usually called by PRETTYDEF to insert the “FILE CRE
ATED” expression at the beginning of a symbolic file. It takes the following
format

Funct ion: PRINTDATE

Arguments: 2

Argument: 1) a file name, FILE
2) a list of changes, CHANGES

Value: The expression which is the CONS of the
date and CHANGES.

CHANGES is used by the File Package commands to insert an expression of
the form

changes to: (FNS ...)

in the “FILE CREATED” expression.
PRINTDATE calls upon DATE (see Section 29.1.1) to return the current

date and time as a string suitable for printing in a symbolic file.
Consider the following example:

(PRINTDATE T NIL)
(FILECREATED "18-SEP-84 20:17:52" T)
(("18-SEP-84 20:17:52" T))

Note that if there are no changes to the file, PRINTDATE inserts the value
T as a placeholder.

An alternative definition for PRINTDATE which provides more informa
tion might be defined by you as:

(DEFINEQ
(printdate (file format source-date previous-source-date

compile-date previous-compile-date)
(PROG (slug)

(SETQ slug
(NCONC

(LIST 'FILEHEADER
file
(LIST 'DATE (DATE))
(LIST 'FORMAT

(OR format "SPECIAL"))
(LIST 'FILENAME

622 The File Package

))

(FILEVERSION (OUTPUT)))
(LIST 'SOURCE-DATE

(OR source-date (DATE))))
(COND

(previous-source-date
(LIST

(LIST 'PREVIOUS-SOURCE-DATE
p rev io u s-so u rce -d a te))))

(AND compile-date
(LIST

(LIST 'COMPILING-DATE
com pile-date)))

(AND previous-com pile-date
(LIST

(LIST 'PREVIOUS-COMPILE-
DATE

previous-com pile-
date)))

))
(PRINTDEFl slug)
(RETURN slug))

17.8 Prettyprinting Symbolic Files 623

17.8.6 Printing Function Definitions on a File
PRINTFNS prints DEFINEQ on the primary output file. It then prettyprints the
definitions of functions which are given as its argument. It takes the form

Function: PRINTFNS

Arguments: 1

Argument: 1) a l i s t of func tions , FNSLST

Value: NIL.

Usually, PRINTFNS is given a variable of the form <file>FNS from a File
Package command which has the form:

(FNS * <file>FNS)

Alternatively, if the function names are distributed in the File Package com
mands in the form:

(FNS <filenamel> . . . <filenameN>)

PRINTFNS may be called with (CDR <expression)). Yet a third form is

(PRINTFNS (FILEFNSLST (filenam e)))

which gathers into a list all of the function names defined in the file.
Consider the following example:

(PRINTFNS (LIST 'ROUNDTO))
(DEFINEQ

(ROUNDTO
(LAMBDA (X Y) **COMMENT**

(TIMES (ROUNDED (QUOTIENT X Y)
Y)))))

NIL

(PRINTFNS 'ADD3)
(DEFINEQ)
NIL

17.8.7 Printing a COMS Message upon Loading
PRETTYCOMPRINT prints the value of its argument using LISPXPRINT un
less the value of PRETTYHEADER is NIL. Usually, its argument is the name of
the variable containing the File Package commands for a file. It takes the form

Function: PRETTYCOMPRINT

Arguments: 1

Argument: 1) an expression , EXPRESSION

Value: NIL.

PRETTYCOMPRINT is an NLAMBDA function. It prints the value of
EXPRESSION.

When you load a file, LOAD prints certain information about the file name
and when it was created. It then begins executing S-expressions that it reads
from the file. Normally, the first of these S-expressions displays the File Package
command variable.

If PRETTYHEADER is NIL, nothing will be printed by PRETTYCOM
PRINT. Thus, if you want to load a file without alerting the user that you have
done so, you might temporarily bind PRETTYHEADER to NIL while you load
the file.

17.8.8 Obtaining the File Changes
FILECHANGES prints the changes to the file stored in the file header expres
sion at the beginning of the file. It takes the form

624 The File Package

Arguments: 1) a f i l e name, FILE
2) a f i l e package type, TYPE

Value: A l i s t of the changed o b jec ts of type
TYPE.

FILECHANGES inspects the changes expression at the beginning of the
file. It returns a list of all the changes of the given type. If TYPE is NIL, FILE
CHANGES returns an association list (alist) of all changes where the file pack
age type is the CAR of the alist.

<-(FILECHANGES ’FRAME)
((FNS ADD.TO.FRAME.LIST CREATE.FRAME INITIALIZE.FRAME)
(VARS SHKFNS))

17.9 Symbolic File Input 625

Function: FILECHANGES

Arguments: 2

17.9 SYMBOLIC FILE INPUT
Programs are usually stored in source form in symbolic files on mass storage. To
create an Interlisp application environment, we load one or more symbolic files
into the Interlisp virtual memory. Symbolic files are created in two ways:

1. Using a text editor to type in source code.
2. Using MAKEFILE to wTite out function definitions and other informa

tion as directed by File Package commands.

As we have seen in previous sections, the File Package writes a considerable
amount of information describing an application environment into a file. As ap
plications grow in complexity, a symbolic file may contain a large number of
functions. It may be time-consuming to load all of the information from the file.
The File Package provides a number of functions for loading all or portions of a
symbolic file.

17.9.1 Generalized Load
LOAD is the generalized loading function. It reads successive S-expressions
from a file until it encounters the atom STOP. Each S-expression is evaluated as
it is read. It takes the form

Function: LOAD
LOAD?

Arguments: 3

Arguments: 1) a f i l e name, FILE
2) a load f la g , LDFLG
3) a p r in t f la g , PRINTFLAG

Value: The f i l e name or NIL.

LOAD expects the file to exist when it accesses it. If it does not, LOAD
prints the message FILE NOT FOUND followed by the file name.

If LOAD encounters an end-of-file condition, it displays an error message ?
and breaks.

Because each S-expression is evaluated as it is read, erroneous S-expressions
can cause a break to occur. Depending on how you handle the break, loading
may not be completed.

PRINTFLAG may be used to trace the loading of S-expressions. If
PRINTFLAG has the value T, LOAD prints the value of each S-expression;
otherwise, it does not. Consider the following example:

<-(LOAD 'COMPLEX T T)
<KAISLER>COMPLEX..2
FILE CREATED 30-AUG-8A 20:4-4:36
NIL
COMPLEXCOMS
COMPLEXCOMS
((FNS * COMPLEXFNS) (RECORDS COMPLEX) . . .)
(COMPLEX REAL IMAG CPLUS CMULT . . .)
• • •
<KAISLER>COMPLEX..2

LDFLG affects the evaluation of DEFINE(Q) and RPAQ(Q) functions.
DFNFLG (see Section 8.2.4) is bound to LDFLG while LOAD executes. LDFLG
may take the values:

NIL
If LDFLG is NIL, and a function is redefined (e.g., a definition already exists in
the virtual memory), LOAD displays the message (<function-name> REDE
FINED) and saves the old definition on the atom’s property list. Thus, you may
recover the original (in memory!) definition of the function using UNSAVE-
DEF.

T
If LDFLG is T, the old definition is overwritten. You are not informed that the
function has been overwritten.

PROP
If LDFLG has the value PROP, function definitions are stored on the atom’s
property list under the property EXPR. This action is the corollary to (1) where
the old definition is saved. Here, the new definition is saved on the property list.

626 The File Package

ALLPROP
If LDFLG has the value ALLPROP, both function definitions and variables set
by RPAQ(Q) are stored on property lists.

SYSLOAD
LDFLG has the value SYSLOAD, LOAD does not load debugging and develop
ment information. The resulting application will execute more efficiently.
LOAD takes the following actions:

a. Binds DFNFLG to T.
b. Binds LISPXHIST to NIL so that the loading operation is not undoable

(see Section 28.2).
c. Binds ADDSPELLFLG to NIL to suppress adding names to spelling

lists, (see Section 22.7.2).
d. Binds FILEPKGFLG to NIL so that the file is not noticed by the File

Package.
e. Binds BUILDMAPFLG to NIL to prevent construction of a file map.
f. Binds the -COMS and -VARS entries to NOBIND.
g. Adds FILE to SYSFILES rather than FILELST.

An alternative form, LOAD?, operates the same except that it does not load
the file if it has already been loaded. In this case, its value is NIL.

17.9 Symbolic File Input 627

17.9.2 Loading Selected Functions
Rather than loading an entire file, you may load selected functions and variables
from a file. LOADFNS takes the form

Function: LOADFNS

Arguments: 4

Arguments: 1) a l i s t of func tions , FNS
2) a f i l e name, FILE
3) a load f la g , LDFLG
4) an S -expression , VARS

Value: A l i s t o f functions found and loaded as
w ell as those not found.

FNS may be a list of functions, or a single function name, or T. The latter
case forces all functions to be loaded. FILE may be either a compiled or symbolic
file. LDFLG is handled exactly the same as in LOAD.

VARS specifies how to handle expressions other than function definitions.
There are several possible values:

1. T, which loads all expressions.
2. NIL, which load none of the expressions.
3. VARS, which loads only expressions created by RPAQ(Q).
4. FNS/VARS, which loads only -COMS and -BLOCKS expressions.
5. Any other atom is treated as (LIST <atom>).
6. If VARS is a list, all atoms in the list are compared to the CARs of each

expression. Wherever a match is found, the expression will be loaded.

LOADFNS returns a list of functions loaded as well as those not found. The
format of the list is:

(<load ed -fu n c tio n s) (NOT-FOUND: <not~found-functions>))

If VARS was non-NIL, the list will also include those expressions that were
loaded as well as those members of VARS (as a list) which were not found.

If FILE is NIL, WHEREIS (see Section 17.3.8) is invoked to locate the file
containing the first function in FNS. It assumes that all functions will be loaded
from that file.

17.9.3 Loading Selected Expressions
LOADVARS loads S-expressions from a file. It takes the form

Function: LOADVARS

Arguments: 3

Arguments: 1) a v a r ia b le l i s t , VARS
2) a f i l e name, FILE
3) a load f la g , LDFLG

Value: A l i s t o f v a r ia b le s loaded.

This form is equivalent to

(LOADFNS NIL < file> <ldflg> <vars>).

17.9.4 Editing Functions Without Loading
When the File Package has noticed a file, it knows about its contents. At that
point, you can edit functions within a file without consuming memory to load
them. To notice a file in this manner, you may use LOADFROM, which takes
the form

Funct io n : LOADFROM

Arguments: 3

628 The File Package

17.9 Symbolic File Input 629

Arguments:

Value:

1) a f i l e name, FILE
2) a l i s t o f func tions , FNS
3) a load f la g , LDFLG

The f i l e name.

Typically, LOADFROM is used to notice a file, e.g.,

<-(LOADFROM 'ADV15.DC0M)
[KAISLER]ADV15.DCOM;2

You may load a few functions in addition to noticing the file by providing a
second argument. LOADFROM is equivalent to:

(LOADFNS <fns> < file> <ldflg> T) .

17.9.5 Loading from a Compiled File
LOADCOMP loads expressions from a compiled, rather than symbolic, file. It
takes the form

Function:

Arguments;

Arguments:

Value:

LOADCOMP

2
1) a f i l e name, FILE
2) a load f la g , LDFLG

The f i l e name.

LOADCOMP performs all the functions on a file associated with compila
tion. That is, it evaluates all expressions included in DECLARE: EVAL@COM-
PILE expressions. It notices the function and variable names by adding them to
the lists NOFIXFNSLST and NOFIXVARSLST.

18

Error Handling

Errors occur frequently during programming, particularly in the early stages of
program development. During this period, easy handling of errors is a necessity
because it is likely that you will be encountering many of them. As a program
ages, most of the obvious errors are eliminated. It is the subtle errors, mainly
due to logic or complex data structures, that begin to plague the programmer.
Now, what is needed is not easy handling, but powerful tools to diagnose the
cause of the error and determine the corrective action. The process of isolating
the error and finding the fix is often labor-intensive in these latter stages of pro
gram development.

INTERLISP provides a powerful facility for catching and handling errors as
they occur. Unlike other programming languages where the user may merely
inspect the state of the program after an error occurs, INTERLISP allows the
user to interactively correct the problem and continue the computation. IN
TERLISP also provides a set of tools that can assist you in isolating errors within
program segments and identifying their causes. This duality of capability is one
of the reasons that INTERLISP is a powerful and flexible program development
environment.

18.1 HOW ERRORS OCCUR
Errors can occur for many reasons. A discussion of error types is presented in
Section 18.5. However, because of the simplicity of datatypes and representa
tions in INTERLISP, errors frequently occur for a few well-defined reasons.

The most frequent case is an unbound atom. When atoms are created, their
value cell is filled with the atom NOBIND to indicate that they have not been
assigned a value. When the interpreter encounters an atom whose value cell con
tains NOBIND, it generates an error. It does so by calling the function
FAULTEVAL. FAULTEVAL will print the character string “U.B.A.” to indi
cate an unbound atom and then break.

631

The second most frequent cause of errors is an attempt to invoke a function
which is undefined. This error is often due to a misspelling either in the function
definition or, more likely, in the statement where the function is to be invoked.
Another case occurs when the interpreter encounters a list in EVAL mode whose
CAR is not the name of a function. The interpreter calls FAULTEVAL which
normally prints “U.D.F.” , to indicate an undefined function, and then breaks.

Other types of errors are usually specific instances of these generic errors.
They are specifically identified because they usually occur in primitive functions
and occur frequently in the early stages of program development. Specializing
the error helps you identify the cause more rapidly. There are over fifty different
errors currently detected in INTERLISP. Some are specific to the implementa
tion while others are detected in every implementation. Section 18.5 discusses
the generic errors. Most of these errors will cause a break to occur and place your
computation under the control of the Break Package.

Once inside the Break Package, the user may perform any number of opera
tions to diagnose and correct the error. These operations are discussed in Chap
ter 20.

18.2 CATCHING AND HANDLING ERRORS
A good dose of preventative medicine often prevents a program from going awry
and causing significant damage to your environment or computation. Catching
errors as they occur but before they have a deleterious effect allows you to pre
vent any damage that might occur. This approach is useful for two reasons:

1. It makes your programs user-friendly if you can alert the user when an
error occurs, provide him with information on how to correct it, and al
low him to do so.

2. When you attempt to account for errors in your program, it makes you
think carefully about potential faults and plan for their occurrence. This
is good software engineering practice.

INTERLISP provides a mechanism for catching a subset of the errors that
can occur before they cause a break. When the error is caught, the user may
analyze it and decide whether or not to break, break sometimes (depending on
other factors), or take corrective action. Another mechanism allows a user to
provisionally execute a function, determine whether an error would occur or not,
and proceed based on this information. These two mechanisms are discussed in
the following sections.

18.2.1 Catching Errors: ERRORTYPELST
ERRORTYPELST is a system variable that is used by FAULTEVAL to deter
mine how an error should be handled. ERRORTYPELST is a list of lists each
having the format

632 Error Handling

18.2 Catching and Handling Errors 633

(<number> (ex p ress io n !) . . . <expressionN>)

The (number) is one of the error numbers described in Section 18.5. The
(expression)s are INTERLISP code for handling the error. If an error number
does not appear on ERRORTYPELST, then an error of that type will always
cause a break.

ERRORTYPELST is used by BREAKCHECK to determine whether or not
an error should cause an invocation of FAULTEVAL. ERRORTYPELST is
searched for an entry with a CAR corresponding to the type of error that has
occurred. If it is found, then the (expression)s are evaluated. If the last (expres
sion) produces a non-NIL value, that value is substituted at the point where the
error occurred and the function is re-entered.

Consider the following example [irm83] which defines ERRORTYPELST to
have an entry for catching errors of the type NON-NUMERIC ARG. The form of
the entry is

(SETQ ERRORTYPELST
(10

(AND
(NULL (CADR ERRORMESS))
(SELECTQ (STKNAME ERRORPOS)

((IPLUS ADDl SUBl) 0)
(ITIMES 1)
(PROGN

(SETQ BREAKCHK T)
NIL)))))

Whenever a NON-NUMERIC ARG error occurs, this entry will force the
error to be caught. When the expression is evaluated, we see that only specific
cases are to be treated. These are

1. The offending value is NIL, derived from

(NULL (CADR ERRORMESS))

2. If the function executed was IPLUS, ADDl, or SUBl, then substitute
the value 0.

3. If the function executed was ITIMES, substitute 1.

Otherwise, break on any other occurrence of this error. This is achieved by
setting BREAKCHK to T, not by returning NIL. The reason for this is that once
the expression is evaluated, the value returned will be substituted in the offend
ing statement. In this case, returning NIL will, of course, cause the error to re
cur.

When you use the ERRORTYPELST facility, you may examine and set the
following system variables; ERRORMESS, ERRORPOS, BREAKCHK, and
PRINTMSG.

ERRORMESS is a list whose CAR is the number of the error and whose
CADR is the offending value. In the above example, the CADR of ER
RORMESS is NIL. This yields the subcase “NON-NUMERIC ARG NIL” that
we treat in the expression.

ERRORPOS is the position on the stack where the error occurred. In partic
ular, it will be a pointer to the name of the function in which the error occurred.
We obtain the name of the function by using STKNAME (see Section 30.3.2) to
retrace the pointer to the PRINl-PNAME of the function.

BREAKCHK determines whether or not a break will occur after the expres
sion is evaluated. Note that since the expression returns a value, a break only
occurs if the value causes another error. By setting BREAKCHK to T, you may
force a break to occur regardless of the value returned. Conversely, setting
BREAKCHK to NIL means that a break will not occur.

PRINTMSG indicates that the error message will be printed (T) or not
(NIL). To force this action, you should include a SETQ expression in the <ex
pression) that explicitly sets PRINTMSG.

18.2.2 An Example of ERRORTYPELST Usage
The ERRORTYPELST mechanism allows you to intercept the handling of an
error and determine its disposition. You may decide to handle it yourself or allow
the system to proceed with the standard processing. If you you want to handle an
error yourself, you must place an entry on the ERRORTYPELST.

A common error that causes significant problems to many INTERLISP pro
grammers is the case where a file will not open. Usually, this error arises because
the file does not exist in the current directory (although on certain implementa
tions, you may not be able to open it if it is already opened by another user).

The LISPUSERS package, FILEWONTOPEN, adds an entry to ERROR
TYPELST to handle the problem where a file will not open. The entry is defined
as follows:

(ADDTOVAR
ERRORTYPELST
(9

(PROG NIL
loop

(AND
(SELECTQ (STKNAME ERRORPOS)

(INFILE NIL)
((OUTFILE DRIBBLE) T)
(OPENFILE

(SELECTQ (STKARG 3
ERRORPOS)

634 Error Handling

(OLD NIL)
(NEW T)
(SELECTQ (STKARG 2
ERRORPOS)
((INPUT BOTH) NIL)
(OUTPUT T)
NIL)))

((OPENF *PROG*LAM)
(STKNTH -1 ERRORPOS ERRORPOS)
(GO loop))

NIL)
(NOT (FILENAMEFIELD (CADR ERRORMESS)

'VERSION))
(RETURN

(PACKFILENAME
'VERSION
(ADDl

(FILENAMEFIELD
(OUTFILEP (CADR
ERRORMESS))
'VERSION))

'BODY
(CADR ERRORMESS)))))))

18.3 Catching Errors in a Computation 635

18.3 CATCHING ERRORS IN A COMPUTATION
In planning for errors, you must be able to evaluate the expression that could
cause the error, ERRORSET allows you to evaluate an expression and return a
value that specifies whether an error occurred or not.

The generic format for invoking ERRORSET is

Func t ion: ERRORSET

Arguments: 2

Arguments: 1) an S-expression to be evaluated,
EXPRESSION

2) a flag, FLAG

Value: Either a list containing the value of
the evaluated S-expression or NIL.

ERRORSET is a LAMBDA-type function. Thus, its arguments are evalu
ated before passing them to ERRORSET. That is, ERRORSET performs (effec
tively) (EVAL (EVAL EXPRESSION)). The (EVAL EXPRESSION) is per
formed before ERRORSET is entered. If no error occurs in the evaluation of the
S-expression, the value of ERRORSET is a list containing the value obtained by

evaluating the S-expression. Otherwise, ERRORSET returns NIL. Note that if
the value of the S-expression is NIL, ERRORSET returns the value (NIL). Thus,
to retrieve the value of EXPRESSION, you must take the CAR of the value re
turned by ERRORSET.

ERRORSET evaluates EXPRESSION via (EVAL EXPRESSION). If no er
ror occurs as the result of evaluating EXPRESSION, ERRORSET returns the
value of the computation as the sole element of a list. For example,

<-(SETQ CITIES
(LIST 'SAN-FRANCISCO 'NEW-YORK 'BALTIMORE))

(SAN-FRANCISCO NEW-YORK BALTIMORE)

(ERRORSET '(CAR CITIES))
(SAN-FRANCISCO)

Note that I have QUOTEd the expression (CAR CITIES) because ERROR-
SET applies EVAL to it. Without quoting, we would have

(ERRORSET (CAR CITIES) T)
UNBOUND ATOM
SAN-FRANCISCO [in ERRORSET]
NIL

If an error occurs during the evaluation of EXPRESSION, ERRORSET re
turns NIL.

<-(ERRORSET '(IPLUS 'X 128))
NIL

where the obvious error is the usage of ‘X in the IPLUS expression. Executing
the same statement with FLAG equal to T yields

^(ERRORSET '(IPLUS 'X 128) T)
NON-NUMERIC ARG
X
NIL

FLAG determines whether or not any error message resulting from the eval
uation of EXPRESSION will be printed. It may take the following values;

1. T, whence the error message is printed.
2. NIL, whence no error messages are printed. However, if NLSETQGAG

is NIL, error messages are printed regardless of the value of FLAG.
3. INTERNAL, whence this invocation is ignored for purposes of determin

ing whether or not to print an error message. ERRORSET was called

636 Error Handling

from within INTERLISP as an error prevention mechanism. The error
will be handled when it is detected, so there is no reason to notify the
user.

4. NOBREAK, whenpe no break will occur. However, a break occurs if the
error occurs more than HELPDEPTH levels below the errorset.

18.3.1 Alternative Forms of ERRORSET
Two alternative forms of ERRORSET allow you to use prespecified values for
FLAG. ERSETQ and NLSETQ take the form

Function: ERSETQ
NLSETQ

Arguments: 1

Arguments: 1) an S-expression, EXPRESSION

Value: The value produced by evaluating
EXPRESSION; otherwise, NIL.

Both ERSETQ and NLSETQ are NLAMBDA functions, so their arguments
are not evaluated before the function is invoked.

Consider the following example:

^(ERSETQ (ITIMES a b))

is equivalent to

(ERRORSET (QUOTE (ITIMES a b)) T)

Note that we do not QUOTE arguments to ERSETQ and NLSETQ.

Defining ERSETQ and NLSETQ
We might define them as follows:

(DEFINEQ
(ersetq

(NLAMBDA (expression)
(ERRORSET expression T)

)))
(DEFINEQ

(nlsetq
(NLAMBDA (expression)

18.3 Catching Errors in a Computation 637

)))

The value of FLAG determines whether or not error messages are printed
when ERRORSET is called. This value may be superseded by the value of
NLSETQGAG. Its value is initially T, meaning don’t print error messages. By
setting NLSETQGAG to NIL, all error messages will be printed regardless of the
value of FLAG. The effect of NLSETQGAG is to force INTERLISP to treat all
NLSETQs as ERSETQs.

18.3.2 Checking for an End of File
In INTERLISP/370, the function READC does not return an indication of an
end-of-file condition. Rather, it causes an error to occur. However, you may
check for an end-of-file condition using ERRORSET and PEEKC. A function
that might be defined is shown below:

(DEFINEQ
(check-end-of-file (file-name)

(COND
((ERSETQ (PEEKC file-name)) 'end-of-file))

))

PEEKC (see Section 14.2.7) “looks-ahead” in the read buffer to see what
the next character is. If there is no character in the buffer and the system cannot
fill the buffer with more data, an end-of-file condition results. BY applying ER
SETQ, if the end-of-file condition occurs, CHECK-END-OF-FILE will return
NIL. Otherwise, it returns a list consisting of the single character that would
normally be returned by PEEKC.

18.4 TERMINAL-INITIATED BREAKS
Most errors and breaks occur within functions due to logic errors or because you
have explicitly invoked BREAK from within a function. You may also initiate a
break from your terminal. There are several reasons for breaking a program
from your terminal:

1. You notice the program has entered an infinite loop that is performing
the same function over and over again.

2. Your program has failed to display the expected output and you desire to
determine where it is in the computation.

3. You will attempt to debug your program which has produced a notice
able error in its execution.

4. You are attempting to determine what a program does given little or no
documentation (either externally or internally) and perhaps no access to
the source code.

638 Error Handling

(ERRORSET expression NIL)

You may initiate a break from your terminal by typing an interrupt charac
ter. The interrupt characters differ for the particular implementation of IN
TERLISP. Consult the IRM to determine the interrupt characters for your im
plementation.

You may disable or redefine existing interrupt characters or define new in
terrupt characters. An interrupt character is associated with an interrupt chan
nel. INTERLISP-10 has nine predefined interrupt channels:

Channel In te rrup t Type
CTRL-D RESET

CTRL-E ERROR

CTRL-B BREAK

CTRL-H HELP

CTRL-P PRINTLEVEL

CTRL-T CONTROL-T (timing statistics)

 RUBOUT (character deletion)

CTRL-S STORAGE

CTRL-0 OUTPUTBUFFER

INTERLISP-D does not support the STORAGE and OUTPUTBUFFER
interrupt channels.

An interrupt may be either hard or soft. A hard interrupt takes place as soon
as it is typed. A hard interrupt always forces the system out of the function it is
currently executing. The stack is unwound to the last function call or to the top
level if a CTRL-D is typed in. For example, CTRL-E and CTRL-D are hard
interrupts. Soft interrupts do not occur until the next function call. Soft inter
rupts may be safely “continued from” without loss of data or control in the com
putation. CTRL-T is an example of a soft interrupt.

A hard interrupt is implemented by generating error 43. The corresponding
expression from USERINTERRUPTS is retrieved once ERRORX is entered by
the system.

A soft interrupt is implemented by calling INTERRUPT with an appropri
ate third argument. The corresponding expression is retrieved from USERIN
TERRUPTS, When a soft interrupt character is typed at your terminal, IN
TERLISP clears and saves the input buffer, and rings the bell to alert you that it
has received the interrupt. The interrupt expression is evaluated. Depending on
the result, the input buffers are restored and the computation proceeds.

In either case, if the character you have typed in is defined as an interrupt
character, but no definition is found on USERINTERRUPTS, INTERLISP
generates an error message “UNDEFINED USER INTERRUPT” and forces a
break.

18.4 Terminal-Initiated Breaks 639

18.5 TYPES OF ERRORS
INTERLISP provides error indications for over fifty types of errors. Each error is
indicated by a numeric code and an associated message. The numeric code is
returned by ERRORN. The alphanumeric string will be printed by ER-
RORMESS. Some errors are implementation dependent, and thus are unde
fined in other versions of INTERLISP.

Error 0: System Trap Error
Error code 0 corresponds to a “SYSTEM ERROR” . This error also occurs in the
INTERLISP-10 system, where it is displayed as “JSYS ERROR” . It is unde
fined in INTERLISP/370.

For INTERLISP-10, JSYS errors occur if you attempt to execute an operat
ing system function with the wrong code or parameter setup. It may also occur if
you are programming directly in ASSEMBLE code. Usually it occurs because of
addressing problems due to smashed data structures.

The IRM advises that you abandon (e.g., reload) a system that exhibits this
behavior.

Error 1: Unused Error
This error code is not used in any of the current INTERLISP implementations.

Error 2: Stack Overflow
Error code 2 corresponds to a “STACK OVERFLOW” . This error usually oc
curs as the result of a runaway computation. The computation calls too many
nested functions or binds to many variables in the functions that it calls.

One way to invoke this error in INTERLISP/370 is by attempting to trace
EVAL. The TRACE function (see Section 20.1.1) calls EVAL internally to eval
uate the expression which is its argument.

Another way is to begin a recursive computation where the number of levels
of recursion exceeds the stack depth. For example, trying to count the number of
cells in a circular list using a recursive function that operates on successive tails
of the list.

Error 3: Illegal Return
Error code 3 corresponds to an “ILLEGAL RETURN” . This error results when
a program attempts to execute a RETURN expression while not executing
within a PROG form.

Note that a call to RETURN may occur in a function called from within a
PROG in another function.

Error 4: Argument Not a List
Error code 4 corresponds to “ARG NOT LIST” . This error results when the
function invoked expects a list as its argument.

One common error is passing an atom as the first argument of RPLACA or
RPLACD rather than a list. For example,

640 Error Handling

-^(RPLACA 'X (LAST X))
ARG NOT LIST
X

Error 5: File System Error
Error code 5 corresponds to “HARD DISK ERROR” . This error code is cur
rently defined for INTERLISP-D but not for INTERLISP-10 or INTERLISP/
370. This error indicates that something is wrong with the integral disk used in
Xerox llxx systems. You should consult a Field Engineer if this error occurs.

Error 6: Setting NIL
Error code 6 corresponds to “ATTEMPT TO SET NIL OR T” . This error
results when the first argument of SET or SETQ is NIL. Usually, you will en
counter this error when INTERLISP attempts to evaluate an argument to SET
whose value is NIL.

Error 7: Attempting to Replace NIL
Error code 7 corresponds to “ATTEMPT TO RPLAC NIL” . It occurs when you
attempt to RPLACA or RPLACD NIL with something other than NIL.

Error 8: Invalid Goto
Error code 8 corresponds to “UNDEFINED OR ILLEGAL GO” . This error
occurs when a program attempts to execute (GO <label)) while not within a
PROG form or when <label) is undefined within the PROG.

Error 9: Unable to Open a File
Error code 9 corresponds to “FILE WON’T OPEN” . This error occurs when a
program executes one of the File Package functions that open a file. Usually, the
file does not exist in the current directory.

Error 10: Non-numeric Argument
Error code 10 occurs when a numeric function expects a number as an argu
ment. For example,

-^(IPLUS 'five 10)
NON-NUMERIC ARG
FIVE

Error 11: Atom Too Long
Error code 11 corresponds to the error “ATOM TOO LONG” . This error occurs
when you attempt to a create an atom with a PRINl-PNAME whose length is
greater than the maximum number of characters allowed by your implementa
tion, Usually, it will occur if you type an atom name that is too long, if you try to
create an atom name via PACK, or you read an atom name from a file. The first
and last cases are generally due to typing errors and may be easily corrected.

18.5 Types of Errors 641

Error 12: Atom Hash Table Filled
Error code 12 corresponds to “ATOM HASH TABLE FULL” . The atom hash
table is used to store pointers to each of the atoms in the system in order to speed
reference to their particular storage locations. It is possible to exceed the size of
the atom hash table. Usually, the atom hash table starts with an initial size and
expands automatically until the maximum allowable size is reached. For IN-
TERLISP-10, this limit is approximately 32,767 atoms.

Error 13: File Not Open
Error code 13 corresponds to “FILE NOT OPEN” . Most input and output func
tions as well as many of the File Package functions expect the file that they will
operate on to be open. If the file is not open, this error is generated.

Error 14: Argument Not a Literal Atom
Error code 14 corresponds to “ARG NOT LIT ATOM” . Many INTERLISP
primitives expect an atom as an argument. This error is generated when the
argument is determined to be something other than a literal atom.

Error 15: Too Many Files Open
Error code 15 corresponds to “TOO MANY FILES OPEN” . Different imple
mentations set a limit on the number of files that your program may have open
simultaneously. Usually, this number is about 32. Because the terminal is always
open and available for input/output, it is not included in the open file count.

Error 16: End of File Encountered
Error code 16 corresponds to “END OF FILE” . This error occurs when an input
function attempts to read past the end of a file. After the error occurs, the file is
closed.

This error can be very disconcerting to most users. It probably should be
handled better, i.e., some indication of an end-of-file condition being returned
without causing an error.

You may process this error by placing an entry on ERRORTYPELST to
intercept it. Your code may or may not close the file, but should return some
indication of an end-of-file condition. The IRM suggests that you return “]” as
an indication meaning the end of a list.

Error 17: Error
Error code 17 corresponds to “ERROR” . It is produced when the function ER
ROR is called with one or more messages appropriate to the particular function
that generated the error. You may also want to use this error code for errors
occurring within your programs.

Error 18: CTRL-B condition
Error code 18 corresponds to “BREAK” . This error occurs when you type a
CTRL-B during the execution of a program. Your computation is placed under

642 Error Handling

the control of the BREAK package (see Chapter 20) at the current execution
point.

Error 19: Illegal Stack Argument
Error code 19 corresponds to “ILLEGAL STACK ARG” . This error occurs
when a stack manipulation function is given an argument other than a stack
position. The most common case occurs when you attempt to specify a stack
position via a function name which cannot be found in the stack. See Chapter 30
for a discussion of the Stack Functions.

Error 20: Evaluation Fault
Error code 20 corresponds to “FAULT EVAL” . This occurs while INTERLISP
is being loaded (bootstrapped) into memory. Once FAULTEVAL is defined,
this error should not occur.

Error 21; Array Space Exceeded
Error code 21 corresponds to “ARRAYS FULL” . As mentioned earlier, IN
TERLISP divides available memory into a number of pools corresponding to the
basic datatypes that it supports. When array space is exceeded, INTERLISP
first attempts a garbage collection on the array space. If this does not produce
enough array space, then this error message is generated.

This error usually occurs because you have created too many arrays or tried
to create an array with unusually large dimensions. The latter case occurs when
you specify arguments to ARRAY which compute the size of the array. If your
arguments produce erroneous dimension information, you will receive this error.

Error 22: File System Space Exceeded
Error code 22 corresponds to “FILE SYSTEM RESOURCES EXCEEDED” .
This error occurs when the number of files that you have written exceeds the
current file space. For INTERLISP-10, this may be attempting to exceed the
limits imposed upon your directory concerning number of files, file blocks, or
size. In INTERLISP-D, it often occurs when you attempt to exceed the capacity
of the integral disk in the Xerox llxx machines.

Error 23: Non-existent File
Error code 23 corresponds to “FILE NOT FOUND” . This error occurs when
you attempt to open a file which does not exist in the specified directory. It may
also occur if the file name is ambiguous (i.e., when several files have the same
file name but different extensions).

ERRORTYPELST is initialized to handle this error as follows:

(SETQ ERRORTYPELST
'(23

(SPELLFILE (CADR ERRORMESS))))

18.5 Types of Errors 643

where SPELLFILE will search alternative directories or perform spelling correc
tion on the directory or file name to determine the proper file.

Error 24: Damaged SYSOUT File
Error code 24 corresponds to “BAD SYSOUT FILE” . This error occurs when
the date of the sysout file (see Section 16.9.1) do not correspond to the data on
which the current version of INTERLISP was made. It also occurs if you attempt
to load a file via SYSIN which is not a sysout file.

Error 25: Bad CDR Argument
Error code 25 corresponds to “UNUSUAL CDR ARG LIST” . This error occurs
when an expression ends in a non-list other than NIL. For example,

<-(CONS T . 3)
UNUSUAL CDR ARG LIST
3

Error 26: Hash Table Space Exceeded
Error code 26 corresponds to “HASH TABLE FULL” . This error occurs when
you attempt to hash more items into a hash table than it has room to store. See
Section 11.3.

Error 27: Illegal Argument
Error code 27 corresponds to “ILLEGAL ARGUMENT” . This error is dis ̂
played when INTERLISP does not have a specific error message to produce. It is
used by many functions within INTERLISP. Actually, errors of this sort should
be better handled, but no one has taken the time to rewrite the internal code to
categorize them.

Error 28: Non-Array Argument
Error code 28 corresponds to “ARG NOT ARRAY” . This error occurs when an
array function is given an argument which is not an array address. See Section
11.1.

644 Error Handling

Error 29: Illegal Block
Error code 29 corresponds to “ILLEGAL OR IMPOSSIBLE BLOCK” . This
error occurs in INTERLISP-10 when you attempt to get or release an additional
block of memory.

Error 30: Already Released Stack Pointer
Error code 30 corresponds to “ STACK PTR HAS BEEN RELEASED” . This
error occurs when you give a stack function a stack pointer that is no longer
defined, because it has been released. See Chapter 31.

Error 31: Memory Space Exceeded
Error code 31 corresponds to “STORAGE FULL” . This error occurs when the
available memory space has been entirely allocated. Usually, it occurs after a
garbage collection when the garbage collector has not been able to find any unal
located space. This error may occur (in lengthy computations) if you allocate
space for various objects, but fail to retain their addresses via SETQ. The space
is consumed, but disappears from your virtual memory. You cannot address if
you do not retain a pointer to it, and it cannot be garbage collected for the same
reason.

This error will also occur if your computation is too large for the available
memory space. For example, the Xerox 1108/1186 machines have a virtual
memory space of 32 Mbytes. It is fairly easy for large computations to exceed this
memory space after some interval. When an error of this sort occurs, you may be
placed in RAID.

Error 32: Incorrect Object I^pes
Error code 32 corresponds to “ATTEMPT TO USE ITEM OF INCORRECT
TYPE” . This error occurs in Record Package functions and in functions associ
ated with accessing user-defined datatypes (see Chapter 27). This error is gener
ated if the type of change to be made to a field of a user datatype does not corre
spond to the datatype of the object.

Error 33: Illegal Datatype Number
Error code 33 corresponds to “ILLEGAL DATATYPE NUMBER” . This error
occurs when you present a user-defined datatype function with an invalid field
specifier. See Chapter 27.

Error 34: Datatype Space Exceeded
Error code 34 corresponds to “DATATYPES FULL” . The memory pool avail
able in which to allocate descriptions of user-defined datatypes is limited. When
this pool is full, this error will be generated.

Error 35: Binding NIL or T
Error code 35 corresponds to “ATTEMPT TO BIND NIL OR T” . This error
occurs in PROG and LAMBDA expressions where you declare NIL or T as a
dummy variable and attempt to assign it a value. For example,

•♦-(PROG ((NIL <ex p ress io n))) . . .)
ATTEMPT TO BIND NIL OR T
NIL

Error 36: User Interrupt Characters Exceeded
Error code 36 corresponds to “TOO MANY USER INTERRUPT CHARAC
TERS” . INTERLISP currently provides for nine user interrupt channels. At
tempting to enable an additional user interrupt character will cause this error.

18.5 Types of Errors 645

646 Error Handling

Error 37: Read Macro Error
Error code 37 corresponds to “READ-MACRO CONTEXT ERROR” . This er
ror occurs when READ is executed within a read macro function and the next
token is) or]. See Section 14.4.

Error 38: Illegal Read Table
Error code 38 corresponds to “ILLEGAL READTABLE” . This error occurs
when you provide an illegal address to one of the read table functions (see Sec
tion 14.5).

Error 39: Illegal Terminal Table
Error code 39 corresponds to “ILLEGAL TERMINAL TABLE” . This error oc
curs when you provide an illegal address to one of the terminal table functions
(see Section 15.5).

Error 40: Swap Block Too Large
Error code 40 corresponds to “SWAPBLOCK TOO BIG FOR BUFFER” . This
error occurs in INTERLISP-10 when you attempt to swap in a function or an
array which exceeds the size of the swapping buffer. Consult the IRM (page
22.26) for further details.

Error 41: Protection Violation
Error code 41 corresponds to “PROTECTION VIOLATION” . This error oc
curs in INTERLISP-10 when you attempt to open a file that you do not have
clearance to access or you attempt to reference an unassigned device. Consult
the host operating system manual.

Error 42: Illegal File Name
Error code 42 corresponds to “BAD FILE NAME” . This error occurs when you
provide a badly formed file name to one of the File Package functions. The error
will be generated by the host operating system when it attempts to resolve the file
name in the disk directory.

Error 43: User Break
Error code 43 corresponds to “USER BREAK” . This error occurs when you
generate a hard user interrupt character, e.g., CTRL-B, CTRL-D, etc.

Error 44: Unbound Atom
Error code 44 corresponds to “UNBOUND ATOM” . This error occurs when
you attempt to reference an atom which has not been defined. The atom is cre
ated, but its value cell contains NOBIND. For example (assuming X was previ
ously defined),

^(SETQ X 'NOBIND)
(X r e s e t)
NOBIND

UNBOUND ATOM
X

The atom has no stack binding due to a PROG or LAMBDA expression, nor
a top level value. The atom which generated the error can be retrieved via
(CADR ERRORMESS).

Error 45: Undefined Expression CAR
Error code 45 corresponds to “UNDEFINED CAR OF FORM” . This error oc
curs when EVAL attempts to evaluate an expression whose CAR is not a valid
function name. The atom may exist, but it has no definition in the function cell.

<-(EVAL (X Y))
UNDEFINED CAR OF FORM
X

Error 46: Undefined Function
Error code 46 corresponds to “UNDEFINED FUNCTION” . This error occurs if
APPLY is given as its first argument an atom which does not have a function
definition. For example,

^(APPLY 'X (LIST 'A 'B 'C))
UNDEFINED FUNCTION
X

Error 47: CTRL-E Error
Error code 47 corresponds to “ CONTROL-E” . This error is generated when you
type a CTRL-E at your terminal.

Error 48: Floating Point Underflow
Error code 48 corresponds to “FLOATING UNDERFLOW” . This error is gen
erated in INTERLISP-D only during a floating point operation.

Error 49: Floating Point Overflow
Error code 49 corresponds to “FLOATING OVERFLOW” . This error is gener
ated in INTERLISP-D only during a floating point operation.

Error 50: Overflow
Error code 50 corresponds to “OVERFLOW” , This error is generated in IN-
TERLISP-D only during an integer operation.

Error 51: Illegal Hash Array
Error code 51 corresponds to “ARG NOT HARRAY” . This error is generated in.
INTERLISP-D only when a hash array function is given an address which does

18.5 Types of Errors 647

not point to a hash array. Note that INTERLISP-D allocates separate memory
pools for arrays and hash arrays and can thus detect the distinction easily.

Error 52: Too Many Arguments
Error code 52 corresponds to “TOO MANY ARGUMENTS” . This error is gen
erated in INTERLISP-D only when the evaluation function detects that a
LAMBDA spread or nospread, or an NLAMBDA spread function has been
giyen too many arguments. This error is generated by the Xerox llxx machine
microcode.

648 Error Handling

18.6 ERROR HANDLING FUNCTIONS
INTERLISP provides a powerful and flexible error handling environment. It is
usually possible for you to write programs that can recover from almost any type
of error. To do so, however, you must be able to analyze the error occurrence.
When it is not possible to recover from an error, you must be able to provide
sufficient information to enable the user to diagnose the problem and correct it.
The functions described in this section are used to provide various types of infor
mation about the occurrence of errors.

18.6.1 Printing Error Messages
Several functions allow you to print standard error messages that are augmented
with additional information.

ERROR prints one or two error messages and causes a break to occur. It
takes the form

Function: ERROR

Arguments: 3

Arguments: 1) a message, MESSAGEl
2) a message, MESSAGE2
3) a break f la g , NOBREAKFLAG

Value: NIL.

When ERROR is called, it prints MESSAGEl and MESSAGE2 as follows:

1. MESSAGEl is printed using PRINl. If MESSAGEl is an atom, a space
is printed, and then MESSAGE2 is printed using either PRINl, if it is a
string, or PRINT, if it is anything else.

2. If MESSAGEl is not an atom, then after it is printed using PRINl, a
carriage return is printed, and then MESSAGE2 as described above.

3. If MESSAGEl and MESSAGE2 are both NIL, the message will simply
be ERROR.

If NOBREAK is T, ERROR prints its messages and calls ERROR! (see be
low). Otherwise, it executes

(ERRORX 17 (CONS MESSl MESS2))

which leaves the decision as to whether to print any messages and cause a break
up to BREAKCHECK.

18.6 Error Handling Functions 649

A Definition for ERROR
We might define ERROR as follows:

(DEFINEQ
(e r ro r (messagel message2 nobreakflag)

(COND
(nobreakflag

P r in t the e r ro r messages, but do
not break the computation here .

)
(SETERRORN 17

(CONS messagel message2))
(ERRORMESSl messagel message2 'ERROR)
(ERRORB))

(T
(ERRORX

(LIST 17
(CONS messagel
message2)))))

))

ERRORB is an internal function that is implementation dependent.

Printing Help Messages
An alternative function is HELP. It takes the form

Function: HELP

Arguments: 2

Arguments: 1) a message, MESSAGEl
2) a message, MESSAGE2

Value: The value re tu rned from the breakpoint,

HELP prints its messages like ERROR and then calls BREAKl (see Section
20.3.3). If MESSl and MESS2 are both NIL, HELP merely prints HELP! before
calling BREAKl. For example,

•^(HELP "An example of HELPing")
AN EXAMPLE OF HELPING
NIL

(HELP broken)

650 Error Handling

A Definition of HELP
We might define HELP as follows:

(DEFINEQ
(help (messagel message2)

(ERRORMESSl messagel message2 'HELP!)
(BREAKl (ERROR "??" 'G T)

T
HELP)

))

Printing a Warning to the User
SHOULDNT calls HELP with the message “Shouldn’t Happen!” . It takes the
form

Function: SHOULDNT

Arguments: 0

Arguments: N/A

Value: No value re tu rn ed .

HELP and SHOULDNT provide you with different ways of signaling un
usual conditions in your program. HELP indicates that the program has entered
a region that it normally would not enter at this stage of the computation. A
good use is to signal an erroneous data value which you might allow the user to
correct. On the other hand, SHOULDNT indicates that the program should
never have encountered the situation that it finds itself in.

^(SHOULDNT)
"S hou ldn 't Happen"

(HELP broken)
:STOP

(Note: no value re tu rn ed !)

i

Generalized Message Printing Functions
ERRORMESS is a generalized message printing routine that prints an error
message corresponding to an ERRORN form. It takes the form

Function: ERRORMESS

Arguments: 1

Argument: 1) an ERRORN form, ERRORFORM

Value: NIL.

ERRORMESS prints a message corresponding to the ERRORN form. For
example,

^(ERRORMESS '(12 T))
ATOM HASH TABLE FULL
T
NIL

A Definition for ERRORMESS
We might define ERRORMESS as follows:

(DEFINEQ
(errormess (e rro r-ex p ress io n)

(COND
((NULL erro r-exp ress ion)

(*
R etrieve e r ro r form corresponding
to the l a s t e r ro r th a t occurred.

)
(SETQ e rro r-ex p ress io n (ERRORN))))

(COND
((EQUAL (CAR e rro r-ex p ress io n 17)

(*
17 s ig n a ls a general e r ro r code.

)
(SETQ e rro r-ex p ress io n

(CADR e rro r-ex p ress io n))
(ERRORMESSl (CAR erro r-exp ress ion)

(CDR e r ro r-e x p re ss io n)))

18.6 Error Handling Functions 651

(T

))

(AND LISPXHISTORY
(LISPXPUT 'ERROR

(CADR e r ro r -
expression)))

(ERRORM erro r-e x p re ss io n)))

652 Error Handling

ERRORMESSl
The workhorse function for printing error messages for many of these functions
is ERRORMESSl. It takes the form

Function: ERRORMESSl
Arguments: 3

Arguments: 1) a message, MESSAGEl
2) a message, MESSAGE2
3) a message, MESSAGE3

Value: NIL.

ERRORMESSl prints the messages for HELP and BREAK functions. We
might define ERRORMESSl as follows;

(DEFINEQ
(erro rm essl (messagel message2 message3)

(PROG (a-message)
(COND

((AND
(NULL messagel)
(NULL message2))
(*

I f MESSAGEl and MESSAGE2
are n u l l , p r in t MESSAGE3
and r e tu r n .

)
(LISPXPRINT message3 T)
(RETURN)))

(LISXPRINl messagel T)
(COND

((OR

(T

(ATOM messagel)
(STRINGP message2))
(*

I f MESSAGEl i s an atom or
MESSAGE2 i s a s t r in g , p r in t
a space and MESSAGE2.

)
(LISPXSPACES I T))

(LISPXTERPRI T)))
(SETQ a-message messagel)
(COND

((STRINGP message2)

(LISPXPRINl message2 T)
(LISPXTERPRI T))

(T
(SETQ a-m essage message2)
(LISPXPRINT message2 T)))

(AND
LISPXHISTORY
(LISPXPUT 'ERROR a-m essage))

))

Note that A-MESSAGE records the proper message for insertion into the
history list.

18.6.2 Returning from Errors
There are two ways to return from an error: ERROR! and RESET.

ERROR! takes the form

F u n ctio n : ERROR!

A rgum ents: 0

A rgum ents: N/A

V alue: ?? (n o t to be tru s te d)

ERROR! operates hke a programmable CTRL-E. When executed, it imme
diately returns from the most recent ERRORSET or RESETLST (see Section
25.7).

Resetting the System State
RESET operates like a programmable CTBU^-D. It forces an immediate return
to the top level of INTERLISP. It takes the form

F unction : RESET

A rgum ents: 0

Argum ents: N/A

V alue: NIL

RESET clears the stack of all frames associated with the previous computa
tion.

< -(RESET)

RESET is often issued from within the Break Package when one discovers
that the environment has become too entangled to decipher.

18.6 Error Handling Functions 653

Note, however, that issuing a RESET does not re-initialize your environ
ment. Thus, any objects that you have created in the computation thus far will
remain defined. This “detritus” can affect the re-execution of your program,
particularly if it expects to find certain things uninitialized or having certain
values.

18.6.3 Obtaining Information about Errors
ERRORN returns a form that describes the last error that occurred. It takes the
form

Function: ERRORN

Arguments: 0

Arguments: N/A

Value: An expression (< e rro r #) . x) .

The error number is the index of the last error that occurred. X is the expres
sion that was printed or would have been printed after the error message (e.g.,
the value of MESSAGEl).

Defining New Error Messages
You may define new error messages using the SETERRORN, which takes the
form

Function: SETERRORN

Arguments: 2

Arguments: 1) an e r r o r number, NUMBER
2) an e r r o r message, MESSAGE

Value: The e r r o r number.

SETERRORN may be used to redefine any of the existing system error mes
sages (usually with longer, more detailed messages) or to define a new error mes
sage. INTERLISP-D supplies over fifty error messages. You may use numbers
greater than 52 for you own error messages.

The best way to initialize error messages for a program is to place SETER
RORN calls in the P command list of the File Package commands. These calls
are evaluated when the file is loaded, and so are part of the initialization of your
environment.

If you define new error messages, I recommend that you categorize them
according to the type, location, and severity of error. You should also assign you
error messages numbers beginning with 200 to avoid possible future conflict with
INTERLISP error messages.

654 Error Handling

Obtaining the Error Message
ERRORSTRING returns the string which represents the message associated
with an error number. It takes the form

Function: ERRORSTRING

Arguments: 1

Arguments: 1) an e r ro r number, NUMBER

Value: The s t r in g , I f any, assoc ia ted with the
Ind ica ted e r ro r number.

ERRORSTRING is primarily used to allow you to obtain an error message
which you may then edit via the string handling functions before printing via
ERROR.

(ERRORSTRING 10)
"NON-NUMERIC ARG”

ERRORSTRING is used when you want to tailor the error messages more
specifically to conditions that arise within your program. Since you may inter
cept the printing of error messages, you may obtain the basic string and edit it to
be more informative for the user.

18.6.4 Entering the Error Routines
The general entry point to the error routines is ERRORX, which takes the form

Function: ERRORX

Arguments: 1

Argument: 1) an e r ro r message form, ERRORFORM

Value: The value re tu rned by the e x i t from the
e r ro r ro u t in e s .

If ERRORFORM is NIL, ERRORN is used to determine the error. Other
wise, ERRORFORM should have the form:

(<number> . <message>)

whence ERRORX calls SETERRORN with the CAR and CDR of the form to
(re)define the error message.

ERRORX calls BREAKCHECK to determine whether an error should oc
cur or not. If no break occurs, it prints the message and returns from the last
ERRORSET.

18.6 Error Handling Functions 655

A Definition for ERRORX
We might define ERRORX as follows:

(DEFINEQ
(e rro rx (errorform)

(ERR0RX2
(COND

(errorform

656 Error Handling

(T

C alle r has provided e r ro r
number and message.

)
(SETERRORN (CAR errorform)

(CADR errorform))
errorform)

))

(*
Use the e r ro r number and
message determined by the
system.

)
(ERRORN)))

(STKNTH -1 ’ERRORX))

ERR0RX2 is the workhorse that actually performs all of the functions asso
ciated with handling errors. We might define it as follows:

(DEFINEQ
(erro rx2 (error-m essage e r ro r -p o s i t io n)

(PROG (c u lp r i t a r ra y - s iz e a rray -add ress esgag
frame-name fn -type breakchk)
(COND

((AND
(EQ (CAR error-message) 26)
(SETQ c u l p r i t (CADR error-m essage))
(LISTP c u l p r i t))
(*

E rro r was a hash ta b le overflow.
)
(SETQ a r ra y -s iz e

, (ARRAYSIZE (CAR c u l p r i t)))
(SETQ array -ad d ress (CDR c u lp r i t))
(SETQ array -add ress

(HARRAY

18.6 Error Handling Functions 657

(COND
((NULL array-address)

(FTIMES a r ra y -s iz e
1 .5))

((FLOATP a rray -ad d ress)
(FTIMES a r ra y -s ize

a rray -
address))

((NUMBERP array-address)
(IPLUS a r ra y -s iz e

a rray -
address))

(T
(GO to p)))))

(RPLACA c u lp r i t
(REHASH (CAR c u lp r i t)

a r ra y -a d d re s s)))
(RETURN c u l p r i t)))

(SETQ breakchk
(BREAKCHECK e r ro r -p o s i t io n

(CAR error-m essage)))
top

(COND
((AND

ERRORTYPELST
(SETQ c u lp r i t

(ASSOC (CAR error-message)
ERRORTYPELST))

(SETQ c u lp r i t (EVAL (CADR c u l p r i t))))
(*

I f th e re are e n t r ie s on
ERRORTYPELST and the e r ro r i s
rep resen ted by one of those
e n t r i e s , then evaluate the form
found th e re to handle the e r ro r .

)
(RETEVAL

e r ro r -p o s i t io n
(SUBPAIR

'(FN ARGS)
(LIST

(LINKSTKNAME
(STKNAME e r ro r -p o s i t io n)
e r ro r -p o s i t io n)

(SUBST

658 Error Handling

c u lp r i t
(CADR error-message)
(STKARGS e r ro r -
p o s i t io n)))

'(APPLY »FN ’ARGS))))
((NULL esgag)

(*
Do not suppress the e r ro r
message

)
(ERRORMESS error-m essage)))

e rro rb
(COND

((NULL breakchk)
(^

The e r ro r w i l l occur a t the
a c tu a l p o s i t io n in the code.

)
(RETEVAL

(STKNTH 1 e r ro r -p o s i t io n)
'ERRORB))))

(SETQ frame-name (STKNAME e r ro r -p o s i t io n))
(COND

((NOT (LITATOM frame-name))
(SETQ frame-name

(LINKSTKNAME frame-name
e r r o r - p o s i t io n))))

(COND
((EQ (CAR error-message) 10)

(*
Non-numeric argument to
a r i th m e tic function .

)
(LISPXPRINl 'IN T)
(LISPXPRINT frame-name T)
(SETQ r e s u l t

' (BREAKl
(ERROR '? 'G T)
T
NIL
NIL
ERRORX)))

(GO e x i t))
(SETQ fn -type

(SELECTQ (FNTYP frame-name)

((SUBR* FSUBR FSUBR*)
'(ERROR 'CANT 'G T))

((EXPR FEXPR EXPR* FEXPR*)
(CONS 'PROGN

(CDDR (GETD frame-name))))
(NIL

(CONS 'PROGN
(CAR

(VAG
(ADDl

(LOC frame-name))))))
(SUER

(RPLACD (STKARG 1 e r ro r -p o s i t io n)
'U)

(RPLACD (STKARG 2 e r ro r -p o s i t io n)
'V)

(CONS frame-name ' (U V)))
(SAVEDl fn-type

frame-name
(ARGLIST frame-name))))

(SETQ r e s u l t
(LIST 'RETFROM

(LIST (QUOTE QUOTE) e r ro r -
p o s it io n)

(LIST 'BREAKl
c u lp r i t
T
frame-name
'ERRORX)))

e x i t
(RETEVAL

(STKNTH 1 e r ro r -p o s i t io n)
r e s u l t))

))

The stack functions are described in Chapter 31. RETEVAL, described in
Section 30.8, allows you to return from a stack frame with a value without actu
ally completing the computation that was to be performed by the function repre
sented at the stack frame. The purpose of much of the code in the above function
is to define a list which actually computes the result to be returned from the
frame. RETEVAL evaluates the list, places the value in the appropriate frame
location, and returns to the caller.

18.6 Error Handling Functions 659

19

The INTERLISP EdKor

INTERLISP provides an integrated editing facility that understands the charac
teristics of all the data structures that it supports. The editor can be invoked to
edit any data structure either at the top-level READ-EVAL-PRINT loop or as a
function invoked from another function within a user program. When called
from within a program, an optional list of commands may be passed to the editor
for execution.

This editor is to be used to edit expressions from a terminal/keyboard com
bination. INTERLISP-D provides DEdit, a display editor, which works with the
mouse and bit-mapped screens of the Xerox llxx machines. The latter editor
will be discussed in Volume 2.

The Editor is just one of a number of programming utilities that IN
TERLISP provides to create an integrated programming environment. This
chapter and the next discuss the Editor. Subsequent chapters discuss other pro
gramming utilities.

19.1 INVOKING THE EDITOR
The Editor may be used to edit function definitions, property lists, variable val
ues, and arbitrary expressions. It may be invoked from either the top level
READ-EVAL-PRINT loop or from within a user program. When called from
the top level, it seeks commands from the input file T corresponding to the user’s
terminal. When called from a user’s program, it may be passed an optional list
of commands for execution which it performs and then returns. The Editor is
invoked by different functions for the modes associated with specific data struc
tures.

19.1.1 Function Editing
You may edit a function definition by executing EDITF, which takes the follow
ing form

661

Function: EDITF
EDITFNS

Arguments: 1-N

Arguments: 1) a function name, FN
2) zero or more commands, C0MMAND[1] . . .

COMMAND[N]

Value: The name of the function (EDITF)
or NIL (EDITFNS).

EDITF is an NLAMBDA, nospread function. You must provide a function
name as the first argument. Optionally, you may pass it a sequence of com
mands to be executed. EDITF returns the name of the function that it has
edited, if successful.

When EDITF is called, it must check several cases before editing the func
tion.

662 The iNTERLiSP Editor

The First Argument is an Expression
The first argument is an EXPR. EDITF calls EDITE (see below) to edit the
definition using the following statement:

(PUTD name
(EDITE

(GETD ’fn)
(LIST ' command[1] . . . ' command[N])
' f n
'FNS))

Note: PUTD and GETD are described in Sections 8.3 and 8.4, respectively.
NAME may be an EXPR because it is broken or advised. Thus, several sub

cases must be considered:

1. If NAME really is an EXPR, editing the broken or advised function will
affect the original definition. However, the structure of the function defi
nition is changed. You are notified by a warning message so that you may
position yourself properly before issuing editing commands.

<-(DEFINEQ
(t r a s h (x)

(RPLACA X NIL)))
(TRASH)

(BREAK tra sh)
(TRASH)

<-(EDITF tra sh)
Note: you are e d i t in g a broken d e f in i t io n .
EDIT
*PP
(LAMBDA (X)

(BREAKl
(PROGN (RPLACA X NIL))

T TRASH NIL))

2. If NAME is not an EXPR and has no EXPR property, the File Package
looks to see if it “knows” where NAME is contained (e.g., on any noticed
file). If it does, the EXPR definition of NAME is loaded onto its property
list under the property EXPR. Editing continues as is in (2) below. If the
File Package cannot find the source definition, a warning is printed, and
editing proceeds. The latter case is possible when you advise compiled
code, because you may want to edit the advice.

3. If NAME is not an EXPR, but it does have an EXPR property, NAME is
unbroken or unadvised (only with your approval, since you may want to
edit the advice) and proceeds as in (2).

The First Argument has an EXPR Property
If the first argument is not an expression, it may have an EXPR property (see
Section 8.1). EDITF prints PROP and executes:

(EDITE
(GETPROP 'f n ’EXPR)
(LIST 'command[l] . . . ' comraand[N])
' fn
’PROP)

When EDITE completes, several possibilities may have occurred:

1. If no changes were made, EDITE responds with the message “NOT
CHANGED, SO NOT UNSAVED”

<-(SETQ t r a s h NIL)
NIL

<-(PUTPROP t r a s h
'EXPR
’ (LAMBDA (x) (RPLACA x NIL)))

TRASH

(EDITF tra sh)
PROP
EDIT

19.1 Invoking the Editor 663

664 The INTERLISP Editor

*ok
Not changed, so n o t unsaved.

2. If changes were made, and DNAMEFLG has the value PROP, EDITE
responds with the message “CHANGED, BUT NOT UNSAVED”

DNAMEFLG
PROP

^(ED ITF tr a s h)
PROP
EDIT
*PP
(LAMBDA (x) (RPLACA x NIL))
*3 P
(RPLACA X NIL)
* (REPLACE 1 WITH RPLACD)
*0K
Changed, b u t n o t unsaved.

3. Otherwise, EDITE responds with the message “UNSAVED” and exe
cutes UNSAVEDEF (see Section 17.5.7).

UNSAVEDEF restores the definition of the function from its prop
erty list. The effect of the invocation of EDITE is to put the modified
definition on the property list of the first argument (evaluating to a literal
atom) under the property PROP. Then, UNSAVEDEF copies the defini
tion back to the EXPR property.

Note: INTERLISP/370 unsaves in any case.

The First Argument (as a Literal Atom) is Contained in some File Known to
the File Package
The first argument is neither an expression nor does it have an EXPR property
value. When evaluated, it resolves to a literal atom. The File Package deter
mines if the atom is contained in a file that it knows. If so, it loads the EXPR
definition of the atom from the file using LOADDEF (see Section 17.5.8). It
then operates like (2) above.

The First Argument has a Definition
The first argument is neither an expression nor has an EXPR property value, but
it does have a definition. EDITF prints <name> NOT EDITABLE.

-^(SETQ t r a s h '(RPLACA x NIL))
(RPLACA X NIL)

<-(EDITF tra sh)
t r a s h not e d i ta b le .

You should use EDITV instead.

The First Argument’s Value is a List
If the first argument’s value is a list, EDITF assumes that you meant to call
EDITV. It displays “ = EDITV” and invokes EDITV for you:

^(SETQ sentence '(now i s the time fo r a l l good men))
(NOW IS THE TIME FOR ALL GOOD MEN)

^(EDITF sentence)
=EDITV
EDIT
*P
(NOW IS THE TIME FOR ALL GOOD MEN)

Alternatively, if NAME has a non-NIL property list, the editor assumes you
meant to call EDITP. It displays the message “ = EDITP” and invokes it for
you. For example,

•«-(PUTPROP sentence
' value
'(now i s the time fo r a l l good men))

(NOW IS THE TIME FOR ALL GOOD MEN)

(EDITF sentence)
=EDITP
EDIT
*P
(NOW IS THE TIME FOR ALL GOOD MEN)

The editor invokes EDITP only if the variable value is NIL; otherwise,
EDITV takes precedence.

19.1 Invoking the Editor 665

None of the Above
If none of the above cases pertains, EDITF attempts to correct the spelling of the
name using the spelling list USERWORDS (see Section 22.7,2). If successful, it
begins anew at (1).

Whenever a function has been successfully edited, EDITE inserts a time
stamp in the form of a comment (* xxx <date>) in the function definition. XXX
are the user’s initials (see INITIALS). If a time stamp already exists, only the
date in the comment will be changed.

<-(SETQ INITIALSLST (CONS 'k a i s l e r 'shk))
(KAISLER . SHK)

“̂ (DEFINEQ (t ra s h (x) (RPLACA x NIL)))
(TRASH)

^(SETQ **COMMENTFLG** T)
T

<-(EDITF tra sh)
*3 P
(RPLACA X NIL)
*(REPLACE 1 WITH SETQ)
*0K
(TRASH)

•<-(PP tra sh)
(LAMBDA (x)

(SETQ X NIL))

Often, we want to perform the same set of commands on several functions.
The Editor provides the function EDITFNS to accomplish this task. In this case,
the value of the first argument is an S-expression that evaluates to a list of one or
more function names. EDITFNS calls EDITF on each function with the optional
list of commands, if any. EDITFNS always returns NIL.

FN may be an atom. If its value is not a list, but is a noticed file name,
FILEFNSLST (see Section 17.7.3) is invoked to return a list of functions to be
edited. FILEFNSLST extracts the functions from the FNS command associated
with the File Package commands.

When EDITFNS executes, each call to EDITF will be ERRORSET pro
tected. Thus, it continues to process the list of functions even if one element of
the list causes an error. This might occur if one of the editing commands fails for
an element or an element is not a function.

19.1.2 Value Editing
You edit the value of a variable by executing the function EDITV. EDITV, like
EDITF, takes the following form

Function: EDITV

Arguments: 1-N

Arguments: 1) a v a r ia b le name, NAME
2-N) e d i to r commands, C0MMAND[1] . . .

COMMAND[N]

Value: The name of the v a r ia b le .

666 The INTERLISP Editor

19.1 Invoking the Editor 667

EDITV is an NLAMBDA, nospread function.
Usually, EDITV is called with a single atom as its argument. It may have

one or more optional arguments which are Editor commands to be performed
upon the variable’s value. The editor checks several different cases:

1. If NAME is an atom and has the value NOBIND, the Editor determines
if it is the name of a function. If so, it assumes you meant to call EDITF,
displays the message “ = EDITF” , and calls EDITF with the name of the
function.

■<-t r a s h
U.B.A.

(EDITV tra sh)
=EDITF
EDIT
*P
(LAMBDA (X) (RPLACA X NIL))

Note that TRASH may not have a value in its value cell, but may
have a definition in its function definition cell.

2. If NAME is an atom and has a value, EDITV allows you to edit the value:

■<-(SETQ t r a s h . f l a g 'd o n 't)
'DON'T

<-(EDITV t r a s h . f l a g)
DON'T NOT EDITABLE.

because an atomic value cannot be changed, but

<-(SETQ phrase ' (d o n ' t r a in on my parade))
(DON'T RAIN ON MY PARADE)

^(EDITV phrase)
EDIT
*P
(DON'T RAIN ON MY PARADE)
* (REPLACE RAIN WITH SNOW)
*P
(DON'T SNOW ON MY PARADE)
*0K
(PHRASE)

♦-phrase
(DON'T SNOW ON MY PARADE)

3. If the value of NAME is a list, EDITV evaluates the list. It invokes
EDITE (see below) on the result:

•^(SETQ a t t r i b u t e s
(LIST

(LIST 'boy (LIST 'male 'young))
(LIST ' g i r l (LIST 'female 'young))))

((boy (male y o u n g))(g ir l (female young)))

^(EDITV (CADR (ASSOC 'boy a t t r i b u te s)))
EDIT
*P
(MALE YOUNG)

4. Otherwise, EDITV attempts to correct the spelling of the variable name
if DWIMFLG is T (see Section 22.2.1). To do so, it uses the list
USERWORDS (see Section 22.7.2). EDITV repeats from the first case,
if successful.

If the variable has the value NIL, no spelling correction will be at
tempted because the variable has a value. However, an error results be
cause the value is not a list and, therefore, not editable.

EDITV returns the name of the variable whose value it has edited.

668 The INTERLISP Editor

19.1.3 Property List Editing
You may edit the property list of an atom by executing EDITP, which takes the
form

Function: EDITP

Arguments: 1-N

Arguments: 1) an atom, ATM
2-N) e d i to r commands, C0MMAND[1] . . .

COMMAND[N]

Value: The name o f the atom.

EDITP is an NLAMBDA, nospread function.
If the atom does not have a property list, EDITP attempts spelling correc

tion using USERWORDS (see Section 22.7.2). Note that here the presumption
is that you really want to edit a property list and that it’s the atom name that is
probably wrong.

EDITP calls EDITE with the property list of the atom, the^tom name, and
TYPE equal to PROPLIST. When EDITE returns, EDITP establishes the value
of the atom’s property list via SETPROPLIST as the list returned by EDITE.

EDITP returns the name of the atom whose property list it has edited.

A Definition for EDITP
We might define EDITP as follows:

(DEFINEQ
(EDITP

(NLAMBDA (editp-argum ents)

Make EDITP-ARGUMENTS a l i s t so i t can be
d is se c te d . Note th a t i t s value may be a s in g le
atom.

)
(AND

editp-argum ents
(NLISTP editp-argum ents)
(SETQ editp-argum ents (LIST editp-argum ents)))

(PROG (name p r o p e r ty - l i s t)
(SETQ name (CAR editp-argum ents)
(GOND

((NOT (ATOM name))
(»

I f the argument i s not an atom,
j u s t re tu rn .

)
(RETURN NIL)))

(SETQ p r o p e r ty - l i s t (GETPROPLIST name))
(*

Now, i f the property l i s t i s NIL, assume
th a t the u se r m isspelled the atom's name.
Attempt to co r re c t i t i f DWIM is enabled.

)
(AND DWIMFLG

(NLISTP p r o p e r ty - l i s t)
(SETQ name

(OR
(MISSPELLED? name NIL USERWORDS)
name))

(SETQ p r o p e r ty - l i s t (GETPROPLIST name)))
(*

Now, we probably have an atom with a
p roperty l i s t . I f we d o n 't , because the
atom r e a l ly d o e sn 't have one, then EDITE
re tu rn s NIL which i s j u s t put back in
p lace .

)
(SETPROPLIST name

19.1 Invoking the Editor 669

(EDITE p r o p e r ty - l i s t
(CDR editp-arguments)
name
’PROPLIST))

(RETURN name))
))

19.1.4 Editing an Expression
EDITE is the general-purpose expression editor. EDITE has the following ge
neric format:

Function: EDITE
Arguments: 5

Arguments: 1) an expression , EXPRESSION
2) an o p tio n a l command l i s t , COMMANDS
3) an atom, ATM
A) an argument type , TYPE
5) a function invoked i f the expression i s

modified, IFCHANGEDFN

Value: The expression (poss ib ly m odified).

EDITE invokes EDITL, the INTERLISP Editor, with EXPRESSION as its
argument. It generates an error if EXPRESSION is not a list. The optional com
mand list is a list of zero or more commands that will be applied to the expres
sion.

ATM is the name of the object with which the expression is associated.
TYPE gives the nature of the association; it is optional.

IFCHANGEDFN is a function that is applied to the expression if it was
changed. The format for invoking IFCHANGEDFN is

(<IFCHANGEDFN) <atom> <expression> <type> <flag>)

A Definition for EDITE
We might define EDITE as follows:

(DEFINEQ
(EDITE (expression commands name type ifchangedfn)

(PROG (an-expression)
(COND

((NLISTP expression)
(*

I f EXPRESSION i s not a
l i s t , we cannot e d i t i t .

)

670 The INTERLISP Editor

19.2 EDITL: The INTERLISP Editor 671

))

(PRINl expression)
(PRINl ” NOT EDITABLE”)
(TERPRI)
(RETURN expression)))

(SETQ an-expression
(LAST

(EDITL (LIST expression)
commands
name)))

(COND
((NOT (EQUAL expression an-

expression))
(*

I f the expression was
r e a l ly modified, then apply
IFCHANGEDFN to i t .

)
(RETURN

(AND ifchangedfn
(APPLY* ifchangedfn

name
an-expression
type
f l a g)))))

(HELP expression
"NOT A LIST”)

(RETURN NIL))

19.2 EDITL: THE INTERLISP EDITOR
EDITL is the INTERLISP Editor. The generic format for invoking EDITL is

Function:

Arguments:

Arguments:

Value:

EDITL

1) a l i s t to be ed i ted , LST
2) an o p tio n a l l i s t of commands, COMMANDS
3) an atom, ATM
4) a message, MESSAGE
5) an atom whose value r e f l e c t s the e d i t

changes, EDITCHANGES

The value of the f i r s t argument a t the
time EDITL i s ex i ted .

1. If COMMANDS is non-NIL, EDITL applies the list of commands to its
first argument until an exit condition is encountered.

2. If COMMANDS is NIL, EDITL prints “EDIT” and a prompt character
on the terminal and waits for the user to enter commands to edit the first
argument.

In interactive editing, an exit will occur only when one of the commands—
OK, STOP, or SAVE—is recognized.

All input to the Editor is affected by the current values in EDITRDTBL.
MESSAGE is typed on the terminal if it is non-NIL. It will not be displayed

if COMMANDS is non-NIL, i.e., it serves as an alternative message to the user
in lieu of “EDIT” .

ATM is optional. It refers to the object that is being edited. Its type depends
on the calling function. Note that the SAVE command uses the property list of
the atom to save the current state of the edit. Of course, nothing will be saved if
the atom name is NIL.

EDITCHANGES is used to store a list of changes to the first argument.
An alternative form, EDITLO, operates like EDITL except it does not re

bind or initialize the Editor’s state variables.

19.3 EDITOR FUNCTIONS
The Editor relies on a number of “workhorse” functions to perform its opera
tions. These functions may also be called from your programs to perform the
basic editing operations.

19.3.1 Finding a Pattern
EDIT4E is the basic pattern matching routine of the Editor. It takes the form

Function: EDIT-4E

Arguments: 2

Arguments: 1) a p a t te rn , PATTERN
2) an expression , EXPRESSION

Value: T, i f PATTERN matches EXPRESSION.

EDIT4E matches PATTERN according to the definition provided in Sec
tion 19.4.4.

Before each search operation, the Editor scans the entire pattern for atoms
or strings containing the character sequence $s (or <ESC>s). Each atom or
string is replaced by a list of the form ($...). A similar approach is taken for

672 The INTERLISP Editor

EDITL edits the list that is its first argument as follows:

atoms or strings ending in $$s (or <ESC><ESC>s). These patterns are detected
by taking the CAR of PATTERN. If you want to detect these from your pro
gram, you must convert your expressions to this form.

EDITFPAT makes a copy of its argument, PATTERN, with all atoms or
strings containing $s (or <ESC>s) converted to the form expected by EDIT4E.

Implementing the Find Command
You may search for a pattern using the Editor’s Find command using EDIT-
FINDP, which takes the form

19.3 Editor Functions 673

Function:

Arguments;

Arguments:

Value:

EDITFINDP

3
1) an expression , EXPRESSION
2) a p a t te rn , PATTERN
3) a f la g , FLAG

T, i f the PATTERN i s found in EXPRESSION
because F PATTERN would succeed; NIL,
o therw ise .

EDITFINDP executes the Editor’s Find command as a pure predicate. If
FLAG is NIL, EDITFPAT is invoked to convert PATTERN to the form ex
pected by EDIT4E. Thus, you may call EDITFPAT once, and EDITFINDP sev
eral times if you are looking for several different expressions.

19.3.2 Substituting in an Expression
The Editor’s Replace command may be executed directly using ESUBST, which
takes the form

Function:

Arguments:

Arguments:

Value:

ESUBST

5
1) a new expression , NEW
2) an old expression , OLD
3) an expression , EXPRESSION
<+) an e r r o r f la g , ERRORFLAG
5) a c h a ra c te r f la g , CHARFLAG

The modified EXPRESSION.

ESUBST performs the Editor’s Replace command that is equivalent to (R
<old> <new>). EXPRESSION is assumed to be the current expression. If OLD
is not found in EXPRESSION, an error is generated. If ERRORFLAG is T, an
error message of the form “OLD ?” will be printed.

If CHARFLAG is T and no forms like $s (or <ESC>s) are specified in NEW
or OLD, ESUBST operates like (RC <old> <new>).

ESUBST is always undoable.

19.3.3 Changing Names
CHANGENAME is used to change the names of objects in a function. It is pri
marily used by the Break and Advising Packages to change the name of a func
tion within another function. It takes the form

Funct io n : CHANGENAME

Arguments: 3

Arguments: 1) a func tion , FN
2) the old name, FROM
3) the new name, TO

Value: E i th e r FN or NIL.

CHANGENAME replaces all occurrences of FROM by TO in the specified
function. CHANGENAME succeeds whether FN has a symbolic form, e.g., it is
an EXPR, or it is compiled. CHANGENAME returns FN if at least one instance
of FROM is found in the definition.

19.3.4 Searching Files
EDITCALLERS provides a mechanism for rapidly searching a single file or set
of files, whether they are loaded or noticed or not. It takes the form

Function: EDITCALLERS

Arguments: 3

Arguments: 1) a l i s t of atoms, ATOMS
2) a l i s t o f f i l e s , FILES
3) a l i s t o f commands, COMS

Value: The l i s t o f f i l e s .

EDITCALLERS uses FFILEPOS to search each file in FILES for occur
rences of the atoms in ATOMS. For each occurrence that is found, EDITE is
invoked to apply the commands in COMS to the detected atoms. COMS may be
NIL, whence (EXAM . <atoms)) is used. Both ATOMS and FILES may be sin
gle atoms. If FILES is NIL, FILELST is used as the default list of files.

EDITCALLERS prints the name of each file that it searches. When it finds
an occurrence of an atom in ATOMS, it prints either the name of the function
containing the atom or the byte position of the atom in the file. If a file map is

674 The INTERLISP Editor

available, EDITCALLERS uses it to speed up the search. EDITCALLERS al
ways calls the Editor.

An alternative form, FINDCALLERS, which takes the arguments ATOMS
and FILES, merely performs the search, but never calls the Editor.

19.3.5 Tracing Editor Macros
EDITRACEFN is used to help you debug edit macros. It takes the form

Function: EDITRACEFN

Arguments: 1

Arguments: 1) a command, COMMAND

Value: The value of the t ra c e or break.

EDITRACEFN is initially NIL. If you set it to T, then EDITRACEFN will
be invoked whenever a command not typed by you is about to be executed. The
command may be an edit macro or a valid editor command. The command is
passed to EDITRACEFN as its argument. You may define EDITRACEFN to
handle the command as you see fit.

If EDITRACEFN is set to TRACE, the name of the command and the cur
rent expression are printed. If EDITRACEFN is BREAK, the same information
is printed and the Editor enters the Break Package. In the Break Package, you
may examine the state of the Editor.

19.4 EDITOR CONCEPTS
Editor commands can be divided into a basic set that are easy to use and an
advanced set that provide substantially more power and flexibility to the experi
enced user. To understand how the Editor works, it is necessary to understand
the model for editing that the editor works with. This section describes these
concepts.

19.4.1 The Concept of Currency
The INTERLISP editor works on list structures. As you know, lists are bounded
by matched pairs of parentheses. Within each pair of matching parentheses,
multiple lists and atoms—the elements of a list—may exist. The editor works
within a matching pair of parentheses on one of the elements.

Consider the following definition for a function:

(LAMBDA (x)
(COND

((ZEROP a) x)

19.4 Editor Concepts 675

676 The INTERLISP Editor

(T
(MINUS x))))

The top-level elements of this list structure are LAMBDA, (x), and (COND
& &). The latter two elements are sublists having further structure. The &’s
mean that there is yet greater complexity in a sublist.

Using normal list processing terminology, sublists always have a level that is
one greater than the level in which they are contained. Thus, the level of x in (x)
is 2 where we count the top level as 1. Correspondingly, the level of MINUS is 4
since it is located in the sublist of a sublist of a sublist.

The editor works, usually, on one element of a list at a time. In order to
access the elements of a sublist, we must descend into the sublist. To descend in
to the sublist given by (COND & &), we must specify its element number to the
editor (see Section 19.5.2). When we do so, the elements of that sublist become
visible to us and the editor can manipulate them.

In order to keep track of where it is in a list structure, the editor maintains
an edit chain. This is merely a list structure on which is pushed the current ex
pression when the editor descends into one of its elements.

19.4.2 The Print Level
The Editor adheres to the print-level specification established by the system vari
able PRINTLEVEL. The Editor assumes an initial print level of (2 . 20).

19.4.3 Multiple Commands per Line
You may combine multiple commands per type-in line. The Editor will execute
each command in turn. However, an error in any command will cause the termi
nation of the command sequence.

19.4.4 Pattern Specifications for Searching
All of the Editor commands that search use the same pattern matching routine.
A pattern matches with an expression in the current expression if its satisfies any
of the following conditions:

1. If the (pattern) is EQ to the expression.
2. If the (pattern) is the atom &.
3. If the (pattern) is a number and EQP to the expression.
4. If the (pattern) is a string and

(STREQUAL (p a t t e r n) (e x p re s s io n))

is true.

5. If (CAR <pattern) is the atom *ANY* and (CDR <pattern)) is itself a
list of patterns, one of which matches the expression.

6. If {pattern) is a literal atom or string containing one or more $<s) (e.g.,
<ESC)<s)) where each $ can match an indefinite (including 0) number
of contiguous characters in the atom or string.

7. If (pattern) is a literal atom or string ending in two <ESC)s, the (pat
tern) matches with an atom or string that is close to (pattern), in the
same sense that the spelling corrector uses.

8. If (CAR (pattern)) is the atom -- (e.g., two dashes), (pattern) matches
the expression if (CDR (pattern)) matches with some tail of the expres
sion. If (CDR (pattern)) is NIL, then (pattern) matches any tail of the
expression.

9. If (CDR (pattern)) is the atom = = (e.g., two equal signs), the (pat
tern) matches the expression if and only if (CDR (pattern)) is EQ to the
expression.

10. If (CADR (pattern) is the atom .. (e.g., two periods), (pattern)
matches the expression if (CAR (pattern)) matches (CAR (expres
sion)), and (CDDR (pattern)) is contained within the expression.

11. Otherwise, if the expression is a list, (pattern) matches the expression
if (CAR (pattern)) matches (CAR (expression)) and (CDR (pattern))
matches (CDR (expression)).

The significance of these rules is described in more detail in the IRM.

19.5 Basic Editor Commands 677

19.5 BASIC EDITOR COMMANDS
This section will discuss the basic editor commands that will allow an unsophisti
cated user to “get started” with the editor.

19.5.1 Printing the Current Expression
You may print the current expression by executing the command P. If the cur
rent expression is the top level, then we would see

*P
(LAMBDA (a 1) (COND & & &))

where the & indicates that a sublist resides here.
The Editor assumes an initial print level of (2 . 20), which means that sub

lists of sublists will be printed [i.e., (a 1)] and the tails of long lists will be abbrevi
ated as - .

If you wish to see the entire expression to be edited, you may issue the com
mand ?, which forces the Editor to assume a print level of 1000. Thus, we have

678 The INTERLISP Editor

*?
(LAMBDA (a 1) (COND ((NULL 1) NIL) ((EQUAL (CAR 1) a) T) (T
(MEMBER a (CDR 1)))))

Note that the Editor does not observe any specific demarcations when it
prints an expression in this manner.

To prettyprint an expression in a more legible format, you may use the com
mand PP:

*PP
(LAMBDA (a 1)

(COND
((NULL 1) NIL)
((EQUAL (CAR 1) a) T)
(T (MEMBER a (CDR 1)))))

19.5.2 Descending a Level
A positive integer directs the Editor to descend into the corresponding element
of the current expression. If the element is an atom, the Editor prints an error
indication consisting of the level number followed by a ?.

*2
(a 1) " the second element”
*1
1 ? "cannot descend in to an atom"

Note that the current expression is never changed when a command fails, so

*P
(a 1)

A negative integer forces the Editor to count backward from the end of the
current expression to select the element into which to descend.

*-2
(a 1) "again , the second element"
*-3
-3 ? "cannot exceed number of elements"

Note that whenever we descend into an element, the current expression is
always added to the edit chain.

19.5.3 Ascending the Edit Chain
To ascend the edit chain, you may issue the command 0 .0 operates by removing
the last link of the edit chain and making it the current expression.

*P
(NULL 1) "assume we are a t the <4th le v e l"
*0
(& NIL) " to the 3rd le v e l"
*0
(COND & 8c &) " to the 2nd le v e l"

Note that 0 ascends one level each time that it is executed. If we are already
at the top level of the list structure, 0 will cause an error because the Editor
cannot remove any more links from the edit chain, i.e., the edit chain must al
ways be anchored by the top level of the list structure.

In a particularly complex list structure, you may forget at what level of the
list you currently reside. To “pop” up to the top level, you may execute the t (up-
arrow) command to force the editor to ascend to the top-most level. For exam
ple,

*P
(CDR 1)
*T (up-arrow)
(LAMBDA (a 1) (COND & & &))

If you are already at the top-most level of the list structure, the (up-arrow)
command has no effect.

19.5 Basic Editor Commands 679

19.5.4 Modifying the List Structure
The structure modification commands always work on the current structure.
The general form of the structure modification command is <expression-list>)
where the <expression-list> may be empty. The § may be either positive or nega
tive and determines the element in the current expression that is to be modified.

To delete an element from the current expression, you may issue the com
mand (#) where # is the index of the corresponding element to be deleted.

(COND (& NIL) (& T) (T &))
M 2)
*P
(COND (& T) (T &))

where the element (& NIL) has been deleted. Note that the new structure is not
automatically printed after modification.

Structure modification performed by the Editor is destructive, i.e., it physi
cally modifies the list structure using the functions RPLACA and RPLACD.

To replace an element with one or more new elements, you may issue the
command (# e[l] ... e[N]):

*P
(& NIL)
*(2 T)
*P
(& T) "NIL is replaced by T”

To insert one or more new elements before a given element, you may issue
the command {-ft e [l] ... e[N]). The sign of the number indicates that an inser
tion is to take place.

*P
(COND & & &)
*(-2 ((NULL a) NIL))
*P
(COND & & & &)

where a complex expression has been inserted before the second element.
Note that all three commands execute with respect to the Nth element from

the beginning of the current expression. There is no way to specify insertion or
deletion from the end of the current expression. Nor can we specify insertion
after a given element. This is rather tedious and may cause you some difficulty at
first.

680 The INTERLISP Editor

19.5.5 Adding Elements to the End of the Current Expression
Because we cannot insert after an element, we cannot put something at the end
of the list using structure modification commands described in Section 19.5.4.
To add elements to the end of the current expression, you may use the N com
mand. The N command NCONCs the elements provided to the end of the cur
rent expression.

*P
(LAMBDA (a l) (COND & & &))
*3 P
(COND (& NIL) (& t) (T &))
M 4)
*(N (T (EQUAL a (CADR l))))
*4 P
(T (EQUAL a (CADR 1)))

Note that the N command performs an RPLACD on the last CDR of the
current expression in order to patch in the new expression as the last element of
the current expression.

19.5.6 Finding an Element
One way to determine where to modify a structure is to perform a sequence of
recursive descents into the structure. For small structures, this may be quite
efficient and easy, particularly when the entire structure is composed of no more
than a few lines of code. More than this requires substantial effort on your part
to keep track of where you are.

The Find command allows you to search a structure for a pattern. The for
mat of the Find command is

(p a t te r n)

where <pattern) is the thing to be looked for in the list structure.
When the Find command is executed, the Editor begins searching at the

current level for the pattern. If it does not find it at the current level, it ascends
one level (via an implied UP) and renews the search. However, the search pro
ceeds only in the forward direction. Thus, when the Editor ascends a level, it
searches only those elements/o//owmg the element at which the search began.

If the search succeeds, the Editor sets the current expression to the structure
element where the pattern is found. If the search fails, the current expression is
not changed and an error message is displayed.

Consider the following example:

(LAMBDA (A L) (COND & & &))
*3 P

(COND (& NIL) (& T) (T &))
*2 P

((NULL L) NIL)
*F COND

COND ? "look fo r a COND”

The search failed to find a COND either in the current expression or any
expressions following it in the structure. Note that a COND appears earlier in
the structure but the Find command does not backtrack to locate it. To search
from the previous level, we might have issued the command

*0 F COND P

whence the result would be

(COND (& NIL) (& T) (T &))

19.5 Basic Editor Commands 681

19.5.7 Replacing an Element
In Section 19.5.4, we saw that we could replace an element of a structure by
descending to that element and specifying a new element in its entirety. If we
want to replace one atom of an element, this may become rather tedious.

The Replace command allows us to locate an atom or subexpression of the
current expression and substitute a new atom or expression for it. Consider the
following example:

*P
(LAMBDA (A L) (COND & & &))

*3 P
(COND (& NIL) (& T) (T &))

*(R EQ EQUAL)
*PP

(LAMBDA (A L)
(COND

((NULL L) NIL)
((EQUAL (CAR L) A) T)
(T (MEMBER A (CDR L)))))

The Replace command replaces all occurrences of the first argument by the
second argument in the current expression. In this case, there was only one oc
currence for which the substitution was made.

The Replace command requires that there be at least one occurrence where
substitution takes place; otherwise, an error occurs.

19.5.8 Exiting the Editor
When you complete the editing of a structure, you may exit the editor by issuing
the OKay command. OK saves the edited result in the proper place according to
how it was invoked.

682 The INTERLISP Editor

19.6 AN EDITOR COMMAND ENCYCLOPEDIA
The INTERLISP Editor provides a rich, powerful, flexible set of commands for
manipulating list structures. Beyond the brief introduction given in Section
19.5, it is difficult to instruct a user in the various Editor commands. We have
found the best method is to wade in and try the various commands. You will feel
comfortable with some but less so with others. Eventually, you will build a reper
toire of commands that you will use frequently. When you become “stuck,” be
assured the Editor probably has a command for what you want to do, but you
will have to look it up.

In this spirit, this section presents an encyclopedia of Editor commands.
The following table depicts the correspondence between the command, its func
tion, and the section in which it appears.

19.6 An Editor Command Encyclopedia 683

A
B
BELOW
BF
BI
BIND
BK
BO
CAP
CHANGE
CL
COM3
DELETE
DW
E
EMBED
EVAL
EXAM
EXTRACT
F
GETD
GETVAL
GET̂ ^
GO
IF
INSERT

JOINC

LC
LI
LOWER
LP
M
MAKE

MAKEFN
MARK

MBD
MOVE
N

NEGATE

Command Function Section

A fter 19.6 .1
Before 19.6.2
Below 19.6.3
Backwards Find 19.6.4
Both In 19.6.5
Binding V ariables 19.6 .6
Backup 19.6 .7
Both Out 19.6.8
C ap ita lize 19.6 .9
(See REPLACE)
C lisp ify 19.6.10
Commands 19.6.11
D eletion 19.6.12
Dwimify 19.6.13
Evaluate 1 9 .6 .14
EMBEDding 19.6.15
EVALuat ion 19.6.16
EXAMine 19.6.17
(See XTR)
Finding an expression 19.6.18
GETting a D efin it io n 19.6.19
GETting a VALue 19.6.20
GETting a comment 19.6.21
GOing to a PROG la b e l 19.6.22
Conditional E d iting 19.6.23
In se r t in g in to an 19.6.24
expression
Jo in ing Conditional 19.6.25
expressions
Lower Case 19.6.26
Left In s e r t 19.6.27
Lower Case 19.6.28
Looping 19.6.29
Macro d e f in i t io n 19.6.30
MAKE a parameter 19.6.31
have a value
MAKE a FunctioN 19.6.32
MARKing and Restoring 19.6.33
the e d i t chain
(see EMBED)
MOVE an expression 19.6.34
Adding to the eNd of 19.6.35
an expression
NEGATEing an expression 19.6.36

684 The INTERLISP Editor

NEX Advancing to the NEXt
expression

19.6.37

NIL NIL 19.6.38
NTH NTH Element 19.6.39
NX (see NEX)
OK OKay to e x i t 19.6.40
ORF (see F)
ORIGINAL ORIGINAL d e f in i t io n 19.6.41
ORR Execute one command 19.6.42
P P r in t expression 19.6.43
PP (see P)
PP* (see P)
PPT (see P)
PPV (see P)
Q (see EMBED)
R Replace 19.6.44
RAISE RAISE to upper case 19.6.45
RC (see R)
REPACK E dit atom or s t r in g

(REPACK)
19.6.46

REPLACE (see R)
RI Right p a ren th es is in 19.6.47
RO Right Paren thesis out 19.6.48
Rl (see R)
S Set l i t e r a l atom 19.6.49
SAVE (see OK)
SHOW SHOW a l l in stances 19.6.50
SPLITC SPLIT COND 19.6.51
STOP (see OK)
SURROUND (see EMBED)
SW switch elements 19.6.52
SWAP (see SW)
SWAPC (see SW)
TEST Add undo-block 19.6.53
THRU Location s p e c if ic a t io n 19.6.54
TO (see THRU)
TTY: C all E d ito r 19.6.55
UNBLOCK (see TEST)
UNDO UNDO l a s t command 19.6.56
UP Move UP the e d i t chain 19.6.57
XTR E xtrac t 19.6.58
* I n s e r t comment 19.6.69
<n>, -<n> 19.6.60
0 (see <n>)
2ND (see LC)

19.6 An Editor Command Encyclopedia 685

3RD (see LC)
•
• (see DELETE)
9• (see P)
\ (see MARK)
<- (see UP)
<- (see MARK)

Many of the Editor commands are treated as macros. Their definitions are
maintained in the system variable EDITMACROS. You may discover these defi
nitions by executing

^-(PRINTDEF EDITMACROS)

We shall show the definition for each macro that appears on EDITMA
CROS.

19.6.1 Inserting After the Current Expression
The After command allows you to insert one or more S-expressions after the
current S-expression. Its format is

*(A e [l] . . . e [n])

where the e[i] are S-expressions. Consider the following examples:

^(EDITE x)
edit
*PP

(COND
((EQ A (CAR L))

(CDR L)))
*(A ((EQ (CAR A) (CAR L)) (CADE L)) (T L))
can't — at top

because we are trying to add an S-expression after an entire current S-expres
sion. However, we really want to descend into the S-expression before editing:

*2 P
((EQ A &) (CDR L))
*(A ((EQ (CAR A) (CAR L)) (CADR L)) (T L))

. *PP
(((EQ A (CAR L))

(CDR L))
((EQ (CAR A) (CAR L))

(CADR L))

(T L))
*0 P
(COND (& &) (& &) (T L))

19.6.2 Inserting Before the Current Expression
The Before command allows you to insert one or more S-expressions before the
current expression. Its format is

*(B e [l] . . . e [n])

where the e[i] are S-expressions. Consider the following examples:

<^(EDITE x)
e d i t
*PP
(COND

((EQ A (CAR L))
(CDR L)))

*(B ((AND (LISTP A) (EQ (CAR A) (CAR L))) (CADR L)))
c a n ' t — a t top

because we are trying to add an S-expression before an entire S-expression. We
must descend into the S-expression as follows:

*2 P
((EQ (CAR A) (CAR L))
*(B ((AND (LISTP A) (EQ (CAR A) (CAR L))) (CADR L)))
*P
(((AND (LISTP A)

(EQ (CAR A)
(CAR L)))

(CADR L))
((EQ A (CAR L))

(CDR L)))

19.6.3 Locating a Pattern
The BELOW command is used to locate current expression after a given pattern
in a structure. Its format is

*(BELOW (p a t t e r n) <n>)

The Editor ascends the edit chain looking for a link specified by (pattern).
Ascension consists of performing Os (see Section 19.6.60) until a link is found

686 The INTERLISP Editor

that matches (pattern). Then, the editor descends <n> links below that expres
sion.

Consider the following example taken from the IRM:

*PP
(PROG NIL

(COND
((NULL (SETQ L (CDR L)))

(COND
(FLG (RETURN L))))

((NULL (CDR (MEMBER (CAR L) (CADR L)))))))
*F CADR
* (BELOW COND)
*P
((NULL (CDR (MEMBER (CAR L)(CADR L)))))

F CADR finds the S-expression (CADR L). Then, (BELOW COND) as
cends the edit chain four links:

(MEMBER & &)
(CDR &)
(NULL &)
(NULL &) "c o n ta in s a COND”

which is equivalent to

*0 0 0 0

The BELOW command forces the result shown above. Since <n> is NIL, 1 is
assumed.

BELOW locates a substructure by specifying an S-expression that it con
tains.

19.6.4 Searching Backwards
The Backwards Find command searches backwards from the current expression
to locate an S-expression matching the pattern. Its format is

*BF (p a t te r n)

Consider the following examples:

*P
(PROG NIL

(SETQ X

19.6 An Editor Command Encyclopedia 687

(SETQ Y (LIST Z)))
(COND

((SETQ W (CAR X))
(CADR Z))))

*F LIST
*BF SETQ
*P
(SETQ Y (LIST Z))

When BF ascends the edit chain to the previous link, it always begins its
search at the end of the link. That is, it searches the list in reverse order. So, F
LIST finds (LIST Z). Then, BF SETQ backs up to (SETQ Y (LIST Z)) which
contains a SETQ and causes the search to terminate.

BF continues ascending until the top of the edit chain is reached, whence it
terminates with ?.

*F CADR
*BF RETURN

If the current expression is the top-level expression, the editor searches the
entire expression in reverse order.

*T "up arrow"
*BF CAR
*P
(CAR X)

An alternative form, (BF <pattern) T), causes the current expression to be
included in the search.

*F COND
*(BF SETQ T)

(SETQ W (CAR X))

because the search commences at the end of (COND &) which is the current
expression.

BF is constrained by the value of MAXLEVEL and UPFINDFLG.

19.6.5 Inserting Balanced Parentheses
The Both In command allows you to insert balanced parentheses around a se
quence of elements in the current expression. Its format is

*(BI <n> <m>)

688 The INTERLISP Editor

where <n> and <m> are the numeric indices of expressions within the current
expression.

Consider the following example:

<-(EDITF is .z e r o)
e d i t
*PP
(LAMBDA (NUM)

(COND
(ZEROP NUM 1)
(T NUM)))

*F ZEROP
*P
(ZEROP NUM 1)
*(BI 1 2)
*P
((ZEROP NUM) 1)

BI inserts a left parenthesis before the <n>th element in the current expres
sion and a matching right parenthesis after the <m>th element. <m> must be
greater than <n> and the <m>th element must be contained within the current
expression. Otherwise, BI generates an error.

*(BI 1 4)
4 ?
*(BI 2 1)
(BI 2 1) ?

An alternative form, (BI <n>), is equivalent to (BI <n> <n>). That is, it
makes a list of the <n>th element.

19.6.6 Binding Macro Variables
The BIND command binds the dummy variables #1, #2, and #3, which are ini
tialized to NIL, and then executes a sequence of edit commands. Its format is

*(BIND <commands))

The IRM notes that you may define the SW command as

(M
(SW (N M)

(BIND (NTH N)
(S #1 1)
MARK 0
(NTH M)

19.6 An Editor Command Encyclopedia 689

(S #2 1)
(I 1 #1) (I 1 #2))))

The commands (S #1 1) and (S #2 1) set the macro variables and #2 ap
propriately.

The bindings for macro variables #1, #2, and #3 are effective only for the
sequence of edit commands executed by BIND.

19.6.7 Backing Up in the Current Expression
A current expression may be embedded in a list. BacKup allows you to move to
the previous expression in the edit chain,

*PP
(COND

((NULL X)
(RETURN Y)))

*F RETURN
*P

(RETURN Y)
*BK P

(NULL X)

where the list structure consists of ((NULL X) (RETURN Y)).
If the current expression is at the beginning of a list, an error will result.

That is, BK does not ascend the edit chain.

*PP
(COND

((NULL X)
(RETURN Y)))

*F NULL
*P

(NULL X)
*BK
BK ?

An alternative form, (BK <n», allows you to specify the number of S-ex-
pressions, <n> = > 1, to back up within the current list structure. If <n> would
force BK to run off the front of the list, an error results and the edit chain is not
changed.

t̂pp
(t y l e r p o lk Johnson hayes t a f t a r th u r)

*F t a f t
*(BK 5)
(BK 5) ?

690 The INTERLISP Editor

A Definition for BK
We might define a macro which backs up to a previous expression and prints it
as follows:

(BKP NIL
(ORR (BK)

(! 0)
((E

(PROGN
(SETQQ COM BK)
(ERROR!)))))P)

19.6 An Editor Command Encyclopedia 691

19.6.8 Deleting Balanced Parentheses
The Both Out command allows you to remove balanced parentheses from an
element in an expression. Its format is

*(B0 <n>)

where <n> identifies the Nth element in the expression.
Consider the following example;

((A B) C (D E F) G (H I))
*(B0 3)
*?
((A B) C D E F G (H I))

If the Nth element is not a list or there are not N elements in the expression,
an error is generated.

*P
((A B) C (D E F) G (H I))
*(B0 4)
(BO A) ?
*(B0 6)
(BO 6) ?

19.6.9 Capitalization
The CAPitalization command capitalizes an atom or a string. It RAISEs the
characters in the element and then LOWERs all but the first character. If the
atom or string is already capitalized, nothing happens.

692 The INTERLISP Editor

*P
IGNORECHARACTERCODES
*CAP
*P
Ignorecharactercodes

CAP’S macro definition appears as

(CAP NIL
RAISE (I 1 (L-CASE (##l) T)))

19.6.10 CLISPIFYlng Expressions
The CLISPIFY command translates the current expression to CLISP format
(see Chapter 23),

*P
(COND

((NULL x)
(PROG (value)
loop

(COND
((EQ (SETQ X (READ) 'STOP)

(RETURN v a lue)))
(PRINT (EVAL x))
(GO lo o p))))

*CL
*P
(i f (NULL x)

then while x<-(READ) = 'STOP
do (PRINT (EVAL x)))

A Definition for CL
CL has the following macro definition:

(CL NIL
(BIND

(IF (NULL (CDR L))
(IF (MEMB {##!) LAMBDASPLST)

((MARK #3) 3 UP)
((E

(PROGN
(SETQQ COM CL)
(PRINT 'c a n ' t) T T)
(ERROR!))))

i

NIL)
(IF (TAILP (SETQ #1 (##))

i##io
(E

(SETQ #2 L) T)))
((I : (CLISPIFY #1 #2))

(LO D)
((COMS

(CONS (CLISPIFY #1 #2))
(AND (LISTP (##1) 1))

(IF #3 ((#3)) NIL)))

19.6.11 Command Execution
COMS takes one or more S-expressions as its arguments. It evaluates each S-
expression in turn and then executes it as an Editor command. Its format is

*(COMS ex p ress io n [l] . . . expression[N])

where each EXPRESSION[i] is an S-expression which, when evaluated, yields
an Editor command.

