
1

Medley Interlisp:

The Interactive Programming

Environment

(derived from Interlisp-D)

Version 1.0

by

Stephen H. Kaisler, D.Sc.

1

ACKNOWLEDGEMENT

 The restoration of Interlisp and its rehosting on modern operating

systems and computer systems has been a work in progress for over three

years. Many of the original designers and authors of major sections of

Interlisp-D have participated in this restoration project. The team

working this restoration project includes:

 Larry Masinter

 Nick Briggs

 Ron Kaplan

 Arun Welch

 William Stumbo

 John Vittal

 John Cowan

 Michelle Denber

 Abe Jellinek

 Frank Halasz

1

TABLE OF CONTENTS

Acknowledgement ... 1
Table of Contents .. 1
List of Figures ... 1
List of Tables ... 1
Chapter One ... 3
Introduction ... 3

1.1 Interlisp-D: The Story Continues... ... 4
1.2 Objectives of this Text .. 5
1.3 What is Interactive Programming? ... 5
1.4 Philosophy .. 7

1.4.1 Psychological Principles ... 8
1.4.2 User Interface Models ... 9
1.4.3 Prototyping .. 12
1.4.4 The Role of Interlisp ... 13

1.5 Differences Between Interlisp-D & Interlisp-10 13
1.5.1 Type Numbers ... 14
1.5.2 Arithmetic ... 14
1.5.3 Variable Binding ... 15

1.6 Overview of the Text .. 16
1.7 Updates to This Text ... 18

Chapter Two .. 19
The Interactive Programming Environment .. 19

2.1 Fonts ... 19
2.1.1 The Description of a Font ... 21
2.1.2 Creating a Font .. 22
2.1.3 Testing for a Font Descriptor .. 25
2.1.4 Accessing the Font Properties ... 25
2.1.5 Copying a Font .. 27
2.1.6 Determining the Available Fonts .. 28
2.1.7 Setting the Font Descriptor ... 30
2.1.8 Setting the Default Font for a Device 31
2.1.9 Accessing Character Bitmaps ... 32
2.1.10 Font Files and Font Directories ... 39
2.1.11 Font Profiles .. 41
2.1.12 Font Variables ... 44

2

2.2 Hardware Functions .. 48
2.2.1 Display Screen Functions .. 49
2.2.2 Keyboard Management ... 50
2.2.3 Hardcopy Facilities ... 57
2.2.4 Determining the Printer Status .. 63
2.2.5 Determining the File Format ... 64
2.2.6 Determining the Printer Type.. 64
2.2.7 Hardcopy System Variables .. 65

2.3 Floppy Disk Management ... 70
2.3.1 Opening a Stream to the Floppy Disk 71
2.3.2 Setting the Floppy Disk Mode .. 71
2.3.3 Formatting a Floppy Disk ... 73
2.3.4 Naming a Floppy Disk .. 74
2.3.5 Determining the Free Pages .. 74
2.3.6 Determining Readability ... 75
2.3.7 Determining Writability .. 75
2.3.8 Waiting For Floppy Availability ... 76
2.3.9 Scavenging a Floppy Disk .. 77

3. Display Management ... 78
3.1 Display Screen Coordinate System ... 78

3.1.1 Positions .. 78
3.1.2 Testing a Position .. 80
3.1.3 Comparing Positions ... 81
3.1.4 Calculations on Positions .. 85
3.1.5 Position Functions ... 89

3.2 Regions ... 90
3.2.1 Creating a Region ... 91
3.2.2 Testing Positions Inside a Region ... 92
3.2.3 Intersection of Regions ... 97
3.2.4 Union of Regions .. 98
3.2.5 Testing for Intersection ... 99
3.2.6 Testing for Inclusion ... 99
3.2.7 Extending a Region ... 100
3.2.8 Constraining a Region to a Limit .. 101
3.2.9 Determining if a Point is in a Region 101

3.3 Bitmaps ... 102
3.3.1 Creating a Bitmap ... 103
3.3.2 Getting Bitmap Characteristics ... 105
3.3.4 Copying a Bitmap ... 110

3

3.3.5 Expanding and Shrinking a Bitmap 111
3.3.6 Reading a Bitmap .. 113
3.3.7 Printing a Bitmap .. 113
3.3.8 Distinguished Bitmaps .. 114
3.3.9 Finding Bits .. 115

3.4 Bitmap Manipulation (BITBLT)... 116
3.4.1 Moving Bits Between Bitmaps ... 116
3.4.2 Editing Bitmaps .. 119

3.5 Textures .. 124
3.5.1 Creating Textures .. 124
3.5.2 Testing for Texture.. 126
3.5.3 Inverting a Texture .. 127
3.5.4 Editing a Shade ... 128

3.6 Display Streams .. 129
3.6.1 Creating a Display Stream .. 129
3.6.2 Display Stream Operations ... 136
3.6.3 The TTY Display Stream .. 152
3.6.4 Opening a String Stream ... 156

3.7 Grids ... 157
3.7.1 Drawing a Grid ... 157
3.7.2 Shading Grid Units ... 159
3.7.3 Obtaining Grid Coordinates .. 160
3.7.4 Obtaining Source Coordinates from Grid 163
3.7.5 Grid Variables ... 163

4. Input Management ... 165
4.1 Mouse Management .. 165

4.1.1 Using the Mouse Buttons .. 165
4.1.2 Testing the Mouse State .. 166
4.1.3 Testing the Last Mouse State .. 167
4.1.4 Waiting Until a Mouse State Becomes True 168

4.2 Low Level Access to the Mouse ... 171
4.2.1 Getting the Cursor's Position... 171
4.2.2 Decoding the Mouse Buttons .. 172
4.2.3 Getting the Mouse State .. 172
4.2.4 Confirming an Operation with the Mouse 173
4.2.5 Mouse System Variables ... 175

4.3 Cursor Management .. 177
4.3.1 Representing the Cursor .. 177
4.3.2 Creating a Cursor .. 183

4

4.3.3 Obtaining the Cursor Position ... 184
4.3.4 Adjusting the Cursor Position ... 186
4.3.5 Copying a Cursor Record .. 187
4.3.6 Setting the Cursor ... 188
4.3.7 Inverting the Cursor .. 188
4.3.8 Alerting the User ... 189
4.3.9 Saving Cursors in a File .. 190

4.4 PROMPTFORWORD .. 190
4.4.1 Using PROMPTFORWORD .. 190
4.4.2 Response to Control Characters .. 195

5. Window Management ... 197
5.1 Window Characteristics .. 197

5.1.1 Window Representation .. 197
5.1.2 Window States .. 197
5.1.3 Icons .. 198

5.2 Window Types .. 198
5.2.1 Manipulating the Prompt Window .. 199
5.2.2 Manipulating the Logo Window ... 200
5.2.3 Interlisp Executive Window .. 203

5.3 Interactive Window Operations .. 204
5.3.1 Clearing a Window ... 205
5.3.2 Closing a Window ... 205
5.3.3 Burying a Window .. 206
5.3.4 Moving a Window .. 206
5.3.5 Shaping a Window .. 207
5.3.6 Redisplaying a Window .. 207
5.3.7 Painting in a Window .. 207
5.3.8 Taking a Snapshot ... 211
5.3.9 Shrinking a Window ... 212
5.3.10 Expanding a Window .. 213
5.3.11 Default Window Operation Menu 213
5.3.12 Background Operations ... 215

5.4 Scrolling.. 215
5.4.1 Scrolling a Window .. 217
5.4.2 Handling the Mouse during Scrolling 218
5.4.3 Scrolling by Repainting .. 219
5.4.4 Scrolling Properties ... 221

5.5 Window Management Functions .. 223
5.5.1 Creating a Window ... 223

5

5.5.2 Opening a Window ... 229
5.5.3 Closing a Window ... 230
5.5.4 Removing a Window .. 231
5.5.5 Testing Windows .. 232
5.5.6 Determining Window Attributes ... 236
5.5.7 Shaping and Shrinking Windows .. 239
5.5.8 Moving Windows .. 243
5.5.9 Clearing and Redisplaying Windows 250
5.5.10 Testing for a Full Page .. 251
5.5.11 Reshaping a Window by Repainting 253
5.5.12 Inverting a Window .. 254
5.5.13 Flashing a Window ... 256
5.5.14 Determining the Minimum Window Size 256
5.5.15 Obtaining a Window from a Display Stream 257

5.6 Window Properties ... 258
5.6.1 Basic Window Properties .. 258
5.6.2 Event Properties for Windows .. 262

5.7 Background Display Operations ... 269
5.7.1 Background Operations ... 270
5.7.2 Background Variables ... 271

6. Menus .. 273
6.1 Menu Structure ... 273

6.1.1 Representing Menus .. 276
6.2 Menu Properties .. 277

6.2.1 Item List .. 277
6.2.2 Menu Processing Function .. 280
6.2.3 Menu Explanation Function .. 281
6.2.4 Menu Status Change Function .. 283
6.2.5 Menu Position ... 283
6.2.6 Menu Display Offset ... 284
6.2.7 Menu Display Font ... 284
6.2.8 Title ... 284
6.2.9 Centering Menu Items ... 285
6.2.10 Menu Shape .. 285
6.2.11 Item Box Size .. 285
6.2.12 Menu Border Size ... 286
6.2.13 Menu Outline Size .. 286
6.2.14 Changing Menu Offset .. 286
6.2.15 Image Height and Width ... 287

6

6.3 Menu Management Functions .. 287
6.3.1 Creating a Menu .. 287
6.3.2 Adding a Menu to a Window .. 289
6.3.3 Deleting a Menu from a Window .. 290
6.3.4 Determining the Window of a Menu 291
6.3.5 Executing a Menu Item ... 292
6.3.6 Finding the Region Occupied by an Item 292
6.3.7 Shading a Menu Item .. 293
6.3.8 Obtaining the Font of a Menu Title 294
6.3.9 Obtaining the Menu Region .. 295
6.3.10 Erasing a Menu ... 295
6.3.11 Creating a Menu from a List ... 296
6.3.12 Selecting/Deselecting a Menu Item 297
6.3.13 Getting a Menu Item by Grid Coordinates 298

6.4 Some Useful Menus .. 299
6.4.1 A Yes-No Menu .. 299
6.4.2 A Number Pad ... 300
6.4.3 Creating a File Objects Menu .. 302

7. Image Streams ... 306
7.1 The Structure of an Image Object ... 306

7.1.1 Accessing and Setting Image Object Properties.................... 307
7.2 Creating an Image Object ... 308

7.2.1 Testing for an Image Object .. 309
7.3 The Structure of an Image Functions Object 309
7.4 Creating an Image Functions Object ... 309

7.4.1 Testing for an Image Functions Object 311
7.5 Image Object Functions .. 312

7.5.1 Displaying an Image Object .. 313
7.5.2 Determining the Size of an Image Object 315
7.5.3 Storing an Image Object Description on a File 316
7.5.4 Reading an Image Object Description from a File 317
7.5.5 Copying an Image Object ... 317
7.5.6 Handling Button Events in an Image Object 318
7.5.7 Handling Button Events During Copying 319
7.5.8 When Moving an Image Object .. 319
7.5.9 When Inserting an Image Object ... 320
7.5.10 When Deleting an Image Object ... 320
7.5.11 Notifying an Image Object When Copied 321
7.5.12 Notifying an Image Object When Operated On 321

7

7.5.13 Converting an Image Object for Printing 322
7.6 Reading and Writing Image Objects ... 323

7.6.1 Reading an Image Object .. 323
7.6.2 Writing an Image Object ... 324

7.7 Copying Image Objects Between Windows 324
7.7.1 Copying and Inserting Image Objects 325

7.8 Image Streams .. 325
7.8.1 The Structure of an Image Stream Object 326
7.8.2 Defining a New Image Stream Type 329
7.8.3 Opening an Image Stream ... 330
7.8.4 Testing for an Image Stream ... 333
7.8.5 Getting the Image Stream Type .. 333
7.8.6 Testing the Type of an Image Stream 334

7.9 Image Stream Methods ... 334
7.9.1 The Image Type .. 336
7.9.2 Font Specification ... 336
7.9.3 Fetching/Replacing IMAGEOPS Fields 337
7.9.4 Image Stream Methods ... 338
7.9.5 Drawing an Ellipse .. 345
7.9.6 Filling a Polygon ... 349
7.9.7 Filling a Circle .. 350
7.9.8 Shading the Object .. 351
7.9.9 Bit-blitting to the Object ... 352
7.9.10 Scaling While Bit-blitting ... 353
7.9.11 Moving the Object .. 354
7.9.12 Determining String Width ... 355
7.9.13 Determining Character Width ... 355
7.9.14 Determining the Bit Map Size... 357
7.9.15 Starting a New Page .. 357
7.9.16 Starting a New Line .. 359
7.9.17 Resetting the Stream Position ... 359
7.9.18 Setting the X and Y Positions ... 360
7.9.19 Setting the Stream Font ... 361
7.9.20 Setting the Left and Right Margins 362
7.9.21 Setting the Top and Bottom Margins 363
7.9.22 Setting the Line Feed Distance ... 364
7.9.23 Determining the Scale of the Display Medium 365
7.9.24 Setting the Space Factor .. 365
7.9.25 Setting the Default BITBLT Operation 366

8

7.9.26 Setting a New Clipping Region... 367
References ... 369
INDEX .. 370

1

LIST OF FIGURES

2.1 Result of (INSPECT (GETCHARBITMAP 'X x))

2.2 New Bit Map for Space

2.3 New Bitmap for Space

2.4 Result of (EDITCHAR 'Z x)

2.5 Example of HARDCOPYW

3-1. The Saving Cursor Bitmap

3-2. Editing a Bitmap

3-3. Bitmap Editing Functions

3-4. Example of a Texture

3-5. Example of Inverted Texture

3-6. Example of CENTERPRINTINREGION

3-7. Standard Input Caret

3-8. A Sample Grid

3-9. Displaying a Grid via Lower Left Corners

3-10. Example of SHADEGRIDBOX

4-1. NIL supplied to MOUSESTATE

4-2. Example of the MOUSECONFIRMCURSOR

4-3. Standard Cursor Bitmap

4-4. The Waiting Cursor

4-5. The Saving Cursor

4-6. An Inverted Standard Cursor

5-1. Initial Interlisp-D Windows

5-2. Printing to the Prompt Window

5-3. Interlisp Logo Window

5-4. Example of a Custom Logo Window

5-5. Logos with 10 Degree Pitch Angle

5-6. Logos with 40 Degree Pitch Angle

5-7. The Interlisp Executive Window

5-8. The Standard Window Menu

5-9. Burying a Window

5-10. Effect of Left Mouse Button During Painting

2

5-11. Paint Command Menu

5-12. SetShade Option Menu

5-13. 4x4 Shade Customization Window

5-14. Examples of Several Brush Types

5-15. Example of a Snapshot of a Window

5-16. FileBrowser Icon from SHRINK command

5-17. Background Display Menu

5-18. CREATEW Example

5-19. Icon Representing the File Browser

5-20. Obscured Logo Window

5-21. TOTOPW Example

5-22. Page Full Condition

5-23. Inverted Logo Window with BLACKSHADE

5-24. Inverting Logo Window with GRAYSHADE

6-1. A Sample Menu

6-2. A menu comprised of bitmaps

6-3. Window with Menu Deleted

6-4. Example of Item Shading in a Menu

6-5. Example of MENUSELECT

6-6.. A Number Pad Menu

6-7. File Package Objects Menu

6-8. Example Menu after Selecting FNS

1

LIST OF TABLES

2-1. Major Fields and Datatypes

2-2. Font Object Structure

2-3. Font Properties

2-4. Font Classes

2-5. Key Transition Actions

2-6. Media Types

2-7. Printer Properties

3-1. BITMAP Fields

3-2. Source Bitmap Operations

3-3. Destination Bitmap Operations

3-4. Display Area Functions

3-5. Bitmap Editing Commands

3-6. Display Stream Structure

3-7. \DISPLAYDATA Structure

3-8. Display Stream Attributes

3-9. NEWCARET Values

3-10. Grid Variables

4-1. BUTTONFORM Values

4-2. Mouse System Variables

4-3. Values of LASTMOUSEBUTTONS Variables

4-4. Values of LASTKEYBOARD

4-5. Interlisp Cursors

4-6: Special Characters

5-1. Initial Interlisp Windows

5-2. Effect of Mouse Buttons during Painting

5-3. New Bits Interaction with Painted Bits

5-4. Regions of a Window

5-5. Controlling Scrolling by Mouse Keys

5-6. SCROLLW Arguments

5-7. Scrolling Extent Property Values

5-8. OPENFN Values

5-9. CLOSEFN Values

2

5-10. TOWHAT Values

5-11. Background Operations

5-12. Idle Operation Options

6-1. Sample Menu Description

7-1. Image Object Data Structure

7-2. Image Stream Object

7-3. IMAGESTREAMPROP Arguments

7-4. Optional Directives

7-5. Image Type Values

3

CHAPTER ONE

INTRODUCTION

 My first book on Interlisp addressed the basic characteristics of

Interlisp-10, a dialect of the Lisp programming language. Features which

are common to most versions of Interlisp were described with numerous

examples. In this volume, I explore the features of Interlisp-D: The

Interactive Programming Environment. Interlisp-D was a rehosting of

Interlisp to a new class of powerful, microprogrammed computer

systems specifically designed to execute Lisp and other high level

languages efficiently.

Authors Note

 This volume was originally prepared in the mid-to-late 1980s when

Xerox was manufacturing and selling D-machines. With the advent of

Common Lisp and commodity-based workstations, the market for D-

machines collapsed. Interlisp-D languished for quite a while although

versions were developed for DEC’s VAXEN running under VMS. In the

late 2010s, a group of the original developers of Interlisp-10 and

Interlisp-D decided to resurrect Interlisp-D and port it to a number of

personal computer systems: Apple’s Macs, Windows machines, and

Linux machines.

 When I joined the group, I decided to update this volume to be useful

to Interlisp users. It follows the structure of the first volume, but has been

edited to remove most of the references to Interlisp-D in the later

chapters. Additionally, I have deprecated sections relevant to hardware

resources which no longer exist – these have been marked by dashed

lines before and after a section with the word DEPRECATED in the

middle. These sections have been retained, however, for historical

purposes.

 This volume is entitled Medley Interlisp: The Interactive

Programming Environment, because it is based on the Medley release of

Interlisp-D.

 After Section 1.1, I will now use the name Interlisp to refer to the

rehosted system that runs on a variety of modern machines.

4

NOTE: Sections marked ---------------Deprecated------------------ refer to

hardware, primarily printers, which are no longer manufactured by

Xerox nor will be supported by Interlisp. They are included in this first

edition of this book until software is developed to support modern

printers. In succeeding editions, the deprecated sections will be

removed.

1.1 INTERLISP-D: THE STORY CONTINUES...

 Interlisp-D is a dialect of Lisp (Kaisler 1985) which incorporates an

extensive set of facilities for enhancing program development including

syntax extension, error correction, history retention, and source code

analysis. Interlisp was originally developed on DECSystem-10

processors under the TENEX and TOPS-10/20 operating systems.

 During the mid-70s, researchers at Xerox PARC realized that a more

efficient execution engine would be required for the development of

larger applications. An initial port, called AltoLisp, was developed for

the Xerox Alto, a small personal computer. However, the Alto was

limited in its available memory and disk storage because it was based on

extensions to a general-purpose 16-bit computer (similar to the Data

General Nova series).

 Xerox PARC researchers concluded that new execution engines

were required to support Interlisp in a personal computing environment.

Thus, they developed the Dolphin (aka Xerox 1100 Scientific

Information Processor), the Dandelion, and the Dorado (aka the Xerox

1108 and 1132 Artificial Intelligence Workstations, respectively)

personal computers. In 1985, Xerox produced the next generation of

customized Lisp processors, code-named Dove, which became the

Xerox 1185/1186 Workstations. These workstations set new

price/performance levels for personal Lisp workstations.

 This new series of workstations extended the interactive

programming environment pioneered by the Alto - namely, a bit-mapped

screen with a pointing device, the mouse, and a window-oriented screen

management system. It allowed the Xerox researchers to extend the

5

interactive programming paradigm through the use of graphic-oriented

features.

 During the rehosting process, a large part of Interlisp, which was

written in DECSystem-10 assembly language, was rewritten in Interlisp

itself. This activity was made possible by the fact that these processors,

microprogrammed to efficiently execute Interlisp primitive functions

(Lampson 1980), appeared to be Lisp direct execution machines. As a

result, significant performance gains were realized as portions of the

Interlisp system were recast in Interlisp-D.

1.2 OBJECTIVES OF THIS TEXT

 This text should be viewed as a companion volume to the text

Interlisp: The Language and Its Usage (Kaisler 1985).

 The objective of this text is to describe the extended features of

Interlisp-D which were developed for the display environment as

implemented on the Xerox artificial intelligence workstations. In the

same vein as my first volume on Interlisp, this text describes the

functionality of Interlisp-D and provides numerous examples of how the

functions work. This volume contains numerous figures which depict the

results of the functions as they appear on the display screen.

 However, this text cannot address all of the features of Interlisp-D

due to limitations on the size of the text. Thus, I have had to omit

discussion of the communications subsystems (which rightly belong in a

book of their own), many of the Lisp library packages (such as File

Browser), and some of the Lisp User packages. These have been moved

to a separate forthcoming volume.

1.3 WHAT IS INTERACTIVE PROGRAMMING?

 A major advance in computer science has been the development of

software tools to assist in the programming process itself. The earliest

tools were text editors, compilers, and debuggers. Later tools included

source code analyzers, source code formatters, macro processors, and a

variety of other tools. It wasn't until recently that display technology

6

became so relatively inexpensive that many organizations could afford

to provide their programmers with high-resolution, bitmapped graphics

personal workstations. But, it is just this trend which has again

revolutionized the way we think about the programming process.

 A collection of programming tools is often referred to as a

programming environment. At its lowest level this is simply a set of

computer-aided software design tools. While useful, they often don't

work together well because each tool has no sense or cognizance of what

other tools it can interact with. In fact, this is a common gripe associated

with Unix systems because of the mode of communication enforced by

Unix between different programs.

 Interlisp, as I remarked in the previous volume, provides an

integrated programming environment. It forges a strong coupling

between different subsystems by virtue of the fact that all functions exist

in the same name space. Thus, within limits, all functions, modules, and

subsystems can know (but don't necessarily have to) about the other

software in memory. Taking advantage of this feature, however, is what

gives Interlisp much of its power.

 With the advent of high-resolution, bitmapped workstations, the

human interface to programming tools has been extended in such a way

as to greatly enhance programmer productivity. Barstow et al [bars84]

have defined interactive programming environments as having four

features:

1. They provide a large set of programming tools within a

unified framework, most of which are specific to a

particular programming language.

2. They use to good advantage the fact that a program is

more than just a string of characters, e.g., that it has an

underlying (possibly deep) structure which can be used

to organize programming tasks.

3. They support incremental program development for both

design and maintenance.

4. They are highly interactive - often supporting multiple

channels of high bandwidth between the user and the

environment.

7

 Interlisp provides the first three features. In fact, it is the only

language that I know of that allows you to carry support for these features

to the greatest possible extent. However, it evolved in a time-shared,

hardcopy world. Interlisp satisfies the last feature through its support for

high-resolution, bitmapped displays. But, vestiges of its earlier heritage

still remain.

1.4 PHILOSOPHY

 Computers play a major role in many aspects of our lives. The next

generation of computers is expected to display capabilities

corresponding to human-like reasoning with massive databases and

versatile communications networks. Recent research in artificial

intelligence programming indicates that the user interface will play a

crucial part in the communication between man and machine. Because

the interactive display environment supported by the Xerox Artificial

Intelligence workstations is so powerful and flexible, it provides us with

the opportunity to explore different paradigms of human-computer

interaction.

 Interactive systems that make it easy for man to use machines are

often called user-friendly. Moran [mora81] has identified the following

attributes as characterizing a user-friendly system:

User-Friendly System Attributes

• Functional

• Easy to use

• Easy to learn

• Flexible

• Consistent

• Logical

• Natural

• Readily available help

 A discipline known as human engineering has sprung up to address

the issue of how to make machines, particularly computers, more

amenable to human utilization. Computers are tools which help us to

perform tasks just like many of the other implements that we encounter

8

every day. However, computers are rather unique in that we

communicate with them and they with us. In the following sections, I

will examine some of the human engineering issues that impact upon the

perceived friendliness of a user interface.

1.4.1 PSYCHOLOGICAL PRINCIPLES

 The interface is the user's window to the capabilities of the

underlying system. Through it, he perceives what the system can and

cannot do for him. He also perceives how he can control the system in

order to accomplish useful work. The user develops his own view of the

system from what he sees through the user interface.

 Schneiderman [schn80] has identified several major principles:

1. A user's short-term memory is very limited as

demonstrated by Miller's seminal work where he

deduced the magic number 7 plus or minus 2. The

user's processing capacity is very small and in

constant danger of overload. Interactive systems

should be designed to allow the user the select the

rate and amount at which information flows to him.

2. Humans like to control their environments. As

humans gain more experience with computers, their

desire for control increases. Interactive systems

should be designed to make the user feel that he is

in control. As simple a matter as the wording of the

prompt message has a significant psychological

effect on the user.

3. Most people are subject to the phenomenon of

closure - the feeling of relief when a task is

completed and the relevant information is no longer

needed. This phenomenon produces a desire to

complete tasks and, thereby, reduce memory load.

Interactive systems should be designed to permit

problems to be partitioned so that closure can be

often attained. That is, the user should be able to

decompose the problem into subproblems each of

which can be solved largely in its own right while

still contributing to the total solution.

9

4. A user's attitude about a system has significant

impact upon his learning and performance. Anxiety

about using a system can reduce short-term memory

capacity and inhibit performance. Interactive

systems should be designed to make the user feel at

ease. Reducing anxiety is often a function of

ensuring consistency throughout the interface and

coherency among the functions provided by the

system.

5. Response time is a critical issue. In general, most

users will prefer a response time which is a function

of the action being taken. They also prefer minimal

variation in the response time. Response time is

often evaluated according to the perceived

complexity of the activity being performed.

6. Errors have a significant impact on the user's

perception of a system. Interactive systems should

be designed to avoid (among others) errors due to

information overload or inadequate instructions for

non-routine tasks.

 Each of these features is significant in that it impacts directly upon

human productivity.

1.4.2 USER INTERFACE MODELS

 Different categories of users will use an interactive programming

environment in different ways. This is particularly true of commercial

products where the manufacturer/vendor has no control over who has

access to the system once it leaves the shop. At a simple level we might

divide users into two categories (within the context of using Interlisp):

novices and experts.

 Novices are largely concerned with getting the task done. Using a

computer is a problem solving activity, but the computer system itself

may be the problem for the novice. He will usually solve the problem in

the most expeditious way (and the simplest) without regard for

efficiency. Novices are usually familiar enough with the system to use it

to perform specific tasks. However, because they do not understand the

10

actions associated with the results they achieve, they often cannot apply

it to another purpose.

 Experts, on the other hand, are skilled in interacting with the

computer and view it as a routine cognitive skill. Indeed, to many expert

programmers, it is a continuing challenge to determine how to

accomplish tasks efficiently and accurately.

 Both types of users are prone to experimentation. Thus, large

behavioral differences fade with practice by the novice.

 In order to satisfy both user categories, interactive systems need to

be developed with multiple levels of interfaces. This permits novice

users to communicate in a structured manner while permitting experts to

employ well-known short-cuts for greater efficiency and productivity.

 There are three basic interface models to serve the needs of users of

different types:

 Menu-driven

 Fill-in-the-Blank

 Parameter-driven

 Although any system could be accessed by just one of these models,

for some functions/operations, it would not be practical. Substantial

work has been devoted to developing the ideas that underlie these

models. Each model has different factors that must be considered in the

design of an interface.

1.4.2.1 Menu-Driven Interfaces

 The menu-driven interface relies heavily upon a user's ability to

recognize and respond to predefined prompts. Thus, little formal training

is required and it provides a mechanism for initiating the user in the

usage of the system as quickly as possible.

 However, users are generally forced to follow predefined paths with

little or no ability to backtrack if an erroneous selection is made. Among

the factors to be considered are:

11

• Tree-structured or cascaded menus provide a natural

mechanism for traversing a hierarchy of choices.

• The number of items in a menu should probably be no

more than 9 (the magic number 7 plus 2). The number

of menus should be no more than 5 (the magic number

less 2). If more options/levels are required, the

functionality should be decomposed further among

different modules.

• Alphabetically organized menus can provide faster

search because most people scan the menu from the

top.

• Menu options should be task-oriented rather than

position-oriented.

Common types of errors should be watched for:

1. Accessing the desired function in a non-optimal way

(or so it seems to the user).

2. Taking the wrong path to the wrong function, where

immediate steps establish system variable values that

are incorrect for the task at hand.

3. Unclear wording of menu options or confusing menu

option names.

4. Having difficulty in distinguishing the name of a

command from the effect of its action.

1.4.2.2 Parametric Interfaces

 Parametric interfaces are unstructured interfaces. The user issues a

set of commands, including erroneous ones, which must be processed by

the machine. Interactive systems need to provide the following

capabilities:

1. They should be sensitive to errors, including the

identification of incorrect syntax and the correction

of same, and to the handling of errors.

2. They should inform the user when they don't

understand him; preferably with varying degrees of

verbosity.

12

3. They should be able to provide the user with

information that explains what has happened.

4. A user should be able to personalize an interactive

system to his own idiosyncrasies, especially when

the system has some knowledge of the user's likes

and dislikes.

 Within this framework, mnemonic names are easiest to learn and

remember. Commands and function names should naturally reflect their

usage. Unfortunately, in the Lisp environment, some function names

have a long and hoary history, but such universal acceptance, that

changing them has long since been precluded.

 Spelling correctors can assist users by fixing simple mistakes.

Interlisp provides a powerful spelling corrector, but it is not universally

used in all subsystems. Moreover, the algorithm has not been refined

since the initial implementation under Interlisp-10 and appears in some

instances to be slow and cumbersome.

1.4.3 PROTOTYPING

 One of the major benefits of Interlisp is its support for rapid

prototyping of both applications and user interfaces.

 Interactive systems used to be designed inside-out, i.e., one built the

basic functional components and then grafted a user interface onto them.

This approach limited the functionality apparent to the user and impacted

ease of use of the resulting system. Forcing the user to conform to the

completed system was not a guarantee of success.

 Prototyping is an iterative specification and design method. One of

its goals is to provide a clear channel of communication between the end

user and the designer by supporting the incremental evolution of the

system specification in a way that leads to complete and unambiguous

interpretation by the user. Essential to this process is the direct

involvement of the end-user in the design process as well as the

continuous feedback on the systems functionality. With the advent of

high resolution, bitmapped workstations, prototyping has emphasized

13

the visual aspects of the system often even more so than the internal

functionality.

 The benefits of this approach on the user interface include:

1. The user interface can be customized to multiple users

to respond to different interaction styles.

2. The interface can support a wide variety of experience

levels or task structures.

3. Different user interfaces can be evaluated to determine

which enhances productivity the most.

4. Applications will appear more consistent to users if

they share similar interfaces.

5. On-line assistance, both textual and graphical, will

improve the user's learning curve.

1.4.4 THE ROLE OF INTERLISP

 The problem of developing good user interfaces typifies the current

software crisis. Hardware engineering has far surpassed software

engineering in its capabilities. Similarly, software engineering has

surpassed human factors engineering.

 The development of good user interfaces is dependent upon the

development of design tools which increase our understanding of the

user's needs, support and expedite the design of user interface software,

and minimize the software maintenance costs.

 Interlisp provides a set of tools that support not only the

development of good user interfaces but also the development of large

software systems.

1.5 DIFFERENCES BETWEEN INTERLISP-D & INTERLISP-10

 Interlisp-D is largely compatible with Interlisp-10/VAX for most of

the kernel functions and the basic subsystems (e.g., those not depending

on the display environment features). It is much less compatible with

Interlisp/370 which is a subset of Interlisp-10. As of this writing,

Interlisp/370 is no longer maintained by the University of Uppsala.

14

However, the author found it to be a good tool for initially learning about

Interlisp in the absence of a D-machine.

 Xerox's commitment to its Artificial Intelligence Workstations

coupled with the impending demise of the DecSystem-10/20 technology

meant it was no longer feasible to maintain two variants of Interlisp.

 Because many of the kernel functions of Interlisp had been written

in microcode during the rehosting, some kernel functions operate

differently and some functions have been eliminated in their entirety.

This section presents a brief survey of the differences in order to alert

you to programming considerations when attempting to port source code

from the Interlisp-10/VAX environment to the Interlisp-D environment.

 This section follows the Interlisp Reference Manual [Xerox 83]. It

also includes material from various editions of Masterscope, the Interlisp

Users Group Newsletter, and the Interlisp Release Notes.

1.5.1 TYPE NUMBERS

 Interlisp assigns type numbers to Medley Interlisp objects in a

different manner than Interlisp-10. Thus, the function NTYP has been

eliminated. You should use the function TYPENAME to obtain

implementation-independent type information.

Note: In Medley Interlisp, some of the Interlisp-D functions were

eliminated.

1.5.2 ARITHMETIC

 Arithmetic is significantly affected by the differences in the

characteristics of the hardware on which the versions of Interlisp are

implemented. There are significant differences between the

DECSystem-10, the VAX-11/7xx, and the Xerox 11xx family of

processors. Indeed, each of the Xerox 11xx processors is implemented

in a different fashion. However, Interlisp has attempted to retain a

uniform number representation across the processors.

15

 The major differences between Interlisp-10 and Interlisp-D with

respect to numbers are:

1. The small number range (i.e., that recognized by

SMALLP) is [-65536, 65535];

2. The overall number range is smaller due to the lesser

number of bits per word (e.g., 32 bits versus 36 bits);

3. The function SETN is treated as a SETQ;

4. The functions OPENR and CLOSER have been

eliminated;

5. The functions VAG and LOC are defined as inverses,

but arithmetic operations cannot be carried out on

LOC values;

6. FLTFMT does not accept DECSystem-10 numeric

floating point formats, but will accept formats that are

acceptable to PRINTNUM;

7. NUMFORMATCODE is treated as a no-operation;

and

8. Certain arguments to FLTFMT are ignored or

interpreted differently.

1.5.3 VARIABLE BINDING

 Interlisp-D uses the deep binding method for associating values with

variables, whereas Interlisp-10 uses the shallow binding method.

 Most Interlisp programmers should not notice any differences unless

they are overly concerned about efficiency. If so, they should consider

the following notes:

1 It is more efficient to pass information to functions as

arguments rather than allowing it to be freely referenced.

2. Variables which are never bound in functions (i.e.,

whose top-level value is used only) should be declared

as GLOBALVARS.

3. RESETVARS should be used judiciously to protect your

environment.

16

1.6 OVERVIEW OF THE TEXT

 This volume is oriented towards a thorough description of the

features and capabilities of the Interlisp programming environment.

Primarily, it discusses subsystems which are extensions to the basic

Interlisp capabilities. The tools described in Part II are built upon these

fundamental capabilities.

 Chapter 1, where you are now, provides an overview of the

language, a smattering of history, and an overview of the text. It also

discusses the differences between Interlisp-10 and Interlisp. Because

display-oriented programming requires a different perspective on

information manipulation and presentation, a philosophy of interactive

programming is also discussed.

 Chapter 2 describes the concepts behind the interactive

programming environment as augmented by powerful, flexible bit-

mapped displays which support multitasking. Because the Xerox

workstations directly execute Interlisp code, the user is provided

considerable control over the display screen, the keyboard, and the

printer which would normally be mediated by the operating system in

more complex systems. Fonts are discussed in this chapter because they

seemed not to fit well with the material in other chapters.

 I discussed the floppy disk subsystem in this chapter because it did

not seem to fit in any other chapter in the original version of this volume.

However, as floppy disks are no longer used in modern systems, this

section will be deprecated.

 Most users of Interlisp will immediately recognize that its primary

form of access to other software was intended to be over a

communications network like ARPANET.

Note: We will eventually update Medley Interlisp to work with modern

communication protocols.

 Chapter 3 describes the Display Manager which is a subsystem of

Interlisp. The display management subsystem is concerned with

managing the display screen. This chapter describes the concepts

17

underlying the display screen: positions, regions, and bitmaps. It

describes how to manipulate bitmaps and display them upon the screen.

It describes display streams which are the "channels" by which a

program communicates with the user. Display stream are a specialized

instance of the more general image streams which permit extensive

graphics to be displayed. One of the features gained by bitmapped

screens is the ability to utilize different character fonts to present textual

information.

 Chapter 4 describes the Input Management subsystem. Under input

management the user can control the mouse and the cursor which

provides the means for pointing and selecting objects on the display

screen. A generalized input function, PROMPTFORWORD, is also

described. PROMPTFORWORD is built upon the TTYIN subsystem

which is discussed in Chapter 10. You may want to contrast this

subsystem with ASKUSER which is described in [kais86].

 Chapter 5 describes the Window Manager. The Window Manager is

responsible for creating, destroying, and manipulating the windows

displayed on the screen. Each window corresponds to a process which is

being run. More than one window can be dedicated to the same function

or multiple functions can interact with the user through one window.

Learning effective use of the window management system is crucial to

developing successful user interfaces in the interactive programming

environment.

 Chapter 6 describes the Menu Management Package. Menus

provide a mechanism for displaying the choices available at a particular

stage of the processing. A user may choose something from the menu by

moving the cursor to the item and clicking the mouse button. So, rather

than typing long commands or file names, you merely select commands

or options from a menu by a "point-and-click" paradigm. This paradigm

is an extremely powerful one because it opens up a wide variety of

options which can be understood with a few glances at some easy-to-

read menus.

 Chapter 7 describes image streams. Image streams are a generalized

display mechanism for displaying both graphics and text. Image streams

provide an object-oriented paradigm for manipulating the information to

18

be displayed to the used in a window. Originally, image streams were

intended as a mechanism for inserting graphical objects into textual files

(a la an integration with TEdit text files). However, image streams have

proven to have a much more general applicability by providing a

generalized object-oriented interface.

CONVENTION: I have used a different style of formatting Interlisp

code than one would normally see when pretty-printing in order to make

the function definitions and code fragments easily readable.

1.7 UPDATES TO THIS TEXT

 As this restoration project proceeds, some enhancements and

updates to Medley Interlisp will be made to support its modernization

and further development as a modern programming environment. These

updates and enhancements will be reflected in updates to this volume.

19

CHAPTER TWO

THE INTERACTIVE PROGRAMMING ENVIRONMENT

 Interlisp is distinguished from Interlisp-10/VAX/370 by its

incorporation of a display environment. Interlisp emphasizes the use of

interactive graphics as a mechanism for user-computer communication.

Rather than typing large amounts of information into a program, the user may

select objects displayed on the screen or choices from a menu.

 Interlisp ran on a variety of workstations including the venerable Xerox

1100s. Most of the examples provided in this book were run on a Xerox 1186

with 3.7 MBytes of memory, a 19 inch display screen, and a 4045 Laser

printer (which hardly ever worked correctly). In 1987, Xerox indicated that

it would port components of XAIE (the Xerox Artificial Intelligence

Environment, which includes CommonLisp) to Sun Microsystem's

workstations based on the SPARC chip. No commitment was made to porting

the entire Interlisp environment to a SPARC-based system at that time.

 This chapter describes some of the hardware functions which have been

incorporated into Interlisp. These functions include those corresponding to

the video screen, the floppy disk, and some of the printers. Function

concerned with mouse handling are included in Chapter 4 because they are

more appropriately discussed with input functions.

2.1 FONTS

 One of the nice features which Xerox pioneered (and which every other

manufacturer has since adopted) is the ability to manipulate multiple fonts in

text and source code. This feature existed to a limited extent in Interlisp-10.

It is more pronounced when it is used in Interlisp, especially when you see

the font changes at your terminal before you print your document.

 A font is a specification for the way a character will appear when

displayed on an appropriate display medium (whether screen or paper). Fonts

that are used to display characters on a screen are called DISPLAYFONTS,

20

while those used to display characters on paper were called

INTERPRESSFONTS or PRESSFONTS. Fonts are defined by three key

characteristics:

 FAMILY The distinctive style or appearance

 SIZE The number of points used for display

 FACE The appearance of the font

 Interlisp supports a large number of font families including Helvetica,

Gacha, Elite, TimesRoman, and OldEnglish. These families are supported in

a variety of sizes ranging from 8 points up to 72 points.

 The face of a font governs its appearance. Face is specified as a three-

element list consisting of:

WEIGHT The thickness of the characters. Options are

BOLD, MEDIUM, and LIGHT.

SLOPE The alignment of the characters. Options are

ITALIC or REGULAR.

EXPANSION The spread of the characters. Options are

REGULAR COMPRESSED, and

EXPANDED.

 For convenience, the face may be specified as a three-character acronym

for the corresponding list. Thus, MRR represents the list (MEDIUM

REGULAR REGULAR). Also, certain common faces have been given

names, including:

STANDARD (MEDIUM REGULAR REGULAR)

ITALIC (MEDIUM ITALIC REGULAR)

BOLD (BOLD REGULAR REGULAR)

BOLDITALIC (BOLD ITALIC REGULAR)

 Fonts may also have rotation which indicates their orientation on the

screen or page. A font in which characters are printed horizontally on a page

has a rotation of 0. When characters are printed vertically in a column, the

font has a rotation of 90 degrees.

Note: INTERPRESSFONTS and PRESSFONTS were specific to Xerox

printers. Since these devices are no longer manufactured, the names are

deprecated.

21

2.1.1 THE DESCRIPTION OF A FONT

 A font is represented in memory as an object, called a font descriptor,

which is addressed by a font descriptor handle. Font objects are created by

the function FONTCREATE. The major fields and data types of a font

object are presented in Table 2-1.

Table 2-1. Major Fields and Datatypes

Field Description

FONTEXTRAFIELD2 POINTER

FONTCHARSETVECTOR A vector of the characters that comprise the

character set of the font.

FONTIMAGEWIDTHS The image width of the font which is used

by the IMAGEOPS routines

FONTAVGCHARWIDTH It is used by DSPFONT to adjust the line

length. It is expressed as a number of pixels.

FONTSCALE POINTER

OTHERDEVICEFONTPROPS POINTER

FONTDEVICESPEC Contained the font specification required for

specific devices, if coercion has been done.

For example, a device specification for the

display would appear as (GACHA 10

(MEDIUM REGULAR REGULAR) 0

DISPLAY).

\SFRWidths POINTER

\SFLKerns POINTERS

\SFFACECODE BITS 8

FBBDY SIGNEDWORD

FBBDX SIGNEDWORD

FBBOY SIGNEDWORD

FBBOX SIGNEDWORD

ROTATION WORD

\SFHeight WORD

\SFDescent WORD

\SFAscent WORD

LASTCHAR The character code of the last character in

the font.

FIRSTCHAR The character code of the first character in

the font.

\SFWidthsY POINTER

22

\SFOffsets The offset of each character in the image

bitmap.

\SFWidths An array of the advance width of each

character, indexed by the character code,

which is used for string width calculations.

FONTFACE POINTER

FONTSIZE POINTER

FONTFAMILY POINTER

CHARACTERBITMAP A bitmap containing the character images

for the font; it is indexed by \SFOffsets.

FONTDEVICE POINTER

2.1.1.1 DISPLAYFONTS

 Displayfonts required files that contained bitmaps and were used to print

each character on a screen. The files had the extension “.DISPLAYFONT”.

The file name specified the font style and size. For example,

HELVETICA10.DISPLAYFONT contained the bitmaps for the font family

Helvetica in size 12 points.

 These files should be located on the hard disk of the machine on which

Interlisp is installed as they will be used frequently. The directory in which

these font files are loaded should be one of the values of variable

DISPLAYFONTDIRECTORIES.

2.1.2 CREATING A FONT

 You may create a new font descriptor using the function

FONTCREATE:

 Function: FONTCREATE

 # Arguments: 7

 Arguments: 1) FAMILY, the font family name

 2) SIZE, the size of the font in points

 3) FACE, the face of the family

 4) ROTATION, the orientation of the font

 5) DEVICE, the output device for the font

 6) NOERRORFLG, a flag for errors

 7) CHARSET, a character set

23

 Value: A font descriptor handle.

 A font descriptor specifies the information necessary to display the font

on the specified device. Thus, you can think of the process of creating a font

descriptor as one of customizing a font. Consider the following examples:

<-(FONTCREATE 'HELVETICA 12 'MRR)

{FONTDESCRIPTOR}#70,171260

 If the font descriptor already exists, Interlisp merely returns the handle

of the font descriptor. If the font descriptor does not exist, Interlisp reads the

information describing the font from a font file which must be accessible on

your local disk or via the network.

 If an appropriate font file is found for the specified device, it is read into

the font descriptor object. If no file is found, Interlisp attempts to "fake" the

font by looking for a font of lesser size and face information and modifying

its parameters. Interlisp only implements rotations of 0, 90, and 270 degrees.

Other values will cause an error to occur.

 If no acceptable font file is found, Interlisp uses the value of

NOERRORFLG to determine what to do. If NOERRORFLG is NIL, it emits

an error message:

<-(FONTCREATE 'GACHA 96 'MIR)

FONT NOT FOUND

(GACHA 96 (MEDIUM ITALIC REGULAR) 0 DISPLAY)

 Otherwise, it returns NIL. If an error occurs, the font descriptor is not

created.

 Note that a value of 0 for the font size is an invalid argument:

<-(FONTCREATE 'GACHA 0 'MRR)

ILLEGAL ARG

0

2.1.2.1 Structure of a Font Object

24

 The structure of a font object is (for the Helvetica-10 font) presented in

Table 2-2.

Tale 2-2. Font Object Structure

Field Value

FONTEXTRAFIELD2 NIL

FONTEXTRAFIELD2 NIL

FONTCHARSETVECTOR A handle

FONTIMAGEWIDTHS NIL

FONTAVGCHARWIDTH 9

FONTEXTRAFIELD2 NIL

FONTCHARSETVECTOR A handle

FONTIMAGEWIDTHS NIL

FONTAVGCHARWIDTH 9

FONTSCALE NIL

FONTEXTRAFIELD2 NIL

FONTCHARSETVECTOR A handle

FONTIMAGEWIDTHS NIL

FONTAVGCHARWIDTH 9

FONTSCALE NIL

OTHERDEVICEFONTPROPS NIL

FONTDEVICESPEC (HELVETICA 10 (MEDIUM REGULAR

REGULAR) 0 DISPLAY)

\SFRWidths NIL

\SFFACECODE 0

FBBDY 0

FBBDX 0

FBBOY 0

FBBOX 0

ROTATION 0

\SFHeight 12

\SFDescent 2

\SFAscent 10

LASTCHAR 0

FIRSTCHAR 0

\SFWidthsY NIL

\SFOffsets NIL

\SFWidths NIL

FONTFACE (MEDIUM REGULAR REGULAR)

FONTSIZE 10

25

FONTFAMILY HELVETICA

CHARACTERBITMAP NIL

FONTDEVICE DISPLAY

2.1.3 TESTING FOR A FONT DESCRIPTOR

 You may test whether or not an arbitrary Interlisp object is a font

descriptor using the function FONTP:

 Function: FONTP

 # Arguments: 1

 Arguments: 1) X, an arbitrary object

 Value: X, if it is a font descriptor; otherwise, NIL.

Consider the following example:

<-(SETQ x (FONTCREATE 'GACHA 10 'MRR))

{FONTDESCRIPTOR}#70,171670

<-(FONTP x)

{FONTDESCRIPTOR}#70,171670

2.1.4 ACCESSING THE FONT PROPERTIES

 The font descriptor stores the values of properties used to control the

display of information for the particular device. You may access the font

properties using the function FONTPROP:

 Function: FONTPROP

 # Arguments: 2

 Arguments: 1) FONT, a font descriptor handle

 2) PROP, a property name

 Value: The value of the font property

 FONTPROP returns the value of the font property, if it exists. The

following properties are currently accepted by FONTPROP, as presented in

Table 2-3.

Table 2-3. Font Properties

26

Property Description

FAMILY The style of the font.

SIZE A positive integer specifying the points.

WEIGHT The thickness of the characters.

SLOPE The alignment of the characters at the leading edge.

EXPANSION The extent to which the characters are spread out.

FACE A three-element list giving the typeface parameters.

ROTATION An integer giving the orientation of the characters

on the page.

DEVICE The device that the font can be printed on.

ASCENT The maximum height of any character in the font

from the baseline.

DESCENT The maximum depth of any character in the font

below the baseline.

HEIGHT The height of the character; equal to

ASCENT+DESCENT.

SPEC A quintuple of (FAMILY SIZE FACE

ROTATION DEVICE) by which the font

is known to Interlisp.

DEVICESPEC A quintuple of (FAMILY SIZE FACE ROTATION

DEVICE) describing how the font is represented on

the device. It differs only if the font is coerced to an

approximate one which actually exists on the

device.

SCALE The units per printer's point in which the font is

measured.

 Consider the following examples (where x is set as above):

<-(FONTPROP x 'FAMILY)

GACHA

<-(FONTPROP x 'SLOPE)

REGULAR

<-(FONTPROP x 'DEVICE)

DISPLAY

<-(FONTPROP x 'HEIGHT)

12

27

<-(FONTPROP x 'SPEC)

(GACHA 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 Note that Interlisp does not allow you to set the font descriptor properties

because you may inadvertently set a system font property. FONTPROP is

defined as a macro with the following definition:

(ARGS

 (SELECTQ

 (AND (EQ (CAADR ARGS) (QUOTE QUOTE))

 (CADADR ARGS))

 (ASCENT

 (LIST (QUOTE FONTASCENT) (CAR ARGS)))

 (DESCENT

 (LIST (QUOTE FONDESCENT) (CAR ARGS)))

 (HEIGHT

 (LIST (QUOTE FONTHEIGHT) (CAR ARGS)))

 ... and so forth

))

2.1.5 COPYING A FONT

 Once you have created a font descriptor, you may want to create simple

variations of some of its properties to enhance the presentability of the

information to be displayed. By copying the font descriptor, you can modify

the values of certain font properties. You may copy a font descriptor using

the function FONTCOPY:

 Function: FONTCOPY

 # Arguments: 1-N

 Arguments: 1) OLDFONT, a font descriptor handle

 2) PROP, a property name

 3) VAL, a new value for PROP

 4-N) PROP - VAL pairs

 Value: A new font descriptor handle.

 FONTCOPY is a nospread function. FONTCOPY returns a font

descriptor which is a copy of the font OLDFONT, but differs in the values of

the specified properties. Consider the following examples:

28

<-(SETQ hel12std (FONTCREATE 'HELVETICA 12 'MRR))

{FONTDESCRIPTOR}#56,45614

<-(SETQ hel24bold (FONTCOPY hel12std 'WEIGHT 'BOLD 'SIZE '24))

{FONTDESCRIPTOR}#56,45464

<-(FONTPROP hel24bold 'WEIGHT)

BOLD

<-(FONTPROP hel24bold 'SIZE)

24

 The property names which may be specified for FONTCOPY are exactly

those which are acceptable to FONTPROP. The first property may be a list

rather than an atom. Consider the following example:

<-(SETQ hel14bold (FONTCOPY hel12std '(WEIGHT BOLD SIZE 14)))

{FONTDESCRIPTOR}#56,45540

<-(FONTPROP hel14bold 'WEIGHT)

BOLD

<-(FONTPROP hel14bold 'SIZE)

14

 FONTCOPY accepts the property NOERROR which determines how

cases where fonts cannot be created are processed. Its result is similar to

NOERRORFLG in FONTCREATE.

2.1.6 DETERMINING THE AVAILABLE FONTS

 You may determine the fonts which have been created for a particular

font family using the function FONTSAVAILABLE:

 Function: FONTSAVAILABLE

 # Arguments: 6

 Arguments: 1) FAMILY, a font family name

 2) SIZE, the size of the font

29

 3) FACE, the face specification

 4) ROTATION, the orientation of the font

 5) DEVICE, the device on which the font is

 to be displayed

 6) CHECKFILESTOO?, a flag

 Value: A list of font specifications.

 FONTSAVAILABLE returns a list of the fonts that match the given

specification. Each of the first five arguments may have any of the values

acceptable to FONTCREATE. They also may take the value ‘*’ which

indicates that any matches for that property should be reported. Consider the

following examples:

<-(FONTSAVAILABLE)

((GACHA 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY))

<-(FONTSAVAILABLE 'HELVETICA '* 'MRR)

((HELVETICA 18 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 (HELVETICA 8 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 (HELVETICA 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY))

<-(FONTSAVAILABLE 'GACHA '* '* NIL 'DISPLAY)

((GACHA 8 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 (GACHA 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 (GACHA 12 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 (GACHA 10 (BOLD REGULAR REGULAR) 0 DISPLAY)

 At a minimum, you must specify name for a specific font. If

FONTSAVAILABLE cannot find any descriptors that match the

specification, it returns NIL.

<-(FONTSAVAILABLE 'GACHA NIL)

ILLEGAL ARG

NIL

<-(FONTSAVAILABLE 'GACHA)

ILLEGAL ARG

NIL

30

 When CHECKFILESTOO? is NIL (as in the above examples), only the

font descriptors representing fonts loaded into virtual memory are examined.

The value of the variable \FONTSINCORE is a list of the fonts loaded into

virtual memory.

 If CHECKFILESTOO? is non-NIL, the font directories for the specified

device will also be searched. During file searches, the ROTATION argument

will be ignored.

 FONTSAVAILABLE checks not only the local disk, but also the font

directories available over the network (if your machine is attached to a

network).

--Deprecated-----------------------------------

2.1.6.1 Handling of PRESS Fonts

 Press fonts are handled differently in Interlisp and in FONTS.WIDTH.

The font widths for larger font sizes are scaled versions of the smallest

font/face. Thus, FONTS.WIDTH does not store information about each

instance, but dynamically scales it when the font descriptor is created.

 When FONTSAVAILABLE is called with CHECKFILESTOO? having

the value T, it will find relative fonts whose size is indicated as zero. Consider

the following example:

<-(FONTSAVAILABLE 'GACHA '* '* 0 'PRESS T)

((GACHA 0 (BOLD ITALIC REGULAR) 0 PRESS)

 (GACHA 0 (BOLD REGULAR REGULAR) 0 PRESS)

 (GACHA 0 (MEDIUM ITALIC REGULAR) 0 PRESS)

 (GACHA 0 (MEDIUM ITALIC REGULAR) 0 PRESS))

2.1.7 SETTING THE FONT DESCRIPTOR

 While Interlisp supports a large number of fonts, you may require

unusual characteristics for a particular problem. You can simulate an

unavailable font by associating a font name with a particular quintuple of

characteristics using SETFONTDESCRIPTOR:

31

 Function: SETFONTDESCRIPTOR

 # Arguments: 6

 Arguments: 1) FAMILY, a font family name

 2) SIZE, the size of the font

 3) FACE, a face specification

 4) ROTATION, an orientation

 5) DEVICE, a device name

 6) FONT, a font descriptor

 Value: A font descriptor.