An alternative form, COMSQ, takes as its arguments one or more S-expres
sions which it executes as Editor commands (e.g., its arguments are Editor com
mands). Its format is

*(COMSQ command[1] . . . command[N])

where each COMMAND[i] is an Editor command.
COMS and COMSQ may be used in conjunction to execute commands that

are attached to an INTERLISP object that is being edited, perhaps as entries on
its property list. Different properties may describe how to edit the data struc
ture.

19.6.12 Deleting Expressions
The DELETE command deletes the current expression on the edit chain:

*P
(COND

(A (PRINT B))
(T (HELP)))

*F HELP
*DELETE
*P
(T)

19.6 An Editor Command Encyclopedia 693

DELETE tries to delete the current expression by performing an UP and
then (1). This works in all cases except where the current expression contains
exactly one element, because you cannot delete something and leave an empty
list. Then, DELETE performs, BK, UP, (2).

When the next higher expression contains only one element, BK will not
succeed. Then, DELETE performs (: NIL). That is, it replaces the higher ex
pression by NIL.

DELETE might be defined as an edit macro as follows:

(DELETE NIL
(ORR (UP (1))

(BK UP (2))
(: n il)))

An alternative form, D, combines the actions of DELETE and P by deleting
the current expression and printing the new current expression. It might be de
fined as

(D NIL (:) 1 P)

Another form, also deletes the current expression.

19.6.13 DWIMIFYing Expressions
The DWIMIFY command allows you to DWIMIFY the current expression (see
Section 22.5). The process of DWIMIFYing is described in detail in Chapter 22.

A macro definition for the DW command is

(DW NIL
(BIND

(E
(PROGN

(SETQ #1 {##))
(AND

(CDR L)
I##10 (E (SETQ #2 L) T)))

(AND
(SETQ #3

(DWIMIFY #1 T (OR #2
'NIL)))

EDITCHANGES
(RPLACA (CDR EDITCHANGES) T)))

T)
(IF (NLISTP #1)

((I : #3)

694 The INTERLISP Editor

(IF (LISTP #3)
(1)
NIL))

NIL)))

You may disable DWIMIFYing in the Editor using the following command:

(!DW NIL
(RESETVAR CLISPRETRANFLG T DW))

19.6 An Editor Command Encyclopedia 695

19.6.14 Evaluating Input
From the Editor, you may evaluate any S-expression. To do so, you must enter
the Evaluate command followed by the expression to be evaluated. Note that E
only works when typed in at your terminal. It takes the form

*E (ex p ress io n)

where the expression is evaluated. For example, while editing, you may want to
evaluate part of an expression, see what it produces, and force a break. Using E,
you enter

*(E (LOAD 'COMPLEX))
<KAISLER>COMPLEX..2
FILE CREATED 30-Aug-84 20:44:36
COMPLEXCOMS

An alternative form is (E (expression)), (expression) is evaluated and then
E performs an EVAL (see below) on its result. The value is printed at your termi
nal.

*(E (SETQ X '(IPLUS (SETQ X 1) (SETQ Y 4))))
(SETQ X '(IPLUS (SETQ X l)(SETQ Y 4)))

If you do not want the result to be printed at your terminal, you may use the
form

*(E (SETQ X '(IPLUS (SETQ X 1) (SETQ Y 4))) T)

which suppresses printing of the result of the expression, except during type-in
mode.

I have noticed that this command is particularly useful when you are editing
broken functions because you may inspect the values of variables or subexpres
sions of the function from within the Break Package.

19.6.15 Embedding
Embedding replaces the current expression with one containing it as a subex
pression. There are two forms to this command:

*(EMBED @ IN (ex p ress io n))

where @ is some S-expression (possibly, an atom) which is to be inserted into the
S-expression given by (expression).

*
<-(EDITF ROUNDTO)
e d i t
*PP
(LAMBDA (X Y)

(TIMES (ROUNDED (QUOTIENT X Y)
Y)))

* (EMBED QUOTIENT IN PRINT)
*PP
(LAMBDA (X Y)

(TIMES (ROUNDED (PRINT (QUOTIENT X Y)) Y)))

EMBED locates the S-expression identified by @ via (LC . @). It then cre
ates a new S-expression with @ embedded via (MBD . (expression).

MBD is the command that performs embedding. It takes the form:

*(MBD (e x p re s s io n l) . . . (expressionN))

MBD substitutes the current expression for all instances of the atom & in
each of the <expression[l]). The current expression is replaced by the result of
that substitution via SUBST. MBD sets the edit chain to be the new current
expression.

Another alternative, Q, quotes the current expression by embedding a
QUOTE in front of the expression. It takes the form

*Q

Q may be defined as an edit macro as follows:

(Q NIL
(MBD QUOTE))

Another alternative form, SURROUND, performs the same function as
EMBED but is easier understood. It takes the form

(̂SURROUND @ WITH . (ex p ress io n))

696 The INTERLISP Editor

You may evaluate the current expression in the edit chain by issuing the EVALu-
ate command. It takes the form

*EVAL

You may use EVAL and NX to single-step a program through its symbolic
definition. Assume we have the PROG form:

*E (SETQ CITIES (LIST 'WICHITA 'ALBANY 'BOISE 'SALEM))
*PP
(PROG (CITY)
LOOP (SETQ CITY (CAR CITIES))

(PRINl CITY)
(TERPRI)
(SETQ CITIES (CDR CITIES))
(AND

(NULL CITIES)
(RETURN))

(GO LOOP))

The execution of the PROG would be handled by the following sequence of
commands:

*F SETQ
*P
(SETQ CITY (CAR CITIES))
*EVAL
WICHITA
*NX
*P
(PRINl CITY)
*EVAL
WIHCITAWICHITA

A macro definition for EVAL is

(EVAL NIL
(ORR

(E
(LISPXEVAL (## (ORR UPl) NIL)) '*)

((E 'EVAL?))))

19.6 An Editor Command Encyclopedia 697

19.6.16 Evaluating an Expression

19.6.17 Examining an Expression
EXAMine allows you to invoke the Editor on an expression from within the Edi
tor. Its form is

*(EXAM . {expression))

(expression) is a pattern or list of patterns. The Editor will be invoked for every
instance of the expression. Assuming we are in the PROG expression mentioned
in Section 19.6.16, we have

*(EXAM . CITIES)
(SETQ CITIES (CDR CITIES))
t t y :*P
(SETQ CITIES (CDR CITIES))
*0K
(CDR CITIES)
t t y :
*0K
(NULL CITIES)
t t y :
*0K
done

698 The INTERLISP Editor

where the Editor has stepped us through every instance where CITIES occurs in
the remaining S-expressions from the current edit chain. At each instance, we
can enter editing commands to modify that particular instance.

We might define EXAM as a macro as follows:

(EXAM X
(F (*ANY* . X) T)
(BIND (LPQ (MARK #1)

(ORR (1 !0 P) NIL)
(MARK #2)
TTY:
(MARK #3)
(IF (EQ (# # (\ #3))

(# # (\ #2)))
((\ # D)
NIL)

(F (*ANY* . X) N)))
(E ’done))

When editing a function or expression, you must be able to locate the expression
within the function to be modified. The Find command and its variations search
an expression for a given pattern. If the search is successful, the current expres
sion becomes the pattern sought.

The basic form of the F command is

*F <pattern>

where (pattern) is to be sought in the function or expression that is being edited.
If the pattern exists within the current expression, F does not proceed to search
further, i.e., F initially executes

(MEMBER (p a t te rn) (c u r re n t-e x p re s s io n))

Consider the following examples (after the IRM):

*PP
(PROG NIL

19.6 An Editor Command Encyclopedia 699

19.6.18 Finding an S-expression

(SETQ . . .)
LOOP

(COND
((NULL . . .) . . .)
((MEMBER . . .) (G 0 LOOPl)
(T (GO LOOP)))

LOOPl (RETURN))
*1
*F LOOPl
*P
. . . LOOPl)

finds the first LOOPl which is embedded within the COND because PROG is
the current expression. The ... indicates that there is a part of the S-expression
preceding the atom that was found. However,

*0 P
*F LOOPl

finds the label LOOPl within the PROG.
You can find the next instance of a pattern by using the alternative form

*F (p a t t e r n) N
*(F (p a t t e r n) N)

This form does not perform the check against the current expression.
You may determine if there is another instance of the pattern in the function

or expression using the alternative form

*F <p a t te r n) T
*(F < pa tte rn> T)

This form looks for the pattern, but does not change the edit chain when it
finds an instance of the pattern. It does not check the current expression.

If there are multiple instances of a pattern in the function or expression, you
can find the Nth instance using the alternative form

*(F < p a tte rn > <n>)

where <n> is greater than or equal to 1. This form is equivalent to

*(F <p a t t e r n) T)
*(F <p a t t e r n) N) re p e a te d N-1 tim es .

If the pattern does not match N times, an error is generated and the edit
chain remains unchanged.

*F LOOPl 4
LOOPl ?

The search algorithm used by F descends into lists to match its pattern. If
you want to match only the top-level elements of the current expression, you may
use the alternative form (differing from the basic form by enclosure within pa
rentheses)

*(F (p a t t e r n))
*F (p a t t e r n) NIL

Consider the following example:

(PROG (. . .)
(SETQ . . .

(COND
((. . .))
((. . .))))

(COND
((. . .))

700 The INTERLISP Editor

(T . . .)))

will find the COND inside the SETQ because that form descends into lists.

*(F COND)

finds the second COND because it occurs at the top level of the PROG form.

Finding Any Pattern
An alternative form, ORF, searches for an expression that matches any one of
the patterns given as its arguments. It takes the form

*(ORF < p a tte rn l> . . . <patternN >)

19.6 An Editor Command Encyclopedia 701

*F COND

19.6.19 Getting a Definition
The GET Definition command expands the current expression in line if it is one
of the following cases:

1. If the CAR of the current expression is the name of a macro, the macro
name is replaced by its current expansion.

2. If the CAR of the current expression is a CLISP word, the current expres
sion is replaced by its translation.

*P
((i f (NLISTP X) th en (CAR X)))
*1
*GETD
*PP
(COND

((LISTP X)
(CARX)))

Note that the translation eliminated the double negative.
3. If CAR of the current expression is a function name, the arguments are

substituted into the body of the function definition and the result re
places the function invocation.

<-(EDITF ROUNDTO)
e d i t
*PP
(LAMBDA (X Y)

(TIMES (ROUNDED (QUOTIENT X Y) Y)))
*3 2 P
(ROUNDED (QUOTIENT X Y) Y)
*GETD
*PP
(TRUNCATE (PLUS (QUOTIENT X Y)

(QUOTIENT (SIGN (QUOTIENT X Y))
2)))

GETD must be able to access the symbolic definition of the function
from memory or from a noticed file.

4. If CAR of the current expression is LAMBDA, the arguments are substi
tuted into the body of the LAMBDA which replaces the LAMBDA ex
pression in the current expression.

A macro definition for GETD is (from EDITMACROS)

(GETD NIL
UP
(ORR

((I 1 (OR
(EDIT GETD (M l)

(AND (CDR L)

702 The INTERLISP Editor

(ERROR!)))
((E 'GETD?)))

1)

(EDITLO L MO)))

19.6.20 Getting a Value
The GET VALue command replaces the current expression by its value after it
has been evaluated. Note that evaluation may generate an error if the evaluation
depends on the establishment of a certain environment. It takes the form

*GETVAL

The current expression in the edit chain is evaluated and the result replaces
the expression that was evaluated. You cannot replace the top-level expression in
the edit chain with its value.

A macro definition for GETVAL is (from EDITMACROS)

(GETVAL NIL
UP
(ORR

((I 1 (EVAL (##1) '*)))

1)

19.6 An Editor Command Encyclopedia 703

((E ’GETVAL?)))

19.6.21 Getting a Comment
GET* retrieves the full text of a comment if the current expression is a comment
pointer (see Section 16.10). The comment pointer is replaced by the full text.

A macro definition for GET* is (from EDITMACROS)

(GET* NIL
(BIND

(IF (NEQ (SETQ #1 (GETCOMMENT (##)))
m)

((I : m
1)

NIL)))

19.6.22 Going to a PROG Label
The GO command makes the current expression be an S-expression immedi
ately after the PROG label. It takes the form

*(G0 <label>)

If there is no label in the edit chain having the given name, the Editor prints
a warning and waits for a new command.

A macro definition for GO is (from EDITMACROS)

(GO (LAB)
(ORR

((<- ((*ANY* PROG ASSEMBLE DPROG)
—LAB))

F LAB (ORR 2 1)
P)
((E

(PROGN
(SETQQ COM LAB)
(ERROR!))))))

19.6.23 Conditional Listing
The IF command allows you to perform conditional editing. The general form is

*(IF (e x p re s s io n))

In this form, the Editor evaluates (expression). If the result is an error or
NIL, the result of the command is an error.

At the top level of the Editor, this form is not particularly useful. However,
several editor commands use errors to force sequencing through a number of
alternatives. The error is interpreted as an indication to try the next expression.
For example, consider the location specification

(ATTACH (IF (LISTP (## 2))))

which says to find the expression with ATTACH as its CAR if the result of exe
cuting the expressions in the edit chain yields a list.

IF may also be used to select between two alternative expressions. It takes
the form

*(IF (ex p ress io n) (commandsl) <commands2))

When (expression) is evaluated, a non-NIL value selects (commandsl) for
execution, while a NIL value selects (commands2). The IRM notes that this
form is equivalent to

(COM3 (CONS 'COMSQ
(COND

((CAR (NLSETQ (EVAL X)))
(commandsl))

(T (commands2)))))

The IRM notes that the expression

(IF (READP T) NIL (P))

will print the current expression if the read buffer is empty.
In this form (commands[2]) is optional. But, if evaluating (expression)

generates an error, then the error will occur.

704 The INTERLISP Editor

19.6.24 Inserting into an Expression
INSERT inserts one or more S-expressions before, after, or in place of another
S-expression. It takes the form

^(INSERT (e x p r l) . . . (exprN) (lo c a t io n) (ex p ress io n))

where (location) is one of the keywords BEFORE, AFTER, or FOR.
Suppose that we have a function ENTER that adds a new member to a list if

it is not already there. At the top level, MEMBER searches the elements of the

list to determine if an entry already exists in the list. We would like to add an
expression that also checks all sublists of the list. We can do this as follows:

♦-(EDITF ENTER)
e d i t
*PP
(LAMBDA (ENTRY LST)

(COND
((MEMBER ENTRY LST) LST)
((NULL LST) (LIST ENTRY))
(T (APPEND LST (LIST ENTRY)))))

*P
(LAMBDA (ENTRY LST) (COND & & &))
*3 P
(COND (& ENTRY) (& &) (T &))
* (INSERT ((EQMEMB ENTRY LST) LST) AFTER 2)
*P
(COND (& ENTRY) (& LST) (& &) (T &))

where the third element in the above list is the element that we just inserted.
An alternative command, Insert, evaluates its arguments and inserts the

results into the current expression. It takes the form

*(I (command) <expresslonl> . . . <expressionN>)

I executes the Editor command given by {command). It usually locates the
position where the expressions will be inserted, (command) maybe an atom or a
list, whence it is also evaluated. The <expression[i]) are evaluated and the
results inserted into the current expression at the location specific. We could
have performed the editing indicated above by the following command;

*(I 3 (QUOTE ((EQMEMB ENTRY LST) LST)))

If {command) is a list, it will be evaluated. This allows you to specify condi
tional locations for insertion, as suggested by the following expression:

* (I (COND ((NULL FLO) '-1) (T 1)) "APPLES")

which places the string “APPLES” in a list associated with the index -1 or 1.
Note that I actually modifies the current expression rather than copying it.

19.6.25 Joining Conditional Expressions
The JOIN Conds command merges two neighboring conditional expressions.
When creating and editing functions, you sometimes add additional checks after

19.6 An Editor Command Encyclopedia 705

the function was written. This may result in the proliferation of superfluous
COND clauses in your function definition. JOINC allows you to combine two
COND expressions into one. However, you must be careful to ensure that the
COND expressions are independent, i.e., they test for different conditions both
of which may not be true.

*PP
(PROG NIL

(COND
((EQUAL Y 10) (PRINT Y)))

(COND
((LESSP Y 20) (PRINT (IPLUS Y 12)))
(T (IMINUS Y 5))))

*JOINC
*PP
(COND

((EQUAL Y 10) (PRINT Y))
((LESSP Y 20) (PRINT (IPLUS Y 12)))
(T (IMINUS Y 5)))

Note that JOINC performs (F COND T) first to locate the first COND pf the
pair to be joined. Thus, you do not have to be properly positioned in order to
execute JOINC.

A macro definition for JOINC is (from EDITMACROS)

(JOINC NIL
(F COND T)
UP
(BI 1 2)
1
(BO 2)
(2)
(RO 1)
(BO D)

19.6.26 Locating an S-expression
The LoCate command allows you to explicitly invoke the location operation. It
takes the general form

*(LC . @)

where @ is a location specification.
An alternative form, LoCate Local, searches only the current S-expression.

Consider the following example:

706 The INTERLISP Editor

*PP
(PROG NIL

(COND
((NULL (SETQ L (CDR L)))

(COND
(FLAG

(RETURN L))))
((NULL (CDR (MEMBER (CAR L) (CADR L))))))

*3 P
(COND & &)
*(COND (LCL RETURN)) P
(COND

(FLAG
(RETURN L)))

Two alternative forms, 2ND and 3RD, perform two or three LC commands
in sequence. They may be defined as edit macros as follows:

(2ND X
(ORR (LC . X)

(LC . X)))

(3RD X
(ORR (LC . X)

(LC . X)
(LC . X)))

19.6.27 Inserting and Removing Left Parentheses
The Left In and Left Out commands insert and remove left parentheses from the
current S-expression, respectively. They take the general form

*(LI <n>)
*(L0 <n>)

where <n> is the numerical index of the element before which a left parenthesis
is to be inserted or removed.

Consider the following list:

((Los Angeles 1984) (Moscow 1980) Montreal 1976)

The last two atoms should actually be components of a list. We can make
them be a list by executing

*(LI 3)
*P
((Los Angeles 198-4) (Moscow 1980) (Montreal 1976))

19.6 An Editor Command Encyclopedia 707

Note that LI inserts a left parenthesis before the indicated element and a
matching right parenthesis at the end of the current S-expression. LI ensures
balanced parenthesis pairs.

LO removes the left parenthesis from before the indicated element. It de
letes all elements following the <n>th element in the list.

*(L0 2)

((Los Angeles 1984) Moscow 1980)

19.6.28 Lower-Case Conversion
LOWER converts all characters of the current expression to lower case. It takes
the form

SLOWER

An alternative form replaces the current expression with the lower-case ex
pression. It takes the form

*(LOWER (ex p ress io n))

It might be defined by an edit macro:

(LOWER NIL
(IF (NLISTP (##))

UP NIL)
(I 1 (L-CASE (##)))

Consider the following example:

*PP
(DEFINEQ

(FACTORIAL (X)
(* THIS FUNCTION COMPUTES THE FACTORIAL OF X)
(COND

((ZEROP X) 1)
(T

(ITIMES X (FACTORIAL (SUBl X)))))
))

*P
(* THIS FUNCTION COMPUTES THE FACTORIAL OF X)
SLOWER
(* t h i s fu n c tio n computes the f a c t o r i a l o f x)
*0K

708 The INTERLISP Editor

19.6.29 Iterative Execution
LP, the LooP command, repeatedly executes its argument list until an error oc
curs. It takes the form

*(LP . (command))

Consider the following example:

<-(DEFINEQ
(PRINT.RESPONSE (x)

(PRINT "The response is ")
(PRINT x)

))
(PRINT.RESPONSE)

<-(EDITF 'PRINT.RESPONSE)
*(LP F PRINT (N T)) which p laces a T a t

the end of every PRINT
expression

2 occurrences
*0K

<-(PP PRINT.RESPONSE)
(PRINT.RESPONSE

(LAMBDA (X)
(PRINT "The response i s ” T)
(PRINT X T)

))

Note that when an error occurs, the <command) cannot be applied to the
current expression. LP terminates and prints a message: <n) OCCURRENCES,
where <n) is the number of times (command) was successfully executed. The
edit chain remains in the state established by the last successful execution of
(command).

An alternative form, (LPQ . (command)), operates like LP, but it does not
print the occurrences message.

It is possible for (command) to force you into an infinite loop. To avoid this
problem, LP terminates when the number of successful iterations is equal to
MAXLOOP. MAXLOOP is initially set to 30. Since the edit chain reflects the
last successful execution, you may continue execution by issuing the REDO
command (see Section 28.4.1). Setting MAXLOOP to NIL effectively implies an
infinite number of iterations.

19.6.30 Macro Definition
The Macro definition command allows you to create new commands which are
extensions to the Editor’s repertoire. You may also redefine existing commands

19.6 An Editor Command Encyclopedia 709

via macros whence the macros will take precedence in execution. The format of
this command is

*(M <atom> . <command l i s t))

The Editor defines <atom> to be an Editor command. Whenever <atom> is
issued, the commands associated with <atom> are executed. For example, to
define a backup-and-print command, we could execute the expression

*(M BP BK UP P)

where BK, UP, and P are the commands associated with the new command BP.
If a macro already exists with the name < atom), it will be redefined. Macros

may use any Editor commands, including other macros, in the definition of new
Editor commands.

Many times, you will want to provide arguments to Editor commands to
make them as general as possible. An alternative format allows you to define a
list form of a macro as follows:

*(M (<atom)) (<p aram ete r1) . . . <param eterN)) .
< commands))

The Editor defines <atom) as an Editor command taking N arguments. Ex
ecuting an Editor command of the form

(<atom) < e x p re ss io n l) . . . <expressionN))

causes <expression[i]> to be bound to <parameter[i]> and (commands) to be
executed. A general form of BP might be defined as

*(M (BP) (N) (BK N) UP P)

This format spreads the arguments given with the command across the pa
rameters specified by the macro definition. An alternative format allows you to
define a nospread macro definition. It takes the form

*(M ((a tom)) (p a ra m e te r) . (commands))

When a macro command of the form

((a tom) (e x p re s s io n l) . . . (expressionN))

is executed, the arguments (expressionl) ... (expressionN) are bound to (pa
rameter) throughout the definition. The command 2ND may be defined as a
macro:

710 The INTERLISP Editor

*(M (2ND) X
(ORR ((LC . X) (LC . X))))

You should note that the atomic commands are independent of the list form
commands for both macros and built-in commands. For example, LOWER and
(LOWER x) are two independent commands that do not conflict with each
other. However, it is not a good idea to define new commands having both
atomic and list forms with extremely varying effects.

A macro definition of M is (from EDITMACROS)

(M (X . Y)
(E

(MARKASCHANGED
(COND

((LISTP ’X)
(CAR 'X))

(T 'X))
'USERMACROS)

T)
(ORIGINAL (MX . Y)))

19.6 An Editor Command Encyclopedia 711

19.6.31 Assigning Values to Arguments
MAKE assigns a value to a parameter in the current expression. It takes the
form

*(MAKE (param eter) (v a lu e))

Consider the following example (assuming the definition for FACTORIAL
that was given in Section 19.6.28):

(FACTORIAL Q6) where ”1” was intended
instead of ”q”

UNBOUND ATOM
Q6

<-FIX -1
e d i t
*?=
X = Q6
*(MAKE X 16)
*0K
32068960256

MAKE may be defined by an editmacro as follows;

(MAKE (VAR . VALS)
(COMS (MAKECOM VAR VALS)))

19.6.32 Making a Function
MAKEFN converts the current expression to a function. It takes the form

*(MAKEFN (<fu nc tion) . <parms>) <arglst> <N1> <N2>)

where <function) is the function name and <arglst) is a list of its arguments.
The argument names are substituted for the corresponding argument values in
<parms). The result of this command becomes the body of the function defini
tion for the function. The current expression is replaced by a call to the function
of the form

(<fu n c tio n) . <parms))

Consider the following example:

*P
(COND

((CAR x)
(PRINT Y T))

(T
(HELP)))

*(MAKEFN (AFN (CAR X) Y) (A B)))
*P
(AFN (CAR X) Y)
*0K

<-(PP AFN)
(AFN

(LAMBDA (A B)
(COND

(A (PRINT B T))
(T (HELP)))))

If <arglst) is omitted, MAKEFN creates an argument list using the ele
ments of <parms) if they are literal atoms. Otherwise, it selects argument names
from the list (X Y Z A B C ...) while avoiding duplicate argument names.

If <N1) and <N2) are supplied as integer numbers, MAKEFN uses (<N1)
THRU <N2)) to form the body of the function. If <N2> is omitted, then «N1>
THRU -1) is used.

MAKEFN may be defined by an editmacro as follows:

(MAKEFN (FORM ARCS N M)
(IF (QUOTE M)

712 The INTERLISP Editor

((BI N M)
(LC . N)
(BELOW))

((IF (QUOTE N)
((BI N-1)

(LC . N)
(BELOW\))
((LI 1)))))

(E (MAKEFN (QUOTE FORM)
(QUOTE ARGS)
i m
T)

UP
(1 FORM)
1)

19.6.33 Marking and Restoring the Edit Chain
MARK adds the current edit chain to the front of MARKLST. This allows you
to save the edit chain for later reference. Consider the following example:

-^(DEFINEQ
(NEW.VARIABLE NIL

(PROG (VARIABLE)
(SETQ VARIABLE (GENSYM))
(PUTPROP VARIABLE 'VARIABLE T)
(RETURN VARIABLE))

))
<-(EDITF 'NEW.VARIABLE)
e d i t
*3
*3
*3 P
(GENSYM)
*MARK
*0 0 P
(PROG (VARIABLE) (SETQ VARIABLE &) (PUTPROP VARIABLE & T)
(RETURN VARIABLE))
*<-
*P
(GENSYM)

An alternative form of MARK takes an atom as an argument. It sets the
atom’s value to be the current edit chain. It takes the form

*(MARK <atom>)

19.6 An Editor Command Encyclopedia 713

To return to the most recently marked edit chain, you may use the command
(left arrow) command. sets the edit chain to be (CAR MARKLST). Con

tinuing from above:

*0 0 "move up to SETQ and PROG le v e ls"
"move down to PUTPROP"
"go back to (GENSYM)"

. *P
(GENSYM)

If no MARKs have been performed, MARKLST is NIL and will generate
an error.

An alternative form, ♦- *- erases the recent mark from MARKLST after it
has been established as the new edit chain. It is equivalent to performing

(SETQ MARKLST (ODR MARKLST))

You may make the current edit chain become the value of an atom using the
\ command. It takes the form

* (\ <atom>)

where <atom>’s value was previously established by a MARK command. For
complex functions, you may use atoms to store the edit chains at particularly
crucial points in the code. Returning to one of those points merely requires exe
cuting a \ command. If <atom> is NIL, then the current edit chain is set to NIL.

An alternative form, P, takes you back along the edit chain to the last
PRINT operation (e.g., one of P, ?, or PP). If the edit chain has not changed
since the last printing, the edit chain is restored to the one before that. That is,
two chains are always saved. Consider the following example:

«-(EDITF 'NEW.VARIABLE)
e d i t f
*3
*2 P
(VARIABLE)
*0
H P
(PUTPROP VARIABLE ’VARIABLE T)
*(R 'VARIABLE 'VAR)
*\P
(VARIABLE)

19.6.34 Moving Expressions
The MOVE command allows you to move S-expressions from one place to an
other within an S-expression you are editing. It takes the form

714 The INTERLISP Editor

19.6 An Editor Command Encyclopedia 715

*(MOVE @1 TO <command) @2)

<command) may be BEFORE, AFTER, or a list command. MOVE oper
ates as follows:

1. Performs (LC @1) to determine the expression to be moved.
2. Performs (LC @2) to determine the destination to which the expression

is to be moved.
3. Performs ({command) @1), e.g., puts the expressions @1 in the S-

expression relative to @2.
4. Deletes the expression @1.

Steps 1,2, and 3 are performed using the original edit chain. The edit chain
is unchanged after the execution of a MOVE. UNFIND is set to the current edit
chain after ((command) @1) is performed.

Note that @2 cannot specify a location inside @1. An attempt to do so
causes an error.

Consider the following example:

*P
(hydrogen calcium helium lith ium)
*(MOVE 2 TO AFTER A)
*P
(hydrogen helium lith ium calcium)

19.6.35 Adding to the End of an Expression
N adds one or more expressions to the end of the current expression. It takes the
form

*(N < express ion l) . . . <expressionN))

N modifies the structure of the current expression using RPLACD.
If the current expression is not a list, N generates an error.
Consider the following example:

*P
(COND

((ATOM x) x)
((LIST? x) (CAR x)))

*(N (T NIL))
*P
(COND

((ATOM x) x)
((LISTP x) (CAR x))
(T NIL))

19.6.36 Negating the Current Expression
NEGATE negates the current expression. Its format is

^NEGATE

It might be implemented by embedding a NOT at the beginning of the cur
rent expression via (MDB NOT). However, many expressions, when negated,
can be further simplified. NEGATE attempts to simplify the expressions that it
operates upon.

*P
(OR

(NULL x)
(LISTP x))

*NEGATE
*P
(AND X (NLISTP x))

NEGATE may be defined by an editmacro as follows:

(NEGATE NIL
UP
(I 1 (NEGATE {##!)))
1)

19.6.37 Advancing to the Next Expression
NEX advances to the next expression of the type specified by its argument. Its
format is

*NEX

or

*(NEX <atom>)

A macro definition of NEX is (from EDITMACROS)

(NEX NIL
(BELOW <-)
NX)

and, alternatively,

(NEX (X)
(BELOW X)
NX)

716 The INTERLISP Editor

The atomic form of NEX is useful when you mark an expression in the edit
chain; you may then use NEX to step through the sublists of the current expres
sion.

Another form is NeXT which advances to the next expression. NX acts like
UP followed by 2. If the current expression is the last expression in the edit
chain, NX will generate an error.

Another alternative form, !NX, makes the current expression be the next
expression at a higher level in the edit chain unless you are already at the top of
the edit chain. That is, !NX proceeds thrpugh any number of right parentheses
to match (close) the current expression.

We can also define a macro, NXP, which moves to the next expression and
prints it. It has the definition

(NXP NIL
(ORR (NX)

(!NX (E (PRINl ” >" T)
T))

((E
(PROGN

(SETQQ COM -1)
(ERROR!)))))

P)

19.6 An Editor Command Encyclopedia 717

19.6.38 The NIL Command
NIL is usually a no-op, e.g., a no operation command. However, when NIL is
preceded by F or BF, it indicates that NIL should be sought in the edit chain.

19.6.39 Finding the Nth Element
NTH finds the nth element of the current expression. It takes the form

*(NTH <n>)

where <n> is not equal to 0. If <n> is greater than zero, it is equivalent to N
followed by UP. If <n> is less than zero, it is the nth element from the end of the
current expression. If the current expression does not have <n> elements, an
error is generated.

A generalized NTH command takes the form

*(NTH (command))

This form performs (LCL . <command)) followed by (BELOW \) followed
by UP. That is, it looks for (command) in the edit chain. If the search is unsuc
cessful, an error is generated and the edit chain remains unchanged.

(PROG (& &)
loop

(COND & &)
(EDITCOM &)
(SETQ UNFIND UF)
(RETURN L))

*(1̂ TH UF)
*P
. . . (SETQ UNFIND UF) (RETURN!))

19.6.40 Exiting the Editor
There are three basic commands for exiting from the Editor. OKay exits from
the Editor and saves the edited expression in the atom with which the Editor was
invoked.

<^(EDITV COMPLEXFNS)
e d i t
*P
(CMULT CDIFFERENCE CMINUS CQUOTIENT . . .)

718 The INTERLISP Editor

*0K
COMPLEXFNS

STOP exits from the Editor with an error. It is mainly used when you want
to exit the Editor without saving the edited expression.

<-(EDITV COMPLEXFNS)
e d i t
*P
(CMULT CDIFFERENCE CMINUS CQUOTIENT . . .)

*STOP

Saving and Exiting the Editor
SAVE exits from the Editor. The state of the edit chain is saved on the property
list of the atom that was edited under the property EDIT-SAVE. If the Editor is
called again on the atom, it checks the property list to see if an edit state exists
under the property EDIT-SAVE. If so, editing continues from that edit state.

19.6.41 Using the Original Definition
When you issue an Editor command, the Editor determines if a macro has been
substituted for the original command. That is, the value of USERMACROS is

searched first for any macro definitions. ORIGINAL instructs the Editor to exe
cute all commands which are given as its arguments without considering macro
definitions. It takes the form

*(ORIGINAL <commandl> . . . <commandN>)

19.6.42 Executing Any One Command
ORR begins executing the commands which are its arguments. The first com
mand which completes without an error causes ORR to terminate. It takes the
form

*(ORR <commandl> . . . <commandN>)

Each command is executed in turn. If a command causes an error, ORR
restores the edit chain to its original value and begins executing the next com
mand. If all commands execute with errors (e.g., no command completes suc
cessfully), then ORR drops off the end of the command list and generates an
error.

NIL is a legal command that always executes successfully. Thus, placing
NIL at the end of the command list ensures that ORR never generates an error if
none of the preceding commands does not generate an error.

(ORR NX !NX NIL)

attempts to perform an NX, then an !NX, and finally, executes NIL.

19.6.43 Printing the Current Expression
The Editor provides a number of commands that print the current expression.
The basic printing command is Print. It takes the form

*P

which means to print the current expression.
Another form is

*(P <m> <n>)

which means print the Mth element of the current expression as though the print
level were set to <n>. If <n> is absent, the Editor assumes a print level of 2, e.g.,

*(P <m>)

If <m> is 0, it has the same effect as P. If <m> is 0 and <n> is greater than 0,
it has the same effect as P with a print level of <n>.

19.6 An Editor Command Encyclopedia 719

The command ? is equivalent to (P 0 100).
Several Editor commands perform prettyprinting. The basic command is

PrettyPrint, which prettyprints the current expression (see Section 15.7).
An alternative form, PP*, prettyprints the current expression with com

ments. Note that PP merely prints **COMMENT** which is the value of
COMMENTFLG (see Section 16.10.1).

Another form, PPV, prints the current expression as a variable. That is, it
provides no special treatment for LAMBDA, SETQ, PROG, or CLISP expres
sions.

Finally, PPT prettyprints the current) expression with any CLISP transla
tions (see Chapter 23). PPT may be defined as an edit macro as follows:

(PPT NIL
(RESETVAR CLISPRETRANFLG T PP))

720 The INTERLISP Editor

19.6.44 Replacing in an Expression
The Replace command replaces all instances of one expression in the current
expression by another. It takes the form

*(R <x> <y>)

where <x> and <y> are S-expressions. If there is no instance of <x> in the current
expression, R generates an error.

The expression <x> may be an atom or string. If it contains the character
sequence $<s>, e.g., <ESC><s>, then $<s> appearing in <y> will stand for the
corresponding characters matched in <x>. You will be informed of all such re
placements by a message of the form, < x > - > <y >, Note that this feature may also
be used to delete characters. (R $1 $) will delete all Is in the current expression.
If <x> does not contain $<s>, then $<s> appearing in <y> refers to the entire
expression matched by <x>.

This command is often used to replace characters in an expression. An alter
native command, RC, takes the form

*(RC <x> <y>)

which is equivalent to (R $<x>$ $<y>$). This form changes all instances of <x>
to <y>.

Sometimes, you want to change only one instance of a pattern in an expres
sion. R l, having the same form as R, changes exactly one instance. RCl, similar
to RC, changes just one instance of the character.

REPLACE acts just like R. It takes two forms which are more readable and
comprehensible:

^(REPLACE @ BY <expressionl> . . . <expressionN>)
^(REPLACE @ WITH <expressionl> . . . <expressionN>)

where @ identifies the expression to be replaced.

19.6.45 Raising the Case in an Expression
RAISE raises all the characters in the current expression to upper case. It takes
one of two forms:

*RAISE

or

*(RAISE <expression>)

These may be defined as editmacros as follows;

(RAISE NIL
(IF (NLISTP (##))

UP NIL)
(I 1 (U-CASE (##1))))

(RAISE (C)
(I R (L-CASE (QUOTE C)) (U-CASE (QUOTE C))))

19.6.46 Editing Atoms or Strings
REPACK allows you to edit an atom’s print name or a string by recursively call
ing the Editor on the UNPACKed list. If the recursion is exited successfully via
OK, the list of atoms is PACKed into an atom or string to replace the one that
was edited. The new atom or string is always printed.

REPACK may be defined as an editmacro as follows;

(REPACK NIL
(IF (LISTP (##))

(1)
NIL)

(I :
((LAMBDA (X Y)

(SETQ COM (QUOTE REPACK))
(SETQ Y

(APPLY (QUOTE CONCAT)
(EDITE (UNPACK X))))

(COND

19.6 An Editor Command Encyclopedia 721

((NOT (STRINGP X))

(SETQ Y (MKATOM Y))))
(PRINT Y T T))))

i m)

19.6.47 Right Parenthesis In
You may insert a right parenthesis into an expression using the Right parenthe
sis In command. It takes the form

*(RI <n> <m>)

where <n> and <m> are the indices of elements in the current expression. The
right parenthesis of the <n> element is inserted (moved) after the <m> element.

<-(SETQ p re s id e n ts
'((re p u b l ic a n s (nixon ford l in c o ln reagan))

(democrats (kennedy johnson c a r te r
(w higs))))

((rep u b lican s (nixon ford l in c o ln reagan) (democrats
(kennedy jonhnson c a r te r) (whigs)))

There is a right parenthesis missing after the expression ending in
CARTER. We can insert it using the following sequence of commands:

*(EDITV p re s id e n ts)
e d i t
*(RI 2 2)
*P
((rep u b lican s &) (democrats &) (whigs))

19.6.48 Right Parenthesis Out
You may remove a right parenthesis from the current expression using the Right
parenthesis Out command, which takes the form

*(R0 <n>)

where <n> indicates the Nth element of the current expression. The parenthesis
is moved to the end of the current expression. All elements following the Nth
element are moved inside the Nth element. If the Nth element is not a list, an
error will be generated. Using the example given above,

<-(EDIT p re s id e n ts)
e d i t
*p

722 The INTERLISP Editor

((rep u b lican s &) (democrats &) (whigs))
*(R0 3)
*(R0 2)
*(R0 1)
*(L0 1)
*(L0 3)
*(L0 5)
*P
(repub licans (nixon ford l in c o ln reagan) democrats
(kennedy Johnson c a r te r) whigs)

19.6 An Editor Command Encyclopedia 723

19.6.49 Setting a Literal Atom's Value
You may set a literal atom to the value of the current expression using the Set
command, which takes the form

*S <litatom> @

where <litatom> is the name of the atom which will be assigned the current ex
pression after performing (LC . @).

'^-(EDITF CMULT)
e d i t
*P
(LAMBDA (CXI CX2) **COMMENT** (PROG & & &))
*(S JUNK -1 A)
*STOP

<-JUNK
(RETURN CX3)

19.6.50 Showing Instances
SHOW displays all of the instances of a given pattern in the current expression.
It takes the form

*(SHOW <p a t te r n))

Consider the following example:

<-(EDITF in i t i a l i z e . f r a m e)
e d i t
*(SHOW PUTVALUE)
(PUTVALUE NAME (QUOTE TYPE) NIL)
(PUTVALUE NAME (QUOTE SUPER) NIL)

(PUTVALUE NAME (QUOTE DESCRIPTION) NIL)
done

SHOW may be defined as an edit macro as follows:

(SHOW X
(F (*ANY* . X) T)
(LPQ MARK (ORR 1 !0) NIL)

P < - ♦ -

(F (*ANY* . X) N))
(E (QUOTE done)))

19.6.51 Splitting Conditional Expressions
SPLIT Conds is a command that splits a conditional expression into two condi
tional expressions. It takes the form

*(SPLITG <x>)

where <x> specifies the last clause in the first conditional (after the split occurs).
Using the example from JOINC above, consider the following:

*PP
((COND

((EQUAL Y 10) (PRINT Y))
((LESSP Y 20) (PRINT (IPLUS Y 12)))
(T (IMINUS Y 5))))

*(SPLITG 2)
*PP
((COND

((EQUAL Y 10) (PRINT Y)))
(COND

((LESSP Y 20) (PRINT (IPLUS Y 12)))
(T (IMINUS Y 5))))

SPLITC may be defined as an editmacro as follows:

(SPLITC (X)
(F COND T)
(BI 1 X)
(IF (AND (EQ (##2 1) T)

(M2 2)
(NULL (CDDR (##)))

((BO 2)
(2))

724 The INTERLISP Editor

19.6 An Editor Command Encyclopedia 725

((-2 COND) (LI 2)))
UP
(BO D)

19.6.52 Switching Elements in an Expression
You may switch elements in the current expression using the SWitch command.
It takes the form

*(SW <n> <m>)

where <n> and <m> indicate the Nth and Mth elements to be switched, respec
tively. Consider the following example (after the IRM):

*PP
(LIST (CONS (CAR X) (CAR Y))

(CONS (CDR X) (CDR Y)))
*(SW 2 3)
*P
(LIST (CONS (CDR X) (CDR Y))

(CONS (CAR X) (CAR Y)))

Note that the relative order of <n> and <m> is not important; (SW 3 2)
would have worked equally as well.

An alternative form, SWAP, switches expressions. It takes the form

*(SWAP @1 @2)

where @1 and @2 are location specifications. Thus, using the original expres
sion above,

*PP
(LIST (CONS (CAR X) (CAR Y))

(CONS (CDR X) (CDR Y)))
*(SWAP CAR CDR)
^P
(LIST (CONS (CDR X) (CAR Y))

(CONS (CAR X) (CDR Y)))

SWAP may be defined as an edit macro as follows:

(SWAP (LCl LC2)
(BIND (MARK #3)

(LC . LCl)
(MARK #1)

(\ #3)
(LC . LC2)
(mark #2)
(IF

(NOT (OR
(MEMB (CAR #1) #2)
(MEMB (CAR #2) #1)))

(UP (\ #1) UP
(I 1 (CAR #2))
(\ #2)
UP
(I 1 (CAR #1)))

(E (QUOTE (nested express ions)))
(\ #3)))

Another alternative form, SWAP Cond clauses, swaps clauses within a con
ditional expression. It takes the form

*(SWAPC <n> <m>)

where <n> and <m> indicate the COND clauses to switch. Using the example
from SPLITC, we have

*PP
((COND

((EQUAL Y 10) (PRINT Y))
((LESSP Y 20) (PRINT (IPLUS Y 12)))
(T (IMINUS Y 5))))

*1
*(SWAPC 2 3)
*PP
(COND

((LESSP Y 20) (PRINT (IPLUS Y 12)))
((EQUAL Y 10) (PRINT Y))
(T (IMINUS Y 5)))

Note that SWAPC assumes that the current expression is a COND expres
sion. Remember that the first element is the COND atom.

19.6.53 Setting a Tentative Edit Maricer
TEST adds an undo-block at the beginning of the UNDOLST for the Editor. It
provides a marker that allows you to perform a number of editing changes, and
then undo them all with a single command, lUNDO.

UNBLOCK removes an undo-block from the UNDOLST.
See the description of uNDO for an explanation of their usage.

726 The INTERLISP Editor

19.6.54 THRU and TO: Location Specification
The THRU command is used to specify a collection of expressions that can be
treated as a single element. It is used by EXTRACT, EMBED, DELETE, RE
PLACE, and MOVE. It takes the form

*(@1 THRU @2)

where @1 and @2 are location specifications. THRU performs (LC . @1), UP,
(BI1 @2), 1. This has the effect of grouping the desired expressions into a single
expression which may be treated by another command.

The TO command has the same form and effect except that the last expres
sion is not included in the grouping. It performs the sequence (LC . @1), UP,
(BI 1 @2), (RI 1 -2), 1.

If both @1 and @2 are numbers, and @2 is greater than @1, @ counts
from the beginning of the current expression. For example, using the following
list (A B C D E F G), (3 THRU 5) means (C THRU E) while (3 TO 5) means
(C TO E).

THRU and TO do not do anything useful by themselves. They are very pow
erful when combined with other commands as noted above.

19.6.55 Recursive Editing
The TTY: command allows you to call the Editor recursively from within the
Editor. You exit from the lower Editor via OK or STOP. All Editor commands
are available in the recursed version of the Editor including TTY:. The edit
chain is preserved across recursive calls to the Editor.

19.6.56 Undoing an Editor Command
The Editor maintains an internal list, UNDOLST, which records each change to
the structure of the current expression by the structure modification commands.
An Editor command’s effects may be undone using the UNDO command. It
takes the form

*UNDO

This command undoes the effects of the most recent structure modification
command, e.g., the last entry on UNDOLST. After the effect has been undone,
it prints the name of the command which was undone. The edit chain is restored
to the state prior to the undone command. If there are no commands to undo,
the Editor types NOTHING SAVED.

An alternative form, !UNDO, undoes all structural changes made during
the current editing session. As each command is undone, its name is printed. It
acts like UNDO.

Note that if a SAVE was performed between calls to the Editor, only
changes made since the last invocation of the Editor will be undone, i.e., up to

19.6 An Editor Command Encyclopedia 727

the last SAVE. These changes are protected by inserting a marker, called an
undo-block, into the front of UNDOLST before editing begins in the new ses
sion. UNDO (respectively !UNDO) will undo commands up to the marker.

Note that TEST and UNBLOCK allow you to dynamically insert into and
remove from UNDOLST your own undo-block markers.

Undoing changes associated with the I, E, or S commands also undoes the
side effects associated with the evaluation of the arguments of those commands.

19.6.57 Moving Up the Edit Chain
The UP command allows you to move up the edit chain to the next higher ex
pression. It takes the form

*UP <command)

where (command), an optional argument, indicates that you want to move up
to the next higher instance of that particular command.

*PP
(COND

((LESS? Y 20)
(PRINT (IPLUS Y 12)))

((EQUAL Y 10)
(PRINT Y))

(T
(IMINUS Y 5)))

*(F PRINT T)
*P
(PRINT (IPLUS Y 12))
*UP
. . . (PRINT &))

19.6.58 Extracting from the Current Expression
You may extract a subexpression from within the current expression using the
eXTRact command. It takes the form

*(XTR . @)

where @ is a location specification.
XTR replaces the original current expression with the expression that is ex

tracted from it. The new current expression is identified by performing (LCL .
@).

*PP
((COND

728 The INTERLISP Editor

((NULL X)
(PRINT Y))))

*(XTR 2 2)
*P
((PRINT Y))

An alternative form, EXTRACT, takes the form

* (EXTRACT @1 FROM . @2)

where @1 and @2 are location specifications. Thus, we could have specified the
above operation as

*(EXTRACT PRINT FROM COND)
*P
((PRINT Y))

19.6 An Editor Command Encyclopedia 729

19.6.59 Inserting Comments
You may insert a comment into the current expression using the * command,
which takes the form

(. <text>)

where <text> is the text of the comment.
The * command ascends the edit chain looking for a safe place to insert the

comment. These places include after a COND clause, after a PROG clause, af
ter the arguments to a LAMBDA expression. It will insert the comment after the
location if possible; otherwise, before it.

*PP
(COND

((LESSP Y 20)
(PRINT (IPLUS Y 12)))

((EQUAL Y 10)
(PRINT Y))

(T
(IMINUS Y 5)))

*3 P
((EQUAL Y 10) (PRINT Y))
(t e s t Y)
pp
((EQUAL Y 10) (* t e s t Y)

(PRINT Y))

19.6i.60 Attention-Changing Commands
Several commands allow you to change the current expression by shifting the
focus of the Editor. These commands change the edit chain. These commands
take the form

*<n>
*-<n>

where <n> is the index of an element within the current expression.
If <n> is 0, the edit chain is set to the CDR of the edit chain, thus moving to

the next higher expression. If there is no higher expression, the Editor generates
an error.

An alternative form, !0, performs repeated Os until it reaches a point where
the current expression is not a tail of the next higher expression. That is, it al
ways goes back to the next higher left parenthesis.

We can define a few simple editmacros that change attention and print the
result:

(-IP NIL
(ORR -1 P)
((E

(PROGN
(SETQQ COM -1)
(ERROR!))))

(2P NIL
(ORR (2)

(1)
((E

730 The INTERLISP Editor

(PROGN
(SETQQ COM 2)
(ERROR!)))))

20

Debugging Facilities

INTERLISP provides a set of integrated facilities for analyzing and modifying
programs when errors occur. Together, these facilities are known as the Break
Package. Components of the Break Package are called whenever an error oc
curs. They may also be invoked by you through the judicious execution of several
functions.

There are three possible modes in which you may initiate a break when your
program is operating (more or less) normally:

1. Trace mode where you may view the arguments passed to and results
returned from a function each time it is computed.

2. Break mode where you may specify a function is to be interrupted each
time it is invoked.

3. Breakin mode where you may insert a breakpoint inside an expression
that will cause it to be interrupted whenever that expression is executed.

In the latter two modes, the break commands discussed in Section 20.2 may
be executed to inspect the state of the computation, change the function defini
tion or variable values, and restart the computation.

20.1 TRACE: TRACING A FUNCTION
TRACE allows you to identify a function that will be “traced” each time it is
invoked. It takes the form

Function: TRACE

Arguments: 1

Argument: 1) an expression , EXPRESSION

Value: The name of the function to be traced .

731

TRACE is an NLAMBDA, nospread function. By tracing, we mean the fol
lowing:

1. When the function is invoked, its parameters are printed with their iden
tifying atom names. This action is performed after the values of the argu
ments have been determined (subject to the function type — see Section
8 . 1).

2. The value of the function is computed.
3. The result of executing the function is printed.

TRACE accepts a single argument that is either an atom or a list of expres
sions describing the functions to be traced and the parameters to be printed.

The simplest format for invoking TRACE appears as

(TRACE <fu n c tio n))

where (function) may be any system- or user-defined function specified as an
atom. TRACE executes

(BREAKO <fu n c tio n) T '(TRACE ?= NIL GO))

The {function) may not be EVAL. Suppose you tried to trace EVAL. EVAL
will be called from the READ phase of the top-level loop to evaluate the TRACE
command. It calls TRACE, which modifies EVAL with the tracing information.
However, to display a trace requires evaluation, which means that EVAL enters
an infinite loop while trying to trace itself.

Suppose we trace the functions REAL, IMAG, ITIMES, PLUS, DIFFER
ENCE, and COMPLEX which are called from within the function CMULT. We
would specify tracing for REAL as follows:

<-(TRACE REAL)
(REAL)

732 Debugging Facilities

<-(SETQ cx l (COMPLEX 2 .0 4 .0))
((2 .0 . 4 .0))

<-(SETQ cx2 (COMPLEX 3*0 5 .0))
((3 .0 . 5 .0))

^ (CMULT cx l cx2)
REAL:
CX = ((2 .0 . 4 .0))
REAL = 2 .0

REAL:
CX = ((3 .0 . 5 .0))
REAL = 3 . 0

ITIMES:
ARG1 = 2 . 0
ARG2 = 3 . 0
U = 2
ITIMES = 6

. . . (e . g . , more computations traced)

COMPLEX:
R = -14
I = 22
COMPLEX = ((-1 4 .0 . 22.0))

When REAL is traced, the name of its argument is printed and followed by
its value. ITIMES, because it is a hardwired function, does not have explicit
variable names, so two are manufactured by the Break Package.

Alternatively, EXPRESSION may be a list of the form

((fu n c t io n) < v a r i a b le - l i s t>)

The CAR of EXPRESSION is the name of the function to be traced, and the
CDR is a list of variables that are to be printed when the function is traced.
TRACE executes the expression

(BREAKO (CAR <e x p re s s io n))
T
(LIST 'TRACE '?= (CDR (ex p ress io n)) 'GO))

Suppose I wanted to see only the value of R for the function COMPLEX. I
would set up the trace as follows:

<-(TRACE (COMPLEX R))
(COMPLEX)

<-(CMULT cx l cx2)
COMPLEX:
R = -14 .0
COMPLEX = ((-1 4 .0 . 22 .0))

If you want to see only the value of the function after it has been executed,
you may use the form

20.1 TRACE: Tracing a Function 733

((function))

which causes TRACE to execute the expression

(BREAKO (fu n c tio n) T '(TRACE ?= (NIL) GO))

In general, output generated by tracing functions is sent to your terminal.
The destination of output is controlled by the system variable BRKFILE whose
value is initially T. If you want to redirect tracing information to an external file,
you must set BRKFILE to the name of that file. You are responsible for opening
the file for output.

A Definition for TRACE
We might define TRACE as follows:

(DEFINEQ
(tra c e

(NLAMBDA x
(MAPCONC

(COND
((ATOM x)

(*
Trace a s in g le
function whose name is
given.

)
(LIST x))

(T x))
(FUNCTION TRACE-FN))

)))
(DEFINEQ

(t r a c e - f n (fn)
(PROG (brkcoms)

(COND
((OR (ATOM fn)

(EQ (CADR fn) 'IN))
(*

Trace a function modified
by ADVISE.

)
(SETQ brkcoms

'(TRACE ?= NIL GO)))

734 Debugging Facilities

(T
(SETQ brkcoms

(LIST 'TRACE

(OR (CDR fn) 'NIL)
’GO))

(SETQ fn (CAR f n))))
(RETURN

(BREAKO fn T brkcoms)))
))

20.2 Break Commands 735

20.2 BREAK COMMANDS
You interact with the Break Package to determine the status of your function’s
environment via a set of Break Commands. You may also use the stack access
and manipulation functions described in Chapter 30.

20.2.1 Releasing Breaks
Perhaps the very first thing you need to know is how to get out of a break once
your function has been broken into. Releasing a break allows a computation to
proceed. You may use either

GO Evaluates BRKEXP and p r in t s i t s
v a lu e .

OK Evaluates BRKEXP but does not p r in t
i t s value.

BREAKl (see Section 20.3) evaluates BRKEXP which was set up by the
function that invoked BREAKl. The value of BRKEXP is returned as the value
of the function that was broken.

(BREAK MAKESLOT) "declares MAKESLOT breakable”
(MAKESLOT)

^(MAKESLOT 'TEXAS 'CAPITOL 'IS 'SLOT)
(MAKESLOT broken)
:G0
MAKESLOT = CAPITOL
CAPITOL

where MAKESLOT returns the name of the slot as its value. In this case,
BRKEXP was merely the name of the function to be broken. Thus, executing
BRKEXP means evaluating the function and printing its value.

The same example using OK would appear as

•<-(BREAK MAKESLOT) "declares MAKESLOT breakable"
(MAKESLOT)

^(MAKESLOT 'TEXAS 'CAPITOL 'IS 'SLOT)
(MAKESLOT broken)
:G0
CAPITOL

Altematiye Versions of GO and OK
Alternative forms are !GO and !OK. They act as follows:

1. Unbreak the function
2. Evaluate the function
3. Rebreak the function
4. Execute either GO or OK

That is, they are equivalent to !EVAL followed by either GO or OK.

20.2.2 Evaluation in a Break
You may evaluate the broken function but maintain the break by issuing the
EVAL command. This command is useful when you have identified a function
to be broken but are not sure of the value it will produce.

(MAKESLOT 'TEXAS 'CAPITOL 'IS 'SLOT)
(MAKESLOT broken)
:EVAL
MAKESLOT evaluated
: ! VALUE
CAPITOL

The Break Package stores the value of the function in the variable ! VALUE.
You may see the value by specifying ! VALUE as shown above. Using EVAL, you
can see what value the function produces. If it is not the correct value, you may
invoke the editor to modify the function and, then, re-evaluate it.

Alternative Form of EVAL
An alternative form of EVAL is !EVAL, which

1. Unbreaks the function
2. Evaluates BRKEXP
3. Rebreaks the function

This form is useful for dealing with recursive functions. Evaluating a recur
sive function inside a break will cause the function to be broken again. Breaks
are nested so that the most recent break is attended to first. Thus, !EVAL main
tains the original break while allowing you to evaluate the function.

736 Debugging Facilities

20.2.3 Returning a Value from a Break
After a function is broken, you may force the value of the function to be different
from what would actually be computed by it. The RETURN command has two
forms;

RETURN (ex p ress io n) Evaluates the expression
and re tu rn s i t s value.

RETURN (<fn> (argum ents)) Executes the function with
the given arguments and
re tu rn s i t s value.

The RETURN command is useful in a number of ways:

1. When the function broken is returning the wrong value, you force the
right value in order to continue testing your program and repair the func
tion later.

2. When the function returns a correct value, you break it and force an
erroneous value in order to test the error handling features of your pro
gram.

3. When you are programming using a top-down methodology and the
function broken is merely a stub. In order to test the logic of higher func
tions, you force the function to return a value like that it would have
computed in order to allow the testing to proceed.

Consider the folowing example:

«-(MAKESLOT 'TEXAS NIL NIL NIL)
(MAKESLOT broken)
:RETURN 'CAPITOL
MAKESLOT = CAPITOL
CAPITOL

where I failed to provide the name of the slot, but I forced the evaluation to act as
if I had.

RETURN is also useful for experimenting with the possible values a func
tion might return. You might apply a function to ! VALUE after EVALuating a
broken function.

20.2.4 Aborting a Break
You may abort a break by issuing the t (up arrow) command which calls ER
ROR! (see Section 18.6.2). T effectively erases the stack frame for the broken
function. This command is useful for unwinding from one or more nested
breaks.

20.2 Break Commands 737

Consider the function CMULT which invokes the functions REAL and
IMAG. Suppose I specify breakpoints on CMULT and REAL as follows:

(BREAK CMULT)
(CMULT)

•«-(BREAK REAL)
(REAL)

-^(CMULT cx l cx2)
(CMULT broken)
:G0
(REAL broken) "here i s the second break"

(CMULT broken) "here we have re tu rned to the
f i r s t breakpoint"

738 Debugging Facilities

20.2.5 Unbreaking a Function
You may unbreak a function by issuing the UB command:

^(BREAK MAKESLOT)
(MAKESLOT)

• (̂MAKESLOT 'TEXAS 'CAPITOL 'IS 'SLOT)
(MAKESLOT broken)
:UB
(MAKESLOT)
:G0
MAKESLOT = CAPITOL

UB removes the effect of the BREAK function (see Section 20.3.1) which
modifies the function to break whenever it is called.

20.2.6 Displaying Arguments and Bindings
When a break occurs, you are placed in the Break Package at the current stack
frame. One of the first things you might want to do is to inspect the bindings of
the arguments since this is a frequent source of trouble when errors occur. If you
don’t remember the arguments, you can obtain their names via another com
mand. You may also see where a variable is bound in the stack and by which
functions. These commands are

?= P r in t s the argument names and t h e i r
c u r re n t va lues . ?= looks fo r

a d d i t io n a l arguments on the input
l in e . I f the l in e i s empty, ?= p r in ts
a l l of the arguments of the broken
function . The remainder of the input
l in e may contain the names of
sp e c if ic arguments to be p r in ted or
expressions operating upon the values
of those arguments. The values are
p r in te d a f t e r the expressions have
been evaluated . 0}

ARGS P r in ts the names of v a r ia b le s bound
a t the cu rren t s tack frame.

PB (v a r ia b le) P r in ts the bindings of the sp e c if ied
v a r ia b le fo r each frame in which i t
i s found and the name of the frame.
PB ascends the s tack from stack frame
LASTPOS.

Consider the following examples:

«-(SETQ ASLOT 'CAPITOL)
CAPITOL

<-(BREAK MAKESLOT)
(MKESLOT)

(MAKESLOT 'TEXAS ASLOT 'IS 'S)
(MAKESLOT broken)
• •? =• •

NODE = TEXAS
SLOT = CAPITOL
INHERITANCE.TYPE = IS
METHOD = S

:ARGS
(NODE SLOT INHERITANCE.TYPE METHOD)

:PB NODE
gMAKESLOT : TEXAS
@TOP : NOBIND

The latter line says that NODE is not bound outside of the function call. We
may also ask where ASLOT is bound (it was provided as an argument to
MAKESLOT).

20.2 Break Commands 739

:PB ASLOT
@TOP : CAPITOL

which says ASLOT is a global variable not bound by any function.
Finally, let us ask for the bindings for LISPXID which is used by LISPX (see

Section 25.2):

:PB LISPXID
gLISPX : ♦-
gEVALQT :
STOP : NOBIND

which shows that LISPXID is bound by two functions, LISPX and EVALQT, to
the same value. Even so, there are two bindings on the stack.

? = may take arguments that specify the variables it is to work on.

(BREAK MAKEDEMON)
(MAKEDEMON)

<̂ (MAKEDEMON 'TEXAS
’COUNT-CITIES
’ (LAMBDA NIL

(COND
((NULL (GETVALUE NODE 'CITY))

0)
(T

(LENGTH
(GETVALUE NODE 'CITY)))))

'DO
'S)

(MAKEDEMON broken)
:ARGS
(NODE DEMON FUNCTION INHERITANCE. TYPE METHOD)
:?= (CAR FUNCTION)
(CAR FUNCTION) = LAMBDA

where we extract the CAR of the value of the specified argument. This is equiva
lent to saying

:(CAR FUNCTION)
LAMBDA

The difference is that ? = always evaluates its arguments with respect to the
current stack frame. Thus, using ? = we can evaluate a name at any point in the
stack if we have previously changed our focus to a different stack frame.

740 Debugging Facilities

? = also accepts numbers as indices to the argument list. Floating point
numbers are truncated to the nearest integer.

:?=2
DEMON = COUNT-CITIES

:?=2.4
DEMON = COUNT-CITIES

Note that ? = prints each variable and its value on a separate line. This
printing is controlled by BREAKDELIMITER, vî hich initially has the value
<CR>. To modify the appearance of its output, set BREAKDELIMITER to an
appropriate string.

Values printed by ? = and PB are printed by SHOWPRINT (see Section
15.1.3). To prettyprint these values, set SYSPRETTYFLG to T.

20.2.7 Obtaining a Backtrace
When you enter a broken function, one of the first things you may want to do is
to inspect the history of how the function was called. To do so, you obtain a
backtrace by issuing the BT command. BT prints a backtrace of function names
only starting at the current position. Typically, this will be the stack frame of the
broken function (although you may reset it by defining a different value for
LASTPOS).

-^(MAKESLOT 'TEXAS 'CAPITOL 'IS 'SLOT)
(MAKESLOT broken)
:BT
MAKESLOT
\EVALFORM
\SAFEEVAL
BREAKl
\EVALFORM
EVAL
LISPX
ERRORSET
EVALQT
\REPEATEDLYEVALQT
\EVALFORM
ERRORSET
\MAKE.PROCESSO
T

This example is taken from a Xerox 1100 Scientific Information Processor
executing the Fugue release of INTERLISP-D.

20.2 Break Commands 741

BTV displays the stack frame names and the associated with their func
tions:

742 Debugging Facilities

♦-(MAKESLOT 'TEXAS
(MAKESLOT broken)
:BTV
MAKESLOT

FORM
ARGVAL
TAIL
FN

\EVALFORM
\INTERNAL

\SAFEEVAL
BRKEXP
BRKWHEN
BRKFN
BRKCOMS
BRKTYPE
ERRORN

BREAKl
FORM

\EVALFORM
\INTERNAL

EVAL
LISPXID
HELPCLOCK
LISPXHIST
HELPFLAG
LISPXLISTFLG
LISPXLINE
LISPY
LISPZ
LISPXVALUE
LISPXTEM

LISPX
ERRORSET

LISPXID
EVALQT
\REPEATEDLYEVALQT

FORM
ARGVAL
TAIL
FN

'CAPITOL 'IS 'SLOT)

(MAKESLOT)
NIL
NIL
MAKESLOT

BREAK-EXP

(MAKESLOT)
NIL
NIL
NIL
NIL
NIL

(BREAKl (MAKESLOT))

507697
((&) - ')
T
T
NIL
NIL
NIL
NIL
93

(\PROC.REPEATEDLYEVALQT)
NIL
NIL
\PROG.REAPEATEDLYEVALQT

where ... indicates that there is additional information necessary to set up the
virtual machine environment on the Xerox 1100 which does not concern us.
Variables of the form *<name>* are called blipvalues (discussed in Section
30.2.3).

Usually, this information should be enough for any INTERLISP applica
tions programmer to examine and modify his or her functions. Indeed, using
BTV and the stack functions, you may explore the various underlying aspects of
a particular implementation. You should exercise caution, however, since many
of the internal functions will change between releases as improvements are made
to the system.

Using BTV + , you obtain not only the function variables, but also the local
variables used by the functions:

20.2 Break Commands 743

:BTV+
local
local
* local*
* local*
* local*
local

local
local
local
local
local
local
local
local

MAKESLOT
FORM
local

ARGVAL
TAIL
FN

\EVALFORM
local

MAKESLOT
1
MAKESLOT
4
0
(LAMBDA

(NODE SLOT INHERITANCE.TYPE
METHOD)
(BREAKl & T MAKESLOT NIL))

(NODE SLOT INHERITANCE.TYPE METHOD)
4
8
17
METHOD
NIL
NIL
NIL

(MAKESLOT)
(LAMBDA

(NODE SLOT INHERITANCE.TYPE
METHOD)
(BREAKl & T MAKESLOT NIL))

NIL
NIL
MAKESLOT

(MAKESLOT)

... you get the idea. You may see how some of the local variables are used by
inspecting the code for MAKESLOT when it is compiled.

BTV* operates exactly like BTV except that it prints arguments to SUBRs,
local variables, and temporaries of the interpreter.

BTV* produces the exact same display as BTV+ under INTERLISP-D.
Note that INTERLISP-D has no SUBRs.

You should note that the numbers displayed by BTV+ and BTV* are
printed as octal numbers.

BTV, BTV + , and BTV* all take an optional expression that is a functional
argument that allows you to skip stack frames when displaying the contents of
the stack.

744 Debugging Facilities

20.2.8 Displaying the Entire Stack
You may display the entire contents of the stack by issuing the BTV! command.
This command displays all basic frames and their frame extensions (see Section
30.1) on the stack.

:BTV!

Basic frame a t 40174
40160
40162
40164
40166
40170
40172
40174

Frame
40176
40200
40202
40204
40206
40210
40212
40214
40216
40220
40222

40224
40226
40230
40232
40234
40236

xtn

0
0
0
0

,0
0

100400

a t 40176,
141002
103524
40332
40300

177777
16

0
16
16
4

10

16
16
16

0
0
0

51655
52021
15071

113
51513

0
40160

frame
40130
20040

412
13427

0
5

51513
4
4

135406
135272

0
10
15

15714
0
0

NODE TEXAS
SLOT CAPITOL
INHERITANCE.TYPE IS
METHOD S
local MAKESLOT
[padding]

name = MAKESLOT
[V, USE = 2, a l ink]
[fn header]
[next, pc]
[nametable]
[b lin k , c l ink]
local 5
* local* MAKESLOT
local 4
local 4
local (LAMBDA & &)
local (NODE SLOT
IHERITANCE.TYPE METHOD)
* local* 0
local 8
local 13
local METHOD
local NIL
local NIL

20.2 Break Commands 745

A02A0: 0 0 *local* NIL
A02A2 177777 0 *local* [unbound]

through 40264 repeated
40266 177777 0 [padding]
40270 0 51513 [padding]
40272 0 0 [padding]
40274 177776 0
40276 177763 30
40300 0 0 NIL
40302 0 0 NIL
40304 0 51513 MAKESLOT
40306 10 13400 ([]# 0 ,77400, []#60,
40310 13621 51604
40312 51547 15714
40314 0 0 NIL
40316 0 0 NIL
40320 0 0 NOBIND
40322 2 3 [VMEMPAGEP]#2,3
40234 0 0 NIL
40236 0 0 NIL
40330 0 0 NIL

20.2.9 Setting the Stack Frame
The break command @ sets the value of the variable LASTPOS. LASTPOS
indicates the stack frame to be used for evaluation, and thus establishes the con
text for several break commands. LASTPOS is the position of a function call on
the stack.

@ resets LASTPOS to (STKNTH -1 ‘BREAKl). @ may take several argu
ments that appear on the remainder of the input line. These include

/

Leaves LASTPOS as i t was and searches from th a t
p o in t in the s tack .

Following an atom, i t in d ic a te s th a t the next
atom i s a number which sp e c if ie s th a t the
preceding atom should be searched fo r th a t many
tim es. Thus, CONS is the atom preceding / and
i f i t i s followed by 3 ̂ CONS w il l be searched
fo r th re e times on the s tack .

Resets LASTPOS to value of the expression which
follows in the input l in e . This allows you to
compute the name of a function dynamically and
then search fo r i t .

<n> <n> is a number that indicates how many stack
frames up or down the stack you should move in
setting LASTPOS.

The action of @ is to process each atom appearing in the remainder of the.
input line as a direction to search the stack. When the end of the input line is
reached, LASTPOS will point to a stack frame to be used for evaluating further
commands.

@ will fail with the error message “ <fn> NOT FOUND” if a stack frame
bearing the name <fn> is not found in the stack.

Another command, REVERT, uses LASTPOS to specify a function that is
to be re-entered with the arguments found in the stack. Thus, after an error
occurs, you may inspect and modify the arguments on the stack, and then re
enter the function with the modified arguments. This provides a mechanism for
restarting a computation where an error is discovered below where it actually
occurred. You may fix the bug and proceed with the computation.

746 Debugging Facilities

20.2.10 Setting Values on the Stack
Many errors in INTERLISP programs occur because of unbound atoms or unde
fined functions. You may dynamically correct these errors by assigning values
within a breakpoint.

The = command allows you to assign a value to an unbound atom. It takes
the form

:= (expression)

where (expression) sets the unbound atom appearing at that point in the stack
frame to the value of (expression). = exits the breakpoint with the assigned
value and proceeds with the computation.

The -) command allows you to replace the expression that caused an error
with the value of its argument. It takes the form

:-) (expression)

where (expression) is evaluated. This command may be used with either un
bound atom or Undefined function errors. The value of the expression may be an
S-expression, perhaps appearing as the argument of QUOTE.

20.2.11 Breakmacros
A breakmacro is a definition for a command that is recognized by BREAKl.
When a command is entered, BREAKl checks to see if it is a breakmacro. The
system variable BREAKMACROS is a list of all breakmacro definitions. In the
Fugue release, it has the following structure:

((DBT!

(DISPBAKTRACE
(WINDOWPROP (TTYDISPLAYSTREAM) ’BREAKPOS)
NIL NIL))

(DBT

(DISPBAKTRACE
(WINDOWPROP (TTYDISPLAYSTREAM) 'BREAKPOS)
NIL

'(DUMMYFRAMEP)))
(BT!

(BAKTRACE LASTPOS
NIL
(BREAKREAD 'LINE)
0
T))

(BTVPP

(PROG ((SYSPRETTYFLG T))
(BAKTRACE LASTPOS

NIL
(CONS 'DUMMYFRAMEP

(BREAKREAD 'LINE))
1
T)))

(BT
(BAKTRACE LASTPOS

NIL
(BREAKREAD 'LINE)
0 T))

(BTV
(BAKTRACE LASTPOS

NIL
(BREAKREAD 'LINE)
1
T))

(BTV*
(BAKTRACE LASTPOS

NIL
(BREAKREAD 'LINE)
7
T))

(BTV+
(BAKTRACE LASTPOS

NIL
(BREAKREAD 'LINE)

5
T)

20.2 Break Commands 747

(BTV!
(BAKTRACE LASTPOS

NIL
(BREAKREAD 'LINE)
39
T)))

Note: DBT! and DBT are macros relating to the use of the display facilities
associated with the Xerox llxx series computer systems.

20.2.12 Breakresetforms
INTERLISP provides many system variables that affect the way the interpreter
and various functions act. You may modify the action of these functions by reset
ting these variables. When a break occurs, if the variables retain their modified
values, debugging may be difficult to perform.

BREAKRESETFORMS contains expressions that are used in conjunction
with RESETFORM or RESETSAVE (see Section 25.7). When a break occurs,
BREAKl evaluates each expression on BREAKRESETFORMS before any in
teraction with the terminal. The values of each expression are saved for later
reinstatement. When you exit the Break Package, the state of the system is re
stored by reinstating the values of the expression appearing on BREAKRESET
FORMS. If BREAKl is re-entered before you exit the Break Package, the ex
pressions on BREAKRESETFORMS are again evaluated and their values
saved.

The initial value of BREAKRESETFORMS is:

((INTERRUPTABLE T)
(SETREADMACROFLG)
(CONTROL)
(ECHOMODE T))

20.3 SETTING BREAKPOINTS
Functions are not actually broken until they are invoked. You may set a break
point for a function using either BREAK or BREAKO. To set a breakpoint, IN
TERLISP modifies a function so that it calls BREAKl upon entry. An example
of a function having a breakpoint is

(l a t I o n . t o .3 2 b i t
(LAMBDA (a .p o in t)
(PROG (new.point)

(BREAKl
(i f (LESSP (fe tc h xcoord of a .p o in t) 0.0)
then

748 Debugging Facilities

))

(SETQ new.point
(point.sum a .p o in t

(point.new 360.0
90 .0)))

e lse
(SETQ new.point

(point.sum a .p o in t
(point.new 0.0
9 0 .0))))

T
(l a t l o n . t o .3 2 b i t around i f) NIL)

(RETURN
(p o in t . t ru n c a te

(p o in t .sc a le b y new.point f a c to r))))

20.3 Setting Breakpoints 749

20.3.1 Function Breakpoints
BREAK allows you to set a breakpoint for a function. It takes the form

Function: BREAK

Arguments: 1

Argumen.ts: 1) an expression , EXPRESSION

Value: A l i s t o f the functions which are broken.

BREAK is an NLAMBDA, nospread function. EXPRESSION may be ei
ther an at«)m or a list. If EXPRESSION is an atom, BREAK performs

(BREAKO expression T)

whereas if it is a list, BREAK performs

(APPLY (FUNCTION BREAKO) expression)

Note that the structure of the list must correspond to the arguments ex
pected by BREAKO.

A Definition for BREAK
We might define BREAK as follows:

(DEFINEQ
(break

(NLAMBDA (x)

(MAPCONC
(COND

((ATOM x) (LIST x))
(T x))

(FUNCTION b re a k .1))
)))

where BREAK. 1 is defined as

(DEFINEQ (b re a k .1 (x)
(COND

((OR (ATOM x)
(EQUAL (CADR x) »IN))
(breakO x T))

(T
(APPLY 'breakO x)))

))

The test for the CADR of x picks up the case where we are using the form
« fn l> IN <fn2».

20.3.2 Defining a Breakpoint
BREAKO actually defines a breakpoint for a function. It is invoked by BREAK
or TRACE. It takes the form

Function: BREAKO

Arguments: 3

Arguments: 1) a fu nc tion , FN
2) a cond ition fo r breaking, WHEN
3) a command l i s t , COM3

Value: The name of the func tion .

BREAKO modifies the definition of FN to call BREAKl (an example has
been given above) with BRKEXP equivalent to the original definition of FN.
WHEN, FN, and COMS are substituted for the values of BRKWHEN, BRKFN,
and BRKCOMS, respectively.

The original definition of FN is assigned to an atom created by GENSYM
(see Section 9.2.1). The name of this atom is stored on FN’s property list under
the property BROKEN. The definition of the breakpoint is stored on FN’s prop
erty list under the property BRKINFO. It has the value (BREAKO <when>
<corns)). The purpose for storing this information is to allow you to rebreak a
function at a later time. Finally, FN is added to the list BROKENFNS.

750 Debugging Facilities

•♦-(BREAK point.sum)
(point.sum)

•^(GETPROP 'poin t.sum ’broken)
(point.sumbOOlO)

^-(GETPROP 'poin t.sum 'b rk in fo)
((BREAKO T NIL))

<-(PP point.sumbOOlO)
(point.sumbOOlO

(LAMBDA (p o in t l point2)
(point.new

(PLUS (fe tch xcoord of p o in t l)
(fe tc h xcoord of po in t2))

(PLUS (fe tc h ycoord of p o in t l)
(fe tc h ycoord of p o in t2)))

))
^ b ro k en fn s
(point.sum)

FN may take several different forms. BREAKO processes them as follows:

1. If FN is not defined, BREAKO displays the message ((function) not a
function).

<-(BREAKO 'p o in t .d iv id e)
((p o in t .d iv id e not a function))

2. If FN is a list, it may be a list of functions. BREAKO is invoked for each
member of the list. The values of WHEN and COMS are used for each
function.

If you want to set breakpoints for all the functions in a file, you
might use the invocation

(BREAKO (FILEFNSLST (filenam e)) (when) (commands))

3. FN may have the form ((fn l) IN (fn2)). This form allows you to set a
breakpoint on a function, that is called from many functions, within a
specific function.

BREAKO changes the name of (fn l) to that of a new function,
(fn l)-IN -(fn2), wherever it appears in (fn2). It substitutes (fnl)-IN -
(fn2) for (fn l) in the expression FN.

Note: This form works like BREAKIN (see Section 20.3.4), but
works on compiled functions whereas BREAKIN works only on inter
preted functions.

20.3 Setting Breakpoints 751

♦-(BREAK ’ ((point.sum p o in t .d i f fe re n c e p o in t .q u o t ien t
p o in t . t im e s) IN (rectangle.expandby re c ta n g le . cen ter
r e c ta n g le .e x te n t)) (NOT (NULL p o in t l)) (EVAL (p o in t l
po in t2) ?= OK))
(p o in t . su m -in -rec tang le . expandby p o in t . sum-in
rec tan g le . c e n te r (point.sum not found in
r e c ta n g le .e x te n t) p o in t .d i f f e re n c e - in -
r e c ta n g le . expandby . . .)

<-brokenfns
(p o in t . q u o t ie n t - in - re c ta n g le . cen ter p o in t . d if fe ren ce -
in - re c ta n g le .e x te n t . . .)

♦-(PP rectangle.expandby)
(r e c ta n g le . expandby

(LAMBDA (a .re c ta n g le a .p o in t)
(rectangle.new

(p o in t . d i f fe re n c e - in - r e c ta n g le . expandby
(fe tc h o r ig in of a .rec tan g le)
a .p o in t)

(p o in t . sum -in -rec tang le . expandby
(fe tc h corner o f a .rec tan g le)
a .p o in t)))

))
(GETPROP * p o in t . su m -in -rec tang le . expandby ' brkinfo)

((BREAKO (NOT {NULL p o in t l)) (EVAL (PRINT p o in t l) ?=
OK))

A Definition for BREAKO
We might define BREAKO as follows:

(DEFINEQ (breakO (fn when coms)
(PROG (fn -d e f b rk .c o n d it io n temp value)
top

(SETQ value fn)
(COND

((NULL (ATOM f n))
(RETURN (breakO. subfunction)))

((NULL (SETQ fn -d e f (GETD fn)))
(AND

(SETQ fn -d e f (FNGHECK fn T))
(SETQ fn fn-def)
(GO top))

752 Debugging Facilities

Consider the following example:

(PUTPROP fn 'broken (GENSYM))
(*

I f the function i s not defined, s e t
up the breakpoint anyway.

)
(putd fn

(LIST 'nlambda
(GENSYM)
(LIST 'b re ak l

NIL
when
fn
corns)))

(SETQ value
(CONS fn '(n o t a func tion)))

(GO se t-b ro k e n fn s))
((AND (EXPRP fn-def)

(LISTP (CADDR fn -de f))
(EQUAL (CAADDR fn-def) 'b re a k l))
(*

I f the function i s already broken,
modify the breakpoint.

)
(RPLACA

(SETQ b rk .co n d it io n (get.when fn -d e f))
when)

(RPLACD
(CDR brk .cond ition) (LIST corns))

(GOND
((SETQ temp

(ASSOC 'breakO
(GETPROP fn 'b rk in fo)))

(RPLACD temp (LIST when corns))
(RPLACA 'brokenfns

(CONS fn
(DREMOVE
brokenfns)))

(RETURN (LIST fn)))
(T

(SETQ fn-def
(CONS (CAR fn-def)

(CONS (CADR fn-def)
(CDADR

(CADDR fn-
d e f)))))

20.3 Setting Breakpoints 753

)))
(SETQ fn -de f (SAVED fn 'broken) fn -def))
(putd fn

(LIST (CAR fn-def)
(CADR fn-def)
(LIST 'b reak l

(CONS 'PROGN (CDDR fn-def))
when
fn
corns)))

se t-b rokenfns
(COND

((NULL (MEMBER fn brokenfns))
(RPLACA brokenfns

(CONS fn b rokenfns))))
(ADDPROP fn 'b rk in fo (LIST 'breakO when corns))
(RETURN

(LIST v a lu e)))
))

(DEFINEQ (get-when (expression)
(CDDR (CADDR expression))
))

(DEFINEQ (breakO-subfunction n i l
(COND

((NEQ (CADR fn) 'IN)
(MAPCONC fn

(FUNCTION breakO-subfunction.1))))
))

(DEFINEQ (breakO -subfunction .1 (x)
(breakO x when corns))
))

754 Debugging Facilities

20.3.3 Activating a Breakpoint
A breakpoint is activated by calling BREAKl which has been placed in a func
tion definition by BREAKO or BREAKIN. It takes the form

Function: BREAKl

Arguments: 6

Arguments: 1) a break expression , BRKEXP
2) a co n d ition fo r b reak ing , BRKWHEN
3) an expression to be eva lua ted , BRKFN

A) a l i s t of breakpoint commands,
BRKCOMS

5) the type of breakpoin t, BRKTYPE
6) an e r ro r in d ic a t io n , ERRORN

Value: Determined by the Break Package commands.

BREAKl is an NLAMBDA function.
BRKWHEN determines whether or not a break is to occur. Usually,

BRKWHEN is an expression that tests some condition of the variables or argu
ments used by the function to be broken. If BRKWHEN evaluates to NIL,
BRKEXP is evaluated and its value is returned as the value of BREAKl.

«-(BREAKIN su m .l is t (AFTER GO))
s e a rc h in g . . .
SUM.LIST

<-(EDITF su m .l is t)
Note: you are e d i t in g a broken function
EDIT
*PP
(LAMBDA (x)

(PROG (y sum)
(SETQ y (COPY x))
(SETQ sum 0)

loop
(COND

((NULL y)
(RETURN sum)))

(SETQ sum (PLUS sum (CAR y)))
(SETQ y (GDR y))
(GO loop))

(BREAKl NIL T (SUM.LIST a f t e r GO) NIL))
*0K
(SUM.LIST)

where BRKWHEN has the value (AFTER GO).
When a break occurs, ERRORN is inspected. If it is a list whose CAR is a

number, ERRORMESS (see Section 18.6.1) is called to print an identifying
message. If its CAR is not a number, ERRORMESSl is called to print the mes
sage. Otherwise, no preliminary message is printed. Normally, you do not define
ERRORN. After this, the message (<brkfn> broken) is printed.

The Break Package executes the commands that it finds in BRKCOMS, if
any. If none of these commands exits the break, the Break Package prints its
prompt (e.g., :) and accepts commands from the terminal, and interprets them.
You may only leave a breakpoint using the commands GO, !GO, OK, !OK,

20.3 Setting Breakpoints 755

RETURN, and t (up arrow). EVAL evaluates BRKEXP and stores its value in
the variable ! VALUE, whence it may be inspected. You may define other com
mands via BREAKMACROS.

BRKTYPE specifies the type of break. It takes the values

NIL for user-specified breakpoints
INTERRUPT for CTRL-H breakpoints
ERRORX for error breakpoints

20.3.4 Breaking into a Function
BREAK allows you to set a breakpoint for an entire function. Sometimes, you
may want to break within a function, particularly one which is lengthy or com
plex. To do so, you can use BREAKIN which inserts a call to BREAKl before,
after, or around a choice expression within a function.

A breakpoint is inserted by a sequence of editor commands. Alternatively,
you may enter the Editor from BREAKIN, search for the proper location your
self, and exit, whence the breakpoint is inserted before, after, or around the
current expression.

BREAKIN takes the form

Function: BREAKIN

Arguments: 4

Arguments: 1) a function name, FN
2) a lo c a t io n , WHERE
3) a cond ition fo r breaking, WHEN
A) a command l i s t , COM3

Value: The name o f the function .

BREAKIN is an NLAMBDA function.
FN must be a function which is modifiable (i.e., an interpreted function).

BREAKIN returns «name> not a function) if the function is undefined or
(<name> unbreakable) if it is compiled.

When BREAKIN is called on an interpreted function, it displays the mes
sage “searching ...” while it calls the Editor to look for the current expression
matching the WHERE specification. WHERE specifies the location at which
the call to BREAKl will be inserted as modified by WHEN.

(DEFINE
(c o n v e r t . l a t l o n . to .3 2 b i t (la t lo n)

(PROG (new.point)
(i f

((LESSP la tlo n rx co o rd 0.0)

756 Debugging Facilities

then (SETQ new.point
(point.sum la t lo n

(point.new 360.0
9 0 .0))))

e ls e (SETQ new.point
(point.sum la t lo n

(point.new 0.0
9 0 .0)))))

(RETURN
(p o in t . t ru n c a te

(p o in t.sc a leb y new.point f a c to r))))

Let us break this function around the if...then...else expression:

♦-(BREAKIN c o n v e r t . l a t lo n . to .3 2 b i t (AROUND i f) T)
s e a r c h in g . . .
CONVERT. LATLON.TO.32BIT

<-(EDITF c o n v e r t . l a t lo n . to .3 2 b i t)
Note: you are e d i t in g a broken function
EDIT
*PP
(LAMBDA (la t lo n)

(PROG (new.point)
(BREAKl

(i f
((LESSP la tlo n :x co o rd 0.0)
then (SETQ new.point

(point.sum la t lo n
(point.new 360.0 9 0 .0))))

e ls e (SETQ new.point
(point.sum la t lo n

(point.new 0.0 9 0 .0)))))
T (around i f) NIL)

(RETURN
(p o in t . t ru n c a te

(p o in t .sc a le b y new.point f a c to r))))
))
*0K
(CONVERT. LATLON. TO.32BIT)

When a function is broken into, BREAKIN adds the property BROKEN-IN
to the function names’ property list with the value T. It also adds the property

20.3 Setting Breakpoints 757

BRKINFO to the property list with the value «where> <when> <coms». FN is
added to the list BROKENFNS.

^(GETPROP ' c o n v e r t . la t lo n . to .3 2 b i t ’BROKEN-IN)
T

<-(GETPROP 'c o n v e r t . l a t lo n . to .3 2 b i t 'BRKINFO)
(((AROUND i f) T NIL))

You may insert multiple breakpoints in a function by setting WHERE to a
list of expressions each of which specifies a location at which the function is to be
broken.

(BREAKIN convert. l a t l o n . t o .32bit
((BEFORE PROG) (AFTER poin t.sca leby)

(AROUND i f) (AFTER RETURN))
(NOT (NULL la t lo n)))

s e a rc h in g . . .
se a rc h in g . . .b re a k in se r ted AFTER (RETURN (POINT.TRUNCATE
&))
s e a rc h in g . . .
s e a rc h in g . . .
CONVERT.LATLON. TO.32BIT

<-(GETPROP 'c o n v e r t . l a t lo n . to .3 2 b i t 'BRKINFO)
(((BEFORE PROG) (NOT (NULL la t lo n)) NIL) ((AFTER
p o in t .sca leb y) (NOT (NULL la t lo n)) NIL) ((AROUND i f) (NOT
(NULL la t lo n)) NIL) ((AFTER RETURN) (NOT (NULL la t lo n))
NIL))

Note that WHEN is used for each breakpoint.
If you do not know where you want to insert a breakpoint, you may specify

the form (BEFORE TTY:) or (AFTER TTY:) as the value of WHERE.
BREAKIN invokes the Editor. You may then search for the proper location at
which to insert the breakpoint. When you exit from the Editor via OK,
BREAKIN inserts the call to BREAKl before, after, or around the current ex
pression. To exit without inserting a breakpoint, type the command STOP to
TTY:. It acts like an unsuccessful edit command in the original form. The Edi
tor aborts. BREAKIN returns (not found) after the “searching...” message.

BREAKIN prevents you from inserting breakpoints inside an expression
that would never be activated. The variable NOBREAKS is a list of atoms. Ini
tially, its value is (GO QUOTE *). If you attempt to insert a breakpoint inside an
expression beginning with one of these atoms, BREAKIN will not permit it. You
may add to NOBREAKS additional atoms that would begin expressions you do
not wish to be broken into. However, you should exercise caution in selecting the
atoms to be added.

758 Debugging Facilities

^ (P P SUM.LIST)
(LAMBDA (x)

(PROG (y sum)
(SETQ y (COPY x))
(SETQ sum 0)

loop
(COND

((NULL y) (RETURN sura)))
(SETQ sum (PLUS sum (CAR y)))
(SETQ y (CDR y))
(GO loop)))

^(BREAKIN s u m .l is t (AFTER GO))
s e a r c h in g . . .
SUM.LIST

<-(EDITF s u m .l is t)
Note: you are e d i t in g a broken function
EDIT
*PP
(LAMBDA (x)

(PROG (y sum)
(SETQ y (COPY x))
(SETQ sum 0)

loop
(COND

((NULL y)
(RETURN sum)))

(SETQ sum (PLUS sum (CAR y)))
(SETQ y (CDR y))
(GO loop))

(BREAKl NIL T (SUM.LIST a f t e r GO) NIL))
*0K
(SUM.LIST)

For BEFORE or AFTER commands, BREAKIN ensures that the break
point is inserted in a “safe” place:

•<-(BREAKIN s u m .l i s t (AFTER TTY:))
EDIT
*3
*7
*2
*0K

20.3 Setting Breakpoints 759

Consider the following example:

break in se r te d AFTER (SETQ SUM (PLUS SUM &))
SUM.LIST

The three numbers above are Editor commands to descend into the struc
ture of SUM.LIST. In fact, they make the current expression be SUM in the
(SETQ SUM ...) expression. BREAKIN does not allow you to insert a break
point in the middle of an expression, so it places it “safely” after the expression.

760 Debugging Facilities

20.3.5 BREAKCHECK: When to Break
When an error occurs, INTERLISP must decide what action to take: either un
wind the stack or go into a break. If a computation has proceeded only a little
way, such as hitting a misspelled function name at type-in, INTERLISP usually
wants to unwind the stack, print an error message, and have you try again. In
the midst of a complex computation, the best tactic is to go into a break. The
decision on entering a break depends on the depth (e.g., number of function
calls) of the computation and the amount of time invested in it. BREAKCHECK
is called to determine if a break should occur. It takes the form

Function: BREAKCHECK

Arguments: 2

Arguments: 1) an e r ro r p o s i t io n , ERRORPOS
2) an e r ro r number, ERXN

Value: T, i f a break should occur; otherwise,
NIL.

BREAKCHECK is called when an error is encountered. It must decide
whether or not to induce a break.

ERRORPOS is the stack position where the error occurred, i.e., it is a stack
pointer to the frame representing the function in which the error occurred.
ERXN is an error number.

BREAKCHECK returns T to indicate that a break should occur if the depth
of the stack is greater than HELPDEPTH. HELPDEPTH is initially set to 7, but
you may reset it.

If the stack length (in frames) is less than HELPDEPTH, BREAKCHECK
calculates the time spent in the computation. If the time is greater than HELP
TIME (in milliseconds), BREAKCHECK will return T to indicate that a break
should occur. HELPTIME is initially set to 1000 (milliseconds).

BREAKCHECK searches backwards in the stack from ERRORPOS look
ing for an ERRORSET frame. If the stack is to be unwound, INTERLISP will
do so back to the ERRORSET ffame. At the same time, it counts the number of
invocations of EVAL. When the number of calls to EVAL exceeds HELP
DEPTH, BREAKCHECK returns T. Otherwise, it searches until an ERROR-
SET frame is found or the top of the stack is reached. It then counts the number

of function calls between the ERRORSET frame (or the top of the stack). The
number of functions calls plus the number of calls to EVAL is used as the com
putation depth. If it exceeds HELPDEPTH, BREAKCHECK returns T.

The computation time is determined by subtracting the value of HELP-
CLOCK from the value of a call to CLOCK, which reads the system clock.
HELPCLOCK is the last recorded value of a call to CLOCK for each call to
LISPX. If this exceeds HELPTIME, BREAKCHECK returns T. You may dis
able the time citerion for breaking by setting HELPTIME to NIL or a very large
number.

You may disable all error breaks by resetting the variable HELPFLG to NIL
using SETTOPVAL (e.g., you must set the top-level value). HELPFLG is re
bound during calls to LISPX (e.g., in a stack frame so assigning a value via
SETQ just affects the most recent binding). You may force a break to occur on
every error by rebinding the top-level value of HELPFLG to BREAK!.

20.4 UNBREAKING FUNCTIONS
You may unbreak functions in two ways: either issuing the UB command from
within the break or executing a function. Functions to unbreak functions are
described in this section.

20.4.1 Unbreaking a Function: 1
UNBREAK removes a breakpoint from one or more functions. Its takes the
form

Function: UNBREAK

Arguments: 1

Argument: 1) an expression , EXPRESSION

Value: A l i s t o f functions th a t are unbroken.

UNBREAK is an NLAMBDA, nospread function.
EXPRESSION may be atomic or a list of atoms that are function names.

Each function is unbroken via a call to UNBREAKO. Its value is the list of values
returned by UNBREAKO.

UNBREAK will unbreak functions that have been broken by BREAK,
BREAKO, TRACE, or BREAKIN.

If EXPRESSION is NIL, UNBREAK will unbreak all functions on BRO-
KENFNS. BRKINFOLST is first set to NIL:

(UNBREAK)
(point.sum p o in t .d i f f e re n c e p o in t .q u o t ie n t)

If EXPRESSION has the value T, UNBREAK unbreaks the first function
on BROKENFNS. Since BREAK, BREAKO, BREAKIN, or TRACE always

20.4 Unbreaking Functions 761

add a newly broken function to the front of the list, the effect is to unbreak the
most recently broken function.

♦-(BREAK point.sum)
(point.sum)

♦-(BREAK p o in t .d if fe ren c e)
(p o in t .d if fe re n ce)

♦-BROKENFNS
(p o in t .d if fe re n c e point.sum)

♦-(UNBREAK T)
(p o in t .d if fe re n c e)

A Definition for UNBREAK
We might define UNBREAK as follows:

(DEFINEQ unbreak
(NLAMBDA x

(COND
((EQUAL (CAR x) T)

(SETQ X (LIST (CAAR brokenfns))))
((NULL x)

(SETQ X (REVERSE b r o k e n f n s))
(RPLACA 'brokenfns NIL)
(RPLACA 'b rk in fo ls t NIL)))

(MAPCONC X (FUNCTION unbreakO))
)))

762 Debugging Facilities

20.4.2 Unbreaking a Function: 2
The workhorse for unbreaking functions is UNBREAKO. It restores a function
to its original state. UNBREAKO takes the form

Function: UNBREAKO

Arguments: 1

Arguments: 1) a function name, FN

Value: The value of FN.

FN is treated as follows:

1. If FN is atomic, and was not broken, UNBREAKO displays the message
(<fn> not broken) and does nothing.

20.5 Break Package Utilities 763

<-(UNBREAKO 'point.sum)
(point.sum not broken)

2. If FN is atomic and was modified by BREAKIN, UNBREAKIN is called
to remove these modifications.

3. If FN is atomic, it is restored to its original state.
4. If FN has the value <fnl>-IN-<fn2>, UNBREAKO restores <fn2> to its

original state. All dummy functions created as a result of the breakpoint
are eliminated.

5. If FN is a list of the form « fn l > IN <fn2», UNBREAKO operates on the
functions <fnl>-IN-<fn2> as in case (4) above.

The value of UNBREAKO is the name of the function that is restored.

20.4.3 Unbreaking a Broken-into Function
UNBREAKIN allows you to remove a breakpoint that was inserted into a func
tion by BREAKIN. It performs the proper editing actions to remove the break
point and restore the function to its original state. It is automatically called by
UNBREAK if a function has the property BROKEN-IN. It takes the form

Function: UNBREAKIN

Arguments: 1

Argument: 1) a function name, FN

Value: The value of FN.

20.5 BREAK PACKAGE UTILITIES
Several functions are useful for writing breakmacros and modifying functions.
They are gathered here as utility functions.

20.5.1 Reading Break Package Commands
As discussed in Section 20.2.11, you may create your own breakpoint commands
as macros that are executed by functions that you specify. When you give a
breakmacro as an element of BRKCOMS, you must be able to read any argu
ments that are associated with the command. BREAKREAD allows you to read
elements from BRKCOMS. It takes the form

Funct io n : BREAKREAD

Arguments: 1

Arguments: 1) A type sp e c if ic a t io n , TYPE

Value: The next elements in BRKCOMS or the input.

If BRKCOMS is non-NIL for any Break Package function, BREAKREAD
returns the next command in the list. And it sets the BRKCOMS list to its CDR.

If TYPE is LINE and the break command was typed in at the terminal,
BREAKREAD returns the rest of the input buffer (up to a <CR>).

A Definition for BREAKREAD
We might define BREAKREAD as follows:

(DEFINEQ
(breakread (f lag)

(COND
(brkcoms

(PROGl
(CAR brkcoms)
(SETQ brkcoms (CDR brkcoms))))

((EQUAL f lag 'LINE)
(READLINE))

(T
(CAR (READLINE)))

))

Note that we use READLINE rather than READ when a macro expects
some input, because READLINE will wait for you to type something in while
READ will return NIL.

20.5.2 Changing Names in Functions
CHANGENAME changes all occurrences of a name FROM to a name TO in a
function FN. It is primarily used by break functions to handle the form (<fnl>
IN <fn2>). It takes the form

Function: CHANGENAME

Arguments: 3

Arguments: 1) a function , FN
2) a from name, FROM
3) a to name, TO

Value: FN i f FROM is found; otherw ise, NIL.

CHANGENAME will change any names within FN, not just function
names. It does not perform any modifications on property lists.

764 Debugging Facilities

20.5.3 Restoring a Virgin Definition
VBRGINFN knows how to restore the original state of a function regardless of
the number of times that it has been advised, broken, broken-in, or traced. It
takes the form

Function: VIRGINFN
Arguments: 2

Arguments: 1) a function name, FN
2) a f la g , FLAG

Value: The o r ig in a l d e f in i t io n of the function .

VIRGINFN is used by a number of system functions to restore a function to
its original state including PRETTYPRINT, DEFINE, and the compiler. FLAG
determines whether the function is modified or a copy is made. PRETTYPRINT
calls VIRGINFN with FLAG equal to NIL so that a copy is made, i.e., if you
want to prettyprint a function without any of the encumbering detail that is
added by advising, breaking, or tracing the function. If FLAG is T, as specified
by the compiler and DEFINE, VIRGINFN physically restores the function to its
original state. It also tells you what changes it has made, e.g., one of <FN> UN
BROKEN, <FN> UNADVISED, or <FN> NAMES RESTORED.

20.5 Break Package Utilities 765

20.5.4 Printing a Backtrace of the Stack
BAKTRACE implements the BT, BTV, BTV+, BTV*, and BTV! commands
of the Break Package. It takes the form

Function: BAKTRACE

Arguments: A
Arguments: 1) an i n i t i a l s tack p o s i t io n , IPOS

2) an ending stack p o s i t io n , EPOS
3) a skipping function , SKIPFN
4) o p tions , FLAGS

Value: A d isp lay of the s tack from IPOS to EPOS
su b je c t to the ac tions of SKIPFN and the
values of FLAGS.

IPOS and EPOS are stack frame specifications as described in Section 30.3.
SKIPFN is a function that determines whether or not to print the informa

tion for a stack frame. If SKIPFN is non-NIL, it is applied to the value of
(STKNAME (POS)). If the value is T, the current position is skipped (i.e., not
printed).

FLAGS specifies the display options for the backtrace. It takes the values
for the corresponding commands:

Value Command

0 BT
1 BTV
5 BTV+
7 BTV*
47Q BTV!

When BAKTRACE prints information about a stack frame, it will abbrevi
ate information about various sequences of function calls by a single entry. The
function calls to be abbreviated are given by BAKTRACELST. Each entry on
BAKTRACELST is a list of the form

(<framename> <key> . (p a t te rn))

or

(<framename> (<keyl> . <pattern l>)
• • •
(<keyN> . <patternN>))

where a (pattern) is a list of elements that have either atoms, which match a
single frame, or lists, which are interpreted as a list of alternative patterns.

For the Fugue Release of INTERLISP-D, BAKTRACELST has the follow
ing format:

((APPLY
(**BREAK**

LISPX ERRORSET BREAKIA BREAKl)
(**TOP**

LISPX ERRORSET EVALQT T)
(**EDITOR**

LISPX ERRORSET ERRORSET ERRORSET EDITLl
EDITLO ERRORSET
((ERRORSET ERRORSET ERRORSET EDITLl EDITLO
ERRORSET) -)
EDITL ERRORSET ERRORSET EDITE ((EDITF)

(EDITV)
(EDITP)
-))

(**USEREXEC**
LISPX ERRORSET ERRORSET USEREXEC)) .

766 Debugging Facilities

(EVAL
(**BREAK**

LISPX ERRORSET BREAKIA BREAKl)
(**TOP**

LISPX ERRORSET EVALQT T)
(**EDITOR**

LISPX ERRORSET ERRORSET ERRORSET EDITLl
EDITLO ERRORSET
((ERRORSET ERRORSET ERRORSET EDITLl EDITLO
ERRORSET) -)
EDITL ERRORSET ERRORSET EDITE ((EDITF)

(EDITV)
(EDITP)
-))

(**USEREXEC**
ERRORSET LISPX ERRORSET ERRORSET USEREXEC))

(PROGN
BREAK

EVAL
((ERRORSET BREAKIA ERRORSET BREAKl)

(BREAKl))
(BLKAPPLY

BREAK
PROGN EVAL ERRORSET BREAKIA ERRORSET BREAKl)

(*PROG*LAM
(NIL EVALA *ENV*)
(NIL CLISPBREAKl)))

20.5 Break Package Utilities 767

BAKTRACE scans the stack frame by frame. At each frame, it compares
the current frame name with the frame names that appear on BAKTRACELST
using ASSOC. If the current frame name appears, it attempts to match a contig
uous set of stack frames with each of the pattern(s). If a match is unsuccessful,
BAKTRACE prints the corresponding key, and continues from the point where
the match was successful. If the frame does not appear or the match fails,
BAKTRACE simply prints the frame name, unless SKIPFN applied to the
frame name is non-NIL. It then proceeds to the next higher frame.

In constructing patterns, you may use the following features:

1. The atom & can be used to match any frame, i.e., it is equivalent to
“don’t care.”

2. The atom—(e.g., a dash) can be used to match nothing, i.e., it can be
used for optional matches.

3. You do not have to provide matches for dummy frames, i.e, frames for
which DUMMYFRAMEP (see Section 30.5.1), is true. When matching,
the matcher automatically skips over these frames when they do not
match.

4. If the match succeeds and the key is NIL, nothing is printed (see the last
expression for *PROG*LAM above).

768 Debugging Facilities

21

Advising

Advising is a means of altering the interface to a function. Alteration may occur
before or after the function is executed. As a user, you do not need to know how a
function works (usually) to modify its interface with its environment. BREAK,
TRACE, and BREAKDOWN all use advising to effect the operation of func
tions.

You may advise functions so that they are affected every time they are
called, or when they are called within or by another function. The IRM notes
that you may advise TIME as follows:

^(ADVISE 'TIME
'BEFORE
'(SETQQ U FOO)
'(PRINl PRINT SPACES))

TIME

This advice alters TIME so that it prints its results to the file FOO rather
than to the terminal.

21.1 ADVISE: MODIFYING A FUNCTION'S INTERFACE
You may advise a function or functions by executing ADVISE, which takes the
following format

Function: ADVISE

Arguments: 4

Arguments: 1) a s p e c i f ic a t io n , FNS
2) the time of a l t e r a t i o n , WHEN

769

3) the lo ca tio n of a l te r a t io n , WHERE
A) the advice, WHAT

Value: The name of the function(s) advised.

FNS is a specification that describes the function(s) to be altered. It may
take one of several forms:

1. If FNS is an atom, it is a single function to be advised.
2. If FNS takes the form

(f n s . l IN fns .2)

then FNS.l is altered throughout FNS.2. If either or both of FNS.l and
FNS.2 are lists of functions, the names are totally distributed across both
lists.

3. If FNS is being advised for the first time, then ADVISE modifies the
functions as follows:

770 Advising

a. I t c rea te s a new symbol using GENSYM.
b. The new symbol i s given the o r ig in a l d e f in i t io n of

FNS.
c. The name of the new symbol i s placed on the property

l i s t of FNS under the property ADVISED.
d. An appropria te S-expression version of FNS is

c rea ted fo r FNS.
e. FNS i s added to the l i s t ADVISEDFNS.
f . The l i s t (WHEN WHERE WHAT) i s s to red under the

property ADVICE on the property l i s t of FNS.

4. If FNS is a list of functions, each function is advised in turn with copies of
the other three arguments.

A function may be advised when it is broken. If so, it is unbroken before it is
advised. If a function has been advised before (because the ADVISED property
exists), it is merely moved to the head of ADVISEDFNS.

If FNS is not defined, ADVISE displays an error message “NOT A FUNC
TION” and breaks.

WHEN may take the values BEFORE, AFTER, or AROUND. If it has the
value BEFORE or AFTER, the advice is inserted into the function’s definition
before or after the location specified by WHERE. If WHEN has the value
AROUND, then the advice has a * within its form and the body of the function is
inserted in place of the *.

WHERE specifies the location of the advice in the function definition. You
may place advice around the entire body of a function or specific functions
within the function. We may advise READ to print its value each time it is exe
cuted using the following expression:

*<-(ADVISE 'READ 'AFTER ' (PRINl !VALUE))
READ

WHERE may take the values LAST, BOTTOM, END, or NIL. If so, the
advice is added following all other advice, if any. If WHERE has the value TOP
OR FIRST, the advice will be inserted as the first piece of advice. Thus, a func
tion may be subject to multiple pieces of advice both before and after its execu
tion.

What does an advised function look like? If we execute the expression

(ADVISE 'poin t.sum
'T
'(BEFORE PLUS)

'(PRINl "EXECUTING PLUS")

we obtain the following definition for POINT.SUM:

-^(EDITF 'point.sum)
Note: you are e d i t in g an advised function
EDIT
*PP
(LAMBDA (p o in t l point2)

(ADV-PROG (lva lue)
(ADV-SETQ lvalue

(ADV-PROG NIL
(ADV-RETURN

(PROGN
(point.new

(PLUS po in tl :xcoord
point2:xcoord)
(PLUS po in tl :ycoord
p o in t2 ;ycoord))))))

(ADV-RETURN lv a lu e)))

A Definition for ADVISE
We might define ADVISE as follows:

(DEFINEQ
(advise (fns when where what)

(PROG (f n s . l f n s .2 fn s .d e f)

21.1 ADVISE: Modifying a Function's Interface 771

772 Advising

top
(COND

((ATOM fns)
(SETQ fns (FNCHECK fns))

((EQUAL (CADR fns) 'IN)
(SETQ f n s .2 (CADDR fns))
(RETURN

(COND
((ATOM (SETQ f n s . l (CAR fn s)))

(COND
((ATOM f n s .2)

(adv lse l f n s . l f n s .2))
(T

(MAPCAR f n s .2 (FUNCTION
advise2))))

((ATOM f n s .2)
(MAPCAR f n s . l (FUNCTION
advise3)))

(T

(T
(RETURN

(MAPCONC f n s . l (FUNCTION
adv ised))))))

(MAPCAR fns (FUNCTION
ad v lse5)))))

(COND
((OR what (NULL when)) NIL)
((NULL where)

(*
Advise[<function) <advice)]
i s the same as
ad v ise [(fu n c tio n) BEFORE NIL
<adv ise)]

)
(SETQ what when)
(SETQ when ’BEFORE))

(T
(SETQ what where)
(SETQ where NIL)))

(RESTORE fns ’BROKEN)
(SETQ fn s .d e f (GETD fns))
(COND

((NULL fn s .d e f)
(PRINl fns) '
(SPACES 1)

loop

(PRINl "not d e f in e d .”)
(TERPRI))

((OR (NULL (EXPRP fn s .d e f))
(NULL (GETP fns ’ADVISED)))
(SETQ f n s .2 (SAVED fns 'ADVISED
fn s .d e f))
(PUTD fns

(LIST (CAR f n s .2)
(CADR f n s .2)
(SETQ f n s .2

(SUBPAIR 'DEF
(LIST

(COND
((CDR

(SETQ f n s .2
(CDDR
fn s .2)))

(CONS 'PROGN
f n s .2))

(T
(CAR
fn s .2))))

(COPY ADVISE-
FORM))))))

(T
(SETQ fns .2 (CADDR fn s .d e f))))

(*
Moving a function th a t i s already
advised to the f ro n t of the l i s t of
advised functions .

)
(SETATOMVAL ’ADVISEFNS

(CONS fns
(/DREMOVE fns ADVISEFNS)))

(SETQ f n s . l when)

(SELECTQ f n s . l
(NIL

(*
Advise[<func tion)] implies
s e t t in g up fo r advising and
e x i t in g

)
(RETURN fns))

(BEFORE

21.1 ADVISE: Modifying a Function's Interface 773

774 Advising

e x i t

(SETQ fns.2
(CDDR

(CADDR
(CADDR fn s .2)))))

(AFTER
(SETQ fns .2 (CDDDR fns .2))

(AROUND
(SETQ fns.2

(CAR
(LAST (CADDR (CADDR
fn s .2)))))

(COND
((NEQ (CAR fns.2) 'ADV-RETURN)

(ERROR "ADVISE” when '?)
(RETURN)))

(RPLACA (CDR fns.2)
(SUBPAIR'*

(LIST (CADR fns.2
what))))

(GO e x i t))
(BIND

(NCONC (CADR fns.2)
(COND

((ATOM what)
(LIST what))

(T
(APPEND what))))

(GO e x i t))
(ERROR "ADVISE" when '?))

(COND
((NULL where)

(ATTACH what (LAST fn s .2)))
(T

(ADD.ADVICE fn s .2 what where T)))

(ADDPROP fns 'ADVICE (LIST when where what))
(RETURN fns))

))

where the subfunctions are defined as follows:

(DEFINEQ
(a d v ise l (f n s . l fn s .2 a .f la g)

(PROG (f n s .3)
(COND

))

((NOT (ATOM fns.3))

(RETURN fns.3))
(a . f la g

(advise fns .3 (COPY when)
(COPY where)
(COPY what)))

(T
(advise fns .3 when where what)))

(RETURN fn s .3))

21.2 UNADVISE: Removing Advice 775

(DEFINEQ
(advise2 (a . fn s .2)

(advise f n s . l a . f n s .2 T)
))

(DEFINEQ
(advise3 (a .fn s)

(a d v ise l a . fn s when T)
))

(DEFINEQ
(advised- (a .fn s)

(MAPCAR fn s .2 (FUNCTION a d v ise 4 l))
))

(DEFINEQ
(ad v ise^ l (a . fn s .2)

(a d v ise l a . fn s a . f n s .2 T)
))

(DEFINEQ
(advise5 (a .fn s)

(advise a . fn s (COPY when) (COPY where) (COPY
w hat))

))

21.2 UNADVISE: REMOVING ADVICE
You may remove advice from a function by executing UNADVISE, which takes
the form

Function: UNADVISE

Arguments: 1

Arguments: 1) an expression , EXPRESSION

Value: A l i s t of the functions th a t have been
unadvised.

UNADVISE is an NLAMBDA, nospread function. For each function found
in EXPRESSION, UNADVISE removes the properties created by ADVISE as
well as any program code added to the body of the function that was specified by
ADVISE.

UNADVISE will save on the list ADVINFOLST enough information to al
low you to READ VISE a function at a later time.

UNADVISE, when executed with no arguments, unadvises all functions
that are described on ADVISEDFNS. It sets ADVINFOLST to NIL.

UNADVISE, when executed with an argument of T, unadvises the first
function on ADVISEDFNS. That is, it unadvises the last (most recent) function
that was advised.

776 Advising

21.3 READVISING A FUNCTION
You may restore a function to its advised state by executing READ VISE.
READ VISE uses information found on ADVINFOLST or under the property
READVICE to reinstate the advice for the specified functions. It takes the form

Function: READVISE

Arguments: 1

Arguments: 1) an expression , EXPRESSION

Value: A l i s t of functions th a t have been
readvised .

READVISE is an NLAMBDA, nospread function. If you readvise a func
tion, the advice will be stored under the property READ VICE on the atom’s
property list. Thus, you may advise a function once, then unadvise and readvise
it many times without having to specify all of the original information.

READVISE, when executed with no arguments, will readvise every function
that is found on ADVINFOLST. Thus, you can turn advising on and off for a
large number of functions with a simple function invocation.

21.4 SAVING ADVICE IN A FILE
As noted in Section 17.2.10, the File Package provides a file package command
for saving advice for functions between sessions. PRETTYDEF creates the
proper entries in a file to readvise the functions saved in the file when it is re
loaded. It uses ADVISEDUMP to place the proper information in the file. AD-
VISEDUMP takes the form

Arguments: 2

Arguments: 1) a func tion , FNS
2) a f la g , FLAG

Value: A l i s t of the functions dumped.

If FLAG is T, ADVISEDUMP writes two expressions to the primary output
file: a DEFLIST expression and a READVISE expression. However, if FLAG is
NIL, only the DEFLIST expression is written to the file. The difference is that
the former corresponds to the action of readvising a function while the latter
corresponds to the process of advising. In either case, the advice is copied to the
property READ VICE of the function which makes it “permanent” since all
properties and their values will also be dumped to the file.

A Definition of ADVISEDUMP
We might define ADVISEDUMP as follows:

(DEFINEQ
(advisedump (fns f lag)

FLAG is T fo r READVISE and NIL fo r ADVISE.
)
(SETQ fns

(MAPCONG fns
(FUNCTION advise.dum p.l)))

(MAKEDEFLIST fns ' READVICE)
(COND

(f la g
(PRINTDEF (CONS 'READVISE f ns))))

))
(DEFINEQ

(advise .dum p.l (fn)
(MAPCAR (PACK-IN- fn)

(FUNCTION advise.dump.2))
))

(DEFINEQ
(advise.dum p.2 (fn)

(PROG (p ro p e r ty - l i s t)
(SETQ p r o p e r ty - l i s t (GETPROP fn 'ADVICE))
(COND

(p ro p e r ty - l i s t

21.4 Saving Advice in a File 111

Function: ADVISEDUMP

778 Advising

))

(PUTPROP fn
'READVICE
(CONS (GETPROP fn ’ALIAS)

(APPEND property-
l i s t)))))

(RETURN fn))

22

DWIM: Automatic Error
Correction

DWIM means Do- What-I-Mean. It is an automatic error correction facility that
assists you in correcting errors tliat do not affect the structure or logic of your
program. Many of the errors made by INTERLISP programmers are simple
ones that are easily recognized and fixed, so much so that another program
could watch what you type in or inspect a program as it is read from a file and
correct these errors. DWIM is a program that performs this function although
(as the IRM notes) it only operates on unbound atoms and undefined functions
at the present time. When an error occurs, DWIM inspects the current context
of the computation, attempts to figure out what is wrong and how it may be
corrected, attempts to correct it (possibly with confirmation), and lets the com
putation proceed as if no error had occurred. s

22.1 DWIM MODES
DWIM can operate in one of three modes: disabled, cautious, or trusting.

When DWIM is disabled, it will not interfere with your activities. DWIM
may be disabled by executing (DWIM NIL) or setting DWIMFLG to NIL.

In cautious mode, DWIM determines what correction is to be applied, if
any, and then seeks approval from you. You may answer YES or NO to any
suggested correction. DWIM uses an internal interval timer to determine how
long to wait for a user response. If the interval expires, DWIM proceeds auto
matically with the correction. DWIM may be placed in cautious mode by execut
ing (DWIM ‘C). This is also the initial setting of DWIM when it is first loaded.

DWIM may also be placed in trusting mode. In this mode, DWIM performs
the appropriate corrections without requiring you to approve them. DWIM may
be placed in trusting mode by executing (DWIM T).

When DWIM makes a correction, it is contained only within the current
image of the program, e.g., the virtual memory. To preserve the correction, the
user will have to execute MAKEFILE to update the disk-based version of the
program.

779

22.1.1 A DWIM Example
Consider a function that you have entered from a file via LOAD.

(* COPYLIST-makes a copy of i t s argument *)
(DEFINEQ
(c o p y lis t (x)

(COND
((NULL x) NIL)
((LIST-P x)

(APEND (LIST (co p y lis t (CAR x)))
(copyist (CDR x))))

(T x))
))

Let us assume that DWIM currently operates in cautious mode. We can
execute COPYLIST as follows:

'^-(SETQ x ' (a b))
(A B)

<-(SETQ y (co p y lis t x))

There are obvious errors of spelling in the definition of COPYLIST. DWIM
detects these errors and responds:

LIST-P [in COPYLIST] -»• LISTP? . . .Yes
APEND [in COPYLIST] APPEND? . . .Yes
COPYLST [in COPYLIST] COPYLIST? . . .Yes
(A B)

In this case, the default answer is YES and the corrections have been ap
plied. Once all errors are corrected, INTERLISP calculates the value of the
function.

In trusting mode, when a function is already defined via LOAD or the edi
tor, DWIM operates as in cautious mode. However, when expressions are in
teractively entered via LISPX (see Section 25.2), DWIM makes the correction
and tells you what it did. If you were to type in

<-(SEQT f r u i t s (NCOCN 'app les ’oranges))
=SETQ
=NCONC
ORANGES

would be the response from INTERLISP where DWIM interceded to correct the
spellings of SETQ and NCONC.

780 DWIM: Automatic Error Correction

22.2 DWIM PROTOCOLS
A protocol is an interchange between DWIM and the user concerning actions to
be taken to correct errors. Currently, DWIM corrects three types of errors:

1. Spelling errors
2. Parenthesis Typing Errors
3. T Clause Errors

22.2.1 Spelling Correction
Whenever INTERLISP encounters a function or an atom it does not recognize,'
it invokes DWIM (if DWIMFLG is not NIL) to see if spelling correction is re
quired. If the error did not occur in type-in mode, DWIM displays the following
message (see example above):

<name> [in <function-name>] -> {corrected name)?

DWIM proceeds based on the value of APPROVEFLG. If APPROVEFLG
is NIL, DWIM makes the correction and continues. Otherwise, it waits for your
response. This response takes one of the following forms:

Y whence DWIM echoes es and makes the correction.
N whence DWIM echoes o and does not make the correction,
t whence DWIM does not make the correction and does not cause an error.
CNTRL-E whence DWIM prints U.D.F. and forces a break.
Do nothing, whence DWIM waits a specified interval and then types ...
followed by the default answer (e.g., the value of FIXSPELLDEFAULT).
<SP> or <CR> whence DWIM waits indefinitely.

Note that when you type N, you are instructing DWIM’s spelling corrector
to return NIL. This lets the function decide what to do next.

Modifying the Wait Interval
The interval for which DWIM will wait for your response is specified by DWIM-
WAIT. Initially, the value of DWIMWAIT is 10 seconds. You may reset the
value of DWIMWAIT to meet your own requirements. Setting DWIMWAIT to
100 provides you (roughly) one and a half minutes to think about your answer.
Setting DWIMWAIT to an arbitrarily large number (> 10000) should provide
you enough time to mull over the problem and formulate a response. Setting
DWIMWAIT to 0 causes DWIM to take the default immediately.

Modifying the Spelling Default
After the wait interval has expired and you have not responded, DWIM will
substitute the default answer and continue. The default answer is specified by
FIXSPELLDEFAULT. Its initial value is Y(es). You may reset it via

22.2 DWIM Protocols 781

\

<-(SETQ FIXSPELLDEFAULT »N)
N

22.2.2 Parenthesis Errors
A typical error that results when you are entering a large program is to substitute
a “9” for a “(' or a “0” for a This results from failure to push the SHIFT
key (on the Xerox 1100 keyboard). DWIM recognizes when such errors occur
and corrects them in a manner similar to spelling correction.

<-(SETQ s ta te s 9LIST 'maryland 'V irg in ia ’newyork))
= (LIST
(maryland Virginia newyork)

where DWIM has detected the parenthesis error and corrected it.
Unfortunately, “(" and ")” often occur over other keys than “9” or “0” on

other keyboards. There is no mechanism for specifying the relationship between
the parentheses (left or right) and the erroneous keys. Thus, DWIM fails to work
in some cases for foreign terminals.

When DWIM attempts to correct a parenthesis error, it waits for 3*DWIM-
WAIT seconds. This allows you time to consider the expression and, perhaps,
back up over the last parenthesis and continue typing.

782 DWIM: Automatic Error Correction

22.2.3 Clause Errors
A clause error occurs when a (T ...) clause is misplaced within a conditional
expression. If uncorrected, INTERLISP treats the T clause as a function invoca
tion, does not recognize T as a function, and responds with a U.D.F. error.
DWIM recognizes and corrects three cases of this error:

1. The T clause appears outside the conditional expression. A previous
clause is entered with an additional right parenthesis which completes
the conditional expression.

(COND
((ATOM x) . . .)
((LISTP x) . . .)
((STRING? x) . . .)) ^ extraneous paren thesis
(T . . .))

where the ... means we don’t care what follows.

2. The T clause appears within a previous conditional clause. A right pa
renthesis is omitted from a previous conditional clause.

((ATOM x) . . .)
((LISTP x) . . .)
((STRING? x) , . . & •<- missing p aren thes is

(T . . .))

3. A T clause is surrounded by an additional pair of parentheses. Gener
ally, this is a typing error resulting from a psychological mistake, e.g.
following a pattern for creating conditional clauses in the expression.

(COND
((ATOM x) . . .)
((LISTP x) . . .)
((STRING? x) . . .)
((T . . .)))

Any other type of U.D.F. error is not currently recognized by
DWIM, so the error will cause a break.

Fixing the Error
DWIM automatically corrects a T clause error on type-in. It prints T FIXED
and continues.

If APPROVEFLG is NIL, DWIM corrects the error and prints a message
consisting of [IN (function name)] followed by one of the incorrect COND
forms and On the following line, DWIM prints the correct COND form and
proceeds.

-^(DEFINEQ
(FACT (n)

(COND
((ZEROP n) 1))
(T

(ITIMES n
(FACT (SUBl n)))))

))
(FACT)

<-(SETQ APPROVEFLG NIL)
NIL

<-(FACT 3)
[IN FACT] (COND . . .) (T . . .) ->

(COND . . . (T . . .))
6

If APPROVEFLG is T, DWIM prints U.D.F. T followed by [IN (function
name)], a few spaces, and FIX?. DWIM waits for approval (unless DWIM-

22.2 DWIM Protocols 783

(COND

WAIT is exceeded). An answer of Y allows DWIM to proceed as if AP-
PROVEFLG had a value of NIL.

^(SETQ APPROVEFLG 'T)
T
<-(FACT 3)
U.D.F. T [IN FACT] FIX? Y "typed by the user"

. (COND . . . (T . . .))
CONTINUE WITH T CLAUSE? Y
6

Proceeding with the Computation
Once DWIM makes a correction, it must decide how to proceed with the compu
tation. Each of three cases is treated separately.

When the T clause is outside the COND expression (case 1), DWIM cannot
know whether the last clause of the COND succeeded or not. That is, if the T
clause were enclosed within the COND expression, would it have been executed?
Thus, DWIM will ask you whether or not it should continue with the T clause
(see example above). The default answer is YES. If you answer NO, DWIM
proceeds to execute the expression following the (previously) erroneous T clause.

When the T clause is embedded in the previous clause (case 2), DWIM
moves the T clause to its proper place in the COND expression. The T clause was
reached through successful execution of & (see case above). The value of & must
be returned as the value of the COND expression, but this value is no longer
around. Therefore, DWIM asks you “OK TO REEVALUATE” followed by the
expression corresponding to &. If you respond Y, DWIM reevaluates & and
proceeds. Otherwise, DWIM aborts the computation, prints U.D.F. T, and
causes an error.

Before requesting your approval, DWIM determines whether or not it is safe
to reevaluate the form. It will do so without commenting if the form is atomic or
if the CAR of each of its sublists appears on OKREEVALST and each of the
arguments can safely be reevaluated. The initial value of OKREEVALST is

^OKREEVALST
(AND OR PROGN SAVESETQ CAR CDR ADDl SUBl CONS LIST EQ
EQUAL PRINT PRINl APPEND NEQ NOT NULL)

When the T clause is surrounded by an extra pair of parentheses, DWIM
merely removes them and proceeds with the computation.

22.3 ERROR CORRECTION ALGORITHMS
Whenever INTERLISP encounters an S-expression whose first atomic form has
no binding (that is, no current value), it invokes FAULTEVAL. If DWIM is
enabled, DWIMBLOCK is called by FAULTEVAL to attempt to treat the error.

784 DWIM: Automatic Error Correction

DWIMBLOCK determines what correction is to be made, if any, and dis
plays it for you. If you disapprove of the correction by entering N, CNTRL-E, or
T, DWIMBLOCK returns NIL and allows FAULTEVAL to handle the error. If
DWIM is allowed to correct the error, it returns the corrected value (via RE-
TEVAL—see Section 30.8.3) to FAULTEVAL. In this case, FAULTEVAL
assumes the returned value is an erroneous form and attempts to execute it.
However, since the form is now corrected, it will execute properly and the com
putation will proceed.

DWIM can correct three types of errors: unbound atoms, undefined func
tions (represented by the CARs of functional forms), and undefined functions
which are the arguments of APPLY. Algorithms for correcting these three error
types are discussed in the next three sections.

22.3 Error Correction Algorithms 785

22.3.1 Unbound Atoms
An unbound atom is one that has not been assigned a value (even though the
value stored in its value cell is NOBIND). This error usually occurs when an
atom name is used in an expression without previously being used in a SETQ or
is defined in a PROG without being assigned a value.

DWIM uses the following algorithm to attempt to correct an unbound
atom:

1. If the first character of the atomic form is ', DWIM assumes you in
tended to specify the form ' < atom name >. DWIM substitutes (QUOTE
<atom name)) and proceeds. If ' is followed by an S-expression, then
DWIM assumes that you wanted the entire S-expression quoted. In ei
ther case, no message is displayed and your approval is not sought. If
just the single character ' appears, DWIM gives up.

However, the interpretation of ' on type-in is controlled by a read
table (usually) and so ' <atom name) will automatically be converted to
(QUOTE <atom name)). You may view how this operates by typing in
the definition of a new function and then applying PP to it. Each
' <atom name) will be replaced by (QUOTE (atom name)).

«-(DEFINEQ
(t e s t . f o r . s t o p (argument)

(EQUAL argument 'STOP)
))

(TEST.FOR.STOP)

<-{P? TEST.FOR.STOP)
(TEST.FOR.STOP

(LAMBDA (argument)
(EQUAL argument (QUOTE STOP))))

2. If CLISP is enabled (see Chapter 23), DWIM determines if the atom is
part of a CLISP construct. If so, the appropriate transformation is ap
plied and returned.

3. If an atom contains a “9” , DWIM assumes that you intended it to be a
It calls the editor to repair the expression containing the atom.

DWIM attempts to repair the entire expression by balancing parenthe
ses.

Note that a form like

(LIST x9CAR y) becomes (LIST x (CAR y))

where the parentheses have been balanced after the 9 has been replaced
by a (.

Note that this feature does not work if “(” is the shift character for
another key. For example, on my Lear-Siegler ADM-3A, the “(” is the
shift character for “8” . There is no way to tell DWIM how to treat these
kinds of terminals.

4. A similar action takes place if an atom contains a “0” except that the
replacement is a “)” .

Note that other terminals may have the “)” as the shift character
for the “9” . There is no way to tell DWIM how to handle this case.

5. If an atom begins with a 7 (on TTY-type keyboards), DWIM assumes
you intended to type ‘ and performs the replacement. ^

^(SETQ super, bowl. XVI11 71os.angeles. ra id e rs)
Id s . an g e les . ra id e rs

•<- su p e r . bowl. XVI11
l o s . an g e les . ra id e rs

Note that certain keyboards, like the ADDS Viewpoint, have the "
as the SHIFT value of the ' key. DWIM assumes that a " is a valid
demarcator for a string in this case and cannot correct an atom error.

6. If the atom is a valid Editor command, DWIM assumes that you in
tended to call the Editor. It does so (by invoking EDITF), and executes
the command. At this point, you are in the Editor and must follow its
conventions. Valid edit commands are stored on the Editor variable
EDITCOMSA.

7. DWIM looks on DWIMUSERFORMS for S-expressions. It evaluates
each one in turn. If a non-NIL value is returned, this value is returned
by DWIMBLOCK as the corrected value of the atom. DWIMUSER
FORMS allows you to tailor DWIM’s error correction algorithm to spe
cific users. Words which are difficult to spell might be intercepted by
expressions on DWIMUSERFORMS and corrected. In general, it will

786 DWIM: Automatic Error Correction

be quicker to correct a word through expressions on DWIMUSER-
FORMS than through the spelling corrector. Section 22.7.1 describes
the parameters to be used in writing these expressions.

8. If the unbound atom occurs in a function, DWIM attempts to correct
the spelling of the atom using the LAMBDA and PROG variables (if
any) of the function. Here DWIM assumes that the atom may be a valid
variable whose name is misspelled.

9. If the unbound atom was entered in response to a broken function,
DWIM attempts to correct spelling using the LAMBDA and PROG
variables of the broken function.

10. Finally, DWIM will attempt to correct the spelling of the atom name
using SPELLINGS3 (see Section 22.7.2).

11. Otherwise, DWIM fails.

22.3 Error Correction Algorithms 787

22.3.2 Undefined Functions
Properly, this error is known as an “undefined CAR of form.” However, this
error typically occurs when an atom appears as the first atom of an S-expression
without a corresponding function definition.

DWIM uses the following algorithm to attempt to correct this error:

1. If the ATOM is T, DWIM assumes a misplaced T clause and attempts
to correct the conditional (see Section 22.2.3).

2. If the atom is F/L, DWIM replaces F/L with FUNCTION (LAMBDA
and proceeds.

Note F/L is a shorthand notation for specifying the form “FUNC
TION (LAMBDA” . DWIM will look for a variable list by determining
how many S-expressions follow the F/L. If only one appears, DWIM
substitutes (x) as the variable list.

<^(F/L (ADDl x))
(LAMBDA (X) (ADDl x))

because only one S-expression follows F/L.
F/L is used only as a DWIM construct. Because it limits the porta

bility of your code, we do not recommend its use.
3. If the atom is IF or another CLISP statement operator, the appropriate

CLISP transformation is perfomed and the result returned to
FAULTEVAL.

4. If the atom has a function definition, DWIM attempts spelling correc
tion on the CAR of the definition using the value of LAMBDASPLST.
LAMBDASPLST initially has the value (LAMBDA NLAMBDA).

5. If the atom has an EXPR or CODE property, DWIM prints <atom
name) UNSAVED, executes UNSAVEDEF to restore the definition to
the function cell, and continues. No approval is requested.

6. If the atom has the property FILEDEF, its definition is to be found in a
file. DWIM looks for the definition. If it is found, DWIM asks you if it
should be loaded. If you approve, the definition is loaded and execution
proceeds.

- (̂LOADFROM 'COMPLEX)
<KAISLER>COMPLEX..4

<-(PUTPROP 'CMULT 'FILEDEF ’COMPLEX)
COMPLEX
^(DWIM 'T)
TRUSTING

<-(LOADFNS 'COMPLEX 'COMPLEX)
(COMPLEX)

^(SETQ CXI (COMPLEX 3-0 ^ .0))
loading from <KAISLER>COMPLEX..4
PRINT.COMPLEX
loading from <KAISLER>COMPLEX..4
REAL
loading from <KAISLER>COMPLEX..4
IMAG
((3 .0 . 4 .0))
♦-(CMULT CXI CX2)
loading from <KAISLER>COMPLEX..4
CMULT
UNBOUND ATOM
CX2

7. If the atom is a CLISP construct and CLISP is enabled, the appropriate
transformation is applied and execution continues.

8. If the atom contains an 9, DWIM assumes a (was intended, performs
the substitution, and continues.

9. Similarly, if the atom contains a 0, DWIM assumes a) was intended,
performs the substitution, and continues.

10. If the CAR of the form is a list, DWIM attempts to correct the spelling
of the CAAR of the form (e.g., the CAR of the list) using LAMBDASP-
LST. If successful, DWIM returns the corrected expression.

((LAMBDA (X) (SELECTQ X (. . .))) . . .)

788 DWIM: Automatic Error Correction

may be a form that selects and returns a function name to be applied to
the remaining arguments. If the LAMBDA is misspelled, using LAMB-
DASPLST, DWIM corrects it.

^((LAMBD (x) (ADDl x)))
=LAMBDA
NON-NUMERIC ARG
NIL

22.3 Error Correction Algorithms 789

11. If the error occurred in typein mode, and the CAR is a small number,
DWIM assumes it is an edit command, invokes the Editor (via EDITF),
and executes the command.

=CMULT ' l a s t function loaded'
e d i t
*

12. If the CAR of the form is an Editor command, DWIM invokes the edi
tor (via EDITF) and executes the command.

-^(R X Y)
=CMULT
e d i t
X ? 'd e l ib e ra te e r ro r fo r i l l u s t r a t i o n '
*

Note that the result of applying either case 11 or 12 is that the user
remains within the Editor and is subject to its conventions.

13. DWIM evaluates the expressions on DWIMUSERFORMS. If any S-
expression returns a non-NIL value, this value is treated as the cor
rected form, it is evaluated and its value returned by DWIM.

14. DWIM attempts spelling correction using SPELLINGS2 (see Section
22.7.2).

15. Otherwise, DWIM fails.

22.3.3 Undefined Functions in APPLY
An undefined function occurring as an argument to APPLY is treated in a man
ner similar to an undefined CAR of form. The major difference is that DWIM
will also attempt spelling correction using SPELLINGSl.

22.4 ENABLING DWIM
DWIM enables or disables automatic error correction. It takes the following
form

Function: DWIM

Arguments: 1

Argument: 1) a mode, MODE

Value: The old mode. ,

MODE may take one of the following values to specify how DWIM will op
erate:

1. If MODE is NIL, automatic error correction is disabled.
2. If MODE is C, DWIM is enabled in cautious mode.

^(DWIM 'C)
CAUTIOUS

3. If MODE is T, DWIM is enabled in trusting mode.

<-(DWIM »T)
TRUSTING

4. All other values cause an error.

<-(DWIM 'X)
not on DWIMODELST.

DWIMODELST is a list of the modes that DWIM recognizes as valid:

DWIMODELST
((C CAUTIOUS (APPROVEFLG . T)) (T TRUSTING
(APPROVEFLG)))

(A
During type-in mode, DWIM always acts as if it were in TRUSTING I

790 DWIM: Automatic Error Correction

mode when expressions are submitted for execution. Errors involving 8-9
correction or spelling correction are always treated as if DWIM were in
CAUTIOUS mode.

22.5 DWIMIFYING AN EXPRESSION
DWIMIFY acts as a preprocessor for CUSP. It scans an expression given to it as
though it were being interpreted. For each expression that would generate an

I

error, it calls DWIM to fix it. You are consulted (for your approval) when some
thing in the expression is to be corrected. If DWIM is unable to make the correc
tion, no message is printed, and no changes are made.

DWIMIFY performs all corrections and transformations to its first argu
ment that would actually occur if it were run. It takes the form

Function: DWIMIFY

Arguments: 3

Arguments: 1) a form or function name, EXPRESSION
2) a q u ie t f la g , QUIETFLG
3) a l i s t , LST

Value: E ith e r the r e s u l t or nothing.

EXPRESSION is an expression to be DWIMIFYed. If EXPRESSION is an
atom and LST is NIL, then DWIMIFY assumes that EXPRESSION is the name
of a function and DWIMIFYs its definition. The result is printed unless
QUIETFLG is T.

If EXPRESSION is a list or LST is non-NIL, EXPRESSION is an expres
sion to be DWIMIFYed. If LST is not NIL, it provides an edit push-down list
leading to EXPRESSION that describes the context of EXPRESSION so that
variable bindings may be determined. This form is primarily used for invoking
DWIMIFY from the Editor, the Break Package, and the Programmer’s Assis
tant.

Consider the following examples:

<-(DWIMIFY '(LAMBD (X) (ADD3 X)))
=LAMBDA
(LAMBDA (X)

(ADD3 X))
(LAMBDA (X) (ADD3 X))

<-(DWIMIFY '(CONS (QUOTE SEAN CONNERY)))
(p o ss ib le) p a ren th es is e r ro r in
(QUOTE SEAN CONNERY)
too many arguments (more than 1)
(CONS (QUOTE SEAN CONNERY))

When an attempt to correct a function or variable fails, the name is added to
a corresponding internal list. On subsequent encounters, DWIMIFY will not
attempt to operate on names appearing on either of these lists. These lists are
initialized to NOFIXFNSLST and NOFIXVARLST respectively.

DWIMIFY never attempts corrections on global variables in order to avoid
affecting the operation of other portions of your program. Similarly, no attempt
will be made to correct variables which are defined:

22.5 DWIMIFYing an Expression 791

as LOCALFREEVARS in block declarations
as SPEC VARS in block declarations
via DECLARE expressions in the function body

In order to work properly, DWIMIFY needs a lot of information about how
the interpreter works. Among the “things” that it knows are

The systax of various expressions
NLAMBDA arguments are not evaluated
How variables are to be bound
When to correct or not correct the spelling of variables occurring in the
expression
How to correct errors for CAR of expressions
When an expression has too many arguments, which are symptomatic of
parenthesis errors
If PROG labels contain CLISP characters

Note: DWIM has not evolved very much from its initial development. This is
unfortunate because the concept is a powerful one. Do not expect DWIM to
operate correctly in every case; it operates unevenly at best.

22.5.1 DWIMIFYing a List of Functions
An alternative form of DWIMIFY, DWBMIFYFNS, DWIMIFYes each func
tion on its argument list. It takes the form

Function: DWIMIFYFNS

Arguments: 1

Argument: 1) A l i s t of func tions , FNSLST

Value: The l i s t of functions th a t have been
DWIMIFYed.

DWIMIFYFNS is an NLAMBDA, nospread function. If the CAR of
FNSLST is atomic, it is assumed to be the name of a file whose functions are to
be DWIMIFYed. If so, DWIMIFYFNS invokes FILEFNSLST (see Section
17.7.3) on the CAR of FNSLST. The file must already be loaded for DWIMI
FYFNS to operate properly.

<-(LOADFROM 'COMPLEX)
<KAISLER>COMPLEX..4

^(DWIMIFYFNS COMPLEX)
CPLUS not defined .

792 DWIM: Automatic Error Correction

-^(LOAD 'COMPLEX)
<KAISLER>COMPLEX..4
FILE CREATED 17-0ct-84 21:20:25
COMPLEXCOMS
<KAISLER>COMPLEX..4

<-(DWIMIFYFNS COMPLEX)
[in ROUNDTO] (poss ib le) p aren th es is e r ro r in
(ROUNDED (QUOTIENT X Y) Y)
too many arguments (more than 1)
(COMPLEX REAL IMAG CPLUS CDIFFERENCE CZERO CMULT
PRINT.COMPLEX FLOOR ROUNDTO SIGN ROUNDED RECIPROCAL
TRUNCATE PRINT.ARRAY FACTORIAL)

DWIM discovered an error in ROUNDTO because ROUNDED expects
only one argument, as evidenced by the following display:

<-(PP ROUNDED)
(ROUNDED

(LAMBDA (X) **COMMENT**
(TRUNCATE (PLUS X (QUOTIENT (SIGN X)

2 . 0)))))

which we correct via the Editor. Thus, DWIMIFYing functions in a file is one
way of locating errors.

22.5.2 DWIMIFY Variables
DWIMIFY uses a number of variables to determine how it should proceed with
the different situations it encounters in an expression. These variables are

NOFIXVARSLST A l i s t of v a r ia b le s th a t DWIMIFY
w il l not t r y to c o r re c t . You may
use t h i s l i s t to prevent DWIMIFY
from expending needless e f f o r t
on co rrec t in g v a r ia b le
sp e l l in g s .

NOFIXFNSLST A l i s t of functions th a t DWIMIFY
w il l not t r y to co r re c t (for the
same reason as above).

NOSPELLFLG I f NOSPELLFLG is T, DWIMIFY w il l
not perform any sp e l l in g
c o r rec t io n . I t s i n i t i a l value is
NIL. NOSPELLFLG is r e s e t to T
when the compiler i s c a l le d to

22.5 DWIMIFYing an Expression 793

794 DWIM: Automatic Error Correction

compile functions whose
d e f in i t io n s are loaded from a
f i l e . For example,

<-(SETQ NOSPELLFLG T)
(NOSPELLFLG re se t)
T

<-(DWIMIFY '(LAMBD (X) (ADD3 X)))
(LAMBD (X)

(ADD3 X))

DWIMIFYCOMPFLG

DWIMCHECK#ARGSFLG

I f T, DWIMIFY is ca lled before
an expression i s compiled.

I f T, DWIMIFY w il l check whether
o r not the expression, whose CAR
is assumed to be a function
name, has arguments. I t s value
i s i n i t i a l l y T. Consider the
example

<-(SETQ DWIMCHECK#ARGSFLG NIL)
(DWIMCHECK#ARGSFLG re s e t)
NIL

<-(DWIMIFY '(CONS (QUOTE SEAN CONNERY)))
(CONS (QUOTE SEAN CONNERY))

DWIMCHECKPROGLABELSFLG

DWIMMESSGAG

CLISPHELPFLG

CLISPRETRANFLG

where DWIM does not checks the
argument count fo r QUOTE:

I f T, DWIMIFY w il l check PROG
la b e ls fo r CLISP ch a rac te rs .

I f T, DWIMIFY does not p r in t any
e r ro r messages. I t s value i s
i n i t i a l l y NIL.

I f NIL, DWIMIFY w i l l not ask you
to approve any CLISP
tr a n s la t io n s th a t i t makes.
Rather, i t assumes NO where your
approval would be requ ired . I t s
value i s i n i t i a l l y T.

I f T, DWIMIFY r e t r a n s la te s a l l
expressions which have remote

t r a n s la t io n s in the CLISP hash
a rray . I t s value i s i n i t i a l l y
NIL.

22.6 The Spelling Corrector 795

22.6 THE SPELLING CORRECTOR
The objective of the spelling corrector is to produce the correct word, called the
respelling, given a word that is assumed to be incorrect. To do so, it uses a
“closeness” measure which is inversely proportional to the number of disagree
ments between two words—the word to be corrected, XWORD, and a candi
date—and directly proportional to the length of the longer word. The spelling
corrector examines a spelling list, SPLST, provided by the user, from which it
selects candidates. The closeness between XWORD and each candidate is com
puted. An internal list of closest candidates is generated and retained.

If a word is found on SPLST for which there are no disagreements, the spell
ing corrrector returns that word as the respelling of XWORD. Alternatively, if it
has found no disagreements and only one “closest” word, this word is returned
as the respelling.

XWORD may contain one or more <ESC>s. <ESC> will match any number
of characters in a potential candidate. The entire spelling list is always searched.
If more than one respelling is found, the spelling corrector prints “AMBIGU
OUS” and returns NIL.

Each respelling, whether approved by you or not, is moved to the front of
SPLST. Because many respellings have no disagreements, the time required to
correct the spelling of frequently misspelled words is significantly reduced.
These words appear at the beginning of the list which is searched from front to
back, so they are likely to be found earlier when spelling correction is attempted.

The spelling corrector counts the number of disagreements between two
words. This number, when divided by the length of the longer of the two words,
gives a measure of the relative disagreement between the two words. This num
ber is always less than or equal to one (where one indicates total disagreement!).
One minus this number yields a measure of the relative agreement or closeness of
the two words. (In practice, the spelling corrector uses integer values between 0
and 100 in order to avoid the penalties of floating point arithmetic.)

Consider the words MAKEFILE and MKAEFILE. They disagree in posi
tions 3 and 4 so the number of disagreements is 2. The length of both words is 8
characters, so the measure of relative disagreement is 25 (e.g., (2/8)*100).
Therefore, the measure of relative agreement is 75.

The spelling corrector usually uses a relative agreement of 70. This allows it
to correct single substitution errors in four character words.

22.6.1 Choosing a Candidate
CHOOZ is the central function of the spelling corrector. It takes the form

Function: CHOOZ
Arguments: 7 i
Arguments: 1) a word to be correc ted , XWORD

2) a sp e ll in g l i s t , SPLST
3) a minimum re la t iv e agreement, REL
A) a t a i l f la g , TAIL
5) an op tiona l function , FN
6) a t i e f la g , TIEFLAG
7) number of doubled cha rac te rs , DOUBLES

Value: A l i s t of possib le candidates fo r the
re sp e l l in g .

CHOOZ examines the spelling list one word, TWORD, at a time. TWORD
is rejected as a candidate if:

1. If FN returns NIL when applied to TWORD.
2. It is too short or too long to be sufficiently close to XWORD.

If REL is 70 and XWORD is five characters long, then words greater than 8
characters in length will be rejected. Words shorter than XWORD require spe
cial consideration because doubled characters (due to keyboard stuttering or too
much pressure on the keys) are not counted as disagreements. CHOOZ handles
doubled characters in XWORD before scanning SPLST. CHOOZ uses the num
ber of doubled characters to decide whether or not to reject a word based on
length.

If TWORD is not rejected, CHOOZ computes the number of disagreements
between TWORD and XWORD by calling SKOR (see below).

FN is a function of one argument, TWORD. If FN is NIL, it is assumed
equivalent to (LAMBDA NIL T) which means all words on SPLST are consid
ered as candidates. A simple definition for FN might compare its first character
with that of XWORD (which it uses freely):

(LAMBDA (tword)
(EQ

(CAR (UNPACK tword))
(CAR (UNPACK xword))))

A Derinition for CHOOZ
We might define CHOOZ as follows:

(DEFINEQ
(chooz (xword r e l s p l s t t a i l fn t i e f l a g doubles)

796 DWIM: Automatic Error Correction

22.6 The Spelling Corrector 797

Convert XWORD to a l i s t of ch a rac te rs .
)
(COND

((NLISTP xword)
(SETQ xword (CHCON xword))))

(PROG (xlength t le n g th tword tw ord ls t synonym score
value)

(*
Get the leng th of XWORD.

)
(SETQ xlength (LENGTH xword))
(*

Count the number of doubled ch a ra c te rs .
)
(AND

(NULL doubles)
(SETQ doubles 0)
(MAPCAR xword (FUNCTION count-doubles)))

loop
(COND

((NULL s p ls t)
(*

I f no candidates to in sp e c t, do
nothing.

)
(GO ex it .chooz))

((NULL (SETQ tword (CAR s p l s t)))
(*

Get next word on s p e l l in g l i s t . Note
th a t we check fo r end of sp e ll in g
l i s t v ia NULL.

)
(SETQ s p l s t (CDR s p l s t))

(GO loop))
(T

(SETQ s p l s t (CDR s p l s t))))
(COND

((LISTP tword)
(*

I f tword i s a l i s t , then the second
element i s a synonym fo r the f i r s t .

)
(SETQ synonym (CDR tword))

(SETQ tword (CAR tword))))
(SETQ t le n g th (NCHARS tword))

(COND

798 DWIM: Automatic Error Correction

((COND
((IGREATERP tle n g th xlength)

(*
Check to see i f the
d iffe rence in the number of
charac ters between tword
and xword i s s u f f ic ie n t to
make i t unnecessary to c a l l
SKOR; xlength divided by
t len g th must be le ss than
r e l .

)
(ILESSP

(IQUOTIENT (ITIMES xlength
100)

t leng th)
r e l))

((AND (NULL t a i l)
(ILESSP

(IQUOTIENT
(ITIMES t le n g th 100)
(IDIFFERENCE xlength

doubles))
r e l)))

I f XWORD is longer
than TWORD, allow fo r
the p o s s ib i l i ty of
doubled ch a rac te rs .

)
(GO loop))

((AND
(SETQ tw ord ls t (chcon tword))
(SETQ score

(SKOR xword tw ord ls t xlength
t l e n g th))

(OR
(NULL fn)
(COND

((EQUAL fn 'GETD)

Get the d e f in i t io n of
the comparison

function from the
synonym.

)
(GETD synonym))

(T
(APPLY* fn synonym))))

(SETQ tw ord ls t
(COND

((LISTP tword)
(*

D istingu ish from
a runon
co rrec tio n which
is re turned as a
dotted p a i r .

)
(LIST tword synonym))

(T tword)))
(COND

((LISTP score)
(AND runonflg

t a i l
(OR

(NULL value)
(EQUAL t i e f l a g

'EVERYTHING)
(IGREATERP t le n g th

(NCHARS
(CAAR

v a lue))))
(SETQ value

(CONS
(CONS temp

(PACKC
sc o re))

(COND
((EQ t i e f l a g

’EVERYTHING)
v a lu e)))))

((ZEROP score)
(COND

((EQ t i e f l a g 'EVERYTHING)
(SETQ value

(CONS temp
v a lu e)))

22.6 The Spelling Corrector 799

800 DWIM: Automatic Error Correction

((AND
(NEQ t i e f l a g 'ALL)
(NEQ t i e f l a g 'LIST))
(*

Return the value.
)
(SETQ value temp)
(RETURN value))

((NEQ r e l 100)
(*

T ieflag equal to LIST
means l i s t the t ie d
cand idates .

)
(SETQ r e l 100)
(SETQ value (LIST temp)))

(T
(SETQ value

(CONS temp
v a lu e)))))

((IGREATERP
(SETQ score

(choozl xlength
t le n g th
score))

r e l)
(SETQ value

(CONS temp
(COND

((EQ t i e f l a g
’EVERYTHING)

value)
(T

(SETQ r e l
score)
N IL)))))

((EQ score r e l)
(SETQ value

(CONS tw ord lst
v a lu e))))))

(GO loop)
ex it .chooz

(SETQ value
(COND

((OR

(EQ t i e f l a g 'ALL)
(EQ t i e f l a g 'LIST)
(EQ t i e f l a g ’EVERYTHING))
(COND

((CDR value)
(REVERSE value))

(T va lue)))
((AND

(CDR value)
(NULL t i e f l a g))
NIL)

(T
(CAR v a lu e))))

(RETURN value))
))

COUNT.DOUBLES merely counts the number of double characters in
XWORD. It may be defined as:

(DEFINEQ
(count.doubles (x)

(PROG (la s t .c h a r)
(SETQ l a s t . c h a r NIL)
(COND

((EQUAL X l a s t . c h a r)

(SETQ doubles (ADDl doubles)))
(T

(SETQ l a s t . c h a r x))))
))

CHOOZl computes the relative closeness of XWORD and TWORD as a
percentage by dividing the difference of the avergae number of characters and
the number of mistakes. It is defined as

(DEFINEQ
(choozl (x len t l e n score)

(PROG (temp)
(SETQ temp (IPLUS xlen t le n))
(RETURN

(IQUOTIENT
(ITIMES 100

(IDIFFERENCE temp
(ITIMES score 2)))

temp)))
))

22.6 The Spelling Corrector 801

22.6.2 Scoring a Candidate
SKOR evaluates a candidate and computes the number of disagreements. It
takes the form

Function: SKOR

Arguments: 5

Arguments: 1) the word to be correc ted , XWORD
2) a candidate word, TWORD
3) the length of XWORD, XLEN
4) the length of TWORD, TLEN
5) a f la g , FLAG

Value: The number of disagreements or NIL.

SKOR scans both TWORD and XWORD from left to right one character
code at a time. The list of character codes is prepared by CHOOZ before it calls
SKOR. Corresponding characters agree if:

1. They are, in fact, the same character.
2. They appear on the same key of the keyboard; this handles the case of

shift errors when typing characters in (see below).
3. The character of XWORD is the lowercase version of the corresponding

character of TWORD.

Characters that agree are discarded.
If the first characters of TWORD and XWORD do not agree, SKOR checks

to see if either character is one that has already been encountered. In effect,
transposition of characters is handled by looking back in the word rather than
looking forward. Displacements of characters by two or fewer (e.g., when a char
acter is omitted in one word) positions are treated as a transposition error. Dis
placements of more than two positions are treated as disagreement errors. In
either case, both characters have been accounted for and are discarded.

When Characters Do Not Agree
If the first characters do not agree and neither agrees with previously accounted
for characters, SKOR operates as follows:

1. If TWORD has more characters than XWORD remaining, the first
character of TWORD is removed and saved, and comparison of
TWORD with XWORD continues with the remaining characters.

2. If TWORD has the same or fewer characters, the first character of
XWORD is removed and saved, and comparison of TWORD with
XWORD continues. However, a check is made to ensure that it is not a

802 DWIM: Automatic Error Correction

• X

double character typing error, whence the character would be considered
accounted for.

Whenever more than two characters in either XWORD or TWORD are un
accounted for, candidate scoring is aborted because the two words are consid
ered to disagree.

Value Returned by SKOR
When SKOR completes the comparison, it returns a value consisting of:

1. The number of unaccounted-for characters,
2. The number of disagreements,
3. The number of transpositions.

However, this number is subject to two qualifications:

1. If both XWORD and TWORD have a character unaccounted-for in the
same position, the two characters are counted only once. That is, substi
tution errors are counted as one disagreement.

2. If there are no unaccounted-for characters and no disagreements, trans
positions are not counted. This permits spelling correction on very short
words, such as editor commands (e.g., XRT becomes XTR).

A Definition of SKOR
We might define SKOR as follows:

(DEFINEQ
(skor (xword tword x length t le n g th f lag)

(PROG (xbufl xbuf2 tb u f l tbuf2 x f i r s t t f i r s t
xchar index tra n sp o s i t io n s)

(*
I n i t i a l i z e SKOR v a r ia b le s .
INDEX is the cu rren t p o s i t io n in the word.
TRANSPOSITIONS counts the number of transposed
c h a ra c te rs .

)
(SETQ index 0)
(SETQ t r a n s p o s i t io n s 0)

22.6 The Spelling Corrector 803

loop
(*

Get the f i r s t ch a rac te rs of XWORD and TWORD.

(SETQ x f i r s t (CAR xword))
(SETQ t f i r s t (CAR tword))

(COND
((NULL xword)

(COND
((NULL tword)

(^

804 DWIM: Automatic Error Correction

I f word to be corrected and
candidates are both n u l l ,
j u s t e x i t .

)
(GO e x i t .sk o r))

(T (GO loop2))))
((NULL tword)

(GO loop l))
((OR

(EQUAL x f i r s t t f i r s t)
(*

Test fo r upper to lower case
s u b s t i tu t io n .

)
(AND

(AND

(*

(EQUAL x f i r s t (IPLUS t f i r s t -64))
(IGREATERP x f i r s t 128)
(ILESSP x f i r s t 170))

(EQUAL t f i r s t (IPLUS x f i r s t -64))
(IGREATERP t f i r s t 128)
(ILESSP t f i r s t 170))

Check fo r user typing L instead of 1;
the IRM being d i f f i c u l t to read.

loop l

)
(AND

(EQUAL t f i r s t 2Al)
(EQUAL x f i r s t 211)))

(SETQ xword (CDR xword))
(sub lvar xlength)
(SETQ tword (CDR tword))
(sub lvar t len g th)
(SETQ xchar x f i r s t)
(GO loop)))

(COND
((EQUAL x f i r s t (CAR tbuf2))

A ch a rac te r has been encountered in
TWORD before i t has been seen in

(*

XWORD. For example, the P in IPRNT
compared to the P in PRINT. Note th a t
RPINT is handled as a tra n sp o s i t io n
of PRINT without consu lting the
b u f fe rs .

)
(COND

((IGREATERP (LENGTH tbuf2)
(IPLUS xlength 2))

(addlvar index))
(T

(addlvar transpos i t io n s)))
(SETQ tbuf2 NIL)
(SETQ xword (CDR xword))
(sub lvar xlength)
(SETQ xchar (CAR t b u f l))
(GO loop))

((EQUAL x f i r s t (GAR tb u f l))
(COND

((IGREATERP (length tb u f l)
(IPLUS xlength 2))

(addlvar index))
(T (addlvar t r a n s p o s i t io n s)))

(COND
(tbuf2

(SETQ tb u f l tbuf2)
(SETQ tbuf2 NIL))

(T
(SETQ tb u f l NIL)))

(SETQ xword (CDR xword))
(sub lvar xlength)
(SETQ xtemp x f i r s t)
(GO loop))

((NULL tword)
(GO loop3)))

loop2
(COND

((EQUAL t f i r s t (CAR xbuf2))
(COND

((IGREATERP (LENGTH xbuf2)
(IPLUS t le n g th 2))

(addlvar index))
(T (addlvar t r a n s p o s i t io n s)))

(SETQ xbuf2 NIL)
(SETQ tword (CDR tword))
(sub lvar t len g th)

22.6 The Spelling Corrector 805

806 DWIM: Automatic Error Correction

(GO loop))
((EQUAL t f i r s t (CAR xbufl))

(COND
((IGREATERP (LENGTH xbufl)

(IPLUS tlen g th 2))
(addlvar index))

(T (addlvar tran sp o s i t io n s)))
(COND

(xbuf2
(SETQ xbufl xbuf2)
(SETQ xbuf2 NIL))

(T
(SETQ xbufl NIL)))

(SETQ tword (CDR tword))
(sublvar tleng th)
(GO loop))

((AND xword
(EQUAL x f i r s t (CADR tword))
(EQUAL t f i r s t (CADR xword))
(NEQ t f i r s t (GADDR tword)))
(*

D istingu ish simple tran sp o s i t io n from
the case where comparison has become
unsynchronized, e .g . , MYGIN versus
MIGIN. I f the Y is discarded,
comparing GIN to IGIN looks l ik e a
t ra n sp o s i t io n of Cl (which i s wrong)
whereas i t matches Cl i f the I is
d iscarded.

)
(SETQ xtemp (CADR xword))
(SETQ xword (CDDR xword))
(sublvar xlength)
(sublvar xlength)
(addvlar tran sp o s it io n s)
(SETQ tword (CDDR tword))
(sublvar t len g th)
(sub lvar tlen g th)
(GO loop))

((IGREATERP t le n g th xlength)
(COND

((NULL tb u f l)
(SETQ tb u f l tword))

((NULL tbuf2)
(SETQ tbuf2 tword))

(T (RETURN NIL)))
(SETQ tword (CDR tword))
(sub lvar t len g th)
(GO loop)))

loop3
(COND

((OR
(EQUAL x f i r s t xtemp)
(EQUAL x f i r s t (CADR xword)))
(*

Remove a ch a rac te r from XWORD. Check
fo r a double ch a rac te r . F i r s t phrase
checks i f ch a rac te r i s equal to l a s t
c h a rac te r which occurs when l a s t
ch a rac te r was c o r re c t . Second phrase
checks i f equal to next ch a rac te r , so
throw the cu rren t one away.

)
(SETQ xword (CDR xword))
(SETQ xlengthgth (SUBl x le n g th))
(sub lvar x length))

((AND t a i l
(NULL tword)
(NULL tb u f l)
(NULL tbuf2)
(NULL xbufl)
(NULL xbuf2)
(ZEROP index)
(OR

(ILESSP (ITIMES tra n sp o s i t io n s 4)
t len g th)

(NULL (CDR xword))))
(*

Don't handle runon co rrec tions when
th e re i s a t ra n sp o s i t io n unless the
word i s very long.

)
(RETURN

(COND
((AND f lag

CLISPFLG
(MEMBER (CHARACTER (CAR
xword))

CLISPCHARS))

22.6 The Spelling Corrector 807

(*

Do not consider runon
co rrec tions when
encountering CLISP
opera to rs . I f X*Y appears
in your program, where X is
bound, but Y is not, then
DWIM should not o f fe r X
as a p o s s ib i l i ty .

)
NIL)

(T xword))))
(T

(COND
((NULL xbufl)

(SETQ xbufl xword))
((NULL xbuf2)

(SETQ xbuf2 xword))
(T (RETURN NIL)))

(SETQ xword (CDR xword))
(sublvar xlength)
(SETQ xtemp x f i r s t)))

(GO loop)
e x i t . skor

(COND
((AND

(NULL xword)
(NULL tword)
tb u f l
xbufl)
(SETQ tb u f l (LENGTH tb u f l))
(SETQ xbufl (LENGTH xbufl))
(AND

tbuf2
(SETQ tbuf2 (LENGTH tbuf2)))

(AND xbuf2
(SETQ xbuf2 (LENGTH xbuf2)))

(COND

808 DWIM: Automatic Error Correction

((OR
(EQUAL tb u f l xbufl)
(EQUAL tb u f l xbuf2))
(*

Check fo r su b s t i tu t io n
e r ro r s . Subtract 1 so when
2 gets added below the net
e f f e c t i s 1.

)

22.7 DWIM Parameters 809

(COND
(sublvar index)))

((AND

(SETQ index
(IPLUS index

(COND

(COND

tbuf2
(OR

(EQUAL tbuf2 xbufl)
(EQUAL tbuf2 xbuf2)))

(sub lvar index)))))

(xbuf2 2)
(xbufl 1)
(T 0))

(tbuf2 2)
(tb u f l 1)
(T 0))))

))

(RETURN
(IPLUS index t ra n s p o s i t io n s)))

22.7 DWIM PARAMETERS
DWIM uses several parameters to determine how it will perform automatic error
correction (including spelling correction). These variables are described in the
following table:

DWIMFLG

FIXSPELLREL

FIXSPELLDEFAULT

I f NIL, suppresses a l l automatic
e r ro r co rrec t io n opera tions . I t i s
i n i t i a l l y NIL. This f lag i s s e t when
you execute the function DWIM.

The d e fau l t value fo r REL th a t is
used by FIXSPELL when REL is NIL. I t
i s i n i t i a l l y 70. You may r e s e t
FIXSPELLREL to any value you want.
Obviously, lower values w i l l allow
g re a te r disagreement between the word
to be checked and the candidate
words.

The d e fa u l t answer when the user does
not respond to a request fo r approval
of a sp e l l in g co rrec t io n . I t s i n i t i a l
value i s Y (fo r y es) . When DWIMIFY is

810 DWIM: Automatic Error Correction

DWIMWAIT

ADDSPELLFLG

RUNONFLG

DWIMUSERFORMS

DWIMLOADFNSFLG

APPROVEFLG

LAMBDASPLST

invoked, th i s variab le is temporarily
rebound to N (fo r no).

The number of seconds th a t DWIM waits
a f t e r requesting approval fo r some
ac tion . I f the user does not respond
w ithin th i s time, DWIM assumes the
d e fau lt value (see discussion above).

I f NIL, th i s f lag suppresses c a l l s to
ADDSPELL (see Section 2 2 .8 .1) . I t is
i n i t i a l l y T.

I f NIL, th i s f lag suppresses any run-
on sp e ll in g co rrec t io n s . I t is
i n i t i a l l y T. A run-on condition
occurs when two words are typed
without an in tervening space. Runons
are d i f f i c u l t to d e tec t , but CHOOZ
can determine simple cases.

A l i s t th a t allows you to specify
your own co rrec tions or
transform ations. I t s i n i t i a l value is
((MACROTRAN) (DWIMLOADFNS?)) . I t is
discussed in more d e ta i l below.

I f T, DWIM loads a function from a
f i l e no ticed by the F ile Package when
i t encounters an undefined function
in some operation . I t i s i n i t i a l l y T.

I f T, DWIM w il l ask you fo r your
approval of a co rrec tion i t intends
to make to one of your functions . I t
i s i n i t i a l l y NIL.
DWIM uses the value of LAMBDASPLST to
co r re c t bad function d e f in i t io n s or
LAMBDA expressions. I n i t i a l l y , i t has
the value (LAMBDA NLAMBDA). You may
want to add to LAMBDASPLST i f you
define new function types v ia
DWIMUSERFORMS.

22.7.1 User-Directed Corrections and Transformations
DWIMUSERFORMS allows you to specify your own corrections and transfor
mations before spelling correction is invoked. DWIMUSERFORMS is a list of

*»)

forms that are evaluated in the order in which they appear. If any expression
returns a non-NIL value, this value is treated as an expression to be evaluated. It
is evaluated and the resulting value is returned as the value of FAULTEVAL or
FAULTAPPLY. If all expressions on DWIMUSERFORMS return NIL, DWlM
proceeds normally to attempt spelling correction.

In order for an expression on DWIMUSERFORMS to attempt correction of
an expression, it needs to have information about the context of the error. The
following DWIM variables are made available to external functions (via SPEC-
VARS) so that your functions may inspect them.

22.7 DWIM Parameters 811

FAULTX

FAULTARGS

FAULTAPPLYFLG

TAIL

I t s value i s an S-expression fo r
e r ro rs concerning unbound atoms or
CAR of expressions. I t s value i s the
name of the function fo r undefined
functions in APPLY.

When an e r ro r occurs, DWIM places the
cause of the e r ro r in FAULTX fo r you
to in spec t.

I t s value i s the l i s t of arguments
appearing in an S-expression when an
e r ro r of undefined function in APPLY
occurs. To co rrec t e r ro rs in the
argument l i s t , you may modify or
r e s e t FAULTARGS.

I f an undefined function in APPLY
occurs, t h i s f lag i s s e t to T to
d is t in g u ish i t from the case of an
unbound atom (since FAULTX i s atomic
in both ca ses) .

A fter an expression has been
evaluated on DWIMUSERFORMS and has
re tu rned a non-NIL value, t h i s f lag
determines what to do with the
r e s u l t . I f the f la g i s T, the
r e s u l t in g expression i s a function to
be app lied , whereas, i f i t i s NIL, i t
i s an expression to be evaluated.

I f the e r ro r i s an unbound atom, TAIL
contains the CAR of the TAIL of the
expression in which the unbound atom
occurred. You can rep lace or co rrec t
the erroneous atom by executing
(RPLACA TAIL <ex p ress io n))

812 DWIM: Automatic Error Correction

PARENT

TYPE-IN?

FAULTFN

DWIMIFYFLG

EXPR

I f the e r ro r i s an unbound atom,
PARENT is the expression in which the
unbound atom appears. Thus, TAIL is
s e t to (TAIL p a re n t) .

This f lag i s true i f the e r ro r
occurred while you were typing a t the
keyboard.

This v ar iab le contains the name of
the function in which the e r ro r
occurred. I t s value i s TYPE-IN when
the e r ro r occurs a t ty pe -in . I t s
value i s EVAL or APPLY when those
functions are e x p l ic i t ly invoked in
your program.

This f lag i s T i f an e r ro r was
encountered during an attempt to
dwimify an expression as opposed to
running a program.

This v a r iab le contains the d e f in i t io n
of the value of FAULTFN or the
expression given to EVAL when an
e r ro r occurred.

22.7.2 The Spelling Lists
A spelling list is merely a list of atoms. Many subsystems define their own spell
ing lists. DWIM maintains four spelling lists for spelling correction during nor
mal system operation:

USERWORDS
USERWORDS is a list of all words that are defined by the user via SET, SETQ,
DEFINEQ, LOAD, and the various editing functions. It is used for spelling cor
rection by a number of different system function including BREAK, EDITF,
ADVISE, and PRETTYPRINT. It is initially NIL. LASTWORD always con
tains the last word that was added to USERWORDS. Thus, if you have just
defined a function via type-in and see an error, you may immediately edit it by
simply typing (EDITF) or prettyprint it by typing (PP).

SPELLINGSl
SPELLINGSl is a list of function names used for spelling correction when an
input is typed in “apply” format (i.e., using the square bracket protocol) and the
function is determined to be undefined. It initially contains the most commonly
used system functions. Whenever LISPX (see Section 25.2) is given an input in
“apply” format, the name of the function is added to SPELLINGSL

The initial value of SPELLINGSl is:

('[spellseparator]' DV MAKEFILE DF LOAD FILES?
LOGOUT MOVD ENDLOADUP LOADUP)

SPELLINGS2
SPELLINGS2 is a list of function names for all other undefined functions, e.g.,
those that are usually used in “eval” format. Whenever LISPX is given a non-
atomic S-expression, the name of the function in the expression is added to
SPELLINGS2. Function names for your functions are also added to SPELL-
INGS2 by DEFINEQ, LOAD (when loading compiled code), UNSAVEDEF,
EDITF, and PRETTYPRINT.

The initial value of SPELLINGS2 is:

<-SPELLINGS2
('[spellseparator]' CALLS XPRESS SETBACKSPACE
INITBACKSPACE INITFONTS DISPLAYTERMTYPE DISPLAYTERMP
GETECHOMODE GETCONTROL GETRAISE GETDELETECONTROL
HVREADEND HVREADER HPRINTO HREAD HVFWDREAD HVRPTREAD
HVBAKREAD HVFWDCDREAD HPINITRDTBL READVARS
MAKEHVPRETTYCOMS HPRINTl HPRINT HPRINTBLOCK
HPRINTBL0CKA0009 HPRINTBLOCKA0008 HCOPYALLl HCOPYALLA0013
HCOPYALL EQUALALL EQUALALLA0005 EQUALALLA0004 COPYALL
COPYALLAOOlO BRKDWNCLEAR RESULTS BRKDWNFBOXES BRKDWNINIT
BRKDWNRESULTS BREAKDOWN BRKDWNBOXES BRKDWNTIME
ASSEMBLETRAN READASCIZ SYSOUTP HELPBINSEARCH DODIRECTORY
UNDELFILE /DELFILE /UNDELFILE DODIR DIRECTORY EQMEMBHASH
STORETABLE MSLISTSET UPDATEFN UPDATECHANGEDl
UPDATECHANGED UNSAVEFNS)

SPELLINGS3
SPELLINGS3 is a list of words used for correcting the spelling of unbound at
oms. Whenever LISPX is given an atom to evaluate, the name of the atom is
added to SPELLINGS3. Atoms may also be added to SPELLINGS3 if they are
edited via EDITV or set via RPAQ/RPAQQ.

When a file is loaded, all variables initialized as the result of File Package
commands will also be added to SPELLINGS3.

Atoms are also added to SPELLINGS3 when they are defined by SET or
SETQ (as well as to USERWORDS).

The initial value of SPELLINGS3 is:

0-SPELLINGS3
(' [sp e llse p a ra to r] ' MSANALYZECOMS SPELLINGS3 SPELLINGS2
INITIALS AFTERSYSOUTFORMS LISPXCOMS X9FontsFamily
FONTDEFS INITCOMS HOSTNAME SYSTEMTYPE CPUTIMEO
CONSOLETIMEO CONSOLETIME CPUTIME EDITTIME GAINSPACEFORMS

22.7 DWIM Parameters 813

HPRINT.SCRATCH ORIGECHOCONTROL ORIGTERMSYNTAX
ORIGDELETECONTROL DONTCOPYDATATYPES HPRPTSTRING
HPRINTRDTBL HPRINTHASHARRAY HPRINTMACROS HPRINTCOMS
BRKDWNLST BRKDWNLABELS BRKDWNTYPE BRKDWNFLTFMT
BRKDWNTYPES BRKDWNARGS BRKDWNCOMPFLG BRKDWNLENGTH
BRKDWNCOMS NOSWAPFNS JSYSES FILEINFOTYPES DIRCOMMANDS
DIRCOMS UTILITYCOMS HISTORYCOMS MASTERSCOPEDATE
MSNEEDUNSAVE CHECKUNSAVEFLG RECORDCHANGEFN MSBLIP
MSPATHSCOMS MCHECKBLOCKSCOMS DATABASECOMS NODUMPRELATIONS
MSDATABASEINIT MSDBEMPTY MSDBCOMS MSHELPFILE MSAUXCOMS
MSPRINTCNT MSPRINTFLG MSOPENFILES MSFILELST)

Spelling List Sections
Each spelling list is divided into two sections separated by a special marker,
<spellseparator>, which are known as the permanent and temporary sections.
When a new word is first encountered, it is added to the front of the temporary
section of the appropriate list. If the word already exists in the temporary sec
tion, it is merely moved to the front of that section. If the word is found in the
permanent section, no action is taken.

The lengths of the temporary sections for the lists SPELLINGx (x = 1,2,3)
are determined by the variables #SPELLINGSx (x = 1,2,3), They are initialized
to 30. #USERWORDS determines the length of the temporary section of
USERWORDS. It is initialized to 60. You may redefine the values of these vari
ables via SETQ. A large value for #USERWORDS ensures that important words
will be recorded, but at the expense of lengthier search times.

When the length of a temporary section exceeds one of the variables de
scribed above, the last (e.g., oldest) word is forgotten by deleting it from the
temporary section. This mechanism prevents the spelling lists from becoming
cluttered with words that may have been used only once as an intermediate vari
able.

When a word is corrected by the spelling corrector, that word is moved to the
front of the corresponding spelling list. Thus, it is moved into the permanent
section. Words that have been misspelled, and subsequently corrected, are con
sidered important and will not be forgotten.

814 DWIM: Automatic Error Correction

22.8 SPELLING FUNCTIONS
Many of the spelling functions are available to you independently of their use by
DWIM. You may want to use them when writing your own expressions to be
placed in DWIMUSERFORMS or elsewhere in your program.

22.8.1 Adding a Word to a Spelling List
ADDSPELL adds a word to one of the four spelling lists. It takes the form

Arguments: 1) a word, WORD
2) a sp e l l in g l i s t index or the l i s t

i t s e l f , SPLST
3) an index, INDEX

Value: The new word added to the l i s t .

SPLST is interpreted as follows:

1. If SPLST is NIL, then WORD is added to both USERWORDS and to
SPELLINGS2. This value is used by DEFINEQ.

2. If SPLST is 0, then WORD is added to USERWORDS. This value is
used by LOAD (see Section 17,9.1) when loading EXPRs to property
lists.

3. If SPLST is 1, then WORD is added to SPELLINGSl. This value is used
by LISPX (see Section 25.2).

4. If SPLST is 2, then WORD is added to SPELLINS2. This value is used
by LISPX (see Section 25.2).

5. If SPLST is 3, then WORD is added to USERWORDS and SPELL-
INGS3.

6. If SPLST is a spelling list (ie., a list resulting from the evaluation of an
argument to ADDSPELL), then INDEX is interpreted as the length of
the temporary section. WORD is added to the end of the temporary sec
tion.

ADDSPELL sets LASTWORD to the value of WORD when SPLST is NIL,
0 or 3.

If WORD is not a literal atom, ADDSPELL does nothing. If WORD is al
ready a member of a spelling list in its temporary section, WORD is moved to
the front of that section.

You may disable ADDSPELL by setting ADDSPELLFLG to NIL.

A Definition for ADDSPELL
We might define ADDSPELL as follows:

(DEFINEQ
(ad d sp e ll (word s p l s t index)

(AND
(LITATOM word)
(SELECTQ s p l s t

((NIL 0)

22.8 Spelling Functions 815

Function: ADDSPELL

Arguments: 3

816 DWIM: Automatic Error Correction

DEFINE sp e c if ie s NIL fo r SPLST which
causes a word to be added to
SPELLINGS2 because some user function
must c a l l i t . However, the function
may not be a top le v e l function, so
do not add i t to SPELLINGSl u n t i l i t
i s used as such.

*)
(SETQ userwords

(ad d sp e ll l word userwords
#userwords))

(AND
(NULL s p ls t)
(SETQ spe llings2

(ad d sp e lll word
spellings2

sp e ll in g s2)))
(SETQ lastword word))

(1
(*

ADDSPELL is ca lled from LISPX fo r
APPLY mode inputs ; the word i s added
to the permanent sec tion .

)
(SETQ s p e l l in g s l

(ad d sp e ll l word s p e l l in g s l)))
(2

(*
ADDSPELL is ca lled from LISPX for
EVAL mode inputs ; the words are added
to the permanent sec tion .

)
(SETQ spe llings2

(ad d sp e ll l word sp e l l in g s2)))
((T 3)

(*
ADDSPELL is ca l le d from LISPX fo r
v a r ia b le s or by SAVESET, RPAQ, RPAQQ,
SET, SETQ, or EDITV.

)
(SETQ userwords

(a d d sp e ll l word userwords
#userwords))

(SETQ spe llings3

(ad d sp e ll l word
spe llings3

#spe llings3))
(SETQ lastword word))

(COND
((LISTP s p ls t)

(a d d sp e ll l word s p l s t index))
(T

(ERROR 'Bad addspell type '
s p l s t)))))

))

DEFINE enters ADDSPELL with SPLST set to NIL, It adds words to
SPELLINGS2 because a user function is being defined and some other user
function will probably call it. But, it might not be a top level function (e.g., one
invoked at typein), so it is not added to SPELLINGS! until it is used in that
fashion.

Several functions, such as LOAD, use SPLST with a value of 0 so that the
function is not added to SPELLINGS2 because there is no indication that the
function will (ever) be called by the user.

LISPX invokes ADDSPELL with SPLST set to 1 to handle “apply” format
inputs. The input is added to the permanent section of SPELLINGSl so that it is
not forgotten.

LISPX invokes ADDSPELL with SPLST set to 2 to handle “eval” format
inputs. The input is added to the permanent section of SPELLINGS2 so that it is
not forgotten.

Several functions, such as SAVESET, RPAQ, SETQ, EDITV, and vari
ables given to LISPX, invoke ADDSPELL with SPLST set to 3. The variable
names are added to the temporary section of SPELLINGS3.

ADDSPELLl
ADDSPELLl is the workhorse function used by ADDSPELL. We might define
ADDSPELLl as follows

(DEFINEQ
(a d d sp e l l l (word s p l s t index)

(COND
((NULL s p ls t)

(*
The s p e l l in g l i s t i s empty, so c rea te an
en try fo r i t .

(SETQ s p l s t (LIST NIL word)))
((AND

(NEQ word (CAR s p ls t))

22.8 Spelling Functions 817

818 DWIM: Automatic Error Correction

(NEQ word (CADR s p l s t)))
(*

The above expressions make a quick check
of the f i r s t two words of the spe lling
l i s t under the assumption th a t the
sp e ll in g e r ro r might have occurred
rec e n tly .

)
(PROG (a l i s t l a l i s t 2 a l i s t3 tmplen)

(*
ALISTl and ALIST2 are s u b l i s t s of
SPLST th a t track a search through i t
so elements may be added or deleted .
TMPLEN i s the length of the temporary
sec tio n .

)
(SETQ a l i s t l s p ls t)
(SETQ a l i s t 2 (CDDR s p ls t))
(COND

((NULL (CAR s p ls t))
(SETQ a l i s t3 s p ls t)
(SETQ tmplen 1))

((NULL (cADR s p ls t))
(SETQ a l i s t3 s p ls t)
(SETQ tmplen 0)))

loop
(COND

((NULL a l i s t2)
(*

This check occurs because
USERWORDS has NIL as i t s
f i r s t en try , i . e . , there
are no permanent user
words. I f NIL i s not
no ticed , the length w il l
not be determined and
nothing w il l ever be
de le ted .

)
(GO e x i t .a d d s p e l l l))

((EQUAL word (CAR a l i s t2))
(COND

The word i s
already in the

((NULL alist3)

(*

permanent
sec tio n .

)
NIL)

((NULL index)
(*

The word i s in
the temporary
sec tio n . Add i t
to the permanent
sec tio n and erase
i t from the
temporary
sec tio n .

)
(RPLACD (CDR a l i s t l)

(CDR a l i s t2))
(RPLACD a l i s t2

(CDR a l i s t3))
(RPLACD a l i s t3

a l i s t2))
(T

(*
The word is in
the temporary
sec tio n . Move i t
to the f ro n t of
the temporary
sec tio n .

)
(RPLACD (CDR a l i s t l)

(CDR a l i s t2))
(SETQ a l i s t3

(CDR a l i s t3))
(RPLACD a l i s t2

(CDR
a l i s t3))

(RPLACD a l i s t3
a l i s t 2)))

(RETURN))
((NULL (car a l i s t2))

The CAR of a l i s t3 i s the
l a s t member of the
permanent sec tion .

22.8 Spelling Functions 819

(*

820 DWIM: Automatic Error Correction

(SETQ a l i s t3 (CDR a l i s t l))
(SETQ tmplen 0)))

(SETQ a l i s t l (CDR a l i s t l))
(SETQ a l i s t2 (CDR a l i s t2))
(AND tmplen

(addlvar tmplen))
(GO loop)

e x i t . ad d sp e ll l
(COND

((NULL a l i s t3)
(*

NIL not found in the
sp e ll in g l i s t . This occurs
i f the user i s maintaining
h is own sp e ll in g l i s t and
not using the temporary and
permanent conventions.

)
(NCONCl a l i s t l word))

((NULL index)
(*

Add the word a t the end of
the permanent sec tion .

)
(RPLNODE a l i s t3

(CAR a l i s t3)
(CONS word

(CDR a l i s t3))))
((IGREATERP m index)

(*
Add the word a t the
beginning of the temporary
sec tio n . Delete and reuse
the l a s t element of the
temporary sec tion .

)
(RPLNODE (CDR a l i s t l)

word
(CDDR a l i s t3))

(RPLNODE (CDR a l i s t3)
(CADR a l i s t3)
(CDR a l i s t l))

(RPLACD a l i s t l NIL))
(T

(*

Add the word a t the
beginning of the temporary
sec tio n .

)
(RPLNODE (CDR a l i s t3)

(CADR a l i s t3)
(CONS word

(CDDR
a l i s t 3))))))))

s p l s t))

Using ADDSPELL
Many of your programs will create entries on lists as a result of a user entering
data to an application. These entries may not be added to a system spelling list
because they are not defined by SETQ or DEFINEQ. In these cases, you may
wish to invoke spelling correction on a spelling list that is associated with the
application. You can do so by creating an atom that will have as its value the
spelling list. Then you may add a word to the spelling list by invoking ADD
SPELL directly.

“̂ (SETQ m y .s p e l l in g . l i s t
(i n i t i a l i z e . s p e l l i n g . l i s t 'm y . s p e l l i n g . l i s t))
(' [s p e l l s e p a r a to r] ' MY.SPELLING.LIST)

(ADDSPELL 'Uganda m y .s p e l l in g . l i s t 3)
(' [s p e l l s e p a r a t o r] ' MY.SPELLING.LIST UGANDA)

where we have made the name of out spelling list an entry in itself to ensure that
it is spelling corrected as well. Consider several more additions:

^(ADDSPELL 'kenya m y .s p e l l in g . l i s t 3)
(' [s p e l l s e p a r a t o r] ' MY.SPELLING.LIST UGANDA KENYA)

^(ADDSPELL 'egypt my .s p e l l in g , l i s t 3)
(' [s p e l l s e p a r a t o r] ' MY.SPELLING.LIST UGANDA KENYA EGYPT)

•«-(ADDSPELL 'Sudan m y .s p e l l in g . l i s t 3)
(' [s p e l l s e p a r a t o r] ' MY.SPELLING.LIST KENYA EGYPT SUDAN)

where the oldest name on the spelling list has been forgotten because we speci
fied a length of three words. Now, if we add a new word without the length speci
fication:

«-(ADDSPELL ' l ib y a m y .s p e l l in g . l i s t)
(' [s p e l l s e p a r a t o r] ' LIBYA MY.SPELLING.LIST KENYA EGYPT
SUDAN)

22.8 Spelling Functions 821

A Definition for INITIALIZE.SPELLING.LIST
We might define INITIALIZE. SPELLING.LIST as follows:

(DEFINEQ
(i n i t i a l i z e . s p e l l i n g . l i s t (x)

(LIST (CAR USERWORDS)
x)

))

where we need to capture the spelling separator.

822 DWIM: Automatic Error Correction

22.8.2 Finding a Misspelling
MISSPELLED? determines if a word is misspelled. It takes the form

Function:

Arguments;

Arguments:

MISSPELLED?

6
1) a m ispelled word, XWORD
2) a r e la t iv e agreement, REL
3) a s p e l l in g l i s t , SPLST
4) a f la g , FLAG
5) an expression fo r co rrec t io n , TAIL
6) a function , FN

Value: See below.

MISSPELLED? operates as follows:

1. If XWORD is NIL or <ESC>, MISSPELLED? prints = followed by the
value of LASTWORD. It returns LASTWORD as the respelling without
asking for approval.

2. MISSPELLED? determines if XWORD is really misspelled. If FN ap
plied to XWORD returns T or XWORD appears on SPLST, then MIS
SPELLED? returns XWORD.

3. Otherwise, MISSPELLED? attempts to fix the spelling of XWORD via

(FIXSPELL xword r e l s p l s t f ig t a i l fn t i e f l g
dontmovetopflg)

A Definition for MISPELLED?
MISPELLED? might be defined as:

(DEFINEQ
(m ispelled? (xword r e l s p l s t f la g t a i l fn)

(AND DWIMFLG
(NULL NOSPELLFLG)
(PROG NIL

(RETURN
(COND

((OR (NULL xword)
(EQ xword <ESC>))
(^

I f you press the
ESCAPE key, LISPX
in te rp r e t s th i s as
meaning the l a s t th ing
typed.

)
(PRINl '= T)
(PRINT LASTWORD T T))

((COND
((NULL fn)

(*
I f no s e le c t io n
function ,
determine i f
XWORD e x is ts in
the sp e l l in g
l i s t .

)
(MEMBER xword s p l s t))

(T
(APPLY* fn xword)))

xword)
(T

(FIXSPELL xword
r e l
s p ls t
f lag
t a i l
f n))))))))

22.8 Spelling Functions 823

22.8.3 Fixing the Spelling of a Word
FIXSPELL is the spelling corrector. It takes the form

Function: FIXSPELL

Arguments: 8

Arguments: 1) a word to be correc ted , XWORD
2) a r e la t iv e agreement, REL
3) a sp e ll in g l i s t , SPLST
4) a f la g , FLG
5) an expression t a i l , TAIL
6) a function , FN
7) a t i e f la g , TIEFLAG
8) a movement in d ic a to r , DONTMOVETOPFLG

Value: The re s p e l l in g of XWORD or NIL.

If XWORD is NIL or <ESC>, the respelling is the value of LASTWORD.
This is returned without asking your approval. This allows you to immediately
apply functions such as EDITF and PP that expect a single literal atom as an
argument.

If XWORD contains lower case characters, and the corresponding upper
case word is correct, the upper case word is returned as its value. The upper case
word must be on SPLST or satisfy FN (i.e., it returns T).

REL is a measure of relative agreement used to determine the closeness of
two words. If it is NIL, then FIXSPELLREL is used as the default. When you
call FIXSPELL directly, you may want to experiment with different values of
REL depending on the lengths of words that you will using.

If FLG is NIL, the spelling correction is performed as if you had typed in the
word (whether or not you actually did!). In this case, XWORD will not be typed,
and your approval will not be sought.

If FLG is T, then XWORD is typed, followed by = , and your approval is
requested if APPROVEFLG is T.

If FLG is NO-MESSAGE, the correction is returned with no further pro
cessing. It has the same effect as executing CHOOZ. The correction is a pair of
words.

If TAIL is non-NIL, and the correction is successful, FIXSPELL makes the
correction using /RPLACA (so that is undoable). It also corrects misspellings do
to running two words together without an intervening space. In this case, it re
places the CAR of TAIL, where the runon occurred, with two words which con
tain the intervening space.

If TIEFLAG is NIL, and a “tie” occurs, FIXSPELL returns NIL. A “tie”
occurs when two or more words on the spelling list have the same degree of
agreement with XWORD. No correction occurs because FIXSPELL cannot
wdecide which is the better choice.

You may influence the choice by setting TIEFLAG as follows:

1. If TIEFLAG is PICKONE, the first word found will be used as the spell
ing correction for XWORD.

2. If TIEFLAG is LIST, FIXSPELL returns a list of the possible corrections
for XWORD (i.e., all of the possible candidates). Your program must
decide which it likes best and make the appropriate correction.

824 DWIM: Automatic Error Correction

3. If TIEFLAG is EVERYTHING, a list of all candidates whose degree is
above REL will be returned. This includes that tie in degree as well as
those which may be better.

If DONTMOVETOPFLG is T, and a spelling correction is made, the cor
rected word will not be moved to the beginning of the spelling list. In this way,
you may prevent the propagation of large numbers of words to the permanent
section of the spelling list which the system would consider important, but you
surely don’t.

22.8 Spelling Functions 825

Using FIXSPELL
First, let us set up a private spelling list.

<-(SETQ mywords (LIST (CAR USERWORDS)))
(' [s p e l l s e p a r a to r] ')

which sets up your own spelling list with the separator in place. (Note: what is
needed is a function to create a spelling list).

Now, let us add a few words to the spelling list MYWORDS.

<^(SETQ #MYWORDS 10)
10
^(ADDSPELL 'YANKEES MYWORDS #MYWORDS)
(' [s p e l l s e p a r a to r] ' YANKEES)

•<-(ADDSPELL 'PIRATES MYWORDS #MYWORDS)
(YANKEES '[s p e l l s e p a r a t o r] ' PIRATES)
Now, l e t us t r y to c o r re c t a word:

-^(FIXSPELL 'YANKES 70 MYWORDS)
=YANKEES
YANKEES

<^-(FIXSPELL 'PRTES 50 MYWORDS)
=PIRATES
PIRATES

But, if we increase the relative agreement to 75, we do not obtain a correc
tion:

-^(FIXSPELL 'PRTES 75 MYWORDS)
NIL
Now, l e t use the same word with FLAG s e t to T:

♦-(FIXSPELL 'PRTES 50 MYWORDS T)
PRTES = PIRATES? . . .y e s
PIRATES

where we allowed the default time to expire and correction to proceed.
Now, let us add two word forms to the spelling list that have close spellings

to each other.

^-(ADDSPELL 'NEW-YORK-METS MYWORDS #MYWORDS)
(YANKEES PIRATES ' [s p e l l s e p a ra to r] ' NEW-YORK-METS)

^(ADDSPELL 'NEW-YORK-JETS MYWORDS #MYWORDS)
(YANKEES PIRATES ' [s p e l l s e p a ra to r] ' NEW-YORK-JETS
NEW-YORK-METS)

Now, let us attempt to correct the spelling of a word:

•^(FIXSPELL 'NEW-YORK-ETS 75 MYWORDS)
NIL

because more than one word matches the word to be corrected and TIEFLAG is
NIL. Now, let us set TIEFLAG to LIST and try again:

<-(SETQ TIEFLAG ’LIST)
LIST
<-(FIXSPELL 'NEW-YORK-ETS 75 MYWORDS NIL NIL NIL TIEFLAG)
(NEW-YORK-JETS NEW-YORK-METS)

Now, let us set TIEFLAG to PICKONE and try again:

<-(SETQ TIEFLAG ’PICKONE)
PICKONE

-^(FIXSPELL ’NEW-YORK-ETS 75 MYWORDS NIL NIL NIL TIEFLAG)
=NEW-YORK-METS
NEW-YORK-METS

826 DWIM: Automatic Error Correction

22.8.4 Checking a Function Name Spelling
FNCHECK determines whether or not a word is a function name, and if it is,
whether or not its spelling is correct. It takes the form

Function: FNCHECK

^Arguments: 5

Arguments: 1) a function name, FN
2) an e r ro r f la g , NOERRORFLAG
3) a sp e l l in g f la g , SPELLFLAG
4) a p roperty f la g , PROPFLAG
5) a t a i l expression , TAIL

Value: The co rrec ted name.

FNCHECK is called by many functions to determine if FN is a function (ex
amples are ARGLIST, GETD, SAVEDEF). If FN is a function, then FN is re
turned as the value of FNCHECK. If FN is not a function, FNCHECK attempts
spelling correction if DWIMFLG has the value T. The IRM notes that this al-
lovî s FNCHECK to operate in small INTERLISP systems where DWIM is not
present.

(Note: at the present time, every INTERLISP system has a standard loadup
that includes DWIM. Future versions may allow the user to configure his own
INTERLISP system. By the time this book is published. Xerox may have an
nounced this feature.)

NOERRORFLAG determines whether or not FNCHECK handles the un
successful case. If NOERRORFLG is T, FNCHECK simply returns NIL.

<-(FNCHECK 'MISPELLD?)
MISPELLD? not a function

<-(FNCHECK 'MISPELLD? T)
NIL

Otherwise, FNCHECK prints a message and generates a non-breaking er
ror.

SPELLFLAG corresponds to MISSPELLED?’s fourth argument in that it
determines whether approval is sought for the spelling correction. MIS
SPELLED? is called by FNCHECK to correct the spelling of FN.

PROPFLAG is used when FN does not have a function definition, but does
have an EXPR property. If PROPFLAG has the value T, FN is considered to be
the name of a function and FN will be returned. Otherwise, if PROPFLAG is
NIL, FN is not considered to be the name of a function, and NIL is returned or
an error generated depending on the value of NOERRORFLAG.

22.8 Spelling Functions 827

22.8.5 Correcting File Name Spelling
SPELLFILE is used to correct the spelling of a file name. It takes the form

Function: SPELLFILE

Arguments: 4

Arguments: 1) a f i l e name, FILE
2) a p r in t f la g , NOPRINTFLAG
3) a sp e l l in g f la g , NOSPELLFLAG
4) a d irec to ry l i s t , DIRLST

Value: The correc ted f i l e name; otherwise, NIL.

SPELLFILE attempts to correct the spelling of a file name by searching one
or more directories for a file name corresponding to FILE.

If FILE has a directory field, SPELLFILE examines the specified directory.
Otherwise, it uses the directories specified in DIRLST. If DIRLST is NIL,
SPELLFILE uses the value of DIRECTORIES which is initially (NIL LISP).
NIL indicates that the user’s login directory is to be used as the default.

If NOPRINTFLAG is T, SPELLFILE does not print any correction nor does
it ask for your approval of the correction.

If NOSPELLFLAG is T, no spelling correction will be attempted, although
searching through DIRECTORIES will be performed.

SPELLFILE is used on ERRORTYPELST to handle FILE NOT FOUND
errors. The initial entry is:

((23 (SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG)))

The value of NOFILESPELLFLG is initially T. But, setting it to NIL will
allow SPELLFILE to correct the spelling of the file name whenever an error oc
curs.

Finding a File
An alternative form, FINDFELE, attempts to locate a file in one or more directo
ries. If the file name is misspelled, it calls SPELLFILE to correct the spelling,
but with no printing interaction. It takes the form

Function: FINDFILE

Arguments: 3

Arguments: 1) a f i l e name, FILE
2) a sp e l l in g f la g , NOSPELLFLAG
3) a d ire c to ry l i s t , DIRLST

Value: The f i l e name.

We might define FINDFILE as follows:

(DEFINEQ
(f in d f i l e (f i l e n o sp e llf la g d i r l s t)

(COND
((INFILEP f i l e) f i l e)

828 DWIM: Automatic Error Correction

d i r l s t)))
))

(T
(SPELLFILE f i l e T n o sp e llf la g

22.8 Spelling Functions 829

22.8.6 A Spelling Correction Example
In this section, we try to show how all of these functions work together to correct
a word. We do so by tracing the major functions that we have discussed. We use
the small spelling list that was created in our discussion of ADDSPELL above.

(TRACE MISSPELLED?)
(MISSPELLED?)

<-(TRACE FIXSPELL)
(FIXSPELL)

<-(TRACE CHOOZ)
(CHOOZ)

^ (TRACE SKOR)
(SKOR)

^(MISSPELLED? 'SUDNA NIL MY.SPELLING.LIST)

where SUDAN is incorrectly spelled as SUDNA. With DWIM enabled in trust
ing mode, the following trace appears:

MISSPELLED?:
XWORD=SUDNA
REL=NIL
SPLST=(SUDAN ' [s p e l l s e p a r a to r] ' LIBYA MY.SPELLING.LIST
EGYPT KENYA)
FLG=NIL
TAIL=NIL
FN=NIL
FIXSPELL:

XWORD=SUDNA
REL=NIL
SPLST=(SUDAN ' [s p e l l s e p a r a to r] ' LIBYA

MY.SPELLING.LIST EGYPT KENYA)
FLG=NIL
TAIL=NIL
FN=NIL
TIEFLG=NIL
DONTMOVETOFLG=NIL
FROMDWIM=NIL

830 DWIM; Automatic Error Correction

APPROVALFLG=NIL
CHOOZ: '

XW0RD=(83 85 68 78 65)
REL=70
SPLST=(SUDAN ' [s p e l l s e p a ra to r]» LIBYA
MY.SPELLING.LIST EGYPT KENYA)
TAIL=NIL
FN=NIL
TIEFLG=NIL
NDBLS=0
FROMDWIM=NIL
SKOR:

XWORD=(83 85 68 78 65)
TW0RD=(83 85 68 65 78)
NGX=5
NCT=5
FROMDWIM=NIL

SK0R=0
CHOOZ=SUDAN

=SUDAN
FIXSPELL=SUDAN

MISSPELLED?=SUDAN
SUDAN

Note that the list of numbers received by CHOOZ is the list of character
codes that make up the word to be checked. SKOR receives the character codes
for both the word to be checked and the candidate word.

The value of REL has a significant effect on whether or not spelling correc
tion is successful. Consider the example (where I will leave out most of the trac
ing information):

(MISSPELLED? 'KNYA 90 MY.SPELLIN.LIST)
MISSPELLED?:
XWORD=KNYA
REL=90
• • •

FIXSPELL:
XWORD=KNYA
REL=90
• • •

CHOOZ:
XW0RD=(75 78 89 65)
REL=90
• • •

CHOOZ=NIL

FIXSPELL=NIL
MISSPELLED?=NIL
NIL

However, if we specify a relative agreement of 50, we obtain the following
result (where much of the tracing information is omitted):

^(MISSPELLED? 'KNYA 50 MY.SPELLING.LIST)
MISSPELLED?:
XWORD=KNYA
REL=50
• • •

FIXSPELL:
XWORD=KNYA
REL=50
• • •
CHOOZ:

XW0RD=(75 78 89 65)
REL=50
• • •
SKOR:

XW0RD=(75 78 89 65)
TW0RD=(69 71 89 80 SA)
NGX=4
NCT=5
• • •

SKOR:
XW0RD=(75 78 89 65)
TW0RD=(83 85 68 65 78)
NCX=4
NCX=5
• • •

<o th e r a t tem pts)
SKOR:

XW0RD=(75 78 89 65)
TW0RD=(75 69 78 89 65)
NCX=4
NCT=5
• • •

SK0R=1
CHOOZ=KENYA

=KENYA
FIXSPELL=KENYA

MISSPELLED?=KENYA
KENYA

22.8 Spelling Functions 831

832 DWIM: Automatic Error Correction

Timing Results for Spelling Correction
Using BREAKDOWN (see Section 29.3), we can obtain some timing estimates
for how long it takes to do simple spelling correction. We will use the same spell
ing list that we used in the previous example:

(̂BREAKDOWN 'MISSPELLED? 'FIXSPELL 'CHOOZ ’SKOR)
(MISSPELLED? FIXSPELL CHOOZ SKOR)

^(MISSPELLED? 'UGANDI 50 MY.SPELLING.LIST)
=UGANDA
UGANDA

(̂BRKDOWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
MISSPELLED? .012 1 .012 10
FIXSPELL .018 1 .018 16
CHOOZ .047 1 .047 41
SKOR .039 5 .008 34
TOTAL
NIL

.116 8 .015

23

Conversational LISP

INTERLISP is unlike any other “traditional” programming language. A num
ber of factors make this so! First, it has a very simple syntax—everything is a list
or an atom. If it is a list, then the first element of the list may somehow be inter
preted as the name of a function if that list is given to EVAL. What is data at one
moment is a function call the next. The structure of a list is enforced through a
myriad of parentheses.

Second, INTERLISP has no reserved words. Also, it has function names
which have a historical basis that, in many cases, are but a memory. Sometimes,
you must think about what a function does because, although a function sounds
“right,” it is not necessarily right for every instance. This becomes more confus
ing when you have multiple function names that all sound like they do the same
thing but have subtle differences.

INTERLISP programs, even single functions, are difficult to read. Read
ability in traditional languages is enhanced by syntactic cues such as certain
types of statements beginning on a new line or specific punctuation to terminate
a statement. INTERLISP has none of these features. When you encounter mul
tiple parentheses, particularly in a nested function definition, it is very hard to
keep track of which right parenthesis goes with which left parenthesis.

INTERLISP uses parentheses for almost all syntactic forms for its own ben
efit rather than the user’s (reader’s). Thus, there is very little syntactic informa
tion carried in the parenthesis notation. Experienced INTERLISP programmers
tend to ignore the parentheses and focus on the keywords within the lists that
make up INTERLISP functions. After some practice, your eye will become
trained to picking out the meaning of a function from its structure (i.e., the form
of coding) as opposed to “reading” the function.

However, good programming practice emphasizes that programs should be
readable by others as well as oneself. To enhance the readability of INTERLISP
programs, Teitleman [teit73] developed Conversational LISP (CLISP) to make
INTERLISP programs easier to read and write. CLISP borrows many program

833

ming constructs from traditional languages. Usually, users are more familiar
with these constructs than with basic INTERLISP formalisms.

CLISP augments INTERLISP syntax rather than replacing it. You may in
termix INTERLISP and CLISP syntax freely in a function without having to
identify what mode (since INTERLISP is modeless) you are in.

23.1 HOW CLISP OPERATES
CLISP is an integral part of INTERLISP. Thus, you may begin programming in
CLISP without any further preparation (other than reading Sections 23.2
through 23.5).

CLISP sits between you and the INTERLISP interpreter. When you type a
CLISP statement at the top level, an “error” occurs because the interpreter does
not recognize the CLISP syntax. DWIM (see Chapter 22) is called to determine
how to process the “error.” It transforms the CLISP statement into an equiva
lent INTERLISP expression and passes it to the interpeter for evaluation. Un
like other errors, you will not be asked to approve the translation and no error
message will be generated. Thus, CLISP translation occurs transparently to the
user.

CLISP statements are handled by DWIM. When a CLISP statement is en
countered, it is unrecognized by the intepreter which calls DWIM to do some
sort of correction. DWIM processes the statement, collecting error messages as
it goes. Either DWIM successfully translates the statement, whence it is exe
cuted directly, or DWIM displays error messages at your terminal.