 SETFONTDESCRIPTOR associates the font descriptor with the set of

characteristics given by the first five arguments. In effect, FONT may not

exist, but is simulated by the characteristics. Consider the following example:

<-(SETQ MYSPECFONT

 (SETFONTDESCRIPTOR 'GACHA 96

 '(MEDIUM REGULAR

 REGULAR)

 0

 'DISPLAY

 DEFAULTFONT))

{FONTDESCRIPTOR}#70,171670

 Thus, whenever you try to print something on the display using

MYSPECFONT, the value of DEFAULTFONT at the time it was set up will

be used instead.

2.1.8 SETTING THE DEFAULT FONT FOR A DEVICE

 Each device may have a default font which is used to display information

if a font is not explicitly specified for the image stream associated with the

device. DEFAULTFONT allows you to obtain the font descriptor which is

the default font for the given device. It takes the form:

 Function: DEFAULTFONT

 # Arguments: 2

 Arguments: 1) DEVICE, a device name

 2) FONT, a font descriptor

 Value: The font descriptor associated with the

32

 device.

 DEFAULTFONT returns the default font associated with the image

stream type device, if FONT is NIL. Consider the following example:

<-(DEFAULTFONT 'DISPLAY)

{FONTDESCRIPTOR}#70,171670

 If FONT is non-NIL and a font descriptor, it is set as the default font of

the device. Consider the following example:

<-(DEFAULTFONT 'DISPLAY (FONTCREATE 'HELVETICA 10 'MIR))

{FONTDESCRIPTOR}#70,171670

which returns the previous font associated with the device.

 We may define a function which allows you to print with a specific font

as follows:

<-(DEFINEQ (PRINT.USING.FONT (DEVICE NEWFONT MSG)

 (PROG (OLDFONT)

 (SETQ OLDFONT (DEFAULTFONT DEVICE NEWFONT))

 (PRINT MSG IOSTREAM)

 (DEFAULTFONT DEVICE OLDFONT)

))

(PRINT.USING.FONT)

 This function switches to the new font in order to display the message

and then returns to the previous font.

2.1.9 ACCESSING CHARACTER BITMAPS

 Each display font contains bitmaps for each character. You may access

and modify the bitmaps for individual characters using the following

functions.

2.1.9.1 Getting a Character's Bitmap

33

 You may obtain the bitmap handle for a character in a font using

GETCHARBITMAP:

 Function: GETCHARBITMAP

 # Arguments: 2

 Arguments: 1) CHARCODE, an integer representing the

 character or the atom representing the

 character

 2) FONT, a font descriptor

 Value: The bitmap handle.

 Consider the following examples (where X is set as in Section 2.1.3

above):

<-(GETCHARBITMAP 14 x)

{BITMAP}#77,110700

<-(GETCHARBITMAP 'X x)

{BITMAP}#57,707

 You may then examine the bitmap representing the character suing the

Inspector or EDITBM. For example, the following function call produces

Figure 2.1.

<-(INSPECT (GETCHARBITMAP 'X x))

{PROCESS}#71,222200

34

Figure 2.1 Result of (INSPECT (GETCHARBITMAP 'X x))

2.1.9.2 Changing the Bitmap of a Character

 You may change the bitmap for a character in a display font using the

function PUTCHARBITMAP:

 Function: PUTCHARBITMAP

 # Arguments: 4

 Arguments: 1) CHARCODE, an integer

 representing a character

 2) FONT, a font descriptor

 3) NEWCHARBITMAP, the new

 bitmap handle

 4) NEWCHARDESCENT, the

 depth below the baseline

 Value: The new bit map handle.

35

 This function changes the bitmap of the character identified by

CHARCODE to that given by NEWCHARBITMAP. If

NEWCHARDESCENT is non-NIL, the descent of the character assumes that

value.

 The maximum descent of all characters in the font is modified if

NEWCHARDESCENT exceeds the previous value. PUTCHARBITMAP

allows you to define printing bitmaps for characters which might normally

have unprintable representations for a particular display font. Consider the

following examples:

 You may also define your own fonts by creating bitmaps (using

EDITCHAR) which are assigned to specific characters in a font.

 Suppose I wanted to replace spaces by the character b/. I would create a

new bitmap (see Figure 2.2) which represents this character.

<-(SETQ SPACEBM (GETCHARBITMAP 32))

{BITMAP}#55,3022

<-(SETQ NEWSPACEBM (EDITBM SPACEBM))

{BITMAP}#55,3000

36

Figure 2.2 New Bit Map for Space

 We can replace the bitmap for the character via:

<-(PUTCHARBITMAP 32 DEFAULTFONT NEWSPACEBM)

{BITMAP}#55,3000

Note: You must specify the font in which the character bitmap is to be

replaced.

 Figure 2.3 depicts a message printed using the new bitmap. Note that it

is a good idea to save the old bitmap so that you may later restore it.

37

Figure 2.3 New Bitmap for Space

2.1.9.3 Editing Character Bitmaps

 You may edit a character bitmap for a character of a font using

EDITCHAR:

 Function: EDITCHAR

 # Arguments: 2

 Arguments: 1) CHARCODE, an integer representing a

 character

 2) FONT, a font descriptor

 Value: A bitmap handle.

 EDITCHAR invokes the bitmap editor on the bitmap of the specified

character. Consider the following example (where X was set in Section 2.1.3

above) produces Figure 2.4.

<-(EDITCHAR 'Z x)

{BITMAP}#57,3124

38

Figure 2.4 Result of (EDITCHAR 'Z x)

 CHARCODE may also be an atom or a string, whence the first character

is used to identify the character.

2.1.9.4 Displaying the Character Set

 The interpretation of a character set depends upon the fonts that you have

available at your workstation. You may determine the interpretation of

character sets using the function SHOWCS which has been provided by

Christopher Lane on the Info-1100 Bulletin Board. It takes the form:

 Function: SHOWCS

 # Arguments: 2

 Arguments: 1) CS, a character set index

 2) FONT, a font descriptor

 Result: A set of character codes.

39

 SHOWCS displays in a window the interpretations of all character codes

according to the specified font. SHOWCS may be defined as follows:

(DEFINEQ (SHOWCS (LAMBDA (cs font)

 (LET ((stream (OPENTEXTSTREAM NIL (CREATEW)))

 (DSPFONT FONT STREAM)

 (from 0 to 255 as BYTE from (LSH cs 8)

 do

 (BOUT STREAM BYTE)

))

))

2.1.10 FONT FILES AND FONT DIRECTORIES

 Each font that is available to Interlisp is described by a font file which

contains descriptive information about the font and the character bitmaps for

each character in the font. The file FONT.WIDTHS contains information

about the widths of characters for the Press fonts.

 Font files are read by FONTCREATE when it builds a font descriptor

for a font specification. FONTCREATE uses information in the font file to

initialize the fields of the font object.

 Each device type has a different set of fonts associated with it. The

names, formats, and search strategies for locating fonts for a device differ

with each device. The following variables, associated with the different

device types, determine the directories that are searched for font files:

2.1.10.1 Display Font Directories

 DISPLAYFONTDIRECTORIES is a system variable whose value is

a list of directories that are searched to find font bitmap files for display fonts.

Its initial value is:

<-DISPLAYFONTDIRECTORIES

({DSK})

40

 You may reset the value to the disk directory where your fonts are stored.

In many systems which are supported by a file server on a local area network,

the value of DISPLAYFONTDIRECTORIES is a directory name on the file

server host.

2.1.10.2 Display Font Extensions

 DISPLAYFONTEXTENSIONS is a system variable whose value is a

list of file extensions that are used when searching

DISPLAYFONTDIRECTORIES. Its initial value is (DISPLAYFONT).

---Deprecated-------------------------------

InterPress Font Directories

INTERPRESSFONTDIRECTORIES is a system variable whose value is a

list of directories that are searched to find font bitmap files for display fonts.

Its initial value is:

<-INTERPRESSFONTDIRECTORIES

({DSK})

You may reset the value to the disk directory where your fonts are stored. In

many systems which are supported by a file server on a local area network,

the value of INTERPRESSFONTDIRECTORIES is a directory name on the

file server host.

Press Font Files

PRESSFONTWIDTHSFILES is a list of files, not directories, that are

searched to find the font widths files for Press fonts. Press font widths are

packed into large files (usually named FONT.WIDTHS). Its initial value is:

<-PRESSFONTSWIDTHS

({DSK}FONT.WIDTHS)

---Deprecated-------------------------------

All of these variables must be set before Interlisp can perform automatic

loading of font files.

41

2.1.11 FONT PROFILES

 A font profile is a variable whose value describes the fonts to be used in

printing different classes of expressions. Font profiles are used by

PRETTYPRINT to improve the presentation of printed or displayed material.

 Font changes in a file are signaled by the presence of a user-defined

escape sequence, which is the value of the system variable

FONTESCAPECHAR, followed by a character code. The character code

specifies which font to use, e.g., ^A represents the first font and so on. The

initial value of FONTESCAPECHAR is:

<-FONTESCAPECHAR

^|F

By inspecting some of the files on your system using TEdit, you can see how

PRETTYPRINT inserts font change specifications.

2.1.11.1 Description of a Font Profile

The font profile consists of a list of the form:

 (<fontclass> <font#> <displayfont> <pressfont> <interpressfont>)

 <fontclass> is the font class name. <font#> is the font number for that

class. For each font class name, the escape sequence consists of the font

escape character followed by the character code for the font number. Thus,

^A for font number 1, ^B for font number 2, and so on. <displayfont>,

<pressfont>, and <interpressfont> are font specifications for the fonts to be

used when printing to the display screen, Press printers, and Interpress

printers, respectively.

 If <font#> is NIL for any font class, the DEFAULTFONT will be used,

such as:

 (SYSTEMFONT)

<font#> may also be the name of a previously defined font class, such as:

42

 (LAMBDAFONT BIGFONT)

 The DEFAULTFONT must always be defined. The font classes are

presented in Table 2-4.

Table 2-4. Font Classes

Font Class Description

LAMBDAFONT Used to print the name of a function before the

actual definition.

CLISPFONT Used to print any CLISP words (atoms with the

property CLISPWORD) if CLISPFLG is non-

NIL.

COMMENTFONT Used to print comments.

USERFONT Used to print the name of any function in the file

occurring within the body of a function or any

function on the list FONTFNS.

SYSTEMFONT Used to print any other defined function (usually

external to the file).

CHANGEFONT Used to highlight any changes to the file that have

been marked by the Editor.

PRETTYCOMFONT Used to print the operands of a file package

command.

DEFAULTFONT Used to print everything else.

 The system variable FONTPROFILE is used to store the current font

profile. Its initial value is:

<-FONTPROFILE

((DEFAULTFONT 1

 (TITAN 10)

 (TITAN 10)

 (TITAN 10))

 (BOLDFONT 2

 (HELVETICA 10 BRR)

 (HELVETICA 8 BRR)

 (MODERN 8 BRR))

 (LITTLEFONT 3

 (HELVETICA 8)

 (HELVETICA 6 MIR)

43

 (MODERN 8 MIR))

 (BIGFONT 4

 (HELVETICA 12 BRR)

 (HELVETICA 10 BRR)

 (MODERN 10 BRR))

 (USERFONT BOLDFONT)

 (COMMENTFONT LITTLEFONT)

 (LAMBDAFONT BIGFONT)

 (SYSTEMFONT)

 (CLISPFONT BOLDFONT)

 (CHANGEFONT)

 (PRETTYCOMFONT BOLDFONT)

 (FONT1 DEFAULTFONT)

 (FONT2 BOLDFONT)

 (FONT3 LITTLEFONT)

 (FONT4 BIGFONT)

 (FONT5 5

 (HELVETICA 10 BIR)

 (HELVETICA 8 BIR)

 (MODERN 8 BIR))

 (FONT6 6

 (HELVETICA 10 BRR)

 (HELVETICA 8 BRR)

 (MODERN 8 BRR))

 (FONT7 7

 (GACHA 12)

 (GACHA 12)

 (TERMINAL 12))

)

 To change the font profile, you should edit it with DEdit. DEdit will be

described in a forthcoming volume.

2.1.11.2 Setting the Font Profile

 Merely editing the value of FONTPROFILE does not change the current

setting of the font classes. You must execute the function FONTPROFILE

to register the new font profile with Interlisp. It takes the form:

 Function: FONTPROFILE

 # Arguments: 1

44

 Argument: 1) PROFILE, a font profile

 Value: T.

 FONTPROFILE registers the font profile given by PROFILE as the

current font profile to be used by PRETTYPRINT.

2.1.12 FONT VARIABLES

 Interlisp uses a variety of variables to control printing with multiple

fonts. Font configurations are used to encapsulate the values of all relevant

variables in order to avoid continual setting and resetting of individual

variables.

 The font variables that are used by Interlisp to control printing are

described in the following paragraphs.

2.1.12.1 Font Definition Variables

 FONTDEFSVARS is a list of the variables to be saved by FONTNAME.

Its initial value is:

<-FONTDEFSVARS

(FONTCHANGEFLG FILELINELENGTH COMMENTLINELENGTH

FIRSTCOL

 PRETTYLCOM LISTFILESTR FONTPROFILE FONTESCAPECHAR)

 You may add other variable names to its value that you want

incorporated into a font configuration.

2.1.12.2 Current Font Configurations

 FONTDEFS is a list of the current font configurations, represented as an

association list of the form:

 (<name> . <parameter-pairs>)

 The initial value of FONTDEFS is:

45

<-FONTDEFS

((STANDARD

 (FONTCHANGEFLG . ALL)

 (FILELINELENGTH . 102)

 (COMMENTLINELENGTH 116 . 126)

 (FIRSTCOL . 60)

 (PRETTYLCOM . 25)

 (LISTFILESTR . " ")

 (FONTPROFILE

 ((DEFAULTFONT 1

 (TITAN 10)

 (TITAN 10)

 (TITAN 10))

 (BOLDFONT 2

 (HELVETICA 10 BRR)

 (HELVETICA 8 BRR)

 (MODERN 8 BRR))

 (LITTLEFONT 3

 (HELVETICA 8)

 (HELVETICA 6 MIR)

 (MODERN 8 MIR))

 (BIGFONT 4

 (HELVETICA 12 BRR)

 (HELVETICA 10 BRR)

 (MODERN 10 BRR))

 (USERFONT BOLDFONT)

 (COMMENTFONT LITTLEFONT)

 (LAMBDAFONT BIGFONT)

 (SYSTEMFONT)

 (CLISPFONT BOLDFONT)

 (CHANGEFONT)

 (PRETTYCOMFONT BOLDFONT)

 (FONT1 DEFAULTFONT)

 (FONT2 BOLDFONT)

 (FONT3 LITTLEFONT)

 (FONT4 BIGFONT)

 (FONT5 5

 (HELVETICA 10 BIR)

 (HELVETICA 8 BIR)

 (MODERN 8 BIR))

 (FONT6 6

 (HELVETICA 10 BRR)

 (HELVETICA 8 BRR)

46

 (MODERN 8 BRR))

 (FONT7 7

 (GACHA 12)

 (GACHA 12)

 (TERMINAL 12)))

 and so on ...

 The configurations that are found in the initial version of FONTDEFS

are STANDARD, PARC, and SMALL.

2.1.12.3 Font Escape Character

 FONTESCAPECHAR specifies the font escape character that is used

to signal to PRETTYPRINT that a font escape sequence has been started. Its

value must be a character or a string. Its initial value is:

<-FONTESCAPECHAR

^|F

2.12.1.4 Font Change Flag

 FONTCHANGEFLG enables or disables the use of multiple fonts

during printing by PRETTYPRINT. If T, printing with mulitple fonts is

enabled. Its initial value is:

<-FONTCHANGEFLG

ALL

2.1.12.5 Comment Line Length

 COMMENTLINELENGTH is used to inform Interlisp about font

widths. When FONTCHANGEFLG has the value T, the CAR of

COMMENTLINELENGTH is the line length used to print comments in the

right margin and its CDR is the line length used to print those for the full

width.

47

2.1.12.6 Fonts in Memory

 The fonts which have been loaded in memory are described by the

variable \FONTSINCORE, which takes the initial form:

((MODERN

 (10

 ((MEDIUM REGULAR REGULAR)

 (0 (DISPLAY . {FONTDESCRIPTOR}#62,5464)))

))

 (TITAN

 (8

 ((BOLD REGULAR REGULAR)

 (90 (4045XLP . {FONTDESCRIPTOR}#62,5670))

 (0 (4045XLP . {FONTDESCRIPTOR}#73,45464))

))

 (12

 ((BOLD REGULAR REGULAR)

 (90 (4045XLP . {FONTDESCRIPTOR}#73,45054))

 (0 (4045XLP . {FONTDESCRIPTOR}#73,45540)))

)

 (10

 ((BOLD REGULAR REGULAR)

 (90 (4045XLP . {FONTDESCRIPTOR}#73,45000))

 (0 (4045XLP . {FONTDESCRIPTOR}#73,45614))

)

 ((MEDIUM REGULAR REGULAR)

 (90 (4045XLP . {FONTDESCRIPTOR}#73,45130))

 (0 (4045XLP . {FONTDESCRIPTOR}#73,45670)))

))

 and so forth ...

 Note that there are individual descriptions for both MEDIUM and BOLD

and for the two different rotations for the font.

2.1.12.7 Making a Font Configuration

 You may make a font configuration using the function FONTNAME:

 Function: FONTNAME

 # Arguments: 1

48

 Argument: 1) NAME, the name for the font

 configuration

 Value: The name of the font configuration.

 FONTNAME gathers the names and values of the variables which

compose a font configuration and stores them on the system variable

FONTDEFS under NAME.

2.1.12.8 Installing a Font Configuration

 You may install a font configuration as the current font configuration by

executing FONTSET:

 Function: FONTSET

 # Arguments: 1

 Argument: 1) NAME, the name of a font configuration

 Value: The name of the previous font configuration.

 FONTSET installs the font configuration identified by NAME as the

current font configuration, e.g., it sets the values of the font variables to the

values specified in the font configuration. Consider the following example:

<-(FONTSET 'STANDARD)

STANDARD

 If NAME does not correspond to a font configuration, FONTSET returns

an error as follows:

<-(FONTSET 'X)

X is not a defined font configuration.

2.2 HARDWARE FUNCTIONS

 Interlisp appeared to the user as the native operating system for the Xerox

Artificial Intelligence workstations. It incorporated a number of functions

that allowed the user to control various aspects of the hardware which make

up the workstation configuration.

49

 In Medley Interlisp, these kernel functions have been (or will be?)

replaced by function calls to services provided by the respective operating

systems under which it will run on modern systems.

2.2.1 DISPLAY SCREEN FUNCTIONS

 Interlisp includes functions that give you control over operating

characteristics of the display screen.

2.2.1.1 Setting the Display Screen Color

 The standard black-and-white display screen interprets a 0 bit as white

and a 1 bit as black under the current convention. VIDEOCOLOR allows

you to invert the interpretation of the 0 and 1 bits. VIDEOCOLOR is a

nospread function. It takes the form:

 Function: VIDEOCOLOR

 # Arguments: 1

 Arguments: 1) BLACKFLG, a flag specifying the

 interpretation of the 0 bit

 Value: The previous setting.

 BLACKFLG determines how the 0 bit will be interpreted. If

BLACKFLG is NIL, a 0 bit is displayed as white and a 1 bit will be displayed

as black. Setting BLACKFLG to a non-NIL value (typically T) causes 0 bits

to be displayed as black and 1 bits to be displayed as white. When this

expression is executed, all bits on the screen are reversed 0 for 1 and 1 for 0

(e.g., white on black).

<-(VIDEOCOLOR T)

NIL

 If BLACKFLG is not given, the previous setting of BLACKFLG is

returned:

<-(VIDEOCOLOR)

T

50

 To reset the screen to the normal black-on-white display, you should use:

<-(VIDEOCOLOR NIL)

T

2.2.1.2 Setting the Video Refresh Rate

 You may set the video refresh rate using the function VIDEORATE:

 Function: VIDEORATE

 # Arguments: 1

 Arguments: 1) TYPE, the type of refresh

 Value: The old value of the refresh rate.

 The display screen is usually refreshed at a rate of 60 cycles per second.

However, because many workstations are now used to produce videotapes

for demonstrations, the Xerox AI workstations incorporate the feature of

changing the refresh rate to 60 cycles per second which is typical of most TV

systems. This permits you to videotape directly from the screen.

 TYPE may be either NORMAL or TAPE. NORMAL specifies the

standard refresh rate for the screen. When your workstation is delivered, it

will be set to this rate. TAPE specifies that the screen should be refreshed at

the TV rate (which is about 60 cycles per second).

Caution: Changing the refresh rate of the display screen may alter the

appearance of data displayed on the screen and change the dimensions of the

display tube.

2.2.2 KEYBOARD MANAGEMENT

 Interlisp provides a set of function for managing the low-level keyboard

facilities. For each key on the keyboard, there is a bit in memory which may

be turned on/off by the microcode. This bit is also turned on/off as the key is

pressed and released by the user. You may test the key transitions as the key

moves up or down. Combinations of keys results in different ASCII character

codes being inserted in the system line buffer.

51

2.2.2.1 Testing Key Status

 Many actions within Interlisp are initiated when a key is pressed. To test

whether a key is pressed down, you use the function KEYDOWNP:

 Function: KEYDOWNP

 # Arguments: 1

 Arguments: 1) KEYNAME, the name of a key

 Value: T, if the key is pressed down when the

 function is executed; otherwise, NIL.

 KEYDOWNP tests whether a specific key has been pressed down at the

time that the function is executed. Most keys are given names which are

recognized by KEYDOWNP as follows

1. The alphabetic and numeric keys are identified by their

respective names such as A or 5.

2. The shift keys are distinguished right and left by RSHIFT

and LSHIFT.

3. The space bar is identified as SPACE.

4. The tab key is identified by TAB.

 Consider the following examples (where I actually press the key):

<-(KEYDOWNP)

ILLEGAL ARG

NIL

<-(KEYDOWNP 'A)

NIL

 KEYDOWNP is intended to be used from within a program to detect

when certain keys have been pressed by the user. Thus, its action when

invoked from the keyboard may be misleading.

<-(KEYDOWNP 'RSHIFT)

T

52

2.2.2.2 Changing the Effects of Key Actions

 When a key is pressed, the bit associated with the key in memory is used

to look up the action associated with that key in an internal action table.

 You may change the actions associated with a key using the function

KEYACTION:

 Function: KEYACTION

 # Arguments: 2

 Arguments: 1) KEYNAME, the name of a key

 2) ACTIONS, a dotted pair specifying the

 actions for the key

 Value: The previous actions for the key.

 If ACTIONS is NIL, then KEYACTION returns the current value of the

action table for the key. Consider the following examples:

<-(KEYACTION 'Y)

((121 89 LOCKSHIFT) . IGNORE)

<-(KEYACTION 'RSHIFT)

(2SHIFTDOWN . 2SHIFTUP)

<-(KEYACTION 'TAB)

(IGNORE . IGNORE)

 A key action is specified as a dotted pair which has the form:

 (<DOWN-ACTION> . <UP-ACTION>)

where the actions are interpreted as the key makes the appropriate transition.

The values that the ACTION may take are given in Table 2-5.

 If ACTIONS is NIL, the previous setting is returned without changing

the table.

Table 2-5. Key Transition Actions

53

Action Effect

NIL Take no action on this transition. Normally,

all up-transitions default to NIL, e.g., we

only want to know when the key has been

pressed.

(char SHIFTEDCHAR

LOCKFLG)

When a transition occurs, CHAR or SHIFTEDCHAR

is transmitted to the system buffer. LOCKFLAG, an

optional element, may take the values LOCKSHIFT or

NOLOCKSHIFT.

EVENT Place an encoding of the current state of the mouse

and the selected keys in the mouse event buffer when

this transition is detected.

1SHIFTUP Change the status of the internal shift flag for the left

shift key on an up transition.

1SHIFTDOWN Change the status of the internal shift flag for the left

shift key on an up transition.

LOCKUP Change the status of the internal shift lock flag.

CTRLUP Changes the status of the internal control key flag on

the up transition.

METAUP Change the status of the internal meta flag.

2SHIFTUP Change the status of the internal shift flag for the right

shift key on the up transition.

2SHIFTDOWN Change the status of the internal shift flag for the right

shift key on the down transition.

LOCKDOWN Changes the status of the internal lock key flag on the

down transition.

CTRLDOWN Changes the status of the internal control key flag on

the down transition.

METADOWN Changes the status of the internal meta key flag on the

down transition.

---Deprecated-------------------------------

 On the Xerox 1186 keyboard, there is no key for the backslash character.

However, you can enable the backslash character for the lower right key on

the keypad using the following expression:

<-(KEYACTION (PACK* 'KEYPAD (CHARACTER 92))

 '((92 44 NOLOCKSHIFT) . IGNORE)))

((92 44 NOLOCKSHIFT) . IGNORE)

---Deprecated-------------------------------

54

Handling Shifted Characters

 The list form of an action determines what values are transmitted when

a key is pressed according to the following rules:

 If either of the shift keys (e.g., RSHIFT or LSHIFT) is

pressed, then SHIFTEDCHAR is transmitted when the key

is pressed.

 If LOCKFLAG is LOCKSHIFT, then SHIFTEDCHAR is

transmitted when the LOCK key is down.

 If neither of the shift keys is pressed, then CHAR is

transmitted when the key is pressed.

 Initially, the alphabetic keys specify LOCKSHIFT while the numeric

keys do not. Thus, you explicitly want the user to press a shift key in order to

obtain the special characters that reside over the numeric keys.

2.2.2.3 Modifying Key Actions

 You may modify the actions of multiple keys at one time using the

function MODIFY.KEYACTIONS:

 Function: MODIFY.KEYACTIONS

 # Arguments: 2

 Arguments: 1) KEYACTIONS, a list of key actions to be

 set

 2) SAVECURRENT?, a flag to return current

 settings

 Value: Depends on the value of SAVECURRENT?.

 KEYACTIONS is a list of key actions to be set where each element takes

the form

 (<KEYNAME> . <ACTIONS>)

and ACTIONS has the form described in Section 2.2.2.2 above.

55

 MODIFY.KEYACTIONS acts as if you performed many individual

calls to KEYACTION with each of the elements of the list KEYACTIONS

as its argument.

 SAVECURRENT? determines whether MODIFY.KEYACTIONS

returns a list of the results. If non-NIL (typically T),

MODIFY.KEYACTIONS returns a list of the previous settings of all keys

whose actions are modified as the result of specification in KEYACTIONS.

Otherwise, it returns NIL.

 The basic reason for using SAVECURRENT? is to be able to change the

effects of keys within your program, but to be able to reset their original

actions upon exit or CTRL-D via RESETFORM.

2.2.2.4 Specifying the Meta Key

 The metashift key turns on the eighth (or high order) bit of any byte when

characters are transmitted by pressing a key. Metashifting is used to increase

the character set codes from 128 (e.g., seven bits) to 256 (e.g., 8 bits).