However, if DWIM encounters a syntactic error in your CLISP statement, it
does not complete the translation. Rather, it prints a diagnostic that identifies
the error and waits for you to correct it. When DWIM encounters a valid CLISP
statement, but one in which an operand is unbound, DWIM asks you whether or
not to treat it as CLISP.

Because CLISP statements are intercepted by DWIM and translated to the
corresponding INTERLISP forms, you pay a penalty in slower execution due to
interpretation of the CLISP expression. You should keep this in mind when tim
ing functions containing CLISP statements. However, this penalty disappears
when you compile your functions because all CLISP statements are translated to
INTERLISP expressions before compilation.

23.1.1 Translating CLISP Expressions
CLISP expressions are handled by replacing the expression with the correspond
ing INTERLISP expression. The original CLISP expression will be discarded
(actually, it is retained in the hash array CLISPARRAY as a translation). How
ever, the translation will replace the CLISP expression in the function definition
unless CLISPRETRANFLG is T.

CLISP statements are discarded because they may easily be recomputed us
ing CLISPIFY. They are also discarded because even though the CLISP state
ment contained errors, these will be corrected during translation by DWIM.

834 Conversational LISP

23.2 CLISP OPERATORS
CLISP recognizes a wide variety of operators that enable you to program more
efficiently. These operators may be divided into the list, infix, and prefix classes.

23.2.1 List Operators
CLISP uses angle brackets—< >—as a shorthand notation for specifying the list
construction. The appearance of a “ < ” is interpreted as equivalent to “(” • When
CLISP encounters a left angle bracket, it begins the construction of a list. Every
thing up to the matching right angle bracket will be included in the list.

(SETQ o ld - tim e-p lay e rs
< 'm usial 'wagner 'cobb 't r la n d o s >)

(musial wagner cobb tr ian d o s)

would construct a list equivalent to executing

(LIST 'm usial 'wagner 'cobb ’tr iandos)

Angle brackets may be nested to indicate sublists of lists as follows:

<- (SETQ raore-players
< ' r u th 'm aris < 'aaron 'robinson >>)

(ru th maris (aaron robinson))

is equivalent to

(LIST ' r u th 'm aris (LIST 'aaron 'robinson))

! Operator
The exclamation point—!—operator indicates that the following element is to be
included in the list as a segment, i.e., when CLISP encounters a !, it performs a
CONS to construct a list.

<-(SETQ double .p lay .team < ' t i n k e r 'evers ! 'chance >)
(t in k e r evers . chance)

is equivalent to

•<-(SETQ double .p lay .team
(CONS ' t i n k e r (CONS 'ev e rs 'chance)))

whereas

-^(SETQ double.play .team < ! ' t i n k e r ! 'evers 'chance >)
(chance)

23.2 CLISP Operators 835

836 Conversational LISP

is equivalent to

♦-(SETQ double.play.team
(APPEND ' t in k e r 'evers (LIST ’chance)))

!! Operator
The double exclamation point—!!—operator accomplishes two functions: it in
dicates that what follows is included in the list as a segment, and that anything in
angle brackets to its right is physically attached to it.

*-(SETQ p i tc h e rs < !! 'koufax 's e iv e rs 'ryan>)
(se iv e rs ryan)

is equivalent to

<-(SETQ p i tc h e rs (NCONC 'koufax 's e iv e rs 'ryan))

and

■<-(SETQ p i tc h e r s < !! 'd rysdale ! ' f e l l e r ! 'Johnson >)
f e l l e r

is equivalent to

<-(SETQ p i tc h e rs
(NCONC 'd rysda le (APPEND ' f e l l e r 'johnson)))

Note that the previous form did not translate to

(NCONC (APPEND 'd rysda le ' f e l l e r) 'johnson)

which has the same value but the wrong structure. The latter would attach
“johnson” to “feller” but not attach either to “drysdale” .

These operators—<, !, !!, and >—have been described as separate atoms,
but they need not be. Moreover, our simple examples do not preclude the use of
more complex statements within angle brackets such as complete CLISP state
ments.

Note that CLISP attempts to match pairs of angle brackets properly. Thus,
if a right angle bracket follows a quoted atom, the list structure will not be com
pleted.

■<- < 'mays 'spahn 'campanella)
undefined CAR of form

because > is treated as part of the atom CAMPANELLA. You must separate
CLISP operators from other symbols in an input line by at least one space.

23.2.2 Infix Operators
CLISP recognizes several standard arithmetic symbols as shorthand notation for
the corresponding INTERLISP functions. The symbols and their corresponding
functions are

Symbol Function

+ IPLUS, FPLUS
IDIFFERENCE or IMINUS, FDIFFERENCE

* ITIMES, FTIMES
/ IQUOTIENT, FQUOTIENTT EXPT T

Operators have the normal precedence that one expects. As usual, normal
precedence may be overridden by proper grouping of arithmetic expressions
with parentheses. Consider the following examples:

<-12*12/6-4+100
120
-^ (12* 12)
144

<-210
1024

< ~ 0/6
0
<-(SETQ X 12)
12
<-(SETQ y 100)
100
-^(SETQ z 24)
24

<-X*Y/Z
50
<-(SETQ A (CONS X Y))
(12 . 100)
<-((CAR A)*(CDR A)/Z)
50
<-”THE LAZY BOY" + "THE BROWN DOG"
NON-NUMERIC ARG
"THE LAZY BOY"

23.2 CLISP Operators 837

The flexibility of the CLISP arithemtic infix operators allows you to perform
simple arithmetic computations easily and directly at the top level. You may use
literal atoms as the arguments for the CLISP infix operators. You may also use
expressions that evaluate to numbers. Note that an extra pair of parentheses is
required in the example above because LISPX (see Section 25.2) begins evalua
tion as soon as its detects a matching, balanced right parenthesis. The argu
ments are passed to the appropriate arithmetic functions which perform any er
ror detection.

Relational Operators
CLISP also recognizes a shorthand notation for relational operators which is
modeled after the Fortran operators. These include

Symbol Function
lEQP

GT IGREATERP
LT ILESSP
GE IGREATERP/IEQP
LE ILESSP/IEQP

Within an S-expression, CLISP will recognize Boolean operators such as
AND, OR, MEMBER, and EQUAL. Consider the following examples:

^X=Y
NIL

LE Y
T

X * Z GE Y/3
T

: Operator
: is an infix operator that specifies the extraction of the substructure of a list.

•<-(SETQ employees '(s te v e john sue kathy))
(Steve john sue kathy)

employee: <4
kathy

means to extract the fourth element of the list that is the value of “employee” .

;; Operator
:: indicates that the extraction is to be taken with reference to the tail of the list.
Thus, assuming a list of the president’s last names, we have

838 Conversational LISP

23.2 CLISP Operators 839

♦ -p re s id e n ts : :2
(c a r t e r reagan)

*- Operator
•*- is an infix operator that indicates assignment. This operator is used heavily by
the Record Package (see Chapter 27). In its simplest form, x*-y is translated as
(SETQ X y). By combining with : and you may modify any portion of the
structure of a list. Thus, x:2*-y is interpreted as (replace the second element of
X with Y) and becomes (RPLACA (CDR x) y).

The operator has a different precedence on the left than on the right. On
the left, ^ has a higher precedence than other operations except for ' and :. On
the right, <- has broader scope, so that a-^b + c means a<-(b + c).

Note: I have represented the “left arrow” or assignment operator as a com
position of the two symbols < and—because most terminals (mine included) do
not possess such a symbol on the keyboard.

•<-p lay e rs <-<musial ru th cobb wagner)
(musial ru th cobb wagner)

Warning!!!
Many examples in this text were taken from a Xerox 1100 running IN-

TERLISP-D whose prompt character is a “left arrow. "Please be careful not to
confuse the two uses o f the left arrow.

23.2.3 Prefix Operators
CLISP recognizes several symbols as prefix operators. You are already familiar
with one operator from the early chapters of this book. This is the ' operator
which means to QUOTE its argument. It is now revealed that this is, in fact, a
CLISP operator. Consider the CLISP expression

x= 'y means (EQ x (QUOTE y))

Following *, all operators are ignored until the next separator. Thus the
expression

'x=y i s t r a n s la te d as (QUOTE x=y).

" Operator
" is a prefix operator that indicates the logical negation of its argument. It is
translated as (NOT argument).

"(ASSOC 'd isn ey p re s id e n ts)

840 Conversational LISP

is translated as

(NOT (ASSOC 'd isney p re s id e n ts)) .

" may also be used to negate an infix operator. Thus, the expression (x "GE
y) is translated as (x LT y).

23.2.4 Operator Precedence
CLISP assigns a precedence to each of the operators it recognizes. When many
operators and operands are strung together in an expression without the benefit
of demarcating parentheses, precedence is required to tell CLISP how to prop
erly translate the expression. The precedences of all the operators are given in
the following table (from highest to lowest):

Operator Precedence Table

(l e f t precedence)
" , -(unary)T

/
+ ,- (b in a ry)
■<- (r ig h t precedence)

INTERLISP forms
LT, GT, EQUAL, MEMBER, e tc .
AND
OR
IF, THEN, ELSEIF, ELSE
i t e r a t i v e statem ent opera to rs

For a discussion of precedence, consult any good textbook on language the
ory.

23.2.5 CLISP Declarations
CLISP provides default functions for all of its operators. Thus, the arithmetic
operators use either integer or floating point functions as determined by the na
ture of their arguments. The relational operators use the integer functions as
default. The CLISP declarations for each operator are maintained on the prop
erty list of the atom representing the operator.

You may declare new interpretations for CLISP operators using CLISP-
DEC, which takes the form

Arguments: 1) a d e c la ra t io n l i s t , DECLST

Value: The value of DECLST.

CLISPDEC records the declarations in a global table. The declarations are
processed in the order in which they appear in DECLST, so that later declara
tions will override earlier ones. The initial global declarations are INTEGER
and STANDARD. Declaration atoms are taken from the following table.

23.2 CLISP Operators 841

Function: CLISPDEC

Arguments: 1

D eclaration INTERLISP Functions Used
INTEGER IPLUS, IMINUS, IDIFFERENCE, ITIMES,
FIXED IQUOTIENT, ILESSP, IGREATERP
FLOATING FPLUS, FMINUS, FIDFFERENCE, FTIMES,

FQUOTIENT, FLESSP, FGREATERP

MIXED PLUS, MINUS, DIFFERENCE, TIMES,
QUOTIENT, LESSP, GREATERP

FAST FRPLACA, FRPLACD, FMEMB, FLAST,
FASSOC

UNDOABLE /RPLACA, /RPLACD, /NCONC, /NCONCl, /
MAPCONC, /MAPCON

STANDARD RPLACA, RPLACD, MEMB, LAST, ASSOC,
NCONC, NCONCl, MAPCONC, MAPCON

Consider the following examples:

«-X * Y
1200

(CLISPDEC ' (FLOATING))
(FLOATING)

<-X * Y
1200.0

Note that CLISP now uses the floating point functions rather than the inte
ger functions to compute the arithmetic result.

Overriding Global Declarations
CLISPDEC places its declarations in a global table. You may override the global
declarations for individual functions by placing a local declaration expression

immediately after the argument list of a function. The local declaration expres
sion takes the form

(CLISP: . (d e c la ra t io n s))

Consider the function ADD3 which adds the three numbers given as its ar
guments. ADD3 is defined using CLISP arithmetic operators as follows:

•^(DEFINEQ
(add3 (x y z)

X + y + z
))

(ADD3)
<-(ADD3 12 20 34)
66

Now, we can override the normal arithmetic functions used to translate the
CLISP form by placing a local declaration in the function definition (via AD
VISE or the Editor). ADD3 now appears as

<-(PP add3)
(ADD3

(LAMBDA (X Y Z)
(CLISP: . (FLOATING))
X + Y + Z

))
<-(ADD3 12 20 34)
66.0

The CLISP: statement is converted to a comment of a special form that is
represented by CLISP. Whenever a CLISP transformation that is affected by
declarations is about to be performed, this comment is searched for a relevant
declaration. If one is found, the corresponding function will be used. Otherwise,
the global declaration currently in effect will be used. Note that local declara
tions are effective in the order in which they are given within the CLISP: form.

23.2.6 Operator Definitions
The CLISP operators are defined via properties attached to the atoms represent
ing those operators. Thus, CLISP acts as a table-driven system. The definitions
of the operators are given below.

<-(GETPR0PLIST '+)
(CLISTYPE 2 LISPFN IPLUS CLISPGLASS + CLISPCLASSDEF
(ARITH IPLUS FPLUS PLUS))

842 Conversational LISP

^(GETPROPLIST ' -)
(CLISPTYPE 7 LISPFN IMINUS UNARYOP T CLISPCLASS-
CLISPCLASSDEF (ARITH IMINUS FMINUS MINUS))
'^(GETPROPLIST '*)
(. . . CLISPTYPE 4 LISPFN ITIMES CLISPCLASS * CLISPCLASSDEF
(ARITH ITIMES FTIMES TIMES))

where the ... indicates that there are other properties not associated with CLISP.

<-(GETPROPLIST ' /)
(CLISPTYPE 4 LISPFN IQUOTIENT CLISPCLASS / CLISPCLASSDEF
(ARITH IQUOTIENT FQUOTIENT QUOTIENT))

^(GETPROPLIST ')
(CLISPTYPE 6 LISPFN EXPT)

<-(GETPROPLIST '=)
(CLISPTYPE -20 LISPFN EQ CLISPNEG =)

Note: You may want to redefine the value of LISPFN to be EQUAL (see my
note in Chapter 6).

^(GETPROPLIST 'GT)
(CLISPTYPE -20 LISPFN IGREATERP CLISPCLASS GT
CLISPCLASSDEF (ARITH IGREATERP FGTP GREATERP) CLISPNEG
LEQ BROADSCOPE T CLISPISPROP (gt) CLISPISFORM ((X Y) (X
IS GT Y) (X GT Y)))

^(GETPROPLIST 'LT)
(CLISPTYPE -20 LISPFN ILESSP CLISPCLASS LT CLISPCLASSDEF
(ARITH ILESSP LESSP LESSP) CLISPNEG GEQ BROADSCOPE T
CLISPISPROP (I t) CLISPISFORM ((X Y) (X IS LT Y) (X LT
Y)))
<-(GETPROPLIST 'GE)
(CLISPTYPE -20 LISPFN IGEQ CLISPCLASS GEQ CLISPCLASSDEF
(ARITH IGEQ GEQ GEQ) BROADSCOPE T)

<-(GETPROPLIST 'LE)
(CLISPTYPE -20 LISPFN ILEQ CLISPCLASS ILEQ CLISPCLASSDEF
(ARITH ILEQ LEQ LEQ) BROADSCOPE T)

<-(GETPROPLIST ’MEMBER)
(CLISPTYPE -20 CLISPNEG MEMBER BROADSCOPE T CLISPISPROP
(member MEMBERS members) CLISPISFORM ((X Y) (X IS A
MEMBER OF Y) (MEMBER X Y)))

and similarly for EQUAL, AND, OR, NOT, and several other INTERLISP
functions.

23.2 CLISP Operators 843

<-(GETPROPLIST ' :)
(CLISPTYPE (lA . 13))

<-(GETPROPLIST ' ^)
(CLISPTYPE (* . -12) LISPFN SETQ)

<-(GETPROPLIST '<)
(CLISPTYPE BRACKET UNARYOP T CLISPBRACKET (< > SEPARATOR
! DwiMiFY clispangli;brackets CLISPIFY SHRIEKIFY))

The properties and values appearing in these examples will be described in
more detail in later sections.

23.3 CONDITIONAL STATEMENTS
CLISP provides conditional structured programming constructs similar to ex
tended Fortran or C. These constructs use the operators IF, THEN, ELSEIF,
and ELSE to demarcate the segments of a conditional expression.

The format of a CLISP conditional statement is

(IF <pred ica te-express ion-l>
THEN <consequent-expression-l>

ELSEIF <predicate-expression-2>
THEN <consequent-expression-2>
ELSE <consequent-expression-3>)

The general statement form will be translated into a COND expression of
the form

(COND
(< pred ica te-express ion -l>

<consequen t-expression-l>)
(<predicate-expression-2>

<consequent-expression-2>)
(T <consequent-expression-3>))

Conditional statements may be nested as deep as you wish. The predicate
and consequent expressions may be any CLISP or INTERLISP expression.

Conditional statements translate into the standard COND expressions.
Consider the following function definition:

(DEFINEQ
(to? (node a t t r i b u te) '

(PROG (o ffsp ring)(if
offspring-^(GETPROP node 'o ffsp r in g)

844 Conversational LISP

23.3 Conditional Statements 845

then
(RETURN

(CDR
(ASSOC

))

would be translated as

(CAR (g e t . in h e r i ta n c e node
a t t r i b u t e))
o f f s p r in g)))))

(DEFINEQ
(to? (node a t t r i b u t e)

(PROG (o ffsp r in g)
(COND

((SETQ o ffsp r in g (GETPROP node
’o f f s p r in g))

(RETURN
(CDR

(ASSOC
(CAR (g e t . in h e r i ta n c e node
a t t r ib u te)
o f f s p r in g))))))

))

In general, the following translations from INTERLISP to CLISP will be
observed:

IF <x> THEN <y> (COND
(<x> <y>))

IF <x> THEN <y> ELSE <z> (COND
(<x> <y>)
(T <z>))

If there is nothing following a THEN or the THEN expression is omitted
entirely, the clause will only consist of a predicate expression. You may use
lower-case versions of the words IF, THEN, ELSE, and ELSEIF if you prefer.

You may use DWIMIFY (see Section 22.5) to perform the translations from
CLISP to INTERLISP and CLISPIFY (see Section 23.8) to translate from IN
TERLISP to CLISP. Consider the following examples:

^(DWIMIFY '(I F X THEN Y))
(COND

(X Y))

<-(DWIMIFY '(I F X THEN Y ELSEIF XI THEN Y2 ELSE J3))
(COND

(X Y)
(XI Yl)
(T J3)>

23.4 ITERATIVE STATEMENTS
The major power of CLISP is concentrated in allowing the user to write a wide
variety of iterative expressions. CLISP supports iterative statements that model
all of the popular constructs of traditional programming languages as well as a
few new variations.

CLISP iterative statements are usually translated to either a PROG or
MAPCAR expression. The specific form used depends on the iterative statement
operators (called i.s.oprs) and the manner in which they are combined. When it
translates an iterative expression, CLISP often inserts dummy variables (de
noted by preceding $$) as control mechanisms. You will see these dummy vari
ables when you display functions after translation.

For all of the following operators, lower-case versions may be used and will
be treated by CLISP as equivalent to the upper-case versions. Lower-case words
will improve the readability of your code.

Each iterative statement operator has lower precedence than all IN
TERLISP forms. Thus, parentheses around the operands may be omitted.
CLISP will provide the parentheses internally during the translation process.

23.4.1 I.S.Opr Translation
The exact form of an iterative statement translation depends on the operators
used in the expression. If the expression specifies dummy variables (such as: in Y
as I from 1 to 10 do PRINT), a PROG will always be used. The general form,
using a PROG, is

(PROG <v a r ia b le s)
[in i t i a l i z a t i o n]

$$LP
[eachtime]
[te s t]
[body]

$$ITERATE
[a f t e r t e s t]
[update]
(GO $$LP)

$$OUT
[f in a l iz a t io n]
(RETURN $$VAL))

846 Conversational LISP

1. [initialization] is a sequence of expressions that assign initial values to
the loop variables.

2. [eachtime] is a sequence of expressions executed each time through the
loop that set up the conditions for this iteration.

3. [test] is a sequence of expressions that test for loop termination before
execution of the [body].

4. [body] is a sequence of expressions forming the main function to be per
formed by the loop.

5. [aftertest] is a sequence of expressions that test for termination after loop
execution. They correspond to the REPEATWHILE or REPEATUNTIL
conditions.

6. [update] is a sequence of expressions that increment or otherwise com
pute new values for the loop variables.

7. [finalize] is a sequence of expressions that compute a final value prior to
exiting the loop.

$$LP, $$ITERATE, and $$OUT are consistently used in all translations.
You may reference them within your CLISP statements. You may also explicitly
set or reference the variable $$VAL which contains the value to be returned as
the result of the loop.

23.4.2 I.S.Type Operators
An iterative statement type operator is one that specifies the action to be taken
on each iteration. I.s.type operators have a body composed of other iterative
statement operators. Each iterative statement must have one and only one
i.s.type operator. The i.s.type operators are

DO <form> S p ec if ie s what i s to be done a t each
i t e r a t i o n . I t s value i s NIL i f th e re is
an e x p l i c i t or im p l ic i t te rm inating
cond ition . DO without another opera to r
s p e c i f ie s an i n f i n i t e loop (because
th e re i s no te rm inating c o n d i t io n !) . I t
t r a n s l a t e s to MAPC or MAPCAR whenever
p o ss ib le .

(FOR y IN (CDR x)
DO

(i f
y : l =

then
(PRINl '**)

23.4 Iterative Statements 847

where the following conditions hold:

e lse

848 Conversational LISP

(PRINl y : l)
(SPACES 1))

(PRINl (CDR y))
(SPACES 1))

Transaction processing programs usua lly have the
form of a continuous loop th a t performs the ac tions
of reading a command, executing the command, and
p r in t in g the r e s u l t s (ju s t l ik e the INTERLISP
i n t e p r e t e r) . The s t ru c tu re of such a program might
appear as

(DO
(read.command)
(i f

(execu te . command)
then

(p r in t . r e s u l t s)
e lse

(GO e x i t)))
e x i t

COLLECT <form> S pec if ie s th a t the r e s u l t of evaluating
<form> a t each i t e r a t io n i s to be
c o l le c te d in to a l i s t which i s returned
as the value of the expression. I t is
t r a n s la te d to MAPCAR, MAPLIST, or
SUBSET as appropria te .

Consider a function which may take e i th e r a s ing le
atom or a l i s t of atoms as an argument. I f a l i s t of
atoms i s given, the r e s u l t s o f the function must be
c o l le c te d in to a l i s t to be re tu rned as i t s v a lu e .
Here i s a fragment from GETFILEPKGTYPE:

(FOR X IN type
COLLECT

(OR
(g e tf ilepkg type x

only
noerror
name)

(RETURN)))

which t r a n s l a t e s to

(PROG (($$LST1 TYPE)
$$VAL $$TEM2 $$TEM1 X)

$$LP
(SETQ X

(CAR (OR (LISTP $$LST1)
(GO $$OUT))))

(SETQ $$TEM1
(OR

(GETFILEPACKAGETYPE X
ONLY
NOERROR
NAME)

(RETURN)))
(COND

($$TEM2
(FRPLACD $$TEM2

(SETQ $$TEM2 (LIST $$TEM1))))
(T

(SETQ $$VAL
(SETQ $$TEM2 (LIST $$TEM1)))))

$$ITERATE
(SETQ $$LST1 (GDR $$LST1))
(GO $$LP)

$$OUT
(RETURN $$VAL))

JOIN <form> S p ec if ie s th a t the values r e s u l t in g
from the eva lua tion of <form> w il l be
NCONCed to g e th e r . I t t r a n s l a te s to
MAPCON or MAPCONG as app rop ria te .

GETDEF re tu rn s the d e f in i t io n of a name as a type from a
f i l e . Consider the follow ing fragment which i s used to
process the type MACROS:

(MACROS
(CONS 'PUTPROPS

(CONS name
(OR (FOR X on (GETPROPLIST name)

BY (CDDR x)
WHEN

(MEMBER (CAR x) MACROPROPS)
JOIN

(LIST (CAR x)(CADR x)))
(GETDEFERR NIL name type o p t io n s)))))

SUM <form> S p ec if ie s th a t the values r e s u l t in g
from the eva lua tion of <form> a t each
i t e r a t i o n should be added to g e th e r .

23.4 Iterative Statements 849

The IRM suggests th a t you can define the sum of squares
as follows:

<-(DEFINEQ
(sum .of.squares (n)

(FOR i FROM 1 to n SUM (ITIMES i i))
))

(SUM.OF.SQUARES)

which, when executed fo r N.equal to 7 would y ie ld the sum
of 1 + 4 + 9 + 16 + 25 + 36 + 49 or 140.
■«-(sum. of .squares 7)

lAO
COUNT <form> Counts the number of times th a t the

r e s u l t of evaluating <form> is t ru e .

Suppose I have a vec to r of numbers whose values represen t
the c lo s ing value of the New York Stock Exchange fo r
1982. I want to f ind on how many days the market closed
above 1200. I could do so using the following expression:

(FOR i from 1 to 365
COUNT (GREATER? (ELT nyse .c lose i) 1200.0))

ALWAYS <form> Returns T i f every evaluation of <form>
is t ru e ; o therw ise, i t re tu rn s NIL as
soon as NIL is the r e s u l t of the
eva lua tion . I t i s equivalent to

(EVERY x (FUNCTION <fn>))

The form (ALWAYS X) i s t r a n s la te d as follows:
(PROG (($$VAL T))

$$LP
(COND

((NULL X)
(SETQ $$VAL NIL)
(GO $$OUT)))

$$ITERATE
(GO $$LP)

$$OUT
(RETURN $$VAL))

NEVER <form> Returns T i f every eva luation of <form>
i s NIL; o therw ise, i t re tu rn s T as soon
as T i s the r e s u l t of the eva lua tion .
I t i s equ ivalen t to

ALWAYS" <form>

850 Conversational LISP

or
(NOTANY y (FUNCTION <fn>))

THEREIS <form> Returns the f i r s t value of the
i t e r a t i o n v a r ia b le fo r which the r e s u l t
o f eva lua ting <form> is non-NIL. I t is
equ iva len t to

(CAR
(SOME y (FUNCTION <fn>)))

23.4 Iterative Statements 851

23.4.3 I.S.Binding Operators
An iterative statement binding operator binds the iteration variable for the itera
tion. These operators are

FOR <var> S p ec if ie s the v a r ia b le of i t e r a t io n
which i s used with an i . s . s e l e c t i o n
o p e ra to r . The v a r ia b le i s rebound (i f
i t has the same name as some ex te rn a l
v a r iab le) fo r the scope and duration of
the i t e r a t i v e statem ent unless OLD is
sp e c if ie d .

FOR <vars> <vars> i s a l i s t of v a r ia b le s , the f i r s t of
which i s the i t e r a t i o n v a r ia b le , while
the r e s t are dummy v a r ia b le s .

Consider the following example from
GETDEFFROMFILE which t r i e s to get a
d e f in i t io n from a source f i l e .

(DEFINEQ
(g e td e ff ro m file (name type source options)

(RESETVARS
(NOT-FOUND-TAG)
(RETURN

(FOR f i l e def temp terap2
INSIDE

(COND
((EQ source ' f i l e)

(WHEREIS name type T))
(T source))

WHEN
(AND . . .

where TEMP and TEMP2 are bound w ith in various cases in
the AND . . . c l a u s e .

OLD <var> S pec ifies th a t the variab le i s not to
be rebound, e .g . , reuse a v ar iab le th a t
you have already used.

Consider the example:

(FOR OLD (SETQ X (expression))
BIND (SETQ Y (expression) . . .)

BIND <var> Used to specify dummy v ar iab les or BIND
<vars> to make a variab le lo c a l to an
expression.

852 Conversational LISP

23.4.4 l.S.Selection Operators
An iterative statement selection operator assigns a value to the iteration variable
at each iteration. These operators are used with i.s.type operators described
above.

IN <form> S pec if ie s th a t the i t e r a t io n v a r ia b le
i s s e t to successive elements of the
value r e s u l t in g from the evaluation of
the form. I f no i t e r a t io n v a r iab le has
been sp e c if ie d , a dummy w il l be
supplied .

Consider the following example:

<-(DWIMIFY '(FOR X IN Y JOIN X Y))
(MAPCONC Y

(FUNCTION
(LAMBDA (X)

X
Y)))

IN OLD <var> S p ec if ie s th a t the i t e r a t io n v a r iab le
i s r e s e t to i t s t a i l a t each i t e r a t io n .

ON <form> S p ec if ie s th a t the i t e r a t io n v a r iab le
i s r e s e t to the corresponding t a i l a t
each i t e r a t io n .

ON OLD <var> S p ec if ie s th a t the v a r ia b le i s r e s e t to
i t s cu rren t value a t the end of each
i t e r a t i o n (where i t i s assumed th a t the
v a r ia b le i s s e t in the body of the
ex p re ss io n) .

INSIDE <form> S p ec if ie s th a t the i t e r a t io n proceeds
u n t i l the f i r s t n o n - l i s t , non-NIL
element of the form is encountered.

Consider the following example from INFILEPAIRS in the File Package:

(FOR 11 IN 1 s t
DO

(FOR X INSIDE (CAR 11)
DO

(FOR y INSIDE (CDR 11)
DO

INFILECOMSVAL (LI'ST x y))))

where the INSIDE expression translates to

(PROG ($$VAL X ($$TEM1 (CAR LL)))
$$LP

(COND
((NULL $$TEM1)

(GO $$OUT))
((NLISTP $$TEM1)

(SETQ X $$TEM1)
(SETQ $$TEM1 NIL))

(T
(SETQ X (CAR $$TEM1))
(SETQ $$TEM1 (CDR $$TEM1))))

(INFILECOMSVAL (LIST X Y))
$$ITERATE

(GO $$LP)
$$OUT

(RETURN $$VAL))

FROM <form> S p ec if ie s an i n i t i a l value fo r a numerical
i t e r a t i o n v a r ia b le . The i t e r a t i o n v a r iab le
w i l l au tom atica lly be incremented by 1
a f t e r each i t e r a t i o n (i f no BY clause i s
s p e c i f i e d) . I f no i t e r a t io n v a r ia b le i s
s p e c if ie d , a dummy v a r ia b le i s supplied and
i n i t i a l i z e d in the t r a n s la t io n .

TO <form> S p e c if ie s the f in a l value fo r a numerical
i t e r a t i o n v a r ia b le . The i t e r a t io n
te rm ina tes when the value of the i t e r a t io n
v a r ia b le exceeds the value r e s u l t in g from

23.4 Iterative Statements 853

the evaluation of the form (unless some
o ther term ination condition i s met f i r s t) .

BY <form> I f used with an IN/ON clause , the value
re s u l t in g from the evaluation of the form
determines the t a i l of the next i t e r a t io n .
The new value of the i t e r a t io n variab le is
the CAR of the t a i l fo r IN or the t a i l
i t s e l f fo r ON.

BY <form> I f used without IN/ON, the value r e su l t in g
from the evaluation of the form sp e c if ie s
how the i t e r a t io n v ar iab le is s e t a t each
i t e r a t i o n . The i t e r a t io n v ar iab le is
assumed to be numeric. The new i t e r a t io n
v a r ia b le value i s computed by adding the
value of the evaluation of form a t each
i t e r a t i o n to the cu rren t value of the
i t e r a t i o n v a r ia b le .

Consider the combined example for the three operators described above:

<-(DWIMIFY ’ (FOR X FROM 1 TO 20 BY 2 DO (PRINT X)))
(PROG (($$TEM1 20)

$$VAL
(X D)

$$LP
(COND

((IGREATERP X $$TEM1)
(RETURN $$VAL)))

(PRINT X)
$$ITERATE

(SETQ X (IPLUS X 2))
(GO $$LP))

AS <variable> S p ec if ie s an i t e r a t i v e statem ent involving
more than one i t e r a t i v e v a r ia b le . The
i t e r a t i v e statem ent term inates when any of
the te rm inating conditions are met. The
argument, (v a r ia b le) , sp e c if ie s the new
i t e r a t i v e v a r ia b le . For the remainder of
the s tatem ent or u n t i l another AS is
encountered, a l l opera to rs w i l l apply to
the new i t e r a t i v e v a r ia b le . Consider the
example (a f t e r the IRM)

854 Conversational LISP

23.4 Iterative Statements 855

(FOR I FROM 1 TO N1
AS J FROM 1 TO N2 BY 2

AS K FROM N3 TO 1 BY -1 . . .)

23.4.5 I.S.Termination Operators
An iterative statement termination operator specifies a condition for terminating
the iteration. The effect of these operators takes precedence over the termination
conditions given by IN/ON ... FROM ... TO ... BY clauses.

WHEN <form> The i . s . t y p e opera to r w i l l be executed
only i f the condition r e s u l t in g from
the eva lua tion of the form is t ru e .

Consider the following translation:

^(DWIMIFY '(FOR X IN Y COLLECT X WHEN (NUMBER? X)))
(SUBSET Y (FUNCTION NUMBER?))

UNLESS <form> The i . s . t y p e opera to r i s executed
except when the condition r e s u l t in g
from the eva luation of form i s t ru e .
I t i s equ ivalen t to WHEN ” <forra>.

Consider the following translation:

^-(DWIMIFY '(FOR X IN Y COLLECT X UNLESS (NUMBERP X)))
(SUBSET Y

(FUNCTION
(LAMBDA (X)

(NOT (NUMBERP X)))))

WHILE <form> The i . s . t y p e opera to r i s executed as
long as the value r e s u l t in g from the
eva lua tion of form is t ru e . The form
i s evaluated before each i t e r a t io n . A
NIL r e s u l t te rm inates the i t e r a t io n .
The t e s t i s performed before each
i t e r a t i o n .

UNTIL <form> The i . s . t y p e opera to r i s executed as
long as the value r e s u l t in g from the
ev a lua tion of the form is NIL. I t i s
equ iva len t to WHILE ”<form>.

I f <forra> i s a number, then the
i t e r a t io n term inates when the value of
the i t e r a t io n variab le i s g rea te r than
the number.

(UNTIL <x>) would t r a n s la te as

(PROG ($$VAL)
$$LP

(COND
(<x> (RETURN $$VAL)))

$$ITERATE
(GO $$LP))

REPEATWHILE <form> Like WHILE, except th a t the t e s t is
performed a f t e r the i t e r a t io n , but
before the I te r a t io n v ar iab le i s r e s e t
so th a t you may t e s t the value of the
i t e r a t io n v a r ia b le .

REPEATUNTIL <form> Like UNTIL, except th a t the t e s t is
performed a f t e r the evaluation of the
body of the i t e r a t io n , but before the
i t e r a t i o n v a r ia b le i s r e s e t so th a t
you may t e s t the value of the
i t e r a t i o n v a r ia b le .

I f <form> i s a number, then the
i t e r a t i o n term inates when the value of
the i t e r a t io n v a r ia b le i s g re a te r than
the number.

856 Conversational LISP

23.4.6 I.S.Modification Operators
An iteration statement modification operator modifies the execution of the itera
tion statement or the value(s) produced by its execution.

FIRST <form> The form is evaluated once before the
f i r s t i t e r a t i o n . I t i s o f ten used to
i n i t i a l i z e dummy v a r ia b le s (see BIND).
Consider the example (a f t e r the IRM)

(FOR X Y Z IN LST
FIRST (INITIALIZE Y Z) . . .)

FINALLY <form> The form i s evaluated a f t e r the
i t e r a t i o n te rm ina tes .

Ex: The IRM suggests the following example for counting the number of
atoms in a list:

(FOR X IN 1 s t
BIND y<-0

DO
(IF ATOM X THEN y-^y+l)

FINALLY (RETURN y))

EACHTIME <form> The form i s evaluated before each
i t e r a t i o n . I t i s o f ten used to assign
values to temporary v a r ia b le s or
perform o the r computations which may
be used in sev era l p laces in the body
o f the i t e r a t io n .

DECLARE <decl> Used to in s e r t a d ec la ra t io n a f t e r the
DECLARE: <decl> PROG v a r ia b le l i s t in the t r a n s la t io n

or a f t e r the LAMBDA expression in a
mapping func tion . Usually used to
sp ec ify lo c a l or sp e c ia l v a r ia b le s fo r
expressions th a t w i l l u t l im a te ly be
compiled.

ORIGINAL < i.s .o p r> S p ec if ie s th a t the o r ig in a l , b u i l t - i n
in te r p r e t a t io n of the i t e r a t i v e
sta tem ent opera to r w i l l be used r a th e r
than any user-defined in te rp re ta t io n s
of i t .

Each of these operators may have operands that consist of multiple expres
sions. In the translation, a PROGN will be supplied to handle the multiple oper
ands.

23.4 Iterative Statements 857

23.4.7 Potential Errors in Iterative Statements
The flexibility of the I.S.OPRs also provides opportunities for generating erro
neous expressions. Some pitfalls to watch out for include

1. Operators with null operands, as evidenced by two adjacent operators in
an expression:

<-(DWIMIFY '(FOR X IN Y UNTIL DO (CONS XX)))
e r r o r in i t e r a t i v e sta tem ent,
m issing operand:
. . . UNTIL . . . DO (CONS X X)

2. Operands consisting of more than one form (except as explicitly allowed
for the i.s.modification operators:

^(DWIMIFY '(FOR X IN Y (PRINT X) COLLECT X))
e r ro r in i te r a t iv e statem ent,
. . . (Y (PRINT X)) . . . COLLECT X

3. IN, ON, FROM TO, or BY appear twice or more in the same iterative
statement:

<-(DWIMIFY '(FOR X IN Y AND A IN B DO COLLECT X A))
e r ro r in i t e r a t iv e statem ent,
o p era to r appears tw ice:
. . . IN Y AND A IN B DO COLLECT X A

4. Both IN and ON used on the same iterative variable:

<-(DWIMIFY '(FOR X IN Y AND A ON Y DO COLLECT X A)))
e r ro r in i te r a t iv e sta tem ent,
c a n 't use both of these opera to rs to g e th er:
. . . IN Y AND A ON Y DO COLLECT X A

5. FROM or TO used with IN or ON on the same iterative variable;

-^(DWIMIFY ' (FOR X IN Y DO FROM 1 TO Y (ADDl X)))
e r ro r in i te r a t iv e sta tem ent,
c a n 't use both these opera to rs to g e th er:
. . . IN Y DO FROM 1 TO Y (ADDl X))

6. Missing DO, COLLECT, or JOIN:

< (̂DWIMIFY '(FOR X IN Y (ADDl X)))
(MAPC Y (FUNCTION ADDl))

where CLISP has inserted a DO after Y. On the other hand, consider

^(DWIMIFY '(FOR X IN Y CONS X))
No DO, COLLECT, o r JOIN in :
(FOR X IN (Y CONS X))

7. No terminating condition is detected:

< (̂DWIMIFY '(FOR X FROM 1 BY 3 DO (PRINT X)))
P o ssib le non-term inating i te r a t iv e sta tem ent:
(FOR X FROM 1 BY 3 DO (PRINT X))

858 Conversational LISP

(PROG ($$VAL (X I))
$$LP

(PRINT X)
$$ITERATE

(SETQ X (IPLUS X 3))
(GO $$LP))

where there is no way to terminate the PROG loop.

The iterative statement is still translated because you may terminate the
statement from within a function invoked in the statement by a RETFROM, by
inducing an error (such as in the Editor), or executing <CTRL-E>.

When an erroneous condition is detected, a diagnostic message will be
printed unless CLISP.I.S.GAG is T. It is initially NIL. When an error occurs,
the iterative statement is not changed (e.g., translated).

23.4.8 Defining New Iterative Statement Operators
You may define a new I.S.OPR or redefine an existing one using I.S.OPR. It
takes the form

Function: I.S.OPR

Arguments: 4
Arguments: 1) an i . s .o p r name, NAME

2) an expression , EXPRESSION
3) an o p tio n a l l i s t of i . s .o p r s , OTHERS
4) an ev a lu a tio n f la g , EVALFLAG

Value: The name of the new i . s .o p r .

If EXPRESSION is a list, then NAME is the name of the new i.s.opr and
EXPRESSION is its body, e.g., its translation. For example, we might define
GATHER similarly to COLLECT as follows:

^-(I.S.O PR 'GATHER '(SETQ $$VAL (NGONCl $$VAL BODY)))
GATHER

<-(DWIMIFY '(FOR X IN Y GATHER X))
(PROG (($$LST1 Y)

$$VAL X))
$$LP

(SETQ X
(CAR (OR (LISTP $$LST1)

(GO $$OUT))))
(SETQ $$VAL (NGONCl $$VAL X))

23.4 Iterative Statements 859

$$ITERATE
(SETQ $$LST1 (CDR $$LST1))
(GO $$LP)

$$OUT
(RETURN $$VAL))

The IRM notes that you may define the following versions of COLLECT that
use different functions:

(I.S.OPR 'RCOLLECT ^
'($$VAL<^(CONS BODY $$VAL))
'(FINALLY (RETURN (DREVERSE $$VAL))))

RCOLLECT uses CONS instead of NCONCl and reverses the values that it
collects. Here, OTHERS is an list of additional i.s.operators and operands that
will be inserted in the iterative statement where NAME appears.

EXPRESSION may be NIL, whence the new i.s.opr is defined by OTHERS.

(I.S.OPR 'TCOLLECT
'(TCONC $$VAL BODY)
'(FIRST $$VAL-^(CONS) FINALLY (RETURN (CAR
$$VAL))))

In EXPRESSION and OTHERS, you may use the atom $$VAL to refer to
the value returned by the iterative statement. You may use I.V. to refer to the
current iterative variable. And you may use BODY to refer to the operand of
NAME.

If EVALFLAG is T, EXPRESSION and OTHERS are evaluated at transla
tion time and the value is used in the translation. This allows you to vary the
translation for the same i.s.opr depending on conditions within your program.

You may save new I.S.OPRs that you have defined using the File Package
command I.S.OPRS (see Section 17.2.15).

23.5 ENGLISH PHRASES
One objective of CLISP is to make INTERLISP code more readable. To this
end, it accepts a limited number of English-like constructions of the form
“ (subject) is <object>” .

NROWS is a NUMBER
(MAKEFILENAME x) i s not a STRING

Both the subject and the object may be distributed:

XWORD AND TWORD ARE ATOMIC

860 Conversational LISP

means

XWORD IS ATOMIC and TWORD IS ATOMIC

CLISP converts INTERLISP expressions into “english” when CLISPI-
FYENGLSHFLG is T.

23.5.1 Basic English Forms
CLISP knows about a set of English words in both their singular and plural

23.5 English Phrases 861

forms. This set includes

ARRAY ATOM ATOMIC FLOATING POINT NUMBER
LIST LITATOM NIL LITERAL ATOM
NUT.T, NUMBER STRING SMALL INTEGER
EQ TO EQUAL TO GEQ SMALL NUMBER
GT LT MEMB OF GREATER THAN
TAIL OF MEMBER OF LESS THAN

Any relationship may be negated by using NOT or N’T:

(CADR NAME) AND (CDDR Y) AREN'T LISTS.

23.5.2 Defining New Words
You may expand the lexicon used by CLISP using the function NEWISWORD,
which takes the form

Function: NEWISWORD

Arguments: 4
Arguments: 1) a s in g u la r form, SING

2) a p lu ra l form, PLURAL
3) a t r a n s la t io n form, FORM
A) th e form param eters, VARS

Value: The name of the new word th a t w ill be
recognized by CLISP.

For example, the IRM notes that you may define the phrase SMALL INTE
GER using the following expression:

(NEWISWORD
'(X IS A SMALL INTEGER)
'(ARE SMALL INTEGERS)

'(SMALLP X)
'(X))

SMALL

<-(DWIMIFY '(5 IS A SMALL INTEGER))
(SMALLP 5)

♦-(5 IS A SMALL INTEGER)
5

Note that the plural form does not include the subject.
The ability to define new words for CLISP translations allows you to extend

your interactive environment to accommodate new sentences. In fact, you may
define a subset of English using appropriate NEWISWORD and I.S.OPR defi
nitions that will make your programs much more accessible.

23.6 CLISPIFYING
CLISPIFY is a function that converts an INTERLISP expression to CLISP nota
tion. It takes the form

Function: CLISPIFY

Arguments: 2

Arguments: 1) an expression , EXPRESSION
2) an o p tio n a l l i s t , LST

Value: The t r a n s la t io n of EXPRESSION.

If EXPRESSION is an atom and LST is NIL, EXPRESSION is assumed to
be the name of a function. CLISPIFY operates on its definition (via GETD) or
its EXPR property value. After CLISPIFYing, EXPRESSION is redefined via
/PUTD with its new CLISP definition.

If EXPRESSION is atomic, but not the name of a function, CLISPIFY at
tempts to correct its spelling. If this is successful, it proceeds as above. Other
wise, an error is generated.

(CLISPIFY '(PROG (X) (COND ((NULL X) (SETQ X (CAR Y)))
(T (PRINT X)))))
(PROG (X) (i f X=NIL then X ^Y:1 e lse (PRINT X)))

If X is an S-expression and LST is not NIL, X will be translated to CLISP
notation. LST is an edit push-down list that provides a context for DWIMIFY-
ing the expression.

(CLISPIFY ’ (itim es x y))
(x*y)

862 Conversational LISP

23.6.1 CLISPIFY Variables
CLISPIFY operation is affected by the values of several global variables.

CL:FLG A ffects the t r a n s la t io n of CAR, CDR,
CADR, . . . , CDDDDR to the corresponding
in f ix n o ta tio n using the : o p e ra to r. I f
CL:FLG is T, simple expressions where
the argument is atomic or a simple l i s t
w il l be converted to : n o ta tio n . I f
CL:FLG is ALL, every p o ssib le
conversion to : n o ta tio n w ill be made.
For example,

<-(SETQ n fl.c o a ch e s '(g ib b s landry g ran t stram))
(g ibbs landry g ran t stram)

«-(SETQ CL:FLO T)
T

(CLISPIFY ' (SETQ re tire d .c o a c h e s (CADR n f l.c o a c h e s)))
(re tire d .c o a c h e s* -n f l .c o a c h e s ::2)

CLREMPARSFLG A ffects the removal of paren theses from
sim ple expressions in o rder to improve
th e i r r e a d a b i l i ty . I t i n i t i a l l y has the
value NIL. For example,

<-(SETQ CLREMPARSFLG T)
T

(CLISPIFY '(COND ((ATOM X) (LIST X)) ((LISTP X) X) (T
(CONS X N IL))))
(i f ATOM X then X e l s e i f LISTP X then X:1 e lse (CONS X
NIL))

CLISPIFYPACKFLG A ffec ts the form of the tr a n s la t io n fo r
atomic operands. I f i t s value is T, a
t r a n s la t io n involving in f ix opera to rs
can be packed in to a s in g le atom. For
example,

<-(SETQ CLISPIFYPACKFLG NIL)
NIL
-^(CLISPIFY '(ITIMES X Y))
(X * Y)

23.6 CLISPrFYing 863

<-(SETQ CLISPIFYPACKFLG T)
T

♦-(CLISPIFY '(ITIMES X Y))
(X*Y)

CLISPIFYENGLSHFLG A ffects the production of English
phrases. When i t is T, CLISPIFY
tr a n s la te s INTERLISP expressions in to
th e i r corresponding English phrases
using e i th e r the SYSHASHARRAY or
CLISPARRAY. For example,

<-(SETQ CLISPIFYENGLSHFLG T)
T

(CLISPIFY '(COND ((ATOM X) X) ((LISTP X) (CAR X)) (T
(PRINl X)))).
(i f (ATOM X) then X e l s e i f (LISTP X) then X:1 e lse (PRINl
X))

FUNNYATOMLST Allows CLISP to avoid c o n f lic ts between
i t s tr a n s la t io n s and atoms defined by
th e u se r. For example, i f you have
defined atoms o f the form X, Y, and X*Y
(a le g a l atom !), then

^(CLISPIFY '(ITIMES X Y))
X*Y

which c o n f l ic ts w ith a v a ria b le name.
You may prevent th is c o n f l ic t by adding
the atom X*Y to FUNNYATOMLST. CLISPIFY
w il l produce

■<-(SETQ funnyatom lst (LIST 'x*y))
(x*y)
-^(CLISPIFY '(ITIMES X Y))
(X * Y)

Note: You should avoid using CLISP op era to rs as
components o f v a r ia b le names. In g en era l, th e re i s no
reason to use such meaningless v a ria b le names when you
have the a b i l i t y to make v a r ia b le names mnemonically
in te r e s t in g .

864 Conversational LISP

CLISPIFYPRETTYFLG A ffec ts the p re tty p r in t in g o f a l l
ex p ressio n s. I f i t s value is T,
PRETTYPRINT invokes CLISPIFY on a l l
expressions before p r in tin g them.
MAKEFILE (see Section 17.3 .1)
au to m atica lly s e ts CLISPIFYPRETTYFLG to
T befo re w ritin g expressions to a f i l e .

I t tak es the follow ing values:

ALL Apply to a l l functions

T.EXPRS Apply to functions th a t are
c u rre n tly defined as EXPRs

CHANGES Apply to functions th a t have
been marked as changed

< lis t> Apply only to functions th a t
are mentioned in the l i s t

23.7 CLISP Conventions 865

23.7 CLISP CONVENTIONS
CLISP acts like a table-driven translator. Each operator has properties which
describe how its translation is to be affected. You may add new operators or
redefine existing operators by modifying the values of properties associated with
those operators. CLISP uses the following properties:

CLISPTYPE This p ro p erty is the precedence of the
o p e ra to r. I t defines how the o pera to r w ill
be tr a n s la te d r e la t iv e to o th e r o p e ra to rs .
The a c tu a l value is not im portant, only i t s
value r e la t iv e to o th e r o p era to rs . The value
may be a number, a do tted p a ir , o r an
expression to be evaluated .

An o p era to r may have d if fe re n t l e f t and
r ig h t precedence by s e t t in g the value of
CLISPTYPE to a do tted p a ir of two numbers.
For example, the precedence of ^ i s the
d o tted p a ir (8. -1 2). The CAR of the do tted
p a i r i s the l e f t precedence while the CDR is
th e r ig h t precedence. The IRM notes th a t
A*B<-C+D is parsed as A*(B<-(C+D)) because
th e l e f t precedence of i s 8 while th a t of
* i s -4, but i t s r ig h t precedence i s -12
which i s lower than th a t of + which is 2.

866 Conversational LISP

UNARYOP

BROADSCOPE

LISPFN

SETFN

CLISPINFIX

The precedences o f the CLISP o pera to rs are
given in Section 2 3 .2 .^ .

Removing the precedence of a CLISP opera to r
d isa b le s the corresponding transfo rm ation
(see CLDISABLE).

This p ro p erty w ith value T dec la res the
o p e ra to r to be a unary o p e ra to r. I t s operand
must always be to i t s r ig h t in the
ex p ressio n .

This p ro p erty w ith value T dec la res th a t the
o p e ra to r has lower precedence than INTERLISP
forms. For example, (FNl X AND Y) would be
t r a n s la te d as ((FNl X) AND Y) i f the
BROADSCOPE p ro p erty fo r AND i s T, but (FNl
(X AND Y)) o therw ise .
This p ro p erty has as i t s value the INTERLISP
fu n c tio n to which the o p era to r w il l be
t r a n s la te d . The t r a n s la t io n s fo r the CLISP
o p e ra to rs are given in S ection 2 3 .2 .6 .
I f LISPFN is NIL, the o p era to r i s a lso the
fu n c tio n i t s e l f . For example, AND i s both a
CLISP o p era to r and the corresponding
fu n c tio n .

I f an o p e ra to r has a SETFN p ro p erty , then an
ex p ressio n o f th e form

(<op> . . .) ■<- {expression)

w il l be t r a n s la te d to an expression th a t
s e ts th e corresponding v a lu es .

For example, you may make # be a CLISP
o p e ra to r eq u iv a len t to th e fu n c tio n ELT (see
S ec tio n 11 .2 .6) by p u ttin g the CLISPTYPE
p ro p e rty on i t s p ro p erty l i s t . I f you pu t a
SETFN p ro p erty on the p ro p erty l i s t o f #,
ex p ressio n s o f th e form X#N Y w il l be
t r a n s la te d to (SETA X N Y).

This p ro p erty i s used when t r a n s la t in g
INTERLISP forms to in f ix n o ta tio n . This
p ro p e rty re s id e s on th e p ro p erty l i s t o f the
INTERLISP fu n c tio n . For example,

t

23.7 CLISP Conventions 867

(GETPROP 'EXPT ’CLISPINFIX)

<-(GETPROP 'TIMES 'CLISPINFIX)
(CLISPINFIX *)

CLISPWORD This p roperty is a sso c ia ted w ith CLISP
o p era to rs th a t may be the CAR of an
exp ression . I t s form is

(<keyword) . <name>)

where <name> is the low er-case version of
th e o p era to r and <keyword) is i t s type.

^(GETPROP 'FETCH ’CLISPWORD)
(RECORDTRAN . fe tch)

<keyword) may a lso be a fu n c tio n . When the
atom appears as the CAR of an expression ,
the function is e i th e r applied to the
expression to change the expression or c a l ls
CLISPTRAN to s to re a t r a n s la t io n .

CLISPBRACKET This p roperty defines new b racket o p e ra to rs .
I t must appear on the p roperty l i s t of both
th e l e f t and r ig h t b rack e ts .

The p roperty must a lso appear on the
p ro p erty l i s t of any functions th a t the
expressions involving the b racke ts w ill
t r a n s la te to . The value of the p roperty in
th i s case i s a l i s t whose CAR is the l e f t
b rack e t symbol, whose CADR is the r ig h t
b rack e t symbol, and whose CDDR is a l i s t in
p ro p erty l i s t format which may include the
p ro p e r tie s

DWIMIFY Value i s a function to be
c a lle d to DWIMIFY the
co n s tru c t. I t is given the
DWIMIFYed expression bounded
by the b rack e ts .

CLISPIFY Value is the function to be
c a lle d when CLISPIFYing the
c o n s tru c t .

SEPARATOR Value i s a ch arac te r to be
s p l i t from any atoms, but
otherw ise unprocessed. For
example, fo r < and > the
sep ara to r is I .

To define [and] as b rackets which tr a n s la te to ELT in
the case o f a s in g le expression and ELTM fo r more than
one:

I

-^(PUTPROP ' ['CLISPTYPE 'BRACKET)
BRACKET
^(PUTPROP ’] ’CLISPTYPE ’BRACKET)
BRACKET

^^(PUTPROP ' [’CLISPBRACKET ’ ([] (SEPARATOR NIL
DWIMIFY FOO))
' ([] (SEPARATOR NIL DWIMIFY FOO))

< <-(PUTPROP ’] 'CLISPBRACKET '({] (SEPARATOR NIL
DWIMIFY FOO))
' ([] (SEPARATOR NIL DWIMIFY FOO))

♦-(DEFINEQ
(FOO (EXPRESSION LST)

(IF (MEMBER ' , LST)
THEN

< 'ELTM EXPRESSION
(FOR X IN LST

COLLECT X
WHEN X=',)>

ELSE <’ELT EXPRESSION ! LST>)))
(FOO)

♦-(NCONC CLISPCHARS ' ([] ,))
(t * / + - = -^ : ' +- = < > @ ! [])
<-(SETQ CLISPCHARRAY (MAKEBITTABLE CLIPSCHARS))
{ARRAYP}]#542224

Then, X:1[N-1] w il l dwimify to (ELT (CAR X) (SUBl N)) and
Z[N,M] w il l dwimify to (ELTM Z N M).

To enable CLISPIFYing, you must define

♦-(PUTPROP ’ELT 'CLISPBRACKET '[)
[

868 Conversational LISP

[
(PUTPROP 'ELTM ' CLISPBRACKET '[)

23.8 CLISP Functions 869

Then, (ELTM (CADR A) (IQUOTIENT (SUBl N) 2)) I) w ill
c l i s p i f y to A :2 [(N -1)/2 ,I]

23.8 CLISP FUNCTIONS
CLISP provides a number of functions that allow you to produce the effect of a
CLISP translation from within your program or modify the state of your environ
ment.

23.8.1 CLISPIFYing Functions
CLISPIFYFNS is an NLAMBDA, nospread function that takes a list of one or
more functions as its argument. It invokes CLISPIFY on each function in the
list. It takes the form

Function: CLISPIFYFNS

Arguments: 1

Argument: 1) a function s p e c if ic a tio n , FNS

Value: A l i s t o f functions th a t have been
CLISPIFYed.

CLISPIFYFNS handles the following cases:

1. If FNS is an atom and is the name of a function, then that function is
CLISPIFYed.

2. If FNS is an atom and is not the name of a function, CLISPIFYFNS
determines if it is the name of a file. If it is, then the list of function given
by the FNS command in the File Package commands is used as the list of
functions to CLISPIFY.

3. If FNS is neither the name of a function nor the name of a file, it gener
ates an error.

4. If FNS is a list, then CLISPIFY is applied to each element of the list.

If any element of the list does not have a function definition, CLISPIFYFNS
simply moves to the next element. The application of CLISPIFY is errorset pro
tected so that a non-function name in the middle of the list will not cause the
operation to be terminated.

23.8.2 Disabling CLISP Operators
You may disable a CLISP operator by executing the function CLDISABLE,
which takes the form

870 Conversational LISP

Function:

Arguments:
Argument:

V alue:

CLDISABLE

1

1) an o p era to r, OPERATOR

The o p e ra to r .

Disabling a CLISP operator causes the operator to be treated as just another
character. Consider the following example:

•5*10
50

(CLDISABLE '*)
*

^ 5*10
UNBOUND ATOM
5*10

23.8.3 Storing CLISP Translations
For frequently used expressions, you may cache the CLISP translation of an ex
pression for future use by executing CLISPTRAN, which takes the form

Function:

Arguments:

Arguments:

V alue:

CLISPTRAN

2

1) an expression , EXPRESSION
2) a tr a n s la t io n , TRANSLATION

The value of the tr a n s la t io n .

CLISPTRAN stores TRANSLATION as the translation of EXPRESSION
in the hash array CLISPARRAY. CLISPTRAN is usually called by CLISPIFY to
preserve translations. Consider the following example:

CLISPTRAN 'X*Y '(ITIMES X Y))
(ITIMES X Y)

23.9 CLISP VARIABLES
CLISP uses many global variables to drive the translation process. These vari
ables are available for inspection and modification by your programs so that you
may determine how yoiir program will be translated.

23.9 CLISP Variables 871

CLISPFLG Determines when CLISP tr a n s la t io n s are
perform ed. I t takes one of th ree values:

1. I f CLISPFLG is NIL, no CLISP in f ix or
p re f ix tr a n s la t io n s w ill take p lace .
However, IF/THEN/ELSE and i te r a t iv e
sta tem ents w ill not be a ffe c te d .

2. I f CLISPFLG is TYPE-IN, CLISP
tr a n s la t io n s are performed only on
expressions typed in by you (inc lud ing
DEFINEQ ex p ressio n s), but not on
e x is tin g functions th a t you have
a lready defined .

3 . I f CLISPFLG is T, CLISP tra n s la tio n s
are performed on a l l expressions
reg a rd le ss of th e i r o r ig in .

CLISPARRAY

The i n i t i a l value of CLISPFLG is T.

I f you CLISPIFY any expression , i t w ill
leave CLISPFLG s e t to T (a side e f f e c t) .

A hash a rray (see Section 11.3) th a t is
used to s to red a l l CLISP tr a n s la t io n s .
Both FAULTEVAL and FAULTAPPLY check
CLISPARRAY fo r the tr a n s la t io n of
erroneous forms before c a llin g DWIM.

I f NIL, DWIMIFY (see Section 22.5) w ill
not ask your approval fo r any CLISP
t r a n s la t io n s . In stead , i t assumes a
d e fa u lt o f "No” . IF CLISP is enabled, th is
f la g should be s e t to T.

CLISPIFTRANFLG I f NIL, CLISP rep laces IF/THEN/ELSE
sta tem ents by the corresponding COND
ex p ressio n s. I f T, the tra n s la tio n s are
s to red in a system ta b le . I t is i n i t i a l l y
NIL.

CLISPHELPFLG

CLISPRETRANFLG I f T, DWIMIFY w ill (r e) tr a n s la te a l l
expressions having tra n s la tio n s sto red in
the hash array or in CLISPJ5 form at. I t is
i n i t i a l l y NIL.

CLISPIFYUSERFN I f T, i t s value i s applied to each
expression which is not recognized by
CLISPIFY. That i s , i f CLISP does not have
a tr a n s la t io n fo r an expression , the
function given by CLISPIFYUSERFN is ca lled
to deal w ith the expression . I f a non-NIL
value is re tu rn ed , i t i t assumed to be the
CLISPIFYed expression .

872 Conversational LISP

23.10 THE CHANGETRAN PACKAGE
The CHANGETRAN Package is a mechanism for expressing, in a shorthand
notation, some of the more commonly used structure modification operations.
CHANGETRAN defines a set of CLISP words that encode the kind of modifica
tion that will be performed when the word is encountered and translated by IN
TERLISP.

23.10.1 CHANGETRAN Words
The CHANGETRAN Package defines a set of basic words that are recognized by
CLISP:

(ADD <datum> <iteml> ... <itemN»
The values of the specified items are added to <datum) and the result is stored
back into <datum>. CLISP uses IPLUS, FPLUS, or PLUS depending on the
CLISP declarations currently in effect. Consider the following examples:

•^(SETQ X 100)
100

<-(ADD X 25)
125

(PUSH <datum> <iteml> ... <ltemN»
The values of the specified items are CONSed onto the front of the current value
of < datum >. The result is stored as the value of < datum >. Consider the following
examples:

<-(SETQ STACK NIL)
NIL

^(PUSH STACK ’A)
(A)

^(PUSH STACK »B)
(B A)

(PUSHNEW (datum) <item>)
The specified item is CONSed onto the front of the current value of <datum) if
and only if it is not already a member of < datum)’s value. Consider the following
examples:

^(PUSHNEW STACK »A)
(B A)

< -(PUSHNEW STACK 'C)
(C B A)

(PUSHLIST <datum) <iteml) ... <itemN))
The specified items are APPENDed rather than CONSed to the front of the cur
rent value of (datum).

(POP <datum))
The first element of (datum) is returned. The CDR of the original value of (da
tum) is stored as the new value of (datum). Consider the following examples:

<-(POP STACK)
C

STACK
(B A)

23.10 The CHANGETRAN Package 873

^(POP STACK)
A

<-(POP STACK)
NIL

(SWAP (datuml) (datum2))
The values of (d a tu m l) and (datum2) are assigned to each other. Consider the
following example:

^(SETQ X 100)
100

^(SETQ Y 200)
200

<-(SWAP X Y)
200

* - X

200
<-Y
100

(CHANGE <datum> <form>)
The value of <form> is an arbitrary expression that enables you to specify what
the new value of (datum) should be. The new value of (datum) is the value of
(form)* where (form)* is constructed from (form) by substituting the value of
(datum) for every occurrence of the literal atom DATUM in (form).

23.10.2 Defining New CLISP Words
You may define new CLISP words for use by the CHANGETRAN Package by
placing the property CLISPWORD on the atom representing the word. The
value of the property has the form

(CHANGETRAN . (word))

You must put the property on both the upper- and lower-case versions of the
word. On the lower-case version of the word, you must place the property
CHANGEWORD with a function as its value. The function will be applied to a
single argument, the expression which is the argument to the word. It must re
turn an expression that CHANGETRAN can translate into an appropriate ex
pression.

The expression returned from the function should include the literal atom
DATUM wherever you want to access the current value of the datum that ap
pears as the first argument to the word. The form (D A T U M (expression))
must appear only once in the expression. It specifies that an appropriate expres
sion for storing into the datum should occur at that point.

The IRM suggest the following definition for the CHANGEWORD SUB:

<-(PUTPROP ’sub
'CHANGEWORD
'(LAMBDA (form)

(LIST ' DATUM
(LIST 'DIFFERENCE

'DATUM
(CONS 'IPLUS (CDDR FORM))))))

(LAMBDA (FORM) (LIST (QUOTE DATUM<-) (LIST (QUOTE
DIFFERENCE) (QUOTE DATUM) (CONS (QUOTE IPLUS) (CDDR
FORM)))))

874 Conversational LISP

^(PUTPROP 'SUB 'CLISPWORD '(CHANGETRAN . SUB))
(CHANGETRAN . SUB)

Note that you do not have to define the lower-case version if you do not want
to! Personally, since INTERLISP generally believes in upper-case syntax, I find
it difficult to use lower-case words.

<-(SETQ X 100)
100

«-(SUB X 25)
75

The CHANGETRAN facility allows you to define new languages for inter
acting with INTERLISP and with your programs. By defining “words” and their
translations, you may create different interfaces for different users.

23.10 The CHANGETRAN Package 875

\

24

INTERLISP User's Packages

INTERLISP provides many utility packages which cannot be included in the
standard loadup (e.g., the initial SYSOUT file) due to virtual address space lim
itations. This is true whether you are running under INTERLISP-10, IN
TERLISP/370, or INTERLISP-D. This chapter will survey some of these pack
ages and describe some of the functions included therein. Because of the large
number of packages provided by INTERLISP-10 (and the even larger number
provided by INTERLISP-D), I can only briefly discuss some of the more salient
features of many of these packages. In general, additional documentation may
be found in files on the respective file systems supporting your INTERLISP envi
ronment.

I will discuss only those packages which work on any of the versions of IN
TERLISP. Packages specific to a version (such as INTERLISP-10) are described
in the IRM which you should consult for more information.

24.1 FILE SYSTEM EXTENSIONS
Many of the LISP User’s packages provide additional functions that extend the
capabilities of the file system or the File Package. These packages are discussed
in the following sections.

24.1.1 Indexing a File
SINGLEFILEINDEX is a package for alphabetically indexing the functions
found in a single file. The function index is placed at the beginning of the source
file. An index consists of a number of columns whose entries are a file name and
a byte offset into the file. The number of columns is determined by the length of
the longest function name and the number of functions within the file. More
over, each function is preceded by its function right-justified on a page.

SINGLEFILEINDEX, when loaded, modifies the execution of LIST-
FILESl, a worker function called by LISTFILES (see Section 17.3.4).

877

SINGLEFILEINDEX includes the function SINGLEFILEINDEX which
performs the indexing and printing to the output file. It takes the form

878 INTERLISP User's Packages

Function:

Arguments;
Arguments:

V alue:

SINGLEFILEINDEX

3
1) a source f i l e , SRCFILE
2) a d e s tin a tio n f i l e , DSTFILE
3) a new page f la g , NEWPAGEFLG
The source f i l e name.

SRCFILE must be a source code file. DSTFILE must be the name of a file or
NIL. If it has the same value as SRCFILE, then a new version of SRCFILE will
be created (the normal case). If DSTFILE is NIL, the output will be directed to
the global variable PRINTER which is usually initialized to the name of the line
printer for your INTERLISP system.

NEWPAGEFLG determines whether each function will be printed begin
ning on a new page. If NEWPAGEFLG is T, this will be done. It usually has the
value NIL.

SINGLEFILEINDEX uses the foillowing variables:

FILELINELENGTH

PRINTER

To determine how to r ig h t-
ju s t ify function ind ices and to
columnate w ith in the f i l e .

A g lobal v a riab le contain ing the
name of the p su ed o -file
corresponding to the system
p r in te r .

The number of l in e s per page
th a t are normally allowed by the
p r in te r , so i t may determine
when to in s e r t page breaks fo r
n ice fo rm atting . The i n i t i a l
value is 58.

The compiled code for SINGLEFILEINDEX resides in the file SINGLE-
FILEINDEX.COM.

LINESPERPAGE

24.1.2 Indexing Multiple Files
MULTIFILEINDEX is a package for indexing a set of files which comprise all or
part of a system. When you have a large number of files comprising a system, the
listings representing the system aren’t much use because you have no way of

finding your way around them. The problem is particularly acute if you are not
intimately familiar with the structure and implementation details of the system.
MULTIFILEINDEX can assist you by creating an alphabetized table of con
tents of the files with all functions indexed and other data structures (such as
records, blocks, etc.) appropriately noted.

MULTIFILEINDEX requires that the COMS of each file to be processed be
loaded into memory. It uses the function GETDEF to obtain the definition of
variables from the source file. In many files, there may be several levels of indi
rection. For example, if the list of functions contained within the file is supplied
as the value of a variable, say TESTFNS, with the COMS entry appearing as
(FNS * TESTFNS), a GETDEF to the COMS entry does not obtain all of the
required information. MULTIFILEINDEX will perform a GETDEF to obtain
the value of TESTFNS as well.

MULTIFILEINDEX contains a single function that is invoked by the user,
MULTIFILEINDEX. It takes the form

24.1 File System Extensions 879

Function: MULTIFILEINDEX

Arguments: 3

Arguments: 1) a l i s t of source f i l e s , SRCFILES
2) a d e s tin a tio n f i l e , DSTFILE
3) a new page f la g , NEWPAGEFLG

Value: A l i s t o f f i l e s processed.

SRCFILES may either be a list of files (such as that created by FILES?) or
an atom. If it has the value NIL, MULTIFILEINDEX returns immediately. If it
has the value T, the value of FILELST is used. If it is an atom, but not NIL or T,
then FILEFNSLST is applied to its value under the assumption that it is the
name of a file.

DSTFILE is the destination file where the output from MULTIFILEINDEX
will be written. For large numbers of files, the output can be voluminous. If
DSTFILE has the value NIL, the value of the global variable PRINTER is used
(it stores the name of the system printing device).

NEWPAGEFLG indicates whether each function in the listing should be
printed on a page by itself. Giving it the value of T enables this action.

MULTIFILEINDEX produces an output file that contains

1. A listing of all the functions in a file with each function being preceded by
its index number within the file right-justified on the line.

2. An alphabetized table of contents indicating the name of each IN
TERLISP object or entity, the file that it belongs to, and its type. If the
entity is a function, the information also includes a unique index in the
listing, its type, and its argument list.

In addition, each file that is treated by MULTIFILEINDEX will have its
name removed from NOTLISTEDFILES.

Header information will be placed at the top of each page. Each page is
numbered. Page width is controlled by FILELINELENGTH while page length is
controlled by LINESPERPAGE. LINESPERPAGE initially has the value 58 as
described in Section 24.1.1.

MULTIFILEINDEX formats the columns of its report according to the val
ues of four global variables:

880 INTERLISP User's Packages

MULTIFILEINDEXCOLS

MULTIFILEINDEXNAMECOL

MULTIFILEINDEXFILECOL

In d ica tes how the o ther
th ree columns are to be
in te rp re te d . I f i t has the
value FLOATCOLS, which is
the d e fa u lt, MULTIFILEINDEX
attem pts to arrange the
columns on the page such
th a t the amount of space
fo r the type inform ation is
maximized. This space must
be a t le a s t of
FILELINELENGTH.

I f i t has the value T or
FOXCOLS, the values of the
o th e r v a riab le s in d ica te
abso lu te column p o s itio n s
on the page.

I f i t has the value NIL or
FIXFLOATCOLS, the columns
w ill be f lo a te d on the
page, but w ill not be any
sm aller than the columns
defined by the values of,
the o th e r v a ria b le s (e .g . ,
you may specify minimum
s iz e columns).

S p ec ifie s the p o s itio n of
the name column in the
re p o r t . I n i t i a l l y , i t s
value i s 0.

S p ec ifie s the p o s itio n of
the f i l e name column.
I n i t i a l l y , i t s value i s 26.

MULTIFILEINDEXTYPECOL S p ec ifie s the p o s itio n of
the type inform ation
column. I n i t i a l l y , i t s
value is 41.

You may control the information that is actually printed to the destination
file through four variables:

24.1 File System Extensions 881

MULTIFILEINDEXMAPFLG

MULTIFILEINDEXFILESFLG

MULTIFILEINDEXFNSMSFLG

MULTIFILEINDEXVARSMSFLG

In d ica te s th a t you want the
f i l e index to be p rin te d to
the d e s tin a tio n f i l e .
I n i t i a l l y , i t has the value
T.

In d ica te s th a t you want the
f i l e s output to the
d e s tin a tio n f i l e .
I n i t i a l l y , i t has the value
T.

In d ica tes th a t you want
Masterscope inform ation
produced about each
function in the d e s tin a tio n
f i l e . I n i t i a l l y , i t has the
value NIL.

In d ica tes th a t a l l the
v a r ia b le s used in the f i l e s
w ill have some inform ation
about them produced in the
re p o r t. The l i s t of
v a ria b le s considered is
determined by the answer to
the Masterscope question
"WHO IS USED BY ANY AND WHO
IS SET BY ANY". The
v a ria b le map is so rted by
v a ria b le name independent
o f case. I n i t i a l l y , i t has
the value NIL.

The latter two variables use the interface to Masterscope included within
MULTIFILEINDEX to obtain the necessary information. If either variable has
the value T, MULTIFILEINDEX assumes that the source file(s) have been ana
lyzed by Masterscope.

The compiled code for MULTIFILEINDEX resides in the file MULTI-
FILEINDEX.COM.

24.1.3 Implementing the ALL File Package Type
The ALL File Package type allows you to intermix definitions of various types for
a given, atom in a file. This capability is useful if you must produce listings since
all the information is collected in a single location. The file defines both a File
Package command and a File Package type.

The File Package command has the form

(ALL <filepackagetypes> <s p e c if ic a tio n l) . . .
< sp e c if ic a tio n N))

The field <filepackagetypes> is a list of the file package types that may be
stored in the list.

The fields < specification 1> ... < specif icationN) are lists consisting of an
atom name and one or more types for which information is to be dumped.

Consider the following example:

(ALL
(COMMENTS FNS VARS MACROS RECORDS)
(GET.TREE FNS VARS)
(GET.FOREST VARS
(GET.BRANCH MACROS))

which dumps the function definition and the value of GET.TREE, the value of
GET.FOREST, and the macro definition of GET.BRANCH.

The special form (ALL * <file)ALL) is also recognized and handled as de
scribed in Section 17.2.20.

In the specifications, the type may also be a list of the form (PROPS <prop-
ertyl) ... <propertyN)) which means to store the specified properties for that
atom in the file.

When you store a definition for an atom A1 of type T1 on a file, the File
Package looks for a command in which to put it (in the source file).

When an ALL command is encountered, the File Package uses the following
procedure:

1. If T1 is not in the type list for the ALL command, then the definition will
not be included in the command (e.g., ALL “overrides” the normal oper
ation).

2. If A1 already exists in the command, then T1 will be inserted while at
tempting to maintain the order specified in the type list.

3. Otherwise, an entry of the form (A1 T l) is inserted in the command list.

882 INTERLISP User's Packages

4. If the File Package cannot put the definition into an existing command,
it creates a new command.

5. If the type is a member of the list ALL-TYPES, then the File Package will
create a command of the form (ALL <all-types> (A1 Tl)).

The variable ALL-TYPES is a list of all the File Package types that will be
intercepted by an ALL command. It is also the list of types that will be inserted
into a newly created ALL File Package command as described above. Its initial
value is

(COMMENTS FNS MACROS VARS LISPXMACROS USERMACROS)

but you may modify it to suit your own requirements.

24.1.4 Editing a File's History
EDITHIST provides extensions to the File Package that allow you to perma
nently preserve the history of new versions of files. It records a “who-edited-last”
comment within the file for each function.

Every time a file is remade, EDITHIST will cause a new entry to be recorded
in the file’s edit history. The entry has the form

(<date> <a u th o r) < file > ((ch an g es)) (<comments)))

where

< d a te) i s th e value o f (DATE) when th e f i l e
was remade

<a u th o r) i s th e va lue o f (OR INITIALS USERID)

(f i l e) i s th e f u l l f i l e name o f th e o u tpu t

(ch an g es) i s th e same l i s t o f changed item s
th a t appears on th e FILEDATES
p ro p e rty

(comments) i s acq u ired (o p tio n a lly) by ASKUSER
during th e execu tion o f MAKEFILE.

When EDITHIST is loaded (usually during evaluation of INIT.LSP), it as
signs default values to certain control parameters: ASKEDITHIST and LIMI-
TEDITHIST. These variables are interpreted as follows:

ASKEDITHIST C o n tro ls th e in v o ca tio n o f ASKUSER
when a f i l e i s remade. I t tak e s one
o f th e fo llow ing v a lu es :

24.1 File System Extensions 883

884 INTERLISP User's Packages

LIMITEDITHIST

NIL Don't ask the user fo r
comments and do not
extend the
e d ith is to ry .

NOCOMMENT Don't ask the user fo r
comments, but do
extend the e d ith is to ry
with no comments
f ie ld .

I

COMMENT Ask the user fo r
comments and extend
the e d ith is to ry with a
comments f ie ld .

T Add an e d ith is to ry to
any f i l e th a t does not
cu rren tly have i t ; ask
the u se r fo r comments
and extend the
e d ith is to ry . This is
the d e fau lt value.

Controls the pruning of the
e d i th is to ry . I t takes the form

(# s o f t l im it . #hard lim it)

w ith a d e fau lt value of (10 . 30) .
s o f t l im it sp e c if ie s the number of
recen t e n tr ie s to remain in v io lab le .
h ard lim it sp e c if ie s the th resho ld
when pruning w il l be invoked.

The edit history may grow quite large if the file is edited repeatedly during
the development and debugging of a program. When a threshold is reached, the
edit history will be pruned to reduce its size while preserving as much informa
tion as possible. EDITHIST uses the following procedure to prune the edit his
tory:

1. Preserve the first N entries, where N is given by #softlimit.
2. Among the remaining entries, merge entries with the same author and no

comments.
3. If the number of entries remains above the threshold, merge entries hav

ing no comments, but different authors (i.e., ignore the authors).

4. If still above the threshold, merge N of the oldest entries into a single
entry that brings the number of entries below the threshold.

When entries are merged, the <date>, <author), and <file> fields are
CONSed together in the result. The <changes> list in the merged entry is the
union of the individual changes in the contributing entries. The {comments)
field in the merged entry is the concatenation of all the comments of the contrib
uting entries.

At some point, you must manually edit the edithistory to remove the oldest
information. EDITHIST will not discard information from entries, but merely
create successive mergers that become unmanageable.

EDITHIST also defines additional options for MAKEFILE’S OPTIONS
field which provide temporary overrides:

ASK Tem porarily r e s e ts ASKEDITHIST to T so you
COMMENT w il l be asked fo r a comment th is one time

only .

NOASK Tem porarily r e s e ts ASKEDITHIST to
NOCOMMENT NOCOMMENT so you w ill not be asked fo r

comments th i s one time only.

EDITHIST maintains the edithistory for each file in ALIST format keyed by
the file name. The root of the list is EDITHISTALIST. You may examine or
modify an edithistory using either (EDITDEF (filename) ‘EDITHIST) or
(SHOWDEF (filename) ‘EDITHIST).

An edithistory is declared DONTCOPY so it will not be included in com
piled files. If the compiled file is remade, the edithistory is recovered from the
source file.

You may include a File Package command (EDITHIST (filenames)) in the
file’s command list. If multiple file names are present (due to merged files), only
the first will be subsequently updated.

24.1.5 Making Files Permanently Open
PERMSTATUS is intended to be used with the WHENCLOSE Package (see
Section 16.5.3) to preserve a file’s open status after an environment is restored
from a SYSOUT file. The effect is to make the file “permanently” open.

You may achieve this effect (after loading the file PERMSTATUS.COM) by
executing the expression

(WHENCLOSE (filen am e) 'STATUS 'PERMSTATUS)

after the file has been opened. Information will be saved about the file that per
mits its restoration after reloading a SYSOUT file. This information includes its
access mode, file pointer value, and byte size.

24.1 File System Extensions 885

The permanence of a file is not guaranteed. You may delete or rename the
file or change its contents by means external to the IN T E ^IS P environment. If
a file cannot be found or restored during the loading of a sysout, a warning mes
sage will be printed.

Permanent files will be closed by CLOSEF or CLOSEALL or due to closing
on end-of-file errors unless the appropriate attributes are specified via the
WHENCLOSE Package.

24.2 EXTENSIONS TO MASTERSCOPE
Two LISP User’s Packages extend the capabilities provided by Masterscope (see
Chapter 26).

886 INTERLISP User's Packages

24.2.1 Dumping Masterscope's Knowledge
Masterscope builds a database describing one or more files which it has ana
lyzed. The TELL Package allows you to obtain a complete dump of all of Mas
terscope’s knowledge about a selected set of atoms, functions, or Masterscope
relations. TELL defines a number of functions that allow you to extract varying
amounts of information from the Masterscope database.

TELLABOUT allows you to obtain information about a list of atoms de
scribed in the Masterscope database. It takes the form

Function:

Arguments;

Arguments:

V alue:

TELLABOUT

1) a su b jec t l i s t , SUBJECTS
2) a l i s t of re la te d atoms, UNIVERSE
3) a question l i s t , OMITQUESTIONS
4) a d e s tin a tio n f i l e , DUMPFILE

The d e s tin a tio n f i l e name.

SUBJECTS is a list of atoms about which information is desired. UNI
VERSE is a list of atoms which are related to the atoms appearing on SUB
JECTS. Whenever one of these atoms is detected in a Masterscope relation, it
will be printed.

OMITQUESTIONS is a list of question numbers (see below) for those ques
tions which are not to be asked of the Masterscope database.

DUMPFILE is the destination file where the output from Masterscope will
be written.

For each atom on SUBJECTS, TELL prints an entry that contains the an
swers to every question asked by ENUMERATEQUESTIONS of the Master
scope database except those identified by OMITQUESTIONS. The atom is sub
stituted for the * in the questions described below. Members of UNIVERSE will

be substituted for WHO or WHOM in the questions. If the answer is true, then
an entry is printed.

At the end of the file, TELLABOUT displays all of the questions asked and
the value of UNIVERSE.

TELL assumes that Masterscope has already analyzed the functions which
are the source of the information.

24.2 Extensions to Masterscope 887

24.2.2 Enumerating the Masterscope Questions
ENUMERATEQUESTIONS prints a list of questions at your terminal that ex
haustively describes all of the simple relations among objects that are indexed by
Masterscope. Each questions is prefixed by an integer identifying the question
which may be used in TELLABOUT. It takes the form

Function: ENUMERATEQUESTIONS

Arguments: 0

Arguments: N/A

Value: NIL, but the l i s t of questions i s a side
e f f e c t .

The list of questions printed by ENUMERATEQUESTIONS at your termi
nal is as follows:

1. Whom does * bind?
2. Whom does * bind locally?
3. Whom does * bind as an argument?
4. Whom does * call?
5. Whom does * use?
6. Whom does * use freely?
7. Whom does * use locally?
8. Whom does * use globally?
9. Whom does * use as a record?

10. Whom does * use as a field?
11. Whom does * use as a property?
12. Whom does * use as a CLISP i.s.operator?
13. Whom does * set?
14. Whom does * set freely?
15. Whom does * set locally?
16. Whom does * set globally?
17. Whom does * smash?

I

18. Whom does * smash freely?
19. Whom does * smash locally?
20. Whom does * smash globally?
21. Whom does * test?
22. Whom does * test freely?
23. Whom does * test locally?
24. Whom does * test globally?
25. Whom does * reference?
26. Whom does * reference freely?
27. Whom does * reference locally?
28. Whom does * reference globally?
29. Who binds *?
30. Who binds * locally?
31. Who binds * as an argument?
32. Who calls*?
33. Who uses *?
34. Who uses * freely?
35. Who uses * locally?
36. Who uses * globally?
37. Who uses * as a record?
38. Who uses * as a field?
39. Who uses * as a property?
40. Who uses * as a CLISP I.S.operator?
41. Who sets *?
42. Who sets * freely?
43. Who sets * locally?
44. Who sets * globally?
45. Who smashes *?
46. Who smashes * freely?
47. Who smashes * locally?
48. Who smashes * globally?
49. Who tests *?
50. Who tests * freely?
51. Who tests * locally?
52. Who tests * globally?
53. Who references *?
54. Who references * freely?
55. Who references * locally?
56. Who references * globally?

888 INTERLiSP User's Packages

You may find out about ever5rthing that Masterscope has seen by executing
EVERYONE, which takes the form

Function: EVERYONE

Arguments: 0

Arguments: N/A

Value: A l i s t o f answers to the questions noted
below.

EVERYONE returns a list which describes everything Masterscope knows
about objects it has seen (i.e., that have been analyzed) except for system func
tions and I.S.OPRS. In particular, EVERYONE will answer the following ques
tions:

1. Who is known?
2. Who is used?
3. Who is used as a property?
4. Who is used as a field?
5. Who is used as a record?

Dumping the Results of EVERYONE
You may dump the results of executing EVERYONE to a file by executing
TELLABOUTEVERYONE, which takes the form

Funct io n : TELLABOUTEVERYONE

Arguments: 2

Arguments: 1) a l i s t o f questions to be om itted ,
OMITQUESTIONS

2) a dump f i l e name, DUMPFILE

Value: The value re tu rn ed by EVERYONE.

TELLABOUTEVERYONE calls TELLABOUT with the argument list:
(EVERYONEO EVERYONEO DUMPFILE).

You may produce an exhaustive but not overly redundant set of information
about functions in the Masterscope database using BASISTELLABOUT, which
takes the form

Function: BASISTELLABOUT

Arguments: 1

24.2 Extensions to Masterscope 889

24.2.3 Finding Out about Everything

Arguments: 1) a dump f i l e name, DUMPFILE
Value: The dump f i l e name.

BASISTELLABOUT calls TELLABOUTEVERYONE with the argument
list (REASONABLEOMISSIONS DUMPFILE).

REASONABLEOMISSIONS is a variable whose value is a list of the num
bers of the questions whose answers are supersets of the answers to simpler ques
tions. The only information that is not dumped by omission these questions ap
pears to be information about I.S.OPRS.

These functions are stored in the file <LISPUSERS>TELL.COM.

24.2.4 Automatic Masterscope Database Creation
Normally, you must manually create a Masterscope database by explicitly di
recting Masterscope to analyze a set of functions and index the information in
the database. The functions stored in the DATABASEFNS package attempt to
make this process automatic.

When DATABASEFNS is loaded, it modifies MAKEFILE, LOAD, and
LOADFROM (see Chapter 17) to automatically update an existing Masterscope
database.

When a file is made or loaded via MAKEFILE, LOAD, or LOADFROM,
the Masterscope database will be automatically maintained if the atom corre
sponding to the file name has the property DATABASE with the value YES.
Whenever a file is dumped via MAKEFILE, Masterscope will analyze any the
functions in the file to determine if any have been modified or if new functions
have been added to the file, A new database whose name is (filename).DATA
BASE will be written with information concerning the new or changed functions.

Whenever a file is loaded via LOAD or LOADFROM, the corresponding
(filename).DATABASE file will also be loaded.

The database will be neither dumped nor loaded if the value of the property
DATABASE is NO. If the file is loaded with LDFLG having the value SYS-
LOAD, then the value of the DATABASE property will be assumed to be NO.

If the value of the DATABASE property is neither YES nor NO (a good
value is ?), then you will be asked whether or not you want the Masterscope
database automaticially maintained at the first execution of MAKEFILE,
LOAD, or LOADFROM for the indicated file. Your answer is stored as the
value of the DATABASE property so that you will not be repeatedly asked the
question. This feature is controlled by two global variables:

SAVEDBFLG A value of YES or NO w il l be sto red
in s tead o f asking the question i f the
value of the DATABASE property is
n e i th e r YES or NO depending on
whether i t s value i s YES or NO. I t s
value i s i n i t i a l l y ASK.

890 INTERLISP User's Packages

LOADDBFLG A value of YES or NO w ill be s to red
in s tead of asking the question i f the
value o f the DATABASE property is
n e i th e r YES or NO depending on
whether i t s value is YES or NO. I t s
value i s i n i t i a l l y ASK.

You will be queried if the value of either of these variables is ASK.

Dumping and Restoring MSDATABASE
You may explicitly dump and restore Masterscope databases using SAVEDB
and LOADDB, v̂ ĥich take the form

Function: SAVEDB
LOADDB

Arguments: 1

Arguments: 1) a f i l e name, FILE

Value: The f i l e name.

SAVEDB dumps a database for FILE and then sets the DATABASE prop
erty of the atom corresponding to the file name to YES. Thus, database mainte
nance for that file will be automatically performed on each subsequent MAKE
FILE. The file that is created has the name <filename).DATABASE.

LOADDB loads the database file having the name (filename).DATA
BASE, if one exists, associated with FILE. After the database is loaded,
LOADDB sets the value of the property DATABASE of the atom corresponding
to the file name to YES to make database maintenance automatic thereafter.

You may not load a database file with the standard INTERLISP loading
functions because of its special format. LOADDB is the only way to access a
database file.

These functions are stored in the file <LISPUSERS)DATABASEFNS-
.COM.

243 The DECL Package 891

24.3 THE DECL PACKAGE
Several conventional languages allow you to restrict the scope of arguments to
functions by specifying the datatypes of variables that are passed as arguments
to those functions. Normally, this takes the form of declaring the variable name
and typing in the argument list associated with the function (or procedure) defi
nition. Examples of such languages include PASCAL and ADA.

INTERLISP normally allows you to pass any type of expression or variable
to a function. It is incumbent upon the called function to determine the type of
the argument and whether or not the type is a valid one for the function to oper

ate upon. Thus, in many functions, if the user is a careful programmer, you will
see a COND statement checking the types of the arguments.

The DECL Package provides a mechanism for introducing lexical scoping in
INTERLISP functions. Lexical scoping constrains the behavior of INTERLISP
functions such that the type of arguments passed to the function is checked when
the function is called. To do so, the DECL Package modifies the actions of both
the INTERLISP interpreter and the compiler.

Type declarations on arguments can make the function more readable since
they indicate more clearly (if mnemonic names are chosen for functions) what
the function is intended to do. They also facilitate debugging of functions since
they assist in localizing errors that are the result of type incompatibilities be
tween the arguments passed and those expected by the function. Type declara
tions will be recognized by Masterscope when the DECL Package is loaded.

24.4 TRANSOR: A LISP TRANSLATOR
As explained in Chapter 1, there are two major dialects of LISP. The other dia
lect, MACLISP, has a number of subdialects as described in Section L2. Differ
ences between INTERLISP and these dialects are noted therein. TRANSOR is a
LISP-to-LISP translator that allows you to effectively translate LISP programs
in one dialect into another (i.e., the translation may be to or from INTERLISP).

TRANSOR is driven by a set of transformation specifications which de
scribe the differences between the two dialects. The differences are expressed as
INTERLISP Editor commands which will convert the input dialect form into an
output dialect form. When TRANSOR is loaded along with the transformation
file, it will read the input file and apply the edit transformations to all expres
sions within the file. It produces an output which should be suitable for loading
on the target LISP system. In addition, TRANSOR will produce a set of trans
formation notes that describe the major changes made to the input source code
to produce the output file. It also notes any additional changes that require fur
ther attention from the user.

TRANSOR may be thought of as a driver for a massive editing task. While
the primary usage is to translate from one LISP dialect to another, proper speci
fication of the edit transformations may allow you to translate a large percentage
of a source file in another language (such as C) to INTERLISP or vice versa.

24.5 OTHER LISP USER'S PACKAGES
There are numerous other LISP User’s Packages that are available under IN
TERLISP-10 which work only with INTERLISP-10. There are also many pack
ages available with INTERLISP-D which will be described in Volume 2.

The following sections provide just a brief glimpse of some of the other pack
ages available for INTERLISP-10. You may find documentation on these pack
ages in the LISPUSERS directory on a DECSystem-10 computer system.

892 INTERLISP User's Packages

24.5.1 The Pattern Match Compiler
The Pattern Match Compiler is a package that provides additional flexibility in
specifying patterns to be matched within CUSP statements.

In general, you want to answer the question: Does the expression X look like
the pattern P? The Pattern Match Compiler provides a syntax that allows you to
specify patterns and the rules for matching them.

24.5 Other LISP User's Packages 893

24.5.2 The Hash File Package
The Hash File Package allows you to effectively extend the memory of the IN-
TERLISP-10 system by permitting information associated with atoms or strings
to be stored on a file rather than in memory. The information is retrieved as it is
needed by the program. To make the retrieval efficient, the Hash File Package
makes use of the INTERLISP-10 page mapping facility to access the informa
tion stored in the file(s).

24.5.3 EDITA: The Array Editor
EDITA is an Array Editor. However, its most frequent use is in editing compiled
functions which are represented as arrays in INTERLISP-10. While EDITA is
also available on INTERLISP-D, capabilties pertaining to the editing of com
piled code will only work for INTERLISP-10.

In general, you invoke EDITA to edit a function. It then accepts commands
similar to the DECSystem-10 DDT (Dynamic Debugging Tool). The commands
allow you to open registers (i.e., memory locations), examine symbol tables,
change the contents of memory locations, and search for specific values.

24.5.4 CJSYS: Access to the Operating System
CJSYS is a package running under INTERLISP-10 that allows you direct access
to the underlying operating system. Operating system calls in TENEX and
TOPS-20 are call JSYS (Jump to SYStem) traps; hence the name of the package.

24.5.5 EXEC: A TENEX Executive in INTERLISP
EXEC is a package that defines additional Programmer’s Assistant commands
that provide you with some of the capabilities of the TENEX EXEC. These capa
bilities provide you with access to certain operating system features while not
requiring knowledge about the specific interfaces (i.e., no need to use CJSYS). It
also defines functions that provide the same capabilities so that you may exercise
them from within your programs.

24.5.6 The NET Package
The NET Package provides functions for establishing ARPANET connections
from INTERLISP-10 jobs. You may open, close, and check connections with
other computers in the ARPANET (provided you have an account on them).

24.5.7 FTP: The File Transfer Package
FTP is a package that allows you to transfer files between hosts on the AR
PANET. When FTP is loaded, you may access files at other ARPANET hosts
using the basic file system commands INFILE, OUTFILE, and OPENFILE,
and you may read and write those files as if they were resident at your local host.

894 INTERLISP User's Packages

25

The Programmer's
Assistant

The Programmer’s Assistant is a subsystem that interacts with you to assist in
creating and running programs. You may think of it as an aide who looks over
your shoulder at what you are doing. Normally, expressions that you type in are
executed without any interference by the Programmer’s Assistant. However, it
does recognize a set of commands that cause it to do things for you. Among the
functions that it may perform are

1. Remembering and repeating a sequence of commands that you have pre
viously entered.

2. Undoing the effects of commands you have recently executed.
3. Analyzing erroneous input and presenting you with a diagnosis of what

went wrong.

The Programmer’s Assistant is dispersed throughout INTERLISP. I have
chosen to discuss it in two chapters in order to enhance the clarity of presenta
tion. This chapter concentrates upon the main features and concepts that un-
derly the Programmer’s Assistant. Chapter 28 discusses the History Package
which supports the auditing and undoing of expressions.

25.1 THE CONCEPT OF UNDOING
Undoing means to reverse the effects of an expression that you have previously
typed in and INTERLISP has executed. Undoing requires that each expression
that might be undone have information stored on a history list to enable reversal
of its side effects. The Assistant has no way of knowing when it is about to per
form a destructive operation. To constantly check for such occurrences would
seriously degrade the efficiency of the system. Rather, the Assistant merely
“watches” the execution of expressions. HISTORYSAVE (see Section 28.6.1)
automatically saves undoable changes on the history list. Undoing involves read

895

ing the history list to access the information necessary to perform the inverse
operations.

As we said previously, the Assistant is relatively passive until you instruct it
to do something. Only then does it check to see if the necessary information is
available on the history list. If the user explicitly identifies the event and nothing
has been saved, the Assistant prints the message “NOTHING SAVED” . Other
wise, it searches for the last undoable event (ignoring events already undone as
well as other UNDO operations) and undoes it.

The primary question is: How does the system know what is undoable and
what is not? Underlying this question is the problem of efficiency. The ability to
undo every operation would rapidly consume storage to save the information
necessary to perform the inverse operation. Moreover, only a few system func
tions are really destructive. Thus, these are the only ones we need to know some
thing about in order to undo them. Perversely, however, these are the functions
that are executed most often, which leads us back to the problem of storage
consumption.

The Assistant has solved this problem by forcing two constraints on undo
ing:

1. Each function which may be undone must save the appropriate informa
tion necessary to undo its effects on the history list.

2. For each primitive destructive function, there are actually two implemen
tations—one that is undoable and one that is not. The undoable function
saves the necessary information on the history list when it is executed.
You decide what may be undone by your choice of the implementation of
the destructive function.

Most of the INTERLISP subsystems use the undoable versions of the primi
tive destructive functions. You may also use these functions if you want func
tions that you execute to be undoable as well.

The Assistant makes an assumption that all expressions that are typed into
LISPX should be undoable because errors are most likely to occur during inter
active dialogue. Thus, the Assistant substitutes the corresponding undoable
function for each destructive operation that it encounters on type-in. This as
sumption is based on the fact that most expressions that are typed in rarely in
volve iterations or lengthy operations directly (when was the last time that you
typed a PROG statement upon receiving a prompt?).

LISPX (see Section 25.2) scans all input statements before executing them.
It substitutes undoable versions of the primitive destructive functions for all reg
ular versions detected in the input expression. You may wish to make other func
tions undoable by performing your own substitutions. You may do so by defining
LISPXUSERFN (see Section 25.3) to be a function that processes your input
expressions according to your own requirements.

Undoing may be fraught with danger. Certain sequences of operations must
be performed in exactly the reverse order for the system to revert to its proper

896 The Programmer's Assistant

former state. These include functions that make substantial use of /RPLACA
and /RPLACD or that perform several successive operations on a single list.
Good programming practice requires that you undo these types of functions in
the reverse order of their execution.

25.2 LISPX: TYPE-IN EVALUATION
The Assistant uses LISPX (for LISP executive) to obtain an expression for eval
uation. INTERLISP reads the first expression typed into the system after the
prompt character. It calls LISPX with this expression assigned to the variable
LISPXX. LISPX takes the form

Function: LISPX

Arguments: 5

Arguments: 1) the i n i t i a l expression , LISPXX
2) the value of the prompt c h a ra c te r,

LISPXID
3) l is p x macros, LISPXXMACROS
A) a u se r p rocessing func tion ,

LISPXXUSERFN
5) a f la g , LISPXFLAG

Value: The value of the expression as computed.

If the value of LISPXXUSERFN is non-NIL, the input expression will be
passed to it for processing. If so, you do not need to define a value for LISPX-
USERFN.

You may invoke LISPX from within your program if you wish certain inputs
to be undoable. LISPXID allows you to define your own prompt character to
signify that input is being directed to your own function rather than IN
TERLISP.

LISPX processes the input as follows:

1. If the value of LISPXX is not a list, LISPX calls READLINE to read the
remaining expressions up to a break character or a carriage return. The
value of LISPXX is concatenated with the value of READLINE and the
result is stored on the history list. LISPX then decides what to do with the
input it has received. The possibilities include

a. It is a history command to be executed. LISPX invokes HIS-
TORYSAVE, executes the command, and returns the value of
HISTORYSAVE.

b. It is a LISPXMACRO (see Section 25.2.1).
c. It is to be processed by a LISPXUSERFN (see Section 25.3).
d. It calls EVAL or APPLY depending upon the input form.

25.2 LISPX: Type-In Evaluation 897

2. If LISPXX is a list whose CAR is LAMBDA or NLAMBDA, LISPX in
vokes LISPXREAD to obtain the arguments which include the argument
list and all expressions composing the body of the function. A list is indi
cated by an opening (.

3. If LISPXX has the value) or], READLINE returns (NIL) instead of
NIL. This permits you to call a function with no arguments as in

<-CLEANUP]

which then uses FILESLST to do its work. Note that this distinguishes
the execution of the function CLEANUP from the variable CLEANUP
which would have been typed as

CLEANUP <CR>

4. If the expression consists of a list preceded by other characters than
spaces and terminated by a) or a], LISPX treats the expression as being
in APPLY format and proceeds accordingly.

<-EDITF(REDRAW. MAP)

which invokes the Editor on the function RED RAW.MAP.

LISPX saves the inputs for all but the history commands on a history list
before executing. Thus, even if the operation is aborted, you may redo it, fix it,
etc.

If the input is an EVAL or APPLY form or a form without parentheses (e.g.,
a CLISP statement), the function name will be looked up in LISPXFNS. If you
want a different function called than you typed in, place an entry of the form
(<fnl > . <fn2>) on LISPXFNS which will cause LISPX to invoke <fn2> whenever
it detects <fnl> in a form.

For history commands, LISPX merely unreads the information from the his
tory list and exits. However, if your program calls LISPX, history commands will
not work unless your program obtains input via LISPXREAD. Moreover, your
program must save the inputs that it reads on the history list in the approved
format.

LISPX will perform spelling correction using LISPXCOMS as its spelling
list. LISPXCOMS is a list of commands recognized by LISPX. Spelling correc
tion is applied whenever LISPX receives an atom which is unbound or a function
which is undefined.

898 The Programmer's Assistant

25.2.1 A Definition for LISPX
We might define LISPX as follows:

(DEFINEQ
(lis p x (lisp x x l is p x id lispxxm acros lispxxuserfn)

(*
I f the c a l l e r provides no sp e c ia l macros,
use the standard ones defined by the
A ss is ta n t.

25.2 LISPX: Type-In Evaluation 899

)
(AND

)
(OR

(NULL lispxxm acros)
(SETQ lispxxm acros LISPXMACROS))

I f the c a l l e r provides no u ser fu n c tio n ,
o r LISPXUSERFN has the value NIL, use the
standard LISPXUSERFN.

lisp x x u se rfn
(NULL LISPXUSERFN)
(SETQQ lisp x x u se rfn LISPXUSERFN))

(PROG (lispxop l i s p x l i s t f l g l is p x lin e l is p x h is t
lisp x v a lu e lispxtem p lispxoptmp)

(COND
((NULL lispxx)

(^
A spurious r ig h t b racket or
p a ren th es is was d e tec ted .
P r in t NIL and t r y again.

)
(RETURN

(AND
(NOT s ilen ce)
(PRINT NIL T))))

((NLISTP lispxx)
(SETQ lis p x lin e

(READLINE NIL T))))
top

, (COND
((LISTP lispxx)

(*
Break out the o pera to r and
i t s arguments. LISPXOP is
always the name of the
h is to ry command and
LISPXLINE is i t s arguments.

)

900 The Programmer's Assistant

(SETQ lispxop (CAR lisp x x))
(SETQ lis p x lin e (CDR lisp x x))
(SETQ l i s p x l i s t f l g T))

((NOT (LITATOM lisp x x))
(*

I f i t i s not a lita to m ,
then i t is not a command.
I t could be an e r ro r in
typing or a number.

)
(GO notcommand)

(T
(SETQ lispxop lisp x x)))

s e le c t
(SELECTQ lispxop

((RETRY REDO FIX USE . . .)
(GO redocommand))

(NAME
(GOND

((NULL lis p x lin e)
(^

NAME may also be
the name of a
v a ria b le defined
by the u se r, so
try not to
confuse the two.

)
(SETQ lisp x x 'E)
(SETQ lis p x lin e (LIST
'NAME))
(GO execute.command)))

(GO redocommand))
(UNDO

(AND
(SETQ l is p x h is t

(HISTORYSAVE
LISPXHISTORY

lis p x id
NIL
'UNDO
lis p x lin e))

(RPLACA l is p x h is t
(UNDOLISPX
l is p x l in e))))

(?
(PRINl "Commands a r e :” T)
(PRINT LISPXCOMS T))

((RETRY: FORGET ??)

25.2 LISPX: Type-In Evaluation 901

(*

)
(AND

I f REREADFLG is ABORT, then
do a CTRL-B v ia program
c a l l .

(EQ REREADFLG 'ABORT)
(ERRORB))

(GOND
((EQ lispxop 'RETRY:)

(*
A fter the RETRY comes
the command with
arguments to be
r e t r ie d .

)
(SETQ lisp x x (CAR
l i s p x l in e))
(SETQ lis p x lin e (CDR
l i s p x l in e))
(GO to p)))

((EQ lispxop 'FORGET)
(lisp x -fo rg e t)
(PRINT 'FORGOTTEN T))

((EQ lispxop '??)
(l is p x -? ?))))

(GO notcommand))
(RETURN '?)

notcommand
(*

Determine i f LISPXOP is a lispxmacro
e i th e r p redefined by INTERLISP or
sp e c if ie d by the u se r in th i s c a l l to
LISPX.

)
(SETQ lispxoptmp

(ASSOC lispxop
(OR lispxxmacros

(CAR (QUOTE
LISPXMACROS)))))

(COND

902 The Programmer's Assistant

(lispxoptmp
(AND

l i s p x l i s t f lg
(SETQ lis p x lln e NIL))

(GO execute.command))
((MEMBER lispxop LISPXCOMS)

(*
At th is p o in t, LISPXOP is
n e ith e r a b u i l t - in command
nor a macro. However, the
u ser may have put i t on
LISPXCOMS in order to
process i t by LISPXUSERFN.

)
(AND

l i s p x l i s t f l g
(SETQ lis p x lin e NIL))

(GO execute.command))
((SETQ lispxoptmp

(ASSOC lispxop
lisp x h isto ry m acro s))

(*
I f the command is ac tu a lly
a macro, find i t s
d e f in it io n and redo i t .

)
(GO redocommand))

(l i s p x l i s t f l g
(*

The input is a l i s t .
)
(COND

((EQ (CAR lispxx) 'LAMBDA)
(*

A function
d e f in itio n !

)
(SETQ lis p x lin e

(LIST
(LISPXREAD
T))))

(T
(AND

(LITATOM (CAR lisp x x))
(SETQ lispxop (CAR
l is p x x))

(SETQ lis p x lin e (CDR
lis p x x))
(GO s e le c t))))

(GO execute.command))
((NULL lis p x lin e)

(AND
(LITATOM lispxx)
(COND

((NEQ (CAR lispxx) ’NOBIND)
(ADDSPELL lisp x x 3))

((NEQ (EVALV lispxx)
'NOBIND))
((SETQ lispxop

(FIXSPELL lisp x x
70
LISPXCOMS
NIL
T))

(COND
((LISTP lispxop)

(SETQ lis p x lin e
(LIST

(CDR
lisp x o p)))

(SETQ lispxop
(CAR
lisp x o p))))

(SETQ lisp x x lispxop)
(GO s e le c t))))

(GO execute.command)))))
ex ecu te . command

(RETURN (LISPXDO-IT))
redocommand

(LISPXREDOCOMMAND)
(RETURN '?)))

))

25.2.2 LISPX Macros
You may define your own LISPX commands and place them on a list which is
the value of LISPXMACROS. LISPXMACROS is a list of elements of the form

(<command) <d e f in i t io n))

Whenever one of the < command)s is the CAR of an expression read by
LISPX, LISPXLINE will be bound to the remainder of the input. The input

25.2 LISPX: Type-In Evaluation 903

event is recorded on the history list, and (definition) is evaluated. Its value will
be stored as the value of the event.

An alternative form may appear as

(<command) NIL (d e f in i t io n))

which means do not store the event on the history list.

Initial Definition of LISPXMACROS
LISPXMACROS is initially defined as

((NDIR
(DODIR LISPXLINE ' (PP COLUMNS 17) 0))

(DEL
(DODIR LISPXLINE 'DELETE »' »' 'L))

(CONN
(CNDIR (CAR LISPXLINE)

(AND
(LISTP (CDR LISPXLINE))
(PROGl

(CADR LISPXLINE)
“(RPLACA (CDR
LISPXLINE))))))

(REMEMBER
(REMEMBER LISPXLINE))

(REMEMBER:
(PROGl

(RESETVARS (FILEPKGFLG)
(RETURN

(EVAL (LISPX/ (CAR LISPXLINE)
LISPXID)))

(MARKASCHANGED (CAR LISPXLINE)
•EXPRESSIONS)))

(OK
(RETFROM

(OR (STKPOS 'USEREXEC) 'LISPX)
T T))

(AFTER
(LISPXSTATE (CAR LISPXLINE) 'AFTER))

(BEFORE
(LISPXSTATE (CAR LISPXLINE) 'BEFORE))

(RETRIEVE
(PROG (X REREADFLG)

(SETQ X (GETP (CAR LISPXLINE) '^HISTORY*))
(COND

904 The Programmer's Assistant

(ERROR (CAR LISPXLINE) T)))
(MAPC (CDDR X)

(FUNCTION
(LAMBDA (X)

(HISTORYSAVE LISPXHISTORY
X))))

(RETURN (CAR LISPXLINE))))
(SHH

NIL
(COND

((OR
(CDR (LISTP LISPXLINE))
(AND

(MEMBER (LASTC T) '(%) %]))
(LITATOM (CAR LISPXLINE))))

(APPLY (CAR LISPXLINE)
(COND

((AND
(LISTP (CADR LISPXLINE))

25.2 LISPX: Type-In Evaluation 905

((NULL X)

(T

(T

(NULL (CDDR LISPXLINE)))
(CADR LISPXLINE))

(CDR LISPXLINE)))))

(EVAL
(COND

(LISPXLINE
(CAR LISPXLINE)

(T 'SHH))))))
(DIR

(DODIR LISPXLINE)))

25.2.3 User Processing of Input
You may intercept the processing of input from the terminal by setting LISPX-
USERFN to T. You must also define LISPXUSERFN with the definition of the
function that will process the input.

When LISPXUSERFN is T, its function definition will be applied to all in
puts that are not recognized as Programmer Assistant commands or that appear
on LISPXMACROS. LISXPUSERFN should attempt to do some recognition of
the input. The input will already be recorded as an event on the history list.
Thus, LISPXUSERFN should set LISPXVALUE to the value for the event and
return T. LISPXVALUE will be stored as the value of the event and will be
printed at your terminal.

If LISPXUSERFN returns NIL, then EVAL or APPLY is called in the usual
way as appropriate to the input.

LISPXUSERFN is usually used to enhance user executives (see Section
25.3). LISPXUSERFN may be used, when appropriately defined, to process
natural language input entered by a user at type-in.

The function definition for LISPXUSERFN is a function of two arguments:
X and LINE. X is the first expression typed in, and LINE is the remainder of the
input line as read by HEADLINE (see Section 14.2.4). A general definition for a
LISPXUSERFN might appears as follows:

(DEFINEQ
(l is p x u s e r fn (x l in e)

(PROG (command)
(COND

((AND (NULL l in e) (LISTP x))
(SETQ command (recogn ize (CAR x)))
(SETQ LISPXVALUE

(EVAL command (CDR x))))
((AND (ATOM x) (LISTP l in e))

(SETQ command (recogn ize x))
(SETQ LISPXVALUE

(EVAL command l i n e)))
((AND (ATOM x) (LISTP (CAR l i n e)))

(SETQ command (recogn ize x))
(SETQ LISPXVALUE

(EVAL command (CAR l i n e)))))
(RETURN LISPXVALUE))

))

which handles the three forms of input as follows:

1. If you typed

< -(command argum ent1 argument2 . . . argumentN)

then X is (command argumentl ... argumentN) and LINE is NIL:

<-(SETQ X 100)

2. If you typed

906 The Programmer's Assistant

■^command argumentl argument2 ... argumentN

then X is command, as in EVAL format, and LINE is (argumentl ...
argumentN).

<-USE SET FOR SETQ

3. If you typed

‘̂ command(argumentl argument2 . . . argumentN)

then X is command, as in APPLY format, and LINE is ((argumentl ...
argumentN)).

<-PP(REAL)
(REAL

(LAMBDA (CX)
(RECORDACCESS (QUOTE REAL)

CX NIL (QUOTE FETCH))))

25.3 ESTABLISHING A USER EXECUTIVE
Within your program, you may want to establish your own executive routine that
interprets a set of commands defined by your application. USEREXEC allows
you to define your own prompt character, macros, and scanning function. It
calls LISPX iteratively until it encounters the lispxmacro OK or via a RET-
FROM. It takes the format

Function: USEREXEC

Arguments: 3
Arguments; 1) A prompt c h a ra c te r , LISPXID

2) lispxm acros, LISPXXMACROS
3) a u se r scanning fu n ctio n , LISPXXUSERFN

Value: The value o f the l a s t command.

We might define USEREXEC as follows:

(DEFINEQ
(userexec (l is p x id lispxxraacros lispxxuserfn)

(PROG (readbuf)
(*

READBUF is used to s to re the
rem ainder of the input l in e a f te r
execution of READLINE.

)

25.3 Establishing a User Executive 907

908 The Programmer's Assistant

i*

)
(AND

I f you do not define your own prompt
ch a ra c te r, then the d e fau lt is used.

loop

(NULL lisp x id)
(SETQ lis p x id ' ^))

P r in t the prompt ch a rac te r to the
te rm in a l.

))

)
(PROMPTCHAR lis p x id T LISPXHISTORY)
(*

Read and evaluate the input w ith
proper p ro te c tio n .

)
(ERSETQ

(LISPX (LISPXREAD T)
lis p x id
lispxxmacros
lisp x x u se rfn))

(GO loop))

If you do not provide your own prompt character, USEREXEC assumes the
standard system prompt character. Note that the call to LISPX is errorset pro
tected to prevent an error from occurring due to erroneous input.

25.4 UNDOABLE VERSIONS OF DESTRUCTIVE FUNCTIONS
As mentioned above, each primitive destructive function has a corresponding
version which saves information on the history list so that the effects of that func
tion may be undone. LISPX substitutes the undoable version for the normal ver
sion on any statements that are typed in. You can make your functions undoable
by using these undoable versions in your own functions.

25.4.1 Undoable Sets
SETs or SETQs may be made undoable by calling SAVESET instead of SET or
SETQ. SAVESET stores the necessary information on the history list to undo its
effects. It saves the old value of the variable (other than NOBIND) on the prop
erty list of the atom under the property VALUE. It also prints the message
({variable) RESET). SAVESET has the following format

25.4 Undoable Versions of Destructive Functions 909

F u n c tio n : SAVESET

A rgum ents: 4

Arguments: 1) a v a r ia b le name, NAME
2) a new v a lu e , NEWVALUE
3) a to p - le v e l f l a g , TOPFLG
4) a save f la g , SAVEFLG

V alue: The new v a lue o f th e v a r ia b le , NEWVALUE.

Consider the following examples:

MAP.WIDTH
NOBIND

<-(SETQ MAP.WIDTH 512)
512

<-(GETPROP MAP.WIDTH ’VALUE)
NIL

«-(SETQ MAP.WIDTH 128)
(MAP.WIDTH RESET)
128

^(GETPROP MAP.WIDTH 'VALUE)
512

Because SAVESET is substituted for SET or SETQ by LISPX, it will also
add any variables passed to it to the spelling list, SPELLINGS3.

SAVESET also calls the File Package to update the appropriate file records
when any variable is changed that was set as the result of loading a file.
MARKASCHANGED is invoked to ensure that the File Package notices that the
file must be rewritten.

If DFNFLG (see Section 8.2.4) is not T, SAVESET prints the message
(<name> RESET). The old value is stored under the property VALUE on
n a m e ’s property list.

If TOPFLG is T, SAVESET changes the contents of the variable’s value cell
rather than scanning the pushdown list. If DFNFLG is ALLPROP as well, then
NEWVALUE is stored as the value of the property VALUE. This allows you to
load files without disturbing the current values of variables.

If SAVEFLG is NOSAVE, then the old value is not stored on the property
list. Moreover, NAME is not added to the spelling list. However, the effects are
still undoable because the relevant information has been stored in the history
list.

(SAVESET 'MAP.WIDTH 1024 NIL 'NOSAVE)
1024

^ (GETPROPLIST ' MAP.WIDTH)
NIL

If SAVEFLG has the value NOPRINT, the old value is saved, but the mes
sage is not printed.

A Definition for SAVESET
We might define SAVESET as follows:

(DEFINEQ
(sav ese t (name newvalue to p f lg saveflg)

(COND
((NOT (LITATOM name))

(*
I f NAME is not an atom, generate an
e r ro r .

)
(ERROR "ARG NOT LITATOM” name))

((NULL name)
(ERROR "ATTEMPT TO SET NIL" newvalue)))

(PROG (p o in te r o ldvalue temporary)
(*

Set POINTER to atom or s tack frame of l a s t
b ind ing .

)
(SETQ p o in te r

(COND
(to p flg name)
(T

(*
Scan the stack fo r the l a s t
b inding o f the v a r ia b le .

) ■
(STKSCAN name

(STKARG 0 (STKPOS
'SAVESET))))))

(SETQ oldvalue (CAR p o in te r))
(COND

((AND to p f lg
(EQ DFNFLG 'ALLPROP)
(NEQ (CAR p o in te r) 'NOBIND))

Save the new value under the
p roperty VALUE on the atom 's
p roperty l i s t .

)

910 The Programmer's Assistant

(/PUT name 'VALUE newvalue)
(RETURN newvalue))

((OR
(NOT (ATOM p o in te r))
(EQ sav eflg ' NOSAVE))
(*

Check e i th e r fo r to p - le v e l
b inding or fo r a c a l l from /SET
or /SETQ.

)
(GO g e to u t))

((OR
(EQ oldvalue 'NOBIND)
(EQUAL oldvalue newvalue)))

(T
(COND

((NEQ DFNFLG T)
(SETQ temporary (CONS name
' (RESET)))
(AND

(NEQ sav eflg 'NOPRINT)
(NULL

(SOME
(GET LISPXHIST
'LISPXPRINT)
(FUNCTION

(LAMBDA (X)
(AND

(EQ (CAR X)
'PRINT)
(EQUAL (CADR
X)
tem porary))))))

(LISPXPRINT temporary T))
(/PUTPROP name 'VALUE
o ld v a lu e)))))

(*
ADD NAME to USERWORDS since i t was typed
in .

)
(AND

DWIMFLG
(ADDSPELL name T))

g e to u t
(AND

(LISPXHIST

25.4 Undoable Versions of Destructive Functions 911

912 The Programmer's Assistant

))

(UNDOSAVE
(LIST ’UNDOSET p o in te r name oldvalue)
LISPXHIST))

(*
Set the value of NAME here , f in a l ly .

)
(RPLACA p o in te r newvalue)
(RETURN newvalue))

Unsetting Values
You may restore the old value by invoking UNSET, which takes the form_

Function: UNSET

Arguments: 1

Arguments: l) the name of an atom, NAME

Value: The value of NAME.

UNSET saves the current value under the property VALUE and sets the
value of the variable to the contents of VALUE. It does not print any messages.
You may use UNSET to alternate between two variable values. This is particu
larly useful in testing programs. Consider the following example:

<-(SAVESET 'MAP.WIDTH 512)
512

MAP.WIDTH
512
<-(GETPROPLIST 'MAP.WIDTH)
(VALUE 1024)

< -(UNSET 'MAP.WIDTH)
MAP.WIDTH

MAP.WIDTH
1024

<-(GETPROPLIST 'MAP.WIDTH)
(VALUE 512)

UNSET is called with a single argument, the NAME of the variable whose
old value is to be restored. UNSET merely invokes SAVESET with the proper
arguments.

A Definition for UNSET
We might define UNSET as follows:

(DEFINEQ
(u n se t (name)

(SAVESET name
(GETPROP name ’VALUE)
T
NOPRINT)

))

Alternative Forms
Alternative forms for SETQ and SETQQ may be defined in terms of SAVESET.

(DEFINEQ
(sav ese tq

(NLAMBDA (name newvalue)
(SAVESET name (EVAL newvalue))

)))
(DEFINEQ

(savsetqq
(NLAMBDA (name newvalue)

(SAVESET name newvalue)
)))

Alternative Forms for RPAQ and RPAQQ
Note also that RPAQ and RPAQQ (see Section 3.9) operate like SETQ and
SETQQ except that they bind the top-level value of the variable. We can define
them using SAVESET as follovî s:

(DEFINEQ
(rpaq

(NLAMBDA (name newvalue)
(SAVESET name (EVAL newvalue) T)

)))
(DEFINEQ

(rpaqq
(NLAMBDA (name newvalue)

(SAVESET name newvalue T)
)))

25.4.2 Replacing the Top-Level Value
Both RPLACA and RPLACD affect the top-level value of a variable. Their un
doable versions are /RPLACA and /RPLACD. They may be defined as

(DEFINEQ
(/rp la c a (name newvalue)

25.4 Undoable Versions of Destructive Functions 913

914 The Programmer's Assistant

(AND LISPXHIST
(UNDOSAVE

(COND
((LISTP name)

(CONS name
(CONS (CAR name)

(CDR name))))
(T

(LIST VRPLACA
name
(CAR name))))

LISPXHIST))
(RPLACA name newvalue)

))
(DEFINEQ

(/rp la c d (name newvalue)
(AND LISPXHIST

(UNDOSAVE
(COND

((LISTP name)
(CONS name

(CONS (CAR name)
(CDR name))))

(T
(LIST V rp lacd

name
(CDR name)))

LISPXHIST))
(RPLACD name newvalue)

))

Note that /RPLACA and /RPLACD have the same effect as RPLACA and
RPLACD. Moreover, if no history list is defined (i.e., the History Package is not
being used), they are exactly equivalent.

25.4.3 Undoing Mapping Functions
Mapping functions (see Chapter 12) apply a function to one or more arguments
sequentially. Side effects of the function or functions called by it may alter the
value or structure of the individual arguments. We can define an undoable ver
sion of a mapping function which saves the necessary information on the history
list by using the undoable versions of primitive destructive functions. As an ex
ample, consider the definition for an undoable version of MAPCONC that is
called /MAPCONC:

(DEFINEQ
(/mapconc (mapx m apfunction .l m apfunction.2)

(PROG (map.1 s t m ap.entry m ap .resu lt)
loop

(COND
((NLISTP mapx)

(RETURN map.1 s t))
((SAVESETQ m ap .resu lt

(APPLY* m apfunction .l
(CAR mapx)))

(COND
(m ap.entry

(/rp la c d m ap.entry m ap .resu lt))
(T

(SAVESETQ map.1 st
(SETQ m ap.entry

m a p .re su lt))))
(PROG NIL
loop2

(COND
((SAVESETQ m ap .resu lt

(CDR m ap.entry))
(SAVESETQ m ap.entry

m ap .resu lt)
(GO lo o p 2)))))

(SAVESETQ mapx
(COND

(mapfunction.2
(APPLY* m apfunction.2

mapx))
(T

(CDR mapx))))
(GO loop))

))

Similar definitions may be constructed for each of the other mapping func
tions.

25.4.4 Undoing Function Definitions
Function definitions may be stored on the property list of an atom under the
property EXPR. Two functions may set these definitions: PUTD and MOVD.
We can construct undoable versions of these functions as follows:

(DEFINEQ
(/p u td (a .fu n c tio n a .d e f in i t io n)

25.4 Undoable Versions of Destructive Functions 915

(PROG (temporary)
(SETQ temporary (GETD a .fu n c tio n))
(COND

((NOT (ATOM a .fu n c tio n))
(RETURN NIL)))

(PUTD a .fu n c tio n a .d e f in itio n)
(AND LISPXHIST

(UNDOSAVE
(LIST Vputd a .fu n c tio n temporary)
LISPXHIST))

(RETURN a .d e f in i t io n))
))

Note that we test A.FUNCTION to make sure it is atomic so that no error
results when we attempt to do the PUTD.

Using /PUTD, we can now define /MOVD:

(DEFINEQ
(/movd (fu n c tio n .1 fu n c tio n .2 flag)

(PROG (newflag)
(SETQ newflag (NULL (GETD fu n c tio n .2)))
(/PUTD fu n c tio n .2

(COND
(f la g

(COPY (GETD fu n c tio n .1)))
(T

(GETD fu n c t io n .l))))
(AND FILEPKGFLG

(EXPRP fu n c tio n .2)
(NEWFILE? fu n c tio n .2 NIL newflag))

(AND DWIMFLG
(ADDSPELL fu n c tio n .2))

(RETURN fu n c tio n .2))
))

25.4.5 Undoing the Putting and Removing of Properties
PUTPROP (see Section 7.3) and REMPROP (see Section 7.4.2) are functions
that put and remove properties from atoms. We would like to undo a PUTPROP
if it overwites a property value that already exists. We would like to undo REM
PROP if it removes a property from the atom’s property list that should be re
tained. We may define these functions as follows:

(DEFINEQ
(/pu tp ro p (atm p roperty value)

916 The Programmer's Assistant

((NULL atm)
(ERROR "ATTEMPT TO RPLAC NIL”

(LIST atm p ro p erty)))
((NOT (LITATOM atm))

(ERROR "ARG NOT LITATOM”
atm)))

(PROG (p r o p . l i s t . l p r o p . l i s t . 2 temporary)
(SETQ p r o p . l i s t . l (GETPROPLIST atm))

loop
(COND

((NLISTP p r o p . l i s t . l)
(COND

((AND
(NULL p r o p . l i s t . l)
p r o p . l i s t . 2)

(SETQ temporary
(LIST property value))

(AND
LISPXHIST
(UNDOSAVE

(LIST '/PUT-1
atm
temporary)

LISPXHIST))
(/RPLACD (CDR p r o p . l i s t . 2)

temporary)
(RETURN v a lu e))))

((NLISTP (CDR p r o p . l i s t . l)))
((EQUAL (CAR p r o p . l i s t . l) p roperty)

(/RPLACA (CDR p r o p . l i s t . l) value)
(RETURN value))

(T
(SETQ p r o p . l i s t . 2 p r o p . l i s t . l)
(SETQ p r o p . l i s t . l (CDDR
p r o p . l i s t . 2))
(GO loo p)))

(SETQ temporary
(CONS property

(CONS value (GETPROPLIST atm))))
(AND LISPXHIST

(UNDOSAVE
(LIST V put-1

atm
temporary)

25.4 Undoable Versions of Destructive Functions 917

(COND

918 The Programmer's Assistant

))

LISPXHIST))
(SETPROPLIST atm temporary)
(RETURN value))

And the definition for /REMPROP might appear as:

(DEFINEQ
(/remprop (atm property)

(COND
((NULL (LITATOM atm))

(ERROR "ATTEMPT TO RPLACA NIL” atm)))
(PROG (p r o p . l s t . l p ro p .1 s t.2 value)

(SETQ p r o p . l s t . l (GETPROPLIST atm))
loop

(COND
((OR (NLISTP p ro p .1st)

(NLISTP (CDR p ro p .ls t)))
(RETURN value))

((EQUAL (CAR r o p . l s t) property)
(SETQ value property)
(AND LISPXHIST

(UNDOSAVE
(LIST VPUT+1

atm
(CDR p ro p .1 s t.2)
p r o p . l s t . l)

LISPXHIST))
(COND

(p ro p .1 s t.2
(/RPLACD (CDR p ro p .1 s t.2)

(CDDR p r o p . l s t . l)))
(T

(SETPROPLIST atm
(CDDR
prop .1 s t .1)))) '

(SETQ p r o p . l s t . l (CDDR p r o p . l s t . l)))
(T

))
(GO loop))

(SETQ p ro p .1 s t .2 p r o p . l s t . l)
(SETQ p r o p . l s t . l (CDDR
p r o p . l s t .2)))))

/PUT-1 may be defined as

(DEFINEQ
(/p u t-1 (atm p roperty)

(PROG ((x atm))
loop

(COND
((EQUAL (CDR x) property)

(AND LISPXHIST
(UNDOSAVE

(LIST '/PUT-1
atm
X
property)

LISPXHIST))
(RPLACD X (CDDR p roperty))

((SETQ X (CDR x))
(GO lo o p))))

))

25.4.6 Writing Your Own Undoable Functions
You may augment the functions that are undoable by the Programmer’s Assis
tant by writing your undoable versions of your own functions. To do so, you will
have to observe the following rules:

1. Use only undoable versions of the destructive functions in the functions
that you write. If you need to know which functions are undoable, see the
value of LISPXFNS in Section 25.8.

2. For your functions, write an undoable version for every function that
modifies one of your data structures. The application user will use the
regular versions, but LISPX will substitute the undoable versions for
you.

3. Make the proper entries on LISPXFNS of the regular and undoable ver
sions of your functions.

25.5 PROGRAMMER'S ASSISTANT FUNCTIONS
The Programmer’s Assistant provides access to many functions that may be
called from within your program. This allows you to create executive and input
routines that are tailored to your applications. You may do this by redefining the
basic INTERLISP functions, augmenting them with additional code, or calling
them from your own executive routine.

25.5.1 LISPX Support Functions
LISPX invokes a number of support functions when it substitutes for IN-
TERLISP’s READ-EVAL-PRINT loop. These functions perform the same

25.5 Programmer's Assistant Functions 919

functions as READ, EVAL, and PRINT, but are written to recognize the special
commands supported by the Programmer’s Assistant.

LISPXREAD is a substitute for the generalized READ function (see Section
14.1). It has the format

Function: LISPXREAD

Arguments: 2

Arguments: 1) a f i l e name, FILE
2) a read ta b le , RDTBL

Value: The next unread expression .

LISPXREAD obtains the next expression from the specified file. It may do
this in one of two ways:

1. If READBUF is non-NIL, it contains a list of expressions that have been
unread as the result of previous Programmer Assistant commands.
LISPXREAD returns the next expression from this list.

2. If READBUF is NIL, LISPXREAD invokes READ (see Section 14.1) to
acquire the next expression from the input stream.

LISPXREAD sets REREADFLG to NIL when it reads input via READ, but
sets it to the value of READBUF when rereading.

The actions of LISPXREAD are mediated by a read table as described in
Section 14.4.

A Definition for LISPXREAD
We might write LISPXREAD as follows:

(DEFINEQ
(lisp x re a d (f i l e rd tb l)

(PROG (lisp x in p u t)
loop

(COND
((NULL READBUF)

(*
Nothing in the read b u ffe r , so
to read from the te rm in a l.

)
(SETQ REREADFLAG NIL)
(SETQ lisp x in p u t

(COND
((EQ lisp x read fn 'READ)

(READ T))

920 The Programmer's Assistant

25.5 Programmer's Assistant Functions 921

(T
(APPLY* lisp x read fn

f i l e))))
(COND

((READP T)
(*

Echo the input fo r the user
w ith no <CR> because th e re
i s more input in the read

' b u ffe r .
)
(PRIN2 lisp x in p u t T)
(SPACES I T))

(T
(PRINT lisp x in p u t T))))

(RETURN lis p x in p u t)))
(SETQ lis p x in p u t (CAR READBUF))
(SETQ READBUF (CDR READBUF))
(RETURN lis p x in p u t))

))

However, there is a bit of subterfuge going on here. LISPXREAD actually
does not do a READ if you are accepting data from a file. Rather, it performs the
following statement:

(APPLY* LISPXREADFN f i l e)

where LISPXREADFN is initially defined as READ, You may assign any read
ing function that you want to LISPXREADFN to perform input to your pro
gram. Since the reading function may parse the input stream, do character or
macro substitution, or other operations, this provides you with a powerful mech
anism for controlling how data is entered into your program from various
sources. The reading function may even be configured to perform security and
validation checks on the input file.

Uiireading an Expression
LISPXUNREAD unreads a list of expressions contained in its argument, which
is a list. It takes the form

Function: LISPXUNREAD

Arguments: 1
Argument: 1) a l i s t o f expressions to be unread, LST

Value: The l i s t o f expressions.

LISPXUNREAD puts the unread expressions into READBUF. Thus, these
expressions will be the next ones considered by LISPXREAD as input before
going to the file. If the expressions which appear in this psuedo-input must be
executed in a certain sequence, you are responsible for ordering them in the
manner in which they are to be executed.

We might define LISPXUNREAD as follows:

(DEFINEQ
(lispxunread (1 st)

(SETQ READBUF
(COND

((NULL READBUF) 1st)
(T

(APPEND 1 st
(CONS HISTSTRO
READBUF)))))

))

Testing for Input
LISPXREAD? is a predicate that tests whether anything is waiting to be read on
the primary input stream. It takes the form

922 The Programmer's Assistant

Function:

Arguments:

Argument:

V alue:

LISPXREADP

1
1) a f la g , FLAG

T, i f anything i s w aiting to be read;
o therw ise , NIL.

If FLAG has the value T, LISPXREADP will return T if there is any input
waiting to be read via LISPXREAD. Thus, if the user types ahead to the read
buffer, LISPXREAD will detect its presence.

If FLAG is NIL, LISPXREADP returns T if and only if there is input to be
read on the current line. That is, it does not detect any expressions that you may
have typed ahead.

In both cases, leading spaces are ignored by reading them with READC.
We might define LISPXREADP as follows:

(DEFINEQ
(lisp x read p (f la g)

(COND
(READBUF

(OR f la g
(NEQ (CAR READBUF) HISTSTRO)))

(T
(READP T)))

))

25.5.2 Evaluating Expressions as if LISPXREAD
When LISPXREAD reads input, the input is recorded on the history list as an
event. You may enter events on the history list from your program by simulating
the read and evaluation process. LISPXEVAL performs this simulation for you.
It takes the form

Function: LISPXEVAL

Arguments: 2

Arguments: 1) a l is p x expression , LISPXFORM
2) a l is p x id e n t i f i e r , LISPXID

Value: The value produced by eva luating
LISPXFORM.

LISPXEVAL evaluates LISPXFORM as though it had been read by LISPX.
That is, the expression is recorded as an event on the history list. The expression
is made undoable by substituting the undoable versions of the corresponding
destructive functions (see Section 25.4). The value produced by evaluating
LISPXFORM is returned to the caller, but is not printed.

We might define LISPXEVAL as follows:

(DEFINEQ
(lisp x e v a l (lispxform lisp x id)

(PROG (l is p x h is t)
(OR lis p x id

(SETQ lis p x id ' ^))
(*

Create the h is to ry l i s t en try and
make a copy to re tu rn to the c a l le r .

)
(SETQ l is p x h is t

(HISTORYSAVE LISPXHISTORY
lis p x id
NIL
lisp x fo rm))

Evaluate LISPXFORM and put value in to
h is to ry l i s t en try .

)

25.5 Programmer's Assistant Functions 923

924 The Programmer's Assistant

))

(RPLACA lis p x h is t
(EVAL

(COND
((NLISTP lispxform)

lispxform)
(T

(LISPX/ lispxform)))
l is p x id))

(*
Return the value computed from the
eva luation of LISPXFORM.

)
(RETURN (CAR l is p x h is t)))

25.5.3 Apprising the Assistant of Undoable Functions
When you have defined an undoable version of some destructive function, you
need to apprise the Programmer’s Assistant of its existence. You do this by exe
cuting NEW/FN with the name of the new function. It takes the form

Function: NEW/FN

Arguments: 1
Argument: 1) the name of an undoable function , FN

Value: The name of the function .

NEW/FN updates the internal tables of the Programmer’s Assistant so that
a function will be undoable when typed in. The IRM suggests this example:

<-(DEFINEQ
(/ra d ix (x)

(UNDOSAVE (LIST '/ r a d ix (rad ix x)))
))

/ r a d ix

<-(NEW/FN '/ r a d ix)
/RADIX

(PRINT 150)
150

^(RADIX 12)
10
^(PRINT 150)
106

(RESET)

(PRINT 150)
150

(Note; the prompt is p r in te d using
the rad ix a lso !)

25.5 Programmer's Assistant Functions 925

25.5.4 Substituting Undoable Versions
LISPX automatically performs the substitution of undoable versions of destruc
tive functions vî hen it reads in an expression. To do so, it uses the function
LISPX/, which takes the form

Function: LISPX/

Arguments: 3

Arguments: 1) an exp ression , EXPRESSION
2) a fu n c tio n , FN
3) a l i s t of bound v a r ia b le s , VARS

Value: The expression w ith appropria te
s u b s t i tu t io n s .

If FN is non-NIL, it should be the name of a function. EXPRESSION will be
its argument list.

If FN is NIL, then EXPRESSION is an expression in which substitutions are
to be made.

In either case, VARS is an optional list of bound variables that may be used
during the substitution process.

Consider the following examples:

< -(LISPX/ '(SETQ X (CAR LETTERS)))
(SAVESET X (CAR LETTERS))

(LISPX/ '(SETQ X (RPLACA HEAD (CAR TASK))))
(SAVESET X (/RPLACA HEAD (CAR TASK)))

25.5.5 Undoing Events
UNDOLISPX allows you to undo one or more events. It takes the form

Funct io n : UNDOLISPX

Arguments: 1
Argument: l) an event s p e c if ic a tio n , EVENT

Value: The name of the last function undone.

UNDOLISPX executes the UNDO command. EVENT is a list of one or
more event specifications. UNDOLISPX invokes UNDOLISPXl on each event
in EVENT.

When you are undoing events, undoing them in order is guaranteed to re
store you to the original state of your computation. However, undoing out of
order is defined as restoring any cells changed in the indicated operation to their
original state before the operation was performed. Undoing out of order will
cause problems when several events are dependent on one another.

■<-(SETQ p re s id e n ts ' (hayes g a r f ie ld polk buchanan))
(HAYES GARFIELD POLK BUCHANAN)

-^(SETQ X (ATTACH p re s id e n ts '(l in c o ln)))
((HAYES GARFIELD POLK BUCHANAN) LINCOLN)

«-(SETQ Y (ATTACH X '(MCKINLEY)))
(((HAYES GARFIELD POLK BUCHANAN) LINCOLN) MCKINLEY)

^(UNDOLISPX '(2))
SETQ undone.

<-X
UNBOUND ATOM
X
^(UNDOLISPX '{A))
UNDOLISPX undone.
UNDOLISPX

((HAYES GARFIELD POLK BUCHANAN) LINCOLN)

^(UNDOLISPX ’ (6))
UNDOLISPX undone.
UNDOLISPX

((LINCOLN) MCKINLEY)

In general, operations will always be independent if they affect different lists
or sublists (which are not tails) of the same list. Note that property lists are
treated differently because each property is assumed to be independent.

^(SETQ REAGAN NIL)
NIL
<-(PUTPROP 'REAGAN 'INAUGURAL-DATE 'JAN-20-1985)

JAN-20-1985

<-(PUTPROP 'REAGAN 'TERM 'SECOND)
SECOND

926 The Programmer's Assistant

^(PUTPROP 'REAGAN 'ELECTORAL-VOTES 525)
525

^GETPROPLIST 'REAGAN)
(INAUGURAL-DATE JAN-20-1985 TERM SECOND ELECTORAL-VOTES
525)

^(UNDOLISPX '(2))
PUTPROP undone.
PUTPROP

<-(GETPROPLIST 'REAGAN)
(TERM SECOND ELECTORAL-VOTES 525)

Note that events are specified in a list. Here they have been specified by the
number of the event, but you may also specify them by the name of the function
used in the event.

25.5 Programmer's Assistant Functions 927

Undoing Exactly One Event
UNDOLISPXl allows you to undo exactly one event. It takes the form

Function: UNDOLISPXl

Arguments: 2

Arguments: 1) an event, EVENT
2) a f la g , FLAG

Value: T o r NIL.

UNDOLISPXl undoes one event on a history list. It handles three cases:

1. If there is nothing to be undone, it returns NIL.
2. If the event was already undone, it prints the message “ALREADY UN

DONE” and returns T.
3. Otherwise, it undoes the event, prints the appropriate message, and re

turns T.

If FLAG is T and the event is already undone, or is an UNDO command,
UNDOLISPXl does nothing but return NIL. When EVENT is NIL, UNDO-
LISPX searches the history list until it finds an event for which UNDOLISPXl
returns T.

To undo an event, UNDOLISPXl must map down the property value for the
SIDE field of the history list entries. For each element, it applies the CAR to the
CDR and marks the event undone by attaching (with /ATTACH) a NIL to the
front of the value of the SIDE property. Undoing elements in this fashion causes
UNDOSAVE entries to be made on LISPXHIST. This allows you to undo the
effects of UNDOLISPXl.

25.5.6 Undoing When Errors Occur
UNDONLSETQ is an NLAMBDA function that operates like NLSETQ. It
takes the form

928 TKe Programmer's Assistant

Function:

Arguments:

Argument:

V alue:

UNDONLSETQ

1

1) an expression , UNDOFORM

The value of UNDOFORM.

UNDONLSETQ evaluates UNDOFORM. If no error occurs, it returns
(LIST (EVAL UNDOFORM)) and records the undo information on the history
list. If an error does occur, UNDONLSETQ returns NIL (like NLSETQ) and
undoes any changes that were made by undoable functions.

UNDO information is stored directly on the history event (if LISPXHIST is
not NIL), so that if you execute a CTRL-D out of the UNDONLSETQ, the event
will still be undoable.

The IRM suggests that UNDONLSETQ might be defined as follows:

(DEFINEQ
(undonlsetq

(NLAMBDA (undoform)
(RESETLST

(RESETSAVE (RESETUNDO)
(AND (EQUAL RESETSTATE ’ERROR)

(RESETUNDO OLDVALUE)))
undoform)))

))

25.5.7 LISPX Printing Support
The Programmer’s Assistant provides a number of printing functions to support
display of information at the top-level executive. These functions have the same
form

Function: LISPXPRINT
LISPXPRINI
LISPXPRIN2
LISPXSPACES
LISPXTERPRI
LISPXTAB
USERLISPXPRINT

Arguments:

Arguments: 1) an expression , EXPRESSION
2) a f i l e name, FILE
3) a read ta b le , RDTBL
4) a no p r in t f la g , NODOFLAG

Value: The value of EXPRESSION.

Each of these functions performs the same action as its corollary as de
scribed in Chapter 15. They are redefined here to make entries on the history list
and to provide a mechanism for modifying the top-level executive.

^(LISPXPRINT '(SETQ X (QUOTE (A B C D))) T T T)
NIL

because NODOFLAG is T.

25.5 Programmer's Assistant Functions 929

Definitions for LISPX Printing Functions
We might define these functions as follows:

(DEFINEQ
(l is p x p r in t (expression f i l e rd tb l nodoflag)

(AND LISPXPRINTFLG
LISPXHIST
(LISPXPUT 'LISXPRINT

(LIST
(NLIST 'PRINT

expression
f i l e
r d tb l))

T
LISPXHIST))

(AND (NULL nodoflag)
(PRINT expression f i l e rd tb l))

))
(DEFINEQ

(l is p x p r in l (expression f i l e rd tb l nodoflag)
(AND LISPXPRINTFLG

LISPXHIST
(LISPXPUT 'LISXPRINT

(LIST
(NLIST 'PRINl

expression
f i l e
r d tb l))

930 The Programmer's Assistant

))

LISPXHIST))
(AND (NULL nodoflag)

(PRINl expression f i l e rd tb l))

and similarly for LIXPSPRIN2, LISPXTAB, LISPXSPACES, and LISPX-
TERPRI, which vary only in function name, argument to NLIST, and final print
statement.

I

User-Defined LISPX Printing
USERLISPXPRINT permits you to define additional LISPX printing functions.
It is defined to look back on the stack, find the name of the calling function,
strip off the leading LISPX, perform the appropriate saving information, and
then call the function to do the actual printing. The function called is the func
tion name with the “LISPX” stripped off.

LISPXPRINTDEF
LISPXPRINTDEF is the corollary function to PRINTDEF. It takes the form

Function:

Arguments;

Arguments:

V alue:

LISPXPRINTDEF

6
1) an expression , EXPRESSION
2) a f i l e name, FILE
3) a le f t-h a n d margin, LEFT
A) a d e f in i t io n f la g , DEFFLAG
5) a t a i l f la g , TAILFLAG
6) a no p r in t f la g , NODOFLAG

The value o f the expression .

All of the printing functions put their output on the history list under the
property *LISPXPRINT*.

If NODOFLAG is non-NIL, these functions merely put their output on the
history list, but do not print anything.

To perform output from a user program so that the output appears on the
history list, you merely call the corresponding LISPX printing function rather
than the standard printing function.

LISPX printing is mediated by the value of LISPXPRINTFLG. If NIL, the
LISPX printing functions will not store their output on the history list.

25.6 CONTROLLING PROMPTING
History lists (see Chapter 28) contain numbered events that may be referred to by
history commands. Normally, INTERLISP does not identify each statement

(also called events” by the History Package). You may enable statement num
bering by setting the variable PROMPT#FLG to T. The current event number
will be printed preceding the prompt character. For example,

^MAKEFILE [AMISMAINT]
[DSK]AMISMAINT.;20

^(SETQ PROMPT#FLG T)
T

37*^ MAKEFILE[AMISUSER]
[DSK]AMISUSER.;7

Normally, a prompt is displayed by INTERLISP, you type an expression in
response, and the expression is evaluated. That is, expressions are valuated after
the prompt character has been displayed. You can force the evaluation of ex
pressions before the prompt character is printed by assigning the expressions to
be evaluated to PROMPTCHARFORMS. Initially, PROMPTCHARFORMS
has the value (CHECKNIL). CHECKNIL is a system function that checks to see
if the CAR or CDR of NIL have been reset or rebound. If so, it restores them and
prints a warning message.

25.7 THE RESET PACKAGE
While your program is running, it may be interrupted or aborted because of
errors or the pressing of control characters at the keyboard. The most devastat
ing control character is CTRL-D because it forces a return to the top-level
READ-EVAL-PRINT loop. However, your environment remains the same as
established by your program. That is, any system variables that your program
sets directly via SETQ or indirectly via a function call, and any global variables
that your program defines will retain their values. Generally, you want to protect
your environment by resetting variables to their original values when your pro
gram completes execution.

Errors may be caught (intercepted!) via ERRORSET. However, CTRL-Ds
cannot be intercepted. The Reset Package provides functions to restore your en
vironment in the event a CTRL-D or (RESET) is executed. However, you may
also restore pieces of your environment when an error occurs using this package.
While the Reset Package is useful when a (RESET) or CTRL-D occurs, it is
quite valuable for performing selective restorations in the event of errors.

25.7.1 Establishing a Reset List
RESETLST establishes a reset list. It takes the following form

Function: RESETLST

25.7 The Reset Package 931

Arguments: 1-N

Arguments: 1) a l i s t of r e s e t expressions, FORM[i]

Value: Value of l a s t form, FORM[n].

RESETLST is an NLAMBDA, nospread function. RESETLST sets up an
ERRORSET (see Section 18.3) so that any reset operations performed by RE-
SETSAVE will be restored when an error, (RESET), or a CTRL-D occurs.

If no error occurs, the value of RESETLST is the value of the last form.
Otherwise, an error is generated after the necessary restorations are performed.
That is, the environment before execution of the RESETLST will be restored if
an error occurs.

932 The Programmer's Assistant

25.7.2 Restoring Your Environment
RESETSAVE changes your environment by calling a function or setting a vari
able. At the same time, it sets up a specification for restoring the original value
should an error or reset occur. RESETSAVE is usually used within a call to
RESETLST. It takes the form

Function: RESETSAVE
Arguments: 2
Arguments: 1) an expression, X

2) an expression, Y
Value: Not a u se fu l quantity (according to the

IRM).

RESETSAVE is an NLAMBDA, nospread function, so its arguments are
not evaluated before it is called. Rather, RESETSAVE evaluates its arguments
according to the following cases:

X is Atomic
The top-level value of X is set to Y. Y is evaluated but X is not. When you enter
the Editor, it performs

(RESETSAVE LISPXHISTORY EDITHISTORY)

to set the current history list to that used by the Editor. When you exit the Edi
tor, the current history list will be restored as LISPXHIST.

X is Not Atomic
It is evaluated. If Y, e.g., the CDR of the form, is NIL, then X must return its
former value while setting a new one. Thus, the effect of evaluating the form may
be reversed when an error or reset occurs.

(RESETSAVE (CONTROL T))

will eliminate line buffering for the terminal table. It returns NIL, which is its
normal state.

X is a Function
If X does not return its former value, the restoring expression is the value of Y. Y
is evaluated before X.

(RESETSAVE (SETBRK . . .)
(LIST 'SETBRK (GETBRK)))

which restores the break characters by applying SETBRK to the value returned
by (GETBRK). This expression is computed before (SETBRK) is evaluated.

X may be NIL
If Y is non-NIL. Y is executed whenever a reset occurs. The IRM notes that a
useful form is

(RESETSAVE NIL (LIST 'CLOSEF <filenam e)))

which closes a file whenever a reset occurs. Alternatively, you may wish to use

(RESETSAVE NIL (LIST ’ CLOSEALL))

which closes all files whenever a (RESET) occurs.

MAKEFILEFORMS as an Example
In the File Package, the variable MAKEFILEFORMS is evaluated to set certain
system variables whenever a MAKEFILE is performed. It inspects the options
passed to MAKEFILE to set these variables. To ensure that their values are reset
when MAKEFILE exits, they are set inside a RESETSAVE as follows:

(ADDVARS
(MAKEFILEFORMS

(COND
((MEMBER ’NOCLISP OPTIONS)

(RESETSAVE PRETTYTRANFLG T))
((MEMBER 'CLISP^ OPTIONS)

(RESETSAVE PRETTYTRANFLG 'BOTH)))
(COND

((MEMBER 'FAST OPTIONS)
(RESETSAVE PRETTYFLG N IL)))

(COND
((OR

25.7 The Reset Package 933

934 The Programmer's Assistant

((OR

(AND

(MEMBER 'CLISPIFY OPTIONS)
(MEMBER 'CLISP OPTIONS))
(RESETSAVE CLISPFIYPRETTYFLG T))

(EQUAL FILETYPE 'CLISP)
(MEMBER 'CLISP (LISTP FILETYPE)))
(RESETSAVE CLISPIFYPRETTYFLG
'CHANGES)))

(NEQ (LINELENGTH) FILELINELENGTH)
(RESETSAVE LINELENGTH FILELINELENGTH))))

25.7.3 Resetting Variables
RESETVAR allows you to save and restore global variables. It actually com
bines the effects of RESETLST and RESETSAVE in a simplified form. It takes
the form

Function:

Arguments;

Arguments:

Value:

RESETVAR

3
1) a variable, VAR
2) a new value, VALUE
3) an expression, EXPR

The value of EXPR.

RESETVAR is an N L A M B D A function. The function call

(RESETVAR var value expr)

is equivalent to executing

(RESETLST (RESETSAVE var value) expr)

You may evaluate a function with regard to EDITHISTORY rather than
LISPXHISTORY using the following form:

(RESETVAR LISPXHISTORY EDITHISTORY (<function)))

Consider the following example from FNVARS which defines the IN
TERLISP environment at loadup:

(??T
(PROG (TEM)

(RESETVAR

PRETTYTRANFLG
T
(PRINTDEF

(COND
((NULL (CDAR (SETQ TEM

(LISPXFIND LISPHISTORY
LISPXLINE
'ENTRY
T))))

(CAAR TEM))
(T (CAR TEM)))

NIL
T))

(TERPRI T)
(RETURN (CADDR TEM))))

which implements the ??T macro of the History Package.

An Alternative Form for RESETVARS
An alternative form, RESETVARS, operates like a PROG form on global vari
ables. It takes the form

Function: RESETVARS

Arguments: 1-N

Arguments: 1) a g loba l v a ria b le l i s t , VARSLST
2) a s e t of expressions, EXPRESSION[i]

Value: The value of EXPRESSION[n].

RESETVARS sets up a RESETSAVE for each of the variables mentioned in
VARSLST. Note that this function is treated differently in shallow-bound (IN-
TERLISP-10/VAX/370) versus deep-bound (INTERLISP-D) systems; you
should consult the IRM for more information.

The purpose of RESETVARS is to allow transportability of programs from
shallow-bound to deep-bound systems, and vice versa.

25.7 The Reset Package 935

25.7.4 Resetting Expressions
RESETFORM is a shorthand for RESETLST and RESETSAVE when the func
tion returns its previous setting. It takes the form

Function: RESETFORM

Arguments: 2-N

Value: I f no e r ro r occurs, the value re tu rned by
eva lu a tin g EXPR[n].

RESETFORM is an NLAMBDA, nospread function. It is used when the
corresponding function returns as its value the previous setting of some internal
variable. It is equivalent to executing

(RESETLST
(RESETSAVE <resetformx>
ex p ress io n [l]
• • •

expression[N])

Consider the following example from FNVAR:

(GREETFORM
'(LISPXEVAL

(PROGN
(SETQ RESETFORMS

(REMOVE GREETFORM RESETFORMS))
(COND

((NEQ SYSTEMTYPE
(SETQ SYSTEMTYPE (SYSTEMTYPE)))
(SELECTQ

(T0PS20
(SETQQ SYSOUT.EXT EXE))

(TENEX
(SETQQ SYSOUT.EXT SAV))

(SHOULDNT))
(RESTETERMCHARS)
(RESETTERMGHARS ASKUSERTTBL)))

'GREET))
' ^)

936 The Programmer's Assistant

Arguments: 1) a list of expressions, RESETFORMX
2) a set of expressions, EXPRESSION[i]

25.7.5 Establishing UNDO Information
RESETUNDO initializes the saving of UNDO information when used in a re-
setlist. It takes the form

Function: RESETUNDO

Arguments: 2

Arguments: 1) an expression , EXPRESSION
2) a stop f la g , STOPFLAG

Value: A value fo r undoing side e f f e c ts .

The value produced by RESETUNDO, when given back to RESETUNDO,
will cause any intervening side effects to be undone.

(RESETLST
(RESETSAVE (RESETUNDO)) . <forms))

will undo the side effects of evaluating (forms) when a normal exit occurs, when
an error occurs, or a CTRL-D is executed.

If STOPFLAG has the value T, RESETUNDO stops accumulating undo
information that it has been saving about the expression.

(RESETUNDO) initializes the saving of undo information.

25.7 The Reset Package 937

25.7.6 Structure of RESETFORMS
RESETFORMS is a list of expressions that is evaluated whenever a system reset
occurs, either via (RESET) or CTRL-D. The structure of RESETFORMS is

((SETQ READBUF NIL)
(SETQ READBUFSOURCE NIL)
(SETQ TOPLISPXBUFS

(OR (CLBUFS T)
TOPLISPXBUFS))

(COND
((EQ CLEARSTKLST T)

(COND
((EQ NOCLEARSTKLST NIL)

(CLEARSTK))
(T

(MAPC (CLEARSTK T)
(FUNCTION

(LAMBDA (X)
(AND

(NOT (MEMB X
NOCLEARSTKLST))
(RELSTK X))))))))

(T
(MAPC CLEARSTKLST (FUNCTIONRELSTK))
(SETQ CLEARSTKLST NIL)))

(SETQ STACKOVERFLOW))

25.8 PROGRAMMER'S ASSISTANT VARIABLES
The Programmer’s Assistant uses a number of variables to control the evaluation
of input.

938 The Programmer's Assistant

LISPXFNS This v a ria b le is a l i s t o f a l l the
functions fo r which LISPX w ill
s u b s t i tu te a function i f the function
name read appears in the l i s t .
P r in c ip a lly , i t is used to determine
when to s u b s t i tu te undoable versions
of functions fo r basic INTERLISP
fu n c tio n s .

LISPXFNS
((SETQ . SAVESETQ) (SET . SAVESET) (SETQQ . SAVESETQQ)
(DEFINEQ . /DEFINEQ) (DEFINE . /DEFINE) (PUT . SAVEPUT)
(PUTPROP . /PUTPROP) (RETFROM . BREAKRETFROM) (RETEVAL .
BREAKRETEVAL) (ADDPROP . /ADDPROP) (ATTACH . /ATTACH)
(CLOSER . /CLOSER) (CONTROL . /CONTROL) (DELETECONTROL .
/DELETECONTROL) (DREMOVE . /DREMOVE) (DREVERSE .
/DREVERSE) (DSUBST . /DSUBST) (ECHOCONTROL . /ECHOCONTROL)
(ECHOMODE . /ECHOMODE) (FNCLOSER . /FNCLOSER) (FNCLOSERA
. /FNCLOSERA) (FNCLOSERD . /FNCLOSERD) (LCONC . /LCONC)
(LISTPUT . /LISTPUT) (LISTPUTl . /LISTPUTl) (MAPCON .
/MAPCON) (MAPCONC . /MAPCONC) (MOVD . /MOVD) (NCONC .
/NCONC) (NCONCl . /NCONCl) (PUTASSOC . /PUTASSOC) (PUTD .
/PUTD) (PUTDQ . /PUTDQ) (PUTHASH . /PUTHASH) (RADIX .
/RADIX) (RAISE . /RAISE) (REMPROP . /REMPROP) (RPLACA .
/RPLACA) (RPLACD . /RPLACD) (RPLNODE . /RPLNODE) (RPLN0DE2
. /RPLN0DE2) (SETA . /SETA) (SETATOMVAL . /SETATOMVAL)
(SETBRK . /SETBRK) (SETD . /SETD) (SETPROPLIST .
/SETPROPLIST) (SETREADTABLE . /SETREADTABLE) (SETSEPR .
/SETSEPR) (SET SYNTAX . /SETSYNTAX) (SETTERMTABLE .
/SETTERMTABLE) (SETTOPVAL . /SETTOPVAL) (TCONC . /TCONC)
(REPLACEFIELD . /REPLACEFIELD) (DELFILE . /DELFILE)
(UNDELFILE . /UNDELFILE))

LISPXCOMS This v a r ia b le i s used to c o rre c t the
s p e llin g of Programmer's A ss is tan t
commands.

^LISPXCOMS
(XPR XPRESS DIR $. . . ?? FIX FORGET NAME ORIGINAL REDO
REPEAT RETRY UNDO USE f ix fo rg e t name redo rep ea t r e try
undo use SHH RETRIEVE BEFORE AFTER TYPE-AHEAD ??T CONTIN)

LISPXPRINTFLG This v a ria b le determ ines whether the
LISPX p r in tin g functions save th e i r
ou tpu t on the h is to ry l i s t or n o t.
I f i t is NIL, the output w ill not be
saved.

LISPXHISTORY The standard h is to ry l i s t fo r top
le v e l input to INTERLISP.

25.9 LISPX Statistics 939

25.9 LISPX STATISTICS
In INTERLISP-10, the Programmer’s Assistant keeps various statistics about
system usage.

25.9.1 Printing LISPX Statistics
You may print a summary of the LISPX statistics using LISPXSTATS, which
takes the form

Function: LISPXSTATS

Arguments: 1
Argument: l) a value re tu rn f la g , RETURNVALUESFLAG

Value: A l i s t of s t a t i s t i c s or NIL.

LISPXSTATs will print a summary of the statistics accumulated by the Pro
grammer’s Assistant at your terminal. If RETURNVALUESFLAG is T, the sta
tistics will be returned as a list where each element has the form

(<v alu e) . (ex p lan a tio n))

Consider the following example:

< -(LISPXSTATS)
(32 LISPX INPUTS)

(153 UNDO SAVES)
(20 CHANGES UNDONE)

(1 EDIT UNDO SAVES)

(5 CALLS TO DWIM)
(5 WERE DUE TO ERRORS)

OF THOSE DUE TO ERRORS:
(5 WERE DUE TO ERRORS IN TYPE-IN)

OF THE CALLS DUE TO DWIMIFYING:

(0 :21 :3 CONSOLE TIME)
(0 :0 :0 OF IT IN THE EDITOR)
(0 :0 :5 CPU TIME)
(0 :0 :) OF IT IN DWIM)
T

25.9.2 Adding New Statistics
You may add new statistics to those kept by the Programmer’s Assistant using
ADDSTATS, which takes the form

Func t io n : ADDSTATS

Arguments: 1-N

Arguments: 1-N) a s t a t i s t i c en try , STATISTIC[i]

Value: The value o f STATISTIC.

ADDSTATS is an NLAMBDA, nospread function. Each STATISTIC[i] is a
list of the form

(< sta tis tic -n am e> . <message>)

where each <statistic-name> defines a new statistic.

(ADDSTATS (EDITOR-CALLS CALLS TO THE EDITOR))
((EDITOR-CALLS CALLS TO THE EDITOR))

25.9.3 Updating Statistics
Both the user and the Programmer’s Assistant may update statistics variables
using LISPXWATCH, which takes the form

Function: LISPXWATCH

Arguments: 2

940 The Programmer's Assistant

Arguments: 1) a s t a t i s t i c name, STATISTIC
2) a number, N

Value: The new value of the s t a t i s t i c .

LISPXWATCH updates the specified statistic by N. If N is NIL, a default of
1 is assumed. Consider the following example:

^(LISPXWATCH 'EDITOR-CALLS 2)
NIL

•^(LISPXSTATS)
• • •

(2 CALLS TO THE EDITOR)
T

because new statistics are added to the end of the list SYSTATS which contains
the format for the LISPX statistics.

25.9.4 System Statistics
The Programmer’s Assistant currently supports the following statistics which
are kept as elements of the list SYSTATS:

SYSTATS
((LISPXSTATS LISPX INPUTS)

(UNDOSAVES UNDO SAVES)
(UNDOSTATS CHANGES UNDONE)
(EDITCALLS CALL TO EDITOR)
(EDITSTATS EDIT COMMANDS)
(EDITUNDOSAVES EDIT UNDO SAVES)
(EDITUNDOSTATS EDIT CHANGE SUNDONE)
(P.A.STATS P.A. COMMANDS)
(CLISPIFYSTATS CALLS TO CLISPIFY)
(FIXCALLS CALLS TO DWIM)
(ERRORCALLS WERE DUE TO ERRORS)
(DWIMIFYFIXES WERE FROM DWIMIFYING)
(FIXTIME)
NIL
"OF THOSE DUE TO ERRORS:"
(TYPEINFIXES WERE DUE TO ERRORS in TYPE-IN)
(PROGFIXES WERE DUE TO ERRORS IN USER PROGRAMS)
(SUCCFIXESl OF THESE CALLS WERE SUCCESSFUL)
NIL
"OF THESE CALLS DUE TO DWIMIFYING:"
(SUCCFIXES2 WERE SUCCESSFUL)

25.9 LISPX Statistics 941

942 The Programmer's Assistant

(SPELLSTATS

(CLISPSTATS
(INFIXSTATS
(IFSTATS
(I.S.STATS
(MATCHSTATS
(RECORDSTATS
(SPELLSTATSl

(RONONSTATS

(VETOSTATS

OF ALL DWIM CORRECTIONS WERE SPELLING
CORRECTIONS)
WERE CLISP TRANSLATIONS)
OF THESE WERE INFIX TRANSFORMATIONS)
WERE IF/THEN/ELSE’ STATEMENTS)
WERE iterative 'STATEMENTS)
WERE PATTERN MATCHES)
WERE RECORD OPERATIONS)
OTHER SPELLING CORRECTIONS, E.G.,
EDIT COMMANDS)
OF ALL SPELLING CORRECTIONS WERE RUN-
ON CORRECTIONS)
CORRECTIONS WERE VETOED))

26

Masterscope

One of the most useful techniques for programmers is the ability to analyze
source programs. Conventional languages often provide such support for source
programs. Implementation is difficult because of the wide variety of data struc
tures and statements one encounters in a traditional programming language
such as FORTRAN or PASCAL. This diversity means that source program anal
ysis systems become quite complex because they must deal with different types of
information for each statement. Few conventional programming languages sup
port this facility at run-time because of the extensive amount of information re
quired to answer ad hoc queries.

INTERLISP, because it is an integrated programming environment, re
moves the dichotomy between source and run-time programs. This allows it to
interface with the Editor and the File Package to dynamically track changes to
programs as they are created and modified.

Masterscope maintains a database of the relations that it “notices” when a
function is analyzed. It develops sets of primitive relations, such as USE AS
PROPERTY, which it modifies as changes are made to the source code. The
resulting database allows you to determine

What functions a given function calls
How and where variables are bound
How and where variables are set and/or referenced
Which record declarations are used by functions.

You may interrogate the Masterscope database via a simple command lan
guage. You may also display the hierarchy of invocation for any function.

Because Masterscope analyzes only source programs, it will not work on
compile code. That is, only EXPR definitions of functions are analyzed. If there
is no in-core definition, Masterscope attempts to read the definition from a file
that it knows about (see Chapter 17). It will search only those files that have been
noticed or are represented on FILELST.

943

Masterscope is interfaced with both the Editor and the File Package so that
when a function is edited or a new definition(s) loaded into your environment,
Masterscope knows that it must (re)analyze the function(s).

944 Masterscope

26.1 MASTERSCOPE CONCEPTS
Masterscope relies on a few basic concepts to support the analysis of programs.
These are

Relations
A relationship between functions and variables establishing usage and/or inter
action.

Set
A collection of “things” to be operated on by a Masterscope command (see be
low).

Path
The hierarchical control structure through a program whence execution may
flow.

Template
Templates are patterns that describe how a function is evaluated.

26.2 INTERACTING WITH MASTERSCOPE
You may interact with Masterscope via an English-like command language.
Masterscope commands consist of verbs that direct it to answer questions using
the database or to perform analyses that result in creating or updating the data
base. This section defines the various commands. Section 26.3 discusses set
specifications.

26.2.1 Analyzing Functions
ANALYZE directs Masterscope to analyze the functions given as its arguments.
It takes the form

ANALYZE < set s p e c if ic a tio n)
REANALYZE < set s p e c if ic a tio n)

The set specification identifies the functions to be analyzed. The informa
tion is entered into the database. Functions called by functions (ad infinitum)
described by the set specification are included in the analysis. Masterscope does
not analyze functions that it thinks it already knows about (e.g., that have infor-

mation already in the database). To force it to look at a function again, you must
execute the REANALYZE command.

Consider the following example:

ANALYZE INHERIT
........................ done

26.2 Interacting with Masterscope 945

SHOW PATHS FROM INHERIT

1. INHERIT ALLSLOTS?
2. ALLDEMONS?
3- INHERIT-SLOT SLOT? ALLSLOTS?

1 PUTVALUE PASSITDOWN DO-OFFSPRING DO-SUBNODE [a]
5. I I ALLSLOTS?
6. I MAKESLOT ENTER
7. I I MSI MS2 MAKESLOT [6]
8. I GETVALUE
9. I REPLACADDD REPLACA
10. INHERIT-DEMON SLOT? [3]
11. MAKEDEMON PASSDEMONDOWN DO-OFF-OF-DEMON [b]
12. REPLACADDD [9]

13. DO-SUBNODE SLOT? [3]
14. MAKESLOT [6]
15. REPLACADDD [9]
16. ADDVALUE PASSITDOWN [4]
17. ALLSLOTS?
18. GETVALUE
--- overflow-b
19. DO-DEMON MAKEDEMON [11]
20. REPLACADDD [9]

Whenever a function is referred to in a command as a subject of a relation, it
is automatically analyzed if an analysis has not previously been performed.

If Masterscope cannot find the function, it displays the message “ (func
tion) CANT BE ANALYZED” . If the function was previously known (de
scribed in the database), but cannot now be found (because its definition has
been reset or the file closed) Masterscope displays the message “ (function) DIS
APPEARED!” .

You may also analyze the functions in a file. A number of forms are avail
able to perform this operation. Consider

ANALYZE ALL IN AMISNETFNS

which analyzes all of the functions contained in the list that is the value of
AMISNETFNS. If the file contains individual (FNS ...) commands as part of its
File Package commands, you may use the form

ANALYZE ALL IN (FILEFNSLST 'AMISDB)

where FILEFNSLST (see Section 17.7.3) gathers the individual FNS commands
together to form one list.

\

26.2.2 Erasing the Database
You may delete information from the database by executing the ERASE com
mand, which takes the form

ERASE < set sp e c if ic a tio n)

ERASE removes all information described by the set specification from the
database:

ERASE INHERIT
OK

WHO CALLS INHERIT
NIL

Caution: Executing ERASE without any arguments is tantamount to clear
ing the entire database. This occurs because the set specification is null which
implies that everything should be removed.

946 Masterscope

26.2.3 Showing Structures
Masterscope allows you to display the structure of a program (or a subset of it)
either as a tree or a list of functions and/or variables.

The SHOW PATHS command displays the tree of functions (as above) us
ing a path specification. It takes the form

SHOW PATHS (p a th sp e c if ic a tio n)

Path specifications are described in Section 26.5. The example in Section
26.2 shows a simple execution of SHOW PATHS for the function INHERIT.

The SHOW WHERE command allows you to display those functions that
meet specified criteria given by a structure specification. The format of the
SHOW WHERE command is

SHOW WHERE < s e t l) (r e la t io n) < set2)

where the form <setl)< relation)<set2) is the structure specification. <setl)
must refer to a set of functions. <set2) may refer to functions or variables.

Sets and relations are described in Sections 26.3 and 26.4 respectively.

ANALYZE ALL IN COMPLEXFNS
... done

SHOW WHERE REAL IS CALLED
CPLUS:

(REAL CXI)
(REAL CX2)

CDIFFERENCE:
(REAL CXI)
(REAL CX2)

CMULT:
(REAL CXI)
(REAL CX2)
(REAL CXI)
(REAL CX2)

PRINT.COMPLEX:
(REAL CXI)

done

The DESCRIBE command allows you to display information about func
tions described in a set specification. It takes the form

■*-. DESCRIBE < se t s p e c if ic a tio n)

DESCRIBE prints out the bindings of variables in the function, the vari
ables used freely by the function, and the functions called by the function. Con
sider the following example:

^.DESCRIBE INHERIT

INHERIT[NODE,FROM,ITYPE]
c a l l s : MEMB, PRINT, MAPCAR, PUTPROP, ALLSLOTS?,

ALLDEMONS?, ASSOC, GETPROP, CONS, LIST, SUBST,
INHERIT-SLOT, INHERIT-DEMON

b in d s: OFFLIST,IPROPS
uses f r e e : ALLNODES
f i l e : NETWORK.LISP

26.2 Interacting with Masterscope 947

26.2.4 Editing Functions
Masterscope allows you to perform global editing of functions using set or struc
ture specifications. The two forms of the EDIT command are

. EDIT WHERE < setl> < rela tion> < se t2>
[-<editcommands>]

948 Masterscope

and

•<-. EDIT <set> [-<editcommands>]

Set and relation specifications are discussed in Sections 26.3 and 26.4, re
spectively.

<editcommands> is an optional list of edit commands that are applied to
each function in turn.

26.2.5 Checking Sets
You may check a file for various anomalous conditions. CHECK takes the form

CHECK <set>

If <set> is not given, FILELST is used. Consider the following example:

CHECK AMISNET

<<<<,
< In (no block-DEMON? KILLDEMON MAKEDEMON . . .) >>>>>

(note)
NODE-not d ec la red , used f re e ly by-INHERIT.SLOT
INHERIT.DEMON DO.SUBNODE, e tc .

INHERITANCE-” "-INHERIT.SLOT INHERIT.DEMON
GIVE.TO.OFFSPRING e tc .

(p o ss ib le e r ro r)
^ < > -
not d ec la red , never bound, no to p - le v e l value, used
f re e ly by SHOW. OPEN.DATABASE.STRUCTURE

! -n o t bound, not a GLOBALVAR, used f re e ly by-
SHOW. OPEN.DATABASE.STRUCTURE

Note that the last two errors result from CLISP structures which are not
properly recognized by Masterscope.

26.2.6 Using CLISP in Masterscope
You may use the CLISP iterative statement operators in Masterscope through
the FOR command. It takes the form

FOR <variable> <set> < i . s . t a i l>

An iterative statement is constructed where (variable) is iteratively assigned
to each element of <set> and then the iterative statement tail <i.s.tail> is exe
cuted.

FOR X CALLED BY MY.EXECUTIVE WHEN CCODEP
DO (PRINTOUT T X . . . (ARGLIST X) T)

which prints out the name and arguments of all compiled functions that are
called by the function MY.EXECUTIVE,

26.2.7 Obtaining Help
You may obtain rudimentary help by executing the HELP command, which
takes the form

HELP

This command prints out a summary of the commands available in Master
scope.

^.HELP
* --

a (command) i s :

[RE]ANALYZE (fu n c tio n s)
ERASE (fu n c tio n s)
SHOW PATHS (p a th o p tio n s)
(s e t) [(r e la t io n) | IS | ARE] (s e t)
EDIT WHERE (fu n c tio n s) [(r e la t io n s) (s e t)] [- (e d i t
commands)]
SHOW WHERE (fu n c tio n s) (r e la t io n) (s e t)
CHECK (f i l e s)
FOR (v a r ia b le) (s e t) (i t e r a t i v e statem ent t a i l)

a (s e t) i s (a t le a s t one o f) :
a determ iner + a type + a sp e c if ic a tio n

the functions ['] [(atom) | (l i s t)]
any variables @ (p re d ic a te)
which property names in (exp ression)
WHO RECORDS (re la tion)IN G (s e t)

fields (re la tion)E D [BY
IN] (s e t)

fil e s that (r e la t io n)
(s e t)

26.2 Interacting with Masterscope 949

950 Masterscope

I.S.OPRS LIKE <edit p a tte rn)
ON <f i l e s)
ON PATH
(pathop tions)

FIELDS OF (reco rd s)
<blockword) [ON <f i l e s) | OF
<fu n c tio n s)]

(fu n c tio n s) , <f i l e s) , e tc . are < se t)s whose type is
im plied.

a (r e la t io n) is a verb and o p tio n a l m odifier:

verbs: m odifiers (anywhere a f te r the verb):
CALL

USE

USE
USE
SET
SMASH
TEST
REFERENCE
DECLARE
BIND
FETCH
REPLACE
CREATE
CONTAIN

[SOMEHOW I FOR EFFECT j FOR VALUE
DIRECTLY I INDIRECTLY]

AS [RECORD I PROPERTY | (reco rd) FIELD]
(name)
AS CLISP (word)
[FREELY 1 LOCALLY]
[FREELY I LOCALLY]
[FREELY I LOCALLY]
[FREELY I LOCALLY]
[FREELY I LOCALLY]
AS [LOCALVAR SPECVAR]

(p a th o p tio n s)
FROM (fu n c tio n)
TO (fu n c tio n s)
AVOIDING (fu n c tio n s)
NOTRACE (fu n c tio n s)

SEPARATE (fu n c tio n s)
LINELENGTH (number)

abb rev ia tions & synonyms
FNS = FUNCTIONS
PROPS = PROPERTIES
VARS = VARIABLES
(& s in g u la r FN, VARIABLE,
e tc)
FREE = FREELY
LOCAL = LOCALLY

AMONG = AVOIDING NOT

(s e t s) may be jo in ed by AND or OR or preceded by NOT.
Any commands can be followed by OUTPUT (filen am e).
*--

26.3 SPECIFYING SETS
A set specification is a phrase that describes a set to be operated upon by Mas-
terscope commands. A set specification consists of a determiner, a type, and a
specification.

A determiner is one of following: THE, ANY, WHICH, WHO, or WHOM.
It defines the scope of the set. If the determiner is omitted, ANY is assumed. Set
phrases may be preceded by a determiner. WHICH and WHO are interrogative
determiners that are only valid for certain commands. ANY, WHO, and
WHOM can be used alone as they are wild-card elements.

A type is an INTERLISP datatype. The datatypes currently supported are
FUNCTIONS, VARIABLES, PROPERTY NAMES, RECORDS, FIELDS, or
FILES. Any set phrase has a type, e.g., the INTERLISP datatype of the objects
that the command will operate upon. Types are used as follows:

1. S et types are used to d i f f e r e n t ia te between p o ssib le
p a rs in g s . Consider th e examples

WHO SETS ANY BOUND IN INHERIT OR USED BY GETVALUE

WHO SETS ANY BOUND IN INHERIT OR CALLED BY GETVALUE

Both o f th ese commands have the same form. However,
th e f i r s t example i s parsed as

WHO SETS ANY (BOUND BY INHERIT OR USED BY GETVALUE)

sin ce BOUND BY and USED BY r e f e r to v a r ia b le s , while
th e second example i s parsed as

WHO SETS ANY BOUND IN (INHERIT OR CALLED BY GETVALUE)

sin ce CALLED BY and INHERIT must r e f e r to fu n c tio n s .
2 . The type i s used to determ ine the m odifier fo r USE.
3 . The in te rp r e ta t io n o f CONTAIN(S) depends on the type

o f th e o b je c t . For example, WHAT FUNCTIONS ARE
CONTAINED IN FRAMEFNS. WHO IS CONTAINED IN FRAME would
p r in t a l l o b je c t contained in the f i l e FRAME.

4. The co n tex t in which a s e t expression is in te rp re te d
depends on th e ty p e . For example, ANY VARIABLES @ GETD
i s in te rp re te d as the s e t of a l l v a r ia b le s th a t have
been n o ticed by M asterscope as being bound or u t i l iz e d
in any fu n c tio n which has been analyzed.

26.3 Specifying Sets 951

Sets may be joined by AND or OR or preceded by NOT to form new sets.
AND is always interpreted as meaning the intersection of the two sets, i.e., all
elements must satisfy both set specifications. OR is interpreted as the union of
the two sets, i.e., any element must satisfy either of the two set specifications.
NOT is interpreted as the complement of the set specification.

WHO CALLS GETVALUE AND PUTVALUE

means all those functions which call both GETVALUE and PUTVALUE.
You may not join modifiers with conjunctions in Masterscope even though

these constructs are allowed in English.
A specification is a description of the characteristics of the set. Specifica

tions are drawn from the following list:

952 Masterscope

<atom> You may specify a s in g le ob jec t
by i t s name. For example,

WHO CALLS 'MAKE-SLOT

< lis t>

w il l d isp lay the functions th a t
invoke the function MAKE-SLOT.

You may leave the ' out of the
sp e c if ic a tio n , but th is form may
y ie ld am bigu ities. Good p ra c tic e
suggest th a t you always quote
the atom.

You may specify sev era l atoms by
inc lud ing them in a l i s t
s t ru c tu re . For example.

WHICH FUNCTIONS CALL '(GETVALUE
PUTVALUE)

IN <expression)

which re tu rn s a l i s t o f the
functions th a t c a l l e i th e r
GETVALUE or PUTVALUE or both .

You may sp ec ify an S -expression
to be evaluated which re tu rn s a
l i s t o f elements specify ing the
s e t . For example.

IN ASPTPFNS

@<predicate>

re tu rn s a l i s t of functions
asso c ia ted w ith the f i l e ASPTP
v ia the F ile Package
s p e c if ic a tio n .

You may sp ec ify a p red ica te
which the elements o f the s e t
must s a t i s f y . The (p re d ic a te)
may be a function name, e i th e r
system or your own d e f in i t io n , a
LAMBDA expression , or an
expression in terras of the
v a r ia b le X. For exaraple,

WHO IN FRAMEFNS CALLS ANY NOT
@GETD

26.3 Specifying Sets 953

LIKE <atom>

should d isp lay a l l functions
having EXPR d e f in it io n s .

The @ in the sp e c if ic a tio n
in d ic a te s th a t members of the
s e t are those functions fo r
which the p red ica te is non-NIL.

The <atom> is used as a p a tte rn
to be matched ag a in st the names
of fu n c tio n . For example.

<relation>IN G <set>

WHO LIKE /R$ IS CALLED BY ANY

y ie ld s the functions /RPLACA and
/RPLNODE.

(r e la t io n) is one of USE, CALL,
BIND, SET p o ssib ly modified (SEE
S ection 2 6 .4). The sp e c if ied s e t
c o n s is ts of those o b jec ts th a t
have the sp e c if ied r e la t io n to
< s e t) . For example,

USING 'ALLNODES FREELY

< relation)E D BY < se t)

would y ie ld INHERIT.

S im ilar to <relation)IN G except

<relation>ED IN <set>

954 Masterscope

FIELDS OF <set>

KNOWN

th a t i t finds those ob jec ts
operated upon ra th e r than on.
For example,

USED FREELY BY ANY CALLING
GETVALUE

<set> is a c o lle c tio n of record
names. The f ie ld s of each record
are to be operated on.

WHO USES FIELDS OF SLOTRECORD

This verb im plies the s e t of a l l
functions th a t have been
analyzed. For example,

WHO IS KNOWN

THOSE

ON PATH <pathoptions>

p r in ts out a l i s t of a l l of the
functions th a t have been
analyzed.

This command im plies the s e t
c rea ted by the l a s t Masterscope
command. For example,

WHO IS USED FREELY BY ASSERTION-
RESOLVE
WHO BINDS THOSE

would find where the sp ec if ied
v a r ia b le s are bound.

This op tion im plies a s e t
construc ted by the sp e c if ie d
<pathoptions> (see Chapter
2 6 .5) . For example,

IS NODE BOUND BY ANY ON PATH TO
’GETVALUE

The value of th is sp e c if ic a tio n
is the same as th a t c rea ted by
SHOW PATHS command w ith s im ila r
argum ents.

26.4 SPECIFYING RELATIONS
Relations are comparisons between sets. A relation helps to constrain or identify
the set of objects to be considered for further analysis. A relation is implemented
as a verb. Some verbs may accept modifiers. All may be used in the present tense
or as present or past participles.

CALL A function <fnl> c a l ls a
function <fn2> i f the d e f in it io n
of <fnl> contains one or more of
the follow ing expressions:

(<fn2> (argum ents))
(APPLY <fn2> <arguments))
(FUNCTION <fn2))

WHO CALLS WHOM IN (FILEFNSLST ’AMISNET)

EDIT.SLOT. OR. DEMON— (IS .SLOT.NAME? IS .DEMON.NAME?)
EXECUTE.UPDATE. FUNCTION— (IS .MODEL.NAME? IS .SLOT.NAME?
IS.DEMON.NAME?)
UNLOAD. AND. CLOSE. DATABASE— (CHECK. OPEN. DATABASE
PRINT.DB.MESSAGE)
MAKENODE— (ADD.TO. DB.VARS INITIALIZE.NODE)
• • •
e tc .

CALL SOMEHOW A function < fn l) c a l ls another
function <fn2) somehow i f th e re
i s some path from the f i r s t
function to the o th e r. Several
le v e ls of in d ire c tio n may be
necessary to determine i f < fn l)
c a l l s < fn2). Masterscope
recomputes th is re la tio n sh ip
dynam ically because of the
amount of inform ation th a t must
be re ta in e d in order to explore
the p o ssib le paths to o ther
fu n c tio n s .

26.4 Specifying Relations 955

SET A function s e ts a v a ria b le i f
the function contains one or
more expressions of the form

(SETQ <v a ria b le) (expression))
(SETQQ (v a r ia b le) (expression))
(i . e , see Sections 3.8 and 3 .9) .

WHO SETS WHOM
SHOW.DATA.MODEL.OPERATIONS — (A.DB.NODE)
INITIALIZE.NEW.DATABASE — (CURRENT.DATABASE.NAME
CURRENT.DB.VARS CURRENT.DB.PROPS CURRENT.DB.FNS)
done

SMASH A function smashes a v a riab le i f
the function perforins a
d e s tru c tiv e replacement of the
value of th a t v a r ia b le .
D estruc tive functions include

(RPLACA (v a r ia b le) (exp ression))
(RPLACD (v a r ia b le) (exp ression))
(DREMOVE ??)
(SORT ??)

(i . e . , see Section 3-9 and
consider any d e s tru c tiv e
fu n c tio n s) .

WHO IS SMASHED BY WHOM
MODEL.NAME — (DELETE.MODEL)
X — (REPLACA)
done

test a v a r ia b le is te s te d by a
function i f i t s value is only
d is tin g u ish ed between NIL and
non-NIL v a lu es. T esting
expressions include

(COND ((v a r ia b le) . . .)
(AND (v a r ia b le) . . .)

WHO IS TESTED BY WHOM
CURRENT.DATABASE.NAME — (MAKEDEMON INHERIT MAKENODE
EXISTP ADD.TO.DB.VARS OPEN.AND.LOAD.DATABASE
INITIALIZE.NEW.DATABASE)
INSTANCE — (CREATE.INSTANCE)
SLOTS — (INITIALIZE.SLOTS)
0 ^ 0 • • •

956 Masterscope

26.4 Specifying Relations 957

REFERENCE A v a ria b le is referenced by a
function i f i t s used in any
o th e r way than being s e t .

I f unmodified, a function uses a
v a ria b le i f i t s a t i s f i e s any of
SET, SMASH, TEST, o r REFERENCE.

WHO USES A.DB.GRAPH FREELY
(SHOW.DATA.MODELS SHOW.OPEN.DATABASE.STRUCTURESHOW.
DATABASE.MODELS)

^ WHO IS USED FREELY BY ANY CALLING 'EXISTP
(NODE)

BIND

USE AS A FIELD

FETCH

REPLACE

CREATE

USE AS A RECORD

USE AS A PROPERTY NAME

USE AS A CLISP WORD

A v a ria b le is bound by a
function i f i t occurs in the
argument l i s t of the function or
a PROG expression w ith in the
func tion .

A name is used as a f ie ld when
i t occurs as a record f ie ld name
in c re a te , fe tc h , or rep lace
expressions.

A name appears as a f ie ld name
w ith in a fe tch expression .

A name appears as a f ie ld name
w ith in a rep lace expression .

A name appears as a record name
w ith in a c rea te expression .

A name is used as a record name
in c rea te or TYPE? expressions.

A name is used as a p roperty
name in one or more p roperty
l i s t fu n c tio n s . These include
expressions of the form

(GETPROP <atom> <name>)
(PUTPROP <atom>
< name > < express ion >)
e tc .

A name is e i th e r an i te r a t iv e
statem ent o pera to r or a user
defined CLISP word.

CONTAIN F unctions, reco rd s , and
v a r ia b le s are contained w ith in
f i l e s . Masterscope computes th is
r e la t io n dynam ically from F ile
Package in form ation .

DECLARE AS LOCALVAR V ariab les may be declared as
DECLARE AS SPECVAR lo c a l v a r ia b le s o r sp e c ia l

v a r ia b le s w ith in a fu n c tio n .

Modifying Verbs
The verbs USE, SET, SMASH, and REFERENCE may be modified by the ad
verbs FREELY and LOCALLY. These adverbs determines whether a variable is
bound within the stack frame of the function.

WHO IS USED LOCALLY
(TEMP TRUNCATION SIZE CX3 R CXI CX2 I CX Y X)

958 Masterscope

26.5 SPECIFYING PATHS
A path is a specification through the hierarchy of function calls. SHOW PATHS
takes a path specification to determine what functions it should identify for you.
There are several path options that you may specify:

FROM <set> This o p tio n d isp lay s a l l fu n c tio n
c a l l s from th e elem ents o f < set> .

SHOW PATHS FROM CDIFFERENCE
1.CDIFFERENCE COMPLEX
2. REAL
3. IMAG
NIL

TO <set> This o p tio n d isp lay s th e fu n c tio n
c a l l s th a t lead to elem ents o f < set> .
I f TO i s given befo re FROM, th e t r e e
w i l l be in v e rte d and a warning
message w i l l be p r in te d .

When both FROM and TO are s p e c if ie d ,
M asterscope tr a c e s th e elem ents o f
th e s e t given by

CALLED SOMEHOW BY X AND CALLING Y
SOMEHOW

I f TO is not sp e c if ie d , the follow ing
form is assumed:

TO KNOWN OR NOT @ GETD

26.5 Specifying Paths 959

SHOW PATHS TO REAL
(in v e r te d tr e e)
1.REAL CPLUS
2. CDIFFERENCE
3. CMULT

PRINT.COMPLEX
NIL

AVOIDING <set> This op tion does not d isp lay any
fu n c tio n th a t is an element of <set>
AMONG is a synonym fo r AVOIDING NOT.

<- . SHOW PATHS TO REAL AVOIDING CMULT
(in v e r te d tr e e)
1.REAL CPLUS
2. CDIFFERENCE
3. PRINT.COMPLEX
NIL

NOTRACE <set> This op tion does not tra c e any
element from <set> . Functions marked
NOTRACE are p r in te d in the t r e e , but
the tr e e is not expanded beyond th a t
fu n c tio n .

SEPARATE <set>

LINELENGTH <n>

This op tion d isp lay s a sep ara te tre e
fo r each element of <set> . A tr e e may
become very complex when you have
many la y e rs in the function c a l l
h ie ra rch y . This makes i t d i f f i c u l t to
comprehend the paths to various
fu n c tio n s . Jud icious use of the
SEPARATE option w ill make the
function h ie ra rc h ie s d isp layed by
SHOW PATHS more com prehensible.

This op tion re s e ts the l in e leng th of
the output f i l e before d isp lay ing the
t r e e . The l in e leng th is used to
determ ine when the tr e e should

960 Masterscope

overflow and, th e re fo re , be expanded
a t a lower le v e l .

26.6 DESCRIBING FUNCTION BEHAVIOR
The behavior of a function is described by a template. A template is a pattern of
a function’s evaluation. It is a list consisting of a set of atoms that describe each
of the arguments to the function.

Masterscope templates are stored in a hash array whose address is the value
of MSTEMPLATES, To inspect this array, use EDITV on the value of
MSTEMPLATES.

The atoms which may appear in a template are

PPE In d ic a te s a p a re n th e s is e r ro r when an
ex p ressio n appears in th i s lo c a tio n .

CDR (NIL EVAL . PPE)

means th a t th e CDR is no t ev a lu a ted , i t s
argument i s , and noth ing more should
appear in the argument l i s t .

NIL In d ic a te s th a t an expression occurring a t
t h i s lo c a tio n i s no t eva lua ted .

GO (NIL NIL . PPE)

means th a t n e i th e r th e GO nor i t s la b e l
a re ev a lu a ted and, moreover, no th ing e lse
may occur in th e ex p ressio n .

SET A v a r ia b le appearing a t th i s lo c a tio n i s
s e t by th e fu n c tio n .

SAVESETQ (NIL SET EVAL . PPE)

means th a t th e f i r s t argument i s s e t to
th e value o f th e second argument which is
ev a lu a ted .

SMASH In d ic a te s th a t th e value o f th e exp ression
appearing a t th e lo c a tio n i s d e s tru c tiv e ly
m odified in p la c e .

/LCONG (GALL SMASH EVAL . PPE)

26.6 Describing Function Behavior 961

TEST

RETURN

EFFECT

FETCH

REPLACE

RECORD

CREATE

BIND

The expression appearing a t th is lo c a tio n
i s used as a p re d ic a te . The argument a t
th i s lo c a tio n i s not evaluated .

GO (NIL NIL . PPE)

means th a t n e i th e r the GO nor i t s la b e l
are evaluated and, moreover, nothing e lse
may occur in the expression .

The value o f the function i s given by the
value of th is expression .

AND (NIL . . TEST RETURN)

means th a t the value of AND is the value
o f i t s l a s t argument i f a l l of i t s
arguments eva luate tru e .

The expression appearing a t th is lo ca tio n
i s eva lua ted , but i t s value is not used by
th e fu n c tio n .

SELECTQ (CALL EVAL . . (NIL . .
EFFECT RETURN) RETURN)

means th a t each expression in the ac tio n
p a r t of a s e le c to r is eva luated , but only
the l a s t ac tio n is re tu rned as the value
o f the s e le c to r .
Expressions rep resen ted by EFFECT may
a f f e c t o th e r v a r ia b le s ; they may be viewed
as s id e e f f e c ts .

An atom a t th is lo c a tio n is the name of a
f i e ld th a t i s to be fe tched .

An atom a t th i s lo c a tio n i s the name of a
f i e ld th a t i s to be rep laced .

An atom a t th is lo c a tio n is the name of a
reco rd .
An atom a t th is lo c a tio n is the name of a
reco rd th a t i s to be c rea ted .

An atom a t th is lo c a tio n is a v a ria b le
th a t i s bound.

962 Masterscope

PROG (!

CALL

CLISP

TESTRETURN

NIL
(BOTH

(IF LISTP
. (NIL EVAL . .
EFFECT)
NIL))

(. . (IF LISTP
(BIND BIND)))

. . (IF LISTP EFFECT))

An atom a t th i s lo c a tio n i s a function
th a t i s c a lle d .

ERRORSET (CALL EVALQT . . EVAL)

Note th a t fu n c tio n s which have NIL as
t h e i r f i r s t atom are executed d i r e c t ly by
th e in te r p r e te r , whereas those w ith CALL
as t h e i r f i r s t atom are defined in terms
o f th e more p r im itiv e fu n c tio n s .

An atom a t th i s lo c a tio n i s used as a
CLISP word.
A com bination o f TEST and RETURN. I f the
value o f th e fu n c tio n i s non-NIL, then i t
i s re tu rn e d . For in s ta n c e , a one-elem ent
COND clau se i s analyzed th i s way.

OR (NIL . . TESTRETURN RETURN)

These atoms are supplemented by a set of special forms. Each form is a list
whose CAR is interpreted according to the above atoms. These forms are

<tem p la te)

EVAL

RESETFORM

PROGl

When . . appears befo re a
p a r t o f th e tem p la te , the
next elem ent o f the
tem pla te may occur an
in d e f in i te number o f tim es

(CALL EVALQT . . EVAL)

(CALL . . EVAL)

(NIL RETURN . . EFFECT)

(BOTH <tem p la te) (tem p la te)) In d ica te s th a t the cu rren t
expression is to be
analyzed tw ice using each
o f the tem plates in tu rn .

26.6 Describing Function Behavior 963

PROG

(IF <expr) (tem p) <temp))

EVALA

(@ (exprform) <tempform))

DECLARE

(MACRO . <macro))

(NIL
(BOTH

(. .
(IF LISTP

(NIL EVAL . .
EFFECT) NIL))

(. .
(IF LISTP (BIND)
BIND)))

. . (IF LISTP EFFECT))

The expression is evaluated
when the function is
analyzed by M asterscope. I f
the r e s u l t i s non-NIL, use
the f i r s t tem plate to
analyze the function ;
o therw ise , use the second
tem p la te .

(BOTH (IF & &) (CALL EVALQT
EVAL . PPE)

The (exprform) is evaluated
to produce an <expr), and
the <tempform) is evaluated
to give a (te m p la te) , both
when the function is
analyzed. The <expr) is
analyzed using (tem p la te) .
This allows you to
dynam ically analyze
expressions.

(CALL . . (@ EXPR &))

The form (macro) is
in te rp re te d l ik e a com piler
macro. The r e s u lt in g form
is analyzed.

RESETVARS

964 Masterscope

MACRO

pies:
Some of the templates may be rather complex. Consider the following exam-

DECLARE

SETATOMVAL

EVALA

FUNCTION

*

(CALL . .
(@ EXPR

(CONS NIL
(SELECTQ (CAR (LISTP EXPR))

(LOCALVARS
(QUOTE (IF LISTP

(. .
LOCALVARS)
LOCALVARS)))

(SPECVARS
(QUOTE (IF LISTP

(. .
SPECVARS)
SPECVARS)))

N IL))))

(CALL (IF (EQ (CAR (LISTP EXPR))
(QUOTE QUOTE))

(NIL SET)
EVAL)

EVAL . PPE)

(BOTH (IF (EQ (CAR (LISTP (CADDR EXPR)))
(QUOTE QUOTE))

(NIL NIL (NIL (. . (BIND)))))
(CALLEVALQT EVAL . PPE))

(CALL (REMOTE UF LITATOM CALL LAMBDA))
(IF LITATOM EVAL NIL))

(! (IF (EQ (CADR EXPR)
(QUOTE ASSERT:))

(NIL NIL
• •

(IF LISTP
(§ (CDR EXPR)

(LIST QUOTE . .)
(MSWORDNAME (CAR
EXPR)))))))

Masterscope templates are stored in a hash array whose address is stored in
the variable MSTEMPLATES. You may inspect the individual entries in the
hash array by performing the following operations (in INTERLISP-D):

[MSTEMPLATES]

which opens a DEDit window displaying the HARRAYP address. Then, select
EDITV on the HARRAYP address to open another window displaying the indi
vidual entries.

26.7 Masterscope Functions 965

26.7 MASTERSCOPE FUNCTIONS
The Masterscope database is updated by many of the INTERLISP subsystems.
Updating occurs through function calls that add information to or modify infor
mation in the database. Several functions allow you to use the Masterscope data
base from within your programs.

26.7.1 Entering Masterscope
You enter Masterscope from the INTERLISP top-level READ-EVAL-PRINT
loop by executing MASTERSCOPE, which takes the form

Function: MASTERSCOPE

Arguments: 1

Argument: 1) a command, COMMAND

Value: The value re tu rned by executing the
command.

If COMMAND is NIL, Masterscope enters into a user executive (see Section
25.3) through which you may enter commands to be executed. Otherwise, Mas
terscope attempts to execute COMMAND and returns the value, if meaningful,
that is its result.

(MASTERSCOPE)
M asterscope 4-AUG-83... Type HELP<cr> fo r command summary.

A common call to Masterscope is to erase the database when loading a new
application system. Thus, you might enter the following function call into your
File Package commands:

(MASTERSCOPE ’ERASE)

26.7.2 Determining Who a Function Calls
CALLS extracts an analysis of a function from the database. It takes the form

Function: CALLS
Arguments: 2

Arguments: 1) a fu n c tio n name, FN
2) a d a tab ase , USEDATABASE

Value: As described below.

CALLS returns a list consisting of four segments of information:

1. a list of functions called by FN
2. a list of variables bound in FN
3. a list of variables used freely in FN
4. a list of variables used globally in FN.

FN may be a function name, a definition (for example, a LAMBDA expres
sion), or an S-expression.

If USEDATABASE is non-NIL (usually T), and FN is a function name,
CALLS uses the Masterscope database. If FN is not a literal atom (e.g., a func
tion name) or USEDATABASE is NIL, CALLS performs an analysis of the ex
pression.

(CALLS 'MAKESLOT 'T)
((EQUAL PUTPROP MAPCAR EXISTP ENTER GETPROP
LIST GIVE.TO.OFFSPRING)
(INHERITANCE.TYPE METHOD NODE SLOT)
(<NIL>))

CALLSCCODE
An alternative form of CALLS, CALLSCCODE, analyzes compile code (remem
ber: we said Masterscope only works on interpreted code). CALLSCCODE ana
lyzes compiled code and returns a list consisting of five elements:

1. a list of functions called via “linked” function calls
2. a list of functions called regularly
3. a list of variables bound in FN
4. a list of variables used freely
5. a list of variables used globally.

CALLSCCODE takes the form

966 Masterscope

Function:

Arguments:

Argument:

V alue:

CALLSCCODE
1

1) a fu n ctio n name, FN

As described above.

26.7 Masterscope Functions 967

26.7.3 Determining the Free Variables
You may determine the free variables used within a function by executing
FREE VARS, which takes the form

Function:

Arguments:

Arguments:

V alue:

FREEVARS
2

1) a function name, FN
2) a database, USEDATABASE

A l i s t of the free v a ria b le s used w ith in
FN.

FN may be a function name, a definition, or a form. If USEDATABASE is
NIL or FN is an S-expression, FREEVARS performs an analysis of the expres
sion to determine the free variables. Otherwise, USEDATABASE is usually T,
and the free variables are determined from the Masterscope database. In this
case, if FN has not been previously analyzed, it is now analyzed and the informa
tion entered into the Masterscope database.

Consider the following example:

(FREEVARS ' SHOW.DATA.MODEL)
(NODE DATABASE.WINDOW A.DB.MODEL A.DB.GRAPH)

26.7.4 Getting and Setting Templates
Masterscope uses templates to analyze a function behavior. It knows about
many of the basic functions provided by INTERLISP. You may obtain a tem
plate by executing GETTEMPLATE, which takes the form

Function:

Arguments:

Argument:

V alue:

GETTEMPLATE

1

1) a function name, FN

The tem plate used by M asterscope, i f
a v a ila b le .

<-(GETTEMPLATE ’TCONC)
(SMASH EVAL . PPE)

^ (GETTEMPLATE ' SAVESET)((IF
(EQ (CAR (LISTP EXPR)) (QUOTE QUOTE))
(NIL SET) EVAL) EVAL EVAL EVAL . PPE)

< -(GETTEMPLATE 'RPTQ)
(EVAL (BOTH (@ (QUOTE RPTN) (QUOTE BIND)) RETURN) . PPE)

You may establish a template for a function using SETTEMPLATE, which
takes the form

Function : SETTEMPLATE

Arguments: 2

Arguments: 1) a fu n c tio n name, FN
2) an S -ex p ressio n , TEMPLATE

Value: The o ld tem p la te , i f any, fo r FN.

SETTEMPLATE changes the template for FN in MSTEMPLATES. It re
turns the old template, if any.

968 Masterscope

Consider the following examples:

26.7.5 Defining Masterscope Synonyms
Masterscope responds to many different commands. You may define synonyms
for frequently used commands using SETSYNONYM, which takes the following
form

F unction : SETSYNONYM

Arguments: 2

Arguments: l) a new p h rase , NEWPHRASE
2) a meaning fo r th e p h rase , MEANING

Value: NIL.

Masterscope defines a relationship between NEWPHRASE and MEAN
ING. Whenever it sees NEWPHRASE in a command, it substitutes MEANING
for NEWPHRASE before executing the command. Consider the following ex
ample (after the IRM):

26.7 Masterscope Functions 969

^(SETSYNONYM 'GLOBALS
'(VARS IN GLOBALVARS
OR @(GETPROP X 'GLOBALVAR)))

NIL

26.7.6 Parsing a Relation
Masterscope provides several functions for users who want to write their own
analysis routines. PARSERELATION creates an internal representation (e.g., a
subset of the Masterscope database structure) for the given relation. It takes the
form

F u n c tio n ; PARSERELATION

A rgum ents: 1

Argument: 1) a r e la t io n , RELATION

Value: The in te rn a l re p re se n ta tio n .

Relations are described in Section 26.4. The internal representation re
turned by PARSERELATION is not meaningful to you. Usually, you set its
value to a variable which is later given to GETRELATION. Consider the follow
ing example:

(PARSERELATION '(USE FREELY))
(TABLES
(({HARRAYP}#7,1624 . MSREHASH)

{HARRAYP}#7,1020 . MSREHASH)
(({HARRAYP}#1,2574 . MSREHASH)

{HARRAYP}#1,2340 . MSREHASH)
(({HARRAYP}#7,1110 . MSREHASH)

{HARRAYP}#7,1114 . MSREHASH)
(({HARRAYP}#1,2054 . MSREHASH)

{HARRAYP}#7,1204 . MSREHASH))

Primitive relations are stored in a pair of hash tables, one for the “forward”
direction, and one for the “reverse” direction. Hash tables take less storage
space. Searching is more efficient which means fast access. To retrieve informa
tion from the Masterscope database (or a subset of it), Masterscope performs a
union across the relevant tables as determined by the relation.

26.7.7 Getting the Results of a Relation
GETRELATION evaluates an item with respect to the given relation and returns
the result. In effect, PARSERELATION and GETRELATION allow you to cir

cumvent the analysis of commands which are frequently used by analyzing them
once. It takes the form

Function: GETRELATION
Arguments: 3

Arguments: 1) an item , ITEM
2) a r e la t io n , RELATION
3) an in v e rs io n f la g , INVERTED

Value: A l i s t o f atoms s a t is fy in g the r e la t io n .

RELATION should be an S-expression specifying a relation or an internal
representation that was previously created by PARSERELATION. If RELA
TION is an S-expression, GETRELATION calls PARSERELATION to create
the corresponding internal representation.

ITEM is an atom. GETRELATION analyzes ITEM with respect to RELA
TION and returns a list of atoms, if any, that satisfy the relationship. Consider
the following example:

-^(GETRELATION ' SHOW.DATA.MODEL '(USE FREELY))
SLOT - " " - GIVE.TO.OFFSPRING DO.SUBNODE

DO.DEMON
FROM - " " - INHERIT.ALL.SLOTS.OR.DEMONS

INHERIT.SLOT
TO - ” " - INHERIT.ALL.SLOTS.OR.DEMONS
e t c . . .

If INVERTED is T, then the sense of the relation is inverted. That is, in
stead of determining who SHOW. DAT A. MOD EL uses freely, GETRELA
TION determines who uses SHOW. DAT A. MODEL freely.