 Depending on the keyboard that you have, the META may or may not

be labeled (on the Xerox 1186 it is in the lower left corner of the primary

keypad)

 You may specify that the bottom blank key will be interpreted as the

metashift key using the function METASHIFT:

 Function: METASHIFT

 # Arguments: 1

 Arguments: 1) FLG, a flag indicating whether

 metashifting should be enabled or not.

 Value: The key action corresponding to metashifting

 the character.

 METASHIFT is a nospread function. If FLG is non-NIL (typically T),

the bottom left blank key will be interpreted as the metashift key. Consider

the example:

56

<-(METASHIFT)

((5 7 NOLOCKSHIFT) . IGNORE)

 Whenever a key is pressed while the metashift key is held down, the

ASCII code associated with the key will be OR'ed with 200Q in order to set

the high order bit.

2.2.2.5 Getting A Key Value

 You may wait until the user actually presses a key using the function

\GETKEY:

 Function: \GETKEY

 # Arguments: 0

 Arguments: N/A

 Value: The character code of the key that was

 pressed.

 Consider the function WAIT.ON.KEY, defined below, which waits for

the user to press any one of a specified number of keys (given by KEYLST).

It is defined as:

<-(DEFINEQ (WAIT.ON.KEY (KEYLST)

 (if (MEMBER (\GETKEY) KEYLST)

 then T)

))

(WAIT.ON.KEY)

Now, we can try this function as follows:

<-(WAIT.ON.KEY '(74))

<Here, I press a "J">

T

<-(WAIT.ON.KEY '(74))

<Here, I press an "X">

NIL

57

 This function is quite useful if you want to force the user to press keys

in a required sequence or are coding keys to represent specific functions.

2.2.3 HARDCOPY FACILITIES

---Deprecated-------------------------------

 Interlisp provided a set of facilities for generating hardcopy output in two

formats: Interpress and Press.

 Interpress was the format used for communicating documents between

Xerox workstations and Xerox printing systems such as the 8044 and the

5700. Press was a format used to communicate documents to Xerox laser

xerographic printers such as the 2700 and the 4045.

---Deprecated-------------------------------

 The hardcopy facilities allow you to reproduce text, graphics, and image

displays on hardcopy media whether it be paper, transparency foils, or film.

 The hardcopy facilities have been designed to permit the easy integration

of new printers with existing Xerox workstations. Interlisp generates the

appropriate file format according to the type of printer to be used rather than

requiring the user to be explicitly aware of the printer type.

 The hardcopy functions described in the following sections allow you to

produce hardcopy output on any of the printers supported by the Xerox

workstations either directly or through the use of Lisp library packages.

2.2.3.1 Sending a File to a Printer

 You may send a file to a printer to be printed using the function

SEND.FILE.TO.PRINTER:

 Function: SEND.FILE.TO.PRINTER

 # Arguments: 3

 Arguments: 1) FILE, the name of a file

 2) HOST, the name of a host system

 3) PRINTOPTIONS, a list of options

 Value: NIL.

58

 SEND.FILE.TO.PRINTER sends the specified file to the specified

printer. The file must be located on the current host.

 HOST specified the host computer system on the network, if any, which

had a printer which can print that type of file. If HOST was NIL, Interlisp

used the first host in the list of default printing hosts,

DEFAULTPRINTINGHOST.

---Deprecated-------------------------------

 If you have a stand-alone Xerox workstation, then

DEFAULTPRINTINGHOST should be set to {DSK}.

---Deprecated-------------------------------

 PRINTOPTIONS is a list of options that affects the behavior of the

printer. It is organized in property list format.

---Deprecated-------------------------------

The following options are accepted by Interpress printers:

Table 2-x. Interpress Printing Options

Option Descriptions

DOCUMENT.NAME The name of the document which will be

printed on the title page. It must be a

string. The default value is the name of the

file.

DOCUMENT.CREATION.DATE The date of the creation of the document

which will appear on the header page. It

must be an Interlisp integer date (IDATE

format). The default value is the creation

date of the file.

SENDER.NAME The name of the user who sent the file to

the printer. It will appear on the title page.

It must be a string. The default value is the

login name of the user

RECIPIENT.NAME The name of the person who is receiving

the document. It will appear on the title

page. It must be a string. The default value

is NIL, meaning no name will be listed.

59

MESSAGE An additional message which may be

printed on the title page. It must be a

string. This might be a document

classification, company name, or other

identifying material such as a copyright

notice.

#COPIES The number of copies of the document to

be printed. The default value is 1.

PAGES.TO.PRINT The numbers of pages of the document to

be printed represented as a list of the form.

(FIRSTPAGE# LASTPAGE#) The default value is to print all pages of

the document.

MEDIUM The type of medium on which the

document is to be printed. The default is

the value of

NSPRINT.DEFAULT.MEDIUM (see

below).

STAPLE? T, if the document should be stapled.

Apparently, this option exists only on the

larger Xerox printers.

#SIDES The number of sides of the medium on

which output should be printed. Must be

an integer having the value 1 or 2 as

appropriate to the printer. The default

value is the value of EMPRESS#SIDES.

PRIORITY The priority of this print request which

assists the host computer in placing it in

the printing queue. The value is one of

HIGH, NORMAL, or LOW. The default

value is the printer's default.

 Press printers only recognized the following print options:

 #COPIES

 #SIDES

 DOCUMENT.CREATION.DATE

---Deprecated-------------------------------

60

Consider the following example:

<-(SEND.FILE.TO.PRINTER '{DSK}<LISPFILES>STRADS>EGYPT.]

{DSK}<LISPFILES>STRADS>EGYPT.;1

 SEND.FILE.TO.PRINTER calls the functions PRINTERTYPE and

PRINTFILETYPE to determine the type of printer and the file format,

respectively.

2.2.3.2 Printing Media

<<To be provided at a later date>>

 A number of different types of media may be used in Xerox printers. You

may explicitly use the MEDIUM print option as explained above.

Alternatively, the value of the system variable

NSPRINT.DEFAULT.MEDIUM will be used. It is interpreted as specified

in Table 2-6.

Table 2-6. Media Types

Media Type Description

NIL Use the printer's default.

T Use the first medium reported available to the

printer.

Courier value An object specifying the paper type.

 A Courier object must be a Lisp object of type MEDIUM. It takes one

of the following formats:

1. (PAPER (KNOWN.SIZE TYPE))

2. (PAPER (OTHER.SIZE (WIDTH LENGTH)))

 The paper type must be one of:

 US.LETTER

 US.LEGAL

 A0 through A10

 ISO.B0 through ISO.B10

 JIS.B0 through JIS.B10

61

 The IRM suggests that that if you use A4 paper exclusively (which is

standard US letter size 8.5 x 11 inches), it should be sufficient to set

NSPRINT.DEFAULT.MEDIUM to (PAPER (KNOWN.SIZE "A4")).

 If you use paper of different sizes, you should be aware that you may

have to change the value of the system variable DEFAULTPAGEREGION,

which specifies the region on the page used for printing. It is measured in

micas from the lower left corner of the page.

2.2.3.3 Producing Hard Copy of a Window

 You may produce a hard copy image of a window on the display screen

using the function HARDCOPYW:

 Function: HARDCOPYW

 # Arguments: 6

 Arguments: 1) WINDOW/BITMAP/REGION, a handle

 of one of these objects

 2) FILE, the name of a file

 3) HOST, the name of a host

 4) SCALEFACTOR, a reduction factor

 5) ROTATION, a rotation factor

 6) PRINTERTYPE, the type of printer

 Value: NIL.

 HARDCOPYW creates a file containing an image of a bitmap suitable

for printing and sends it to a printer. The size and complexity of the bitmap

may be limited by the printer. WINDOW/BITMAP/REGION specifies the

source of the image that is used to create the file. It is the handle of one of:

1. A window, which may be opened or closed

2. A bitmap

3. A region, which is treated as a region of the display screen

 If WINDOW/BITMAP/REGION is NIL, you will be prompted to

specify a region on the screen using GETREGION.

 FILE is the name of the file where the output should be placed. HOST is

the name of a host which has a printer of the proper type attached to it. If

62

HOST is NIL, the file will not be printed. Otherwise, the file is sent to HOST

for printing. HOST will determine the type of file using PRINTFILETYPE

(see below) and print the file if it has a suitable printer attached. If FILE is

NIL, a temporary file is created to hold the image. This file is sent to HOST

(if non-NIL) upon completion. The temporary file is erased after the file is

printed.

 With both FILE and HOST having the value NIL, the default action is to

print the (temporary) file.

 PRINTERTYPE specifies the type of printer to use in producing the hard

copy output. PRINTERTYPE must be one of the printers which implements

BITMAPSCALE and whose name is found in the list which is the value of

PRINTERTYPES (see below). If PRINTERTYPE is NIL, the type of hard

copy file produced is determined by the first printer on

DEFAULTPRINTINGHOST which implements the function

BITMAPSCALE.

Consider the following examples, is depicted in Figure 2.5.

<-(HARDCOPYW (WHICHW))

NIL

Figure 2.5 Example of HARDCOPYW

2.2.3.4 Scaling

 The size of the hard copy image could be scaled by specifying a

reduction factor as the value of SCALEFACTOR. If no scaling factor is

specified, one will automatically be computed using the source bit map size

and the characteristics of the target printer.

63

 Note: Scaling may not be supported for all printers.

2.2.3.5 Rotating the Image

 ROTATION specifies how the hard copy image will be rotated on the

output medium. Most printers supported only rotations of 90 degrees which

allowed the document to be printed in letter style or landscape style.

2.2.3.6 Networked Printers

 If a workstation resided on a network, a file could be sent directly to a

printer by specifying the device name LPT as the value of FILE. Consider the

following example:

<-(HARDCOPYW (WHICHW) '{LPT})

{LPT}4045XLP;1

---Deprecated-------------------------------

 Closing a file on this device caused the file to be converted to Interpress

format and sent to the default printer.

---Deprecated-------------------------------

2.2.4 DETERMINING THE PRINTER STATUS

 The current status of a specified printer could be determined using the

function PRINTERSTATUS:

 Function: PRINTERSTATUS

 # Arguments: 1

 Arguments: 1) PRINTER, the name of a printer

 Value: A list describing the current status.

 PRINTERSTATUS returned a list, whose format depended on the type

of printer, which describeed the current status of the printer. If the printer was

busy and could respond in a reasonable amount of time, PRINTERSTATUS

returned T.

64

 Note: Some printers do not implement the printer status service and will

not be able to respond to this query. The value of the function will be T. For

example,

<-(PRINTERSTATUS '4045XLP)

T

since the 4045 laser printer was typically attached to the RS232 port of the

1186.

2.2.5 DETERMINING THE FILE FORMAT

 The printing format of the file could be determined using the function

PRINTFILETYPE:

 Function: PRINTFILETYPE

 # Arguments: 1

 Arguments: 1) FILE, the name of a file

 Value: The file format.

 PRINTFILETYPE determined the printing file format of its argument. It

returned a value which could be one of TEDIT, <<other types to be

provided>>, - e.g. one of the values of PRINTFILETYPES. If it cannot

determine the printing file format, it returned NIL Consider the following

examples:

<-(CNDIR '{DSK}<LISPFILES>STRADS>)

{DSK}<LISPFILES>STRADS>

<-(PRINTFILETYPE 'AC2)

TEXT

2.2.6 DETERMINING THE PRINTER TYPE

 The printer type of the printer associated with HOST could be

determined using the function PRINTERTYPE:

 Function: PRINTERTYPE

 # Arguments: 1

 Arguments: 1) HOST, the name of a host

65

 Value: The type of the printer; otherwise, NIL.

 PRINTERTYPE uses the following rules to determine the type of

printer:

 If the value of HOST is a list, its structure should be (<printer type>

<printer name>);

 If HOST is a literal atom with a non-NIL PRINTERTYPE property,

the value of the property is returned as the printer type;

 If HOST contains a colon, it is assumed to be an Interpress printer;

 If HOST is the CADR of a list on DEFAULTPRINTINGHOST, the

CAR of that list if

 the type of printer;

 Otherwise, the value of the global system variable

DEFAULTPRINTERTYPE is returned as the value.

2.2.7 HARDCOPY SYSTEM VARIABLES

 A set of system variables was used to control the behavior of the

hardcopy functions and to describe the printer environment available to

Interlisp systems.

2.2.7.1 Printer Types

 The system variable PRINTERTYPES is a list of printers recognized by

Interlisp. Each element of the list is an expression of the form:

 (<type>

 (<property-1> <value-1>)

 (<property-N> <value-N>))

 The <type> field is a list of the printer types defined by this entry. The

property list entries define properties associated with each printer type.

The properties which may be specified for printers are described in Table 2-

7.

Table 2-7. Printer Properties

66

Property Description

CANPRINT Its value is a list of the file types that the printer can

print directly.

STATUS Its value is a function that is able to determine and

return the status of the printer in response to an

invocation of

PRINTERSTATUS (Section 2.2).

PROPERTIES Its value is a function which returns a list of known

printer properties.

SEND Its value is a function which invokes the

appropriate protocol to send to the printer.

BITMAPSCALE Its value is a function of the arguments WIDTH

and HEIGHT (in bits) which returns a scale factor

to be used in scaling the bitmap.

BITMAPFILE Its value is an expression which converts a bitmap

to a file format that the printer will accept (e.g.,

print).

 <<The types of printers supported in the near future.>>

---Deprecated-------------------------------

The initial value of PRINTERTYPES is (after 4045XLPSTREAM.DCOM

has been loaded):

(((4045XLP)

 (CANPRINT (4045XLP))

 (STATUS TRUE)

 (SEND 4045XLPPRINT)

 (HOSTNAMEP 4045XLP.HOSTNAMEP)

 (BITMAPSCALE 404XLP.BITMAPSCALE)

 (BITMAPFILE (4045XLPBITMAPFILE FILE BITMAP SCALEFACTOR

REGION

 ROTATION TITLE)))

 ((INTERPRESS 8044)

 (CANPRINT (INTERPRESS))

 (HOSTNAMEP NSPRINTER.HOSTNAMEP)

 (STATUS NSPRINTER.STATUS)

 (PROPERTIES NSPRINTER.PROPERTIES)

 (SEND NSPRINT)

 (BITMAPSCALE INTERPRESS.BITMAPSCALE)

 (BITMAPFILE (INTERPRESSBITMAP FILE BITMAP SCALEFACTOR

REGION

67

 ROTATION TITLE)))

 ((PRESS SPRUCE PENGUIN DOVER)

 (CANPRINT (PRESS))

 (STATUS PUP.PRINTER.STATUS)

 (PROPERTIES PUP.PRINTER.PROPERTIES)

 (SEND EFTP)

 (BITMAPSCALE NIL)

 (BITMAPFILE (PRESSBITMAP FILE BITMAP SCALEFACTOR REGION

ROTATION

 TITLE)))

 ((FULLPRESS RAVEN)

 (CANPRINT (PRESS))

 (STATUS PUP.PRINTER.STATUS)

 (PROPERTIES NILL)

 (SEND EFTP)

 (BITMAPSCALE PRESS.BITMAPSCALE)

 (BITMAPFILE (PRESSBITMAP FILE BITMAP SCALEFACTOR REGION

ROTATION

 TITLE)))

 and so on...

 Xerox has developed and used a number of different types of printers

over the past decade. Some of these remain experimental printers while others

have eventually emerged as commercial products. You may see the following

names used in place of certain printer types:

 8044>>INTERPRESS

 SPRUCE>>PRESS

 PENGUIN>>PRESS

 DOVER>>PRESS

 RAVEN>>PRESS

---Deprecated-------------------------------

2.2.7.2 Print File Types

 The system variable PRINTFILETYPES is a list that contains

information about the various file formats which can be printed. Each element

of the list takes the form:

 (<type>

 (<property-1> <value-1>)

68

 (<property-N> <value-N>))

 The properties that may be specifiedare presented in Table 2-x.

Table 2-x. Types of Print Files

Type Usage

TEST Its value is a function which tests the file format to

determine if it is a given type.

CONVERSION Its value is a property list of file types and the functions

which may be used to convert from the specified type to

the file format.

EXTENSION Its value is a list of possible file extensions for this file

type which are used in seeking the file in a directory.

---Deprecated-------------------------------

 The initial value of PRINTFILETYPES is (after TEdit has been loaded):

((TEDIT (TEST TEST.FORMATTEDP1)

 (EXTENSION (TEDIT))

)

 (4045XLP (TEST 4045XLPFILEP)

 (EXTENSION (4045XLP))

 (CONVERSION

 (TEXT 4045XLP.PRINTEXT

 TEDIT

 (LAMBDA (FILE PFILE)

 (SETQ FILE (OPENTEXTSTREAM FILE))

 (TEDIT.FORMAT.HARDCOPY

 FILE

 PFILE

 T

 NIL

 NIL

 NIL

 '4045XLP

)

 (CLOSEF? FILE)

 PFILE

)

 TEDIT

69

 TEDIT.HARDCOPY

)

)

 (INTERPRESS (TEST INTERPRESSFILEP)

 (EXTENSION (IP RP INTERPRESS))

 (CONVERSION

 (TEXT MAKEINTERPRESS

 TEDIT

 (LAMBDA (FILE PFILE)

 (SETQ FILE (OPENTEXTSTREAM FILE))

 (TEDIT.FORMAT.HARDCOPY

 FILE

 PFILE

 T

 NIL

 NIL

 NIL

 'INTERPRESS)

 (CLOSEF? FILE)

 PFILE

))

 TEDIT

 TEDIT.HARDCOPY)

))

(PRESS (TEST PRESSFILEP)

 (EXTENSION (PRESS))

 (CONVERSION

 (TEXT MAKEPRESS

 TEDIT

 (LAMBDA (FILE PFILE)

 (SETQ FILE (OPENTEXTSTREAM FILE)

 (TEDIT.FORMAT.HARDCOPY

 FILE

 PFILE

 T

 NIL

 NIL

 NIL

 'PRESS

)

 (CLOSEF? FILE)

 PFILE)

70

))

))

---Deprecated-------------------------------

2.2.7.3The Default Printing Host

 If you do not specify a printer in a hardcopy function, Interlisp uses the

value of DEFAULTPRINTINGHOST to determine where to send the file for

printing. It designates the default printer to be used as the output of printing

operations. The value of DEFAULTPRINTINGHOST should be a list of

known printer host names that are accessible to the workstation (usually, via

the Ethernet).

 The value of DEFAULTPRINTINGHOST may take the form:

(<printertype> <host(s)>) where <printertype> is one of the values found in

PRINTERTYPES and <host(s)> is a list of hosts that have that printer

attached. The type of printer determines the protocol used to send information

to the printer for printing.

 If DEFAULTPRINTINGHOST is a single printer name, it is treated as

a list of one element.

---Deprecated-------------------------------

2.3 FLOPPY DISK MANAGEMENT

 A workstation could contain a floppy disk drive in addition to an integral

hard disk drive. The floppy disk drive was used for transferring files among

machines as well as for archiving files which are irregularly used. The floppy

disk drive was accessed through the device name {FLOPPY}.

 Two types of floppy disk drives were provided for Xerox workstations:

an 8" drive on the older 1100/1108/1109 models and a 5-1/4" drive provided

for the 1185/1186 models. In most cases the functions described here should

work for both types of drives. However, you should consult the User's Guide

for your workstation to determine if there are specific conditions or

characteristics of which you should be aware.

71

2.3.1 OPENING A STREAM TO THE FLOPPY DISK

 In order to use the floppy disk drive, you must make it known to the

system. You may do so by opening a stream to the floppy disk drive via the

following expression:

<-(SETQ FLOPPY.STREAM

 (OPENSTREAM '{FLOPPY}LispInstallation.Script

 'INPUT

 'OLD))

{STREAM}#60,47470

 Once you have opened a stream to the floppy disk, you may utilize the

standard Interlisp input/output functions to read, write, and control the floppy

disk consonant with the modes in which you have opened the floppy disk.

2.3.2 SETTING THE FLOPPY DISK MODE

 Interlisp supports a number of modes for reading and writing floppy

disks as presented in Table 2-8.

Table 2-8. Floppy Disk Modes

Mode Description

PILOT PILOT is the normal floppy disk mode. It allows the normal

Interlisp I/O functions to be performed on the floppy disk. It

also supports a directory and file naming convention similar

to that available through the hard disk management facilities

(see Section 2.5).

HUGEPILOT HUGEPILOT is used to access files which span more than

one floppy disk. When opening a floppy disk stream in this

mode, you must specify the value of the LENGTH attribute

so that the number of floppy disks required to accommodate

the file can be calculated.

When output is written to floppy disks in this mode, each

floppy is automatically erased and reformatted. During the

I/O operation, you will be prompted to insert the next floppy

72

disk when the operation on the previous one has been

completed.

SYSOUT SYSOUT mode is similar to HUGEPILOT, but represents

one contiguous file. It is used to store sysout files that

represent a dump of virtual memory. Loading sysout files is

specific to the type of workstation that you have so you

should consult your User's Guide.

CPM Interlisp supports a single-density, single-sided (SDSS)

CPM format for exchanging information with other

computer systems. This mode is incompatible with the

PILOT mode for floppy disks.

 To set the floppy disk mode, you may use the FLOPPY.MODE, which

takes the following format:

 Function: FLOPPY.MODE

 # Arguments: 1

 Arguments: 1) MODE, the new mode for the floppy disk

 Value: The old mode of the floppy disk.

 FLOPPY.MODE sets the current mode of the floppy disk. Consider the

following example:

<-(FLOPPY.MODE 'HUGEPILOT)

PILOT

<-(COPYFILE '{FLOPPY}USSRFILE.DCOM

'{DSK}<LISPFILES>STRADS>USSRFILE.DCOM)

{DSK}<LISPFILES>STRADS>USSRFILE.DCOM)

 After you have inserted the first disk, Interlisp copies the contents of the

first disk to the file on the hard disk. It then prompts you to insert the second

floppy disk. Once you have done so, click the left mouse button to indicate

the disk is ready. Interlisp then proceeds to read this disk.

 This process continues until all floppy disks comprising the

HUGEPILOT file have been read. You may then revert to the previous mode.

<-(FLOPPY.MODE 'PILOT)

HUGEPILOT

73

2.3.3 FORMATTING A FLOPPY DISK

 You must format a floppy disk the first time you intend to use it unless

it has been supplied pre-formatted with software on it (such as the disks that

are distributed by Xerox). To format a floppy disk, you may use the

FLOPPY.FORMAT:

 Function: FLOPPY.FORMAT

 # Arguments: 3

 Arguments: 1) NAME, the name to be given to the floppy

 disk

 2) AUTOCONFIRMFLG, a flag to prompt

 the user to confirm erasure of the floppy

 3) SLOWFLG, a flag to improve formatting

 performance

 Value: The floppy disk name.

 FLOPPY.FORMAT erases the floppy disk and (re-)initializes the track

information. Note that this implies that the floppy disks to be used must be

soft-sectored. Formatting must be performed prior to the first time a new

floppy disk is to be used or when you want to re-use a floppy disk (possibly

one which has been corrupted or has a different format).

 You may give each floppy disk a name. This name may later be checked

(using FLOPPY.NAME) do ensure that the proper disk has been inserted into

the floppy drive. The name of the floppy disk must be a string which has a

total length less than 106 characters.

 FLOPPY.FORMAT attempts to interpret the contents of a floppy disk

prior to reformatting it. If the disk appears to have valid information,

FLOPPY.FORMAT will ask the user to confirm erasure and reformatting.

User confirmation is requested when AUTOCONFIRMFLG has the value

NIL. If AUTOCONFIRMFLG is T, you will not be prompted to confirm the

erasure and reformatting of the disk.

 Formatting a floppy disk is an I/O intensive process. It may cause a loss

of cycles which affects other elements of the workstation such as the tracking

of the mouse or acceptance of keystrokes.

74

 The formatting process could be improved by writing only the necessary

information on the disk required to create an empty directory. SLOWFLG,

when given the value T, causes Interlisp to write only track information and

critical PILOT records on the disk. Additional directory information will be

written later as files are created on the disk. Essentially, you trade a lengthy,

but complete, reformatting process up-front for longer I/O operations

whenever a file is written to the disk.

2.3.4 NAMING A FLOPPY DISK

A name could be assigned to a floppy disk in order to identify it using

the function FLOPPY.NAME:

 Function: FLOPPY.NAME

 # Arguments: 1

 Arguments: 1) NAME, a name to be assigned

 Value: The old name of the floppy disk.

 FLOPPY.NAME assigns the specified name to the floppy disk. This is

useful for identifying each floppy disk when it is inserted in the drive. A

program may interrogate the floppy disk name (when it has requested a

floppy disk to be inserted) in order to determine if it is the correct floppy disk.

If NAME is NIL, FLOPPY.NAME just returns the current name of the floppy

disk residing in the drive. Consider the following example:

<-(FLOPPY.NAME)

"Steve's Disk"

2.3.5 DETERMINING THE FREE PAGES

 A floppy disk was formatted in terms of a number of pages (typically

671). You may use FLOPPY.FREE.PAGES to determine the number of free

pages on the current floppy disk. It takes the form:

 Function: FLOPPY.FREE.PAGES

 # Arguments: 0

 Arguments: N/A

 Value: The number of free pages.

75

 FLOPPY.FREE.PAGES returns the number of unallocated free pages on

the floppy disk that is currently inserted into the disk drive. Consider the

example:

<-(FLOPPY.FREE.PAGES)

200

 Floppy disks that were formatted in PILOT mode stored their files as a

set of contiguous pages. The IRM recommended that such floppy disks be

maintained in a state that utilized less than 75% of their capacity.

2.3.6 DETERMINING READABILITY

 A user could determine if a floppy disk was inserted into the disk drive

by executing the function FLOPPY.CAN.READP:

 Function: FLOPPY.CAN.READP

 # Arguments: 0

 Arguments: N/A

 Value: T or NIL.

 FLOPPY.CAN.READP returns T if there is a floppy disk inserted in the

disk drive. Consider the example:

<-(FLOPPY.CAN.READP)

T

where a floppy disk was inserted into the disk drive. Note that the disk drive

latch must be closed and locked in order for the disk drive to be enabled.

2.3.7 DETERMINING WRITABILITY

 You can determine if the floppy disk inserted in the disk drive can be

written using the function FLOPPY.CAN.WRITEP:

 Function: FLOPPY.CAN.WRITEP

 # Arguments: 0

 Arguments: N/A

 Value: T or NIL.

76

 FLOPPY.CAN.WRITEP returned T if there is a floppy disk inserted in

the disk drive which was enabled for writing. Note that the user could not

write on a floppy disk if its "write-protect notch" was punched out. Consider

the following example:

<-(FLOPPY.CAN.WRITEP)

T

 Now, inserting a floppy disk which has been disabled for writing:

<-(FLOPPY.CAN.WRITEP)

NIL

2.3.8 WAITING FOR FLOPPY AVAILABILITY

 After requesting that a user insert a floppy disk into the disk drive, the

user could force a program to wait until the floppy was inserted and properly

registered (e.g., the disk drive door is shut and latched) using the function

FLOPPY.WAIT.FOR.FLOPPY:

 Function: FLOPPY.WAIT.FOR.FLOPPY

 # Arguments: 1

 Arguments: 1) NEWFLG, a flag indicating when

 to return

 Value: NIL.

 FLOPPY.WAIT.FOR.FLOPPY waited until a floppy disk was properly

registered in the disk drive before returning if NEWFLG had the value T.

Otherwise, it returned immediately after checking if a floppy disk had been

inserted. In the latter case, FLOPPY.CAN.READP could be used to see if the

floppy could be read. Consider the following example:

<-(FLOPPY.WAIT.FOR.FLOPPY)

Floppy: Type any character after inserting new floppy.