If ITEM is NIL, GETRELATION returns a list of atoms which have the
relation with any other atom, i.e., it answers the question “WHO <relation>S
ANY” .

970 Masterscope

27.7.8 Testing a Relation
TESTRELATION allows you to test if an item has a relation to another item. It
takes the form

Function : TESTRELATION

Arguments: 4

Arguments: 1) an item , ITEM
2) a r e la t io n , RELATION

3) an item to be te s te d , ITEM2
4) an in v e rsio n f la g , INVERTED

Value: A l i s t of functions s a tis fy in g the
r e la t io n , i f any.

TESTRELATION is equivalent to

(MEMBER ITEM2
(GETRELATION ITEM RELATION INVERTED))

If ITEM2 is NIL, the function call is equivalent:

(NOT (NULL (GETRELATION (ITEM RELATION INVERTED))))

i.e., it tests if ITEM has the given relation with any other item.

26.7.9 Mapping Across a Relation
MAPRELATION applies a function to every pair of items related via a specified
relation. It takes the form

Function: MAPRELATION

Arguments: 2

Arguments: 1) a r e la t io n , RELATION
2) a mapping fu n c tio n , MAPFN

Value: The r e s u l t of applying MAPFN to the p a irs
o f item s.

26.7.10 Updating the Database
You may update a function that you have created or modified using UP-
DATEFN, which takes the form

Function: UPDATEFN

Arguments: 2
Arguments: 1) a fu n c tio n , FN

2) an an a ly s is f la g , EVENIFVALID

Value: NIL.

This function operates like the command ANALYZE <FN>. UPDATEFN
will analyze FN if it has not previously been analyzed or if it has been changed

26.7 Masterscope Functions 971

since it was last analyzed. If EVENIFVALID is T, UPDATEFN will reanalyze
FN even if Masterscope thinks it has a valid analysis in the database.

< -(UPDATEFN 'CMULT T)
.NIL

UPDATECHANGED, which takes no arguments, applies UPDATEFN to
every function which has been marked as changed. It takes the form

F u n c tio n : UPDATECHANGED

A rgum ents: 0

A rgum ents: N/A

V alue: NIL.

MSMARKCHANGED marks a function, FN, as changed and notes that it
needs to be reanalyzed. It takes the form

F u n c tio n : MSMARKCHANGED

A rgum ents: 3

Arguments: 1) a fu n c t io n , FN
2) a ty p e , TYPE
3) a rea so n code, REASON

V alue: NIL.

The values of REASON are the same as those used by the function
MARKASCHANGED (see Section 17.3.9).

972 Masterscope

26.7.11 Dumping the Masterscope Database
DUMPDATABASE dumps the current Masterscope database on the current
output file in a loadable form. It takes the form

F u n c tio n : DUMPDATABASE

A rgum ents: 1

Argument: 1) a l i s t o f fu n c t io n s , FNSLST

V alue: NIL.

If FNSLST is non-NIL, DUMPDATABASE will only dump the information
for those functions which appear in FNSLST.

♦-(DUMPDATABASE 'CMULT)
(READDATABASE)
(
CALL CMULT (COMPLEX DIFFERENCE TIMES REAL IMAG PLUS) NIL
BIND CMULT NIL NIL
NLAMBDA CMULT NIL NIL
NOBIND CMULT NIL NIL
RECORD CMULT NIL NIL
CREATE CMULT NIL NIL
FETCH CMULT NIL NIL
REPLACE CMULT NIL NIL
REFFREE CMULT NIL NIL
REF CMULT (CXI CX2) NIL
SETFREE CMULT NIL NIL
SET CMULT (CX3) NIL
SMASHFREE CMULT NIL NIL
SMASH CMULT NIL NIL
PROP CMULT NIL NIL
TEST CMULT NIL NIL
TESTFREE CMULT NIL NIL
PREDICATE CMULT NIL NIL
EFFECT CMULT NIL NIL
• • •

)
NIL

where the listing provides a description of CMULT from all the possible ways
Masterscope analyzes a function.

A variable, DATABASECOMS, is initialized to

((E (DUMPDATABASE)))

Thus, you may execute a MAKEFILE as follows:

(MAKEFILE 'DATABASE.<e x te n s io n))

to save the current Masterscope database.

26.7 Masterscope Functions 973

1

27

The Record Packĉ e

The Record Package permits you to define data structures whose usage is inde
pendent of structural details. You declare the data structures to be used by your
programs through record declarations. Thereafter, you can manipulate the data
without concern for the underlying data structures. INTERLISP automatically
computes the appropriate expressions from the data structure declarations that
are necessary to accomplish the access and storage operations. You may change
the data structure merely by changing the declarations. The program automati
cally adjusts itself to these new conventions.

27.1 RECORD DECLARATIONS
A record declaration specifies the format of a data structure known as a record.
Each record has a name that identifies the data structure. Each record is com
posed of a variable number aifields. The specification of the record’s fields de
pends on the type of the record. There are currently ten record types defined by
INTERLISP. Fields are identified by names. For each field, INTERLISP gener
ates the expression necessary to retrieve data from or store data to that field
when it is referenced by the program. Fields may be further subdivided into sub
fields by subdeclarations. In effect, records may recursively contain other record
declarations.

The Record Package is implemented via the CLISP and DWIM subsystems.
Record operations are translated using CLISP declarations. You may declare
local record declarations to override global ones.

27.1.1 Components of the Record Declaration
There are ten record types recognized by the Record Package. A record type
implicitly specifies how data are accessed or stored within the record (i.e., the
“data path”). The record types are given below:

975

976 The Record Package

Record Type
RECORD

TYPERECORD
DATATYPE
ARRAYRECORD

ATOMRECORD

PROPRECORD

ASSOCRECORD

HASHLINK

ACCESSFNS

Record Types

Data Structure Supported
generic l i s t

"typed" l i s t
u se r-d e fin ed data types
arrays

I p ro p erty l i s t

l i s t s w ith p roperty
l i s t format
a s so c ia tio n l i s t s

ty p e le s s , but hash^
lin k ed

ty p e le s s , bu t access
i s defined in the
reco rd d e c la ra tio n
i t s e l f

The record name is a literal atom that identifies the data structure. The
record name is used by the Record Package functions, by the File Package, and
to specify a template for an arbitrary list structure.

The fields of a record are the description of its structure. Fields may or may
not have names. Those with names are accessible by the program. NIL is used to
indicate those fields that the program will not access. This facility allows you to
apply several different templates to a single data structure. Each template has a
definition for the fields to be accessed when that template is applied to the data
structure. This mechanism is not unlike the concept of a “view” or a “sub
schema” that is used in database management systems. The interpretation of
the “field” component depends on the record type. These interpretations will be
addressed in the sections describing each record type (see Sections 27.4 through
27.9).

Finally, a record declaration may be terminated by a record tail. Record
tails are optional components of the declaration. The record tail allows the user
some control over the manner in which certain Record Package functions are
applied to the record.

The format for a record declaration is written as follows:

(re c o rd -ty p e record-nam e f ie ld s [r e c o r d - t a i l])

To use a record structure, you prefix a field name from the record with the name
of a literal atom whose value is a data structure corresponding to the record type.
Let us assume we have defined the following record:

•<-(RECORD p re s id e n t
(f irs t.n a m e NIL e le c t io n .y e a r p a rty votes

loser.nam e lo s e r .p a r ty . lo s e r .v o te s))
PRESIDENT

Note that the period is significant and required before the last field name by
the declaration.

Let us further assume that we have two records (note lower case, indicating
instances of the template):

<-(SETQ kennedy
'(jo h n f i960 democrat 303 nixon whig 219))

(JOHN F I960 DEMOCRAT 303 NIXON WHIG 219)
•^(SETQ nixon

'(r ic h a r d m 1972 repub lican 521 mcgovern democrat 17))
(RICHARD M 1972 REPUBLICAN 521 MCGOVERN DEMOCRAT 17)

We can obtain the values of various fields as follows:

•♦-kennedy: e le c t ion . year
1960

n ix o n : lo s e r . name
mcgovern

When you write a statement of the form “kennedy:election.year” , you are
implicitly saying that “kennedy” is an instance of the record PRESIDENT. The
interpretation of “kennedy:<field nam e)” depends on the current value of
KENNEDY.

What happens, then, if the underlaying data structure is not equivalent to
the template that is applied to it? Depending on the operation to be performed,
you will receive NIL, some unexpected result, or an error message. The Record
Package does not provide any facilities for run-time validation of data structures
nor is there any error checking other than that provided by INTERLISP itself.

We can also use the components of records as arguments to any IN
TERLISP function.

“Was Kennedy’s margin of victory greater than Nixon’s?” might be en
coded as

27.1 Record Declarations 977

27.1.2 Using the Record Declaration

978 The Record Package

< -̂(GREATERP
(DIFFERENCE kennedy:votes k en n edy :lo se r.vo tes)
(DIFFERENCE n ixon :vo tes n ix o n :lo s e r .v o te s))

NIL

Clearly, by inspecting the records above, we see that the answer is false (rep
resented by NIL).

Now, in the record giving information about “kennedy” , we have made a
slight error. Richard Nixon did not belong to the Whig party, but to the Republi
cans. We can replace the value of the field “loser.party” in the record “ken
nedy” as follows:

kennedy: lo s e r , p a r ty ■‘- re p u b lic a n

which translates to

(CAR (RPLACA (CADR (CDDDDR kennedy)) 're p u b lic an))

The value returned from a storage operation is the value that is assigned to the
field of the record, unless an error occurs.

27.1.3 Translating the Record Declaration
The record declaration is translated into a set of record operations that are then
stored elsewhere by CLISP. For example, the field reference “kennedy:elec-
tion.year” is equivalent to

(CADDR kennedy)

INTERLISP replaces each access to a record field by an expression of the
form

(fe tc h <f i e ld name) o f <atom>)

Thus, we would see “kennedy:election.year” expressed as

(f e tc h e l e c t io n .y e a r o f kennedy)

INTERLISP replaces each store to a record field by an expression of the
form

(re p la c e <f i e ld name) o f (atom) by (v a lu e))

Thus, we would see “kennedy:loser.party^republican” expressed as

(r e p la c e l o s e r .p a r t y o f kennedy by re p u b lic a n)

27.1.4 Record Subfields
As we mentioned above, record declarations may be recursively nested to yield
subdeclarations of individual fields. In every election, we have one winner, but
we may have more than one loser (as has happened in several elections). Thus,
the loser field needs to be replicated to represent this information. We can de
scribe this by declaring the loser field to be a RECORD itself. Let us assume
there are only two losers per election. Then, we can redefine PRESIDENT as
follows:

^(RECORD PRESIDENT
(fir s t .n a m e NIL e le c t io n .y e a r p a rty votes . lo se r)
(RECORD lo s e r

(lo se r.n am el lo s e r .p a r ty l lo s e r .v o te s l
loser.nam e2 lo se r .p a r ty 2 . lo s e r .v o te s 2)))

PRESIDENT

We might specify the election record for Ronald Reagan as follows:

(SETQ reagan
(CREATE p res id en ts

f i r s t . name ronald
e le c t io n .y e a r 1980
p a rty •<- repub 1 ic an
vo tes^ '465
lo s e r .nameI*- c a r te r
lo s e r . partyl-<- democrat
lo s e r , votesl-*-70
lo s e r . name2-<- anderson
lo s e r .party2 independent
lo s e r .v o te s 2 ^ 0))

27.2 Creating a Record 979

27.2 CREATING A RECORD
As we mentioned above, record operations may be applied to any arbitrary data
structure because the record declaration acts as a template that overlays the data
structure to define its fields. However, caution should be exercised because a
mismatch between the template and the actual data structure may result in an
error. A good policy to follow is to create new instances of records using the
record declarations that define their access and storage paths.

To create a new instance of a record, the Record Package provides the CRE
ATE expression, which takes the form

(CREATE record-name . (assignm ents))

and is usually used in a SETQ statement as follows:

(SETQ <atom> (CREATE record-name <assignm ents))

which gives the atom a value consisting of the data structure described by the
record declaration. INTERLISP initializes the data structure according to the
specified record type.

The [assignments] field is optional. It specifies the methods by which indi
vidual elements of the data structure are to be initialized. Elements that are not
specified in [assignments] will be given the default value, if one is specified in the
record-tail or NIL.

Expressions in <assignments) may take one of the following forms:

field-name^ S-expression
The expression initializes the value of the field to the value of the S-expression
when it is evaluated.

<-(SETQ Johnson
(CREATE p re s id e n ts

f irs t-n am e <- lyndon
e le c t io n -y e a r “̂ 1964
p a r ty democrat
votes'*—486))

(lyndon 1964 democrat 486)

initializes a segment of the record that describes Lyndon Johnson’s election.

USING S-expressions
This expression places higher priority on the presence of a default in the record
tail. For each field name, if there is no value specified in an expression in the
record tail, then the value defined in the USING expression will be used to ini
tialize that field. Let us assume the record declaration

■<-(RECORD state
(admin.number p o p u la tio n . e le c to ra l .v o te s) .
e l e c t o r a l . v o te s •»-3)

STATE

which defines “state” as a record. The record tail specifies that each state has at
least three electoral votes: two senators and at least one representative. Let us
create a specific state:

<^(SETQ California
(CREATE s ta te

admin.number 18

980 The Record Package

27.2 Creating a Record 981

USING (1995313^ 45)))
(18 19953134 45)

which is translated as

(LIST 18 (CADR '(19953134 45)) (CADDR '(19953134 45)))

We could also set the S-expression as the value of an atom and place the
atom’s name in the USING expression as follows:

<-(SETQ newdata '(19953134 45))
(19954134 45)

<-(SETQ California
(CREATE s ta te admin.number<-18 USING newdata))

(18 19953134 45)

In either case, because we have explicitly specified “admin.number” , the
value is taken from the CREATE expression. However, the value of “elec-
toral.votes” remains 3 because there is a default specified in the record tail.

COPYING S-expressions
This expression is like USING except that the corresponding values are copied
from the S-expression using COPYALL (see Section 6.4.2). The example above
would translate as follows:

^(SETQ California
(CREATE s ta te

admin.n u m b e r 18
COPYING newdata))

(18 19953134 45)

becomes

(LIST 18 (COPYALL (CADR newdata)) (COPYALL (CADDR
new data)))

REUSING S-expressions
This expression is like USING except that, wherever possible, the corresponding
structure in the S-expression is used:

^(SETQ ca
(CREATE s ta te

admin.number 18
REUSING newdata))

(18 19953134 45)

The difference between USING and REUSING is that CREATE will at
tempt to incorporate as much of the old data structure into the new data struc
ture being created. The USING clause creates an entirely new data structure.

SMASHING S-expressions
This expression does not create a new instance of the record; rather, it uses the
value of the S-expression and overlays the record structure on the S-expression
itself.

The Definition of CREATE
CREATE is not defined as a function. Rather, DWIM recognizes CREATE as a
keyword and calls a Record Package function with the entire CREATE expres
sion as an argument. The definition of CREATE is found by

<-(GETPROPLIST 'CREATE)
(CLISPWORD (RECORDTRAN . create))

The translation of CREATE is found by

<-(DWIMIFY '(CREATE STATE USING NEWDATA))
(CONS (CAR NEWDATA)

(CONS (CAR (CDR NEWDATA))
(CDR (CDR NEWDATA))))

27.3 TESTING FOR RECORDS
Record templates cannot be applied indiscriminately to any data structure be
cause an error may result. Thus, INTERLISP provides a facility for testing to see
if a data structure “ looks like” an instance of a particular record.

To test for a record, you use the TYPE? expression, which takes the follow
ing form:

(TYPE? record-name S-expression)

where it attempts to determine if the S-expression has the same form as record
name. TYPE? performs differently according to the record type it is checking:

DATATYPE
TYPE? returns non-NIL if and only if the S-expression is an instance of the
record name; type checking is exact.

TYPERECORD
TYPE? checks to see that the S-expression is a list beginning with record name.
Note that TYPERECORDs are identified in their data structure by the name of
the record declaration.

982 The Record Package

ARRAYRECORD
TYPE? checks to see that the S-expression is an array with the correct size.

PROPRECORD
TYPE? checks to see that the S-expression is a property list with property names
chosen from those specified in the field component of the record declaration.

ASSOCRECORD
TYPE? checks to see that the S-expression is an association list with property
names chosen from the field component of the record declaration.

TYPE? may not be applied to record instances of the types RECORD, AC-
CESSFNS, or HASHLINK. In each case, it will produce the error message
TYPE? NOT IMPLEMENTED FOR THIS RECORD.

In Chapter 11, we defined a new record type, COMPLEX. We may see how
TYPE? is used as follows:

-^(SETQ CXI (COMPLEX 1.0 3-0))
((1.0 . 3 .0))
^(TYPE? COMPLEX CXI)
T

<-(SETQ CX2 '(1.0 . 3.0))
(1.0 . 3 . 0)

<-(TYPE? COMPLEX CX2)
NIL

The Translation of TYPE?
The translation of TYPE? is found by

<-(DWIMIFY ’(TYPE? COMPLEX CXI))
(TYPENAMEP CXI (QUOTE COMPLEX))

27.4 Manipulating Record Fields 983

27.4 MANIPULATING RECORD FIELDS
You may wish to manipulate the values of the fields of a particular record. The
WITH construct may be used to manipulate record fields as if they were vari
ables. It takes the form

(WITH record-name record-instance <forml> ... <formN>)

where RECORD-NAME is the name of the record and RECORD-INSTANCE is
an expression evaluating to a specific instance of that record. The forms are
evaluated so that references to variables which are actually field names of the
record are treated via FETCH and REPLACE.

♦-(RECORD RECN (FLDl . FLD2))
RECN

<-(SETQ DATA (LIST 10 20))
(10 20)
'^(SETQ INSTANCE

(CREATE RECN USING DATA))
(10 20)

'^(WITH RECN INSTANCE (SETQ FLD2 (PLUS FLDl FLD2)))
NON-NUMERIC ARG
(20)

because the translation is not done properly (although the IRM claims other
wise!).

The translation of this form is

♦-(DWIMIFY
'(WITH RECN INSTANCE (SETQ FLD2 (PLUS FLDl FLD2))))

(CDR (RPLACD INSTANCE (PLUS (CAR INSTANCE)
(CDR INSTANCE))))

However, the following expression will operate correctly:

^(WITH RECN INSTANCE (SETQ FLD2 (PLUS FLDl 3 0)))
AO
<-INSTANCE
(10 . 40)

but the correction for the problem above is merely to preface the field with the
record name as follows:

<-(WITH RECN INSTANCE (SETQ FLD2 (PLUS FLDl
INSTANCE:FLD2)))
50

^INSTANCE
(10 . 50)

whose translation is still the same as given above.

27.5 RECORDS AND TYPED RECORDS
The Record Package provides two record types for declaring list structures: RE
CORD and TYPERECORD. The only difference between these two data struc
tures is that typed records have the record name inserted as the first element.

984 The Record Package

We have already seen how the RECORD declaration works in the examples
given in Section 27.1. Let us examine another example very briefly. Consider the
record named ADMINISTRATION which is declared as follows:

•^ (record ad m in is tra tio n
(president-nam e in au g u ra l-d a te . v ic e -p re s id e n t))

ADMINISTRATION

For both RECORDs and TYPERECORDs, the field descriptions are in
cluded within a single list. Let us create an instance of an ADMINISTRATION:

<-(SETQ admin-1
(CREATE ad m in is tra tio n

(p res ident-name-«-Washington
in au g u ra l-d a te •<- 04/30/1789
vice-president-<-adam s)))

(WASHINGTON 04/30/1789 ADAMS).

while, for a TYPERECORD declaration, it would appear as

(ADMINISTRATION WASHINGTON 04/30/1789 ADAMS)

The translation of the access and storage operations takes the additional
field into account, as follows:

-^ADMIN-1: INAUGURAL-DATE
04/30/1789

would be translated as (CADR admin-1) for a RECORD declaration; it would be
translated as (CADDR admin-1) for a TYPERECORD declaration.

Within a field specification, NIL may appear as a placeholder to indicate
fields that you do not wish to reference through this declaration. We could de
scribe the PRESIDENT record as follows:

•<-(RECORD p re s id e n t
(b ir th -d a te dea th -d a te NIL spouse . s ta te))

PRESIDENT

An actual instance of PRESIDENT (for Gerald Ford) might look something
like

<-(SETQ ford
(07/14/1913 NIL repub lican e liz a b e th michigan))

(07/14/1913 NIL REPUBLICAN ELIZABETH MICHIGAN)

27.5 Records and Typed Records 985

The field that we cannot access in this data structure is the name of Ford’s
party (i.e., Republican).

In any type of record declaration, NIL is used to indicate a “don’t care”
field. If several such fields occur consecutively, you may use an integer in the
field description to indicate the number of consecutive NILs.

986 The Record Package

27.6 PROPERTY AND ASSOCIATION LIST RECORDS
A PROPRECORD has the format of a property list. FIELDS is a list of property
names. The field names and their values are stored in a property list format:

(<fleldname> <value> ... <fieldname> <value>)

Field values are accessed via LISTGET and stored via LISTPUT (see Sec
tion 6.11).

When you create a PROPRECORD, only the fields that are actually named
in the CREATE expression are stored in the list that represents the record. How
ever, if you execute a CREATE expression with just the record name, the list
representation consists of the first field name with a value of NIL.

An ASSOCRECORD is a record whose entries are stored in association list
format. FIELDS is a list of literal atoms. The field names and their values are
stored as follows;

(((fieldname) . <value)) ... ((fieldname) . (value)))

Accessing fields is performed via ASSOC while storing values into fields is
performed via PUTASSOC.

Consider the following definitions (e.g., relations) which correspond to
those often used in relational database examples:

^(PROPRECORD EMPLOYEE (EMPNAME AGE SALARY DEPNAME
MANAGER)) EMPLOYEE
'^(PROPREGORD DEPARTMENT (DEPNAME FLOOR SALES DEPNO))
DEPARTMENT

We create an instance of a PROPRECORD using the CREATE expression:

< -(CREATE EMPLOYEE EMPNAME<-'SMITH
AGE <-30
SALARY <-25000
DEPNAME<- 'TOYS
MANAGERS- ’JONES)

(EMPNAME SMITH AGE 30 SALARY 25000 DEPNAME TOYS MANAGER
JONES)

^(CREATE DEPARTMENT DEPNAME '̂TOYS)
(DEPNAME TOYS)

We can use an ASSOCRECORD to store information from a dictionary.
Consider the following definition:

(ASSOCRECORD DICTIONARY
(POS LABEL DEFINITIONS ETYMOLOGY
SYNONYMS))

DICTIONARY

^(SETQ JUNK
(CREATE DICTIONARY

POS'NOUN
DEFINITIONS<—”1.0 Scrapped M aterials

2 .0 Chinese fla t-bo ttom ed
sh ip ”

ETYMOLOGŶ ' (PORTUGUESE JUNCO)))
((POS . NOUN)

(DEFINITIONS . ”1 .0 Scrapped m a te ria ls
2 .0 Chinese fla t-bo ttom ed sh ip ”)

(ETYMOLOGY PORTUGUESE JUNCO))

JUNK: POS
NOUN

27.7 ARRAY AND HASHLINK RECORDS
An ARRAYRECORD associates field names with array elements. FIELDS is a
list of atoms that are associated with the corresponding array elements. AR
RAYRECORD only creates an array of pointers. Arrays of other datatypes must
be created using ACCESSFNS which you write.

A HASHLINK sets up a record of hash arrays. FIELDS may take one of two
values:

1. An atom, or
2. An S-expression having the following form:

(<fieldname> <arrayname> <arraysize>)

The <arrayname> indicates a hash array to be used. If it is not given,
SYSHASHARRAY will be used (see Section 11.3). The <arraysize> is used to
initialize the hash array if it has not previously been initialized. When the Re
cord Package creates a hash array, it initializes via

(LIST (HARRAY (OR <arraysize> 100)))

27.7 Array and Hashlink Records 987

An ARRAYBLOCK is a record of arrays. Its declaration form is similar to
DATATYPE as described below. ARRAYBLOCK records are not supported in
INTERLISP-D.

988 The Record Package

27.8 USER DATATYPE RECORDS
You may create new datatypes by declaring them to be records of the DATA
TYPE. FIELDS takes the form

(<fieldnam e> . < f ie ld ty p e >) , or
<fieldnam e)

If <fieldtype> is omitted, the Record Package assumes a default type of
POINTER.

The Record Package currently accepts the following specifications for
<fieldtype>:

POINTER The f i e ld co n ta in s a p o in te r to any
a r b i t r a r y INTERLISP o b je c t.

BITS <n> The f i e ld co n ta in s an < n> -b it
unsigned in te g e r .

BETWEEN <nl> <n2> The f i e ld may co n ta in an in te g e r th a t
l i e s in th e range [<nl> <n2>]. That
i s , an in te g e r , X, obeys the
ex p ressio n n l <= X <= n2

INTEGER The f i e ld co n ta in s a fu ll-w o rd signed
FIXP in te g e r . Note th a t th e s iz e of
th e word i s m achine-dependent.

FLOATING The f i e ld co n ta in s a f lo a t in g p o in t
FLOATP number.
flag The f i e l d co n ta in s a o n e -b it f i e ld

which in d ic a te s T o r NIL.

User datatypes are created by executing an expression with DECLAREDA-
TATYPE (see Section 27.12).

27.9 ACCESS FUNCTION RECORDS
An ACCESSFNS record is a record for which you may specify both an access and
a storage function. INTERLISP captures the notion of access-oriented program
ming with this record type.

(<fieldname> < access-d e fin itio n > < s to re -d e f in itio n >)

where, for each field name, you specify both an access and a storage description.
These descriptions are usually function calls. The access function is a function of
one argument, DATUM. It should return a value based on the value of DA
TUM. The storage function is a function of two arguments, DATUM and NEW-
VALUE. It should store NEWVALUE into DATUM and return NEWVALUE,
if successful, as its value. If the storage definition is NIL or undefined, you will
not be allowed to store data into the record field.

Consider the following example (after the IRM):

<-(ACCESSFNS
((FIRSTCHAR (NTHCHAR DATUM 1)

(RPLSTRING DATUM 1 NEWVALUE))
(RESTCHARS (SUBSTRING DATUM 2))))

NIL

<-(DWIMIFY '(REPLACE FIRSTCHAR OF X WITH Y))
(RPLSTRING X 1 Y)

Since no storage definition is given for the RESTCHARs field, attempting to
perform a replacement here would cause an error:

«-(DWIMIFY '(REPLACE RESTCHARS OF X WITH Y))
REPLACE no t defined fo r th i s f ie ld
a t RESTCHARS in (REPLACE RESCHARS OF X —)

Note that ACCESSFNS do not have a CREATE definition. You may specify
one by the appropriate expression in the record tail.

The ACCESSFNS feature allows you to create data structures which cannot
be specified by one of the other record types.

27.10 ATOM RECORDS
An ATOMRECORD returns an atom created by GENSYM (see Section 9.2.1)
whose value is the record structure. FIELDS is a list of property names associ
ated with an atom. Accessing is performed via GETPROP while storing is per
formed with PUTPROP. Consider the following example:

< -(ATOMRECORD EMPLOYEE (ENAME AGE SALARY DNAME))
EMPLOYEE

<-(SETQ EMPNO-1
(CREATE EMPLOYEE ENAME'SMITH

27.10 Atom Records 989

FIELDS is a list of entries of the form

AGE <-46
SALARAY-̂ 22000))

AOOlO
(GETPROPLIST ' EMPNO-l)

(SALARY 22000 AGE A6 ENAME SMITH)

990 The Record Package

27.11 RECORD PACKAGE FUNCTIONS
The Record Package allows you to edit and manipulate record declarations from
within programs. These functions are described in this section.

27.11.1 Editing a Record Declaration
EDITREC allows you to edit a global record declaration. It takes the form

F unction : EDITREC

Arguments: 1-N

Arguments: 1) a reco rd name, RECORDNAME
2-N) o p tio n a l e d i to r commands, C0M[1]

COM[N]

Value: The name o f th e reco rd .

EDITREC is an NLAMBDA, nospread function. It invokes the editor on a
copy of all declarations in which (CAR EDITRECX) is the record name or field
name. When you exit the editor, all declarations that have been changed will be
redeclared. All records that have been deleted will be undeclared. If (CAR
EDITRECX) is NIL, all declarations will be edited.

27.11.2 Obtaining a Record Declaration
RECLOOK allows you to obtain the declaration for a given record name. It
takes the form

F unction : RECLOOK

Arguments: 1

Arguments: 1) a reco rd name, RECORDNAME

Value: The d e c la ra t io n fo r th e reco rd .

If RECORDNAME does not correspond to an existing declaration, REC
LOOK returns NIL.

^(RECLOOK 'POSITION)
(RECORD POSITION (XCOORD YCOORD)

(TYPE?
(AND (LISTP DATUM))
(NUMBERP (CAR DATUM))
(NUMBERP (CDR DATUM))))

^(RECLOOK 'REGION)
(RECORD REGION (LEFT BOTTOM WIDTH HEIGHT)

LEFT<- -16383
BOTTOM-̂ -16383
WIDTHS 32767
H E IG H T 32767
(ACCESFNS

((TOP
(IPLUS

(fe tc h (REGION BOTTOM) of DATUM)
(fe tc h (REGION HEIGHT) of DATUM)
- D)

(PTOP
(IPLUS

(fe tc h (REHION BOTTOM) of DATUM)
(fe tc h (REGION HEIGHT) of DATUM)))

(RIGHT
(IPLUS

(fe tc h (REGION LEFT) of DATUM)
(fe tc h (REGION WIDTH) of DATUM)
- D)

(PRIGHT
(IPLUS

(fe tc h (REGION LEFT) of DATUM)
(fe tc h (REGION WIDTH) of DATUM)))))

(TYPE?
(AND (EQLENGTH DATUM 4)

(EVERY DATUM (FUNCTION FIXP)))))

where both examples are taken from the Fugue release of INTERLISP-D.

27.11 Record Package Functions 991

27.11.3 Obtaining the Declarations of a Field
A field name may be used in many different record declarations. When you do
so, you should ensure that the same semantics are attached to the field name in
every instance. With this assumption in mind, FEELDLOOK returns a list of all
declarations in which its argument is represented. Its single argument.

FIELDNAME, is the name of a field in zero or more declarations. It takes the
form

Function: FIELDLOOK
Arguments: 1

Arguments: 1) a f i e ld name, FIELDNAME

Value: The l i s t o f d e c la ra tio n in which FIELDNAME
is th e name o f a FIELD.

Consider the following example:

♦-(FIELDLOOK 'REAL)
((DATATYPE COMPLEX ((REAL FLOATP) (IMAG FLOATP))))

992 The Record Package

27.11.4 Obtaining a Declaration's Field Names
Most records are declared global to the entire program, but declared in only one
file that comprises the program. It may be necessary in other functions to know
the names of the fields of a record. RECORDFIELDNAMES returns the names
of the fields of a given record declaration. It takes the form

F unction : RECORDFIELDNAMES

Arguments: 1

Arguments: 1) a reco rd name, RECORDNAME

Value: A l i s t o f th e f ie ld s dec lared fo r the
reco rd .

Consider the following example:

- (̂RECORDFIELDNAMES 'PRESIDENT)
(LOSER.V0TES2 %. LOSER. PARTY2 LOSER.NAME2 LOSER.VOTESl
LOSER.PARTYl LOSER.NAMEl LOSER %. VOTES PARTY
ELECTION.YEAR FIRST.NAME)

Note that the value returned does not distinguish between the fields of s
subrecord and the primary fields of the record itself.

27.11.5 Accessing or Replacing a Record Value
RECORDACCESS allows you to access or replace a record value from within a
function based on the name of the field. This facility is used when you do not

know the name of the field in advance, as when you ask the user to specify the
field. It takes the form

Function: RECORDACCESS
Arguments: 5

Arguments: 1) a f ie ld name, FIELD
2) an o ld value, VALUE
3) an access mathod, TYPE
4) a new value, NEW
5) an (o p tio n a l) d e c la ra tio n , DECL

Value: The new value.

TYPE is one of the following methods:

FETCH or fetch
FFETCH or ffetch
REPLACE or replace
FREPLACE or freplace
/REPLACE or /replace

If TYPE is NIL, a default method of FETCH is assumed. Consider the fol
lowing definition for COMPLEX (see Chapter 11):

<-(PP COMPLEX)
(LAMBDA (R I)

(PROG (TEMP)
(SETQ TEMP (CREATE COMPLEX))
(RECORDACCESS (QUOTE REAL)

TEMP NIL (QUOTE REPLACE)
R)

(RECORDACCESS (QUOTE IMAG)
TEMP NIL (QUOTE REPLACE)
I)

(RETURN TEMP)))

27.12 USER DEFINED DATATYPES
You may define new datatypes using DECLAREDATATYPE. This function al
lows you to define entirely new classes of objects, with a fixed number of fields
specified by the definition of the data type. Additional functions allow you to
define the name and type of fields for a given class, to create instances of objects
of a given class, to access and replace the contents of individual fields within an
object instance, and to interrogate objects about their contents.

27,12 User Defined Datatypes 993

27.12.1 Defining New Datatypes
You may define a new datatype using DECLAREDATATYPE, which takes the
form

Function: DECLAREDATATYPE

Arguments: 2

Arguments: 1) a da ta type name, TYPENAME
2) a f i e ld s p e c if ic a t io n , FIELDS

Value: A l i s t o f f i e ld d e s c r ip to rs th a t
correspond to the elem ents o f FIELDS.

TYPENAME is a literal atom which is the name of the new datatype. It may
not conflict with existing datatypes defined by INTERLISP or the user.

FIELDS is a list of field specifications that describe the objects that are in
stances of the datatype. Each field specification takes the form

((fie ld n am e> . < fie ld ty p e>)

The permissible field types are

POINTER The f i e ld may co n ta in a p o in te r to an
INTERLISP o b je c t.

FIXP The f i e ld co n ta in s an in te g e r .

FLOATP The f i e ld co n ta in s a f lo a t in g p o in t
number.

(BITS <n>) The f i e ld co n ta in s a non-negative
in te g e r le s s than 2**N.

994 The Record Package

If FIELDS is NIL, TYPENAME is undeclared.
If TYPENAME is already declared, it will be redefined. That is, the data

type will be redeclared by INTERLISP. This permits you to redefine even the
basic objects of INTERLISP. However, using this facility is not recommended as
large parts of INTEBU:.ISP will either cease to work or work in strange ways.
Moreover, the resulting code that you produce is not transportable to other sys
tems.

Printing new datatypes may be difficult. However, using DEFPRINT (see
Section 15.1.5), you may define one or more functions that print the structure of
the datatype. You may also define how the objects are to be evaluated using the
function DEFEVAL.

27.12.2 Fetching the Contents of an Object Field
Individual fields of an object may be fetched (or retrieved) using FETCHFIELD,
which takes the form

Function: FETCHFIELD
Arguments: 2

Arguments: 1) a f ie ld d e s c r ip to r , DESCRIPTOR
2) an o b je c t, DATUM

Value: The con ten ts of the f ie ld .

DESCRIPTOR is a field descriptor returned that is returned by DECLARE-
DATATYPE. FETCHFIELD returns the contents of the field specified by DE
SCRIPTOR.

If the object is not an instance of the datatype for which DESCRIPTOR is a
field descriptor, INTERLISP causes an error “DATUM OF INCORRECT
TYPE” .

27.12 User Defined Datatypes 995

27.12.3 Replacing the Contents of an Object Field
You may replace (or store into) the field of an object using REPLACEFIELD,
which takes the form

Function: REPLACEFIELD

Arguments: 3

Arguments: 1) a f ie ld d e s c r ip to r , DESCRIPTOR
2) an o b je c t, DATUM
3) a new value, NEWVALUE

Value: The new value.

DESCRIPTOR is a field descriptor that is returned by DECLAREDATA-
TYPE. REPLACEFIELD stores NEWVALUE as the contents of the specified
field into the object.

If DATUM is not an instance of the object for which DESCRIPTOR is a
field descriptor, INTERLISP causes an error “DATUM OF INCORRECT
TYPE” .

27.12.4 Creating an Instance of an Object
You may create an instance of an object using NCREATE, which takes the form

996 The Record Package

Function:
Arguments:
Arguments:

V alue:

NCREATE
2
1) an o b je c t name, TYPENAME
2) a source o b je c t, FROM

The address o f th e new o b jec t.

NCREATE creates an instance of the specified object by allocating storage
in memory for the instance.

If FROM is an instance of TYPENAME, the fields of the new object are
initialized using the values of the corresponding fields in FROM.

NCREATE does not work for built-in datatypes such as ARRAYP,
STRING?, etc., because they have their own creation and initialization func
tions built into the INTERLISP virtual machine. INTERLISP will cause the er
ror “ILLEGAL DATA TYPE” if TYPENAME is not a declared datatype.

27.12.5 Obtaining the Field Specifications
You may obtain the field specifications for a datatype using the function GET-
FIELDSPECS. It takes the form

Function :

Arguments:

Arguments:

V alue:

GETFIELDSPECS

1
1) an o b je c t name, TYPENAME

A l i s t which i s EQUAL to th e FIELDS
argument given to DECLAREDATATYPE.

GETFIELDSPECS returns a list of the field specifications for the specified
object. If TYPENAME is not a currently declared object, it returns NIL. This
allows you to dynamically declare objects by loading files containing the object
declarations.

27.12.6 Obtaining the Field Descriptors
You may obtain the field descriptors of an object using GETDESCRIPTORS,
which takes the form

F unction :

Arguments:

Arguments:

V alue:

GETDESCRIPTORS

1
1) an o b je c t name, TYPENAME

A l i s t o f f i e ld d e s c r ip to rs ,

GETDESCRIPTORS returns a list of field descriptors which is EQUAL to
the value returned by DECLARED AT ATYPE. Elements of this list may be used
in FETCHFIELD and REPLACEFIELD.

If TYPENAME is not a currently declared datatype, GETDESCRIPTORS
returns NIL.

27.12.7 Identifying User Datatypes
You may determine which datatypes have been defined by a user using USER-
DATATYPES, which takes the form

Funct io n : USERDATATYPES

Arguments: 0

Arguments: N/A

Value: A l i s t of the names of a l l cu rre n tly
dec lared u se r d a ta types.

27.12 User Defined Datatypes 997

28

The History Package

The History Package is a set of commands and functions that allow you to refer
to what you have done in the past. The primary motivation for the History Pack
age is to provide a means whereby you may correct erroneous expressions and re
execute them. Each input that you type in is treated as an event. Associated with
each event is a history list which maintains information relevant to the event.
Entries on the history list consist of an input and its value. In addition, optional
information such as side effects and formatting parameters may also be included
on the history list.

INTERLISP maintains a list of events. As new events occur, existing events
are aged. The “oldest” event is forgotten as each new event is entered onto the
list. INTERLISP typically remembers about thirty events at one time although
you may change this value via CHANGESLICE (see Section 28.6.6).

INTERLISP numbers events for future reference by printing an integer
number when it is ready to receive the next input in the READ-EVAL-PRINT
loop. These prompts run from 1 to 100 whence they roll over to 1 again. You may
reference events by their numbers in history commands.

When the History Package is activated, each input that you type is placed on
the history list after it is read, but before it is evaluated. Thus, if the command
fails, the input expression is available for modification and eventual re-execu
tion. In conjunction with the Programmer’s Assistant (see Chapter 25), new
functions and variables are noted and added to the spelling list. After a function
or command is executed, its value is also saved on the history list for possible
referral at a later time.

28.1 STRUCTURE OF THE HISTORY LIST
A history list has the following structure:

(a l i s t event# s iz e max-event#)

999

1000 The History Package

where: a l i s t

event#

s iz e

max-event#

i s a l i s t o f events w ith the
most re c e n t event f i r s t (i . e . a t
th e f ro n t o f th e l i s t)

i s th e event number o f the most
re c e n t event

i s th e maximum number o f events
to be re ta in e d
is th e h ig h e s t p o ss ib le event
number in m u ltip le s o f 100.

INTERLISP maintains three history lists: LISPXHISTORY, AR-
CHIVELST, and EDITHISTORY. LISPXHISTORY records events associated
with input typed to the READ-EVAL-PRINT loop while EDITHISTORY pre
serves your interactions with the INTERLISP Editor. Both are initialized to
(NIL 0 30 100). ARCHIVELST is used to archive events when you type the com
mand ARCHIVE.

You may disable the recording and maintaining of the history list for either
the top-level interface or the Editor by setting LISPXHISTORY or EDITHIS
TORY to NIL, respectively.

Each history list has a maximum length—its time slice. As new events occur,
they are placed at the front of the history list. That is, the history list is treated as
a FIFO (first-in first-out) queue. The position of an event in the history list corre
sponds to its age. So, as new events are entered into the history list, older events
recede into the past until they reach the threshold of the number of events to be
remembered. When the numbers of events exceeds this threshold, the oldest
events are forgotten. The amount of memory consumed in representing a history
list can be enormous as demonstrated by a simple event below. You may selec
tively remember important events using the NAME and RETRIEVE commands
(see Section 28.4.8).

Event Structure
An event, when it is recorded on a history list, has the form

(< in p u t) <i d e n t i f i e r) <v a lu e) . <p r o p e r t ie s))

w here: <in p u t)

<id e n t i f i e r)

< v a lu e)

(p ro p e r t ie s)

i s th e exp ression typed in

i s th e prompt c h a ra c te r (which
h e lp s to id e n t i fy th e subsystem
you a re execu ting under)

i s th e value o f th e exp ression
a f t e r i t has been eva lua ted

i s a p ro p e rty l i s t

28.1 Structure of the History List 1001

History Package Properties
The property list of an event is used to store additional information about the
event. The History Package supports the following properties:

SIDE

^ARCHIVE*

GROUP

HISTORY

PRINT

USE-ARGS

. . .ARGS

ERROR

^CONTEXT*

LISPXPRINT

The s id e e f f e c ts asso c ia ted w ith the
ev en t.

Forces an event to be archived when
i t i s about to be fo rg o tten , i . e . ,
when i t is about to f a l l o f f the end
o f the h is to ry l i s t .

Used to support execution of a
previous event.

S to res a h is to ry command th a t was
app lied to a previous event.

Used fo r d isp lay ing the event,
p rim arily by the Break Package and
the ?? command.

Contains arguments fo r a h is to ry
command.

Contains the expression fo r a h is to ry
command.

Contains inform ation saved when an
e r ro r occurs.

Used in e r ro r p rocessing .

S to res inform ation fo r c a l ls to
Programmer's A ssis tan t fu nc tions.

Let us assume that I have just initialized an INTERLISP session and asked
INTERLISP to load a file. The script that I would see at the terminal would
appear as

Good Evening
2 ^ (LOAD 'COMPLEX)
<KAISLER>COMPLEX..6
File Created 22-Nov-84 10:30
COMPLEXCOMS
3^(EDITV LISPXHISTORY)

To inspect the internals of LISPXHISTORY, you should apply the Editor to
it to descend into the various levels. Be careful not to modify the history list or

you may not be able to undo erroneous events. We may apply Editor commands
to navigate about the history list:

1*P
((& & &) 3 30 100)
1*1 P
((& _) (& _ <KAISLER>COMPLEX..6 *LISPXPRINT* & SIDE &) (&
_ T SIDE & *LISPXPRINT* &))
2*1 P
((&) _)
2*1 P
((EDITV LISPXHISTORY))
2*0 0 2 P
((&) _ <KAISLER>COMPLEX..6 *LISPXPRINT* (" " & "FILE
CREATED " "21-N0V-84 20:27:17" " " &) SIDE (-1 & & & & &
& & & & & & & & & & & & & —))
2*PP
(((LOAD (QUOTE COMPLEX))) _ <KAISLER>COMPLEX..6
LISPXPRINT
(" " (PRINT <KAISLER>COMPLEX..6 T) "FILE CREATED "
"21-N0V-84 20:27:17" " " (PRINT COMPLEXCOMS T T))
SIDE
(-1 (/SETTOPVAL CHANGEDFNSLST

(FACTORIAL PRINT.ARRAY TRUNCATE
RECIPROCATE

ROUNDED SIGN ROUNDTO FLOOR
PRINT.COMPLEX CMULT CZERO
CDIFFERENCE CPLUS IMAG REAL
COMPLEX))

(/SETTOPVAL CHANGEDRECORDLST (COMPLEX))
(/SETTOPVAL CHANGEDVARLST (COMPLEXVARS COMPLEXFNS
COMPLEXCOMS))
(/SETTOPVAL CHANGEDFNSLST

(FACTORIAL PRINT.ARRAY TRUNCATE
RECIPROCATE

ROUNDED SIGN ROUNDTO FLOOR
PRINT.COMPLEX CMULT CZERO
CDIFFERENCE CPLUS IMAG REAL
COMPLEX))

(/SETTOPVAL CHANGEDRECORDLST (COMPLEX))
(/SETTOPVAL CHANGEDVARLST (COMPLEXVARS COMPLEXFNS
COMPLEXCOMS))
(/SETTOPVAL FILELST NIL)
(/RPLACD ((COMPLEXCOMS . T))

NIL)

1002 The History Package

(/RPLACA
((("21-NOV-84 20:27:17" . <KAISLER)COMPLEX..6))
FILEMAP
. . . < re s t o f the filem ap) . . .))

(/PUT-1 COMPLEX (FILE ((COMPLEXCOMS . T))))
(/SETTOPVAL LOADEDFILELST NIL)
(/PUT-1 COMPLEX (FILEMAP <KAISLER)COMPLEX..6

. . . < re s t of the filem ap) . . .))
. . . <more) . . .

You can see that a considerable amount of information must be stored in
order to be able to undo events at a later date.

28.3 Event Specification 1003

28.2 UPDATING THE HISTORY LIST
The history list is updated through the auspices of LISPX (see Section 25.2)
which functions as an EVAL-PRINT mechanism. When LISPX is given a value,
it calls HISTORYSAVE to create a new event except for certain commands that
are executed immediately. HISTORYSAVE (see Section 28.6.1) returns a tem
plate of the new event which is bound to LISPXHIST. When LISPX completes
the evaluation of the input, it stores its value in LISPXHIST (as its CADDR).
LISPXHIST also provides access to the properties associated with the current
event.

28.3 EVENT SPECIFICATION
Events are associated with user inputs. The key to successful use of the History
Package is to describe the event which you want to reference.

An event specification is a statement that describes a sequence of one or
more events for a history command. A specification is drawn from the following
set of phrases:

FROM <1) THRU <2) S p ec ifie s the sequence of events
beginning a t address <1) up to
and including address <2).
Address <1) may be more recen t
than address <2) thus providing
fo r the processing of events in
reverse o rder.

FROM <1) TO <2) S p ec ifie s the sequence of events
beginning a t address <1) up to
but not includ ing address <2).
Reverse o rder is allowed.

FROM <1) Equivalent to FROM <1) TO -1 .

THRU <2>
TO <2>
<1> AND <2> AND . .

ALL <1>

1004 The History Package

<empty)

<1>

Equivalent to FROM -1 THRU <2>.
Equivalent to FROM -1 TO <2>.
S p e c if ie s a sequence of event
s p e c if ic a t io n s .
S p e c if ie s a l l events sa t is fy in g
the form given as <1>. For
example, ALL LOAD would consider
a l l events having LOAD as the
function .
No sp e c if ic a t io n i s the same as
-1 , i . e . , the la s t event.
However, i f the la s t event was
an UNDO, then i t corresponds to
a -2 .
I f < literal-atom > i s the name of
a command defined v ia NAME (see
Section 2 8 .4 .8) , t h is form
s p e c if ie s the event that defined
< litera l-ato m > , i . e . , the event
th at saved the event which i s
the value of < lite ra l-a to m > .
An event sp e c if ic a t io n that i s
in terp reted w ith resp ect to the
archived h is to ry l i s t .

Note that < 1 > and <2> may refer to the index of an event or the name of the
function corresponding to the event.

As an example, FROM TCOMPL could specify a sequence of events begin
ning with a recent compilation and progressing up to the most recent event.

If the History Package cannot find any events that match the specification,
it attempts spelling correction on the words in the specification using LISPX-
FINDSPLST to correct possible misspellings. If the event specification still fails
to identify any events, an error is generated.

28.3.1 Event Addresses
An event address, such as < 1 > above, is a specification of an event number in the
history list. An event is located by moving an imaginary cursor up or down the
history list. The event selected is the one that lies “under” the cursor when there
are no more commands to be interpreted in the event specification. Each com
mand always moves the cursor. Addresses may be specified in the following
ways:

28.3 Event Specification 1005

<n>

^ n >

<atom>

\

SUCHTHAT <pred>

Move forward <n> events in the
h isto ry l i s t where n => 1.
Move backward -n events where n
= > 1 .
S p e c if ie s an event whose
function matches <atom>. This
form i s used to se le c t an event
where <atom> was the function
used in the event.
In d icates the next search is to
go forward rather than
backwards; i f given as the f i r s t
address in d icates that the
search begins at the la s t
element of the l i s t .
In d icates that the next object
i s a l i t e r a l that i s to be
searched fo r, e .g . , F -A
searches for an event containing
a -A rather than moving
backwards four events in the
h isto ry l i s t .
In d icates that the next object
in the address i s to be matched
against values of events rather
than the inputs.
In d icates the la s t event
located .
S p e c if ie s an event for which
<pred>, a predicate of two
arguments, i s tru e . The f i r s t
argument is the input portion of
the event. The second argument
i s the event i t s e l f . For
example,
SUCHTHAT

(LAMBDA (X Y)
(MEMBER '*ERROR* Y))

sp e c if ie s an event in which an
erro r occurred.

<atom> S p e c if ie s the name of a command
defined by the NAME command (see
Section 2 8 .4 .9) .

<p atte rn) Anything e lse which may be
matched against the input of an
event.

28.4 HISTORY COMMANDS
The History Package provides a powerful, flexible set of commands for modify
ing and re-executing expressions in the history list. All history commands take
an event specification which is signified by <event>. If <event) is omitted from a
history command, then the value -1 is assumed (i.e., apply it to the previous
event).

1006 The History Package

28.4.1 Re-executing Previous Expressions
You may re-execute a previous expression on the history list by executing the
REDO command. The simplest form of this command is

REDO <event)

which executes the event(s) specified.

REDO FROM -6 TO -3

will do three events beginning six deep in the history list. Another form that is
useful is

REDO <- <atom)

which looks for an entry in the history list whose function corresponds to <atom)
and re-executes it. You may have performed a compilation, noted an error, fixed
it via the Editor, and now wish to redo the compilation. You might give the
command REDO COMPILE.

You may re-execute an event a number of times using the form

REDO <event) <n) TIMES

which re-executes the specified event <n) times where <n) =) 1. Given a list of
M (M =) 5) elements, if the last event were

(SETQ alist (CDR alist))

REDO 5 TIMES

would strip off the first five elements of the list.
You may re-execute an event based on the value of some S-expression which

is evaluated prior to interpreting the history command. The formats are

REDO <event) WHILE <form>
REDO <event) UNTIL <form)

Suppose the last two events consisted of the following sequence:

(SETQ m y f i le l is t (CDR m y f i le l i s t))
(MAKEFILE (CAR m y f i le l is t))

which runs through a list of files that I have maintained and creates a new ver
sion of each according to its File Package commands. I could execute these two
expressions until MYFILELIST is exhausted by issuing the followng history
command:

REDO FROM -2 UNTIL (NULL MYFILELIST)

which terminates when MYFILELIST is exhausted.

The REPEAT Command
Alternative forms of these two commands are

REPEAT <event)
REPEAT <event) WHILE/UNTIL <form)

The former is equivalent to REDO <event) WHILE T and continues to exe
cute until an error occurs or the user interrupts execution via keyboard control.

The general form of REDO (and its alternative REPEAT) allow you to per
form multiple executions of a previous event. A system variable REDOCNT is
initialized to 0 when the command is interpreted. On each iteration, REDOCNT
is incremented by 1. If the command terminates properly, the numer of itera
tions will be displayed. You may access REDOCNT in {form).

28.4.2 Argument Substitution
You may substitute a different expression in the input of an event and re-execute
that event. Let the previous event be

28.4 History Commands 1007

then

(SETQ s in .o f .p o in t (SIN (DEGREES.TO.RADIANS p o in t)))
✓

You could also calculate the COS.OF.POINT by issuing the following his
tory command:

USE COS.OF.POINT FOR SIN.OF.POINT AND COS FOR SIN IN -1

which performs the appropriate substitutions and re-executes the expression.
The general form of the USE command is

USE < expression[l]> FOR <argument[1]> AND . . .
<ex p re ss io n [n]> FOR <argument[n]> IN <event>

The USE command requires three pieces of information:

1. The expressions to be substituted,
2. The arguments to be substituted for,
3. An event specification.

An expression may be preceded by a !. This indicates that it is to be substi
tuted as a segment, i.e., it replaces only a portion of the input statement. As
sume that ANGLES-IN-RADIANS is a variable. To substitute this variable into
the expression, you could use

USE ! ANGLES-IN-RADIANS FOR (DEGREES-TO-RADIANS POINT)

You may omit the arguments in a USE command. There are two cases to be
considered:

1. The <event) is a USE command. The substitution takes place for the
same arguments as the previous USE command.

We could also compute the tangent of the point by issuing the com
mand

USE ! TAN IN -1

2. The <event> is not a USE command. The substitution is performed for
the operator in the specified event:

a. If it was LISPX input, then the expression is substituted for the
function in the input expression.

USE CAR IN CDR

b. If it was an edit command, then the expression is substituted for
the name of the command.

1008 The History Package

You may also omit the IN phrase in the USE command while specifying the
arguments. In this case, the History Package uses the first item in arguments to
build an event specification. It does so by implicitly inserting an F command
with the first argument into an IN phrase in the USE command.

So far, we have looked at USE commands that specify a one-for-one substi
tution between the expressions and the arguments. The History Package can
distribute several expressions over the same argument. Various combinations
are available.

USE BALTIMORE MARYLAND FOR RICHMOND VIRGINIA

is equivalent to saying

USE BALTIMORE FOR RICHMOND AND MARYLAND FOR VIRGINIA

We might also say

USE BALTIMORE ELKTON HAGERSTOWN FOR CITY

which substitutes BALTIMORE for CITY and executes the event, then substi
tutes ELKTON for CITY, and executes the event, and finally substitutes HA
GERSTOWN for CITY.

An alternative form of the USE command, <ESC> (echoed as $), is used to
specify character substitutions in strings and literal atoms. It basic forms are

$ <x> FOR <y> IN <event> o r

$ <y> <x> IN <event>

$ <y> = <x> IN <event>

$ <y> -> <x> IN <event>

which are equivalent to

USE $<x>$ FOR $<y>$ IN <event>

as used in

$ COS FOR SIN IN -1

would have the same effect as the previous history command given above. The
event would be re-executed as

(SETQ c o s . o f.p o in t (oos (DEGREES.TO.RADIANS p o in t)))

28.4 History Commands 1009

$ may only be used to specify one substitution at a time. After it finds an
event, $ determines if an error was involved in that event. If the indicated char
acter substitution can be performed in the offending object, the offender, $ per
forms the substitution in the offender only and then substitutes the result for the
original offender throughout the remainder of the event. This is the most com
mon use of the $ command—to correct a spelling or other trivial character-based
error in a command typed at the top level. Consider the following example:

«-(LOAD 'COOMPLEX)
F IL E NOT FOUND
COOMPLEX
<- $ 0 0 FOR 0 in LOAD
00->0

, <KAISLER>COMPLEX..6
F IL E CREATED 21-Nov-8^ 20:27:17
COMPLEXCOMS

$ never searches for an error. It performs the replacement in the offender
only if the specified event caused an error.

1010 The History Package

28.4.3 Editing a Previous Event
Sometimes the previous expression is so complex that it becomes rather tedious
to “write” the history commands to correct it. In these cases, it is easier to edit
the expression and then re-execute it. You can edit a previous event by issuing
the FIX command. It takes the form

FIX <event)

FIX puts you into the INTERLISP Editor with a copy of the input expres
sion which has been extracted from the event entry on the history list. When you
exit the Editor with an OK, the result is substituted into the event and re-exe
cuted. Suppose we are defining a function:

<-(DEFINEQ
(ADD3 (X Y Z)

(IPLUS X YZ)))
(ADD3)

In my haste to enter the function definition, I concatenated the Y and Z.
Instead of retyping the definition, I can fix it as follows:

<-FIX
e d it

*P
(DEFINEQ (ADD3 & & &))
*2 4 P
(IPLUS X YZ)
*(R YZ Y)
*(N Z)
*0K
(ADD3 redefined)
(ADD3)

If the edition is relatively simple, you can specify a sequence of Editor com
mands following the FIX command which are applied to the expression. After
the last Editor command, an implicit OK is assumed which forces the result to
be re-executed. Thus, we could have performed the same editing as follows:

<-(DEFINEQ
(ADD3 (X Y Z)

(IPLUS X YZ)))
(ADD3)
<-FIX defineq-2 4 P (R YZ Y)
. . .(N Z)

28.4 History Commands 1011

whence the Editor does not type edit or wait for an OK after executing the com
mands.

28.4.4 Retrying an Event
A particularly difficult problem to assess is the expression which enters an infi
nite loop or takes an unusually long time to execute. In these cases, you want to
enter the Break Package after a given period of time to determine what has hap
pened. The RETRY command allows you to force breaks if a previous event
executes in such a way as to cause errors that are not trapped. Its format is

RETRY <event)

If I wanted to reset my erroneous definition of ADDS in order to demon
strate an alternative method of correcting it, I could retry the original event as
follows:

X-RETRY 17
(ADD3 redefined)
(ADD3)

28.4.5 Printing the History List
In manipulating the history list, you may forget what events have previously oc
curred (particularly if your terminal scrolls off the top as mine does—so does
INTERLISP-D’s typescript window). You can inspect the history list by issuing
the ?? command. ?? prints the history list. Unlike other commands, if the
<event) is omitted, ?? will display the entire history list for you (beginning with
the most recent event).

Note that ?? commands are never entered onto history lists. Thus, they do
not affect the relative event numbers. For example, ?? -1 refers to the event im
mediately preceding the ?? command. However, ?? does print the history com
mand associated with an event. You may distinguish the history commands by
noting that they are not preceded by a prompt character.

?? is implemented by the function PRINTHISTORY which you may also
invoke directly. Consider the following example:

• •

37. RETRY 17
(DEFINEQ (ADD3 (X Y Z) (* ed ited "24-Nov-8-4 09:17")
(IPLUS X Y Z)))
(ADD3 red e fin ed)
(ADD3)
36. RETRY 2
2 ? "because event 2 has f a l le n o f f th e end o f

th e h is to ry l i s t "
35. F IX DEFINEQ-2 4 P (R YZ Y) (N Z)
3A ^

For each event, ?? prints the event number, the prompt character, the input
line(s) and the value(s). If the event was a Programmer’s Assistant command
that “unread” other input lines, the Programmer’s Assistant command will be
printed without the prompt character to show that they are not stored as input,
and the input lines will be printed with prompt characters.

28.4.6 Undoing the Effects of Events
You may undo the effects of a previous expression or command by executing the
UNDO command. Its format is

UNDO <event)

UNDO undoes the side effects of the specified events. For each event that is
undone, the History Package prints a message of the form

1012 The History Package

(function) UNDONE

where {function) is in the input of the event. If nothing is undone because noth
ing was saved, the History Package merely types NOTHING SAVED.

^(DEFINEQ (GET.HEAD (LST) (CAR LST)))
(GET.HEAD)

'^UNDO DEFINEQ
DEFINEQ undone

^ (P P GET.HEAD)
(GET.HEAD n o t p r in ta b le)
(GET.HEAD)

If nothing was undone because the event’s side effects were already undone,
the History Package prints the message ALREADY UNDONE, When no event
is specified, UNDO searches back through the history list until it finds an event
that has side effects which were not undone and where the input is not another
UNDO command. It undoes that event.

You may undo the effects of UNDO commands.

<-UNDO UNDO
UNDO undone

<-(PP GET.HEAD)
(GET.HEAD

(LAMBDA (LST) **COMMENT**
(CAR LST)))

In general, undoing events in the reverse order of execution will restore all
INTERLISP pointers to their correct previous values. The easiest way to say this
is UNDO THRU -5. If you undo events in any other order, the state of the system
is unpredictable because the expressions may have been dependent upon the
sequence of execution.

An alternative version of the UNDO command has the following form:

UNDO (e v e n t) : < p a tte rn l> . . . <patternN)

Each <pattern[i]) is matched to a message printed by DWIM in the event
specified by <event). The side effects of the corresponding DWIM corrections
are undone. If DWIM had printed the following message:

LOOAD [IN GET.FILES] -) LOAD

performing the command

UNDO : LOAD

would undo the correction.

28.4 History Commands 1013

Note that some of the DWIM messages include strings. Merely typing an
atomic form would not find the string. You must surround it by <ESC> charac
ters to locate it.

1014 The History Package

28.4.7 Correcting Errors via DWIM
When an error occurs, you can attempt to have DWIM fix it with information it
already possesses such as spelling lists, etc. You do so by executing the history
command DWIM which invokes DWIM to correct and re-execute the expres
sion. Suppose that you had typed the expression

(GETPROP 's t a t e 'c a p i ta l)

and had received NIL as the answer. Of course, the property name should be
CAPITOL. If you had previously executed

(PUTPROP 'State ’capitol)

DWIM would have enough knowledge to correct the spelling of the property and
retrieve the value, if any.

Associated with certain commonly used functions are heuristics about how
they are used. When a function fails, DWIM determines if one of these functions
was involved in the input. If so, it uses the heuristic information to correct the
erroneous condition. Usually, this heuristic information concerns spelling and
the nature of the arguments. DWIM knows about the following functions:

1. GETD, FNTYP, and MOVD all take as their first argument an atom
that should have a definition.

2. GETP, GETPROP, GETPROPLIST, PUT, and PUTPROP take as a
first argument an atom that should have a non-NIL property list and a
second argument which should be a property on that property list or a
member of SYSPROPS.

3. SET, SETQ, and SETQQ take as a second argument a variable that is
bound to some value which is assigned as the value of the first argument.

4. LOADFNS and EDITF take as an argument the name of a function that
is contained on one of the files in FILELST (i.e., the function has already
been loaded once).

If any of these conditions are not true for the expression, DWIM attempts to
make them true through spelling correction. If the condition is made true, the
corrected event is re-executed.

If an error occurred in the indicated event due to a misspelling, DWIM can
look for an atom that is “close to” the word that was originally intended. To do
so, it appends $$ (i.e., two escapes <esc>) onto the end of the offender, substi

tutes it into the event, and tries again. The History Package will then search for
an event that has a word close to the offender and attempt to re-execute that
event.

(MOVE 3 2 TO AFTER CONDD 1)

will cause the Editor to respond CONDD?. When you type DWIM, it substitutes
CONDD<esc><esc> into the event, which causes

(MOVE 3 2 TO AFTER CONDD<esc><esc> 1)

to be executed. It searches for an atom close to CONDD, which is COND, and
this event is re-executed.

If these procedures fail, DWIM displays the message

Unable to f ig u re out what you meant in : <event)

28.4.8 Saving and Retrieving Events
You may save and restore events on the property list of an atom. The form of
these commands is

NAME < lite ra l-a to m > <event)

RETRIEVE <atom)

The specified events, including the side effects, are stored on the property
list of the atom under the property HISTORY. Events saved on the property list
of the <literal-atom) may be retrieved using the event specification form: @ <lit-
eral-atom).

This feature is quite useful when you are executing a sequence of expressions
associated with an atom which you might want to repeat several times through
out the session. In particular, you may make beneficial use of it during the de
bugging of a program when you enter expressions to look at the values of various
variables used by the program.

In effect, you are describing a new command for the History Package by
associating events with an atom. You may execute the command as a history
command by merely typing its name.

24-^ (DEFINEQ
(CLEAR.ARRAY (XARRAY)

(FOR I FROM 1 TO (ARRAYSIZE XARRAY)
DO (SETA XARRAY I 0))))

(CLEAR.ARRAY)

25^ (CLEAR.ARRAY XARRAY)
NIL

28.4 History Commands 1015

26<^NAME CLEARA 25
CLEARA
a?"*-CLEARA
NIL

which is equivalent to REDO 25. However, if <literal-atom> has a top-level
value, then the value of the atom is returned (i.e., the atom is evaluated). Thus,
you must be careful to define new history commands as atoms that do not have
top-level values.

Commands defined by NAME may be parametrized. The format of the
NAME command is

NAME <literal-atom> ((arguments)) : <event)

or

NAME <literal-atom) ... (arguments) ... : (event)

where the (arguments) are interpreted as if a USE command had been given.
Both !s and $s may also be used in specifying the structure of the arguments.
Consider the following example:

22<-(PUTD 'X (COPY (GETPROP 'Y 'EXPR)))
(X)
2 3 ^ NAME MOVE.DEFINITION X Y : PUTD
MOVE.DEFINITION

which defines the MOVE.DEFINITION command. Then, typing the statement

2^«-M0VE DUMP.MATRIX DUMP.ARRAY

would result in the execution of the following expression:

(PUTD 'DUMP.MATRIX (COPY (GETPROP 'DUMP.ARRAY 'EXPR)))

which is equivalent to executing

USE DUMP.MATRIX DUMP.ARRAY FOR X Y IN MOVE.DEFINITION

Commands, defined by NAME without arguments, which are invoked with
arguments will cause errors.

RETRIEVE extracts the events from the atom and re-enters them on the
history list. It does not re-execute them. If (literal-atom) did not previously ap
pear in a NAME command, the History Package generates an error.

1016 The History Package

Once you have retrieved events from the HISTORY property of an atom,
you may apply any history command to those events (including saving them on
another atom).

You may execute the events stored under the HISTORY property of an atom
by executing a REDO command:

REDO < li te ra l-a to m >

is equivalent to

RETRIEVE < li te ra l-a to m >
REDO

You may also see what events have been stored under the HISTORY prop
erty of an atom by executing

?? < li te ra l-a to m >

Suppose you have defined a new command via the NAME command. This
command records events which have been applied to one or more variables. You
may undo the effects of the events associated with the command by executing the
history command BEFORE, which takes the form

BEFORE < li te ra l-a to m >

You may re-execute the events by executing the history command AFTER,
which takes the form

AFTER < ll te ra l-a to m >

BEFORE and AFTER allow you to “flip” back and forth between two pro
gram states in order to test the effect of modifications to data structures or vari
able values.

Both BEFORE and AFTER will generate an error if their argument was not
previously defined via a NAME command.

28.4.9 Archiving Events
The History Package maintains a third history list which is a permanent history
list. You may archive events on that history list by executing the ARCHIVE com
mand which takes the form

ARCHIVE <e v e n t)

28.4 History Commands 1017

RETRIEVE <example)

Events recorded on the archival history list may be referenced by preceding
the event specification by The @@ specification may be used with any
history command subject to other restrictions as previously noted.

Events may automatically be archived when they are about to be forgotten
by defining ARCHIVEFN (see Section 28.5.3) to do the proper thing.

28.4.10 Forgetting Side Effects
As we noted previously, events may (and often do) have side effects. You may
forget the side effects associated with an event by executing the history command
FORGET, which takes the form

FORGET <ev en t)

If <event) is omitted, the side effects for the entire history list are forgotten.
Note that FORGETing is not undoable.

Many INTERLISP functions preserve old pointers in the side effects of an
event when new values are created. Among these functions are SETx, PUTD,
REMPROPS, COPY, etc. The old pointers are not garbage collected until the
event is forgotten from the history list. You may force garbage collection (at the
next appropriate time) of these pointers by FORGETting them from the side
effects of their respective events.

The IRM notes that this function is provided for users with space problems.
You probably do not need to worry about this situation if you are running under
INTERLISP-D unless you have reset the maximum number of events to a fairly
large number and are running a problem that has very large and complex data
structures.

1018 The History Package

28.4.11 Remembering Events
You may remember events across sessions by saving the events in a file. The
REMEMBER command causes the File Package to remember events as in
stances of the File Package type EXPRESSIONS? whenever a FILES?, MAKE
FILES, or CLEANUP (see Section 17.3.6) is executed. The File Package writes a
command of the form (P <event)) into the COMS of the specified file.

28.4.12 Printing Property Lists
You may print the property list of an atom by executing the history command
PL, which takes the form

PL <atom)

PL prints the property list of the specified atom with the print level (see
Section 15.3) temporarily reset to (2 . 3).

^P L MASTERSCOPE
FILEDATES : ((»' 4-Aug-83 23:47:11" .
<NEWLISP>MASTERSCOPE.;1))

PL is equivalent to executing GETPROPLIST upon the name of the atom.

28.4.13 Printing Atom Bindings
You may print the binding (i.e., the value) of an atom by executing the history
command PB, which takes the form

PB <atom>

Its primary purpose is to allow you to inspect the values of atoms which may
have complex data structures.

-^PB LISPXHISTORY
@ TOP : ((& 8c —) 17 30 ”)

Note that the effect of PB is mediated by the current setting of the print
level.

^PB X
@ TOP : NOBIND

Note that if the atom is not bound, the History Package will not attempt
spelling correction or generate an error.

28.4.14 Analyzing Errors
When an error occurs in an expression, you can ask the Programmer’s Assistant
to attempt an analysis of the error. You do so by executing the history command:

28.4 History Commands 1019

The Programmer’s Assistant attempts to analyze the nature and cause of the
error using context information saved when the input of the event was executed.
Based on this analysis, it will try to put you into the Editor at the proper location
to correct the problem. Consider the following example:

^^(DEFINEQ (GET.HEAD (LST) (CARR LST)))
(GET.HEAD)
< -(GET.HEAD ' (MUSIAL MANTLE MARIS))
UNDEFINED CAR OF FORM
CARR [in GET.HEAD] in [CARR LST]

1020 The History Package

e d i t
(LAMBDA (LST) ^̂ ĈOMMENT** (CARR LST))
1*

28.4.15 Bypassing the Programmer's Assistant
Every line that you type into LISPX will be examined and processed by the Pro
grammer’s Assistant. You may force this processing to be bypassed by entering a
command of the form

: <ex p ress io n)

The : allows you to enter input to the system without having it processed by
the Programmer’s Assistant.

28.4.16 Preventing History List Recording
Every expression submitted to the top-level READ-EVAL-PRINT loop is re
corded on the history list unless it is one of the excepted Programmer’s Assistant
commands. Note that the amount of information saved for each event varies with
the nature of the expression that you type in (see the example above). You may
prevent the recording of an expression on the history list using the SHH com
mand, which takes the form

SHH (s ta te m e n t)

where <statement) may be either an S-expression or a Programmer’s Assistant
command.

28.5 HISTORY PACKAGE VARIABLES
The History Package uses a number of variables to determine how it will respond
to certain commands and how it will treat certain events. These variables are
described in this section.

28.5.1 LISPX History Macros
LISPXmSTORYMACROS is a variable whose value is a list of elements of the
form

(<command) <d e f in i t io n))

LISPXHISTORYMACROS allows you to define your own History Package
commands. When (command) is recognized on type-in, (definition) is evalu-

ated. However, unlike LISPXMACROS, its result is treated as a set of expres
sions which are to be unread. That is, the result of evaluating (definition) is
placed at the front of READBUFFER (see LISPXUNREAD). It is permissible
to return NIL as the result of evaluating {definition) which means nothing else is
to be done.

LISPXHISTORYMACROS takes as its initial value (comments added for
understanding in this listing)

((QU

Q uit from INTERLISP
)
NIL
(LOGOUT)

(BUF
(*

Put inpu t in to the read b u ffe r . TTYIN is an
INTERLISP-D fu n c tio n .

)
NIL
(TTYIN LISPXID

NIL
NIL
'EVALQT
NIL
NIL
(LIST

(COND
(LISPXLINE

(VALUEOF LISPXLINE))
(T

(CADDR (CAAR LISPXHISTORY)))))))
(DA

(PROGN
(*

P r in t the date and time on the te rm ina l;
and move to the next l in e .

)
(LISXPRINl (DATE) T)
(TERPRI T)))

(; NIL NIL)
(PB

(*

)

28.5 History Package Variables 1021

A macro definition for the PB command.

(MAPC LISPXLINE
(FUNCTION

(LAMBDA (X)
(PRINTBINDINGS X

(AND
(EQ LISPXID ' :)
LASTPOS))))))

(PL
(*

A macro d e f in i t io n fo r th e PL command.
)
(COND

(LISPXLINE
(PRINTPROPS (CAR LISPXLINE)))

(T
»(E PL))))

(??
NIL
(PROG (TEMP)

(RESETVARS
((PRETTYTRANFLG T))
(RESETFORM

(OUTPUT T)
(PRINTDEF

(COND
((NULL

(CDAR
(SETQ TEMP

(LISPXFIND
LISPXHISTORY

LISPXLINE
'ENTRY))))

(CAAR TEMP))

1022 The History Package

(CAR TEMP)))
(T

NIL
T)))

(TERPRI T)
(RETURN NIL)))

(TYPE-AHEAD
(LISPXTYPEAHEAD)))

28.5.2 History Package Forms
Several variables have as their values a list of expressions to be evaluated when
certain functions are executed:

PROMPTCHARFORMS A l i s t o f expressions to be
executed each time PROMPTCHAR
(see S ection 25.6) is c a lle d .

HISTORYSAVEFORMS A l i s t of expressions to be
executed each time HISTORYSAVE
(see S ection 28 .6 .1) is c a lle d .

Note that expressions on PROMPTCHARFORMS will be evaluated before
the prompt character is printed. The expressions on HISTORYSAVEFORMS
are executed after the user has completed type-in, but before the input is evalu
ated. Thus, you may effectively encapsulate the user’s interaction with the sys
tem (or subsystem).

RESETFORMS A l i s t of expressions to be
evaluated whenever (RESET) is
executed, when the u se r types
CTRL-D, or when the u se r types
CTRL-C followed by START. See
S ection 25.7 fo r more
inform ation .

28.5 History Package Variables 1023

28.5.3 The Archival Function
ARCHIVEFN is a History Package variable whose value determines whether or
not an event about to be forgotten will be archived or not. The value of AR
CHIVEFN is initially NIL and undefined so that all events passing the age
threshold will be forgotten. You may set ARCHIVEFN to T whence the defini
tion stored in the function definition cell of ARCHIVEFN will be called to deter
mine how to process the event.

The definition stored in the function cell of ARCHIVEFN must be a
LAMBDA expression of two arguments: the input portion of the event and the
entire event. If the function returns T, the event is archived on ARCHIVELST.
ARCHIVELST is initially NIL.

To record all events concerning the loading of files, you would set AR
CHIVEFN to T and define it as follows:

(LAMBDA (INPUT EVENT)
(EQUAL (CAR INPUT) 'LOAD))

ARCHIVEFLG is a flag that determines how events referenced by history
commands are to be processed. The rationale is that if you reference a previous
event by a history command, it must be important (i.e., may be referenced
again). Thus, when it falls off the end of the history list, it should be archived. If
ARCHIVEFLG is non-NIL, the History Package automatically marks every
event referenced by a history command so that it will be archived. AR-

CHIVEFLG is initially T. Events are marked for archiving by placing the prop
erty *ARCHIVE* with value T in the event entry.

ARCHIVELST is initialized to (NIL 0 50 100) so that it does not have an
indefinite length.

28.5.4 The Value of an Event
The History Package variable IT always stores the value of the most recent event.
It may be used in succeeding expressions or history commands just like any other
variable. Consider the following example: ,

^(SQRT (TIMES 100 50))
70.71068

<-lT
70.71068
-^-(SQRT IT)
8.408964

28.6 HISTORY PACKAGE FUNCTIONS
The History Package provides a number of functions that allow you program
matic access to the history lists from within your program or that allow you to
maintain you own history lists that are application dependent. The latter feature
is very useful in many artificial intelligence programs that require a history of
decisions in order to implement an explanation facility. This section will discuss
the History Package functions.

28.6.1 Recording a History Event
HISTORYSAVE records an event on a history list. It takes the form

F unction : HISTORYSAVE

Arguments: 6

Arguments: 1) a h is to ry l i s t , HISTORY
2) an event i d e n t i f i e r , ID
3) an in p u t s p e c if ic a t io n , INPUTl
A) an in p u t s p e c if ic a t io n , INPUT2
5) an in p u t s p e c if ic a t io n , INPUT3
6) a l i s t o f p ro p e r t ie s , PROPS

Value: The new event i d e n t i f i e r .

HISTORYSAVE creates a new event with an event identifier having the
value of ID. The value field of the event is initialized to bell (?). The event has the

1024 The History Package

associated properties and values that are the value of PROPS. If the size of HIS
TORY has reached its maximum, the last event (e.g., the oldest) is removed
from the list.

INPUTl, INPUT2, and INPUT3 describe the possible forms of the input
sequence that produced the event:

1. If INPUTl is non-NIL, the input entry is of the form

(INPUTl INPUT2 . INPUT3)

2. If INPUTl is NIL and INPUT2 is non-NIL, the input entry is of the form

(INPUT2 . INPUT3)

3. Otherwise, the input entry is just INPUT3.

The value of HISTORYSAVE is the new event.
If REREADFLG in non-NIL, and the most recent event records a command

that produced this input, HISTORYSAVE does not create a new event but
merely updates that event’s *GROUP* property with an entry of the form ((in
put) <id> <bell> . <props>).

«-SHH (HISTORYSAVE LISPXHISTORY 54 'HISTORYSAVE)
((HISTORYSAVE NIL) 54)

which is the structure of the new event. Note that you may evaluate a value and
place it in the event using RPLACD.

HISTORYSAVE uses HISTORYSAVEFORMS when it creates a new
event. If HISTORYSAVEFORMS is non-NIL, it should be a list of expressions
that is evaluated (under ERRORSET protection) each time a new event is cre
ated. These expressions may use the values of the arguments to HISTORYSAVE
as well as the variable EVENT which is the value that HISTORYSAVE is about
to return.

28.6.2 Locating a History Event
HISTORYFIND searches the history list to find a specified event. It returns the
tail of the history list beginning with the event that was looked for. It takes the
form

Function: HISTORYFIND

Arguments: 4
Arguments: 1) a h is to ry l i s t , HISTORY

2) an index in to the h is to ry l i s t , INDEX

28.6 History Package Functions 1025

3) th e maximum event #, MOD
A) an event s p e c if ic a t io n , EVENTADR

Value: The t a i l o f th e h is to ry l i s t beginning
w ith th e sp e c if ie d event; o therw ise , an
e r r o r .

Consider the following example:

2<-(SETQ COMPOSERS
(LIST 'BACH 'BEETHOVEN 'COPELAND 'MOZART))

(BACH BEETHOVEN COPELAND MOZART)

3<-PB COMPOSERS
@ TOP : (BACH BEETHOVEN COPELAND MOZART)

4<^(HIST0RYFIND (CAR LISPXHISTORY) 2 A)
((NIL _ ^HISTORY* ((PB COMPOSERS)) *GROUP* NIL) (((SETQ
COMPOSERS (LIST (QUOTE BACH) (QUOTE BEETHOVEN) (QUOTE
COPELAND) (QUOTE MOZART)))) _ (BACH BEETHOVEN COPELAND
MOZART) SIDE {A (UNDOSET NIL COMPOSERS NOBIND) (ADDSPELL2
COMPOSERS (" s p e l ls e p a ra to r" . . . < re s t o f sp e ll in g l i s t)

1026 The History Package

Note that the first argument to HISTORYFIND uses the CAR of the actual
history list because it should be the history list itself.

28.6.3 Locating Events by Specification
LISPXFIND searches a history list and returns a structure consisting of the
events that match a given specification. It takes the form

F unction : LISPXFIND

Arguments: A

Arguments: 1) a h is to ry l i s t , HISTORY
2) an event s p e c if ic a t io n , EV
3) a form at s p e c if ic a t io n , TYPE
A) a backup f la g , BACKUP

Value: As d escrib ed below.

LISPXFIND attempts to locate the corresponding history events to the spec
ification given by EV. EV is an event specification. TYPE specifies the format of
the value to be returned by LISPXFIND. It is chosen from ENTRY, ENTRIES,
COPY, COPIES, INPUT, or REDO. LISPXFIND parses EV and call HIS
TORYFIND to locate and assemble the specified events.

2*<-(SETQ COMPOSERS
(LIST 'BACH 'BEETHOVEN 'COPELAND 'MOZART))

(BACH BEETHOVEN COPELAND MOZART)

3^PB COMPOSERS
@ TOP : (BACH BEETHOVEN COPELAND MOZART)

^(LISPXFIND LISPXHISTORY ' (SETQ) 'ENTRY T)
(((SETQ COMPOSERS (LIST (QUOTE BACH) (QUOTE BEETHOVEN)
(QUOTE COPELAND) (QUOTE MOZART)))) _ (BACH BEETHOVEN
COPELAND MOZART) SIDE {A UNDOSET NIL COMPOSERS NOBIND)
(ADDSPELL2 . . .)))

BACKUP is a flag that is interpreted as follows:

1. If BACKUP is T, LISPXFIND looks for an event in the history list prior
to the insertion of the current event so that it will not refer to itself.

2. If EV is NIL and the last event was the Programmer’s Assistant com
mand UNDO, the next to last event is retrieved from the history list. This
permits you to type UNDO followed by REDO or USE.

3. ARCHIVELST will be substituted in place of the specified history list if
EV contains @@ within its value.

4. If EV contains LISPXFIND will retrieve the event from the corre
sponding literal atom rather than the specified history list.

I recommend that you always use LISPXFIND with BACKUP set to T.

28.6.4 Extracting a History Event
ENTRY# extracts an event from a history list. It takes the form

Function: ENTRY#

Arguments: 2

Argument: 1) a h is to ry l i s t , HISTORY
2) an event s p e c if ic a tio n , EVENT

Value: The event number fo r EVENT.

^(ENTRY# LISPXHISTORY '(SETQ))
100

28.6.5 Obtaining an Event's Value
VALUEOF obtains the value of an event on the current history list. It takes the
form

28.6 History Package Functions 1027

Function: VALUEOF
Arguments: 1

Argument: 1) an event s p e c if ic a t io n , EVENT
Value: The value o f the corresponding even t.

VALUEOF is an NLAMBDA, nospread function. Consider the following
example:

VALUEOF 11)
(BACH BEETHOVEN COPELAND MOZART)

Note that if VALUEOF cannot find a value for the specified event, it returns
the maximum event number.

28.6.6 Changing a History List's Timeslice
CHANGESLICE allows you to change the timeslice for a history list. As you
remember, the timeslice is the number of events that will be recorded on the
history list. It takes the form

Function : CHANGESLICE

Arguments: 2

Arguments: 1) a t im e s l ic e , N
2) a h is to ry l i s t , HISTORY

Value: The value o f t im e s l ic e .

The effect of increasing the time slice is a gradual lengthening of the history
list as new events are recorded. Decreasing the time slice will cause the excising
of enough events to reduce the history list to the proper size. Because
CHANGESLICE is undoable, these events are recoverable. Consider the follow
ing example:

<-PB LISPXHISTORY
@ TOP : ((& & —) 19 30 —)

(CHANGESLICE 1 LISPXHISTORY)
1 i s too sm all

< -(CHANGESLICE 3 LISPXHISTORY)
3
<-PB LISPXHISTORY
@ TOP : ((& & —) 23 3 - -)

1028 The History Package

28.6.7 Searching the History List
HISTORYMATCH is used to match patterns against input portions of events on
a history list in order to identify an event. It is primarily used by HISTORY-
FIND. It takes the form

Function: HISTORYMATCH

Arguments: 3

Arguments: 1) an inpu t en try , INPUT
2) a p a t te rn , PATTERN
3) an event s p e c if ic a tio n , EVENT

Value: As re tu rn ed by EDITFINDP.

HISTORYMATCH is used by HISTORYFIND to match the pattern given
by PATTERN against an entry from the specified history list. HISTORYFIND
maps over the entries on the history list while calling HISTORYMATCH. It is
initially defined as (EDITFINDP INPUT PATTERN T).

28.6.8 Printing the History List
PRINTHISTORY allows you to print a history list on a file. It takes the form

Function: PRINTHISTORY

Arguments: 5

Arguments: l) a h is to ry l i s t , HISTORY
2) an event s p e c if ic a tio n , EVENT
3) a sk ip fu n c tio n , SKIPFN
4) a values f la g , NOVALUES
5) a f i l e name, FILE

Value: A d isp lay of the events on the f i l e .

PRINTHISTORY is used by the Programmer’s Assistant command ?? to
display the history list. You may display portions of the history list from within
your program using it. Alternatively, it is useful if you keep your own history list
for user interaction with a program since these events are not typed in at the top
level and so are not recorded on LISPXHISTORY.

SKIPFNS is a functional argument (i.e., a LAMBDA expression) that is
applied to each entry on the history list. If it returns a non-NIL value, that entry
will not be printed.

If NO VALUES has the value T, the value will not be printed. This is usually
the case when you want to display entries from EDITHISTORY.

28.6 History Package Functions 1029

■■ 5

i

29

Miscellaneous Functions and
Features

INTERLISP provides a number of functions that seem to be orphans, i.e., they
do not fit into any of the categories that we have already identified. This section
describes these functions. In many cases, these functions are implementation
dependent; they may not be supported in all INTERLISP systems.

In this text, I have omitted discussion of some of the functions that are im
plementation dependent. You should consult the INTERLISP Reference Man
ual for the proper calling sequences and parameters associated with these capa
bilities.

29.1 CHRONOM ETRIC AND COUNTING FUNCTIONS
INTERLISP provides several functions for obtaining the current time and/or
date. It also provides two functions for measuring the amount of time IN
TERLISP spends in performing certain types of computations.

29.1.1 Date and Time Functions
You may obtain the current date and time, formatted as a single string, by exe
cuting DATE, which takes the following form

F u n c tio n : DATE

A rgum ents: 0

A rgum ents: N/A
V alue: A s t r in g re p re s e n tin g da te and tim e.

DATE returns a string having the format

” dd-mm-yy hh:ram:ss"

1031

1032 Miscellaneous Functions and Features

where dd is th e day
mm is the month
yy is the year
hh is the hour
mm is the minute
ss is the second.

The current date would appear as

-^(DATE)
"28-0CT-83 07:17:34"

The date is obtained from the host operating system under which IN
TERLISP is implemented. The granularity of the time value is dependent on the
accuracy of the clock maintained by the host operating system.

Obtaining the Date as a Large Integer
Another chronometric function is ID ATE, which takes the form

Function: IDATE

Arguments: 1
Argument: 1) a d a te and tim e s t r in g , DT

Value: An in te g e r re p re s e n ta tio n o f DT.

IDATE converts DT to an integer representation. Given two data and time
strings, DTI and DT2, if DTI is earlier than DT2, then IDATE[DT1] < IDA-
TE[DT2]. If DT is NIL, IDATE returns the value associated with (DATE).

<-(IDATE)
466167809
<-(DATE)
"28-0CT-83 07:17:34"

A single integer value representing the date is useful for time-stamping en
tries in a list because it takes less space than a string.

Obtaining the Date and Time as a String
GDATE converts an internal date-and-time format into a date-time string. It
takes the form

F unction : GDATE

Arguments: 3

Arguments: 1) an in te rn a l date-and-tim e, DT
2) a form at, FORMATBITS
3) a s t r in g p o in te r , STRPTR

Value: A form atted date-tim e s tr in g .

The value of DT is equivalent to that produced by IDATE. If DT is NIL,
then the value of (IDATE) is used.

'^(GDATE)
"28-0CT-83 07:18:53”
^(GDATE (IDATE))
"27-NOV-84 13:02:28”

'<-(SETQ DT (IDATE))
120669^7650

<-(GDATE DT)
”27-Nov-84 13:03:11”

FORMATBITS is used by INTERLISP-10 to format the string using the
TENEX/TOPS20 operating system routines.

Note that you may use IDATE to time-stamp a list element, but later recover
the corresponding string using GDATE.

29.1.2 Clock Functions
Most INTEBU^ISP systems can reference the time-of-day clock that is main
tained by the system hardware. CLOCK returns various measures of time based
on values extracted from the time-of-day clock. It takes the form

Function: CLOCK

Arguments: 1

Argument: l) a format in d ic a to r , N

Value: As described below.

The value of N indicates which of four possible measures will be returned by
CLOCK:

0
The current value of the time-of-day clock in milliseconds. This value is

equivalent to the number of milliseconds that have elapsed since the system was
started up.

(CLOCK)
-1983526334

29.1 Chronometric and Counting Functions 1033

1034 Miscellaneous Functions and Features

1
The number of milliseconds since this session of INTERLISP was started.

<-(CLOCK 1)
-1990867982

2
The number of milliseconds of compute time since this INTERLISP was

started (garbage collect time is subtracted off).
I

CLOCK 2)
2311790

3
The number of milliseconds of compute time spent in garbage collection.

(CLOCK 3)
268915

The values returned by CLOCK are not valid inputs to GDATE.

<-(GDATE (CLOCK))
"9-M ay-186l 06:49:39"

29.2 SYSTEM FUNCTIONS
Because INTERLISP is usually implemented as an applications program run
ning under control of an operating system, it provides a number of system func
tions that allow you to interact with the external environment. Functions de
scribed in this section are very dependent upon the nature of the underlying
operating system. The values used in the examples are drawn from INTERLISP
running on a Xerox 1100 Scientific Information Processor or INTERLISP-10
running on a DECSystem-20.

29.2.1 Exiting INTERLISP
To exit INTERLISP, you use the function LOGOUT, which takes the form

F unction : LOGOUT

Arguments: 1

Argument: 1) a f a s t e x i t in d ic a to r , LOGOUTFLG

Value: M eaningless.

LOGOUT exits INTERLISP and returns control to the underlying operat
ing system. If LOGOUTFLG is T, INTERLISP exits without updating the vir
tual memory file that is maintained on the external disk. Thus, you probably will
not be able to restart INTERLISP without first initializing it. (This fact is guar
anteed under INTERLISP-D!). If LOGOUTFLG is NIL (as is usually the case),
INTERLISP updates the virtual memory file by writing “dirty pages” from
memory to the disk before returning control to the operating system.

LOGOUT has no value since it never returns to the user. However, if you
restart INTERLISP using the virtual memory stored on disk, it will resume oper
ation after the LOGOUT function invocation which will have the value NIL.
Your program may continue from this point as if nothing had happened, save for
the difference in time.

29.2 System Functions 1035

29.2.2 Obtaining the System Type
Because implementations of INTERLISP differ for various systems, it may be
necessary for your program to know which system it is running on. SYSTEM-
TYPE returns an atom which indicates the current system on which you are run
ning. It takes the form

Function: SYSTEMTYPE

Arguments: 0

Arguments: N/A
Value: A l i t e r a l atom corresponding to the system

type .

Consider the following examples:

(SYSTEMTYPE)
D " in d ic a tin g a Xerox 1100 (a . k . a .

D olphin)"

-^(SYSTEMTYPE)
T0PS20 " in d ic a tin g a DECSystem-20 computer"

You may use the value returned by SYSTEMTYPE to determine what code
to execute or compile. This is most easily coded using the form

(SELECTQ (SYSTEMTYPE)
(TOPS20 . . .)
(D . . .)

e tc .

29.2.3 Obtaining the User Name
You may configure your program or your INTERLISP environment to operate
differently depending on the user who is logged into it. USERNAME takes the
form

Function : USERNAME
Arguments: 2

Argument: 1) a d ire c to ry f la g , DFLAG
2) a type f la g , TFLAG

Value: As described below.

If DFLAG is NIL, USERNAME returns the name of the login directory
owner. For Xerox llx x systems, this name is written into the disk partition direc
tory when the disk is initialized.

(USERNAME)
"GOLDEN TIGER”

If DFLAG is T, USERNAME returns the name of the currently connected
directory.

- (̂USERNAME 'T)
[100#]<KAISLER>LISP

TFLAG determines what type the value is returned as. If TFLAG is NIL, the
value is returned as a string. If it is T, the value is returned as a literal atom.

^(USERNAME NIL T)
KAISLER

TFLAG may also be a string pointer whence the new string value is smashed
into the location referenced by the pointer.

29.3 PERFORMANCE MEASURING FUNCTIONS
INTERLISP provides several functions for measuring the performance of your
program in order to tune it. These functions are implementation-dependent.
Their usage is described here for INTERLISP-10, but they will be discussed for
INTERLISP-D in volume 2.

29.3.1 Counting CONS Operations
CONSCOUNT returns the number of CONSes since INTERLISP started up.
Since all of the basic operations in INTERLISP ultimately become CONS opera
tions, it may be used as a measure of system efficiency. It takes the form

1036 Miscellaneous Functions and Features

Function: CONSCOUNT
Arguments: 1

Argument: l) a new v alue , N

Value: The cu rren t CONS count.

If N is non-NIL, CONSCOUNT sets the CONS counter to N after returning
its current value. Typically, N is 0, so that you may measure the number of oper
ations that a single expression or a function execution requires.

<-(CONSCOUNT 0)
611962

^(CONSCOUNT)
15

29.3.2 Counting Page Faults
PAGEFAULTS determines the number of page faults that have occurred in your
INTERLISP system. Originally, it was intended for use with earlier versions of
INTERLISP where physical memories were a few hundred thousand bytes or so.
However, even with the current size of memories, it is still a useful function for
determining something about the efficiency of your implementation and pro
gram construction. It takes the form

Function: PAGEFAULTS

Arguments: 0

Arguments: N/A

Value: An In teg e r rep resen tin g the number of page
f a u l t s .

PAGEFAULTS returns a number that is the number of page faults that
have occurred since INTERLISP was started up.

^(PAGEFAULTS)
8717

Using PAGEFAULTS requires some knowledge about how your program is
constructed. When you load a file, new atoms are allocated for the names of
objects in the file, and memory is allocated for their values and function defini
tions. This allocation occurs in virtual memory. If you load a large number of
files, virtual memory allocations will exceed physical memory. Excessive page
faults require additional disk reads and writes, thus reducing the efficiency of
your application.

29.3 Performance Measuring Functions 1037

29.3.3 Timing an Expression
You may compute the execution time of an expression using the function TIME,
which takes the form

Function: TIME

Arguments: 3

Arguments: 1) an exp ression to be tim ed, TIMEX
2) a r e p e t i t io n f a c to r , TIMEN
3) th e type o f tim ing , TIMETYPE

Value: The value o f th e l a s t execution o f TIMEX.

TIME is an NLAMBDA function. It evaluates the expression TIMEX and
prints out the number of CONSes and the computation time. Garbage collection
time is subtracted out. Consider the following example (under INTERLISP-10):

-^(SETQ PRESIDENTS '(FORD NIXON REAGAN HOOVER MCKINLEY))
(FORD NIXON REAGAN HOOVER MCKINLEY)

<-(TIME (CAR PRESIDENTS))
0 conses
.001 seconds
FORD

<^(TIME (LAST PRESIDENTS))
0 conses
.006 seconds
(MCKINLEY)

<-(TIME (APPEND PRESIDENTS (LIST ’CARTER)))
6 conses
.005 seconds
(FORD NIXON REAGAN HOOVER MCKINLEY CARTER)

If TIMEN is greater than 1, TIMEX will be executed TIMEN times.
TIMEN equal to NIL is assumed to be mean 1. The resulting number of conses
and computation times are divied by TIMEN to produce an average over multi
ple cases. Consider the following example:

<-(TIME (COPY PRESIDENTS) 20)
100/20 = 5 conses
.016/20 = .0008 seconds
(FORD NIXON REAGAN HOOVER MCKINLEY)

TIMETYPE controls the printing of additional information regarding the
execution of TIMEX. If TIMETYPE has the value 0, TIME will measure and
print the total real time as well as the computation time.

1038 Miscellaneous Functions and Features

<-(TIME (LOAD 'COMPLEX) NIL 0)
<KAISLER>COMPLEX..6
FILE CREATED 21-Nov-84 20:27:17
COMPLEXCOMS
1524 conses
2.041 seconds
6.845 seconds, r e a l time

If TIMETYPE has the value 3, TIME will measure and print the garbage
collection time as well as the computation time.

-^(TIME (LOAD 'COMPLEX) NIL 3)
<KAISLER>COMPLEX.;6
FILE CREATED 21-Nov-84 20:27:17
COMPLEXCOMS
1509 conses
1.922 seconds
.526 seconds, garbage c o lle c tio n time

If TIMETYPE has the value T, TIME will measure and print the number of
page faults.

29.3 Performance Measuring Functions 1039

29.3.4 Breaking Down Performance by Function
You may break down the statistics collected by TIME on a function by function
basis using BREAKDOWN, which takes the form

Function: BREAKDOWN

Arguments: 1-N
Arguments: 1-N) function names, FN[1] . . . FN[n]

Value: A l i s t o f functions th a t have been tim ed.

BREAKDOWN is an NLAMBDA, nospread fucntion. Its arguments are a
list of function names which are modified to accumulate various statistics. When
you have finished monitoring the performance of these functions, you may re
move them from the monitoring process via UNBREAK. Each time you call
BREAKDOWN, new functions may be added to the list of functions that are
being monitored and the counters for all functions currently on the list are set to
zero. BREAKDOWN takes care not to “doublecharge” time to two functions.
This may occur when two functions are to be measured and one calls the other.

Displaying the Results of BREAKDOWN
The results accumulated by BREAKDOWN may be analyzed and displayed by
BRKDWNRESULTS, which takes the form

Function: BRKDWNRESULTS
Arguments: 1

Arguments; 1) a r e tu rn values f la g , RETVALFLAG
Value: Depends on th e value o f RETVALFLAG.

BRKDWNRESULTS will print an analysis of the statistics and number of
calls to each function noted on the monitoring list. If RETVALFLAG is nqn-
NIL, BRKWDNRESULTS does not print the analysis, but returns the values in
a list whose entries are

(<fu n c tio n) < #calls> (v a lu e))

Consider the following example:

♦-(BREAKDOWN GMULT TIMES REAL IMAG PLUS DIFFERENCE
COMPLEX)
(CMULT TIMES REAL IMAG PLUS DIFFERENCE COMPLEX)
<-(SETQ CXI (COMPLEX 1 .0 3 -0))
((1.0 . 3 .0))
<-(SETQ CX2 (COMPLEX 4 .0 10 .0))
((4 .0 . 10 .0))

<-(SETQ CX3 (CMULT CXI CX2))
((-2 6 .0 . 2 2 .0))

<- (BRKDWNRESULTS)

1040 Miscellaneous Functions and Features

FUNCTION TIME # CALLS PER CALL %
CMULT .011 1 .011 2
TIMES .022 4 .006 3
REAL .097 7 .014 14
IMAG .038 7 .005 5
PLUS .006 2 .003 1
DIFFERENCE .004 1 .004 1
COMPLEX .085 3 .028 12
SETQ .430 4 .107 62
TOTAL .693 29 .024
NIL

(BRKDWNRESULTS T)
((CMULT 1 11) (TIMES 4 22) (REAL 7 97) (IMAG 7 38) (PLUS
2 6) (DIFFERENCE 1 4) (COMPLEX 3 85) (SETQ 4 430)) ,

BREAKDOWN may also be used to gather other statistics by setting the
value of the variable BRKDWNTYPE prior to calling BREAKDOWN. The

types of statistics that may be gathered are given by the value of BRKDWN-
TYPES:

^(PRINTDEF BRKDWNTYPES)
((TIME (CPUTIME)

(LAMBDA (X)
(FQUOTIENT X 1000)))

(CONSES (CONSCOUNT))
(PAGEFAULTS (PAGEFAULTS))
(BOXES (IBOXCOUNT))
(FBOXES (FBOXCOUNT))

Each entry should have the form

(<type> (ex p ressio n) <fu n c tio n))

where (ty p e) is a s t a t i s t i c name
3xpression) i s an S -expression th a t computes the

s t a t i s t i c
(fu n c tio n) may convert the s t a t i s t i c value to

some more in te re s t in g q u an tity or
format

By setting BRKDWNTYPE to one or more of the quantities listed above,
BREAKDOWN makes the necessary changes to gather the statistics. The func
tions to be monitored will be redefined to gather the appropriate statistic.

Some of the functions that you are analyzing may be fast enough that the
overhead involved in measuring the functions obscures the actual time spent in
the function. In a manner similar to TIME, you may specify a value in BREAK
DOWN that specifies that a function will be executed more than once.

< -(BREAKDOWN 10 CMULT TIMES REAL IMAG DIFFERENCE PLUS
COMPLEX)
(CMULT TIMES REAL IMAG DIFFERENCE PLUS COMPLEX)

«-(SETQ CX3 (CMULT CXI CX2))
((-2 6 .0 . 22 .0))

(BRKDWNRESULTS)

29.3 Performance Measuring Functions 1041

FUNCTIONS TIME # CALLS PER CALL %
CMULT .189 1 .189 24
TIMES .796 40 .020 103
REAL 1.718 41 .042 223
IMAG 1.7-49 41 .043 227
DIFFERENCE .150 10 .015 19
PLUS 2.103 110 .019 272
COMPLEX 1.013 10 .101 131
TOTAL .772 253 .003
NIL

29.4 SESSION TRANSCRIPTS
Your interaction with INTERLISP, from the time you sign on until you logout, is
known as a session. During the session, you will execute many functions and
programs. Many times you will want to retain a transcript (e.g., a copy) of your
session. The transcript records all you type in to INTERLISP and all that it types
back. (Note: In INTERLISP-D this does not include output from certain user
packages such as GRAPHER.)

To initiate transcription, you execute the function DRIBBLE, which takes
the form

Funct io n : DRIBBLE

Arguments: 2
Arguments: 1) a f i l e name, FILE

2) a f la g , APPENDFLG

Value: P revious t r a n s c r ip t f i l e name.

DRIBBLE opens FILE and records what you type in and what INTERLISP
types out in the file. If FILE is non-NIL, the current transcript, if any, is closed
and a new one opened. DRIBBLE returns the full name of the previous tran
script file.

To terminate transcription, you can set FILE to NIL. DRIBBLE closes the
transcript file and returns its full name. No further information is recorded.

You may make a continuous transcript over several sessions by setting AP
PENDFLG to T. Thus, when you resume a session at a later time when FILE
already exists, new information will be appended to FILE.

There are two caveats concerning transcript files:

1. A transcript file does not appear in the list of files that are returned by
OPENP because it “shadows” your interaction with INTERLISP.

2. A transcript file will not be closed by either CLOSEALL or CLOSEF for
the same reason. Only DRIBBLE can close a transcript file.

Obtaining the Current Dribble File Name
In some programs, you may want to switch among transcript files depending on
the current task you’re working on. To do so, you need to know the current
transcript file name. DRIBBLEFDjE returns the name of the current transcript
file. It takes no arguments.

The following function suggests a way to do this switching:

(DEFINEQ
(s e l e c t - t r a n s c r i p t - f i l e (ta sk)

(COND
((EQUAL (DRIBBLEFILE)

1042 Miscellaneous Functions and Features

))

29.5 Greetings 1043

(task-transcript-file task)))
(T

(SELECTQ task
(<task-idl

(DRIBBLE (task-transcript-file task) T))

(PROGN
(DRIBBLE NIL)))))

where TASK-TRANSCRIPT-FILE is your function to determine the name of
the transcript file associated with the particular task. Note that each time you
open the transcript file associated with the task you append new information to
it.

Using this approach, you must define the names of the transcript files asso
ciated with each task at the beginning of your session. At the end of the session,
you must be sure to close the current transcript file.

29.5 GREETINGS
You may personalize your INTERLISP environment in several different ways.
One way is to set up a greeting for yourself or other users. Greetings are stored in
a file INIT.LISP that resides in your directory.

When INTERLISP is initiated, it looks for two INIT files:

1. The first INIT file is looked for in the LISP directory. It is usually a site-
specific profile that supports mutiple users at a site.

2. The second INIT file is a user-specific file. It contains expressions that
tailor your environment. It should be located in your directory.

INTERLISP loads the respective INIT files, if found, and executes the ex
pressions contained therein (see Section 29.6).

INTERLISP prints a greeting using the value of FIRSTNAME which should
be set in your INIT file via

(INITVARS (FIRSTNAME "Steve”))

or

(E (SETQ FIRSTNAME "Steve"))

Changing the Greeting
You can change the form of the greeting in two ways. First, you may define your
own function, GREET, which is invoked by INTERLISP when you logon. Your

definition, which should be loaded via LOAD or defined by DEFINEQ in your
INIT file, will replace the standard greeting displayed by INTERLISP.

Second, you can specify greetings for specific dates by modifying the vari
able GREETDATES. GREETDATES is a list of elements of the form «dates-
tring> . (string)). New ientries may be added to GREETDATES by including
expressions of the following form in your INIT file:

(ADDVARS (GREETDATES (CONS < str in g l> < strin g 2 >)))

(ADDVARS (GREETDATES (CONS "25-DEC" "Merry C hristm as")))
(ADDVARS (tJREETDATES (CONS "16-OCT" "Happy B irth d ay ")))

29.6 DIRECTORY ACCESS FUNCTIONS
Most of your files will reside in a directory which is a collection of files belonging
to a single user or project. At any time, you are connected to one directory al
though you may access files in many other directories by prepending the direc
tory name to the file name. INTERLISP provides a number of functions for ac
cessing directories from within INTERLISP.

29.6.1 Reading the File Directory
You may read the file directory of the external disk using FILDIR, which takes
the form

F unction : FILDIR

Arguments: 1
Argument: 1) a f i l e group s p e c if ic a t io n , FILGROUP

Value: A l i s t o f f i l e s matching the
s p e c if ic a t io n .

FILDIR reads the current directory on the external disk and returns a list of
files that match the file group specification. The value of FILGROUP depends
on the file name representation used by the operating system.

♦-(FILDIR '*.DCOM)
([DSK]BROWSER.DCOM;1 [DSK]HISTMENU.DCOM;1
[DSK]MAKEGRAPH.DCOM;1 [DSK]UTILPROC.DCOM;1)

which locates all files having the extension “ .DCOM” .

29.6.2 Manipulating File Directories
You may manipulate a file directory using DIRECTORY, which takes the form

1044 Miscellaneous Functions and Features

Function:

Arguments:

Arguments:

V alue:

DIRECTORY
4
1) a f i l e s s p e c if ic a tio n , FILES
2) a s e t of commands, COMMANDS
3) a d e fa u lt t e x t , DEFAULTEXT
4) a d e fa u lt v e rs io n , DEFAULTVER

A l i s t o f a l l f i l e s th a t s a t i s f y the
commands given to DIRECTORY.

29.6 Directory Access Functions 1045

FILES is a files specification that identifies the files to be operated upon. It
may take one of three forms:

1. NIL, whence the form *.*;* is assumed meaning all files.
2. An atom containing <ESC>s or *s which match any number of charac

ters or ?s which match a single character.
3. A list of one the forms

(< f ile s> + <f i l e s)) "and”
(< f ile s> - <f i l e s)) "and not”
(< f i le s) * <f i l e s)) "or”

For example, (T$ + $L) will match any file name in the directory that be
gins with T or ends in L, while (T$ — *.DCOM) will match all files that begin
with T and are not .DCOM files.

For each file that matches, the commands in COMMANDS are executed.
The available commands are

P

PP

(s t r in g)

READDATE
WRITEDATE
CREATIONDATE
SIZE
LENGTH
BYTESIZE
PROTECTION
AUTHOR
TYPE

P rin t the f i l e name
P r in t the f i l e name (except the version
number)
P r in t the s t r in g
P r in t the app ro p ria te inform ation
re tu rn ed by GETFILEINFO (see Section
16.4)

1046 Miscellaneous Functions and Features

COLLECT The value re tu rn ed by DIRECTORY w ill be
a l i s t o f f i l e names; add th e complete
f i l e name to th i s l i s t .

COUNTSIZE The value o f DIRECTORY w ill be a sum;
add th e s iz e o f th i s f i l e to th a t sum.

PAUSE Wait u n t i l th e u se r types a ch a rac te r
b efo re proceeding w ith the r e s t o f the
commands; th i s allow s you to d isp lay
some in fo rm ation and th in k about i t .

PROMPT <message> Prompt th e u se r w ith (m essage). I f he
responds NO, ab o rt command processing
fo r t h i s f i l e .

OLDERTHAN <n>

OLDVERSIONS <n>

BY <user>

DELETED

OUT < file>

COLUMNS <n>

TRIMTO <n>

DELETE

UNDELETE

Continue command p rocessing i f th e f i l e
h a s n 't been re fe ren ced in N days.
Continue command p rocessing i f th e re are
a t l e a s t N more re c e n t v ers io n s o f the
same f i l e . U sually , th i s ensures th a t
you have an adequate a u d it t r a i l fo r the
f i l e w ith in th e d ire c to ry . Used
p r im a r ily w ith DELETE.

Continue command p ro cessin g i f th e f i l e
was w r i t te n by a sp e c if ie d u se r .

Examine f i l e s th a t a re marked d e le te d
w ith in th e d ire c to ry as w ell.

P r in t th e r e s u l t s to th e sp e c if ie d
o u tp u t f i l e .

Attempt to form at th e ou tpu t in N
columns, r a th e r than ju s t 1.

D ele te a l l bu t N v e rs io n s o f th e f i l e ; N
must be g re a te r than o r equal to 0.

D ele te th e f i l e . I f t h i s command is
s p e c if ie d w ithout COLLECT, th e value of
DIRECTORY w il l be NIL; o th erw ise , a l i s t
o f f i l e s d e le te d .

U ndeletes th e in d ic a te d f i l e s th a t have
j u s t been d e le te d .

Consider the following examples:

^(DIRECTORY ' <LISPUSERS>*.COM »PP)
<LISPUSERS>
ALL.COM
ARITHDECLS.COM
ARITHMAC.COM
BQUOTE.COM
CHARCODE.COM
CHAT.COM
• • •

(DIRECTORY ' <LISPUSERS>S$.* ' (PP SIZE))

<LISPUSERS>

29.6 Directory Access Functions 1047

SAMEDIR. 2
SAMEDIR.COM 0
SAMEDIR.TTY 2
SCRATCHLIST. 0
SCRATYCHLIST.COM 0
SCREENOP. 28
SCREENOP.COM 29
SCREENOP.TC 14
SCREENOP.TCD 12
SCREENOP.TTY 2

DIRECTORY uses DIRCOMMANDS to correct spelling and to define syn
onyms and abbreviations for commands. The structure of DIRCOMMANDS is

<-(PRINTDEF DIRCOMMANDS)
((- . PAUSE)

(AU . AUTHOR)
BY COLLECT (COLLECT? PROMPT " ? ” COLLECT)
COUNTSIZE
(DA . WRITEDATE)
(DEL . DELETE)
(DEL? . DELETE?)
DELETE
(DELETE? PROMPT "d e le te? " DELETE)
DELETED
(LE LENGTH ” (" BYTESIZE ”) ”)
(OBS . OLDVERSIONS)
OLDVERSIONS
(OLD OLDERTHAN 90)
OLDERTHAN
(OU . OUT)

OUT P PAUSE (PR . PROTECTION)
PROMPT
(SI . SIZE)
(TI . WRITEDATE)
UNDELETE
(VERBOSE AUTHOR CREATIONDATE SIZE READDATE WRITEDATE))

1048 Miscellaneous Functions and Features

29.6.3 Connecting to Another Directory
You will note in the examples above that I had to specifically provide an alterna
tive directory name that I wanted to inspect. You may connect to a directory
(i.e., make it your current directory) using CNDIR, which takes the form

F unction: CNDIR

Arguments: 2

Arguments: 1) th e d ire c to ry name, DIRNAME
2) th e d ire c to ry password, PASSWORD

Value: The name o f th e o ld d ire c to ry .

Under INTERLISP-10, CNDIR resides in the LISPUSERS package EXEC-
.COM. You must load that package first in order to execute CNDIR. Consider
the following example:

<-(LOAD '< LISPUSERS)EXEC.COM)
<LISPUSERS>EXEC. COM.54
FILE CREATED 13-JUN-82 15:27:46
c o l le c t in g a rra y s
1071, 10287 f re e c e l l s
EXECCOMS
<LISPUSERS>PASSWORDS. COM.15
com piled on 6-FEB-82 20:19:30
FILE CREATED 6-FEB-82 20:19:17
PASSWORDSCOMS
< LISPUSERS > EXEC. COM.54
^(CNDIR 'LISPUSERS)
PS:(LISPUSERS) (password) " I d o n 't know th e password so I

j u s t type a c a rr ia g e re tu rn "
C a n 't connect to d ire c to ry

If a password is associated with a directory and is not provided in the call to
CNDIR, you will prompted for the password.

29.7 Storage Management 1049

-<-(CNDIR)
PS:<KAISLER>

If DIRNAME is NIL, CNDIR just prints the name of your current directory.

29.7 STORAGE MANAGEMENT
INTERLISP eases the burden of storage management by doing dynamic allocation
for various datatypes on demand as you create new objects. In INTERLISP-D,
you usually do not have to worry about how much storage you have, because
garbage collection is performed on an incremental basis. However, when pro
grams get very large and complex, you may find that you have to sacrifice one
type of storage in order to accommodate more objects of another type. This situ
ation occurs because INTERLISP divides available memory into a number of
pools associated with different object types. When a pool is exhausted, it may be
increased from an available space pool.

29.7.1 Displaying Storage Usage
STORAGE provides you with a description of storage usage within the IN
TERLISP environment. It takes the form

Function:

Arguments:

Arguments:

V alue:

STORAGE

0

N/A

NIL

The “actual” value of STORAGE is a formatted listing that is written to the
primary output file.

The following example is taken from the Fugue release running on a Xerox
1100 Scientific Information Processor.

(STORAGE)

Type

FIXP
FLOATP
LIST?
ARRAY?
STRING?
STACK?

Assigned Free
Items

In
Use

T otal
A llocations

Pages
(item s)

20 2560 1752 808 26271
1-4 1792 537 1255 1577

1512 175392 1419 137973 578679
8 512 326 186 10527

68 4352 119 4233 7080
K 512 504 8 1894

1050 Miscellaneous Functions and Features

VMEMPAGEP 106 106 3 103 104
STREAM 6 33 14 19 19
FDEV 6 24 5 19 19
IMAGEOPS
B itB ltT ab le
TERMTABLEP
READTABLEP
CHARTABLE
lOFILEINFOBLK
BUFFER
PROCESS
PROCESSQUEUE
EVENT
MONITORLOCK
SYSQUEUE

<more numbers)

TOTAL

Data Spaces

MDS
Atoms
P r in t Names
A rrays
NIL

1910
A llocated

Pages

1910
82
507
2817

Remaining
Pages

1674
46
1541
4095

29.7.2 Gaining Space
When your program gets too large, INTERLISP will start to complain. The na
ture of its complaint depends on the implementation. INTERLISP-D stores its
virtual memory on the integral disk of the Xerox 1100 Scientific Information
Processor. When the initial allocation (which Xerox recommends to be contigu
ous space) is exhausted, INTERLISP grabs the largest remaining chunk of free
contiguous space that it can find. This is known as a. segment of the virtual mem
ory file. Since segments are disconnected, performance tends to degrade rapidly.
At some point, an internal decision is made that there are too many segments.
INTERLISP warns you that you must reconfigure your system (particularly your
virtual memory file) before it can continue. You are given a certain grace period
in which some curative steps may be taken.

GAINSPACE is a function that interacts with you to remedy the problem of
exhausted space. You probably should treat it as the method of last result be
cause the actions it takes are generally disruptive of the environemt—by that, I
mean that it disables considerable subsystems of INTERLISP in order to give
you the space that you require.

Function: GAINSPACE

Arguments: 0

Arguments: N/A

Value: NIL

When it is invoked, it conducts a dialogue with you to determine what fea
tures you are willing to give up. The side effect of GAINSPACE is to reclaim
storage space through several rather drastic measures. It is usually wise to exe
cute STORAGE after running GAINSPACE to determine what has happened.

^(GAINSPACE)
e rase c u rren t M asterscope database? Yes
d isc a rd HPRINT in i t i a l i z a t io n ? Yes
purge H isto ry l i s t s ? Yes
d isc a rd d e f in i t io n s on p roperty l i s t s ? Yes
d isc a rd o ld values of v a ria b le s? Yes
e ra se p ro p e r tie s? No
e rase CLISP tra n s la t io n s ? Yes
e ra se system hash array? Yes
d isc a rd con tex t of l a s t e d it? Yes
d isc a rd in form ation saved fo r undoing your greeting? Yes
e rase f ile p k g inform ation? No
mapatoms c a lle d to erase the in d ica ted p r o p e r t ie s . . .done

GAINSPACE uses the list GAINSPACEFORMS to drive its dialogue. Each
entry on GAINSPACEFORMS has the format

(<precheck> (message) <form> <keylst>)

PRECHECK is evaluated. If it returns NIL, GAINSPACE skips to the next
entry. Otherwise, ASKUSER (see Section 14.7) is called with MESSAGE and
the optional KEYLST. If the user responds N (the “o” is filled out by IN
TERLISP), i.e., ASKUSER returns N, GAINSPACE moves to the next entry.
Otherwise, it evaluates FORM with RESPONSE bound to the value returned by
ASKUSER.

GAINSPACEFORMS has the following value:

((MSDATABASELST
"e rase cu rren t M asterscope database"
(^ . ERASE))
((OR HPRINTHASHARRAY HPRINTRDTBL)

29.7 Storage Management 1051

GAINSPACE takes the following form

"d isca rd HRPINT in i t i a l i z a t io n "
(PROGN

(CLRHASH HPRINTHASHARRAY)
(SETQ HPRINTHASHARRAY (SETQ
HPRINTRDTBL))))

((CAR LISPXHISTORY)
"purge h is to ry l i s t s "
(PURGEHISTORY RESPONSE)
((Y "es")

(N "o")
(E " v e ry th in g ")))

1052 Miscellaneous Functions and Features

(T

(T

(T

"d isc a rd d e f in i t io n s on p ro p erty l i s t s "
(SETQ SMASHPROPSLSTl

(CONS 'EXPR
(CONS 'CODE

(CONS *SUBR
SMASHPROPSLSTl)))))

" d is c a rd o ld values o f v a r ia b le s "
(SETQ SMASHPROPSLSTl

(CONS 'VALUE SMASHPROPSLSTl)))

"e ra se p ro p e r tie s "
(ERASEPROPS RESPONSE)
((Y "es"

EXPLAINSTRING
"Yes-you w il l be asked which p ro p e r tie s are
to be e rased "

(N "o")
(A "11"

CONFIRMFLG T EXPLAINSTRING
" A l l - a l l p ro p e r t ie s mentioned on
SMASHPROPSMENU")

(E " d i t "
EXPLAINSTRING
"E dit-you w il l be allowed to e d i t a l i s t o f
p ro p e rty nam es")))

(CLISPARRAY
"e ra se CLISP t r a n s la t io n s "
(CLRHASH CLISPARRAY))

(CHANGESARRAY
"e ra se changes a rra y "
(CLRHASH CHANGESARRAY))

(SYSHASHARRAY

"e rase system hash array"
(CLRHASH))

((GETPROP 'EDIT 'LASTVALUE)
"d isca rd con tex t of l a s t e d it"
(REMPROP "EDIT "LASTVALUE))

(GREETHIST
"d isca rd inform ation saved fo r undoing your
g ree tin g "
(SETQ GREETHIST))

(FILELST
"e rase f ile p k g inform ation"
(CLEARFILEPKG RESPONSE)
((Y "es")

(N " o ')
(E "v e ry th in g ')
(F "ilem aps o n ly "))))

SMASHPROPSMENU has the follow ing form:

((" o ld values o f v a r ia b le s"
VALUE)

(" fu n c tio n d e f in it io n s on p roperty l i s t s "
EXPR CODE)

("adv ice inform ation"
ADVISED ADVICE READVICE
(SETQ ADVISEDFNS NIL))

("filem aps"
FILEMAP)

(" c l i s p inform ation (warning: th is w ill d isab le
c l i s p !)"

ACCESSFN BROADSCOPE CLISPCLASS CLISPCLASSDEF
CLISPFORM
CLISPIFYISPR CLISPINFIX CLISPISFORM CLISPISPROP
CLISPNEG CLISPTYPE CLISPWORD CLMAPS I.S.OPR
I.S.TYPE LISPFN SETFN UNARYOP)

("com piler inform ation (warning: th is w ill d isab le
th e com pile r!)"

AMAC BLKLIBRARYDEF CROPS CTYP GLOBALVAR MACRO
MAKE OPD UBOX)

(" d e f in i t io n s o f named h is to ry commands"
HISTORY)

("co n tex t o f e d i ts ex ited v ia save command"
EDIT-SAVE))

29.7 Storage Management 1053

30

The INTERLISP
Execution Environment

INTERLISP is based on the principle of the stack or pushdown list. Each func
tion is allocated a frame on the stack when the function is invoked. The frame
establishes the environment of the function, namely, its local variable bindings
and argument values, if any. INTERLISP provides many low-level functions for
inspecting and manipulating the stack.

Caution:
Only sophisticated users should attempt to manipulate the stack. Erroneous
changes to the stack can destroy your computation’s environment and erase all
the work you have done.

30.1 BINDING OF VARIABLES
Many schemes have been used to bind values to variables. INTERLISP uses one
of two different schemes depending on the implementation you are using:

Shallow Binding
Values for variables are stored in value cells associated with the variable name.
When a function is entered, the variables it uses are rebound. Values stored in
the value cells are stored in a stack frame associated with the function call.
When the function is exited, each variable must be individually unbound, i.e.,
its values in the stack frame are restored to the value cells. INTERLISP-10, IN
TERLISP/370, and INTERLISP-VAX use shallow binding.

Deep Binding
When a variable is bound, space is allocated on the stack for the variable name
and its value cell. The variable’s value is placed in the value cell. When a vari
able is accessed, its value is found by searching the stack from the top for the
most recent occurrence of the variable name. The value is retrieved from the

1055

associated value cell. If the variable is not found on the stack, the variable’s top-
level value cell is accessed for the value. INTERLISP-D uses deep binding.

30.1.1 Variable Types
INTERLISP supports three types of variables:

LOCALVARS
A local variable is one that is used within a function, LAMBDA/NLAMBDA
expression, or a PROG. The variable’s binding exists only for the duration of the
function’s or PROG’s execution.

GLOBALVARS
A global variable is a “free” variable, e.g., one that has not been bound by any
function. Its binding is alw^ays stored in the top-level value cell of the atom. The
variable’s binding exists for the duration of your sysout.

SPECVARS
A special variable is a variable referenced in a function that was bound in an
other function or bound globally. Basically, it means the variable is bound out
side the function but is visible within the function. The difference between
SPECVARS and LOCALVARS mainly has to do with how the variables are ac
cessed.

30.1.2 Global Variables
Global variables may be specified in INTERLISP in two ways;

1. Putting the variable name on the GLOBALVARS list
2. Putting the property GLOBALVAR with value T on the variable’s prop

erty list.

Global variables are always accessed via their top-level value when they are
used freely in a function (using GETTOPVAL—see Section 3.9.2). Values are
assigned to global variables using SETTOPVAL even when SETQ is invoked by
your program.

INTERLISP-D uses a deep-binding scheme while INTERLISP-IO/VAX/
370 all use a shallow-binding scheme. In deep-binding, references to variables
use the nearest binding for the variable in the stack to the function where the
variable is referenced. If the variable is passed as an argument to the function,
then it is bound in the function’s stack frame. Otherwise, it is used freely and
INTERLISP must search the stack for the binding. Searching may be expensive
if the nesting of function calls is extensive. To circumvent the searching you may
use global variables to provide more efficient access to the variable’s value.

1056 The INTERLISP Execution Environment
1

In a shallow-binding scheme, no distinction is made between global vari
ables and other variable types. All variable references access the variable’s value
cell. Access to a variable’s value is always independent of the depth of the stack.

INTERLISP-lO/VAX/370 run on general-purpose computers which usu
ally have instructions conducive to executing conventional languages such as
FORTRAN. In fact, the DECSystem-10 and IBM 370/308x/43xx series ma
chines do not have hardware stack support, so shallow binding provides a
greater measure of efficiency. On the other hand, INTERLISP-D runs on the
custom-built Xerox llxx Scientific Information Processors which provide en
hanced hardware stack support mechanisms.

Global variables are treated like SPECVARS when function are compiled.
That is, their names are always placed on the stack when they are rebound.

INTERLISP treats all system parameters, unless otherwise specified, as
global variables. Rebinding these variables in a deep-binding scheme does not
affect the behavior of the system because that binding will be placed in a func
tion’s stack frame. To affect the system’s behavior, you must use RESETVAR
(see Section 25.7.3) to establish a new value.

30.2 Stack Structure 1057

30.2 STACK STRUCTURE
A stack is a pushdown list. A discussion of stack algorithms may be found in
[knut68]. INTERLISP uses a stack structure known sls a spaghetti stack which is
described in [bobr73a]. A detailed discussion of the INTERLISP-10 stack mech
anisms at the virtual machine level may be found in [moor79].

30.2.1 A Basic Frame Example
Using BTV! in the Break Package, we can display the basic frame of the func
tion MAKESLOT as it appears under INTERLISP-D (Fugue release) when the
function is newly broken. The data are taken from a Xerox 1100 Scientific Infor
mation Processor.

(MAKESLOT broken)
:BTV!
Basic frame at 40174
-40160 0 51655 NODE TEXAS

40162 0 52021 SLOT CAPITOL

40164 0 15071 INHERITANCE.TYPE IS

40166 0 113 METHOD S

40170 0 51513 *local* MAKESLOT

40172 0 0 [padding]

40174 100400 40160

30.2.2 A Frame Extension Example
A frame extension is a variable-length block of storage containing

a frame name
a pointer to variable bindings, BLINK
pointers to other frame extensions, ALINK/CLINK
temporary variables
reference counts

BTV! also prints the contents of the frame extension for MAKESLOT as
shown below:

1058 The INTERLISP Execution Environment

Frame x tn a t 40176 frame name = MAKESLOT
40176 141002 40130 [V, USE=2, a lin k]
40200 103524 20040 [fn header]
40202 40332 412 [n ex t, pc]
40204 40300 13427 [nametable]
40206 177777 0 [b lin k , c lin k]
40210 16 5 * loca l* 5
40212 0 51513 * local* MAKESLOT
40214 16 4 * loca l* 4
40216 16 4 * loca l* 4
40220 4 135406 * loca l* (LAMBDA . . .)

[d e f in i t io n o f MAKESLOT]
40222;: 10 135272 * loca l* (NODE SLOT

INHERITANCE.TYPE METHOD)
40224 16 0 * loca l* 0
40226 16 10 * loca l* 8
40230 16 15 * loca l* 13
40232 0 15714 x io ca l* METHOD
40234 0 0 * lo ca l* NIL
40236 0 0 * lo ca l* NIL
40240 0 0 * lo ca l* NIL
40242 177777

through
0 * lo ca l* [unbound]

40264 177777 0 * lo ca l* [unbound]
40266 177777 0 [padding]
40270 0 51513 [padding]
40272 0 0 [padding]
40274 177776 0
40276 177763 30
40300 0 0 NIL
40302 0 0 NIL
40304 0 51513 MAKESLOT

40306: 10 13400 ([]#0,77400, []#60,174060)
40310: 13621 51604
40312: 51547 15714
40314: 0 0 NIL
40316: 0 0 NIL
40320: 0 1 NOBIND
40322: 2 3 [VMEMPAGE]#2,3
40324: 0 0 NIL
40326: 0 0 NIL
40330: 0 0 NIL
MAKESLOT

Two frame extensions may point to the same basic frame which allows two
processes to communicate via shared variable bindings.

30.2.3 Stack Frames and Pointers
A stack is composed of frames which are allocations of storage to hold the values
of local variables during computation. Coupled with frames are a data structure
known as the frame extension. It is a variable-sized block of storage that con
tains

a frame name
a pointer to some variable bindings, BLINK
an access chain pointer, ALINK
a control chain pointer, CLINK
other implementation dependent information

Both ALINK and CLINK point to other frame extensions.
A frame extension completely specifies the variable bindings and control

information necessary to evaluate a function.
At any instant, only one function is being executed. Thus, one frame will be

distinguished as having control of the central processor. This frame is called the
active frame. Initially, the top-level frame, which is hardwired into the inter
preter, is the active frame. When a computation in an active frame invokes an
other function, a new basic frame and frame extension are built on the stack.
The frame of the new basic frame will be the name of the function that is being
invoked. The ALINK, BLINK, and CLINK fields of the new frame will be as
signed values depending on the calling sequence to the function. The function is
“run” by passing control to the new frame.

The chain of frame extensions that may be reached via the ALINK is called
the access chain of the frame. The first frame in the access chain is the starting
frame. The chain through successive CLINKs is called the control chain.

When an active computation has been completed in a frame, control usually
returns to the frame pointed to by the CLINK. The frame in the CLINK becomes

30.2 Stack Structure 1059

the active frame. Thus, control of the computation is passed through the control
chain. It can be said to reflect the progress of the computation. Tracing func
tions is effectively a process of backtracking through the control chain.

When a frame is exited, the storage associated with the basic frame and the
frame extension may be reclaimed. You may hold on to a frame by creating a
stack pointer to it. A stack pointer contains the address of the frame. This allows
you to run other computations using that frame as an environment.

Stack pointers print in different formats, depending on the version of IN
TERLISP that you are running. They are returned by many of the stack func
tions described in the following sections. As long as a stack pointer has been
allocated to a frame, that frame will not be garbage collected. Two stack
pointers referencing the same frame are not necessarily EQ, but are EQP.

Allocating a stack pointer may consume a large amount of stack space. The
space is not freed, even if it is no longer being used, until the next garbage collec
tion. Thus, if you are using stack pointers rather vigorously, you may want to
invoke garbage collection at opportune times during your computation.

If there is insufficient stack space to allocate a new frame, a STACK OVER
FLOW condition will occur. Usually, there is not much you can do but reset the
environment. Note that stack overflows may occur when you have runaway func
tions, particularly ones that are recursive.

1060 The INTERLISP Execution Environment

30.3 STACK ACCESS FUNCTIONS
You may access the stack using the functions described in this section. Each
stack function takes an argument which describes the stack frame that you want
to access. The frame may be specified by

a frame name (e.g., MAKESLOT)
NIL, indicating the active frame (which is the stack frame of the stack
function itself)
T, the top-level frame
a literal atom, which is equivalent to (STKPOS <atom> -1)
a number, which is equivalent to (STKNTH number)

Two additional errors may occur:

ILLEGAL STACK ARG
When a stack frame descriptor is expected and the argument supplied is not one
of the above. Alternatively, if there is no frame corresponding to the argument.

STACK POINTER HAS BEEN RELEASED
When a released stack pointer is supplied as a stack frame descriptor for any
purpose other than reuse.

The following functions convert names and numbers to pointers and names.
They might be summarized as follows:

30.3 Stack Access Functions 1061

FROM

Function Name

Numbers

S tack P o in te r

TO

Function Name

N/A

STKNTHNAME

STKNAME

Stack Po in te r

STKPOS
STKNTH

N/A

30.3.1 Locating a Stack Frame
STKPOS allows you to locate a stack frame by its name. It takes the form

Function:

Arguments:

Arguments:

V alue:

STKPOS

A

1) a frame name, FRAMENAME
2) an in te g e r , N
3) an i n i t i a l p o s it io n . IPOSITION
A) an old stack p o in te r , OPOSITION

A stack p o in te r to the frame;
o therw ise , NIL.

STKPOS searches the stack for the Nth frame having the same name as
FRAMENAME. If N is NIL, a —1 is assumed. The search begins at IPOSI
TION, which is a stack frame, and proceeds as follows:

along the control chain if N is negative
along the access chain if N is positive

If OPOSITION is non-NIL and is a stack pointer, it is re-used.
STKPOS is a generalized positioning algorithm. Argument N allows you to

select the Nth of many similar frames. This feature is useful when you are
searching the stack environment of a recursive function (a new frame is created
for each recursive call), e.g.,

(STKPOS 'MAKESLOT)
#1,13^46/MAKESL0T

You are not allowed to create a stack pointer to the active stack frame.
Thus,

<-(STKPOS 'STKPOS)
ILLEGAL STACK ARG

Locating a Frame by Position
You may also locate a frame by providing its index from the top of the stack
(which is the most recent function invocation). STKNTH takes the following
form

Function : STKNTH
Arguments: 3

Arguments: 1) an in te g e r , N
2) an i n i t i a l p o s it io n , IPOSITION
3) an o ld p o s i t io n , OPOSITION

Value: A s ta ck p o in te r to a frame o r NIL.

STKNTH returns a stack pointer to the Nth frame from the top of the stack
or, if IPOSITION is non-NIL, from IPOSITION. N is used as follows:

if N is negative, STKNTH follows the control chain
if N is positive, STKNTH follows the access chain
if N is 0, STKNTH returns a stack pointer to IPOSITION

Consider the following example;

< -(STKNTH)
ILLEGAL STACK ARG

because you are trying to create a stack pointer to the active frame which is not
allowed.

^(STKNTH 1)#1,13452/apply
<-(STKNTH 2)
#1, 13476/LISPX

because if we look at the stack, which we can inspect with the BT command from
the Break Package, we see

(MAKESLOT broken)
:BT

1062 The INTERLISP Execution Environment

30.3 Stack Access Functions 1063

MAKESLOT
\EVALFORM
\SAFEEVAL
BREAKl
\EVALFORM
EVAL
LISPX
ERRORSET
EVALQT

If OPOSITION is supplied and it is a stack pointer, it is reused; otherwise, it
is ignored.

30.3.2 Obtaining and Changing the Frame Name
You may obtain the frame name for a stack position by executing STKNAME,
which takes the form

Function: STKNAME

Arguments: 1

Arguments: 1) a s tack d e s c r ip to r , POSITION

Value: The stack frame name.

STKNAME returns the name of the stack frame (i.e., the name of the func
tion for which the frame was built) for the frame described by POSITION, e.g.,

(STKNAME 2)
LISPX

<^(STKNAME 1)
APPLY

(STKNAME (STKPOS 'MAKESLOT))
MAKESLOT

because EVALQT is, effectively, an APPLY of LISPX to its inputs that are read
by low-level LISP functions (See Section 25.2).

Obtaining the Nth Stack Frame Name
From an initial position, you may obtain the name of the NTH frame using
STKNTHNAME, It takes the form

Function: STKNTHNAME

Arguments: 2

Arguments: 1) an in te g e r , N
2) an i n i t i a l p o s it io n , IPOSITION

Value: The name o f th e s tack frame o r NIL.

STKNTHFRAME is equivalent to executing

(STKNAME (STKNTH N IPOSITION))

but avoids the creation of a stack pointer. Like STKNTH, it returns NIL if there
are a lesser number of frames in the stack than N. Like STKNTH, it follows the
control or access chains depending on the sign of N.

Changing a Stack Frame Name
You may change the name of a stack frame by executing SETSTKNAME, which
takes the form

F unction: SETSTKNAME

Arguments: 2

Arguments: 1) a s ta c k p o s i t io n , POSITION
2) a name, NAME

Value: The new frame name.

Unless you are an experienced INTERLISP programmer, you should at
tempt to change the name of the stack frame. This function may be used when
an error occurs.

1064 The INTERLISP Execution Environment

30.4 VARIABLE BINDING FUNCTIONS
Variables appear as entries in a stack frame. You may change the binding of a
variable or determine the binding using the following functions.

30.4.1 Obtaining Variables at a Stack Frame
VARL\BLES returns a list of variables that are bound in the stack frame POSI
TION. It takes the form

F unction : VARIABLES

§ Arguments: 1
Argument: 1) a s ta c k fram e, POSITION

V alue: The l i s t o f v a r ia b le s bound a t th e s ta ck
frame d escrib ed by POSITION.

30.4 Variable Binding Functions 1065

Consider the following example (from INTERLISP-10):

-^(STKNTH 4)
[STACKP]#152002/ERR0RSET

•<-(VARIABLES 4)
(HELPCLOCK LISPXHIST HELPFLG NIL LISPXLISTFLG LISPXLINE
NIL
NIL LISPXVALUE NIL NIL)

30.4.2 Obtaining Variable Values at a Stack Frame
STKARGS returns the values of the variables bound at POSITION. It takes the
form

Function: STKARGS

Arguments: 1

Argument: 1) a s tack frame, POSITION

Value: A l i s t of argument va lues.

Consider the following example (from INTERLISP-10):

''-(STKARGS 'ERRORSET)
((DUMMY) T NIL)

30.4.3 Scanning the Stack for Bindings
When you are executing a complex program, your function nesting may become
very deep. Within this nesting, some variables will be used freely while others
will be bound from one function to another. If a function breaks, you may not
know where a free variable is bound. STKSCAN searches the stack looking for a
binding of a specified variable. It takes the form

Function: STKSCAN

Arguments: 3
Arguments: 1) a variable name, VAR

2) an i n i t i a l s tack frame, IPOSITION
3) an optional stack pointer, OPOSITION

Value: A stack p o in te r to the frame in which VAR
is bound; o therw ise , NIL.

STKSCAN searches the stack from the stack descriptor specified by IPOSI
TION looking for a frame in which VAR is bound. Consider the following exam
ple:

<-(STKSCAN 'X)
[STACKP]#152734/FACT0RIAL
^(STKSCAN 'X 10)
[STACKP]#152731/FACT0RIAL
<-(STKSCAN 'X 8)
[STACKP]#152730/FACT0RIAL

which shows that the variable X is bound in several frames on the stack as one
would expect from a recursive function.

The stack appears as (using BTV)

COND
X 0

FACTORIAL
COND

X I
FACTORIAL
COND

X 2
FACTORIAL
COND

X 3
FACTORIAL
COND

X 4
FACTORIAL
EVAL

LISPXVALUE NIL
LISPXLINE NIL
LISPXLISTFLG T
HELPFLG T
(LISPXHIST ((&) _)
HELPCLOCK 10641

*PROG*LAM
LISPXID <-

LISPX
ERRORSET
EVALQT

We will use this stack formation in examining the effect of several other
stack functions in the following sections.

30.5 STACK FRAME OPERATIONS
INTERLISP provides considerable flexibility for manipulating the contents of
stack frames. The caveat remains: Let the user beware! You may do your envi-

1066 The INTERLISP Execution Environment

ronment grievous damage by manipulating the contents of stack frames from
within your program.

30.5.1 Distinguishing Real from Dummy Frames
INTERLISP-IO places dummy frames on the stack as placeholders for certain
types of functions including *PROG*LAM, *ENV*, and some block compiler
entities. You may test if a frame is a dummy frame using DUMMYFRAMEP,
which takes the form

Funct io n : DUMMYFRAMEP

Arguments: 1

Argument: 1) A stack frame p o in te r , POSITION

Value: T, i f the frame is a dummy frame.

DUMMYFRAMEP determines if there is a link to the frame at POS, e.g., if
your program contains a function call to the function that the frame represents.
The types of frames mentioned above merely serve to establish environmental
information and are never explicitly executed. Dummy frames are used primar
ily during interpretation and disappear when functions are compiled.

Consider the stack described above:

« - (DUMMYFRAMEP **PROG*LAM)
T

because *PROG*LAM is placed on the stack as a marker by INTERLISP-10,
but

(DUMMYFRAMEP ’FACTORIAL)
NIL

(DUMMYFRAMEP 'COND)
T

Testing for a Real Frame
An alternative function, REALFRAMEP, tests whether a stack frame is a real
frame, i.e., not a dummy frame. It takes the form

F unction: REALFRAMEP

Arguments: 2
Arguments: D a s tack p o in te r , POSITION
^ 2) an in te rp re ta t io n f la g , INTERPFLG

Value: POSITION, i f the frame does not d isappear
when the function i s compiled.

30.5 Stack Frame Operations 1067

Consider the following example:

-̂(STKNAME 32)
COND

- (̂REALFRAMEP 6 T)
6
«-(REALFRAMEP 6)
NIL

because, when the function is compiled, the stack frame representing COND
disappears. INTERPFLG specifies whether the determination should be made
in interpreted or compiled mode.

Note: Neither of these functions is available in INTERLISP-D because of
the different mechanisms used for representing and manipulating the stack.

30.5.2 Finding a Real Stack Frame
Given that dummy and real stack frames may be intermixed on the stack, during
debugging you may want to find a real stack frame that is linked somewhere
below your present position. REALSTKNTH allows you to skip back N frames
from the current position. It takes the form

Funct io n : REALSTKNTH

Arguments: 4
Arguments: 1) a frame count, N

2) a s ta c k p o in te r , POSITION
3) an in te rp r e ta t io n f la g , INTERPFLG
4) an o ld s ta c k p o in te r , OLDPOSITION

Value: A s ta c k p o in te r to th e Nth frame.

REALSTKNTH operates like STKNTH, including taking the same type of
arguments, except that it applies REALFRAMEP to each frame that it exam
ines on the stack. Only those frames that satisfy REALFRAMEP with IN
TERPFLG are counted against N. If N is negative, the control chain from POSI
TION is followed. If N is negative, the access chain is followed.

30.5.3 Scanning Frames for Atom Bindings
An atom may be rebound several times when a program is executed. As each
function is invoked and the atom passed as an argument or the atom name is
reused as a local variable within a function, the atom’s name will be rebound on
the stack in the frame corresponding to that function invocation. You may
search the stack for a particular atom binding using FRAMESCAN, which takes
the form

1068 The INTERLISP Execution Environment

Funct io n : FRAMESCAN
Arguments: 2

Arguments: 1) an atom name, ATM
2) a s tack p o in te r , POSITION

Value: The r e la t iv e p o s itio n of the binding of
ATM in the b as ic frame of POSITION.

Consider the following example:

^(FRAMESCAN 'X ’FACTORIAL)
1

(FRAMESCAN 'HELPFLAG '*PROG*LAM)
3

FRAMESCAN returns NIL if the variable is not bound in the frame speci
fied by POSITION.

30.6 EVALUATION IN OTHER FRAMES
The purpose of a stack pointer is to allow you to preserve an evaluation environ
ment for later usage and inspection. Each stack frame contains bindings for
variables that provide a context for evaluation. INTERLISP provides a set of
functions that allows you to evaluate functions in stack frames (i.e., contexts)
other than the current active frame. This feature is extremely useful during de
bugging. It should be utilized only by experienced INTERLISP programmers.

30.6.1 Evaluation in Other Contexts
ENVEVAL allows you to evaluate an expression in another environment. It
takes the form

Function: ENVEVAL

Arguments: 5

Arguments: 1) an expression , EXPRESSION
2) an access chain p o in te r , APOSITION
3) a co n tro l chain p o in te r , CPOSITION
4) an ALINK re le a se f la g , AFLAG
5) a CLINK re le a se f la g , CFLAG

Value: The value of the expression when evaluated
in the new con tex t.

ENVEVAL creates a new active frame on the stack for EXPRESSION using
the frame specified by APOSITION as its ALINK and the frame specified by

30.6 Evaluation in Other Frames 1069

CPOSITION as its CLINK. Note that APOSITION and CPOSITION specify a
sequence of frames that will describe the bindings for variables within EXPRES
SION. AFLAG and CFLAG, if non-NIL, specify that APOSITION and CPOSI
TION, respectively, will be released after EXPRESSION is evaluated.

Applying a Function in an Environment
An alternative form, ENVAPPLY, applies a specified function to the given argu
ments within the new context. It takes the form

1070 The INTERLISP Execution Environment

F u n c tio n :

Arguments:

A rgum ents:

V a lu e :

ENVAPPLY

1) a fu n c tio n name, FN
2) an argum ent l i s t , ARGS
3) an access ch a in p o in te r , APOSITION
A) a c o n tro l ch a in p o in te r , CPOSITION
5) an ALINK re le a s e f l a g , AFLAG
6) a CLINK re le a s e f l a g , CFLAG

The v a lu e re tu rn e d by FN when a p p lie d to
ARGS in th e s p e c i f ie d c o n te x t .

30.6.2 Evaluating Expressions in an Access Environment
You may evaluate expressions in an access environment using the functions
STKEVAL and STKLAPPLY. STKEVAL takes the form

F u n c tio n :

Arguments:

A rgum ents:

V a lu e :

STKEVAL

3
1) a s ta c k d e s c r ip to r , POSITION
2) an e x p re s s io n , EXPRESSION
3) a r e le a s e f l a g , FLAG

The v a lu e o f EXPRESSION when e v a lu a te d in
th e s p e c i f ie d c o n te x t .

STKEVAL may be defined as

(DEFINEQ
(s tk e v a l (p o s i t io n e x p re ss io n f la g)

(ENVEVAL e x p re s s io n p o s i t io n NIL f la g)
))

An alternative form, STKAPPLY, operates in a manner similar to
STKEVAL, but applies a function to some arguments. It takes the form

Function: STKAPPLY
Arguments: A

Arguments: 1) a s tack d e s c r ip to r , POSITION
2) a function name, FN
3) an argument l i s t , ARCS
4) a re le a se f la g , FLAG

Value: The value re tu rn ed by the function when
app lied to the arguments in the sp ec if ied
c o n te x t.

STKAPPLY may be defined as

(DEFINEQ
(stk ap p ly (p o s itio n fn args flag)

(ENVAPPLY fn args p o s itio n NIL flag)
))

In both functions, if FLAG is non-NIL, the stack descriptor will be released
after the evaluation is performed.

30.7 MANIPULATING STACK POINTERS
A stack pointer is the address of a basic stack frame in the stack. Stack pointers
are used by these functions to reference the basic stack unit, the frame. Stack
pointers represent a unique data type because they are allocated from a special
memory pool. INTERLISP provides a number of functions for manipulating
these pointers.

30.7.1 Testing a Stack Pointer
You may test the value of an atom to determine if it is a stack pointer using
STACK?, which takes the form

Function: STACKP

Arguments: 1
Argument: 1) a s tack p o in te r , POSITION

Value: POSITION, i f i t is a s tack p o in te r;
o therw ise , NIL.

Consider the following example;

:(SETQ XSTKP (STKPOS (STKNAME 21)))
[STACKP]#152632/FACT0RIAL

30.7 Manipulating Stack Pointers 1071

:(STACKP XSTKP)
T

1072 The INTERLISP Execution Environment

30.7.2 Releasing a Stack Pointer
You may release a stack pointer using the function RELSTK. When you do so,
the stack frame associated with the pointer is allocated, so you may no longer
reference it. It takes the form

Funct io n : RELSTK
RELSTKP

Arguments: 1

Argument: 1) a s ta c k p o in te r , POSITION

Value: POSITION, bu t the s ta ck frame i s re le a se d .

If POS is not a stack pointer, RELSTK does nothing.
You may test if a stack pointer has been released using RELSTKP. It takes

the same argument as RELSTK and returns POSITION if the stack frame cor
responding to POSITION has been released.

30.7.3 Clearing an Active Stack
CLEARSTK releases all active stack pointers. It takes the form

F unction : CLEARSTK

Arguments: 1

Argument: 1) a mode f la g , FLAG

Value: A l i s t o f a c tiv e s ta ck p o in te rs o r NIL.

If FLAG is NIL, CLEARSTK releases all active stack pointers and returns
NIL.

If FLAG is T, CLEARSTK returns a list of all the active stack pointers, but
does not release them, e.g.,

« - (CLEARSTK T)
([STACKP]#152645/C0ND [STACKP]#152632/FACT0RIAL)

CLEARSTK uses two lists, CLEARSTKLST and NOCLEARSTKLST, to
determine what action to take for each stack pointer. CLEARSTKLST is a
global variable used by EVALQT. Whenever EVALQT is called, it checks
CLEARSTKLST, which may take three values:

1. If its value is T, all active stack pointers are released using CLEARSTK.
2. If its value is NIL, nothing is released.
3. If its value is a list, only the valid stack pointers on that list are released.

is entered when INTERLISP is started up, following errors, or
when the user has performed a CTRL-D or (RESET).

NOCLEARSTKLST is a global variable used by EVALQT to mediate the
behavior caused by CLEARSTKLST. It is initially NIL. However, you may as
sign as its value a list of one or more valid stack pointers which will not be re
leased when CLEARSTK is called because CLEARSTKLST has the value T.
Generally, you will want to save a few stack pointers from being released, so it is
easier to set the value of NOCLEARSTKLST than it is for CLEARSTKLST.

30.7.4 Copying Stack Frames
The stack represents an environment for the execution of a set of functions. You
may save that environment by copying the appropriate stack frames using CO-
PYSTK, which takes the form

Function: COPYSTK

Arguments: 2

Arguments: 1) a s tack p o in te r , OLDPOS
2) a s tack p o in te r , NEWPOS

Value: A stack p o in te r which is the "new” NEWPOS.

COPYSTK copies the specified stack frames from the frame identified by
OLDPOS to the frame identified by NEWPOS. Both basic frames and the frame
extensions are copied by following the access chain from OLDPOS to NEWPOS
inclusive. OLDPOS must be in the access chain from NEWPOS, e.g., it must
appear before NEWPOS on the stack and its function must have been called
prior to the function given by NEWPOS. COPYSTK copies the stack frames at
the end of the stack and returns the stack pointer of the last frame so copied.

This function is available only in INTERLISP-10.

30.8 EXITING FROM A STACK FRAME
When an error occurs, you usually will enter the Break Package. Within a break,
you may use the Break Package commands, which are implemented by using the
stack functions described in this chapter, or the stack functions themselves to
analyze the symptoms and causes of the break. The Break Package allows you to
interactively debug your program to determine what caused the error. But, more
importantly, it allows you correct the error (in many cases) and continue the
computation.

30.8 Exiting from a Stack Frame 1073

In some cases, you will determine the cause and want to exit the break with
some value being returned to the calling function that invoked the function that
was broken. Two cases come immediately to mind:

1. You are not able to repair the error because it requires extensive modifi
cation or new programming. Rather, to continue testing, you want to
generate the value that the function would have returned, and continue
with the computation.

2. The function that was broken was a stub that has not yet been coded.
You merely want to return a value that it might have returned and con
tinue testing at a higher level of your program architecture.

The functions described in this section allow you to return from or to a speci
fied stack frame with a value.

Returning from a Stack Frame
RETFROM returns a value from a specified stack frame. It takes the form

F unction: RETFROM

Arguments: 3

Arguments: 1) a s ta c k frame, POSITION
2) a value to be re tu rn e d , VALUE
3) a frame release flag, FLAG

Value: The value o f VALUE.

RETFROM returns from the stack frame given by POSITION with VALUE
as its value. You may return from the current stack frame with the value that it
might have computed by executing the expression

(RETFROM -1 <v a lu e))

If FLAG is not NIL and POSITION is a stack pointer, then the stack frame
is released as if you had returned normally from the function represented by the
stack frame.

You cannot return from the top level. Any attempt to do so will cause an
error:

< -(RETFROM T)
ILLEGAL STACK ARG
T

Retaming to a Stack Frame
You may return to a stack frame by executing RETTO. Usually, you will want to
perform this operation when intervening frames have compounded the error but

1074 The INTERLISP Execution Environment

it was not detected until several more functions had been invoked. The basic idea
is that there is a point in the stack from which the computation may continue
without error provided the proper value is returned from lower-level functions.
However, if you try to return a value from the broken function, it will not be
utilized correctly because of the compound error problem. RETTO allows you to
return to a stack frame with the proper value such that the computation may
continue unimpeded. It takes the form

Function: RETTO

Arguments: 3

Arguments: 1) a stack frame, POSITION
2) a value to be returned, VALUE
3) a frame release flag, FLAG

Value: The value of VALUE.
o

Returning from a Stack Frame with Evaluation
RETFROM returns the value given as its second argument. In many cases, you
do not know what the value should be, but you do know how it can be computed.
RETEVAL allows you to compute a value to be returned from a stack frame. It
takes the form

Function: RETEVAL

Arguments: 3

Arguments: 1) a stack frame, POSITION
2) an expression, EXPRESSION
3) a frame release flag, FLAG

Value: The value of EXPRESSION.

EXPRESSION is evaluated in the access environment specified by POSI
TION. RETEVAL returns from the stack frame specified by POSITION with
the corresponding value of EXPRESSION. In most cases, POSITION will be
different from the stack frame in which the computation was broken because the
correct value to be returned may be computed at a higher level in the stack.

EXPRESSION may be any general S-expression. If the value to be returned
is the result of evaluating a function with a known set of arguments, then you
may use an alternative function, RETAPPLY. It takes the form

Function: RETAPPLY

Arguments: -4

30.8 Exiting from a Stack Frame 1075

Arguments: 1) a stack frame, POSITION
2) a function, FN

3) a l i s t o f argum ents, ARGS
4) a frame r e le a s e f la g , FLAG

V alue: The r e s u l t o f ap p ly ing FN to ARGS.

RETAPPLY operates in a manner similar to RETEVAL.

30.9 OPERATING ON THE STACK
INTERLISP provides several functions for operating on the entire stack. Usu
ally, you will want to search the stack for a specific frame or display the stack
structure in different formats. These functions are described in the following
sections.

30.9.1 Mapping Down the Stack
You may apply a function to every frame on the stack using MAPDL because the
stack is treated as a single large list. MAPDL takes the form

F u n c tio n : MAPDL

A rgum ents: 2

Arguments: 1) a mapping fu n c tio n , MAPDLFN
2) an i n i t i a l s ta c k d e s c r ip to r , MAPDLPOS

V alue: NIL.

Starting at MAPDLPOS, MAPDLFN is applied to each frame of the stack
until the top of the stack is reached. MAPDLFN is a function of two arguments:
the function name and the frame pointer itself. Consider the following example,

^(MAPDL (FUNCTION
(LAMBDA (X POS)

(PRINT X))))
EVAL
*PROG*LAM
LISPX
ERRORSET
EVALQT
NIL

(FACTORIAL 3)
(FACTORIAL AFTER ZEROP broken)
: (MAPDL (FUNCTION

(LAMBDA (X POS)
(PRINl POS)

1076 The INTERLISP Execution Environment

(SPACES 3)
(PRINT (VARIABLES POS)))))

[STACKP]#152567/EVAL (NIL NIL)
[STACKP]#152567/*PR0G*LAM (HELPCLOCK LISPXHIST HELPFLAG
NIL LISPXLISTFLG LISPXLINE NIL NIL LISPXVALUE NIL NIL)
[STACKP]#152567/LISPX (NIL LISPXID NIL NIL NIL)
• • •

[STACKP]#152567/BREAK1 (BRKEXP BRKWHEN BRKFN BRKCOMS
BRKTYPE NIL)
[STACKP]#152567/C0ND (NIL)
[STACKP]#152567/FACT0RIAL (X)

30.9 Operating on the Stack 1077

30.9.2 Searching Down the Stack
SEARCHPDL allows you to search the stack while applying a function,
SEARCHPDLFN, until a stack frame yields T when SEARCHPDLFN is applied
to it. It takes the form

Function: SEARCHPDLFN

Arguments: 2

Arguments: 1) a search function, SEARCHPDLFN
2) an initial stack position, SEARCHPDLPOS

Value: (<name> . <frame)); otherwise, NIL.

SEARCHPDL operates in a manner similar to MAPDL, Starting at the
stack frame specified by SEARCHPDLPOS, it applies SEARCHPDLFN to
every frame. If the search function returns T, then SEARCHPDL halts and re
turns a value consisting of (<name> . <frame)) where <name> is the name of the
function represented by the frame, and <frame) is the associated address.

SEARCHPDLFN is a function of two arguments: the name of the function
represented by the frame, and the frame itself.

31

The INTERLISP Compiler

INTERLISP, like most LISP systems, is usually thought of as an interpreted
language. However, INTERLISP provides a compiler that produces efficient
code. This chapter discusses many of the features of the compiler but avoids
discussion of the assembler (available only in INTERLISP-lO/VAX/370) or
other machine-dependent features. We will, however, show some samples of
compiled code.

The Compiler may be used to compile functions or files that contain one or
more function definitions. Compiled code may be written into memory for later
execution or to a file for later loading.

Note: We do not discuss the use of Block Compiling in this text because we
do not feel it is required on the newer versions of LISP machines that are appear
ing in the commercial marketplace.

31.1 THE COMPILER DIALOGUE
The Compiler will ask you a set of questions that help it to determine the actions
to be taken when compiling. Your answers to these questions are used to set
several variables which are used by the various Compiler functions and other
system packages that it calls.

The first question that the Compiler asks you concerns the generation of a
listing. It appears as:

LISTING?

You may respond to this question in several ways. There are actually two
sets of answers. The first set includes

1 Print the output of Pass 1 , the INTERLISP
macrocode

1079

2 P r in t th e ou tpu t o f Pass 2, th e machine
language code

YES P r in t th e ou tpu t o f both passes
NO P r in t no l i s t i n g s

The free variable LAPFLG is set to the answer you provide. If you answer 1,
2, or YES, the Compiler will ask you about a file name as follows:

FILE:

You should respond with the name of a file to which you want the output to
be written. The free variable LSTFIL is set to the name of the file.

Next, the Compiler will ask you about redefining your function^via

REDEFINE?

If you answer YES, each function will be redefined as it is compiled. That is,
its current definition becomes the compiled code. If you answer NO, the current
function definition remains unchanged. The free variable STRF is set to your
response.

Next, the Compiler asks you about saving source definitions. If you an
swered YES to the redefinition question, the Compiler will ask you

SAVE EXPRS?

If you answer YES to this question, the definitions of any functions that are
EXPRs will be saved on their property lists under the property EXPR. Other
wise, the source definitions are discarded. The free variable SVFLG is set to your
answer.

Finally, the Compiler will ask you for the name of an output file via

OUTPUT FILE?

If you want to save your compiled functions for later loading, you should
answer YES to this question. If you answer T or TTY:, the output will be typed
at your terminal (not recommended as it may be rather lengthy). If you answer
NO, your compiled definitions will not be saved (except in memory).

If you answered YES, the Compiler will ask you for a file name to which the
output should be written. If the file is already open, newly compiled code will be
appended to the end of the file. The free variable LCFIL is set to the name of the
file.

I mentioned above that there was a second set of answers to the question
concerning listings. These answers, described below, specify a complete mode of
operation for the Compiler.

1080 The INTERLISP Compiler

31.2 Compilation Issues 1081

You may respond to the listing question with these answers as well:

S Same as the l a s t s e t t in g (which is re ta in ed by
th e Compiler)

F Compile to a f i l e ; functions are not redefined
Store new definitions for functions and save
their current definitions under their EXPR
properties

STF Store new definitions, but forget their EXPR
definitions

31.2 COMPILATION ISSUES
When compiling functions, there are a number of issues that you must be aware
of that will cause functions to operate differently when compiled. These issues
are discussed in this section.

31.2.1 Compiling NLAMBDA Functions
The Compiler must prepare the arguments to a function in one of three ways:

1. Evaluated (SUBR, SUBR*, EXPR, EXPR*, CEXPR, CEXPR*)
2. Unevaluated, spread (FSUBR, FEXPR, CFEXPR)
3. Unevaluated, nospread (FSUBR*, FEXPR*, CFEXPR*)

The Compiler derives its information about how to prepare a function call
from several sources. These include (in descending order)

1. The function definition in the file
2. The lists NLAMA, NLAML, or LAMS
3. The function definition in memory which is assumed to be the desired

type

The lists NLAMA, NLAML, and LAMS should contain the names of func
tions which are NLAMBDA nospread, NLAMBDA spread, and LAMBDA
functions, respectively. These lists may be used to override the function type as
stored in its definition if the function cannot be found in the file that is being
compiled.

If the function is not contained within a file or on one of the lists mentioned
above, or is currently defined within your environment, the Compiler calls
COMPILEUSERFN. COMPILEUSERFN has both a value and a function defi
nition.

If the value of COMPILEUSERFN is not NIL, the Compiler applies the
value of COMPILEUSERFN to the expression that it attempted to compile and
the CDR of the expression. That is, the Compiler performs

(APPLY* COMPILEUSERFN (CDR <ex p re ss io n)) (ex p re ss io n))

If a non-NIL value is returned, it is compiled instead of the expression. If
NIL is returned, the Compiler compiles the expression as a LAMBDA spread
function which has not yet been defined.

COMPILEUSERFN is only called when the Compiler encounters an expres
sion whose CAR is not a known or defined function name.

CLISP uses COMPILEUSERFN to instruct the Compiler about how to
compile iterative statements, IF-THEN-ELSE statements, and other constructs.

If the Compiler cannot determine the function type by any of the means
above, it assumes the function to be a LAMBDA spread function, and adds its
name to the list ALAMS (for Assumed LAMbdas). ALAMS is not used by the
Compiler, but is maintained for your benefit so that you may determine whether
the Compiler made any incorrect assumptions or not.

31.2.2 Declarations
A declaration is indicated by a DECLARE: expression. Declarations are in
cluded in functions and in files to specify what actions should be taken when the
function or file is compiled. A declaration takes the form

(DECLARE: . [<filepkgcom s) o r (f l a g s)])

Normally, expressions included in a symbolic file are treated as follows:

1. They are evaluated when loaded.
2. They are copied to a compiled file when the symbolic file is compiled.
3. They are not evaluated at compile time.

A declaration allows you to override these actions. DECLARE: is defined as
an NLAMBDA nospread function. It evaluates each of its arguments in turn,
although this may be modified by the value of the arguments themselves. The
following tags may appear in a declaration:

EVALgCOMPILE Succeeding exp ressio n s are
ev a lu a ted a t com pila tion .

EVAL@LOAD E valuate succeeding expressions
when th e f i l e i s loaded.

DOCOPY When com piling, copy th e
fo llow ing forms in to th e
com piled f i l e .

1082 The INTERLISP Compiler

EVAL@COMPILEWHEN Evaluate the succeeding
expressions if the condition
following is true.

EVAL@LOADWHEN Evaluate the following
expressions based on the value
of the first expression
immediately after the tag. If
the tag is T, all expressions
are evaluated at loading.

FIRST For expressions that are to be
copied to a compiled file, this
tag specifies that the following
expressions are to appear at the
beginning of the file.

DECLARE: expressions are processed in a special manner by the Compiler.
DECLARE: is used in two ways:

1. To specify expressions that are to be evaluated at compile time, presum
ably to affect the compilation (for example, using FMEMB instead of
MEMB).

2. To indicate which expressions appearing in the symbolic file are not to be
copied or compiled into the output file.

31.2.3 Open Functions
When a function is called from a compiled function, the stack frame must be
initialized with the argument lists and control information to ensure proper link
age to and return from the function. If your functions are relatively small (a few
expressions), then the setup time may exceed the actual execution time of the
function. When your system consists of many small functions (as encouraged by
a structured programming effort), the housekeeping time may dominate the ac
tual execution time. Many small system functions are compiled open-, that is,
they do not require a function call, but are translated into in-line code. Other
system functions are compiled open because they are frequently used. The IRM
describes the list of functions which are always compiled open. You may force
either your own or other system functions to compile open through appropriate
use of MACROS.

31.2.4 Constants
Constants are expressions which define “constant,” i.e., immutable values. In
most high-level languages, when constants are compiled, they refer to a single
location in memory. To achieve this goal in INTERLISP, the function CON
STANTS is provided. It takes the form

31.2 Compilation Issues 1083

Function: CONSTANTS

Arguments: 1-N

Arguments: 1-N) a list of variables, VAR[1] ...
VAR[n]

Value: A list of the variables declared as
constants.

CONSTANTS defines VAR[1] ... VAR[n] to be compile-time constants.
Whenever the Compiler encounters a free reference to a constant, it will compile
the expression (CONSTANT (variable)) instead.

The function CONSTANT allows you to define certain expressions as de
scriptions of a constant value. For example, you may define a scratch list of
length 20 as follows:

<-(CONSTANT (TO 20 COLLECT NIL))
(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NIL NIL NIL NIL NIL)

When encountered during interpretation, the expression will be evaluated
each time it is encountered. However, during compilation, it is evaluated exactly
once.

31.2.5 COMPILETYPELST
The Compiler understands how to compile expressions and variables. You may
instruct the Compiler in the handling of certain expressions and variables via
macros, declarations, COMPILEUSERFN, and COMPILETYPELST.

COMPILETYPELST is a list of entries of the form

(<typename> . <function))

It instructs the Compiler about what to do when it encounters a datatype
other than a list or an atom. Thus, it has a close correspondence to the function
DEFEVAL. Whenever the compiler encounters a datum whose type is neither
list nor atom, the Compiler looks up the type name on COMPILETYPELST. If
an entry appears on this list whose CAR is the type name, the Compiler applies
the expression which is the CDR of the entry to the datum. The expression
should return a non-NIL value which will be compiled instead. If it returns NIL
or there is no entry for the given type name on COMPILETYPELST, the Com
piler merely compiles (QUOTE <datum)).

31.2.6 Compiling CLISP
The Compiler does not know about CLISP. However, it is often asked to compile
expressions or functions that contain CLISP constructs. To compile these ex-

1084 The INTERLISP Compiler

pressions, the expressions must be DWIMIFYed You may assist the Compiler in
performing this translation in several ways:

1. If DWIMIFYCOMPILEFLG is T, the Compiler always DWIMIFYs ex
pressions before compiling them. It is initially NIL.

2. If a file has the property FILETYPE with the value CLISP on its property
list, then the Compiler functions assume that DWIMIFYCOMPILEFLG
is T for the file, even if it is NIL.

3. If the function definition has a CLISP: declaration, including a null dec
laration of the form (CLISP:), the function will automatically be
DWIMIFYed before compiling.

COMPILEUSERFN does this automatically for all CLISP statements and
record package statements, so if these are the only statements in the function,
you do not have to do anything further.

31.3 COM PILER FUNCTIONS
The Compiler allows you to compile either functions or files containing func
tions. When you compile functions, you should be aware of certain actions taken
by the Compiler:

1. If the function has been modified by BREAKing, TRACEing, or AD-
VISEing, it is restored to its original state before compilation. The Com
piler notifies you with a message of the form “ (function) UNBRO
KEN” .

2. If the function is not defined as an EXPR, the Compiler searches its
property list for the property EXPR; if found, it uses its value as the defi
nition of the function.

3. The Compiler prints a warning

((fu n c t io n) NOT COMPILEABLE)

and proceeds to the next function in the list.

31.3.1 Compiling Functions
To compile a function, you invoke the function COMPILE, which takes the form

F u n ctio n : COMPILE

Arguments: 2

Arguments: 1) a function list, FNS
2) a d e s t in a t io n f la g , FLG

31.3 Compiler Functions 1085

Value: The value of FNS.

FNS is a function or a list of functions to be compiled. COMPILE asks a set
of standard questions. It then compiles each function in FNS using its current
definition. If FLG is T, and compiled code is to being written to a file, the file is
closed when COMPILE terminates. If FLG is NIL, successive calls to COMPILE
will append additional compiled code to the end of the file. Consider the follow
ing example:

(COMPILE 'FACTORIAL)
listing? Yes
file: F.LST
redefine? No
output file? No
(FACTORIAL (X) NIL)
(FACTORIAL)

<-(PRINTDEF (READFILE ’F.LST))
((FACTORIAL (X)

NIL)
(ENTERF 1 0 0 0)
-1
(LDV X 0)
(SKES 0)
(JR 2)
(LQI 1)
(RET)
2
(PIUNBX (VREF X 0))
(LPUSHN 1)
(PIUNBX (VREF X 0))
(SUBI 1 , 1)
(FCLL MKN)
(ACLL FACTORIAL 1)
(FCLL lUNBOX)
(IMULM 1 , 0 (CP)
(LPOPN 1)
(FCLL MKN)
(RET)
FACTORIAL
(JSP 7 , ENTERF)
(262U-4 0)
(0 PLITORG)
-1
(HRRZ 1 , (VREF X 0))
(CAIE 1 , ASZ 0)
(JRST (TREF 2))

1086 The INTERLISP Compiler

(HRRZI 1 , ASZ 1)
(POPJ CP ,)
2
(PIUNBX (VREF X 0))
(PUSH CP, = 4456449)
(PUSH CP , 1)
(PIUNBX (VREF X 0))
(SUBI 1 , 1)
(PUSHJ CP , MKN)
(ACCALL 1 , ' FACTORIAL)
(PUSHJ CP , lUNBX)
(IMULM 1 , 0 (CP))
(POP CP , 1)
(SUB CP , BHC 1)
(PUSHJ CP , MKN)
(POPJ CP ,)
LITORG 4456449 PLITORG (VARIABLE-VALUE-CELL X . 11)
FACTORIAL)

31.3.2 Compiling a Definition
COMPILEl compiles a definition for a function. It takes the form

Function: COMPILEl

Arguments: 2

Arguments: 1) a function name, FN
2) a definition, DEFINITION

Value: The compiled form of the definition.

Consider the following example;

(COMPILEl 'ADD3 '(LAMBDA (X Y Z) (IPLUS X Y Z)))
(ADD3 (X Y Z) NIL)
(ADD3 (X Y Z) NIL

(ENTERF 3 0 0 0)
-1 (PIUNBX (VREF X 0))

(LPUSHN 1)
• • •

<rest of the definition)

COMPILEl is used by most of the other Compiler functions. It redefines FN
with the compiled code of DEFINITION if STRF has the value T. If DEFINI
TION contains CLISP operators and DWIMIFYCOMPFLG is T, COMPILEl
calls DWIMIFY before compiling DEFINITION.

31.3 Compiler Functions 1087

31.3.3 Compiling Symbolic Files
TCOMPL is used to compile symbolic files. It produces a file containing com
piled code that is equivalent to the S-expressions in the original file. It takes the
form

Function: TCOMPL
Arguments: 1

Argument: 1) a l i s t o f f i l e s , FILES

Value: A l i s t o f th e ou tpu t f i l e s corresponding
to th e compiled f i l e s .

FILES is either an atom, e.g., the name of a file to be compiled, or a list of
files to be compiled. TCOMPL asks the standard Compiler questions (see Sec
tion 31.1) except for the one concerning the output file. The compiled code will
be written to a file of the same name as the source file, but whose suffix is either
COM for INTERLISP-10 or DCOM for INTERLISP-D.

TCOMPL will not compile any functions whose name appears on the list
which is the value of DONTCOMPILEFNS. This variable initially has the value
NIL.

If FILES is a list, TCOMPL processes the list one file at a time. It operates
as follows:

1. The entire file is read into memory.
2. For each FILECREATED expression, it notes the functions that were

marked as changed by the File Package.
3. If the file name atom has the property FILETYPE with value CLISP or a

list containing the value CLISP, TCOMPL sets DWIMIFYCOMPFLG
to T so that any expressions in the file are DWIMIFYed before being
compiled.

4. For each DEFINEQ, TCOMPL will

add NLAMBDA names to the list NLAMA or NLAML
add LAMBDA names to the list LAMS

so that calls to these functions are properly generated.
5. Expressions beginning with the atom DECLARE: are processed as de

scribed in Section 31.2.2.
6. All other expressions are collected for writing to the output file.
7. Each function is compiled, and the compiled code is written to the output

file.
8. All other expressions are written to the output file.
9. The file is closed.

1088 The INTERLISP Compiler

INTERLISP/370 Convention
Because of the limited name space available under VM/SP, INTERLISP/370
uses a different naming convention. All files in INTERLISP/370 consist of five
characters followed by a # followed by two digits indicating the current version.
The file type is always LISP. INTERLISP/370 creates a file name for the com
piled code by appending the first four characters of the file name to the letter X.
Thus, it I compiled a file whose name is MAPFN#00, INTERLISP/370 would
create a file named XMAPF#00 into which it writes the compiled code.

Consider the following example:

<-(TCOMPL 'COMPLEX)
l i s t in g ? Yes
f i l e ? COMPLEX.LST
red efin e? No
(COMPLEX (R I) NIL)
(REAL (CX) NIL)
(IMAG (CX) NIL)
(CPLUS (CXI CX2) NIL
• • •

and so on fo r o th e r functions in the f i l e COMPLEX.
(< KAISLER)COMPLEX. COM.1)

31.3 Compiler Functions 1089

31.3.4 Recompiling a File
When you make changes to a file, you often want to recompile those functions. If
your files contain many functions, recompiling the entire file may be very time-
consuming. RECOMPILE allows you to update a compiled file without having
to recompile every function in the file. RECOMPILE does this by compiling the
changed functions. It then copies the definitions of unchanged functions from
the compiled file to a new file along with the compiled definitions of changed
functions. It takes the form

Function; RECOMPILE

Arguments: 3
Arguments: 1) a p r e t t y f i l e , PFILE

2) a compiled code f i l e , CFILE
3) a l i s t of fu n c tio n s , FNS

Value: The name o f the new compiled f i l e .

PFILE is the name of a source file in PRETTYDEF format. CFILE is the
name of a compiled code file containing definitions that may be copied. FNS
indicates which functions in PFILE are to be recompiled. PFILE, not FNS,
drives the action of RECOMPILE.

RECOMPILE will ask you the standard compiler questions, except for
“output file?” . It uses the file map to locate the definitions of functions which
must be recompiled. For each function in the file, RECOMPILE determines
whether it must be compiled or not. If so, it is compiled and the code written to
the next version of CFILE. If not, the corresponding compiled code is merely
copied from the old version of CFILE to the new one. As it goes, RECOMPILE
builds a file map for the new version of CFILE.

31.4 COM PILED CODE
In general, it is not very interesting to examine the compiled code produced by
INTERLISP because of all the facilities available to you to examine your pro
grams at the source language level. However, some readers may be curious to see
what compiled code looks like. For your edification, I duplicate some examples
of compiled code for a few functions that have been mentioned in previous exam
ples. The machine language is that produced by INTERLISP-D running on a
Xerox 1100 Scientific Information Processor.

In the following examples, I show the INTERLISP source code followed by
the compiled code that was printed in the listing file.

First, a very simple function:

(DEFINEQ
(alldem ons? (node)

(GETPROP node 'demons)
))

ALLDEMONS? (node) LAMBDA
#<node> 'DEMONS [GETP] RETURN

ALLDEMONS?
name ta b le :
(L (0 NODE))
code le n g th : a rg ty p e : 0
(IVAR 0)
ACONST 0
(ATOM . DEMONS)
GETP
RETURN

Next, a slightly more complex function:

(DEFINEQ
(do-off-of-dem on (of f)

(COND
((EQUAL (GAR of f) (CAR in h e r ita n c e))

(MAPGAR (GETPROP node 'o f f s p r in g)

1090 The INTERLISP Compiler

31.5 Compiler Error Messages 1091

(FUNCTION do-demon))))

Note that INHERITANCE and N O D E are both used freely by this function.

DO-OFF-OF-DEMON (node) LAMBDA
<OFF> [CAR] <INHERITANCE) [CAR] [EQUAL] NFJUMP 12
BIND[$w,$z,$v] <OFF> JUMP 7

4: COPY [CAR] [DO-DEMON] SETQ <$w> POP #<$z> NTJUMP 10
#<$w> [CONSl] SETQ <$v> JUMP 11

10: #<$w> [\RPLCONS]
11: SETQ <$z> POP
7: [CDR] [LISTP] NTJUMP 4

#<$v>
12: RETURN

DO-OFF-OF-DEMON
name table:
(I 0 OFF 3 INHERITANCE)
code length: argtype: 0
(IVAR 0) CAR
(FVAR 3) CAR
FN2 0
(FN.EQUAL)
NFJUMPX 36Q
BIND 60Q 2
(IVAR 0) JUMPX 23Q
COPY CAR FNl 0 (FN.DO-DEMON)
(PVAR*^ t 0)
(PVAR 1) NTJUMPX 7
(PVAR 0)
'NIL CONS
(PVAR<- 2)
(JUMP 1)
(PVAR 0)
RPLCONS
(PVAR^ t 1)
CDR LISTP NTJUMPX 355Q (PVAR 2) RETURN

31.5 COMPILER ERROR MESSAGES
The Compiler may emit a large number of error messages in response to unusual
conditions it encounters while trying to compile your source files. These mes
sages are listed below with a statement of the possible cause.

1092 The INTERLISP Compiler

<fn> NOT COMPILEABL
An EXPR definition for FN cannot be found by the Compiler. No code is pro
duced for the function. The Compiler proceeds to the next function, if any.

<fn> NOT FOUND
RECOMPILE has attempted to copy a compiled code definition for FN from
CFILE and has not been able to find one. No code is copied and the Compiler
proceeds to the next function, if any.

(* --) COMMENT USED FOR VALUE
A comment appears in a context where its value will be used as an argument to a
function. The compiled function will run, but the value at the point where the
comment appeared will be “undefined” .

« form))—NON-ATOMIC CAR OF FORM
You intended to use the value of <form> as a function name. The Compiler as
sumes this and compiles the expression as if APPLY* had been used.

(SETQ <vai-> <expr> -) BAD SET
You specified a SETQ of more than two arguments in your source code.

<fn>—USED AS ARG TO NUMBER FN?
The value of a predicate, such as GREATERP or EQ, is used as an argument to
a function that expects numbers.

<fn>—NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT
The Compiler has assumed that FN is the name of a function. This message
appears when FN is not defined, but is a local variable of the function being
compiled. That is, you intended to APPLY the value of FN, but did not do so.

<fn>—ILLEGAL RETURN
A RETURN is encountered in the function definition which does not occur
within the scope of a PROG.

(ta g)—ILLEGAL GO
A GO was encountered which did not appear within the scope of a PROG.

<tag>—MULTIPLY DEFINED TAG
A PROG label has been defined more than once within the scope of the same
PROG. The second definition is ignored.

<tag) —UNDEFINED TAG
A PROG label has not been defined within the scope of a PROG expression.

31.5 Compiler Error Messages 1093

<var>—NOT A BINDABLE VARIABLE
VAR is either NIL, T, or not a literal atom, but one which you tried to bind
somehow in an expression, PROG, or function definition.

<var> <value> - BAD PROG BINDING
This message occurs when there is an erroneous PROG binding of the form
(<var> <valuel> ... <valueN>).

Various other messages appear during block compiling and, for IN-
TERLISP-lO/VAX/370, during the assembly phase of the compilation process.
Consult the IRM for more information on these errors.

References

[abra68]
Abrahams, P.W .,
Symbol Manipulation Languages,
contained in:
Advances in Computers, Vol. 9,
edited by F. Alt and M. Rubinoff,
Academic, New York, 1968

[agre79]
Agre, P.
Functions as D ata Objects: The Implementation of Functions in LISP
Dept, of Computer Science, Univ. of MD, TR-726, 1979

[aho83]
Aho, A., J. Hopcroft, and J.D . Ullman
Data Structures and Algorithms
Addison-Wesley, Reading, MA, 1983

[aiel83]
Aiello, N.
A Comparative Study of Control Strategies for Expert Systems: AGE Implementations of Three
Variations of PUFF
Proceedings, of NCAI-83, Washington, DC, 1983

[alle79a]
Allen, J.
An Overview of LISP
Byte, Vol. 4, #8, 1979

[alle79b]
Allen, J.
Anatomy of LISP
McGraw-Hill, New York, 1979

[back78]
Backus, J.
Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs
Communications of the ACM, Vol. 21, #8, 1978

1095

[bake78a]
Baker, H .G ., Jr.
List Processing in Real-time on a Serial Computer
Communications of the ACM, Vol. 21, #4, 1978

[bakeTSb]
Baker, H .G.
Shallow Binding in Lisp 1.5
Communications of the ACM, Vol. 21, #7, 1978

[balz73]
Balzer, R.M.
A Global View of Automatic Programming
Proceedings of 3rd IJCAI, Stanford, CA, 1973, pp. 494-499

[bars79]
Barstow, D.R.
Knowledge-Based Program Construction
North-Holland, New York, 1979

[bens81]
Benson, E. and M.L. Griss
SYSLISP: A Portable LISP-based Systems Implementation Language
Dept, of Computer Science, Univ. of U tah, UCP-81, Salt Lake City, UH, 1981

[bobr72]
Bobrow, D.G.
Requirements for Advanced Programming Systems for List Processing
Communications of the ACM, Vol. 15, #7, 1972

[bobr73a]
Bobrow, D .G . and B. Wegbreit
A Model and Stack Implem entation of M ultiple Environments
Communications of the ACM, Vol. 16, #10, 1973

[bobr73b]
Bobrow, D. and B. W egbreit
A Model for Control Structures for Artificial Intelligence Programming Languages
3rd IJCAI, Stanford, CA, 1973, pp. 246-253

[bobr74]
Bobrow, D .G . and B. Raphael
New Programming Languages for Artificial Intelligence
ACM Computing Surveys, Vol. 6, #3, 1974

[bobr79]
Bobrow, D. and D. Clark
Compact Encodings of List Structures
ACM Transactions on Programming Languages and Systems, Vol. 1, ff2, 1979, pp. 266-286

[bobr80]
Bobrow, D.
M anaging Reentrant Structures Using Reference Counts
ACM Transactions on Programming Languages and Systems, Vol. 2, #3, 1980, pp. 269-273

[bode77]
Boden, M.
Artificial Intelligence and Natural Man
Basic Books, New York, 1977

1096 References

References 1097

Boyer, R.S. and J.S. Moore
Proving Theorems about LISP Functions
Proceedings of 3rd IJCAI, Stanford, CA, 1973, pp. 486-493

[broo82]
Brooks, R .A., R .P. Gabriel, and G.L. Steele, Jr.
An Optimizing Compiler for Lexically Scoped LISP
ACM SIGPLAN Notices, Vol. 17, #6, 1982

[burtSOa]
Burton, R .R ., L.M. Masinter, et al.
Interlisp-D: Overview and Status
Proceedings of the 1980 Lisp Conference
Stanford and Xerox PARC, SSL-80-4, 1980

[burt80b]
Burton, R.R.
Interlisp-D Display Facilities
Xerox Palo Alto Research Center, SSL-80-4, 1980

[char80]
Charniak, E., C.K. Riesbeck, and D.V. McDermott
Artificial Intelligence Programming
Lawrence Erlbaum Associates, Hillsdale, NJ, 1980

[clar77]
Clark, D .W . and C.C. Green
An Empirical Study of List Structure in Lisp
Communications of the ACM, Vol. 20, #2, 1977

[cohe81]
Cohen J.
Garbage Collection of Linked Data Structures
ACM Computing Surveys, Vol. 13, #3, 1981

[darl73]
Darlington, J. and R.M. Burstall
A System which Automatically Improves Programs
3rd IJCAI, Stanford, CA, 1973, pp. 479-485

[deut76]
Deutsch, L.P. and D.G. Bobrow
An Efficient Incremental, Automatic Garbage Collector
Communications of the ACM, Vol. 19, #9, 1976

[deut79]
Deutsch, L.P.
Experience with a Microprogrammed Interlisp System
IEEE Transactions on Computers, Vol. C-28, fflO, 1979

[dolo78]
Dolotta, T .A ., R.C. Haight, and J.R. Mashey
The Programmer’s Workbench
Bell System Technical Journal, Vol. 57, #6, 1978

[elli80]
Ellis, J.R.
A LISP Shell
SIGPLAN Notices, Vol. 15, #5, 1980, pp. 24-34

[boye73]

[fainSl]
Fain, J., et al.
The ROSIE Language Reference M anual
Rand Corporation, Santa Monica, CA, N-1647-ARPA, 1981

[fain82]
Fain, J., et al.
Programming in ROSIE: An Introduction by Means of Examples
Rand Corporation, Santa Monica, CA, N-1646-ARPA, 1982

[fire80]
Firestone, R.M .
An Experimental LISP System for the Sperry Univac 1100 Series
SIGPLAN Notices, Vol 15, #1, 1980, pp. 117-129

[fode81]
Foderaro, J.K . and K.L. Sklower
The Franz Lisp M anual
University of California at Berkeley, 1981

[forg81]
Forgy, C.L.
OPS5 M anual
Dept, of Com puter Science, Carnegie-Mellon Univ., Pittsburgh, 1981

[fost67]
Foster, J.M .
List Processing
American Elsevier, New York, 1967

[grah79]
Graham , N.
Artificial Intelligence
TAB Books, Blue Ridge Summit, PA, 1979

[gris81]
Griss, M.L. and A.C. Hearn
A Portable LISP Compiler
Software—Practice and Experience, Vol. 11, pp. 541-605, 1981

[gris82a]
Griss, M.L.
Portable S tandard LISP; A Brief Overview
Dept, of Com puter Science, Univ. of U tah, USCG-58, 1982

[gris82b]
Griss, M .L ., E. Benson, and A.C. Hearn
C urrent Status of a Portable LISP Compiler
ACM SIGPLAN Notices, Vol. 17, #6 , 1982

[hase84]
Hasemer, T.
An Introduction to LISP
contained in
O ’Shea, T. and M. Eisenstadt
Artificial Intelligence: Tools, Techniques, and Applications
H arper & Row, New York, 1984

[hayeSO]
Hayes-Roth, F.

1098 References

References 1099

M atching and Abstraction in Knowledge Systems
Rand Corporation, p-6440, Santa Monica, CA, 1980

[haye82]
Hayes-Roth, F ., et al.
Rationale and Motivation for ROSIE
Rand Corporation, Santa Monica, CA, N-1648-ARPA, 1982

[horo82]
Horowitz, E. and S. Sahni
Fundam entals of D ata Structures
Computer Science Press, Rockville, MD, 1982

[jone82]
Jones, M.A.
A Comparison of LISP Specification of Function Definition and Argument Handling
ACM SIGPLAN Notices, Vol. 17, #8 , 1982

[kaisSO]
Kaisler, S.H.
The Design of Operating Systems for Small Computers
John Wiley, New York, 1982

[kapl80]
Kaplan, R .M ., B.A. Sheil, and R.R. Burton
The Interlisp-D I/O System
Xerox Palo Alto Research Center, SSL-80-4, 1980

[kern76]
Kernighan, B.W. and P.J. Plauger
Software Tools
Addison-Wesley, Reading, MA, 1976

[korn79]
Kornfeld, W.A.
Pattern-directed Invocation Languages
Byte, Vol. 4, #8 , 1979

[knut68]
Knuth, D .E.
The Art of Computer Programming: Fundamental Algorithms
Addison-Wesley, Reading, MA, 1968

[laub79]
Laubsch, J., G. Fisher, and H.D. Bocker
LISP-based Systems for Education
BYTE, Vol. 4, #8 , 1979

[Iaub84]
Laubsch, J.
Advanced LISP Programming
contained in:
O ’Shea, T. and M. Eisenstadt
Artificial Intelligence: Tools, Techniques, and Applications
H arper & Row, New York, 1984

[levi80]
Levine, J.
Why a Lisp-Based Command Language?
SIGPLAN Notices, Vol. 15, #5, 1980, pp. 49-53

1100 References

[liebSO]
Lieberman, H. and C. Hewitt
A Real Time Garbage Collector That Can Recover Temporary Storage Quickly
AI Memo # 569, M IT AI Laboratory, Cambridge, MA, 1980

[lieb83]
Lieberman, H. and C. Hewitt
A Real-Time Garbage Collector Based on the Lifetimes of Objects
Communications of the ACM, Vol. 26, #6 , 1983

[mart79]
M arti, J.B ., et al.
S tandard LISP Report
SIGPLAN Notices, Vol. 14, #10, pp. 48-68, 1979

[masi80]
M asinter, L.M . and L.P. Deutsch
Local Optimization in a Compiler for Stack-based Lisp Machines
Proceedings of the 1980 Lisp Conference
Stanford University and Xerox Palo Alto Research Center, SSL-80-4, 1980

[math??]
M athLab Group
MACSYMA Reference M anual, Version 9
M IT Laboratory for Computer Science, Cambridge, MA, 19??

[mcca?2]
McCarthy, J., et al.
Lisp 1.5 Program m er’s M anual, 2nd ed.
M IT Press, Cambridge, MA, 19?2

[mcca?8]
McCarthy, J.
History of Lisp
SIGPLAN Notices, Vol 13, #8 , 19?8

[moor?9]
Moore, J .S ., II
The Interlisp Virtual M achine Specification
Xerox Palo Alto Research Center, CSL ?65, Revised 3/?9

[nico81]
Nicol, R.L.
Symbolic Differentiation a’ la LISP
Byte, Vol. 6 , #9, 1981

[nova82]
Novak, G .S., Jr.
GLISP U ser’s M anual
Stanford Univ., STAN-CS-82-895, Menlo Park, CA, 1982

[osteSl]
Osterweil, L.
Software Environment Research: Directions for the Next Five Years
IEEE Com puter, Vol. 14, #4, 1981, pp. 35-44

[prin79]
Prini, G. and M. Rudalics
The Lam bdino Storage M anagem ent System
Byte, Vol. 4, #8 , 1979

References 1101

[rich83]
Rich, E.
Artificial Intelligence
McGraw-Hill, New York, 1983

[sace76]
Sacerdoti, E.D.
QLISP—A Language for the Interactive Development of Complex Systems
AFIPS National Computer Conference, Vol. 40, 1976

[saltSO]
Salter, R ., T.J. Brennan, and D .P. Friedman
CONCUR; A Language for Continuous Concurrent Processes
Computer Languages, Vol. 5, Pergamon, London, 1980, pp. 163-189

[same82]
Samet, H.
Code Optimization Considerations in List Processing Systems
IEEE Transactions on Software Engineering, Vol. SE-8 , #2, 1982

[sand78]
Sandewall, E.
Programming in the Interactive Environment: The LISP Experience
ACM Computing Surveys, Vol. 10, #1, 1978

[shanSO]
Shankar, K.S.
D ata Structures, Types, and Abstractions
IEEE Computer, Vol. 13, #4, 1980, pp. 67-77

[shap79]
Shapiro, S.C.
Techniques of Artificial Intelligence
D. Van Nostrand Co., New York, 1979

[shne80]
Shneiderman, B.
Software Psychology
W inthrop Publishers, Cambridge, MA, 1980

[sikl76]
Siklossy, L.
Let’s Talk Lisp
Prentice-Hall, Englewood Cliffs, NJ, 1976

[smit73]
Smith, D.C. and H.J. Enea
Backtracking in MLISP2: An Efficient Backtracking Method for LISP
3rd IJCAI, Stanford, CA, 1973, pp. 677-685

[sowa83]
Sowa, J.F.
Conceptual Structures: Information Processing in Mind and Machme
Addison-Wesley Systems Programming Series, Reading, MA, 1983

[stee76a]
Steele, G .L ., Jr.
LAMBDA: The Ultimate Declarative
M IT AI Laboratory, AI Memo 379, Cambridge, MA, 1976

[stee76b]
Steele, G .L ., Jr.
LAMBDA; The Ultimate Imperative
M IT AI Laboratory, AI Memo 353, Cambridge, MA, 1976

[stee83]
Steele, Guy L., Jr.
Common Lisp Reference M anual
Computer Science D ept., Carnegie-Mellon Univ., Pittsburgh, 1983

[stee79]
Steels, L.
Procedural A ttachment
AI Memo #543, M IT AI Laboratory, Cambridge, MA, 1979

[stef82]
Stefik, M ., et al.
The Organization of Expert Systems: A Prescriptive Tutorial
Xerox Palo Alto Research Center, VLSI-82-1, 1982

[stou79]
Stoutmeyer, D .R.
LISP Based Symbolic M ath Systems
Byte, Vol. 4, #8 , 1979

[suss81]
Sussman, G .J., et al.
Scheme-79—Lisp on a Chip
IEEE Computer, Vol. 14, #7, 1981, pp. 10-21

[symb83]
Symbolics, Inc.
3600 Technical Summary, Symbolics, Cambridge, MA, 1983

[taft79]
Taft, S.T.
The Design of an M6800 LISP Interpreter
Byte, Vol. 4, #8 , 1979

[teit73]
Teitelm an, W.
CLISP—Conversational LISP
3rd IJCAI, Stanford, CA, 1973, pp. 686-690

[teit78]
Teitelm an, W.
Interlisp Reference M anual
Xerox Palo Alto Research Center, Palo Alto, CA, 1978

[teitSl]
Teitelm an, W. and L. M asinter
The Interlisp Programm ing Environment
IEEE Com puter, Vol. 14, #4, pp. 25-34, 1981

[tesl73]
Tesler, L ., H.J. Enea, and D.C. Smith
The LISP70 Pattern M atching System
3rd IJCAI, Stanford, CA, pp. 671-676

1102 References

[tour84]
Touretzky, D.S.
LISP: A Gentle Introduction to Symbolic Computation
Harper & Row, New York, 1984

[tracSO]
Tracton, K.
Programmer’s Guide to LISP
TAB Books, Blue Ridge Summit, PA, 1980

[wate78]
W aterm an, D.A. and F. Hayes-Roth, eds.
Pattern-Directed Inference Systems
Academic, New York, 1983

[wate83]
W aters, R.C.
User Form at Control in a LISP Prettyprinter
ACM Transactions on Programming Languages and Systems, Vol. 5, #4, 1983, pp. 513-531

[wein811
Weinreb, D. and D. Moon
LISP Machine Manual
Symbolics, Inc., Cambridge, MA, 1981

[wied77]
Wiederhold, G.
Database Design
McGraw-Hill, New York, 1977

[wile84]
Wilensky, R.
LISPcraft
W .W . Norton & Co., San Francisco, CA, 1984

[wins81]
W inston, P. and K .P. Horn Berthold
Lisp
Addison-Wesley, Reading, MA, 1981

References 1103

Index

This index contains references to all Interlisp functions and variables discussed
in the text as well as other topics of interest to the reader. Functions are indi
cated by a list of their arguments enclosed in parentheses after their name. The
numbers in square brackets after a function or variable name indicate the chap
ter, section, or subsection in which that function or variable is described or de
fined. For example, COPY [6.4.1] is discussed in section 6.4.1.

A, Editor command [19.6.1] .. 685
ABS(x) [13.5.1].. 376
Access chain pointer, [3 0 .2 .3].. 1059
ACCESS, File attribute [16 .4].. 511
ACCESSFNS, Record Package declaration [27.9].. 988
ADD, CHANGETRAN word [23.10.1]... 872
ADDASSOC (key value alst) [6 .1 0 .4]... 189
ADDPROP (atm property new flag) [7.4.1].. 203
ADDSPELL (word spist index) [22.8 .1]... 814
ADDSPELLl (word splst index) [22.8 .1]... 817
ADDSPELLFLG, variable [22.7]... 810
ADDSTATS (statistic[l] ... statistic[n]) [25.9.2].. 940
ADDTOCOMS (corns file type) [17.7.1]... 610
ADDTOFILE (name file type) [17.7.1]... 609
ADDTOFILES? 0 [17.3.11].. 584
ADDVARS, File Package command [17.2.3] .. 548
ADD l (x l) [1 3 .1 .1]... ^53
ADD.OR.SUBTRACT.M ATRICES (matrixl matrix2 flag) [11.4.4].. 320
ADVICE, File Package command [17.2.10].. 556
Advising

Modifying a function’s interface [21.1].. ' ov
Readvising a function [21.3]...
Removing advice [21.2]..
Saving advice on a file [2 1 .4]...

ADVISE (fns when where) [21.1]...
ADVISED, File Package command [17.2.10]..
ADVISEDFNS, System variable [21.1]...

1105

ADVISEDUM P (fns flag) [2 1 .4].. 776
AFTER, History Package command [28.4.8].. 1017
AFTERSYSOUTFORM S, File Package variable [16.9.4].. 531
ALAMS, compiler variable [3 1 .2 .1] ... 1081
ALISTS, File Package command [1 7 .2 .4]... 550
ALLOCSTRING (n initchar oldptr) [10 .1 .1].. 277
ALONE, read macro option [14.4.5]... 423
ALPHORDER (x y) [6 .7 .3] ... 171
ALWAYS

CLISP iterative statem ent operator [23.4.2].. 850
read macro option [14.4.5].. 422

ANALYZE, Masterscope command [26.2.1] ... 944
AND (expression 1 ... expressionN) [5.1]..................................... ... 109
ANTILOG (x) [1 3 .6 .5] .. 381
APPEND (expressionl ... expressionN) [3.2.3, 6 .1] ... 45
APPLY (fn arglst) [8.9, 12.5]... 239
APPLY* (fn arg l ... argN) [8.9.1].. 241
ARCCOS (x radiansflag) [1 3 .6 .2].. 378
ARCHIVE, History Package command [28 .4 .9]... 1017
ARCHIVED, File attribute (TOPS-20) [16 .4]... 512
ARCHIVEFN, History Package variable [28 .5 .3].. 1023
ARCHIVELST, system variable [28 .1].. 1000
ARCSIN (x radiansflag) [13 .6 .2]... 378
ARCTAN (x radiansflag) [13 .6 .2]... 378
ARCTAN2 (x y radiansflag) [13.6.2].. 379
ARG (varx n) [8 .7 .4]......... ... 235
ARG NOT ARRAY, error message [18 .5].. 644
ARG NOT HARRAY, error message [1 8 .5] ... 647
ARG NOT LIST, error message [18.5].. 640
ARG NOT LITATOM , error message [18.5]... 642
ARGLIST (fn) [8 .7 .3]... 234
ARGS, Break Package command [20 .2 .6]... 739
A RG TY PE(fn) [8 .7 .1]... 229
ARRAY (n p v) [11.1]............................... ... 297

File Package command [17.2.14]..^ ... 560
ARRAY SPACE EXCEEDED, error message [1 8 .5].. 643
ARRAYBEG (xarray) [11.2.4].. 302
ARRAYBLOCK, Record Package declaration [27.7].. 987
ARRAYORIG (xarray) [11.2.4].. 302
ARRAYP (expression) [4 .4 ,1 1 .2 .3].. 89,301
Arrays

Com paring two arrays [11.2.8].. 306
Copying arrays [11.2 .7].. 305
Creating [11 .1]... 297
Creating: INTERLISP-D [1 1 .1 .1]........... .. 299
Definition of [2 .4] ... 29
Dimensionality [2 .4 .1]... 29
O btaining the array size [11 .2 .1]... 300
O btaining the array type [11.2.2]... 300
O btaining a pointer to the array beginning [1 1 .2 .4].. 301
Setting an element value [11.2.5]... 302
Sorting using arrays [1 1 .5]... 325
Retrieving an element value [11.2 .6].. 304
Using EQUALALL to determ ine equality [4 .6 .2] ... 97
Validating an array pointer [1 1 .2 .3].. 301

1106 Index

ARRAYRECORD, Record Package declaration [27 .7]... 987
ARRAYSIZE (arrayptr) [11.2 .1]..^ 300
ARRAYS FULL, error message [18 .5]... 643
ARRAYTYP (xarray) [11.2 .2].. 300
AS, CLISP iterative statement operator [23.4.6].. 854
ASKUSER (wait default message keylst typeahead

iispxprintflag optionslst file) [14.7.1] .. 436
Askuser package

Default key list [14.7.4].. 439
Key completion [1 4 .7 .2].. 438
Key list construction [14.7 .6].. 443
Key list format [14.7.3].. 438
Key list options [1 4 .7 .5].. 439
Prom pting and reading [14.7.1]... 436
Special keys [1 4 .7 .7]... 444

ASSOC (key alst) [6.10.1]... 184
ASSOCRECORD, Record Package declaration [27.6]... 986
Association lists [6.10]... 184

Adding a value to an entry [6.10.4]... 189
Removing an entry [6.10.3] .. 187
Replacing a value in an entry [6.10.2]... 186
Searching association lists [6 .10 .1]... 184

ATOM (expression) [4 .1] ... 81
ATOM HASH TABLE FULL, error message [18.5].. 642
ATOM TOO LONG, error message [18.5]... 641
ATOMRECORD, Record Package declaration [27.10].. 989
Atoms

Binding while reading from a file [3 .9 .1].. 77
Binding variable values [2.1.6]... 23
Creation of [2 .1 .5]... 22
Creating atoms from strings [9.2.2]... 259
Generating a new symbol (atom) [9.2.1].. 256
Getting the top level value [3 .9 .2]... 78
Making atoms from substrings [9 .2 .3]... 260
Packing lists of characters into atom names [9 .3 .1].. 262
Rules for atom names [9.1].. 254
Setting the top level value [3.9.2]... ^8
Testing for [4 .1]..
Testing variable bindings [4.7]... ^03
Unpacking atoms to lists of characters [9.3.2].. 263
Variable typing and declaration [2 .1 .7] .. 24

ATTACH (x 1st) [6.2.4]... ̂f
ATTEM PT TO BIND NIL OR T, error message [18.5]...
ATTEM PT TO RPLAC NIL, error message [18.5].. 641
ATTEMPT TO SET NIL OR T, error message [18.5]......................... .. • ■ • M l
ATTEMPT TO USE ITEM OF INCORRECT TYPE, error message [18.5] 645
AVOIDING, Masterscope path specification [26.5]...

B, Editor command [19.6.2]............................ ..
BAKTRACE (ipos epos skipfn flags) [20.5.4] ..
BAKTRACELST, Break Package variable [20 .5 .4]...
BAD FILE NAME, error message [18.5]...
BAD SYSOUT FILE, error message [18.5] ...
BEFORE, History Package command [28.4.8] • • • • • • • • • • ... 3 3 ^
BEFORESYSOUTFORM S, File Package Variable [16.9.3]...