<CR>

NIL

77

2.3.9 SCAVENGING A FLOPPY DISK

 The user could scavenge a floppy disk to determine if any damage had

occurred to the file structures using the function FLOPPY.SCAVENGE:

 Function: FLOPPY.SCAVENGE

 # Arguments: 0

 Arguments: N/A

 Value: T.

 FLOPPY.SCAVENGE attempted to determine the status of a floppy disk

file structure and repair, upon user confirmation, critical records which had

been become altered. Such altered records could cause errors during file

operations. In certain cases, FLOPPY.SCAVENGE might be able to retrieve

accidently deleted files if they had not been overwritten. Consider the

following example:

<-(FLOPPY.SCAVENGE)

Scavenge contents of Floppy Steve's Disk?

Yes

.20..........40..........60...........80.....

and so forth

T

---Deprecated-------------------------------

78

3. DISPLAY MANAGEMENT

 Interlisp uses an interactive display screen to enhance the user interface

for development and applications programs and, thus, makes the user more

productive. The display, as discussed in Section 2.1, is a bitmapped display

where each individual bit is addressable by its coordinates. Data structures

displayed on the screen may be accessed by means of the mouse which is

represented by a cursor appearing on the screen.

 To fully utilize the power of Interlisp, one must understand the

characteristics of the display environment. This chapter provides an in-depth

look at the structures and functions upon which the rest of the interactive

programming tools are built. Some of the functions defined in this chapter

are not provided in the standard Interlisp system, but were defined by me to

demonstrate how data structures and their associated functions may be used

in various ways.

3.1 DISPLAY SCREEN COORDINATE SYSTEM

 The display screen is implemented as an X-Y coordinate system. The

actual size depends upon the workstation. At the most primitive level, the

display screen can be viewed as just a collection of bits which can be turned

on and off. By turning on the appropriate bits, display patterns appear on the

screen when the patterns are transmitted from the display memory.

3.1.1 POSITIONS

The fundamental data structure associated with the display screen is a

position which is comprised of a pair of numbers representing an X-axis

coordinate and a Y-axis coordinate. A position is implemented by a record

structure:

(RECORD POSITION (XCOORD . YCOORD)

 (TYPE? (AND (LISTP DATUM)

 (NUMBERP (CAR DATUM))

 (NUMBERP (CADR DATUM))

))

(SYSTEM))

79

 The value returned by the create command is a dotted pair. The position

may be passed to other functions for processing. To create the position (100,

200), it is written as an ordered pair enclosed in parentheses for notational

convenience:

<-(SETQ aposition (create POSITION XCOORD <- 100 YCOORD <- 200))

(100 . 200)

 Because a position is a record structure, its components may be accessed

using the standard record package notation:

<-aposition:XCOORD

100

<-aposition:YCOORD

200

3.1.1.1 A Point Function

 Alternatively, a more compact notation for creating positions may be

used by defining the function POINT which accepts two arguments and

creates a position. It takes the form:

 Function: POINT

 # Arguments: 2

 Arguments: 1) X, a number

 2) Y, a number

 Value: A position handle.

 POINT takes two numbers and creates a position from them. Because

the coordinate system is based on an integer representation, POINT coerces

the numbers to integers. POINT may be defined as follows:

<-(DEFINEQ (point (x y)

 (create POSITION

 XCOORD <- (AND

 (OR (NUMBERP X)

 (ERROR "ARG NOT A NUMBER" X T))

 (FIXP X))

80

 YCOORD <- (AND

 (OR (NUMBERP Y)

 (ERROR "ARG NOT A NUMBER" Y T))

 (FIXP Y))

)

))

(POINT)

 FIXP is applied to the arguments to coerce them to integer values

because some of the Interlisp functions exhibit strange behavior when

presented with floating point values as components of positions. Consider the

following examples:

<-(POINT 200 200)

(200 . 200)

<-(POINT 307.45 75.98)

(307 . 75)

<-(POINT 'A 10)

ARG NOT A NUMBER

A

 Note that I defined considerable checking for errors in this function. This

is necessary in any function to assure error-free operation. However, because

this function is likely to be used quite frequently, you may want to remove it.

3.1.2 TESTING A POSITION

 Given an arbitrary Lisp object, you may determine if it is a position using

POSITIONP:

 Function: POSITIONP

 # Arguments: 1

 Arguments: 1) X, an arbitrary lisp object

 Value: X, if it is a position.

 POSITIONP returns the value of X if X is a position; otherwise, it

returns NIL. Consider the following examples:

81

<-(SETQ aposition (POINT 100 200))

(100 . 200)

<-(POSITIONP aposition)

(100 . 200)

<-(SETQ bposition '(10 20))

(10 20)

<-(POSITIONP bposition)

NIL

but,

<-(SETQ bposition (CONS 10 20))

(10 . 20)

<-(POSITIONP bposition)

(10 . 20)

3.1.3 COMPARING POSITIONS

 Given two positions, you may want to compare them to determine some

ordering between the two. Typical comparisons are performed with respect

to the absolute values of their respective coordinates.

Note: These functions are not included in the standard Interlisp sysout.

3.1.3.1 Equality of Positions

 You may determine the equality of two positions, labeled P1 and P2, in

two ways. First, they may be the same position whence EQ and EQUAL will

compare the addresses of the positions and return T or NIL as appropriate.

Second, if the positions P1 and P2 are different, the positions may still be

equal according to their respective coordinates. Let us define a function

=POSITION which compares two positions for equality. It takes the form:

82

 Function: =POSITION

 # Arguments: 2

 Arguments: 1) P1, a position

 2) P2, a position

 Value: T, if the positions are equal; NIL, otherwise.

 The definition for =POSITION is:

<-(DEFINE

 (=position (p1 p2)

 (COND

 ((EQUAL p1 p2) T)

 (T

 (AND (EQUAL p1:XCOORD p2:XCOORD)

 (EQUAL p1:YCOORD p2:YCOORD)

))

))

(=POSITION)

 This definition incorporates a test for equality of positions as a time

saving mechanism. If the positions are not equal, =POSITION compares the

X-coordinates and Y-coordinates, respectively. Consider the following

example:

<-(SETQ aposition (create POSITION XCOORD <- 100 YCOORD <-

200))

(100 . 200)

<-(SETQ bposition (create POSITION XCOORD <- 100 YCOORD <- 200))

(100 . 200)

<-(=POSITION aposition bposition)

T

3.1.3.2 Less Than Comparison

 You may determine that a position, labeled P1, is less than a position,

labeled P2, by comparing the values of the coordinates. Visually, a position

83

P1 less than a position P2 will appear below and to the left on the display

screen. Let us define a function <POSITION which compares two positions

such that one is less than the other. It takes the form:

 Function: <POSITION

 # Arguments: 2

 Arguments: 1) P1, a position

 2) P2, a position

 Value: T, if P1 is less than P2; NIL, otherwise.

 The definition for <POSITION is:

<-(DEFINEQ

 (<position (p1 p2)

 (COND

 ((EQUAL p1 p2) NIL)

 (T

 (AND

 (ILESSP p1:XCOORD p2:XCOORD)

 (ILESSP p1:YCOORD p2:YCOORD)

))

)

))

(<POSITION)

 This definition incorporates a test for equality of positions as a time

saving mechanism. If the positions are equal, we return NIL. If the positions

are not equal, <POSITION compares the X-coordinates and Y-coordinates,

respectively. Consider the following examples:

<-(SETQ aposition (create POSITION XCOORD <- 80 YCOORD <- 90))

(80 . 90)

<-(SETQ bposition (create POSITION XCOORD <- 100 YCOORD <- 200))

(100 . 200)

<-(<POSITION aposition bposition)

T

84

3.1.3.3 Greater Than Comparison

 You may determine that a position, labeled P1, is greater than a position,

labeled P2, by comparing the values of the coordinates. Visually, a position

P1 greater than a position P2 will appear above and to the right on the display

screen. Let us define a function >POSITION which compares two positions

such that one is greater than the other. It takes the form:

 Function: >POSITION

 # Arguments: 2

 Arguments: 1) P1, a position

 2) P2, a position

 Value: T, if P1 is greater than P2; NIL, otherwise.

 The definition for >POSITION is:

<-(DEFINEQ (>position (p1 p2)

 (COND

 ((EQUAL p1 p2) NIL)

 (T

 (AND (IGREATERP p1:XCOORD p2:XCOORD)

 (IGREATERPLESSP p1:YCOORD p2:YCOORD)

)

))

))

(>POSITION)

 This definition incorporates a test for equality of positions as a time

saving mechanism. If the positions are equal, we return NIL. If the positions

are not equal, >POSITION compares the X-coordinates and Y-coordinates,

respectively. Consider the following examples:

<-(SETQ aposition (create POSITION XCOORD <- 80 YCOORD <- 90))

(80 . 90)

<-(SETQ bposition (create POSITION XCOORD <- 100 YCOORD <- 200))

(100 . 200)

<-(>POSITION aposition bposition)

85

NIL

3.1.3.4 Other Comparisons

 You may construct functions for other comparisons using these functions

as guides. Some of the functions you might consider are x-coordinate only

greater, lesser, or equal, and similarly for the y-coordinate.

3.1.4 CALCULATIONS ON POSITIONS

 In many applications, you will find that you need to carry out arithmetic

calculations upon a pair of positions or between a position and a number. The

result of such calculations should be a new position. This section describes

some simple functions for performing arithmetic calculations upon positions.

3.1.4.1 Scaling

 To scale a position, you multiply its coordinates by a scaling factor. Let

us define SCALE to scale a position. It takes the form:

 Function: SCALE

 # Arguments: 2

 Arguments: 1) P1, a position

 2) FACTOR, a scaling factor

 Value: A new position.

 SCALE multiplies the coordinates of the position P1 by the scaling

factor, which may be an integer or a floating point number. Because

coordinates of a position are integers, the resulting values must be converted

to integers before creating the new position. SCALE may be defined as

follows:

<-(DEFINEQ (scale (p1 factor)

 (create POSITION

 XCOORD <- (FIXP (TIMES p1:XCOORD factor)

 YCOORD <- (FIXP (TIMES p1:YCOORD factor)

)

))

86

(SCALE)

Consider the following examples:

<-(SETQ aposition (create POSITION XCOORD <- 100 YCOORD <- 200))

(100 . 200)

<-(SETQ bposition (SCALE aposition 3))

(300 . 600)

Alternatively, we can define SCALE as follows:

<-(DEFINEQ (SCALE (p1 factor)

 (point (ITIMES p1:XCOORD factor)

 (ITIMES p1:YCOORD factor)

)

))

(SCALE)

3.1.4.2 Translating a Position

 You may translate a position by a fixed distance in the X and Y using the

function TRANSLATE:

 Function: TRANSLATE

 # Arguments: 2

 Arguments: 1) P1, a position

 2) DELTA, a translation factor

 Value: A new position.

 TRANSLATE added the translation factor, DELTA, to the X and Y

coordinates of the position. DELTA may be an integer or a floating point

number. TRANSLATE may be defined as follows:

<-(DEFINEQ (translate (p1 delta)

 (create POSITION

 XCOORD <- (FIXP (PLUS p1:XCOORD delta))

 YCOORD <- (FIXP (PLUS p1:YCOORD delta)

)

87

))

(TRANSLATE)

 Consider the following examples:

<-(SETQ aposition (create POSITION XCOORD <- 100 YCOORD <- 200))

(100 . 200)

<-(SETQ bposition (TRANSLATE aposition 375))

(475 . 575)

Note that DELTA may also be a negative number.

3.1.4.3 Adding Two Positions

 You may add two positions by adding their respective X and Y

coordinates. Let us define +POSITION:

 Function: +POSITION

 # Arguments: 2

 Arguments: 1) P1, a position

 2) P2, a position

 Value: A new position.

 We may define +POSITION as follows:

<-(DEFINEQ (+position (p1 p2)

 (create POSITION

 XCOORD <- (IPLUS p1:XCOORD p2:XCOORD)

 YCOORD <- (IPLUS p1:YCOORD p2:YCOORD)

)

))

(+POSITION)

Consider the following examples:

<-(SETQ apoint (POINT 100 100))

(100 . 100)

88

<-(SETQ bpoint (POINT 300 . 500))

(300 . 500)

<-(+POSITION apoint bpoint)

(400 . 600)

3.1.4.4 Subtracting Two Positions

 The function -POSITION may be defined in a manner similar to that for

+POSITION. A problem arises when subtraction of a respective pair of

coordinates yields a negative number. You may allow the negative number

to be the true value of the coordinate. Note that if you attempt to display this

position, the display system software performs a modulo function to scale it

to the display systems coordinates. Alternately, you may set negative

numbers to zero.

3.1.4.5 Transposition

 A new position may be generated which is the transposition of the

argument position using TRANSPOSE:

 Function: TRANSPOSE

 # Arguments: 1

 Arguments: 1) P1, a position

 Value: A new position.

 TRANSPOSE reverses the coordinates of its argument. Transposition is

often used in graphics functions. We may define TRANSPOSE as follows:

<-(DEFINEQ (transpose (p1)

 (create POSITION

 XCOORD <- p1:YCOORD

 YCOORD <- p1:XCOORD

)

))

(TRANSPOSE)

89

 Consider the following example:

<-(SETQ bpoint (POINT 300 . 500))

(300 . 500)

<-(TRANSPOSE bpoint)

(500 . 300)

3.1.5 POSITION FUNCTIONS

 In many applications, a number of functions may be applied to two

positions such as the distance between two points.

3.1.5.1 Calculating the Distance between Two Positions

 The distance between two positions may be calculated using the function

DISTANCE:

 Function: DISTANCE

 # Arguments: 2

 Arguments: 1) P1, a position

 2) P2, a position

 Value: An integer.

 DISTANCE calculates the square root of the dot product of the two

points. It may be defined as:

<-(DEFINEQ (distance (p1 p2)

 (SQRT (dot.product p1 p2))

))

(DISTANCE)

where DOT.PRODUCT may be defined as:

<-(DEFINEQ (dot.product (p1 p2)

 (PLUS (TIMES p1:XCOORD p2:XCOORD)

 (TIMES p1:YCOORD p2:YCOORD)

90

)

))

(DOT.PRODUCT)

Consider the following examples:

<-(SETQ aposition (POINT 80 90))

(80 . 90)

<-(SETQ bposition (POINT 100 200))

(100 . 200)

<-(DISTANCE aposition bposition)

161.2452

3.2 REGIONS

 A region is a rectangular area that defines a (possibly proper) subset of

coordinates on the display screen. The coordinates of a region are referenced

with respect to its lower left hand corner, which is labeled (0,0). The lower

left hand corner is assigned to absolute coordinates on the display screen

when locating the region in the display screen coordinate system.

 Regions are characterized by the coordinates of the lower left hand

corner, their width and their height. A region is implemented as a record with

fields named LEFT, BOTTOM, WIDTH, and HEIGHT:

(RECORD REGION

 (LEFT BOTTOM WIDTH HIEGHT)

 LEFT <- -16383

 BOTTOM <- -16383

 WIDTH <- 32767

 HEIGHT <- 32767

 (ACCESSFNS

 ((TOP

 (IPLUS (fetch (REGION BOTTOM) OF datum)

 (fetch (REGION HEIGHT) OF datum) -1))

 (PTOP

 (IPLUS (fetch (REGION BOTTOM) OF datum)

 (fetch (REGION HEIGHT) OF datum)))

91

 (RIGHT

 (IPLUS (fetch (REGION LEFT) OF datum)

 (fetch (REGION WIDTH) OF datum) -1))

 (PRIGHT

 (IPLUS (fetch (REGION LEFT) OF datum)

 (fetch (REGION WIDTH) OF datum)))

))

 (TYPE? (AND (EQLENGTH DATUM 4)

 (EVERY DATUM (FUNCTION NUMBERP))

))

(SYSTEM))

 The fields of a region may be accessed using the standard record package

access functions. Access functions are also defined for calculating the TOP

and RIGHT coordinates of the region as well (see the display above). Note

that the only test for a region that Interlisp makes is to see if its datum length

is 4 elements.

3.2.1 CREATING A REGION

 You may create a region by executing CREATEREGION:

 Function: CREATEREGION

 # Arguments: 4

 Arguments: 1) LEFT, the X-axis coordinate of the

 Lower left corner

 2) BOTTOM, the Y-axis coordinate of

 the lower left corner

 3) WIDTH, the width of the region in

 pixels (or bits)

 4) HEIGHT, the height of the region in

 pixels (or bits)

 Value: A region handle.

 CREATEREGION returns an instance of a REGION record which has

the fields set to the values of the respective arguments. Consider the

following example:

<-(CREATEREGION 100 200 300 500)

(100 200 300 500)

92

<-(CREATEREGION 10 -20 100 100)

(10 -20 100 100)

 Interlisp will create regions with negative coordinates. However, when

such regions are used to create windows, the windows will appear to begin at

the edge of the screen. Portions of the window may or may not be display at

all (in effect, they are displayed "off the screen").

3.2.2 TESTING POSITIONS INSIDE A REGION

 A point (X,Y) may be tested to determine if it is inside a region or not

using INSIDEP:

 Function: INSIDEP

 # Arguments: 3

 Arguments: 1) REGION, a region handle

 2) XorPOS, an X-axis coordinate or a

 position

 3) Y, a Y-axis coordinate

 Value: T, if the point is in the region; otherwise, NIL.

 X may take one of two values:

1. X may be a number (e.g., an integer), whence Y must also be a

number. Together, the two designate a point by its absolute

coordinates on the display screen.

2. X may be a position, whence it is determined if the position is inside

the region.

Consider the following examples:

<-aregion

(100 100 200 200)

<-(INSIDEP aregion 80 90)

NIL

<-(INSIDEP aregion 110 120)

T

93

<-(INSIDEP aregion 100 NIL)

ILLEGAL ARG

NIL

3.2.2.1 Testing for the Cursor in a Region

 Sometimes, it will be useful to determine if the current location of the

cursor is inside a particular region. Interlisp does not provide such a function,

but we can easily define one, CURSORINSIDEP:

 Function: CURSORINSIDEP

 # Arguments: 1

 Arguments: 1) REGION, a region handle

 Value: T, if the current location of the cursor is

 inside the specified region; otherwise, NIL.

 We might define CURSORINSIDEP as follows:

<-(DEFINEQ (cursorinsidep (region)

 (INSIDEP region LASTMOUSEX LASTMOUSEY)

))

(CURSORINSIDEP)

 This function is useful if you define "active" regions within a window.

In order to determine if some function should be executed, you must be able

to determine if the cursor is in an active region.

Consider the following example:

<-aregion

(100 100 200 200)

<-awindow

{WINDOW}#60,123234

which is the window associated with the AREGION. Now, by placing the

cursor inside the window, we can test if it is in the region as follows:

94

<-(CURSORINSIDEP aregion)

T

 Note that you cannot use CURSORPOSITION because it requires that

you specify a display stream or it defaults to T, which gives erroneous results.

3.2.2.2 Testing on the Border of a Region

 Sometimes, it is useful to determine if a point is on the border of a

window. Interlisp does not provide such a function, but we can easily define

a function, BORDERP:

 Function: BORDERP

 # Arguments: 3

 Arguments: 1) WINDOW, a window handle

 2) X, an X-axis coordinate

 3) Y, a Y-axis coordinate

 Value: T, if the point (X,Y) is on the border of the region

 otherwise, NIL.

 We might define BORDERP as follows:

<-(DEFINEQ (BORDERP (window XorPOS Y)

 (PROG (X REGION INNER_REGION BORDER)

 (if (LISTP XorPOS)

 then

 (SETQ X (fetch XCOORD of XorPOS))

 (SETQ Y (fetch YCOORD of XorPOS))

 else

 (SETQ X XorPOS)

)

 (* Retrieve the region of the window)

 (SETQ REGION

 (if (WINDOWP window)

 then

 (WINDOWPROP window 'REGION)

 else

 (ERROR "ARG NOT A WINDOW" window NIL)

))

 (SETQ BORDER (WINDOWPROP window "BORDER))

95

 (* Compute the inner region of the window by the border amount)

 (SETQ INNER-REGION

 (CREATEREGION (IPLUS (fetch LEFT of REGION) BORDER)

 (IPLUS (fetch BOTTOM of REGION) BORDER)

 (IDIFFERENCE

 (fetch WIDTH of REGION) BORDER)

 (IDIFFERENCE

 (fetch HEIGHT of REGION) BORDER)

 (* Now a point is on the border if it is INSIDEP the original region, but outside

 the inner region)

 (RETURN

 (AND

 (INSIDEP REGION X Y)

 (NOT (INSIDEP INNER-REGION X Y))

))

)))

(BORDERP)

Consider the following examples:

<-W1

{WINDOW}#56,141320

<-(WINDOWPROP W1 'REGION)

(134 52 224 235)

<-(WINDOWPROP W1 'BORDER)

6

<-(SETQ LMX (LASTMOUSEX))

138

<-(SETQ LMY (LASTMOUSEY))

54

<-(BORDERP W1 LMX LMY)

T

96

3.2.2.3 Testing for a Region

 An arbitrary Interlisp object may be tested to determine if it is within a

region using the function REGIONP:

 Function: REGIONP

 # Arguments: 1

 Arguments: 1) X, an arbitrary Lisp object

 Value: X, if X is a region; otherwise, NIL.

 Note that a region is a merely a list of four elements. Moreover, when

testing for a region, Interlisp ensures that every element is a number (see the

definition of a region above). Consider the following examples:

<-(SETQ aregion (CREATEREGION 10 10 101 101))

(10 10 101 101)

<-(REGIONP aregion)

(10 10 101 101)

Also:

<-(REGIONP (LIST 10 20 30 40))

(10 20 30 40)

REGIONP does not distinguish between integers and real numbers as the

following shows:

<-(REGIONP (CREATREGION 1.0 1.0 40.0 40.0))

(1.0 1.0 40.0 40.0)

However, passing such a region descriptor to CREATEW will cause an error:

<-(CREATEW (CREATEREGION 1.0 1.0 40.0 40.0))

ILLEGAL ARG

40.0

97

3.2.3 INTERSECTION OF REGIONS

 The intersection of two or more regions may be computed by executing

INTERSECTREGIONS:

 Function: INTERSECTREGIONS

 # Arguments: 1 - N

 Arguments: 1-N) REGION[i], each of which is a region

 handle

 Value: A region handle.

 INTERSECTREGIONS is a nospread function. It computes the

characteristics of a region which is the minimal intersection of a number of

regions. If there is no intersection of the specified regions, it returns NIL.

Consider the following examples:

<-(INTERSECTREGIONS)

(-2147483649 -2147483649 4294967298 4294967298)

which represents the largest region that Interlisp can internally represent

using large integers.

<-aregion

(100 100 200 200)

<-bregion

(200 200 400 400)

<-(INTERSECTREGIONS aregion bregion)

(200 200 100 100)

<-(INTERSECTREGIONS bregion aregion)

(200 200 100 100)

 Create a region beginning at (300 . 300) an extending for 500 pixels in

the X and Y directions.

<-cregion

(500 500 300 300)

98

<-(INTERSECTREGIONS aregion cregion)

NIL

because the two regions do not intersect at any common point.

3.2.4 UNION OF REGIONS

 You may compute the union of a number of regions by executing

UNIONREGIONS:

 Function: UNIONREGIONS

 # Arguments: 1 - N

 Arguments: 1-N) REGION[i], each of which is a region

 handle

 Value: A region handle.

 UNIONREGIONS is a nospread function. It computes a region which is

the minimal union of all of the specified regions. If no regions are specified,

it returns NIL. Consider the following examples:

<-(UNIONREGIONS)

NIL

Now, using the regions specified in the previous section:

<-(UNIONREGIONS aregion)

(100 100 500 500)

<-(UNIONREGIONS aregion cregion)

(100 100 700 700)

<-(UNIONREGIONS aregion NIL)

NON-NUMERIC ARG

NIL

99

3.2.5 TESTING FOR INTERSECTION

 You may test to Determining whether one region intersects another may

be computed using REGIONSINTERSECTP:

 Function: REGIONSINTERSECTP

 # Arguments: 2

 Arguments: 1) REGION1, a region handle

 2) REGION2, a region handle

 Value: T, if the regions intersect; otherwise, NIL.

 Consider the following examples using the regions specified in the

previous sections:

<-(REGIONSINTERSECTP aregion bregion)

T

<-(REGIONSINTERSECTP aregion cregion)

NIL

3.2.6 TESTING FOR INCLUSION

 Determining whether one region is a subregion of another region may be

computed by executing SUBREGIONP:

 Function: SUBREGION

 # Arguments: 2

 Arguments: 1) LARGEREGION, a region handle

 2) SMALLREGION, a region handle

 Value: T, if SMALLREGION is a subregion of

 LARGEREGION; otherwise, NIL.

 SMALLREGION may be a proper subregion of LARGEREGION or it

may be equal to it. Consider the following examples:

<-dregion

(125 125 50 50)

<-(SUBREGIONP dregion aregion)

100

NIL

<-(SUBREGIONP aregion dregion)

T

3.2.7 EXTENDING A REGION

 A region may be extended to include another region by redefining its

lower left corner, width, and height. EXTENDREGION takes the form:

 Function: EXTENDREGION

 # Arguments: 2

 Arguments: 1) REGION, a region handle

 2) INCLUDEREGION, a region handle

 Value: The region handle of REGION with its

 parameters modified.

 The parameters of REGION are destructively modified so that the new

region includes the region specified by INCLUDEREGION. Consider the

following example:

<-(SETQ REG1 (CREATEREGION 100 100 200 200))

(100 100 200 200)

<-(EXTENDREGION REG1 (CREATEREGION 150 150 200 200))

(100 100 350 350)

<-REG1

(100 100 350 350)

<-(SETQ REG1 (CREATEREGION 100 100 200 200))

(100 100 200 200)

<-(EXTENDREGION REG1 (CREATEREGION 125 125 50 50))

(100 100 200 200)

101

3.2.8 CONSTRAINING A REGION TO A LIMIT

 A region may be forced to adhere to certain limits using the function

MAKEWITHINREGION:

 Function: MAKEWITHINREGION

 # Arguments: 2

 Arguments: 1) REGION, a region to be constrained

 2) LIMITREGION, the limiting region

 Value: A new value for REGION.

 MAKEWITHINREGION destructively changes the value of REGION

so that it’s left and bottom coordinates lie within the region LIMITREGION.

If the dimensions of REGION are larger than LIMITREGION, the left and

bottom of REGION are made to correspond to the left and bottom of

LIMITREGION. Consider the following examples:

<-(SETQ REG1 (CREATEREGION 100 100 200 200))

(100 100 200 200)

<-(SETQ REG2 (CREATEREGION 125 125 50 50))

(125 125 50 50)

<-(MAKEWITHINREGION REG1 REG2)

(125 125 200 200)

So, REG1 now overlaps REG2.

 If LIMITREGION is NIL, then the value of WHOLEDISPLAY (e.g.,

the region associated with the display screen) is used. Consider the

following example:

<-(MAKEWITHINREGION REG1)

(100 100 200 200)

3.2.9 DETERMINING IF A POINT IS IN A REGION

 Determining if a point is within a region uses the function INSIDEP:

102

 Function: INSIDEP

 # Arguments: 3

 Arguments: 1) REGION, a region specification

 2) POSORX, a number or position

 3) Y, a number

 Value: T or NIL.

 INSIDEP determines if the position is within the region. POSORX may

be an integer whence Y must also be present or it may be a position whence

Y may be NIL. Consider the following examples:

<-(SETQ REG1 (CREATEREGION 100 100 200 200))

(100 100 200 200)

<-(INSIDEP REG1 75 50)

NIL

<-(INSIDEP REG1 (POINT 150 150))

T

 If REGION is a window handle, then the region associated with the

window is used to make the determination. Consider the following example:

<-W1

{WINDOW}#56,141320

<-(WINDOWPROP W1 'REGION)

(134 52 224 235)

<-(INSIDEP W1 (POINT 150 150))

T

3.3 BITMAPS

 A bitmap is a rectangular array of pixels (e.g., picture elements). Black-

and-white bitmaps have a single plane, so each pixel has the value 0 or 1.

Color bitmaps have multiple planes, so their value is typically a small integer

indicating the color to be displayed. When a pixel is 0, the corresponding bit

103

on the display screen is white, while it is black when the pixel has the value

1.

 A bitmap uses a coordinate system similar to that for regions and

windows. The lower left corner has coordinates (0,0). The extent of the

bitmap is represented by specifying its width and height in bits.

 Bitmaps are implemented in Interlisp by a unique datatype, BITMAP.

Each bitmap is described by several fields as presented in Table 3-1.

Table 3-1. BITMAP Fields

Field Description

BITMAPWIDTH The width of the bitmap (bits)

BITMAPHEIGHT The height of the bitmap (bits).

BITMAPBITSPERPIXEL The number of bits representing the color at

each pixel.

BITMAPRASTERWIDTH The number of words required to store one

row of the bit map.

BITMAPBASE The location in memory of the bit map.

BitMapHiLoc The address of the highest bit in the storage

pool allocation used to represent the image.

BitMapLoLoc The address of the lowest bit in the storage

pool allocation used to represent the image.

 The width of the screen bit map is determined by the type of monitor

attached to the system. Assuming 16-bit words, the

BITMAPRASTERWIDTH is 72. Some system bitmaps, such as those

allocated to the basic characters are allocated from the

{\UNBOXEDHUNKS} storage pool.

3.3.1 CREATING A BITMAP

 You may create a new instance of a bitmap by executing

BITMAPCREATE:

 Function: BITMAPCREATE

 # Arguments: 3

 1) HEIGHT, the height (in pixels)

104

 of the bitmap

 2) BITSPERPIXEL, the number of bits per

 pixel

 Value: A bitmap handle.

 BITMAPCREATE creates a new bitmap having a width of WIDTH and

a height of HEIGHT. The number of colors that may be represented by the

bitmap is determined by 2 ** BITSPERPIXEL, where BITSPERPIXEL may

be thought of as specifying the number of planes in the bitmap. If

BITSPERPIXEL is NIL, Interlisp assumes a default value of 1. Consider the

following example:

<-(SETQ bm1 (BITMAPCREATE 100 100 1))

{BITMAP}#74,124116

 Now, inspecting the fields of the bitmap, we find:

 {BITMAP}#74,124116

 BitMapHiLoc 27

 BitMapLoLoc 24730

 BITMAPBASE {}#33,60232

 BITMAPRASTERWIDTH 7

 BITMAPHEIGHT 100

 BITMAPWIDTH 100

 BITMAPBITSPERPIXEL 1

 The WIDTH and HEIGHT of a bitmap must be specified or an error will

result:

<-(SETQ bm1 (BITMAPCREATE))

NIL is not a Number

3.3.1.1 Testing For a Bitmap

 You may test whether or not an arbitrary Lisp object is a bitmap using

the function BITMAPP:

 Function: BITMAPP

 # Arguments: 1

 Arguments: 1) X, an arbitrary Lisp object

105

 Value: X, if X is a bitmap handle; otherwise, NIL.

 BITMAPP tests X to determine if it is a bitmap. If so, it returns X because

X is a bitmap handle. Consider the following example:

<-(BITMAPP bm1)

{BITMAP}#74,124116

3.3.1.2 Creating a Bitmap from a Window

 You may create a bitmap from the contents of a window using the

function WINDOW.BITMAP:

 Function: WINDOW.BITMAP

 # Arguments: 1

 Arguments: 1) WINDOW, a window handle

 Value: A bitmap handle.

 This function extracts the contents of the window, according to its region

specification, and creates a bitmap from it. The bitmap is sized to the

window's size. Consider the following example:

<-(SETQ bm (WINDOW.BITMAP LOGOW))

{BITMAP}#55,3000

3.3.2 GETTING BITMAP CHARACTERISTICS

 You may determine a bitmap’s characteristics using the functions

BITMAPWIDTH, BITMAPHEIGHT, and BITSPERPIXEL.

3.3.2.1 Getting a Bitmap's Width

 You may access the width of a bitmap by executing BITMAPWIDTH:

 Function: BITMAPWIDTH

 # Arguments: 1

 Argument: 1) BITMAP, a bitmap handle

 Value: The width of the bitmap in pixels.

106

 BITMAPWIDTH returns the width of the specified bitmap in pixels.

Consider the following functions on some bitmaps:

<-(BITMAPWIDTH bm1)

100

<-(BITMAPWIDTH (SCREENBITMAP))

1440

(Note: This is on my Dell Laptop. Your screen width will/may vary.)

<-(BITMAPWIDTH (CURSORBITMAP))

16

Note that the width of the screen bit map varies with the type of screen

attached to your system.

3.3.2.2 Getting a Bitmap's Height

 You may determine the height of a bitmap by executing

BITMAPHEIGHT:

 Function: BITMAPHEIGHT

 # Arguments: 1

 Argument: 1) BITMAP, a bitmap handle

 Value: The height of the bitmap in pixels.

 BITMAPHEIGHT returns the height of the specified bitmap in pixels.

Consider the following examples on some bitmaps:

<-(BITMAPHEIGHT bm1)

100

<-(BITMAPHEIGHT (SCREENBITMAP))

900

(Note: This is on my Dell Laptop. Your screen width will/may vary.)

107

<-(BITMAPHEIGHT (CURSORBITMAP))

16

Note that the height of the screen bit map varies with the type of screen

attached to your system.

3.3.2.3 Getting the Bits Per Pixel

 You may determine the number of bits per pixel in a bitmap by executing

BITSPERPIXEL:

 Function: BITSPERPIXEL

 # Arguments: 1

 Argument: 1) BITMAP, a bitmap handle

 Value The number of bits per pixel in the bitmap.

 BITSPERPIXEL returns the number of bits used to represent each pixel.

Any number greater than one indicates that color may be used. However, the

physical characteristics of the display screen will mediate the actual display

of the pixels. For color displays, the number of bits per pixel corresponds to

the number of color planes supported by the color display.

<-(BITSPERPIXEL bm1)

1

3.3.2.4 Determining a Bitmap's Image Size

 You may determine the image size of a bitmap using the function

BITMAPIMAGESIZE, which takes the following form:

 Function: BITMAPIMAGESIZE

 # Arguments: 3

 Arguments: 1) BITMAP, a bitmap handle

 2) DIMENSION, which dimension

 3) STREAM, a display stream handle

 Value: The size of the bitmap image relative to the

 specified display stream.

108

Consider the following examples:

<-(BITMAPIMAGESIZE (CAR SAVINGCURSOR))

(16 . 16)

<-(BITMAPIMAGESIZE (CAR SAVINGCURSOR) 'WIDTH)

16

<-(BITMAPIMAGESIZE (CAR SAVINGCURSOR) 'HEIGHT)

16

 DIMENSION may take either the value WIDTH or HEIGHT. If it is

NIL, both dimensions are returned as a dotted pair as in the example above.

3.3.3 Setting Bits

 You may set a bit in a bitmap by executing BITMAPBIT:

 Function: BITMAPBIT

 # Arguments: 4

 Arguments:

 1) BITMAP, a bitmap handle

 2) X, an X-axis coordinate

 3) Y, a Y-axis coordinate

 Value: The old value of the pixel.

 BITMAPBIT sets the pixel in BITMAP given by (X,Y) to

NEWVALUE, if NEWVALUE is between 0 and the maximum value

allowed for the bitmap. The maximum value for the pixel is determined by

2**BITSPERPIXEL. Consider the following examples:

<-(for I from 1 to 10

 do

 (BITMAPBIT bm1 I 10 1))

NIL

<-(for I from 1 to 10

109

 do

 (BITMAPBIT bm1 I 20 1))

NIL

<-(for I from 1 to 10

 do

 (BITMAPBIT bm1 10 I 1))

NIL

<-(for I from 1 to 10

 do

 (BITMAPBIT bm1 20 I 1))

NIL

which draws the square depicted in Figure 3.1.

 If NEWVALUE is NIL, the bitmap remains unaltered and the value of

the pixel at (X,Y) is returned. This provides a mechanism for interrogating

the bitmap to determine the current pixel value. Consider the example:

<-(BITMAPBIT bm1 12 12)

1

 If NEWVALUE is negative or exceeds the maximum value for the pixel,

it is assumed to be 1:

<-(BITMAPBIT bm1 12 12 -3)

0

<-(BITMAPBIT bm1 12 12)

1

 If (X,Y) is a point outside the bitmap, e.g. either X or Y is negative, X

exceeds the width, or Y exceeds the height, 0 is returned and no pixels are

changed. Consider the following example:

<-(BITMAPBIT bm1 30 30)

0

110

 The value of BITMAP may also be a window handle. If the window is

currently open, changes to pixel values will be displayed upon the screen

during the normal refresh cycle. Consider the following example:

<-(for I from 10 to 100

 do

 (BITMAPBIT w1 100 I 1))

NIL

which draws a line in the designated window.

3.3.4 COPYING A BITMAP

 You may copy a bitmap by executing BITMAPCOPY:

 Function: BITMAPCOPY

 # Arguments: 1

 Arguments: 1) BITMAP, a bitmap handle

 Value: A new bitmap handle.

 BITMAPCOPY returns the handle of a new bitmap which is an exact

duplicate of the bitmap specified as its argument. It is useful to duplicate

bitmaps which are similar, but require minor editing changes. Consider the

following examples:

<-(SETQ bbm (BITMAPCOPY abm))

{BITMAP}#61,47770

 To get the bit map of a particular character in a font, you may do:

(BITMAPCOPY (GETCHARBITMAP <character> (FONTCREATE

 <size> <face>)))

For example:

<-(SETQ x (BITMAPCOPY (GETCHARBITMAP 'J (FONTCREATE

'GACHA 10 'MRR))))

{BITMAP}#57,3250

111

3.3.5 EXPANDING AND SHRINKING A BITMAP

 You may expand or shrink a bitmap in either the X or Y or both

directions using the functions EXPANDBITMAP and SHRINKBITMAP.

3.3.5.1 Expanding a Bitmap

 You may expand the size of a bitmap by executing EXPANDBITMAP

 Function: EXPANDBITMAP

 # Arguments: 3

 Arguments: 1) BITMAP, a bitmap handle

 2) WIDTHFACTOR, an

 expansion factor for the width

 3) HEIGHTFACTOR, an expansion

 factor for the height

 Value: A new bitmap handle.

 EXPANDBITMAP returns a new bitmap which has its width and height

extended by the factors WIDTHFACTOR and HEIGHTFACTOR. Each

pixel of BITMAP is copied to the new bit map and is duplicated

WIDTHFACTOR times in the X direction and HEIGHTFACTOR times in

the Y direction.

<-(SETQ cbm (BITMAPCREATE 10 10 1))

{BITMAP}#74,124212

<-(SETQ dbm (EXPANDBITMAP cbm 2 2))

{BITMAP}#61,47630

<-(BITMAPWIDTH dbm)

20

<-(BITMAPHEIGHT dbm)

20

112

 If the expansion factors are NIL, the default values of 4 for

WIDTHFACTOR and 1 for HEIGHTFACTOR are used. Negative values for

the expansion factors for width and height are not allowed.

3.3.5.2 Shrinking a Bitmap

 You may shrink a bitmap using the function SHRINKBITMAP:

 Function: SHRINKBITMAP

 # Arguments: 4

 Arguments: 1) BITMAP, a bitmap handle

 2) WIDTHFACTOR, a shrinkage factor for

 the width

 3) HEIGHTFACTOR, a shrinkage factor for

 the height

 4) DESTINATIONBITMAP, a bitmap

 handle

 Value: A bitmap handle.

 SHRINKBITMAP returns a copy of the specified bitmap which has been

shrunk in the X and y directions by the factors WIDTHFACTOR and

HEIGHTFACTOR respectively. Consider the following factors:

<-(SETQ SMALLBM (SHRINKBITMAP BM1 2 2))

{BITMAP}#57,140226

 The height and width of SMALLBM are 12 pixels whereas they were 25

for BM1.

 If the shrinkage factors are NIL, they default to 4 for WIDTHFACTOR

and 1 for HEIGHTFACTOR. If DESTINATIONBITMAP is provided, it will

be used to display the revised bitmap. Otherwise, a new bitmap which has the

dimensions of BITMAP reduced by 1/WIDTHFACTOR in the X-direction

and 1/HEIGHTFACTOR in the Y-direction will be returned instead.

WIDTHFACTOR and HEIGHTFACTOR must be positive integers.

113

3.3.6 READING A BITMAP

 You may read in a bitmap which has been written to a file using the

function READBITMAP:

 Function: READBITMAP

 # Arguments: 1

 Arguments: 1) FILE, a file name

 Value: A bitmap handle.

 READBITMAP creates a bitmap by reading the specification for the

bitmap which have been stored on the file by some previous execution of

PRINTBITMAP. Consider the following example:

<-(READBITMAP 'SHK)

{BITMAP}#57,140740

3.3.7 PRINTING A BITMAP

 A bitmap may be saved on a file (e.g., a specification of the bitmap in

symbolic form) using the function PRINTBITMAP:

 Function: PRINTBITMAP

 # Arguments: 2

 Arguments: 1) BITMAP, a bitmap handle

 2) FILE, a file name

 Value: NIL.

 PRINTBITMAP writes a symbolic specification of the bitmap on the file

(at the current location in the file). This specification may later be read in by

READBITMAP. Consider the following example:

<-(PRINTBITMAP (CAR SAVINGCURSOR))

(16 16

""

"FDJ"

"HJJ"

"LJJ"

"BJNL"

"JJD"

114

"LJD"

""

"JDN"

"KEB"

"KE"

"JMF"

"JMB"

"JEL"

""

"")

NIL

 Interlisp writes out the bits of a bitmap as strings of characters. This

ensures that the proper encoding is performed. Also, this method of storing

bitmaps on files consumes less space than other methods where each pixel

might be represented individually.

3.3.8 DISTINGUISHED BITMAPS

 There are two distinguished bitmaps created by Interlisp, which are read

by the workstation hardware: the SCREENBITMAP and the

CURSORBITMAP.

 The display screen is implemented as a bitmap whose width is given by

SCREENWIDTH (usually 1024 pixels) and whose height is given by

SCREENHEIGHT (usually 808 pixels). You may obtain the respective

bitmap handles by executing SCREENBITMAP or CURSORBITMAP,

which take the form:

 FUNCTION: SCREENBITMAP

 CURSORBITMAP

 # Arguments: 0

 Arguments: N/A

 Value: The respective bitmap handle.

Consider the following examples:

<-(SCREENBITMAP)

{BITMAP}#70,167762

115

<-(CURSORBITMAP)

{BITMAP}#70,167770

3.3.9 FINDING BITS

 You may determine the first bit that is set in a column or a row of a

bitmap using the functions BIT.IN.COLUMN and BIT.IN.ROW

respectively. They take the form:

 Function: BIT.IN.COLUMN

 BIT.IN.ROW

 # Arguments: 2

 Arguments: 1) BITMAP, a bitmap handle

 2) ROW or COLUMN, an integer

 Value: The first ROW (for BIT.IN.COLUMN)

or COLUMN (for BIT.IN.ROW) in

which a bit is set.

 These functions return the row (respectively, column) number in which

a bit is set in the specified bitmap given a row or column. Consider Figure 3-

1, which displays the Saving Cursor bitmap:

Figure 3-1. The Saving Cursor Bitmap

<-(BIT.IN.COLUMN (CAR SAVINGCURSOR) 0)

9

<-(BIT.IN.COLUMN (CAR SAVINGCURSOR) 6)

2

116

<-(BIT.IN.ROW (CAR SAVINGCURSOR) 2)

4

 Note that the rows and columns are numbered, beginning with 0, from

the lower left corner of the bitmap.

3.4 BITMAP MANIPULATION (BITBLT)

 You may manipulate bitmaps in several ways. Typically, you will move

bits from one bitmap to another. The most common example is moving bits

from a scratch bitmap in memory to the bitmap representing the display

screen. When bits are moved to the SCREENBITMAP, they will become

visible upon the display screen.

3.4.1 MOVING BITS BETWEEN BITMAPS

 You may move bits between two bitmaps using BITBLT (pronounced

"bit-blit"):

 Function: BITBLT

 # Arguments: 12

 Arguments: 1) SOURCEBITMAP, a bitmap handle

 2) SOURCELEFT, the X-axis

 coordinate of the bits in the source

 bitmap

 3) SOURCEBOTTOM, the Y-axis

 coordinate of the bits in the source

 bitmap

 4) DESTINATIONBITMAP, a bitmap

 handle

 5) DESTINATIONLEFT, the X-axis

 coordinate of the bits

 in the destination bitmap

 6) DESTINATIONBOTTOM, the Y

 axis coordinate of the bits in the

 destination bitmap

 7) WIDTH, the width of the rectangle of

 bits to move

117

 8) HEIGHT, the height of the rectangle

 of bits to move

 9) SOURCETYPE, a flag specifying

 how bits from the source bitmap will be

 combined with those from TEXTURE

 10) OPERATION, a flag specifying how

 bits are combined in the destination bitmap

 11) TEXTURE, a texture handle

 12) CLIPPINGREGION, a region

 specification

 Value: T

 BITBLT is a fairly intelligent function which seems to be rather robust.

For example,

<-(BITBLT)

T

does not affect any window or bitmap. It is treated as if the bits were cast into

the "bit bucket". SOURCEBITMAP must be a bit map handle. Otherwise,

strange errors tend to occur. For example,

<-y

{FONTDESCRIPTOR}#56,45614

<-(BITBLT y 1 1 EXECW 300 300)

FILE NOT OPEN

{FONTDESCRIPTOR}#56,45614

 Apparently, BITBLT interprets the first argument as a file name if it is

not a bitmap handle. No explanation is given in the Interlisp IRM concerning

this interpretation.

 SOURCELEFT and SOURCEBOTTOM specify where bits are to be

taken from in the source bitmap.

 DESTINATIONBITMAP is a bitmap handle of the bitmap where the

bits will be copied. The location of the block (e.g., a rectangular area) where

bits will be copied is specified by DESTINATIONLEFT and

118

DESTINATIONBOTTOM. The size of the block to copy is specified by

WIDTH and HEIGHT. Thus, a block of bits of size WIDTH x HEIGHT will

be extracted from SOURCEBITMAP and copied to

DESTINATIONBITMAP.

3.4.1.1 Source Bitmap Operations

 SOURCETYPE specifies how the bits to be moved will be selected from

the source bitmap. The following table summarizes the values.

Table 3-2. Source Bitmap Operations

Source Type Usage

INPUT Bits are selected directly from

SOURCEBITMAP.

INVERT Bits are selected from SOURCEBITMAP and

inverted.

TEXTURE Bits are selected from the TEXTURE bitmap.

 The most common operation is INPUT. This is typically used in all copy

operations. INVERT is used when one is copying bits to another bitmap and

wants to highlight them. For example, if you wanted to display the changes

to a bitmap, you might invert the bits. TEXTURE is principally used for

filling spaces, although you may use it when copying to indicate changed

areas of the bitmap.

3.4.1.2 Destination Bitmap Operations

 OPERATION specifies how bits selected from the source bitmap (or

TEXTURE) will be combined with bits in the destination bitmap. The

following table summarizes the operations:

Table 3-3. Destination Bitmap Operations

Operation Usage

REPLACE Substitute source bitmap bits for destination

bitmap bits.

119

PAINT Perform the logical OR of the source and

destination bitmap bits.

INVERT Perform the logical XOR of the source and

destination bitmap bits.

ERASE Perform the logical AND of the source and

destination bitmap bits.

 REPLACE is used most frequently when copying bits from one bitmap

to another. It may be considered to be a combination of ERASE and PAINT.

3.4.1.3 Clipping Regions

 The clipping region is a region which is overlayed on an image or display

stream that limits the extent in which characters will be printed and lines

drawn in the stream's coordinate system. Initially, the clipping region is set

to NIL which is treated as the maximum extent of the stream.

 You can think of a clipping region as an invisible boundary around some

subwindow of a window. When you attempt to print within the window,

characters will only be printed within the region specified by the clipping

region. Similarly, lines will only be drawn within the clipping region.

Characters or lines which would lie outside the clipping region will not be

displayed.

 You should look at one or more computer graphics texts for a better

exposition on clipping regions. Two books which are excellent are Newman

and Sproul [newm79] and Foley and Van Dam [fole82].

3.4.2 EDITING BITMAPS

 Editing a bitmap is relatively easy with the capabilities provided by

EDITBM:

 Function: EDITBM

 # Arguments: 1

 Arguments: 1) BMSPEC, a bit map specification

 Value: A bitmap handle.

120

 EDITBM is an interactive editing facility for manipulating bitmaps. It

sets up the bitmap to be edited in an editing window. The editing window has

two major areas: an edit area which has a grid superimposed over it and a

display area in the upper left hand corner. BMSPEC is a specification for the

bitmap to be edited. It can take the following values:

1. If BMSPEC is a bitmap handle, the bitmap is displayed in the

Bitmap Editor window for editing.

2. If BMSPEC is an atom, its value should be a bitmap handle to be

edited.

3. If BMSPEC is a region, the portion of the screen bitmap

corresponding to the region is copied into the Bitmap Editor

window.

4. If BMSPEC is NIL, the Bitmap Editor asks for the dimensions of

the bitmap, creates a bitmap object, and displays an empty Bitmap

Editor window.

Consider the following example, where BM1 is edited:

<-(EDITBM BM1)

{BITMAP}#57,140424

The Bitmap Editor window is depicted in Figure 3-2.

Figure 3-2. Editing a Bitmap

121

 If the bitmap is too large to fit into the edit area, only a portion of the

bitmap can be edited at a time. However, you may change the portion that

you are editing by scrolling the editing pane either horizontally or vertically.

3.4.2.1 Bitmap Editor Functions

 The Bitmap Editor provides numerous functions for editing bitmaps.

These functions are accessed by pressing the mouse keys in different areas of

the Bitmap Editor Window. Figure 3-3 depicts the editing functions.

 The display area depicts the current bitmap as it is being created in the

edit area. The entire bitmap will be displayed in the display area even though

a smaller portion is being edited in the edit area. If you press the middle

mouse button while the cursor is located in the display area, a menu appears

that allows you to globally position the portion of the bitmap to be edited.

These functions are described in Table 3-4.

Figure 3-3. Bitmap Editing Functions

122

Table 3-4. Display Area Functions

Function Description

Close Close the bit map editor.

Snap Move the bitmap editor to align with closest

coordinates.

Paint Paint pixels within the bitmap editor.

Clear Clear the bitmap editor display area.

Bury Place the bitmap editor on the obscuration stack

behind the topmost window.

Redisplay Renew the display area after editing.

Hardcopy Print a hardcopy on a system printer of the

contents of the bitmap display area.

Move Move the bitmap editor on the screen.

Shape Reshape the bitmap editor pane.

Shrink Reduce the bitmap editor to an icon.

3.4.2.2 Bitmap Editing Commands

 The edit area is where you make changes to the bitmap. The left mouse

button causes a point to be set at the current location of the cursor (e.g., it

becomes black). The middle mouse button is used to erase points at the

current location of the cursor. The bitmap editing commands, described in

Table 3-5, allow you manipulate the state of the Bitmap Editor.

Table 3-5. Bitmap Editing Commands

Command Description

Paint The Paint command copies the current bitmap into a

window and invokes the window PAINT command on it

(see Section 5.3.7). The PAINT command implements

drawing with various brush sizes and shapes. You may

exit the PAINT mode by pressing the right mouse button

and selecting the QUIT command from the menu. The

Bitmap Editor inquires whether or not the changes you

have made via painting should be made to the bitmap

itself.

Show As Tile The ShowAsTile command tesselates the current bitmap

in the display pane of the Bitmap Editor window. This

123

allows you to determine how a bitmap will look if it

were made the display screen background.

Grid On/Off The Grid,On/Off commands turns the background grid

on or off. The grid is useful for determining where to

place pixels when you are constructing images,

particularly new icons. It helps you to gain a sense of

perspective about the image you are creating.

Grid Size The GridSize command allows you to specify the size of

the editing grid. When you select this command, another

menu appears with the possible choices for the size of an

editing grid.

Reset The Reset command allows you to reset portions of the

bitmap to the initial state when the Bitmap Editor was

invoked. When you select Reset, a submenu is displayed

which allows you to select the portion of the bitmap to

be reset.

When you select an item from this submenu, you are

also confirming that you want some portion of the

bitmap to be reset to its initial state. If you do not select

any command in the submenu, no changes will be made

to the bitmap.

Clear The Clear command allows you to set portions of the

bitmap to 0 (e.g., the value of WHITESHADE). As with

the Reset command, a submenu is displayed which

allows you to select the portion of the bitmap to be

cleared.

Cursor The Cursor<- command sets the cursor to the lower left

part of the bitmap. You may then specify the "hot spot"

by clicking the left mouse button after positioning the

cursor in the lower left corner of the grid.

OK The OK command allows you to record the changes you

have made to the bitmap in the editing pane in the

original bitmap object. It then terminates the Bitmap

Editor and closes the Bitmap Editor window. This is the

only command which allows you to record changes to

the original bitmap!

Stop The Stop terminates the Bitmap Editor without making

any changes to the original bitmap. It also closes the

Bitmap Editor window.

124

 If you select an alternate grid size, the editing pane of the Bitmap Editor

window is redrawn using the selected grid size. Depending on the size

selected, more or less of the bitmap will be displayed in the editing pane.

Scrolling is affected by a change in the grid size. The initial value of the grid

size is 8. When you edit large bitmaps, it is advisable to set the grid size to a

smaller value so that the edit pane encompasses more of the bitmap.

3.5 TEXTURES

 A texture is a pattern of bits which can be used by BITBLT to create a

mosaic in a bitmap. Typically, texture is used as background for windows.

Textures are represented as Interlisp bitmaps and consist of 4x4 pixel

patterns.

 Two common textures are represented as system constants:

WHITESHADE and BLACKSHADE. A global variable GRAYSHADE

represents a uniform gray shade that is used by many Interlisp packages and

subsystems as a background gray shade. These constants have the values:

<-WHITESHADE

0

<-BLACKSHADE

65536

<-GRAYSHADE

43605

3.5.1 CREATING TEXTURES

 You may create a texture object in two ways: by extracting a 4x4 pattern

from an existing bitmap or using the function EDITSHADE. To create a

texture from a bitmap, you use CREATETEXTUREFROMBITMAP

 Function: CREATETEXTUREFROMBITMAP

 # Arguments: 1

 Arguments: 1) BITMAP, a bitmap

 Value: A texture object.