Index 1107

BELOW, Editor command [1 9 .6 .3] ... 686
BF, Editor command [1 9 .6 .4].. 687
BI, Editor com m and [19.6.5].. 688
BIND

CLISP iterative statem ent operator [23.4.3]................................ .. 852
Editor com m and [1 9 .6 .6]... 688
Masterscope relation [2 6 .4] .. 957

Binding
Deep [30.1]... 1055
Shallow [30.1].. 1055

BK, Editor command [19.6 .7].. 690
BKP, Editor macro [19.6.7]... 691
BKLINBUF (string) [1 4 .6 .4] ... 435
BKSYSBUF (string) [14 .6 .4]... 435
BLOCKS, File Package command [17 .2 .17].. 561
BO, Editor command [19 .6 .8].. .. 691
BOUNDP (var) [4 .7].. 103
BQUOTE, a splice macro [1 4 .4 .8] 426
BREAK (expression) [20.3.1]... 749
Break commands

Aborting a break [20.2 .4]... 737
Displaying arguments and bindings [2 0 .2 .6].. 738
Displaying the entire stack [20.2.8]... 744
Evaluation in a break [2 0 .2 .2]... 736
Forcing via CTRL-B [1 4 .1 .1].. 398
Obtaining a backtrace [2 0 .2 .7] 741
Releasing breaks [2 0 .2 .1]... 735
Return a value from a break [2 0 .2 .3]... 737
Setting the stack fram e [20.2.9]... 745
Setting values on the stack [20.2.10]... 746
Unbreaking a function [2 0 .2 .5].. 738

Break macros [20.2.11]... 746
Break Package

Activating a breakpoint [2 0 .3 .3].. 754
Breaking into a function [20.3.4].. 756
Defining a breakpoint [20.3.2].. .. 750
Setting function breakpoints [20 .3 .1]... 749
Tracing a function [2 0 .1] ... 731
Unbreaking a function [20.4]... 761
W hen to break [20.3 .5].. 760

BREAKCHAR, syntax class [1 4 .4 .1] 416
BREAKCHECK (errorpos erxn) [20.3.5] 760
BREAKDOW N (fn[l] ... fn[n]) [29.3.4].. 1039
BREAKIN (fn where when corns) [20 .3 .4]------ ’... 756
BREAKREAD (type) [2 0 .5 .1].. 763
BREAKRESETFORM S, Break Paclage variable [20.2.12]... 748
BREAKO (fn when coms) [20.3 .2]... 750
BREAKl (brkexp brkwhen brkfn brkcoms brktype ...) [20.3.3].. 752
BRKCOMS, Break Package variable [20 .5 .1]... 764
BRKDW NRESULTS (retvalflag) [2 9 .3 .4].. 1039
BRKDW NTYPE, system variable [29.3.4].. 1039
BRKINFOLST, Break Package variable [2 0 .4 .1]... 761
BROADSCOPE, CLISP property [23.7].. 866
BROKENFNS, Break Package variable [20.4.1]... • 761

1108 Index

BTV, Break Package command [2 0 .2 .7]..742
BTV + , Break Package command [20.2.7] ... 743
BTV*. Break Package command [2 0 .2 .7]... ” 744
BTV!, Break Package command [20.2.7]......... 744
BUBBLE.SORT (xarray) [11.5 .1]... ̂ ̂ 325
BUILD-ARGUMENT-LIST (fn argument-list) [8.7.1].. 230
BUILDMAPFLG, File Package variable [17.1.5].. 540
BY, CLISP iterative statement operator [23.4.3].. 854
BYTESIZE, File attribute [16.4].. 5 1 1

CALL, Masterscope relation [26.4].. 955
CALL SOMEHOW , Masterscope relation [26.4] .. 955
CALLS (fn usedatabase) [26.7.2].. 966
CALLSCCODE (fn) [26.7.2] .. 966
CAP, Editor command [19.6.9].. 691
CAR (s-expression) [3.1]................................ ... 35
CAR/CDR combinations [3 .1 .1]... 37
Case of characters

Conversion to lower case [9 .8] ... 274
Testing for upper case [9 .8] .. 274

CASEARRAY (oldarray) [16 .8 .3].. 525
Case arrays [16.8.3].. 524

Setting of [1 6 .8 .3]... 525
Setting break/separator characters [16.8.3].. 526

CCODEP (fn) [8 .6] ... 228
CDIFFERENCE (cxl cx2) [13.7.2]... 388
CDR (s-expression) [3.1].. 35
CEXPR, function type [8 .1 .3] .. 216
CEXPR*, function type [8 .1 .3] .. 216
CFEXPR, function type [8 .1 .3].. 216
CFEXPR*, function type [8 .1 .3].. 216
CHANGE. CHANGETRAN word [23.10.1].. 874
CHANGECALLERS (old new types files method) [17.5 .10]... 601
CHANGECHAR, prettyprinting control variable [15.7.5]... 490
CHANGENAME (fn from to) [19.3.3, 20.5.2].. 674
CHANGEPROP (atm propertyl property2) [7.4.4].. 208
CHANGESLICE (n history) [28.6.6]... 1028
Changetran Package

CHANGETRAN Words [23.10.1]... 872
Defining New CLISP words [23.10.2]... 874

CHARACTER (cc) [9 .4 .2] ..
Characters ,

Converting a code to PNAME equivalent [9.4.2]... ^00
Converting to a number [9 .4 .1]............. ..
Extracting characters from atoms or strings [9 .6]...
Obtaining the code of [9 .4 .3]..
Translation of [9.4.4] ..

Character codes 271
O btain ing the Nth character code [9 .6] ..
Packing character codes to atom names [9.3.1]..
Selecting alternatives [9 .7] .. ^57

CHARCODE (expression) [9 .4 .3]................. m V i 471
CHARDELETE, terminal table syntax class 115.3.1J...

Index 1109

BT, Break Package command [20.2.7]... 7 4 I

CHCON (atm flag rdtbl) [9.4.1].. 265
CHCONl (atm) [9 .4 .1].. 266
CHECK, Masterscope command [26.2.5].. 948
CHECK.M ATRIX (name row column) [1 1 .4 .2]... 317
CHOOZ (xword splst rel tail fn tieflag doubles) [22 .6 .1].. 795
CL, Editor com m and [1 9 .6 .1 0].. 692
Clause errors [2 2 .2 .3] ... 782
CLDISABLE (operator) [2 3 .8 .2].. 870
CLEANUP (file[l] ... file[N]) [17.3.7]... 577
CLEARBUF (file flag) [1 4 .6 .2].. 434
CLEARSTK (flag) [30.7.3]........... 1072
CLISP

Conditional statem ents [23.3]... 844
Declarations [23.2 .5]... 840
Defining new iterative statem ent operators [2 3 .4 .8]... 859
Defining new words [23.5.2].. 861
How CLISP operates [2 3 .1] .. 834
Infix operators [23 .2 .2].. 837
Iterative statem ents [2 3 .4] .. 846
1.5.Binding operators [23 .4 .3]..*... 851
1.5.M odification operators [23.4.6]... 857
I.S.Selection operators [2 3 .4 .4].................... ... 852
1.5.Termination operators [23 .4 .5]... ; 855
1.5.Type operators [23.4.2]... 847
List operators [23.2.1]... 835
Prefix operators [23 .2 .3].. 839
Relational operators [2 3 .2 .2]........... ... 838

CLISPARRAY, CLISP variable [2 3 .9].. 871
CLISPBRACKET, CLISP property [2 3 .7]... 867
CLISPDEC (declst) [23 .2 .5].. 841
CLISPFLG, CLISP variable [2 3 .9] .. 871
CLISPHELPFLG, CLISP variable [2 2 .5 .1] ... 794
CLISPIFTRANFLG, CLISP variable [23.9]... 871
CLISPIFY (x 1st) [23.6]... 862
CLISPIFYENGLSHFLG, CLISP variable [23 .6 .1].. 864
CLISPIFY FNS(fns) [2 3 .8 .1].. 869
CLISPIFYPACKFLG, variable [23 .6 .1].. 863
CLISPIFYPRETTYFLG, prettyprinting control variable

[1 5 .7 .5 ,2 3 .6 .1]... 491,865
CLISPIFYUSERFN, variable [2 3 .9].. 872
CLISPINFIX, property [2 3 .7] • • 866
CLISPRETRANFLG, variable [2 3 .9].. 872
CLISPTRAN (expression translation) [23.8.3]... 870
CLISPTYPE, property [23.7].. 865
CLISPW ORD, property [23.7]........................ ... 867
CLOCK (n) [29.1.2].. 1033
CLOSEALL 0 [1 6 .5 .2]... ... 514
CLOSEF (file) [1 6 .5 .1]... 513
CLOSEF? (file) [1 6 .5 .1]... 513
CLREM PARSFLG, CLISPIFY variable [23.6.1] ... 863
CLRHASH (xarray) [11.3.2].. 309
CL:FLG, CLISPIFY variable [23.6.1]... 863
CM ULT (cxl cx2) [13 .7 .2].. .. • 388
CNDIR (dirnam e password) [29.6.3]... 1048

1110 Index

COLLECT, CLISP iterative statement operator [23 .4 .2].. 848
COMMENTFLG, prettyprinting control variable [15.7.5]............... 491
COMS

Editor command [19.6.11]... 593

File Package command [17.2.8]... 554
COMSQ, Editor command [19.6.11] ... 593
Comments [16 .10].. 532

Pointers [16.10.2]... 534
Printing to a file [16.10.1].. 533
Reading from a file [16.10.2]... 534

CommonLisp [1 .2 .4].. 7

COMPARE (nam el name2 type sourcel source2) [17.5 .11].. 603
COMPAREDEFS (name types sources) [17.5.11].. 604
COMPARELISTS (Istl lst2) [6 .7 .4] ...!!! " ̂ I 73
COM PILE (fns flag) [31.3.1].. 1085
COMPILEFILES (file[l] ... file[N]) [17.3.5]................... 576
COM PILEl (fn definition) [31.3.2]... 1087
Compiler

Compiling CLISP [31.2.6] .. 1084
Compiling a definition [3 1 .3 .2]... 1087
Compiling functions [3 1 .3 .1]... 1085
Compiling NLAMBDA functions [31 .2 .1].. 1081
Compiling symbolic files [31.3.3]... 1088
Constants [3 1 .2 .4]... 1083
Declarations [31.2.2].. 1082
Open functions [31.2.3] .. 1083
Recompiling a file [31.3 .4]... 1089

COM PILETYPELST, compiler variable [31 .2 .5]... 1084
COMPILEUSERFN, compiler variable [31.2.1]... 1082
COMPLEX (r i) [13.7.2].. 387
Complex numbers [2.2.3,13.7.2]... 27
CONCAT (string[l] ... string[N]) [10.3].. 280
CONCATLIST (1st) [10.3.1].. 281
COND (expression 1 ... expressionN) [3 .5]... 56
Conditional execution [3.5].. 56

Default clauses [3.5.2]... 58
Executing a COND expression [3.5.1]... 57
Executing a SELECTQ expression [3 .6 .1].. 60
Multiple case selection [3 .6].. 60
Selecting on constants [3.6.4].. 64
Test phrase values [3 .5.3].. 58

CONS (expression 1st) [3.2.1, 6 .1]..
Consing with NIL [3.2.1] .. ^
Counting [29.3.1]... J

CONSCOUNT (n) [29.3.1]...
CONSTANTS (var[l] ... var[n]) [31 .2 .4].. 1084
CONTAIN, Masterscope relation [26.4]...
CONTROL (flag ttbl) [14.6 .1]..
Control chain pointer [30 .2 .3]..
Control characters [14.1.1]..
COPY (expression) [6 .4 .1]...
COPY ALL (expression) [6 .4 .2] ..
COPYARRAY (arrayptr) [11.2.7]................... ..
COPYBYTES (srcfile dstfile start end) [16.8.4] ..

Index 1111

COPYDEF (old new type source options) [1 7 .5 .3] 595
COPYREADTABLE (rdtbl) [1 4 .5 .4] 429
COPYSTK (oldpos newpos) [30.7.4]... 1073
COPYTERMTABLE (ttbl) [1 5 .5 .2] ... 472
COS (x radiansflag) [13.6.1].. 377
COUNT (expression) [6.8.2].. 178

CLISP iterative statem ent operator [23.4.2].. 850
COUNTDOWN (expression limit) [6 .8 .3] .. 179
CPLUS (cxl cx2) [13.7 .2]... 388
CREATE

M asterscope relation [2 6 .4] .. 957
Record Package declaration [2 7 .2] .. 979

CREATIONDATE, File attribute [1 6 .4] ... 511
CTRLV, terminal table syntax class [15.5.1].. 471
CTRL-A [1 4 .1 .1]... 398
CTRL-B [1 4 .1 .1]... 398
CTRL-C [1 4 .1 .1]... 398
CTRL-D [14 .1 .1]... 399
CTRL-E [1 4 .1 .1]... 399
CTRL-H [14 .1 .1].. ... 399
CTRL-O [1 4 .1 .1]... 399
CTRL-P [1 4 .1 .1] ... 399
CTRL-Q [14 .1 .1]... 400
CTRL-R [1 4 . i . l] ... 400
CTRL-S [14.1.1] ... 400
CTRL-T [1 4 .1 .1] 400
CTRL-U [14 .1 .1]... 400
CTRL-V [1 4 .1 .1].. ... 401
CTRL-X [14 .1 .1].. 401
CTRL-Y [14 .1 .1]... 401
CTRL-Z [1 4 .1 .1] ... 401
CZERO 0 [13.7.2].................... 389

D, Editor command [19 .6 .1 2]... 694
DATATYPE, Record Package declaration [27 .8].. 988
Datatypes

Creating an instance [27.12.4]... ... 995
Defining new datatypes [27.12.1].. 994
Fetching the contents of a field [27.12.2]... 995
Identifying user datatypes [2 7 .1 2 .7]... 997
O btaining the field descriptors [2 7 .1 2 .6].. 996
Obtaining the field specifications [27 .1 2 .5]... 996
Replacing the contents of a field [27.12.3]... 993

DATATYPES FULL, error message [1 8 .5]... 645
DATE 0 [29 .1 .1].. 1031
DE (fn arglst exprs) [8.2.5].. 222
DECLARE, CLISP iterative statem ent operator [23.4 .6]... 857
DECLARE AS LOCALVAR, Masterscope relation [26.4]................................... 958
DECLARE AS SPECVAR, Masterscope relation [26.4] ... 958
DECLAREDATATYPE (typename fields) [27.12.1]... 994
DECLARE:

CLISP iterative statem ent operator [23.4.6]... 857
File Package command [17.2.18]... 562

D EFIN E (1st) [8 .2 .3].. 220

1112 Index

DEFINEQ (fnslst) [8 .2 .2]... 219
DEFLIST (1st property) [7 .3 .3] 202
DEFMACRO (definition) [8.12.3]... .. 250
DEFPRINT (type fn) [1 5 .1 .5] 452
DELASSOC (key alst) [6.10.3].. 187
DELDEF (name type file) [17.5.4] .. 596
DELETE, Editor command [19.6.12]... 694
DELETECONTROL (type message ttbl) [15.6.3].. 477
DELETE.STRING (old n m) [10.7.2]... 293
DELFILE (file) [1 6 .6 .1]... 517
DELFROMCOMS (coms name type) [17.7.2].. 611
DELFROMFILES (name type files) [17.7.2]... 611
DEPTH (expression) [12.5.1].. 349
DESCRIBE, Masterscope command [26.2.3] .. 947
DF (fn arglst exprs) [8.2.5]... 222
DFNFLG, variable [8 .2 .4] ... 221
DIFFERENCE (xl x2) [13.5].. 375
DIRCOMMANDS, system variable [29 .6 .2].. 1047
DIRECTORY (files commands defaultext defaultver) [29.6.2]... 1045
DISMISSINIT, File Package variable [14 .3 .2].. 414
DISMISSMAX, File Package variable [14.3.2].. 414
DMACRO, property name [8 .1 2].. 246
DMPHASH (harray[l] ... harray[N]) [11.3.4].. 312
DO, CLISP iterative statement operator [23 .4 .2].. 847
DOCOLLECT (item lst)[6.2.5] .. 133
DOCOPY, declaration tag [31.2.2]... 1082
DOT.PRODUCT (vectorl vector2) [11.4.4].. 324
DRIBBLE (file appendflg) [29.4].. 1042
DRIBBLEFILE () [29.4]... 1042
DUMMYFRAMEP (position) [30.5.1]... 1067
DUMPDATABASE (fnslst) [26.7.11]... 972
DW, Editor command [19 .6 .13].. 694
DWIM (mode) [22.4] ... '^90

modes [2 2 . 1] ..
protocols [2 2 .2] ...
spelling correction default [2 2 .2 . 1] ... ^^1

wait interval [2 2 .2 . 1] ...
DW IM CHECKM RGSFLG, variable [22.5.1].. 794
DWMCHECKPROGLABELSFLG, variable [22.5.1]... 794
DW IMFLG, variable [22.7]..
DW IMIFY (expression quietflg 1st) [22 .5]... ^91
DW IMIFYCOMPFLG, variable [22.5.1]... 794
DW IMIFYCOMPILEFLG, compiler variable [31.2.6]... lOo^
DW IM IFYFLG, variable [22.7.1]...

Index 1113

7Q2
DW IMIFYFNS (fnslst) [2 2 .5] ..
DW IMLOADFNSFLG, variable [22.7] ...

794DW IMMESSGAG, variable [2 2 .5 .1]...
DW IM USERFORM S, variable [2 2 .7]...
DW IM W AIT, variable [22.2.1, 22 .7]...

E 695
Editor command [19 .6 .14]..
File Package command [17.2.7]............... • ■ ..

EACHTIME, CLISP iterative statement operator [23.4.OJ ..

ECHOCHAR (charcode mode ttbl) [15.6.2].. 476
ECHOCONTROL (char mode ttbl) [1 5 .6 .2] .. 476
ECHOM ODE (echoflag ttbl) [15.6 .1]... 475
EDIT, M asterscope command [26.2.4]... 947
ED IT W HERE, M asterscope command [26.2.4] ... 947
EDITCALLERS (atoms files corns) [19.3.4].. 674
EDITDEF (name type source commands) [17.5.6]... 597
ED ITE (expression commands atm type ifchangedfn) [19.1.4].. 670
EDITF (fn com m and[l] ... command[n]) [1 9 .1 .1]... 662
EDITFINDP (expression pattern flag) [19.3.1].. 673
EDITFNS (fn com m and[l] ... command[n]) [19.1.1]... 662
EDITHISTORY, system variable [28.1]... 1000
EDITL (1st commands atm message editchanges) [1 9 .2].. 671
EDITLO (1st commands atm message editchanges) [1 9 .2]... 671
Editor

Adding to the end of an expression [19.6.35]..... .. 715
Advancing to the next expression [19 .6 .3 7].. 716
Ascending the editchain [19 .5 .3].. ... 678
Assigning values to arguments [19.6.31]... 711
Attention-changing commands [19 .6 .60].. 730
Backing up in the current expression [19 .6 .7].. 690
Binding macro variables [19.6.6].. 689
Capitalization [19.6.9].. 691
Clispifying expressions [1 9 .6 .1 0]... 692
Command encyclopedia [19.6]... 682
Command execution [19 .6 .11].. 693
Concept of currency [1 9 .4 .1] ... 675
Conditional listing [19.6.23]... 703
Deleting balanced parentheses [19.6.8].. 691
Deleting expressions [19 .6 .12].. 693
Descending a level [19.5.2]... 678
Dwimifying expressions [1 9 .6 .1 3].. 694
Editing atom s or strings [19 .6 .46].. 721
Effect of print level [1 9 .4 .2].. .. 676
Embedding [19.6.15].. 696
Evaluating an expression [19 .6 .16].. 697
Evaluating input [19 .6 .14]... 695
Examining an expression [19 .6 .17].. 698
Executing any one command [19.6.42]... 719
Exiting the editor [19.6.40]... 718
Extracting from the current expression [19 .6 .5 8]... - . . 728
Finding an element [19 .5 .6]... 681
Finding an expression [19.6.18]........................ .. 699
Finding the Nth element [19.6.39]... ... 717
G etting a comment [19 .6 .21]... 703
G etting a definition [19.6.19]... 701
Getting a value [19.6.20].. 702
Going to a PROG label [1 9 .6 .2 2].. 703
Inserting after the current expression [19.6.1]... 685
Inserting and removing left parentheses [19.6.27].. 707
Inserting balanced parentheses [19 .6 .5].. 688
Inserting before the current expression [19.6.2] .. 686
Inserting comments [19.6.59]........... 729
Inserting into an expression [19.6.24].. • 704

1114 Index

Invoking the Editor via CTRL-U [14.1.1] .. 400
Iterative execution [19.6.29]... 709
Joining conditional expressions [19.6.25].. 705
Locating a pattern [19.6.3]... 686
Locating an S-expression [19.6 .26].. 706
Lower case conversion [19.6.28]... 708
Macro definition [19 .6 .30]... 709
Making a function [19.6.32]... 712
M arking and restoring the editchain [19.6.33] ... 713
Modifying the list structure [19 .5 .4].. 679
Moving expressions [19.6.34].. 714
Moving up the editchain [19.6.57]... 728
Negating the current expression [19 .6 .36].. 716
NIL command [19.6.38].. 717
Pattern specifications for searching [19.4.4].. 676
Printing the current expression [19.6.43].. 719
Raising the case in an expression [19 .6 .45].. 721
Recursive editing [19.6.55]... 727
Replacing an element [19.6.44].. 720
Right parenthesis in [19 .6 .47]... 722
Right parenthesis out [19.6 .48]... 722
Searching backwards [19.6.4] .. 687
Setting a literal atom ’s value [19.6.49].. 723
Setting a tentative edit marker [19.6.53] .. 726
Showing instances [19.6.50]... 723
Splitting conditional expressions [19.6.51].. 724
Switching elements in an expression [19.6.52].. 725
THRU and TO: Location specification [19.6.54] .. 727
Undoing an editor command [19.6.56]... 727
Using the original definition [19.6.41] ... 718

EDITP (atm command[l] ... command[n]) [19.1.3].. 668
EDITREC (recordname com[l] ... com[n[) [27.11.1]... 990
EDITRACEFN (command) [19.3.5]... 675
EDITRDTBL, Editor variable [1 4 .4] ... 415
EDITV (name command[l] ... command[n]) [19.1 .2]... 666
EDIT4E (pattern expression) [19.3.1]... 672
ELT (array index) [11 .2 .6].. 304
ELTD (array index) [11.2.6].. 304
ELTM (name row column) [11.4.2].. 317
EMBED, Editor command [19.6.15] ... 696
ENDCOLLECT (item 1st) [6.2.5].. 133
ENDFILE (file) [15 .1 .7].. 458
END OF FILE, error message [1 8 .5] ... 642
ENTRY# (history event) [28.6.4]... 1027
ENVAPPLY (fn args aposition cposition aflag cflag)

[30 .6 .1].. 1062
ENVEVAL (expression aposition cposition aflag cflag)

[30 .6 .1]..
EOFP (file) [16.8.5]... ^^7
EOL, terminal table syntax class [15.5.1]... 471
E Q (x y) [4 .6 .1] ..
EQARRAYP (arrayl array2) [11.2.8]...
EQLENGTH (expression length) [4.6.4]... 100

Index 1115

Invoking [19.1]... 5 5 1

EQM EM B (expression 1st) [4.8].. 105
E Q S IG N P(xy) [5 .2 .1] ... 113
EQUAL (xy) [4 .6 .1].. 94
Equality

Absolute via EQM EM B [4 .8].. 107
Atoms [4 .6 .2].. ... 97
Complex structures [4.6.5] ... 101
Length [4.6.4]... .. 100
Non-equality [4.6.6]... 102
Null [4 .6 .7]... 103
Numbers [4 .6 .3].. ... 99
Objects [4 .6 .1] 94

EQUALALL (x y) [4 .6 .2] 97
EQUALN (expressionl expression2 depth) [4 .6 .5] 101
EQP (expressionl expression2) [4 .6 .3] ... 99
EQZERO (expression) [4 .2 .3] ... 86
ERASE, Masterscope command [26 .2 .2].. 946
ERROR (messagel message2 nobreakflag) [18 .6 .1]... 648
ERRORMESS (errorform) [18.6.1].. 651
ERRO RM ESSl (messagel message2 message3) [18.6.1]... 652
ERRORN 0 [18 .6 .3]............................... ... 654
Errors

Catching in a computation [1 8 .3] ... 635
Catching and handling [18.2].. .. 632
Defining new error messages [18 .6 .3]... 654
Entering the error routines [18.6.4].. 655
Forcing an error via CTRL-E [14.1.1]... 399
Obtaining information about errors [1 8 .6 .3].. 654
Obtaining the error message [1 8 .6 .3]... 654
Printing a help message, [18.6.1].. 649
Printing error messages [1 8 .6 .1] .. 648
Printing a warning to the user [18 .6 .1]... 650
Resetting the system state [18.6.2].. 653
Returning from errors [18.6.2]... 653
Types of [1 8 .5]... 640

ERRORSET (expression flag) [18.3].. 635
ERRORSTRING (num ber) [1 8 .6 .3].. 654
ERRORTYPELST, system variable [1 8 .2 .1]... 633
ERRORX (errorform) [18.6.4].. 654
ERROR! 0 [18.6.2].. 653
ERSETQ (expression) [18.3.1].. ; 637
ESCAPE, syntax class [14.4.1]...................... ... 415
ESCQUOTE, read macro option [14.4.5].. 423
ESUBST (new old expression error flag charflag) [19.3.2]... 673
EVAL (expression) [8 .8] ... 237

Break Package command [20.2.2]... ^3(
Editor com m and [19 .6 .16].. 69/

EVALA (expression alst) [8 .8 .2] .. 23(
Evaluation

Of type-in [25.2].. 89
Next expression during reading via CTRL-Y [14.1 .1]... 40

EVAL@ COM PILE, declaration tag [31.2.2].. 108:
EVAL@ COM PILEW HEN, declaration tag [3 1 .2 .2] .. 108
EVAL®LOAD, declaration tag [3 1 .2 .2] .. 108

1116 Index

EVAL@ LOAD WHEN, declaration tag [31.2.2]..................... 1082
E V E N P(xl x2) [1 3 .2 .3].. 362
Event

addresses [28.3.1] .. 1004
definition of [28] ... 999
specification of [2 8 .3] .. 1003

EVERY (expression everyfnl everyfn2) [5 .4].. 116
EXAM, Editor command [19.6.17]... 698
EXCHANGE (pair) [8 . 1 . 1] .. 215
Execution

Printing execution time via CTRL-T [14.1.1]... 401
Termination via CTRL-C [14.1.1]... 398
Termination via CTRL-D [14.1.1]... 399

Existential quantification [5.5].. 119
Exiting Interiisp [29.2.1].. 1034
EXPANDMACRO (expression quietfiag) [8.12.2]... 249
Exponentiation [13.6.3] 379
EXPR

function type [8 .1].. 213
variable (DWIM) [22.7.1].. 812

Expression
Editing of [19 .1 .4]... 670
Finding a pattern in [19 .3 .1].. 672
Substituting into [19 .3 .2].. 673

EXPRP (fn) [8 .6] .. 228
EXPR*, function type [8 .1] ... 214
EX PT(x n) [13.6.3].. 364
EXTRACT, Editor command [19.6 .58]... 728

F, Editor command [19.6.18]... 699
FADDl (x) [13.4.1].. 371
FAULTAPPLYFLG, variable [22 .7 .1]... 811
FAULTARGS, variable [22 .7 .1].. 811
FAULT EVAL, error message [1 8 .5] .. 643
FAULTFN, variable [22 .7 .1].. 812
FAULTX, CLISP variable [22 .7 .1].. 811
FDIFFERENCE (xl x2) [13.4.2].. 371
F E Q P (x l x2) [13.4.5].. 373
FETCH, Masterscope relation [26.4] .. 957
FETCHFIELD (descriptor datum) [27.12.2]... 995
FEXPR, function type [8 .1] ... 214
FEXPR*, function type [8 .1] ... 214
FFILEPOS (pattern file start end skip tail case) [16.8.3]... 524
FGREATERP (xl x2) [13.4.6].. 374
FILDIR (filgrp) [29 .6 .1]...

513Closing [16.5]..
Declaration of primary input [16.2.2]...
Declaration of primary output [16.2.3]...
Definition of [2 .7] ..
Deleting [16. v - v ; - : , ...505
Determming the fullname of [1 6 .2 .4]...
Ending a [15.1.7].. ^^4
Finding a position in [16.8.3]..

Index 1117

Getting a file pointer [16.8.1]... 522
Loading expressions [1 7 .9 .1]... 625
M anipulating the file pointer [16.8.1].. 522
Obtaining the file changes [17 .8 .8]... 625
Obtaining the file date [17 .8 .4]... 621
Opening [1 6 .3 .1].. 507
Primary, T [1 6 .2 .1]... 501
Random access [1 6 .8]... 521
Renaming [16.6 .2]... 518
Searching a file [1 6 .8 .3]... 524
Setting a file pointer [16 .8 .1].. 523
Testing for an end of file [1 6 .8 .5]... 527
Testing for open files [16.3.2].. 509
Testing inpu t/ou tpu t [1 6 .2 .4] 505
Testing random access [1 6 .8 .2]........... .. 523
W riting an expression to [15.1.7].. 457

FILE, File Package property [17 .1 .4].. 539
File directories

Connecting to another directory [2 9 .6 .3] .. 1048
M anipulating the file directory [2 9 .6 .2]... 1044
Reading tthe current direcotry [29.6.1]... 1044

FILE NOT FOUND, error message [18.5]... 643
FILE NOT OPEN, error message [18.5]... 642
FILE SYSTEM RESOURCES EXCEEDED, error message [1 8 .5]... 643
FILE W ON’T OPEN, error message [18 .5]... 641
FILECHANGES (file type) [17.8.8]............................... ... 625

File Package property [17 .1 .4].. 539
FILECOMS (file type) [1 7 .7 .5] ... 614
FILECOM SLST (file type) [17.7.3].. 612
FILECREATED (expression) [1 7 .8 .3] .. 621
FILEDATE (file) [17.8 .4].. 621
FILEDATES, File Package property [1 7 .1 .4].......................... 539
FILEFNSLST (file) [17 .7 .3].. 613
FILELST, File Package variable [17.1.6].. 542
FILEM AP, File Package property [17.1.4]... 539
File Maps [17 .1 .5].. 540
File Names [16.1].. 499

Accessing a field [1 6 .7 .3] ... 520
Constructing [16.7.2].. 519
Correcting filename spelling [22.8.5]... .. 827
Recognizing [1 6 .2 .5].. .. 505
Unpacking [1 6 .7 .1]... 519

FILENAM EFIELD (filename fieldname) [16.7.3]... 520
File Package

Adding objects to files [17.3.11]... 584
Changing calling function names [1 7 .5 .1 0]... 601
Cleaning up files [1 7 .3 .6] .. 577
Commands [17.2]... 542
Com paring definitions [1 7 .5 .1 1]... 603
Compiling files [17.3.5].. 576
Copying a type definition [1 7 .5 .3]... 594
Defining new file package commands [1 7 .6] ... 606
Defining new types [1 7 .4].. 586

1118 Index

File (continued)

Deleting a type definition [17.5.4]... 596
Determining file status [17.3 .7].. 578
Determining object types [17 .5 .13].. 605
Determining type existence [17.5.12] .. 604
Determining what has been changed [17 .3 .10]... 584
Editing a type definition [17.5.6]... 597
Features [17.1].. 537
Finding types in files [17.3.8].. 581
Getting a type definition [17.5.1]... 591
Listing files [17.3.4]... 575
Loading a type definition [17 .5 .8]... 599
Making files [17.3.1, 17.3.3].. 565,573
M anipulating file package commands [17.7].. 609
M anipulating file package types [17.5].. 589
M arking changes to files [17.1.1, 17 .3 .9].. 538,582
Noticing files [1 7 .1 .2]... 538
Putting a type definition [17.5.2]... 593
Remaking [17.3.2]... 572
Renaming an object [17.5.9] .. 600
Saving and unsaving type definitions [17 .5 .7].. 598
Showing a type definition [17.5.5]... 596
Unmarking changes to [17 .3 .9].. 582
Updating files [17.1.3] ... 539

FILEPKGCHANGES (type 1st) [17.3.10]... 584
FILEPKGCOM (command property value ...) [17 .6 .1]... 606
File Package Commands

Adding commands [17.7.1] .. 610
Creating a COMS variable [17.7.5]... 613
Deleting commands from [17.7.2]... 610
Determining objects in a command [17.7.3] .. 611
Making a new file package command [17.7.4].. 613
Moving an item between files [17.7.7]... 615
Smashing a file’s COMS [17.7.6]... 614

FILEPKGCOMS, File Package command [17.2.12].. 559
FILEPKGFLG, File Package variable [17 .1 .6].. 541
FILEPKGTYPE (type prop value ...) [17.4.1]... 586
FILEPOS (pattern file start end skip tail case) [16.8.3]... 523
FILERDTBL, File Package variable [1 4 .4]... 415
File System

INTERLISP-D and INTERLISP-10 [16.1.2].. 500
V M /SP [16.1.1]... 499

FILES, File Package command [17.2.19]... 562
FILES? 0 [17.3.7].. 578
FINALLY, CLISP iterative statement operator [23.4.6]... 856
FINDFILE (file nospellflag dirlst) [22.8.5]... 828
FIRST

CLISP iterative statement operator [23.4.6].. 856
read macro option [14.4.5].. 423
Declaration tag [3 1 .2 .2].. ^^83

FILERDTBL, system read table [14.4]... 415
FIRSTCOL, prettyprinting control variable [15.7.5].. 491
FIX (x) [13 .1 .7].. 358

History Package command [28.4.3]... 1010
FIX P(x) [4.2.4,13.2.3]..

Index 1119

FIXSPELL (xword rel splst fig tail fn ...) [22.8.3]... 823
FIXSPELLDEFAULT, variable [22.2.1, 2 2 .7] 809
FIXSPELLREL, variable [22.7].. 809
FLESSP (xl x2) [13.4.6]... 374
FLOAT (x) [13.4.8].. 375
FLOATING OVERFLOW, error message [1 8 .5]... 647
FLOATING UNDERFLOW , error message [18.5]... 647
Floating point numbers

Adding [1 3 .4 .1].. 370
Boolean operators [13 .4 .6].. 374
Converting to [13 .4 .8]... 375
Definition of [2.2.2]... 26
Dividing [13 .4 .4].. 372
Maximum of [1 3 .4 .7] ... 374
Minimum of [13.4.7]... 374
Multiplying [13.4.3]... 372
Negation of [13.4.2]... 371
Range of [2 .2 .2].. 26
Subtracting [13.4.2]... 371
Testing equality [13.4.5]... 373

FLOATP (expression) [4 .2.4]... 87
FLOOR (x) [13.7.3].. 393
FLTFM T (format) [15.4.5]... 469
FMAX (x l x2 ... xN) [1 3 .4 .7] ... 374
FMIN (x l x2 ... xN) [13 .4 .7]... 374
FMINUS (x) [13.4.2].. 371
FNCHECK (fn noerrorflag spellflag propflag tail)

[22.8.4] . , .. 826
FNS, File Package command [17.2.1].. 543
FN TY P(fn) [8 .1 .5] 217
FORGET* History Package command [28.4 .10].. 1018
FOR, CLISP iterative statem ent operator [2 3 .4 .3].. 851
FPLUS (xl x2 ... xN) [13.4.1] .. 370
FQU OTIEN T (x l x2) [13 .4 .4]... 372
Frame

basic stack fram e [30.2.1]... 1057
description [3 0 .2 .3]... 1059
fram e extension [30 .2 .2].. 1058

FRAMESCAN (atm position) [3 0 .5 .3] .. 1069
FranzLisp [1 .2 .2].. 7
FREEVARS (fn usedatabase) [2 6 .7 .3].. 967
FREM A INDER (xl x2) [1 3 .4 .4] 372
FROM

CLISP iterative statem ent operator [23.4.4]... 853
M asterscope path specification [26 .5].. 958

FSUBR, function type [8 .1] .. 214
FSUBR*, function type [8 .1] 214
FTIM ES (xl x2 ... xN) [13.4 .3].. 372
FULLNAM E (name recogflag) [1 6 .2 .5].. 505
F U N A R G [12.4]... 344
Functions

Accessing the argum ents of nospread functions [8 .7 .4] ... 235
Applying a function to its arguments [12.5]... .. 348
Changing object names in [1 9 .3 .3] 674

1120 Index

Checking function name spelling [22.8.4]... 826
Compiled [8 .1 .3] ... 216
Constant evaluation [8.8.3].. 238
Constructing FUNARGs to be passed to [12 .4 .2].. 346
Copying the definition of [8 .5].. 225
Definition of [8.2.2, 8 .2 .3] .. 219
Determining the arguments [8 .7 .1]... 229
Determining the number of arguments [8.7.2] .. 231
Determining the type of [8 .1 .5].. 217
Editing of [19 .1 .1]... 661
Effect of DFNFLG [8.2.4] .. 221
Evaluation of [8.1.1, 8 .8] .. 237
FUNARG mechanism [1 2 .4] .. 344
Function composition [1 .1 .4]... 4
Functions versus data [1 .1 .5]... 4
Getting the definition of [8.3].. 223
LAMBDA-type [8.1.1] ... 214
NLAMBDA-type [8 .1 .1].. 214
Nospread [8.1.2] ... 215
Obtaining the argument list [8.7.3]... 234
Passing functions as arguments [12.3] ... 342
Predicates [8 .6] .. 228
Primitive functions [1 .1 .3] .. 3
Setting the arguments of nospread functions [8.7.5]... 236
Setting the definition of [8 .4].. 224
Spread [8.1.2].. 215
Spreading of arguments [8 .1 .2].. 215
Syntax of definition [8.2.1].. 218
Types of [8 .1].. 213

FUNCTION (fn environment) [12.3].. 342
Function definition cells [2 .1.4].. 21
FUNNYATOMLST, C U SP variable [23 .6 .1]... 864

GAINSPACE 0 [29.7.2]... 1050
GAINSPACEFORMS, system variable [29.7.2] .. 1051
G C D (xy) [13.3.4].. 369
GDATE (dt formatbits strptr) [29.1.1]... 1032
GE, CLISP operator [23.2.2]... 838
GENERATE (handle value) [8 .11.1].. 244
GENERATOR (form compvar) [8.11.1]... 244
Generators [8.11].. 243
GENSYM (char) [9 .2 .1]... 256
GEQ (xl x2) [1 3 .5].. 375
GETATOMVAL (atm) [3.9.2]... 78
GETBRK (rdtbl) [14.4.2]... 418
GETCOMMENT (commentptr dstfile) [16.10.2] .. 534
GETCONTROL (ttbl) [14.6.1]... 432
GETD (fn) [8.3].. 223

Editor command [19.6.19].. 701
GETDEF (name type source options) [17.5.1]... 591
GETDELETECONTROL (type ttbl) [15 .6 .3]... 479
GETDESCRIPTORS (typename) [27.12.6]... 996
GETECHOMODE (ttbl) [15 .6 .1].. 475
GETEOFPTR (file) [16.8.1]... 522

Index 1121

GETFIELDSPECS (typename) [27.12.5].. 996
GETFILEINFO (name attribute) [16.4].. 510
GETFILEPTR (file) [16 .8 .1].. 522
GETHASH (key xarray) [11.3.2].. 309
GETLIS (atm proplst) [7 .6] .. 211
GENNUM, system variable [9 .2 .1]... 259
GETPROP (atm property) [7.2].. 195
GETPROPLIST (atm) [7 .2 .1] .. 197
GETRAISE (ttbl) [1 5 .6 .4] 480
GETREADTABLE (rdtbl) [14.5.2].. 428
GETRELATION (item relation inverted) [26.7.7].. 969
GETSEPR (rdtbl) [1 4 .4 .2]... 418
GETSYNTAX (char) [1 4 .4 .2] .. 417
GETTEM PLATE (fn) [26.7.4]... 967
GETTERM TABLE (ttbl) [15.5.3].. 472
GETTOPVAL (atm) [3 .9 .2]... 78
GETVAL, Editor command [19.6.20]... 702
GET*, Editor command [19.6.21].. 703
GLC (x) [10.2.2]... 279
GLOBALVARS

definition [3 0 .1 .1].. 1056
File Package command [17.2.2].. 545

GNC (x) [1 0 .2 .2]........... ... 279
GO (label) [3 .7 .3] ... 69

Break Package command [20.2.1].. 735
Editor command [19 .6 .22]... 703

GREATERP (x 1 x2) [13.5].. 375
GREETDATES, system variable [2 9 .5].. 1044
GT, CLISP operator [23 .2 .2]... 838

H A R R A Y (size)[11.3 .1].. 307
HARRAYP (xarray) [4 .4 ,1 1 .3 .1].. 89,308
HARRAYSIZE (xarray) [11 .3 .1]... 309
HASDEF (name type source spellflag) [17.5.12]... 604
Hash arrays [1 1 .3].. 307

Clearing a hash array [1 1 .3 .2].. 310
Creating hash arrays [11.3 .1]... 308
Definition of [2 .4 .3]... 31
Dum ping hash arrays [1 1 .3 .4]... 312
Enlarging a hash array [11 .3 .2]... 311
M apping across a hash array [11.3 .3].. 312
Overflow handling [11.3 .5]................................... 313
Retrieving from a hash array [11 .3 .2].. 310
Storing into a hash array [1 1 .3 .2].. 310
Testing a hash array [11 .3 .1]... 309

Hash item [11.3] 307
Hash link [11 .3].. .. 308
HASHRECORD, Record Package declaration [27.7].. 987
HASH TABLE FULL, error message [18.5] .. 644
Hash value [11.3]...................................... .. 308
HCOPYALL (expression) [6 .4 .2 ,15.1 .6].. 147
HELP (m essagel message2) [18.6 .1]... 649

M asterscope com m and [26 .2 .7]... 949
HELPCLOCK, Break Package variable [20 .3 .5]... .. 760

1122 Index

HELPDEPTH, Break Package variable [20.3.5]... 760
HELPTIM E, Break Package variable [20.3.5].. 760
History commands

Archiving events [28.4.9] ... 1017
Analyzing errors [28.4.14] ... 1019
Bypassing the programmer’s assistant [28 .4 .15].. 1020
Correcting errors via DWIM [28 .4 .7]... 1014
Editing a previous event [28.4.3].. 1010
Forgetting side effects [28.4.10].. 1018
Preventing history list recording [28 .4 .16].. 1020
Printing atom bindings [28.4.13].. 1019
Printing the history list [28.4.5]..................... ... 1012
Printing property lists [28.4.12].. 1018
Re-executing previous expressions [28.4.1]... 1006
Remembering events [28.4.11]... 1018
Retreiving events [28.4.8]... 1015
Retrying an event [28.4.4]... .. 1011
Saving events [28 .4 .8].. 1015
Substituting arguments [28.4.2].. 1007
Undoing the effects of events [28.4.6].. 1012

History list
Changing a history list’s timeslice [28.6.6]... 1028
Extracting a history event [28.6.4].. 1027
Locating events by specification [28.6.3]... 1026
Locating a history event [28 .6 .2].. 1025
Obtaining an event’s value [28.6.5].. 1027
Printing the history list [28.6.8].. 1029
Recording a history event [28.6.1].. 1024
Searching the history list [2 8 .6 .7].. 1029
Structure of [28.1].. ... 999
Updating [28 .2]... 1003

HISTORYFIND (history index mod eventadr) [28.6 .2].. 1025
HISTORYMATCH (input pattern even t) [28.6.7]... 1029
HISTORYSAVE (history id inputl input2 input3 props)

[28 .6 .1] 1024
HISTORYSAVEFORMS, History Package variable [28 .5 .2].. 1025
HORRIBLEVARS, File Package command [17 .2 .2]... 547
HPRINT (exp file uncircular datatypeseen) [15.1.6]... 454
H R EA D (file)[15.1.6].. 456

I, Editor command [19.6.24].. 704
I.S.OPR (name expression others evalflag) [23.4 .8]... 859
ICREATEDATE, File attribute [16 .4].. 511
ID A TE(dt) [29.1.1] .. 1034
[DIFFERENCE (xl x2) [13 .1 .2]... 353
IE Q P (x l x2) [13 .2 .2]... 360
IF

CLISP operator [23.3]... 844
Editor command [19.6.23].. 703

IFPROP, File Package command [17.2.5].. 553
IG E Q (x l x2) [13.2.1].. 359
IGREATERP (xl x2) [13 .2 .1]... 359
IL E Q (x1 x2) [13 .2 .1].. 359
ILESSP(xl x2) [13 .2 .1].. 359

Index 1123

ILLEGAL ARGUM ENT, error message [18.5].. 644
ILLEGAL DATATYPE NUMBER, error message [1 8 .5].. 645
ILLEGAL OR IMPOSSIBLE BLOCK, error message [1 8 .5] .. 644
ILLEGAL READTABLE, error message [1 8 .5] .. 646
ILLEGAL RETURN, error message [1 8 .5] .. 640
ILLEGAL STACK ARG, error message [18 .5].. 643
ILLEGAL TERMINAL TABLE, error message [18.5]... 646
IMAG (cxl) [13 .7 .2].. 387
IM A X (xl x2 ... xN) [13.1.5].. 35 7
IMIN (x l x2 ... xN) [13.1.5]... 357
IMINUS (x) [13 .1 .2].. 353
IM M EDIATE, read macro option [14 .4 .5].. 423
IM O D (x l x2) [1 3 .1 .6].. 358
IN

CLISP iterative statem ent operator [23.4.4].. 852
Masterscope set specification [2 6 .3] ... 952

INDEX-GENERATION (index) [6 .2 .2]... 129
INFILE (file) [1 6 .2 .2].. 501
INFILECOMS? (name corns type) [1 7 .7 .3]... 611
INFILEP (file) [16 .2 .4].. ... 505
INFIX, read macro type [14.4.5].. 423
INITVARS, File Package command [17.2.2]... 548
INPUT (file) [16.2.2].. 501
INSERT, Editor command [1 9 .6 .2 4].. 704
INSERT.STRING (x fragm ent pos) [10 .7 .1]... 292
INSIDE, CLISP iterative statem ent operator [2 3 .4 .4] ... 853
Integers

Adding [1 3 .1 .1]... 352
Bit shifting operations [13.3.2].. 367
Converting to [13 .1 .7].. 358
Definition of [2.2.1].. ... 25
Dividing [1 3 .1 .4] ... 356
Greatest common divisor [1 3 .3 .4].. 369
Logical operations [13.3 .1]... 366
M aximum of [1 3 .1 .5] .. 357
M inimum of [13.1.5].. 357
M odulus [13 .1 .6]... 358
Multiplying [13.1.3]... 355
Negating [13 .1 .2]... 355
Predicates [13.2.1]... 359
Range of [2 .2 .1]... 25
Remainder [1 3 .1 .4].. 356
Subtracting [13.1.2]... 353
Testing for equality [13.2.2]... 360
Testing for even or odd integers [1 3 .2 .3] ... 364
Testing for negative or positive num ber [13 .2 .3].. 362
Testing for a small integer [13 .2 .3].. 362

Interlisp
Exiting Interlisp [29.2.1].. 1034

interrupt channel [1 8 .4] ... 639
interrupt character [18 .4]...
INTERSECTION (Istl lst2) [6 .6 .2]... 166
INVISIBLE, File attribute (TOPS-20) [16.4]... 512
lO FILE (file) [16 .3 .1].. 509

1124 Index

IPL U S(xl x2 ... xN) [13.1.1]... 352
IQ U O T lE N T (xl x2) [13.1.4] ... 356
IREADDATE, File attribute [16.4]... 511
IREMAINDER (xl x2) [13.1.4]... 356
IT, History Package variable [28.5.4].. 1024
Iteration

by PROG [3 .7]... 65
by MAP [1 2 .1].. 329
by CLISP operators [23.4] ... 846

iterative statement operators (i.s.opr) [23.4.2]... 847
ITIMES (xl x2 ... xN) [13 .1 .3]... 355
IW RITEDATE, File attribute [16.4] ... 511
I.S.OPRS, File Package command [17.2.15].. 561

JOIN, CLISP iterative statement operator [23.4.2]... 849
JOINC, Editor command [19.6.25]... 705

KNOWN, Masterscope set specification [26 .3].. 954
KWOTE (expression) [3.4].. 56

LAMBDA, function type [8 .1 .1]... 214
LAMS, compiler variable [31.2.1]... 1082
LAPFLG, compiler variable [3 1 .1]... 1080
LAST (1st) [6.3.1].. 136
L A ST C (filerd tb i)[14 .2 .6].. 406
LASTN (1st n) [6.3.3] ... 139
LC, Editor command [19 .6 .26].. 706
LCFIL, compiler variable [31.1] ... 1082
LCL, Editor command [19.6.26]... 706
LCONC (pointer 1st) [6 .2 .3].. 130
LDIFF (Istl lst2 lst3) [6.6.1].. 163
LDIFFERENCE (Istl Ist2) [6 .6 .1].. 162
LE, CLISP operator [2 3 .2 .2]... 838
LEFTBRACKET, syntax class [14.4.1] .. 415
LEFTP A REN, syntax class [14.4.1] ... 415
LENGTH (expression) [6 .8 .1] .. 177

File attribute, [1 6 .4] .. 511
L E Q (x l x2) [13.5]... 375
LESSP(xl x2) [13.5]... 375
LET [3.7.6].. 75
LI, Editor command [19.6.27]... 707
Line buffering

Accessing the line buffer [14.6.3].. 434
Accessing the system buffer [14.6 .3].. 434
Clearing the line buffer [14.6.2]... 434
Definition of [1 4 .6] .. 430
Effect on RATOM [14.6.1]............. ... 433
Effect on READ [14.6.1] ... 432
Enabling and disabling [14.6.1]... 431
Resetting the line buffer [14.6.4]... 435
Resetting the system buffer [14 .6 .4]... 435

LINEDELETE, terminal table syntax class [15.5.1]... 471
LINELENGTH (n file) [15 .6 .5]... 482

Index 1125

Dialects [1 .2] 5
Portable Standard Lisp [1.2.3].. 7

LIST (expressionl ... expressionN) [3.2.2, 6 .1].. 42
LISTING?, compiler message [31.1]... 1079
Lists

Alphameric sorting [6 .7 .3]........................ ... 171
Appending two lists [3.2.3].. 45
Attaching elements at the end [6 .2 .4]... 132
Collecting elements at the end [6 .2 .5]... 133

■ Comparing two lists [6.7.4].. 173
Concatenating lists [6 .2 .3] .. 130
Concatenating one-at-a-time [6 .2 .2] 128
Consing an element to a list [3 .2 .1]... 40
Copying all list elements [6 .4 .2]... 146
Copying lists [6 .4 .1].. ... 144
Copying with reversal [6 .4 .3] .. 148
Counting all cells [6 .8 .3]... 179
Counting list cells [6 .8 .2] ... 178
Counting the CDRs to produce a tail [4 .5 .2].. 93
Creating a list [3.2.2]... 42
Definition of [2 .3] .. 28
Determ ining membership in [4 .8]... 105
Difference of [6 .6 .1] .. 162
Extracting from the Nth element [6.3.4]... 142
Extracting the last element [6.3.1].. 136
Extracting the last N elements [6.3.3]... 140
Extracting the tailing N elements [6 .3 .2] ... 137
Finding the length of a list [6 .8 .1]... 177
Intersection of [6.6.2] .. 166
M erging two lists [6 .9 .1]... 181
M erging with insertion [6 .9 .2]... 183
Normal concatenation [6.2.1]......... ... 125
Numeric sorting [6 .7 .2].. 171
Removing elements from [6 .4 .4] .. 150
Replacing elements in place [6.11.2].. ... 191
Searching in property list format [6.11.1]... 190
Sorting lists [6 .7] 168
Substituting into [6 .5 .1] .. 151
Substituting by association [6.5.3]... 154
Substituting by pairing [6 .5 .4]... 157
Substituting by segments [6 .5 .2] 153
Testing for [4 .5].. 90
Testing the tail [4.5.1]... 91
Union of [6 .6 .3]... 167

LISTFILES (files) [1 7 .3 .4]................................... ... 576
LISTGET (1st key) [6 .11.1] .. 190
L ISTG ETl (1st key) [6.11.1].. 190
LISTP (expression) [4 .5]... 90
LISTPUT (1st key value) [6.11.2].. 191
LIST PU T l (1st key value) [6.11.2]... 191
LISPFN, CLISP property [23.7].. 856
LISPX (lispxx lispxid lispxxmacros lispxxuserfn) [25.2].. 897
LISPXCOM S, Program m er’s Assistant variable [25.8].. 939

1126 Index

LISP

LISPXEVAL (Hspxform lispxid) [25 .5 .2]... 923
LISPXFIND (history event type backup) [28.6 .3].. 1026
LISPXFINDSPLST, system variable [28 .3]... 1004
LISPXFNS, Programmer’s Assistant variable [25.8].. 938
LISPXHISTORY, system variable [28.1]... 1000
LISPXHISTORYMACROS, system variable [28.5.1].. 1020
LISPXMACROS

System variable [2 5 .2 .1].. 903
File Package command [17.2.11]... 558

LISPXPRINT (expression file rdtbl nodoflag) [25.5.7]... 928
LISPXPRINTDEF (expression file le ft...) [25.5.7] .. 930
LISPXPRINTFLAG, Programmer’s Assistant variable [25.5.7]... 930
LISPXPRINl (expression file rdtbl nodoflag) [25.5.7]... 928
LISPXPRIN2 (expression file rdtbl nodoflag) [25.5.7]... 928
LISPXREAD (file read.table) [25 .5 .1]................. ... 920
LISPXREADP (fig) [25.5.1].. 922
LISPXSPACES (expression file rdtbl nodoflag) [25 .5 .7]... 928
LISPXSTATS (returnvaluesflag) [25.9.1]... 939
LISPXTAB (expression file rdtbl nodoflag) [25.5.7].. 928
LISPXTERPRI (expression file rdtbl nodoflag) [25 .5 .7]... 928
LISPXUNREAD (1st) [25 .5 .1].. 921
LISPXUSERFN, variable [25.2.3]... 905
LISPXWATCH (statistic n) [25.9.3]... 941
LISPX/ (1st fn vars) [25.5.4].. 925
LIT ATOM (expression) [4 .1].. 82
Literal atoms

Definition [2.1]... 19
Testing for [4 .1]... 82

LLSH (x n) [13.3.2]... 368
LO, Editor command [19.6.27].. 707
LOAD (file Idflg printfig) [17.9.1].. 625
LOADCOMP (file Idflg) [17.9.5].. 629
LOADDEF (name type source) [17.5.8]... 599
LOADEDFILELST, File Package variable [17.1 .6].. 542
LOADFNS (fns file Idflg vars) [17.9.2]... 627
LOADFROM (file fns Idflg) [17.9.4].. 628
LOAD VARS (vars file Idflg) [17 .9 .3].. 628
LOAD? (file Idflg printfig) [17.9.1]... 625
LOCALVARS

definition [3 0 .1 .1] ... 1056
File Package command [17.2.2]... 545

LOG (x) [1 3 .6 .5].. 381
LOGAND (xl x2 ... xN) [13.3.1].. 367
Logarithms [13.6.5]... 381
Logical operations

Conjunction [5 .1]...
Difference [6.6.1]...
Disjunction [5 .2] ... * “
Intersection [6 .6 .2] ..
Negation [5.3].. '*3
Union [6 .6 .3] .. '

LO G N O T(x) [13.3.1]... 367
LOGOR (xl x2 ... xN) [13 .3 .1].. 366
LO G X O R (xl x2 ... xN) [13.3.1]..

Index 1127

LOGOUT (logoutflg) [2 9 .2 .1]... 1034
LOW ER Editor command [19.6.28]... 708
LP, Editor command [1 9 .6 .2 9].. 709
LRSH (x n) [13.3.2]... 368
LSH (x n) [1 3 .3 .2].. 368
LSTFIL, compiler variable [3 1 .1] ... 1080
LSUBST (new old 1st) [6 .5 .2].. 153
LT, CLISP operator [2 3 .2 .2].. 838
L-CASE (X fig) [9 .8] ... 274

M; Editor command [19.6.30].. 709
MACLISP [1.2.1]... 5
MACRO

File Package command [17.2.11]... 557
Property nam e [8.12]... 246
read macro type [14.4.5].. 423

Macros
Com putational [8 .12.1]... 248
Definition of [8 .12.1]... 246
Expansion of [8 .1 2 .2]... 249
Lam bda form [8.12.1]... 246
NIambda form [8 .12 .1]... 246
Substitution [8 .1 2 .1]... 247
Synonym [8.12.1].. 247
T form [8 .12.1].. 248

MAKE, Editor command [19.6.31].. 711
MAKEBITTABLE (charset neg a) [10 .6 .2].. .. 291
M AKEFILE (filename options reprintfns sourcefile) [17 .3 .1].. 565
MAKEFILES (options files) [17.3.3].. 573
M AKEFN. Editor command [19.6 .32]... 712
MAKEKEYLST (1st defaultkey Icaseflg) [14 .7 .6]... 443
MAKENEWCOM (name type) [17 .7 .4].. 613
M AKE.STRING.FROM .LIST (1st) [10.1]... 276
MAP (mapx m apfnl mapfn2) [12.1].. 329
MAPATOMS (fn) [12 .1 .5].. 338
MAP2C (mapx mapy m apfnl mapfn2) [1 2 .1 .4] .. 336
MAP2CAR (mapx mapy m apfnl mapfn2) [12.1.4].. 336
MAPC (mapx m apfn l m apfn2)[12 .1 .2]... 332
MAPCAR (mapx m apfn l mapfn2) [12.1 .2]... 332
MAPCONC (mapx m apfn l mapfn2) [1 2 .1 .3] ... 334
M APDL (m apdlfn mapdlpos) [3 0 .9 .1].. 1076
MAPHASH (xarray m aphashfn) [11.3 .3].................... ! ... 312
M apping

Across atoms [1 2 .1 .5] .. 338
Generic [12.1].. 329
On successive elements [12.1 .2]... 332
Over two argum ents [1 2 .1 .4] ... 336
Returning a list of values [1 2 .1 .1].. 331
Subsetting [1 2 .2] ... 341
W ith concatenation [12.1 .3]......... .. 334
W ith printing [12.1 .6]... 339

M APLIST (mapx m apfn l mapfn2) [12.1.1].. 331
M APRELATION (relation m apfn) [26.7 .9].. 971

1128 Index

MAPRINT (mapx file left right sep pfn lispxprintflg)
[1 2 . 1 .6] .. 331

MARK, Editor command [19.6.33].. 713
MARKASCHANGED (name type reason) [17.3.9].. 582
Masterscope

Analyzing functions [26.2.1].. 944
Checking sets [26.2.5].. 948
Defining synonyms [2 6 .7 .5]... .. 968
Describing a function [26 .2 .3].. 946
Determining the free variables [26.7.3]... 967
Dumping the database [26.7.11]... 972
Editing functions [26.2.4].. 947
Erasing the database [26.2.2].. 946
Evaluating a relation [26.7.7].. 969
Getting a function template [26.7.4]... 967
Invoking Masterscope [26.7.1]... 965
Obtaining help [26.2.7].. 949
Parsing a relation [26.7.6] .. 969
Setting a function template [2 6 .7 .4]... 967
Showing structure [26 .2 .3].. 946
Specifying paths [2 6 .5].. 958
Specifying relations [26.4].. 955
Specifying sets [26.3]... 951
Testing item relativity [26.7.8]... 970
Updating the database [26.7.10]... 971
Using C U SP [2 6 .2 .6]... 948

MASTERSCOPE (command) [26 .7 .1]... 965
Matrices

Adding or subtracting two matrices [11 .4 .4].. 320
Checking for a [11.4 .2].. 318
Defining a matrix [1 1 .4 .1].. 315
Dot product of [11.4.4].. 324
Getting a matrix element [11 .4 .2]... 317
Multiplying two matrices [11 .4 .4]... 320
Setting a matrix element [11.4.3]... 319
Transposing [11 .4 .4]... 324

MATRIX (rows columns type origin) [11.4 .1].. 315
MAX (xl x2 ... xN) [1 3 .5] ... 375
MAXLEVEL, Editor variable [19 .6 .4]... 688
M AXP(x) [13.2.2].. 360
MAX.FIXP, variable [13]... 351
MAX. FLO ATP, variable [13] .. 351
MAX.SMALLP, variable [1 3] .. 351
MBD, Editor command [19 .6 .15]..
M DIFFERENCE (m atrixl matrix2) [11.4.4].. 320
MEAN (xarray) [13 .7 .1]... 384
MEDIAN (xarray) [13.7.1]...
MEMB (x 1st) [4 .8] ..
MEMBER (x 1st) [4.8]...
M ERGE (x y fncompare) [6 .9 .1]..
M ERGEINSERT (new x oneflag) [6 .9 .2]...
MIN (xl x2 ... xN) [13 .5]... ^

Index 1129

MINP(x) [13.2.2]..

M INU SP(x) [13.2.3]... 362
M IN.FIXP, variable [1 3] .. 35 1
M IN.FLOATP, variable [1 3] .. 3 5 1
MIN.SMALLP, variable [1 3].. 351
MISPELLED? (word rel splst fig tail fn) [22.8 .2]... 822
Mixed arithmetic [13.5]
MKATOM (expression) [9 .2 .2]... .. 259
M KLIST (expression) [3 .2 .2].. 42
M K S T R IN G (x)[10 .1].. 275
MOVD (fromfn tofn copyflag) [8 .5] ... 225
MOVD? (fromfn tofn copyflag) [8 .5] ... 225
MOVE, Editor command [19.6.34]... 714
M OVETOFILE (dstfile name type srcfile) [17.7.7]... 615
MPLUS (m atrixl matrix2) [11.4.4] - 320
M TIMES (m atrixl matrix2) [1 1 .4 .4] ... 320
M ULTIFILEINDEX (srcfiies dstfile newpageflg) [24.1 .2].. 879

N, Editor command [19.6.35] ... 715
NAME, History Package command [2 8 .4 .8]..................................... ... 1015
NARGS (fn) [8 .7 .2]... ... 231
NCHARS (atm flag rdtbl) [9 .5] 270
NCONC (Istl ... IstN) [6 .2 .1].. .. 125
NCONCl 1st expression) [6 .2.1].. 127
NCONS (expression) [3 .2 .1]... 40
NCREATE (typename from) [27.12.4]... 995
NEGATE (expression) [5 .3 .2] 114

Editor command [19 .6 .36]... 716
NEQ (expressionl expression2) [4 .6 .6].. 102
NEVER, CLISP iterative statem ent operator [2 3 .4 .2] ... 850
NEW ISW ORD (sing plural form vars) [23.5.2].. 861
NEW /FN (fn) [2 5 .5 .3] .. 924
NEX, Editor command [19.6.37]... ... 716
NIL

Creating (NIL) [3 .2 .4].. 48
Editor com m and [19 .6 .38]... 717

NILL 0 [8 .8 .3].. 239
NLAMA, compiler variable [3 1 .2 .1].. 1081
NLAMBDA, function type [8 .1 .1]... 214
NLAMS, compiler variable [3 1 .2 .1] .. 1081
NLEFT (1st n tail) [6.3.2] 137
NLISTP (expression) [4 .5] .. 91
NLSETQ (expression) [18.3 .1].. 637
NOESQUOTE, read macro option [14.4.5]... 423
NOFIXFNSLST, variable [22.5.1]... 794
NOFIXVARSLST, variable [22 .5 .1]... 794
NONIM M EDIATE, read macro option [14.4.5]... 423
NON-NUMERIC ARG, error message [1 8 .5]... 641
NOSPELLFLG, variable [2 2 .5 .1] ... 794
NOT (expression) [5.3.1] 114
NOT COM PILEABLE, compiler error message [31.5].. 1092
NOT FOUND, compiler error message [31 .5]... 1092
NOTANY (somex som efnl somefn2) [5 .5].. 119
NOTCOM PILEDFILES, File Package variable [17.3].. 576

1130 Index

MINUS (x) [13.5]... 3 7 5

NOTEQUAL (expressionl expression!) [4 .6 .6].. 102
NOTEVERY (every everyfnl everyfn2) [5 .4] .. 118
NOTLISTEDFILES, File Package variable [1 7 .3].. 576
NOTRACE, Masterscope path specification [26.5].. 959
NTH (expression n) [6.3.4].. 142

Editor command [19.6.39].. 717
NTHCHAR (atm n flag rdtbl) [9.6]... 271
NTHCHARCODE (atm n flag rdtbl) [9.6]... 271
NULL (expression) [4 .6 .7] ... 103
Numbers [2.2] .. 25
NUM BER? (expression) [4.2.1].. 84
NUMERIC-SORT (items flag) [6 .7 .1] ... 169
NUMFORMATCODE (format smashflag) [15.4 .1].. 466
NX, Editor command [19.6.37].. 717
NXP, Editor macro [19.6.37].. 717

O D D ? (xl x2) [13 .2 .3]... 364
OFF-LINE, File attribute (TOPS-20) [16.4]... 512
OK

Break Package command [20.2.1]... 735
Editor command [19.6.40].. 718

OLD, CLISP iterative statement operator [23.4 .3].. 852
ON, CLISP iterative statement operator [23.4.4] .. 852
ONEP (an-integer) [13.2.2] .. 361
OPENBYTESIZE, File attribute [1 6 .4]... 511
OPENFILE (name access recognition size parms) [16 .3 .1]... 507
OPENP (file access) [16.3.2] .. 509
OR (expressionl ... expressionN) [5 .2]... 112
ORF, Editor command [19.6.18].. 699
ORIGINAL

CLISP iterative statement operator [23.4.6].. 857
Editor command [19.6.41].. 718

ORR, Editor command [19.6.42] ... 719
OUTFILE (file) [16.2 .3]... 503
OUTFILEP (file) [16.2.4].. 505
OUTOF, CLISP iterative statement operator [23 .4 .6]... 857
OUTPUT (file) [16.2.3] ... 503

Index 1131

P
Editor command [19.6 .43]..
File Package command [17.2.6]... 553

PACK (1st) [9 .3 .1]...
PA C K C (1st) [9 .3 .1] ... 262
PACK* (lisp objects) [9.3.1] .. 263
PACKFILENAME (fieldname[l] fieldvalue[l] ...) [16.7.2]... 519
PAGEFAULTS () [2 9 .3 .2].. 1^37
PARENT, DWIM variable [22.7.1]...
Parenthesis errors [2 2 .2 .2]..
PARSERELATION (relation) [26.7.6]...
PB _ „

Break Package command [20.2.6]...
History Package command [28.4.13]...

PEEKC (file rdtbl) [14.2.7] ..

Performance Measurement
Breaking down performance by function [29 .3 .4].. 1039
Counting CONSes [29 .3 .1].. 1036
Counting page faults [29.3.2]... 1037
Printing the breakdown results [29 .3 .4].. 1039
Timing expression evaluation [29.3.3].. 1038

PF (fn fromfiles tofile) [1 5 .7 .3].. 488
PL, History Package command [28.4.12].. .. 1018
PLUS (xl x2 ... xN) [13.5] ... 375
PLU SP(x) [1 3 .2 .3] .. 362
POP, CHANGETRAN word [23 .10 .1].. 873
POSITION (file n) [15.6.5].. 482
POW EROFTW OP (x) [1 3 .2 .3].. 365
PP (fn[l] fn[2] ... fn[n]) [15 .7 .2].. 487
PPT, Editor command [19 .6 .43].. 720
PPV, Editor command [19.6 .43]........................ ... 720
PP*, Editor command [1 9 .6 .4 3].. 720
Predicates

Definition of [4] 81
PRETTYCOM PRINT (expression) [17.8.7].. 624
PRETTYDEF (prettyfns prettyfile prettycoms reprintfns

sourcefile changes) [17.8.1] ... 615
PRETTYEQUIVLST, prettyprinting control variable [15 .7 .5].. 491
PRETTYFLG, prettyprinting control variable [1 5 .7 .5]... 491
PRETTYPRINT (fns prettydef) [15.7.1]... 483
PRETTYPRINTMACROS, prettyprinting control variable

[15.7.5] ... 492
PRETTYPRINTTYPEM ACROS, prettyprinting control variable

[15.7.5] ... 492
Prettyprinting

Control variables [15 .7 .5]... 489
From a file [15 .7 .3].. 488
Function definitions [1 7 .8 .1] .. 615
Generalized [1 5 .7 .1] 483
M aking a file creation slug [17.8.3].. 618
Symbolic files [15.7.4, 17.8]... 489
To a term inal [15.7 .2]... 487

PRETTYTABFLG, prettyprinting control variable [1 5 .7 .5] 492
PRIN l (expression file) [15.1.1]... 448
PRIN2 (expression file) [15.1.2]... 449
PRIN3 (expression file) [15.1.1]... .. 449
PRIN4 (expression file) [15.1.2]... 450
PRINT (expression file rdtbl) [15.1.3].. 451
PRINTHISTORY (history event skipfn novalues file) [2 8 .6 .8].. 1029
Print names

Concept of [2 .1 .1] .. 21
Definition of [9] 253
Determining PNAME length [9.5].. 270
Extracting characters from a PNAME [9.6]... 271

PRINTBELLS 0 [1 5 .1 .4]... 452
PRINTCOM M ENT (comm entptr) [16 .10 .2]... 535
PRINTDATE (file changes) [17.8.5]... 622
PRINTDEF (expression left defflag tailflag fnslst file)

[I j .7.4, 17.8.2]... 489

1132 Index

PRINTFNS (fnslst) [17 .8 .6].. 623
Printing

Aborting printout via CTRL-X [14 .1 .1].. 401
Bells [15.1.4] .. 452
Carriage return [15 .2 .2].. 460
Changing floating point output format [15.4.5].. 469
Changing printlevel via CTRL-P [14.1.1].. 399
Clearing the output buffer via CTRL-O [14.1.1].. 399
Complex numbers [13.7.2].. 390
Definitions [17 .8 .2]... 619
Effect of radix on [15.4.4].. 468
File dates [1 7 .8 .5]... 622
Fixed point numbers [15.4.2].. 466
Floating point numbers [15.4.3] ... 467
Format conversion of numbers [15.4.1] .. 465
Function definitions on a file [17.8.6]... 623
Numbers [15.4] ... 465
PRINTNUM fixed point format [15 .4 .2].. 466
PRINTNUM floating point format [15.4.3].. 467
S-expressions [15.1]... 448
Spaces [15.2.1]... 458
Tabs [1 5 .2 .3].. 460
Unusual data structures [15.1.6]... 454
User defined [15.1.5]... 452
With a carriage return [15 .1 .3]... 451
With separators [15.1.2].. 449

PRINTLEVEL (carlevel cdrlevel) [15.3]... 462
Print level

Definition of [1 5 .3] ... 462
Dynamically setting via CTRL-P [15.3].. 464

PRINTNUM (format number file) [15.4]... 465
Printout Package [15.8] ... 493

Horizontal spacing commands [15.8.1].. 494
Printing specifications [15.8.3]... 495
Structure specification [15 .8 .4]... 496
Vertical spacing commands [15.8.2]... 495

PRODUCE (value) [8 .11 .1].. 244
Prog Forms

Binding PROG variables [3 .7 .1] ... 66
Exiting PROGs [3 .7 .4].. 71
Implementing a DO-WHILE-UNTIL construct [3 .7 .5]... 71
Transfer of control within [3.7.3]...
Variations on [3 .7 .2]...

PROG (varlst expression[l] ... expression[n]) [3.7].. 65
Programmer’s Assistant

Apprising of new undoable functions [25.5.3].. 924
Concept of undoing [25.1] ..
Establishing a user executive [25.3]... 90/
Evaluating expressions as if LISPXREAD [25.5.2]...
Replacing the top-level value [25.4.2]... 913
Substituting undoable versions [25 .5 .4].. 925
Undoable sets [25.4.1]..
Undoing events [2 5 .5 .5]..
Undoing function definitions [25.4.4]...

Index 1133

Programm er’s Assistant (continued)
Undoing mapping functions [25.4.3]... 914
Undoing putting and removing of properties [25.4.5].. 916
Undoing when errors occur [2 5 .5 .6]... 928
W riting your own undoable functions [25.4.6]... 919

PRO G l (expression[l] ... expression[n]) [3 .7 .2].. 68
PROG2 (expression[l] ... expression[n]) [3 .7 .2]... 68
PROGN (expression[l] ... expression[n]) [3.7.2]... 68
PROMPTCHARFORMS, History Package variable [2 8 .5 .2]... 1023
PROM PT#FLG, Program m er’s Assistant variable [25.6]... 931
PROP, File Package command [17 .2 .5]... 552
Property lists

Adding a property to a property list [7 .4 .1].. 203
Assigning multiple properties [7 .3 .1] ... 201
Association with literal atoms [2 .1 .3] ... 21
Changing property names [7.4.4]... 208
Concept of [7 .1].. 193
Defining a property for multiple atoms [7 .3 .3] ... 202
Editing of [19 .1 .3]... 668
Extracting a property sublist [7.6]... 211
Getting a property [7 .2] 195
Getting the property list [7 .2 .1]... 197
O btaining the property names of an atom [7.5]... 210
O btaining the system property names [7.5.1].. 211
Putting properties [7 .3]...................... ... 198
Removing a property from a property list [7 .4 .2] ... 206
Removing the property list [7 .4 .3].. 207
Scope of [7 .1 .1] ... 194
Setting the property list [7 .3 .2] .. 201

PROPNAMES (atm) [7.5] .. 210
PROPRECORD, Record Package declaration [27 .6].. 986
PROPS, File Package com m and [17.2 .5].. 551
PROTECTION, File attribute (INTERLISP-10) [1 6 .4]... 512
PROTECTION VIOLATION, error message [18.5].. 646
PUSH, CHANGETRAN word [23.10.1].. 872
PUSHLIST, CHANGETRAN word [2 3 .10 .1]... 873
PUSHNEW, CHANGETRAN word [23.10.1]... 873
PUTASSOC (key value alst) [6.10.2]... 186
PUTD (fn definition) [8 .4] .. 224
PUTDEF (name type definition) [17.5 .2].. 593
PUTDQ (fn definition) [8 .4 .1]... 225
PUTDQ? (fn definition) [8 .4 .1].. ... 225
PUTHASH (key value xarray) [11 .3 .2].. 310
PUTPRO P (atm property value) [7.3]... 198
PUTPROPS (atm propertyl valuel ...) [7 .3 .1] ... 201

Q, Editor com m and [1 9 .6 .1 5].. 696
QUO TE (expression) [3 .4] ... 53
QU O TIEN T (x l x2) [13 .5]... 375

R, Editor com m and [1 9 .6 .4 4].. 720
RADIX (n) [15 .4 .4].. 468
RAISE (flag ttbl) [15.6.4]... ... 480

Editor com m and [19 .6 .45].. 721

1134 Index

RAND (lower upper) [13 .6 .6]... 382
Random number generation [1 3 .6 .6]... . 382
R A N D A ccE ssp (file) [16 .8 .2]...523
RANDSET(x) [13.6 .6]... 382
RATEST(x) [1 4 .2 .3] ... 403
RATOM (file rdtbl) [14.2.1].. 402
RATOMS (atm file rdtbl) [14.2.2].. 402
RC, Editor command [19.6.44].. 720
READ (filename rdtbl flag) [14.1]... .. 395
READ-EVAL-PRINT loop [8 .8] .. 237
READC (file rdtbl) [14 .2 .5].. .. 405
READCOMMENT (file rdtbl) [16.10.2]... 534
READDATE, File attribute [1 6 .4].. 511
Reading data

Entering atoms with embedded control characters
via CTRL-V [14 .1 .1].. .. 401

Erasing the last character via CTRL-A [14.1.1].. 398
Erasing the input line buffer via CTRL-Q [14.1.1]... 400
Peeking ahead to the next character [14.2.7].. 407
Reading atoms [14.2.1].. 401
Reading a character [1 4 .2 .5].. 405
Reading the last character [14 .2 .6]... 406
Reading a line [1 4 .2 .8]... 408
Reading from a file [14.2 .9].. 409
Reading a string [14.2.4] .. 405
Reading upto an atom [14.2.2] ... 402
Retyping the input buffer via CTRL-R [14.1.1].. 400
Skipping S-expressions [14.2.10]... 410
Testing atom demarcators [14 .2 .3]... 403
Testing for input [14 .3 .1].. 412
Waiting for input [14.3.2].. 414

READFILE (file) [14.2.9]... 409
READLINE (rdtbl line lispxflag) [1 4 .2 .8]... 408
READMACROS (flag) [14.4.7].. 425
READ MACRO CONTEXT ERROR, error message [18.5]... 646
Read macros

Definition of [14.4.5]... ^̂ 21
Enabling/disabling read macros [14.4 .7].. 425
Setting the read macro flag [14 .4 .7]... 426
Testing for read macro execution [14 .4 .7].. 426

READP (file flag) [1 4 .3 .1]... '*^2
READTABLEP (rdtbl) [14.5.1].. 428
Read tables

Copying a read table [14.5.4]..
Definition of [1 4 .4] ...
Getting a read table address [1 4 .5 .2]... 428
Setting a read table address [14.5.3]...
Testing a read table [14.5.1 ...

READVISE (expression) [21.3]..
REAL (cxl) [1 3 .7 .2]...
REALFRAMEP (position interpflag) [30.5.1]..
REALSTKNTH (n position interpflg oldposition) [30.5.2] ...
REANALYZE, Masterscope command [26 .2 .1]..
RECIPROCAL (x) [13.7.3]...

Index 1135

RECLOOK (recordname) [27.11.2]... 99O
RECOM PILE (pfile cfile fns) [31.3.4]... 1089
Records [2 .6] .. 32
RECORD

File Package command [17.2.13]... 559
Record Package declaration [27.1.1, 2 7 .5]... 975,984

Record package [27]
Accessing a record value [27.11.5]... 992
Creating a record [2 7 ,2] .. 979

. Editing a record declaration [27.11.1].. 990
M anipulating record fields [2 7 .4] ... 983
Obtaining a record’s field names [27.11.4]... 992
Obtaining the declarations of a field [27.11.3]... 992
Obtaining the record declaration [27.11.2].. 991
Record declarations [2 7 .1].. 975
Record subfields [2 7 .1 .4] .. 979
Record tails [2 7 .1 .1]... 975
Replacing a record value [2 7 .1 1 .5]... 993
Testing for records [2 7 .3].................... .. 982
Translating the record declaration [27 .1 .3].. 978
Using the record declaration [2 7 .1 .2]... 977

RECORD ACCESS (field value type new decl) [2 7 .1 1 .5]... 993
RECORDFIELDNAM ES (record) [27 .11 .4].. 992
REDEFINE?, compiler message [31.1]... 1080
REDO, History Package command [28.4.1]... 1006
REFERENCE, Masterscope relation [26 .4]............. ... 957
REHASH (oldarray newarray) [11.3.2]... 311
RELSTK (position) [30.7 .2]... 1072
RELSTKP (position) [30.7.2]... 1072
REM AINDER (x l x2) [13 .5]... 375
REM EM BER, History Package command [28 .4 .1 1].. 1018
REM PROP (atm property) [7 .4 .2] .. 206
REM PROPLIST (atm proplst) [7 .4 .3] 207
REM OVE (x 1st) [6 .4 .4].. ... 149
RENAME (old new types files method) [1 7 .5 .9].. 600
RENAM EFILE (old new) [16.6.2]... 518
REPACK, Editor command [19.6.46].. 721
REPEAT, History Package command [2 8 .4 .1]... 1007
REPEATUNTIL, CLISP iterative statem ent operator [23.4 .5].. 856
REPEATW HILE, CLISP iterative statement operator [2 3 .4 .5] 856
Repetitive execution [8 .1 0].. ... 241
REPLACE

Editor command [19 .6 .44]... 720
Masterscope relation [2 6 .4] ... 957

REPLACEFIELD (descriptor datum newvalue) [27 .12 .3]... 995
RESET 0 [1 8 .6 .2].. 653
Reset Package [25 .7]... 931

Establishing a reset list [25.7.1].................... .. 931
Establishin undo information [2 5 .7 .5] .. 936
Resetting expressions [2 5 .7 .4] ... 935
Resetting variables [25.7.3] ... 934
Restoring your environment [25.7.2].. 932

RESETFORM (resetformx expr[l] ... expr[n]) [25.7.4]...935
RESETFORM S, Reset Package variable [25.7.6]... 937

1136 Index

RESETLST (form [l] ... form[n]) [25 .7 .1].. 931
RESETSAVE (x y) [2 5 .7 .2].. 932
RESETTERMTABLE (ttbl from) [15.5.6]..................... 474
RESETUNDO (expression stopflag) [25.7.5].. 936
RESETVAR (var value expression) [25.7.3].. 934
RESETVARS (varslst expressions) [25.7.3].. 935
RETAPPLY (position fn args flag) [30.8].. 1075
RETEVAL (position expression flag) [30.8].. 1075
RETFROM (position value flag) [30.8].. 1074
RETRIEVE, History Package command [28.4.8]... 1015
RETRY, History Package command [28.4.4] .. 1011
RETTO (position value flag) [30.8]... 1074
RETURN (expression) [3 .7 .4].. 71

Break Package command [20.2.3].. 737
RETYPE, terminal table syntax class [15.5.1].. 471
REVERSE (expression) [6 .4 .3] .. 148
RI, Editor command [19.6.47]... 722
RIGHTBRACKET, syntax class [14.4.1].. 415
RIGHTPAREN, syntax class [14.4.1].. 415
RO, Editor command [19.6.48]... 722
ROUNDED (x) [1 3 .7 .3].. 392
Rounding [1 3 .7 .3]... 392
ROUNDTO (x y) [13.7.3].. 392
RPAQ (atm expression) [3 .9 .1 ,25 .4 .1]... 77
RPAQQ (atm expression) [3.9.1,25.4.1].. 77
RPAQ? (atm expression) [3 .9 .1]... 77
RPLACA (atm expression) [3.3.1]... 49
RPLACD (atm expression) [3.3.2]... 50
RPLCHARCODE (x n charcode) [1 0 .5 .1].. 285
RPLNODE (atm expression-a expression-d) [3 .3 .3]... 52
RPLNODE2 (atm expression) [3 .3 .3].. 52
RPLSTRING (x n y) [10.5]... ... 284
R P T (rp tn rptf) [8 .10]... 242
RPTQ (rptn rpptexl ... rptexN) [8.10].. 242
R SH (x n) [13.3.2].. 368
RSTRING (file rdtbl) [14 .2 .4]... 405
RUNONFLG, variable [22.7]... 810
R l, Editor command [19.6.44] ... ̂ 20

S, Editor command [19.6.49].. ̂ 23
S-expressions

Conjunction of [5.1]...
Disjunction of [5 .2] ...
Negating [5 .3 .2]... .
Quantification of [5.4,5.5]... ’

SASSOC (key alst) [6.10.1]..
SAVE, Editor command [19.6.40]...
SAVE EXPRS?, compiler message [31.1]...
SAVEDEF (name type definition) [17.5.7]...
SAVESET (name newvalue topflg saveflg) [25.4.1]..
SAVESETQ (name newvalue) [25.4 .1]...
SAVESETQQ (name newvalue) [25.4.1] ...
SEARCHPDL (searchpdlfn searchpdlpos) [30.9.2]..
SELCHARQ (expression clause[l] ... clause[N]) [9 .7]...

Index 1137

SELECTC (selector clause[l] ... clause[n]) [3 .6 .4] ... 64
SELECTION.SORT (xarray) [11.5.2].............................. .. 327
SELECTQ (selector clause[l] ... clause[n]) [3.6].. 60
SEPRCASE (clispflg) [1 6 .8 .3].. 526
SEPRCHAR, syntax class [1 4 .4 .1] ... 415
Session transcripts [2 9 .4] ; 1042
SET (atm expression) [3 .8]... 76

M asterscope relation [2 6 .4] .. 955
SETA (array index value) [11.2.5].. 302
SETARG (varx n value) [8 .7 .5].. 236
SETATOMVAL (atm expression) [3 .9 .2].. 78
SETBRK (1st flag rdtbl) [14 .4 .3]................................... ,... 419
SETCASEARRAY (casearrayx fromcode tocode) [16.8.3].. .. 525
SETD (array index value) [11.2.5].. 302
SETERRORN (num ber message) [18 .6 .3]............. ... 654
SETFILEINFO (file attribute value) [16.4.1].. 513
SETFILEPTR (file address) [16.8.1]... 523
SETFN, C U S P property [23.7] ... 866
SETLINELENGTH (n) [15.6.5]... ... 481
SETM (name roŵ column value) [11.4.3]...................... 319
SETPROPLIST (atm expression) [7 .3 .2] ... 201
SETQ (atm expression) [3 .8] 76
SETQQ (atm expression) [3.8].. 76
SETREADM ACROFLG (flag) [1 4 .4 .7]... 426
SETREADTABLE (rdtbl flag) [1 4 .5 .3] ... 429
SETSEPR (1st flag rdtbl) [1 4 .4 .3].. 419
SETSTKNAM E (position name) [30.3.2]... 1063
SETSYNONYM (newphrase meaning) [26.7.5].. 968
SETSYNTAX (character class rdtbl) [1 4 .4 .3].. 419
SETTERM TABLE (ttbl) [1 5 .5 .2]... 472
SETTEM PLATE (fn tem plate) [26 .7 .4].. 968
SETTOPVAL (atm expression) [3 .9 .2]... 78
SHH, History Package com m and [28 .4 .16]... 1020
SHOU LD N TO [1 8 .6 .1] .. 650
SHOW , Editor com m and [19.6.50]... 723
SHOW PATHS, M asterscope com m and [2 6 .2 .3].. 946
SHOW PRINT (expression file rdtbl) [1 5 .1 .3] ... 451
SHOW PRIN2 (expression file rdtbl) [15.1.2]... 449
SHOW W H ERE, M asterscope com m and [2 6 .2 .3].. 946
SIDE, History Package property [28.1]...1001
SIGN (x) [13.7 .3].. 368
SIN (x radiansflag) [1 3 .6 .1].. 377
SINGLEFILEINDEX (srcfile dstfile newpageflg) [24 .1 .1]... 878
SIZE, File attribu te (INTERLISP-10) [1 6 .4]... 512
SKOR (xword tword xlen tlen flag) [22 .6 .2].. 802
SKREAD (file rereadstring) [14.2.10]... 411
SMALLP (expression) [4.2.4,13.2.3]... 88
SMASH, Masterscope relation [2 6 .4]... 956
SMASHFILECOMS (file) [1 7 .7 .6] ... 614
SOM E (somex som efnl somefn2) [5 .5]............................... ... 119
SORT (items fncompare) [6 .7 .1].. 169
SPACES (num ber file) [1 5 .2 .1]... ... 458
SPECVARS

definition [3 0 .1 .1] .. '1056
File Package com m and [17.2.2]... 545

1138 index

Spelling correction [22.2.1]... 781
Choosing a candidate [22 .6 .1].. 795
Finding a mispelling [22.8 .2].. 822
Fixing a mispelling [22 .8 .3].. 823
Scoring a candidate [22.6.2].. 802

Spelling lists [22.7.2]... 812
Adding a word [22.8.1].. 814

SPELLFILE (file noprintflag nospellflag dirlst) [2 2 .8 .5]... 827
SPELLINGSl, DWIM variable [22.7.2]... 812
SPELLINGS2, DWIM variable [22.7.2]... 813
SPELLINGS3, DWIM variable [22.7.2]... 813
SPLICE, read macro type [14.4.5]... 423
SPLITC, Editor command [19.6.51].. 724
SQRT (x) [1 3 .6 .4].. 380
Square root [13.6.4].. ‘380
Stack

changing the frame name [30.3.2]... 1063
clearing an active stack [30.7.3]... 1072
concept of active frame [30.2.3]... 1059
copying stack frames [30.7.4]... 1073
definition [30 .2]... 1057
distinguishing real from dummy frames [30.5.1]... 1067
evaluating expressions via access chain [30.6.2] .. 1070
evaluating in other contexts [30.6.1]... 1069
exiting from a stack frame [30.8]... 1073
finding a real stack frame [30.5.1] 1067
locating a frame by position [30.3.1]... 1067
locating a stack frame [30.3.1].. 1062
m anipulating stack pointers [3 0 .7]... 1071
mapping down the stack [30 .9 .1].. 1076
obtaining the frame name [30.3.2] ... 1063
obtaining the frame variables [30.4.1]... 1064
obtaining the variable values [30 .4 .2].. 1065
releasing a stack pointer [30.7.2]... 1072
scanning frames for atom bindings [30.5.3].. 1068
scanning the stack [30.4.3]... • • • 10^5
searching down the stack [30.9 .2]... 1077
stack pointer [30.2.3] .. 1060
testing a stack pointer [30.7.1]... 1071

STACK OVERFLOW, error message [18.5].. 640
STACK POINTER HAS BEEN RELEASED, error message [18.5, 30.3].................................. 644
STACKP (position) [30.7.1].. 1071
STANDARD.DEVIATION (xarray) [13.7.1].. 386
Statistical functions [13.7.1]..
STKAPPLY (position fn args flag) [30.6.2].. 1070
STKARGS (position) [3 0 .4 .2].. • • •
STKEVAL (position expression flag) [30 .6 .2].. 1070
STKNAME (position) [30.3.2].. ..
STKNTH (n iposition oposition) [30.3.1]... JObi
STKNTHNAME (n iposition) [30 .3 .2]... |®63
STKPOS (framename n iposition oposition) [30 .3 .1]... 1
STKSCAN (var iposition oposition) [30.4.3] ..
STORAGE 0 [29.7.1]...

. . . ■ S f14 1 11 .. 400Changing minimum via CTRL-5> [14.1.1J..

Index 1139

STORAGE FULL, error message [18.5]... 645
STREQUAL (x y) [1 0 .4 .2]..!] 282
STRF, compiler variable [3 1 .1].. 1080
STRINGDELIM , syntax class [14.4 .1]... 4 15
STRIN G ? (expression) [4.3, 10 .4 .1]... 8
STRMEMB (x y) [10.4 .3].. "283
STRPOS (pattern string start skip anchor tail) [1 0 .6] ... 286
STRPOSL (charset string start neg) [10 .6 .1].. 290
Strings

. Allocating a string pointer [10 .1 .1]... 277
Concatenating a list of objects [10.3.1]... 281
Concatenating strings [10.3].. 280
Creating a string [10.1]... 275
Creating bit tables [10.6.2].. 291
Definition of [2 .5] .. 32
Deleting from a string [10.7.2].. 293
Determining string existence [10 .4 .1].. 282
Extracting a substring [10.2.1].. 278
Getting the next or last character [10 .2 .2].. 279
Inserting into a string [10.7 .1].. 292
Replacing elements of a string [1 0 .5] ... 284
Replacing elements with character codes [10.5.1]... 285
Searching a string [10.6]... 286
Searching a string for a character [10.6.1].. 290
Substituting into a string [10 .7 .3].. 294
Testing the equality of strings [1 0 .4 .2]... 282
Testing string membership [10.4.3]... 283
Trimming a string [10.8]... ... 294

SUBATOM (expression start end) [9 .2 .3] ... 260
SUBLIS (alst expression flag) [6 .5 .3] .. 154
SUBPAIR (old new expression flag) [6 .5 .4]... 157
SUBPR (expression Istl lst2) [6 .5 .4].. 159
SUBR, function type [8 .1] .. 214
SUBR*, function type [8 .1] .. 214
SUBRP (fn) [8 .6] .. 228
SUBSET (mapx m apfnl mapfn2) [12.2].. 341
SUBST (new old 1st) [6 .5 .1].. 151
SUBSTITUTE.STRING (old fragm ent n m) [10.7.3].. 294
SUBSTRING (string n m oldptr) [1 0 .2 .1] ... 278
SUBl (x) [13.1.2].. 354
SUM, CLISP iterative statem ent operator [23.4 .2].. 849
SURROUND, Editor command [19 .6 .15].. 696
SVFLG, compiler variable [31.1]... 1080
SW, Editor com m and [19.6.52].. 725
SWAP

CHANGETRAN word [2 3 .1 0 .1]... 873
Editor command [19 .6 .52].. 725

SWAPC, Editor com m and [19.6.52]... 726
SWAPBLOCK TOO BIG FOR BUFFER, error message [18.5].. 646
Symbolic com putation [1 .1 .1] .. 2
SYMBOLP (expression) [4 .1 .1]... 83
SYNTAXP (character class) [14.4.4]... 420
Syntax classes [14.4.1].. 415

Checking a syntax class [1 4 .4 .2] ... 420

1140 Index

Index 1141

Getting the syntax class [1 4 .4 .2]... 417
Setting the syntax class [14.4.2]... 418

SYSIN (file) [16 .9 .2]... 529

SYSHASHARRAY, system variable [11.3] ... 308
SYSOUT (file) [16.9 .1]... 528
SYSOUTP (file) [16.9.1].. 528
SYSPROPSO [7.5.1] ... 211
SYSTEM ERROR, error message [18 .5]... 640
SYSTATS, Programm er’s Assistant variable [25.9.4].. 941
SYSTEMTYPE () [29 .2 .2].. 1035

T
Primary file [16.2.1] .. 501
System atom
Terminal read table [1 4 .4].. 415

TAB (pos minspaces file) [15 .2 .3]... 460
TAIL, DW IM variable [22.7 .1].. 811
TA ILP(x Istl) [4 .5 .1]... .. 92
TAILP? (x 1st) [4 .5 .2].. 93
TAN (x radiansflag) [13 .6 .1].. 377
TCOMPL (files) [31.3.3]... 1088
TCONC (pointer element) [6 .2 .2] ... 128
TEMPLATES, File Package command [17.2.16].. 561
TERPRI (file) [15.2.2] ... 460
Terminal tables [15.5]... 469

Character deletion control [15 .6 .3]... 477
Copying a terminal table [15.5.5] ... 473
Echo modes [15 .6 .1].. 474
Getting the echo mode [15 .6 .1]... 475
Getting a terminal table address [15.5.3].. 472
Line deletion control [15.6.3]... 479
Resetting the terminal table [15.5.6]... 474
Setting a terminal table address [15 .5 .2].. 472
Syntax classes [15.5.1].. 471
Testing a terminal table [15.5.4]... 473

TERMTABLEP (ttbl) [15.5.4].. 473
TEST

Editor command [19.6.53].. ^26
Masterscope relation [26.4] ..

TESTRELATION (item relation item2 inverted) [26 .7 .8]... 970
THEREIS, CLISP iterative statement operator [23.4.2]... 851
THRU, Editor command [19.6.54]... 727
TIM E (timex timen timetype) [29 .3 .3]... ^038
TIMES (xl x2 ... xN) [13.5]..

CLISP iterative statement operator [23.4.3].. 853
Editor command [19.6.54]..
Masterscope path specification [26.5]..

TOO MANY ARGUMENTS, error message [18 .5].. 648
TOO MANY FILES OPEN, error message [18.5].. 642
TOO MANY USER INTERRUPT CHARACTERS, error message [18.5]................................ 645
TRACE (expression) [20.1 ..
TRANSPOSE (matrix) [11.4.4]... .. I 7e
Trigonometric functions [13.6.1, 13.6.2]..

TRIM (string) [10 .8]... 294
TRU E 0 [8 .8 .3].. .. 238
TRUNCATE (x) [1 3 .7 .3] ... 391
TTY:, Editor command [19 .6 .55].. 727
TYPE, File attribute (INTERLISP-D) [16.4].. 512
TYPERECORD, Record Package declaration [27 .5]... 985
TYPE?, Record Package declaration [27.3].. 982
TYPESOF (name possible-types inpossible-types source)

[17 .5 .13]... 605
TYPE-IN?, DW IM variable [22.7.1]... 812

UB, Break Package command [20.2.5]........................ .. 738
UGLYVARS, File Package command [17 .2 .2]......... 546
UNADVISE (expression) [21.2].. 775
UNARYOP, C U SP property [2 3 .7] ... 866
UNBLOCK, Editor command [19.6.53]... 726
UNBOUND ATOM , error message [18 .5].. 646
Unbound atoms [22.3.1].. 785
UNBREAK (expression) [20.4.1].. .. 761
UNBREAKIN (fn) [20.4.3]... 763
UNBREAKO (fn) [20.4.2].. 762
Undefined functions [2 2 .3 .2]... 787
UNDEFINED CAR OF FORM , error message [1 8 .5]... 647
UNDEFINED FUNCTION, error message [18.5].. 647
UNDEFINED OR ILLEGAL GO, error message [1 8 .5] ... 641
UNDO

Editor com m and [19 .6 .56]... 727
History Package command [28.4.6]... 1016

UNDOLISPX (event) [2 5 .5 .5] ... 925
UNDOLISPXl (event flag) [25.5.5].. 927
UNDONLSETQ (undoform) [2 5 .5 .6].. 928
UNION (Istl lst2) [6 .6 .3] 167
UNIQUE (x) [6 .6 .2] 167
UNIQUE-UNION (x y) [6.6.3]... 168
Universal quantification [5.4].. 116
UNLESS, CLISP iterative statem ent operator [23.4.5].. 855
UNMARKASCHANGED (name type) [17.3.9]... 582
UNPACK (atm flag rdtbl) [9 .3 .2] 263
UNPACKFILENAM E (filename) [1 6 .7 .1].. 519
UNSAVEDEF (name type) [1 7 .5 .7] ... 599
UNSET (name) [2 5 .4 .1]... 912
UNTIL, CLISP iterative statem ent operator [2 3 .4 .5].. 855
UNUSUAL CDR ARG LIST, error message [18.5] ... 644
UP, Editor com m and [19 .6 .57].. 728
UPDATEFN (fn evenifvalid) [26 .7 .10].. 971
USE

History Package com m and [28.4.2].. 1008
M asterscope relation [2 6 .4] .. 957

USE AS A CLISP W ORD, M asterscope relation [26.4].. 957
USE AS A FIELD, M asterscope relation [2 6 .4] ... 957
USE AS A PROPERTY NAME, Masterscope relation [26.4]... 957
USEM APFLG, File Package variable [17.1.5]... 541
USERDATATYPES () [27 .12 .7].. 997
USEREXEC (lispxid lispxxmacros lispxuserfn) [2 5 .3].. 907

1142 Index

Index 1143

USERINTERRUPTS, system variable [18.4].. 639
USERLISPXPRINT (expression file rdtbl nodoflag) [25 .5 .7]................... 928
USERMACROS, File Package command [17.2.11].. 558
User name

Obtaining [29.2 .3]... 1036
USERNAME (dflag tflag) [2 9 .2 .3].. 1036
USER BREAK, error message [18 .5]... 646
User syntax classes (see read macros)
USERWORDS, DW IM variable [22.7.2]... 812
USE-ARGS, History Package property [28 .1].. 1001
U-CASE (x) [9 .8].. 270
U-CASEP (x) [9.8].. 270

Value cells [2 .1 .2] ... 21
Value editing [19 .1 .2]... 666
VALUEOF (event) [28.6.5] .. 1027
VARIABLES (position) [3 0 .4 .1].. 1064
VARIANCE (xarray) [13.7.1].. 386
VARS, File Package command [17.2.2]... 544
VAXMACRO, property name [8.12]... 246
VIRGINFN (fn flag) [20 .5 .3].. 765
Virtual Memory [16.9] .. : ------ 527

Restoring [1 6 .9 .2]... 529
Saving [16.9 .1]... 528

W AITFORINPUT (file) [14.3.2].. 414
WHEN, CLISP iterative statement operator [23 .4 .5]... 855
WHENCLOSE (file prop value ...) [16.5.3].. 515
W HEREIS (name type files) [1 7 .3 .8]... 581
W HILE, CLISP iterative statement operator [23.4.5]... 855
W ITH, Record Package declaration [2 7 .4]................. ... 983
W RITEDATE, File attribute [1 6 .4]... 511
W RITEFILE (expression file) [15 .1 .7]... 457

XTR, Editor command [19.6.58].. 728

ZERO 0 [8 .8 .3]... .. 238
ZEROP (expression) [4 .2 .2].. 85
Zetalisp [1 .2 .1]... ^

0, Editor command [19.6.60]..
2ND, Editor command [19.6.26]..
3RD, Editor command [19.6.26]..
/M APCONC (mapx m apfnl mapfn2) [2 5 .4 .3]... 915
/M O V D (fnl fn2 flag) [2 5 .4 .4].. 916
/PU T D (a.function a.definition) [25.4.4]... 916
/PU T PR O P (atm property value) [25.4.5].. 917
/R EM PR O P (atm property) [25.4.5] ... 918
/RPLACA (name newvalue) [25.4.2]... 9 3
/RPLACD (name newvalue) [25.4.2] ...
<>, CLISP operator [23.2.1] ..
!, CLISP operator [23.2 .1]..
!GO, Break Package command [20.2.1].. ..
INX, Editor command [19 .6 .37]... ..

!OK, Break Package command [20.2.1].. 736
.'UNDO, Editor command [19.6 .56]... 727
IVALUE, Break Package variable [20.2.2].. 736
!0, Editor command [19 .6 .60].. 730
!!, CLISP operator [23.2.1]... 836
+ , CLISP operator [23.2.2].. 837

CLISP operator [2 3 .2 .2]... 837
- ' , Break Package command [20.2.10]... 746
*

CLISP operator [2 3 .2 .2]... 837
Comment function [1 6 .1 0]... 533
Editor com m and [19 .6 .59].. 729
File Package command [17.2.9].. 555
Read macro character [14.4.6].. 424

COMMENTFLG, System variable [16 .10 .1].. 534
♦ARCHIVE*, History Package property [28 .1].. 1001
♦CONTEXT*, History Package property [28.1].. 1001
ERROR, History Package property [28 .1].. 1001
GROUP, History Package property, [2 8 .1].. .. 1001
HISTORY, History Package property [28 .1].. 1001
LISPXPRINT, History Package property [2 8 .1] .. 1001
PRINT, History Package property [2 8 .1].. 1001

CLISP operator [23 .2 .2]... 837
Break Package command [20.2.9].. 745

Break Package command [20.2.4].. 738
CLISP operator [23 .2 .2]... 837

CLISP operator [23.2.2] ... 838
Break Package command [20.2.9].. 745

CLISP operator [2 3 .2 .2]... 838
History Package command [28.4.15].. 1020

CLISP operator [23.2.2].. 838
’, CLISP operator [2 3 .2 .3] .. 839
, CLISP operator [23.2 .3].. 839
#CAREFULCOLUMNS, prettyprinting control variable [15.7.5].. 491
#RPARS, prettyprinting control variable [15.7.5].. 491
...ARG S, History Package property [28.1].. 1001
?

Editor command [19 .6 .43]........................ .. 719
History Package command [28.4.14].. 1019
Read macro character [14.4.6].. .. 424

??, History Package command [2 8 .4 .5] 1012
? = , Break Package com m and [20.2.6].. 738

Editor com m and [19.6.33].. 714
Editor com m and [19.6.33]... 714

\ , Editor com m and [19.6.33].. 714
P, Editor com m and [19.6.33].. 714
% , the escape character [14 .4 .3]... 420

(single quote) read m acro character [1 4 .4 .6] ... 424
‘, (back quote) read m acro character [1 4 .4 .6]... 424
, (vertical bar) read macro character [1 4 .4 .6] .. 424
@, Break Package com m and [20.2.9]... 745

1144 Index