125

 This function creates a texture object which represents the texture of the

source bitmap. Two cases must be considered:

1. Bitmap too big

2. Bitmap too small

 You must specify a bit map handle for

CREATETEXTUREFROMBITMAP:

<-(SETQ atext (CREATETEXTUREFROMBITMAP))

ILLEGAL ARG

NIL

<-(SETQ atext (CREATETEXTUREFROMBITMAP

(SCREENBITMAP)))

{BITMAP}#57,702

which creates a texture from the display screen bitmap. You can Display the

new texture using EDITSHADE as follows:

<-(EDITSHADE atext)

which brings up the following image:

126

Figure 3-4. Example of a Texture

3.5.2 TESTING FOR TEXTURE

 You may test whether or not an arbitrary Interlisp object is a texture

object using TEXTUREP.

 Function: TEXTUREP

 # Arguments: 1

 Arguments: 1) OBJECT, an arbitrary Interlisp object

 Value: OBJECT, if it is a texture;

 otherwise, NIL.

 TEXTUREP returns OBJECT if it is a bitmap handle; otherwise, it

returns NIL. Consider the following example:

127

<-(TEXTUREP atext)

{BITMAP}#57,702

3.5.3 INVERTING A TEXTURE

 You may invert a texture, e.g., produce the analogous inverted bit map

using the function INVERT.TEXTURE:

 Function: INVERT.TEXTURE

 # Arguments: 2

 Arguments: 1) TEXTURE, a texture bit map

 2) SCRATCHBM, a scratch bit map

 Value: A bit map handle for the new texture.

 INVERT.TEXTURE inverts the bits comprising a texture bitmap. Thus,

every 0 bit becomes a 1 bit and vice versa. Consider the following example:

<-(SETQ atext (CREATETEXTUREFROMBITMAP

(SCREENBITMAP)))

{BITMAP}#57,702

<-(SETQ btext (INVERT.TEXTURE atext))

{BITMAP}#57,3264

which yields the inverted texture depicted below.

128

Figure 3-5. Example of Inverted Texture

 If SCRATCHBM is provided, it must be a bitmap and is used to hold the

resulting inverted texture.

3.5.4 EDITING A SHADE

 You may edit a shade using the function EDITSHADE:

 Function: EDITSHADE

 # Arguments: 1

 Arguments: 1) SHADE, an integer specifying the

 shade

 Value: A bitmap handle.

129

 EDITSHADE opens a window (actually a type of Bitmap Editor

Window) for editing a texture. The texture may be either small (4x4) or large

(16x16).

 If SHADE is a texture object, the texture is displayed in the edit area by

EDITSHADE. If SHADE is T, the edit area is initialized to a 16x16 white

texture.

3.6 DISPLAY STREAMS

 A display stream is an abstract datatype that is used as the basis for all

I/O operations in Interlisp. A display stream implements localized printing of

bits to specific portions of the display screen. Using a display stream, you can

send characters to a window, draw lines and curves, or replace a section of a

bitmap. Windows may be thought of as a special type of display stream.

3.6.1 CREATING A DISPLAY STREAM

 You may create a display stream using DSPCREATE

 Function: DSPCREATE

 # Arguments: 1

 Arguments: 1) DESTINATION, a bitmap

 Value: A display stream object.

 DSPCREATE creates a display stream and returns the corresponding

Interlisp object. The display stream may be associated with a specific bitmap

(usually a window). If DESTINATION is NIL, then the display stream is

associated with the display screen bitmap. Consider the following examples:

<-(SETQ astream (DSPCREATE atext))

{STREAM}#62,12404

<-(SETQ bstream (DSPCREATE))

{STREAM}#62,40404

3.6.1.1 Display Stream Structure

130

 A display stream is represented as an Interlisp object. The structure of a

display stream is presented in Table 3-6.

Table 3-6. Display Stream Structure

Field Datatype Description

CHARSET BYTE Current character set

F10 POINTER Device specific field

FW9 WORD Device specific field

CBUFMAXSIZE WORD Maximum buffer size

STRMBOUTFN POINTER The BOUT function from

FDEV

STRMBINFN POINTER The BIN function from

FDEV

EXTRASTREANOP POINTER Used by application programs

IMAGEDATA POINTER Image instance variables

format depends on

IMAGEOPS

IMAGEOPS POINTER Image operations vector

OTHERPROPS POINTER Space for user property list

ENDOFSTREAMOP POINTER Used by application programs

OUTCHARFN POINTER Function for printing

CBUFDIRTY BITS 5 Flag for changed bits

EOLCONVENTION BITS 2 How EOLs are handled

LINELENGTH WORD Line length of stream

DIRTYBITS WORD Flag for changed bits

CHARPOSITION WORD Used by POSITION, etc.

MAXBUFFERS WORD Only for open streams

FW8 WORD Only for open streams

CPAGE WORD Only for open streams

BUFFS POINTER Only for open streams

BYTESIZE BYTE Only for open streams

FW7 WORD Device specific field

FW6 WORD Device specific field

F5 POINTER Device specific field

F4 POINTER Device specific field

F3 POINTER Device specific field

F2 POINTER Device specific field

F1 POINTER Device specific pointer

EOFFSET WORD EOF byte offset in buffer

EPAGE WORD EOF page offset in buffer

131

VALIDATION POINTER An entry determining if the

file has changed

DEVICE POINTER FDEV entry for file

FULLFILENAME POINTER The name by which the file is

to the user

ACCESSBITS BITS 3 The kind of access the file is

open for (read, write,

append).

USERVISIBLE FLAG True, if listable by OPENP;

NIL for terminal, dribble.

USERCLOSEABLE FLAG True, if stream can be closed

by CLOSEF; NIL for

terminal, dribble.

MULTIBUFFERHINT FLAG True, if the stream can read

more than one buffer at a

time.

REVALIDATEFLAG FLAG If the stream must be

redisplayed.

NONDEFAULTDATEFLAG FLAG Device specific field

CBUFPTR POINTER Pointer to current buffer

EXTENDABLE BITS 5 Permits buffer to be extended.

BOUTABLE FLAG Permits BOUT operations, if

set.

BINABLE FLAG Permits BIN operations, if

set.

CBUFSIZE WORD Offset past last byte in the

buffer.

COFFSET WORD Offset of next BIN or BOUT

operation.

 You may inspect the structure of a display stream via:

<-(INSPECT my-stream)

which opens a window with the display stream properties as its contents. The

following example is taken from a display stream for the terminal:

CHARSET 0

F10 NIL

FW9 0

CBUFMAXSIZE 0

132

STRMBOUTFN \DSPPRINTCHAR

STRMBINFN \STREAM.NOT.OPEN

EXTRASTREAMOP NIL

IMAGEDATA {\DISPLAYDATA}#70,165000

IMAGEOPS {\IMAGEOPS}#71,47512

OTHERPROPS NIL

ENDOFSTREAMOP \EOSERROR

OUTCHARFN \DSPPRINTCHAR

CBUFDIRTY NIL

EOLCONVENTION 0

LINELENGTH 164

DIRTYBITS 0

CHARPOSITION 0

MAXBUFFERS 3

FW8 0

CPAGE 0

BUFFS NIL

BYTESIZE 8

FW7 0

FW6 0

F5 NIL

F4 NIL

F3 NIL

F2 NIL

F1 NIL

EOFFSET 0

EPAGE 0

VALIDATION NIL

DEVICE {FDEV}#71,53524

FULLFILENAME NIL

ACCESSBITS 6

USERVISIBLE T

USERCLOSEABLE NIL

MULTIBUFFERHINT NIL

REVALIDATEFLAG NIL

NONDEFAULTDATEFLAG NIL

CBUFPTR NIL

EXTENDABLE NIL

BOUTABLE NIL

BINABLE NIL

CBUFSIZE 0

COFFSET 0

133

 Many of these properties are used internally by the Interlisp kernel to

manage display streams. However, a few of these may be useful to the general

user. These are described below.

 The LINELENGTH property specifies the maximum number of

characters per line to be displayed in the stream. You can change the line

length using the function LINELENGTH:

<-(LINELENGTH 80 bstream)

164

3.6.1.2 Display Data Structure

 The data associated with a display stream is represented by a

\DISPLAYDATA object which takes the form presented in Table 3-7.

Table 3-7. \DISPLAYDATA Structure

Field Datatype Description

DDSPACEWIDTH WORD Width (in pixels) of a space

(e.g., blank)

DDCHARHEIGHTDELTA POINTER Internal flag for fonts

DDCHARSETDESCENT WORD Internal flag for fonts

DDCHARSETASCENT WORD Internal flag for fonts

DDCHARSET POINTER The current character set

DDMICARIGHTMARGIN POINTER

DDMICAYPOS POINTER

DDMICAXPOS POINTER

DDTexture POINTER The bitmap of the texture for

displaying the data.

DDEOLFN POINTER Function for handling end-of-

line condition.

DDPAGEFULLFN POINTER Function for handling page

full condition.

DDCHARIMAGEWIDTHS POINTER Array of image widths for

each character.

DDYSCALE WORD Y-dimension scaling factor.

DDXSCALE WORD X-dimension scaling factor.

DDPILOTBBT POINTER Pointer to the PILOTBBT

data structure.

134

XWINDOWHINT XPOINTER Pointer to a text string.

DDHELDFLG FLAG

DDobsoletefield WORD

DDClippingTop WORD

DDClippingRight WORD

DDClippingLeft WORD

DDSOURCETYPE POINTER How bits are selected.

DDOPERATION POINTER Current operation.

DDScroll POINTER Scrolling flag

DDLeftMargin WORD X-coordinate for the left

margin

DDRightMargin WORD X-coordinate for the right

margin.

DDLINEFEED WORD

DDCOLOR POINTER The color in which to display

the data if a color display

DDOFFSETSCACHE POINTER

DDWIDTHSCACHE POINTER Array of the distances to be

moved in the X direction

when each character is

printed.

DDSlowPrintingCase POINTER

DDFONT POINTER Pointer to current font

descriptor.

DDClippingRegion POINTER Clipping region specification

(as a region; initially, the

display stream region).

DDDestination POINTER Pointer to destination bitmap

(usually the screen bit map).

DDYOFFSET WORD Current Y offset

DDXOFFSET WORD Current X offset

DDYPOSITION WORD Current Y position

DDXPOSITION WORD Current X position

 You may inspect the structure of a \DISPLAYDATA object using the

Inspector as follows:

<-(INSPECT '{\DISPLAYDATA}#61,53630)

 The following example is taken from the \DISPLAYDATA object

associated with the display stream in the previous section.

135

DDSPACEWIDTH 7

DDCHARHEIGHTDELTA NIL

DDCHARSETDESCENT 0

DDCHARSETASCENT 65536

DDCHARSET 65536

DDMICARIGHTMARGIN NIL

DDMICAYPOS NIL

DDMICAXPOS NIL

DDTexture 0

DDPAGEFULLFN NIL

DDEOLFN NIL

DDCHARIMAGEWIDTHS NIL

DDYSCALE 1

DDXSCALE 1

DDPILOTBBT {PILOTBBT}#61,147460

XWINDOWHINT {WINDOW}#61,5240

DDHELDFLG NIL

DDobsoletefield 0

DDClippingTop 488

DDClippingBottom 441

DDClippingRight 884

DDClippingLeft 762

DDSOURCETYPE INPUT

DDOPERATION REPLACE

DDScroll NIL

DDLeftMargin 0

DDRightMargin 122

DDLINEFEED -12

DDCOLOR NIL

DDOFFSETSCACHE NIL

DDWIDTHSCACHE NIL

DDSlowPrintingCase NIL

DDFONT {FONTDESCRIPTOR}#70,171160

DDClippingRegion (0 0 122 47)

DDDestination {BITMAP}#70,167762

DDYOFFSET 441

DDXOFFSET 762

DDYPOSITION 38

DDXPOSITION 0

 Note PILOT was the underlying MESA-based operating system. Xerox

has provided no information on this system in the Interlisp manuals.

136

3.6.1.3 Initial Settings for a Display Stream

 Each display stream is characterized by a set of attributes that are

initialized when it is created. These attributes and their initial settings are

presented in Table 3-8.:

Table 3-8. Display Stream Attributes

Attribute Initial Value

XOffset 0

YOffset 0

ClippingRegion A REGION object

XPosition 0

YPosition 0

Texture WHITESHADE

Font NIL

LeftMargin 0

RightMargin 0

SourceType INPUT

Operation REPLACE

LineFeed NIL

Scroll OFF

3.6.2 DISPLAY STREAM OPERATIONS

 Interlisp provides functions for manipulating the attributes of a display

stream. These functions return the old value of the attribute. A value of NIL

is used to query the current value of the display stream attribute without

changing it. These functions do not affect the current destination bitmap of

the display stream, but do influence the effect of future operations done

through the display stream.

3.6.2.1 Changing the Destination Bitmap

 You may change the destination bitmap associated with the display

stream using DSPDESTINATION:

137

 Function: DSPDESTINATION

 # Arguments: 2

 Arguments: 1) DESTINATION, the address of a bitmap

 2) DISPLAYSTREAM, a display stream

 handle

 Value: The current destination bitmap handle.

 Each display stream has an associated bitmap to which bits are sent when

something is written to the display stream. Initially, this is the screen bitmap.

Consider the following example:

<-(SETQ my-stream (DSPCREATE))

{STREAM}#64,73404

 The user may change the destination bitmap for MY-STREAM by

executing the following expressions:

<-(SETQ my-bitmap (BITMAPCREATE 100 100 1))

{BITMAP}#74,124074

<-(DSPDESTINATION my-bitmap my-stream)

{BITMAP}#70,167762

 The destination bitmap will be changed only if it is non-NIL. The user

may wish to change the destination bitmap for any number of reasons.

However, a few come readily to mind:

1. Different bitmaps are associated with different information

presentation roles.

2. An auxiliary bitmap may be used to construct portions of displays

prior to painting them on the primary bitmap in one operation.

3. You may use other bitmaps to create overlays for the primary bitmap

in which the information will be displayed.

 By specifying NIL as the bitmap handle, you dissociate the display

stream from any bitmap:

<-(DSPDESTINATION NIL my-stream)

{BITMAP}#74,124074

138

 You cannot substitute a window handle for the bitmap handle:

<-(DSPDESTINATION awindow my-stream)

ARG NOT BITMAP

{WINDOW}#60,123324

 The user should exercise care in executing this function because it

changes the destination bitmap field of the display stream. The Window

Manager maintains the display stream for windows. By changing the bitmap

under a display stream without using the Window Manager, you may erase

an existing display.

3.6.2.2 Changing the X and Y Origins

 You may change the X and/or Y origins using the functions

DSPXOFFSET and DSPYOFFSET, which take the form:

 Function: DSPXOFFSET

 DSPYOFFSET

 # Arguments: 2

 Arguments: 1) OFFSET, an integer

 2) DISPLAYSTREAM, a display stream

 handle

 Value: The previous value of DDXOFFSET or

 DDYOFFSET, respectively.

 These functions modify the origin of the display stream's coordinate

system in the destination bitmap's coordinate system. Usually, no offset will

be specified and the two coordinate systems will be identical. Display streams

have their own coordinate system. This allows functions writing to a display

stream to specify locations relative to its origin rather than the destination

bitmap. Thus, functions need not worry about translating locations relative to

the destination bitmap's coordinate system.

 DSPXOFFSET returns the current X offset for the display stream, which

is the X origin of the display stream's coordinate system in the destination

bitmap's coordinate system. It is set to XOFFSET, if it is non-NIL.

139

 DSPYOFFSET returns the current Y offset for the display stream, which

is the Y origin of the display stream's coordinate system in the destination

bitmap's coordinate system. It is set to YOFFSET, if it is non-NIL.

 The X and Y offsets for a display stream are initially 0.

 Typically, if you are going to write a single line to the display stream,

then you will find it easier to set the position with DSPXPOSITION and

DSPYPOSITION and then write the line. However, if several lines are to be

written to the display stream, it is easier to change the X and Y origins and

then write the lines.

 A window handle may be substituted for the display stream handle.

Interlisp looks up the display stream handle in the window object.

 You should exercise caution when executing this function as the

Window Manager maintains the X and Y offsets of a window's display

stream.

3.6.2.3 Changing the Clipping Region

 A clipping region is a region which bounds the display of characters

printed and lines drawn in a display stream. Usually, a display stream will be

established without a clipping region and so printing or drawing may occur

anywhere within the coordinate system which corresponds to that of the

destination bitmap.

 When multiple functions are writing to a single display stream, some

mechanism is required to prevent them from overwriting each other's

information. Clipping regions are used to specify subsets of the display

stream's coordinate system. Each function would set up its clipping region

prior to writing to the display stream. To specify the clipping region for a

display stream, you may use the function DSPCLIPPINGREGION:

 Function: DSPCLIPPINGREGION

 # Arguments: 2

 Arguments: 1) REGION, a region identifier

 2) DISPLAYSTREAM, a display stream

140

 address

 Value: The address of the old clipping region.

 If no region is specified, i.e., REGION has the value NIL,

DSPCLIPPINGREGION returns the current value of the clipping region for

the display stream. Consider the example:

<-(SETQ w1

 (CREATEW (CREATEREGION 500 500 500 500)

 "Demo Window" 4))

{WINDOW}#64,152150

<-(DSPCLIPPINGREGION NIL w1)

(0 0 492 483)

 These coordinates are relative to the lower left corner of the window.

Because the border consumes 4 pixels per side, the width is only 492.

Similarly, the title bar lies within the window region and consumes 9 pixels

in addition to the 8 consumed for the top and bottom borders.

3.6.2.4 Changing the Printing Position

 When you write to a display stream, the X and Y positions in the display

stream are updated as new characters are printed or lines are drawn. To

change the X and/or Y positions where the next printing or drawing operation

will commence, you may use the functions DSPXPOSITION and

DSPYPOSITION, which take the form:

 Function: DSPXPOSITION

 DSPYPOSITION

 # Arguments: 2

 Arguments: 1) POSITION, an integer

 2) DISPLAYSTREAM, a display stream

 handle

 Value: The previous value of DDXPOSITION or

 DDYPOSITION, respectively.

Consider the following example:

141

<-(SETQ my-stream (DSPCREATE))

{STREAM}#63,14064

<-(SETQ my-bitmap (BITMAPCREATE 150 150 1))

{BITMAP}#74,124306

<-(DSPXPOSITION NIL my-stream)

0

<-(DSPYPOSITION NIL my-stream)

0

 The values of the coordinates are 0,0 because nothing has yet been

written to the display stream. Now, by writing the following message to the

display stream and obtaining the X,Y coordinate values, we see:

<-(PRIN1 "Hi There" my-stream)

"Hi There"

<-(DSPXPOSITION NIL my-stream)

56

<-(DSPYPOSITION NIL my-stream)

787

 Note that the positions returned are always relative to the display stream's

coordinate system rather than to the coordinate system of the destination

bitmap. Now, let's change the position where we will print characters in the

display stream to the location (250, 250) as follows:

<-(DSPXPOSITION 250 w1)

0

<-(DSPYPOSITION 250 w1)

474

 Note that we are changing the X- and Y-coordinates of the display stream

associated with the window.

142

<-(PRINT "A MESSAGE AT THE NEW DISPLAY STREAM

COORDINATES" w1)

"A MESSAGE AT THE NEW DISPLAY STREAM COORDINATES"

would display the provided message in the display stream: Now, let us check

the X and Y positions of the display stream:

<-(DSPXPOSITION NIL w1)

0

<-(DSPYPOSITION NIL w1)

226

 The X-coordinate is set to 0 because PRINT forces an implicit carriage

return.

3.6.2.5 Specifying Window Handles

 A window handle may be substituted for the display stream handle.

Interlisp looks up the display stream handle in the window object. Consider

the following example:

<-(DSPXPOSITION 50 awindow)

0

<-(DSPYPOSITION 25 awindow)

0

 You may specify negative values for either the X- or Y-coordinates or

both. However, since they lie outside the clipping region, any print statements

will not be reflected in the associated window. They do, however, modify the

values of the X- and Y-coordinates.

3.6.2.6 Getting the Relative Position

 You may obtain the relative screen coordinates of a position relative to

the coordinates of the given display stream using the functions

143

DSPXSCREENTOWINDOW and DSPYSCREENTOWINDOW, which

take the form:

 Function: DSPXSCREENTOWINDOW

 DSPYSCREENTOWINDOW

 # Arguments: 2

 Arguments: 1) COORD, an X-coordinate

 2) STREAM, a display stream handle

 Value: The X-coordinate (or Y-coordinate) relative

 to STREAM.

 These functions return a relative screen coordinate of the given

coordinate to the origin of the display stream. Consider the following

example:

<-(DSPXSCREENTOWINDOW 100 (TTYDISPLAYSTREAM))

-322

because the Interlisp Executive Window is located in the upper left hand

corner of the display screen.

3.6.2.7 Changing the Texture

 The texture of the background pattern of the display stream may be

changed using the function DSPTEXTURE:

 Function: DSPTEXTURE

 # Arguments: 2

 Arguments: 1) TEXTURE, a texture object identifier

 2) DISPLAYSTREAM, a display stream

 descriptor

 Value: The previous value of DDTexture.

 Initially, the texture of the display stream has the value WHITESHADE.

Other standard values that may be used are GRAYSHADE and

BLACKSHADE. In fact, the texture is actually an integer, so you may want

to experiment with the values of various integers to see the different effects

144

that they produce. A value of NIL returns the current value of

DDTexture.Consider the following example:

<-(DSPTEXTURE NIL w1)

65536

3.6.2.8 Changing the Display Font

The font with which the next characters will be printed to the display stream

may be changed using the function DSPFONT:

 Function: DSPFONT

 # Arguments: 2

 Arguments: 1) FONT, a font descriptor

 2) DISPLAYSTREAM, a display stream

 descriptor

 Value: The previous value of DDFont.

 DSPFONT returns a font descriptor. A value of NIL returns the current

value of DSPFONT. For example, in the Interlisp Executive Window:

<-(DSPFONT)

{FONTDESCRIPTOR}#70,171260

<-(DSPFONT NIL w1)

{FONTDESCRIPTOR}#70,171670

 Initially, the display font for each display stream is Gacha 10. To obtain

the display stream's font family, you must extract the value of the font

property FAMILY from the font descriptor. Here is a little function to do that

for you:

(DEFINEQ

 (DSP.FONT.FAMILY (stream)

 (FONTPROP (DSPFONT NIL stream) 'FAMILY)

))

 Applying this function to the Interlisp Executive Window:

145

<-(DSP.FONT.FAMILY)

HELVETICA

3.6.2.9 Changing the Left Margin

 When writing text to a display stream, you will usually want to indent

the beginning of each new line from the edge of the bitmap in which the text

is displayed. This indentation is referred to as the left margin of the display

stream. It is initially 0. You may change the left margin of the display stream

using the function DSPLEFTMARGIN:

 Function: DSPLEFTMARGIN

 # Arguments: 2

 Arguments: 1) XPOSITION, an integer

 2) DISPLAYSTREAM, a display stream

 descriptor

 Value: The previous value of DDLeftMargin.

 When XPOSITION is NIL, DSPLEFTMARGIN returns the current

value of DDLeftMargin for the specified display stream.

<-(DSPLEFTMARGIN)

0

 If DISPLAYSTREAM is NIL, the current display stream is used (e.g.,

that returned by TTYDISPLAYSTREAM).

3.6.2.10 Changing the Right Margin

 To prevent text from butting up against the right side of the destination

bitmap, you will usually want to specify a right margin for a display stream.

A right margin is the maximum X position to which characters will be printed

in the display stream's coordinate system. Initially, right margin is set to

(SCREENWIDTH). When printing functions reach the right margin, they

automatically insert an end-of-line character. You may change the right

margin using DSPRIGHTMARGIN:

146

 Function: DSPRIGHTMARGIN

 # Arguments: 2

 Arguments: 1) XPOSITION, an integer

 2) DISPLAYSTREAM, a display stream

 descriptor

 Value: The previous value of DDRightMargin.

 Changing the value of DDRightMargin effects both the input and output

operations. The value is given as the number of pixels from the left edge of

the window. A value of NIL for XPOSITION returns the current value of

DDRightMargin. For the Interlisp Executive Window:

<-(DSPRIGHTMARGIN)

545

which reflects the current size of the window.

3.6.2.11 Changing the Source Type for Printing

 When writing text to a display stream, the source type for bit-blitting is

normally INPUT. This means that the characters will be displayed black-on-

white in the window associated with the display stream. You may change the

source type using DSPSOURCETYPE:

 Function: DSPSOURCETYPE

 # Arguments: 2

 Arguments: 1) SOURCETYPE, the BITBLT source type

 2) DISPLAYSTREAM, a display stream

 handle

 Value: The previous value of DDSourceType.

 The value of SOURCETYPE may be either INPUT or INVERT. INPUT

is the normal value. INVERT specifies that the bits of the characters are

inverted before being displayed. A value of NIL for SOURCETYPE causes

the current value of DDSOURCETYPE to be returned:

<-(DSPSOURCETYPE)

147

INPUT

 Specifying INVERT as the source type allows you to highlight blocks of

characters as they are printed on the screen. Here's a convenient function for

printing with highlighting:

<-(DEFINEQ

 (HIGHLIGHT (msg stream)

 (DSPSOURCETYPE 'INVERT)

 (PRIN1 msg)

 (DSPSOURCETYPE 'INPUT)

))

(HIGHLIGHT)

 HIGHLIGHT takes a message and a stream as its arguments. It prints the

message in highlighted form beginning at the current position of the display

stream.

3.6.2.12 Changing the BITBLT Operation

 When you print or draw to a display stream, the normal BITBLT

operation is REPLACE, which means to overwrite bits already present at the

corresponding locations in the display stream. You may change the bit-

blitting operation using DSPOPERATION:

 Function: DSPOPERATION

 # Arguments: 2

 Arguments: 1) OPERATION, a BITBLT operation

 2) DISPLAYSTREAM, a display stream

 hand

 Value: The previous value of DDOperation.

 OPERATION can be one of the BITBLT operations: PAINT,

REPLACE, INVERT, or ERASE. These operations are described in Section

3.4.1.2. A value of NIL for OPERATION causes the current value of

DDOperation to be returned:

<-(DSPOPERATION)

148

REPLACE

3.6.2.13 Changing the Linefeed Spacing

 Whenever you type a line feed while entering text, the Y coordinate is

incremented by the value of DDLINEFEED. Initially, the value of -12 is the

negative value of the height of the initial font (Gacha 10). You may change

the value of the line feed increment using the function DSPLINEFEED:

 Function: DSPLINEFEED

 # Arguments: 2

 Arguments: 1) DELTAY, the new Y coordinate

 increment

 2) DISPLAYSTREAM, a display stream

 handle

 Value: The previous value of DDLINEFEED.

 If DELTAY is more negative than the current value (e.g., -15), the

spacing between the lines in the display stream increases. Conversely, if it is

less negative, the spacing between the lines decreases. If you wish to

overwrite a line, you should set the spacing to 0. I've found that a spacing of

-15 makes the text displayed in most windows very readable. A value of NIL

for DELTAY returns the current value of DDLINEFEED:

<-(DSPLINEFEED)

-12

3.6.2.14 Changing the Scrolling Behavior

 When you create a display stream, any scrolling behavior is initially

turned off. Thus, when you print bits at the bottom of the display stream

which move out of the clipping region, they will be lost. To prevent the loss

of these bits, you can enable scrolling using the function DSPSCROLL:

 Function: DSPSCROLL

 # Arguments: 2

 Arguments: 1) SWITCHSETTING, the value of the

 scrolling switch

149

 2) DISPLAYSTREAM, a display stream

 handle

 Value: The current value of the scrolling switch.

 When the scrolling switch is turned ON, the bits in the display stream's

destination bitmap are moved after any linefeed that moves the current

display position out of the destination bitmap. Any bits moved out of the

current clipping region are lost. This function does not adjust the values of

XOffset, YOffset, or ClippingRegion in the display stream handle.

 If SWITCHSETTING is NIL, DSPSCROLL just returns the current

setting of the scrolling switch. Consider the following example:

<-(DSPSCROLL NIL my-stream)

OFF

 Otherwise, it sets the scroll flag to the value of SWITCHSETTING, if it

is non-NIL:

<-(DSPSCROLL 'ON my-stream)

OFF

3.6.2.15 Resetting the Cursor in the Display Stream

 You may home the cursor in the display stream using the function

DSPRESET:

 Function: DSPRESET

 # Arguments: 1

 Arguments: 1) STREAM, a display stream handle

 Value: NIL.

 DSPRESET sets the X- and Y-coordinates as follows:

 The X-coordinate of STREAM is set to the left margin.

 The Y-coordinate of STREAM is set to the top of the clipping region

minus the font ascent.

150

 If STREAM is a display stream handle, the display stream's destination

bitmap will be filled with its background texture. For most display streams

associated with the screen, this will be equivalent to clearing the window.

3.6.2.16 Starting a New Page

 You may start a new page within a display stream using the function

DSPNEWPAGE:

 Function: DSPNEWPAGE

 # Arguments: 1

 Arguments: 1) STREAM, a display stream handle

 Value: NIL.

 DSPNEWPAGE begins a new page by setting the X- and Y-coordinates

as follows:

 The X-coordinate is set to the left margin.

 The Y-coordinate is set to the top margin plus the linefeed.

3.6.2.17 Printing to the Center of a Display Stream

 You may print an expression in the center of a region within a display

stream using the function CENTERPRINTINREGION:

 Function: CENTERPRINTINREGION

 # Arguments: 3

 Arguments: 1) EXP, an expression

 2) REGION, a region descriptor

 3) STREAM, a display stream handle

 Value: NIL

 CENTERPRINTINREGION prints the value of EXP in the center of the

given region within the display stream. Consider the following example: The

result is depicted in Figure 3-6.

<-(CENTERPRINTINREGION "E = M*C \^ 2" (CREATREGION 30 30

50 50) IOSTREAM)

NIL

151

Figure 3-6. Example of CENTERPRINTINREGION

 You must specify a region to be used in calculating the center.

3.6.2.18 Erasing a Character in a Display Stream

 You may erase a character that has been printed in a display stream using

the function DSPBACKUP:

 Function: DSPBACKUP

 # Arguments: 2

 Arguments: 1) WIDTH, the width of the character

 2) DISPLAYSTREAM, a display stream

 handle

152

 Value: T, if any bits were written; NIL, otherwise.

 DSPBACKUP adjusts the current X position of the display stream by

"backing it up" over a character that is assumed to be WIDTH bits wide. The

area is filled with the display stream's background texture. The X position of

the display stream is decreased by WIDTH bits. If this would set the X

position to be less than the left margin if the display stream, the operation

stops.

3.6.3 THE TTY DISPLAY STREAM

 The primary file which you interact with through the Interlisp Executive

Window has the name T. In the display oriented environment, a standard

display stream known as the TTY display stream is associated with T and is

attached to the Interlisp Executive window.

 When you type characters on the keyboard, the characters are sent to the

window which is associated with the current TTY display stream. As you

move the cursor from one window to another, Interlisp may change the TTY

display stream to associate it with that window.

3.6.3.1 Changing the TTY Display Stream

 You may change the TTY display stream using the function

TTYDISPLAYSTREAM:

 Function: TTYDISPLAYSTREAM

 # Arguments: 1

 Arguments: 1) DISPLAYSTREAM, a display stream

 handle

 Value: The old display stream handle.

 The value of DISPLAYSTREAM may be a window or display stream

handle. The terminal output channel is switched to the new display stream.

Thereafter, whenever you print characters, they will appear in the window

associated with the new display stream. At the top level, one normally types

into the Interlisp Executive Window. You can switch the display stream to a

window called TEST via the following command (the window handle is W1):

153

<-(TYYDISPLAYSTREAM W1)

{STREAM}#71,60150

 This action is depicted in Figure 3.9. Note that the result of executing the

function is displayed in the window associated with the new display stream.

 TTYDISPLAYSTREAM automatically puts the new display stream into

scrolling mode. It also invokes PAGEHEIGHT with the number of lines that

will fit into the display stream window given its current font and clipping

region. The line length is computed from the left margin, the right margin,

and the font of the display stream. Whenever one of these fields is changed,

the line length is automatically recalculated. However, the page height is not

automatically recalculated when one of these fields changes. You may force

the page height to be recalculated using the expression:

<-(TTYDISPLAYSTREAM (TTYDISPLAYSTREAM))

{STREAM}#56,31000

 The line buffer associated with the old TTY window will be saved as one

of the window's properties when the TTY display stream is switched. The

system line buffer becomes the one associated with the new window, if any.

If none exists, one is created and associated with the window.

 When you switch the TTY display stream, the associated window may

not be visible because it is on the obscuration stack, it is closed, or it is shrunk.

The window will not be made visible until you print or draw to the new

display stream.

3.6.3.2 Changing the Caret Shape

 The current input position is indicated by a caret which has the form

indicated in Figure 3-7.

154

Figure 3-7. Standard Input Caret

 You may change the shape of the caret to one of your own choosing

using the function CARET:

 Function: CARET

 # Arguments: 1

 Arguments: 1) NEWCARET, a new caret specification

 Value: The handle of the old caret.

155

 CARET sets the shape of the caret which indicates the next input/output

location for the TTY display stream. NEWCARET may take one of the

values presented in Table 3-9.

Table 3-9. NEWCARET Values

New Caret Value Description

NIL No changes are made to the caret shape; the cursor

handle representing the old shape is returned.

OFF The caret is turned off.

CURSOR A cursor handle is provided that gives the new caret

shape. Its bitmap hotspot indicates which point in the

new caret should be located at the current output

position.

Consider the following example:

<-(CARET)

({BITMAP}#70,167666 3 . 4)

3.6.3.3 Changing the Page Height of the Display Stream

 The page height of a display stream is computed from the left and right

margins and the font size. The page height indicates the number of lines that

will fit into the window displayed on the display screen which is associated

with the display stream. You may change the page height using the function

PAGEHEIGHT:

 Function: PAGEHEIGHT

 # Arguments: 1

 Arguments: 1) N, a number of lines

 Value: The old page height.

 The current page height is stored as a property of the window with which

the display stream is associated. It is automatically computed when the TTY

display stream is switched to the window. You may change the page height

by specifying a positive number for N. N indicates the number of lines that

may be printed to the display stream before the page is held (e.g., the window

contents are temporarily frozen).

156

 A page is held whenever the number of lines in the window reaches N+1

without intervening input. At that point, the window will be inverted until

you type a character. You may set N to 0 which disables page holding and

allows continuous scrolling.

3.6.4 OPENING A STRING STREAM

 You may treat a string (particularly a lengthy one) as if it were a file by

opening a stream to it. The stream interface allows you to read and write to

the string as if it were a file. To open a stream to a string, you use the function

OPENSTRINGSTREAM:

 Function: OPENSTRINGSTREAM

 # Arguments: 2

 Arguments: 1) STRING, a string

 2) ACCESS, the type of access desired

 Value: A stream handle.

 OPENSTRINGSTREAM returns a stream handle which can be used in

subsequent I/O operations to manipulate the characters of the string.

ACCESS may be one of:

 INPUT

 OUTPUT

 BOTH

Consider the following example:

<-MYTEXT

"A complex polynomial is a generalization of a real number that is introduced

in mathematics so that all polynomial equations with real coefficients may

have solutions."

<-(SETQ MYSTREAM (OPENSTRINGSTREAM MYTEXT 'INPUT))

{STREAM}#56,34470

<-(READ MYSTREAM)

A

157

<-(READ MYSTREAM)

complex

3.7 GRIDS

 A grid is an arbitrary partitioning of a coordinate system into rectangles.

A grid is defined by its unit grid, which is a region which is the origin

rectangle of the grid overlayed on the coordinate system.

3.7.1 DRAWING A GRID

 To draw a grid, you must first define a grid specification, which is a

region specifying the size of the rectangles that comprise the grid. You may

draw the grid using GRID:

 Function: GRID

 # Arguments: 6

 Arguments: 1) GRIDSPEC, a region

 2) WIDTH, the width of the grid in rectangles

 3) HEIGHT, the height of the grid in

 rectangles

 4) BORDER, the width of the border of each

 rectangle of the grid

 5) STREAM, a display stream handle

 6) GRIDSHADE, the texture of the border

 lines

 Value: NIL.

 GRID uses the grid specification given in GRIDSPEC to overlay a grid

on the specified display stream. Each grid has a border that is BORDER

pixels wide. Thus, the border between two grid units is 2*BORDER pixels

wide. Consider the following example:

158

which draws the grid depicted in Figure 3-8.

Figure 3-8. A Sample Grid

 If BORDER is the atom POINT, borders will not be drawn. Rather, the

lower left point of each grid rectangle will be turned on. Consider the

following example:

<-(GRID gridspec 10 10 'POINT awindow NIL)

NIL

which is depicted in Figure 3-9.

159

Figure 3-9. Displaying a Grid via Lower Left Corners

3.7.2 SHADING GRID UNITS

 You can shade the rectangle associated with a particular grid unit using

the function SHADEGRIDBOX:

 Function: SHADEGRIDBOX

 # Arguments: 7

 Arguments: 1) X, a grid rectangle identifier

 2) Y, a grid rectangle identifier

 3) SHADE, a texture handle

 4) OPERATION, an operation

 5) GRIDSPEC, a grid specification

 6) BORDER, a border width

 7) STREAM, a display stream handle

 Value: NIL.

 SHADEGRIDBOX "colors" the box specified by the grid coordinates

X,Y with SHADE using the operation OPERATION. The result of shading

box (5,5) is depicted in Figure 3-10.

160

Figure 3-10. Example of SHADEGRIDBOX

3.7.3 OBTAINING GRID COORDINATES

 You may obtain the grid coordinates closest to a specified X- or Y-

coordinate using the functions GRIDXCOORD and GRIDYCOORD,

which take the form:

 Function: GRIDXCOORD

 GRIDYCOORD

 # Arguments: 2

 Arguments: 1) XCOORD (YCOORD), an X- (Y-)

 coordinate

 2) GRIDSPEC, a grid specification

 Value: The grid X-coordinate (Y-coordinate) closest

 to the specified point.

161

 These functions return the x-coordinate (respectively, Y-coordinate) of

the grid rectangle closest to the specified X- and Y-coordinates. Consider the

following examples (where I've placed the cursor in the gridded region

depicted in Figure 3.11):

<-(SETQ LMX (CURSORPOSITION NIL W1):XCOORD)

155

<-(GRIDXCOORD LMX gridspec)

6

<-(GRIDYCOORD LMX gridspec)

2

which by visual inspection, I can assure you is the case.

3.7.3.1 Getting a Grid Position

 Rather than obtaining the X- and Y-coordinates individually, you may

wish to obtain a grid position closest to a specified (X,Y) position. Let us

define the function GRIDPOSITION:

 Function: GRIDPOSITION

 # Arguments: 3

 Arguments: 1) XorPOS, an X-coordinate or position

 2) Y, a Y-coordinate

 3) GRIDSPEC, a grid specification

 Value: A position representing the grid coordinates

 closest to (X,Y).

We can define GRIDPOSITION as follows:

<-(DEFINEQ (gridposition (xorpos y gridspec)

 (POINT

 (GRIDXCOORD

 (COND

 ((POSITIONP xorpos) xorpos:xcoord)

 (T xorpos))

162

 gridspec)

 (GRIDYCOORD

 (COND

 ((POSITIONP xorpos) xorpos:ycoord)

 (T y))

 gridspec))

))

(GRIDPOSITION)

Consider the following examples:

<-(GRIDPOSITION (CURSORPOSITION NIL W1) NIL gridspec)

(4 . 8)

 This function is not included in the standard Interlisp sysout.

3.7.3.2 Getting the Grid Position of the Mouse

 An alternative function, GRIDPOSITION.OF.CURSOR, allows you

to obtain the grid position associated with the current cursor position. It takes

the form:

 Function: GRIDPOSITION.OF.CURSOR

 # Arguments: 1

 Arguments: 1) GRIDSPEC, a grid specification

 Value: A grid position closest to the current

 cursor position.

 We can define GRIDPOSITION.OF.CURSOR as follows:

<-(DEFINEQ (gridposition.of.cursor (gridspec)

 (GRIDPOSITION (CURSORPOSITION NIL W1) gridspec)

))

 Note that this function assumes the current display stream as the source

for determining the coordinates of the cursor. I leave it as an exercise for the

reader to redefine this function to accept a display stream.

 Note that this function is not included in the standard Interlisp sysout.

163

3.7.4 OBTAINING SOURCE COORDINATES FROM GRID

 You may obtain the (X,Y) coordinates of a grid position relative to the

source display stream using the functions LEFTOFGRIDCOORD and

BOTTOMOFGRIDCOORD which take the following form:

 Function: LEFTOFGRIDCOORD

 BOTTOMOFGRIDCOORD

 # Arguments: 2

 Arguments: 1) GRIDX or GRIDY, an X- or Y

 coordinate

 2) GRIDSPEC, a grid specification

 Value: The X- or Y-coordinate of the grid

 rectangle at the specified grid

 coordinate.

 LEFTOFGRIDCOORD returns the X-coordinate in source display

stream coordinates of the left edge of a grid rectangle whose X-coordinate is

GRIDX. BOTTOMOFGRIDCOORD performs analogously for the bottom

edge of the grid rectangle for GRIDY. Consider the following examples:

<-(LEFTOFGRIDCOORD 4 gridspec)

100

<-(BOTTOMOFGRIDCOORD 7 gridspec)

175

3.7.5 GRID VARIABLES

 The grid system uses several variables to validate the arguments

specified in the functions. These are described in Table 3-10.

Table 3-10. Grid Variables

Variable Usage

NORMALGRIDSQUARE This contains the normal size for a grid

square. Initially, its value is 16.

164

MINGRIDSQUARE This variable specifies the minimum grid

size. Initially, its value is 8.

MAXGRIDWIDTH This is the maximum grid width. Initially,

its value is 199.

MAXGRIDHEIGHT This is the maximum grid height. Initially,

its value is 175.

GRIDTHICKNESS This is the default width of the lines that

separate the grid squares. Initially, its value

is 2.

165

4. INPUT MANAGEMENT

 Interlisp provides you with two types of input devices: a keyboard

and a mouse. The keyboard has the standard complement of

alphanumeric keys in QWERTY format as well as seven uninterpreted

function keys. The mouse is a three button, hand-held device that

controls the cursor on the display screen.

 Interlisp-D separated the management of the display screen from the

keyboard and the mouse. On the D-machines, because the keyboard and

the mouse were managed entirely by Interlisp-D, many low level

functions were directly accessible by the programmer.

4.1 MOUSE MANAGEMENT

 The mouse is used in two ways. First, it controls the position of the

cursor on the screen. By moving the mouse, the cursor tracks its

movement on the screen. Thus, you can use the mouse to point to various

objects on the screen. Because the screen is addressed through pairs of

X,Y coordinates, you can determine the exact location of the cursor at

any time. The second use of the mouse is to select items from menus

which are associated with one of the three mouse buttons. Menus allow

you to parameterize the functionality of the system according to the

current state of the computation.

4.1.1 USING THE MOUSE BUTTONS

 The mouse buttons are commonly referred to as LEFT, MIDDLE,

and RIGHT. These are the names that you would use when specifying

arguments to various functions associated with the mouse and menus.

Each mouse button may have different functions associated with it.

Certain Interlisp subsystems support conventions concerning the use of

the mouse buttons (for example, see the Window Manager).

 When you create a subsystem under Interlisp, it is best to establish

a convention for how the mouse buttons will be used within the

166

subsystem. Interlisp has defined several conventions a priori such as the

right mouse button always selects a menu of window level operations.

4.1.2 TESTING THE MOUSE STATE

 You may test the current state of the mouse using MOUSESTATE

which takes the form:

 Function: MOUSESTATE

 # Arguments: 1

 Arguments: 1) BUTTONFORM, an

 expression describing the

 states of the mouse to be

 tested

 Value: T, if the current mouse state

 Corresponds to

 BUTTONFORM.

 MOUSESTATE is a macro. The definition for MOUSESTATE is:

(PROGN

 '(GETMOUSESTATE)

 '(MOUSESTATE-EXPR (CAR ARGS) T))

where MOUSESTATE-EXPR is an internal function.

 MOUSESTATE reads the current mouse state and compares it to

the value of BUTTONFORM. It returns T if the current mouse state

corresponds to the value of BUTTONFORM. BUTTONFORM takes

one of the values described in Table 4-1.

Table 4-1. BUTTONFORM Values

Value Meaning

LEFT, MIDDLE,

RIGHT

Indicated that the specified key is being pressed.

UP Indicated all keys are in the up state (e.g.,

unpressed).

ONLY <key> Indicated only the specified key was pressed.

167

Boolean Expression An expression using AND, NOT, and OR with the

key designators.

Consider the following examples:

<-(MOUSESTATE LEFT)

T

while holding the left mouse button down.

<-(MOUSESTATE)

causes a Break Window to open with a message as depicted below.

Figure 4-1. NIL supplied to MOUSESTATE

 The macro KEYSETSTATE takes the same form as

MOUSESTATE. However, it will also check the state of the five-finger

keyset as well as the mouse buttons. The keys of the five-finger keyset

are labeled LEFTKEY, LEFTMIDDLEKEY, MIDDLEKEY,

RIGHTMIDDLEKEY, and RIGHTKEY.

4.1.3 TESTING THE LAST MOUSE STATE

 You may test the last state of the mouse buttons using

LASTMOUSESTATE:

 Function: LASTMOUSESTATE

 # Arguments: 1

 Arguments: 1) BUTTONFORM, an expression

 describing the states

168

 of the mouse to be tested

 Value: T, if the last mouse state corresponds to

 the value of BUTTONFORM.

 LASTMOUSESTATE is a macro. Because it is a macro, its

argument is not quoted. It is defined as:

<-(GETPROPLIST 'LASTMOUSESTATE)

(ARGNAMES (BUTTONFORM)

 MACRO

 (ARGS (MOUSESTATE-EXPR (CAR ARGS) T))

)

 LASTMOUSESTATE tests the value of the system variable

LASTMOUSEBUTTONS rather than the current state of the mouse.

BUTTONFORM has the same values as described in Section 4.1.2.

LASTMOUSESTATE is usually used to determine which keys cause the

button form used in MOUSESTATE to become true. Consider the

following examples:

<-(LASTMOUSESTATE)

causes a Break Window to open with message as depicted in Figure 4-1

above.

<-(LASTMOUSESTATE LEFT)

NIL

 The macro LASTKEYSETSTATE takes the same form as

LASTMOUSESTATE. However, it will also check the state of the five-

finger keyset as well as the state of the mouse buttons. MOUSESTATE-

EXPR is an internal Interlisp function which reads the state of the mouse

from the hardware registers.

4.1.4 WAITING UNTIL A MOUSE STATE BECOMES TRUE

 You may insert a pause in your program which is controlled by the

mouse keys using UNTILMOUSESTATE:

169

 Function: UNTILMOUSESTATE

 # Arguments: 2

 Arguments: 1) BUTTONFORM, an expression

 describing the states of the mouse to be

 tested

 2) INTERVAL, the time to wait

 Value: T, if BUTTONFORM is satisfied before

 INTERVAL expires.

 UNTILMOUSESTATE is a macro which waits until

BUTTONFORM becomes true by continually testing the state of the

mouse. BUTTONFORM takes the same values as described in Section

4.1.2. INTERVAL determines the duration of the pause. If NIL, Interlisp

waits indefinitely. When INTERVAL expires and the BUTTONFORM

has not been satisfied, UNTILMOUSESTATE returns NIL. INTERVAL

is measured in milliseconds. Consider the following examples:

<-(UNTILMOUSESTATE (LEFT RIGHT))

T

when I press both the left and right mouse buttons. If no arguments are

provided to UNTILMOUSESTATE, it opens a Break Window as

depicted in Figure 4-1:

<-(UNTILMOUSESTATE)

4.3.4.1 Definition of UNTILMOUSESTATE

The definition of UNTILMOUSESTATE is:

<-(GETPROPLIST 'UNTILMOUSESTATE)

(ARGNAMES (BUTTONFORM INTERVAL

(MACRO

 (ARGS

 (COND

 ((AND (CDR ARGS) (CADR ARGS) (NEQ (CADR ARGS) T))

 (* The time interval is specified and is not T or NIL;

compile in time keeping loop)
 (LIST 'PROG

170

 (LIST

 (LIST 'TIMEOUT

 (LIST 'IPLUS

 '(CLOCK 0)

 (LIST 'OR (LIST

 'NUMBERP (CADR ARGS))

 100)

))

 '(NOWTIME (CLOCK 0))

)

 (QUOTE LP)

 (LIST 'COND

 (LIST (CONS (QUOTE MOUSESTATE)

 (LIST (CAR ARGS) T))

 (QUOTE (RETURN T))

))

 (QUOTE

 (COND

 ((IGREATERP (CLOCK0 NOWTIME)

 TIMEOUT)

 (RETURN NIL))

 (T \BACKGROUND)))

 (QUOTE (GO LP))

))

 (T

 (LIST 'PROG NIL

 (QUOTE LP)

 (LIST 'COND

 (LIST (CONS 'MOUSESTATE (LIST

 (CAR ARGS) T))

 (QUOTE (RETURN T))

))

 (QUOTE \BACKGROUND))

 (QUOTE (GO LP)))))

))

 UNTILMOUSESTATE allows you to insert a pause that permits the

user to think about the operation to be performed.

171

4.2 LOW LEVEL ACCESS TO THE MOUSE

 A number of variables are maintained by Interlisp which reflect the

state of the mouse (and its previous state) at any instant. A number of

functions are provided for accessing the current position of the mouse

and the state of its buttons.

4.2.1 GETTING THE CURSOR'S POSITION

 The cursor tracks the movement of the mouse on the screen. In many

cases, you will want to read the current position of the cursor on the

screen. Two functions, LASTMOUSEX and LASTMOUSEY, allow

you to read the X and Y coordinates, respectively, of the cursor with

regard to the given display stream. They take the form:

 Function: LASTMOUSEX

 LASTMOUSEY

 # Arguments: 1

 Arguments: 1) DISPLAYSTREAM, the address of a

 display stream.

 Value: The X (respectively Y) coordinate of the

 cursor.

 LASTMOUSEX and LASTMOUSEY return the X and Y

coordinates of the cursor in the coordinates of the DISPLAYSTREAM.

Consider the following example:

<-(LASTMOUSEX)

298

<-(LASTMOUSEY)

-38

 At this time, the current display stream was the Interlisp Executive

window and the cursor was residing below the window about two-thirds

across its width. Thus, -38 is the Y coordinate of the mouse relative to

the most recent display stream.

172

 Negative coordinates returned from LASTMOUSEX and

LASTMOUSEY indicate that the mouse lies outside the display stream.

In this case, because DISPLAYSTREAM was NIL, the display stream

used internally defaulted to the Interlisp Executive Window.

 It is recommended that you use these functions to locate the cursor

with respect to the display stream coordinates and pass the resulting

values to a function.

4.2.2 DECODING THE MOUSE BUTTONS

 You may read the names of the buttons which are currently pressed

using the function DECODEBUTTONS:

 Function: DECODEBUTTONS

 # Arguments: 1

 Arguments: 1) BUTTONSTATE, an integer

 describing the buttons to be tested

 Value: A list of the buttons which are currently

 pressed.

 DECODEBUTTONS returns a list of the buttons which are

currently pressed that corresponds to the description given in

BUTTONSTATE. It can return the names of the mouse buttons or the

five-finger keyset buttons.

4.2.3 GETTING THE MOUSE STATE

 You can obtain the current mouse state using the function

GETMOUSETSTATE:

 Function: GETMOUSESTATE

 # Arguments: 0

 Arguments: N/A

 Value: NIL

 GETMOUSESTATE sets the values of the mouse variables which

are described in the following section. Consider the example:

173

<-(GETMOUSESTATE)

NIL

<-LASTMOUSEX

262

<-LASTMOUSEY

464

<-LASTMOUSEBUTTONS

0

<-LASTKEYBOARD

128

4.2.3.1 Redefining Keys for Mouse Buttons

 There are instances where you may want to redefine keyboard keys

as mouse buttons (such as when a mouse button breaks). You may advise

GETMOUSESTATE to simulate a mouse button as follows:

(ADVISE 'GETMOUSESTATE

 'AFTER

 ()

 '(AND (KEYDOWNP 'AGAIN)

 (SETQ LASTMOUSEBUTTONS

 (LOGOR LASTMOUSEBUTTONS 2))

))

which makes the AGAIN key act like the right mouse button. This piece

of code was devised by Mayank Prakash at MCC.

4.2.4 CONFIRMING AN OPERATION WITH THE MOUSE

 You may confirm selections or operations with the mouse (i.e., by

pressing the left mouse button) using the function MOUSECONFIRM:

 Function: MOUSECONFIRM

174

 # Arguments: 4

 Arguments: 1) PROMPTSTRING, a string to be

 displayed requesting confirmation

 2) HELPSTRING, a string displayed if

 help is requested

 3) WINDOW, a window handle

 4) DON'TCLEARWINDOWFLG, a flag

 Value: T

 MOUSECONFIRM displays the prompt message,

PROMPTSTRING, in the specified window. Typically, this will be the

prompt window, but you may specify any other window that you wish.

If WINDOW is NIL, it defaults to the Interlisp Executive Window.

Consider the following example:

<-(MOUSECONFIRM "Delete File:" NIL PROMPTWINDOW)

T

 When we execute this expression, MOUSECONFIRM clears the

specified window - in this case, the prompt window - and displays

PROMPTSTRING. It then changes the cursor to resemble the

MOUSECONFIRMCURSOR. The shape of the mouse confirm cursor

indicates that you are to press the left mouse button in order to confirm

the operation specified by the prompt string. Pressing the left mouse

button causes the value T to be returned as the value of

MOUSECONFIRM. Any other mouse button causes NIL to be returned.

Figure 4.2 depicts the shape of the MOUSECONFIRMCURSOR.

175

Figure 4-2. Example of the MOUSECONFIRMCURSOR

 Note that if WINDOW is not open, but is a valid window handle,

the window will be opened and the prompt string displayed in the

window.

 If DON'TCLEARWINDOWFLG is T, the window will not be

cleared before the prompt string is displayed.

4.2.5 MOUSE SYSTEM VARIABLES

 Interlisp maintains several variables which record the state of the

mouse as presented in Table 4-2.

176

Table 4-2. Mouse System Variables

Variable Usage

LASTMOUSEX The X position of the cursor in absolute screen

coordinates.

LASTMOUSEY The Y position of the cursor in absolute screen

coordinates.

LASTMOUSEBUT

TONS

An 8-bit integer whose bits correspond to the mouse

buttons that are currently pressed. The buttons are

described as follows:

Value Meaning

4Q left mouse button

2Q right mouse button

1Q middle mouse button

LASTKEYBOARD An 8-bit integer recording the state of certain keys

on the keyboard, as presented in Table 4-5.

LASTMOUSETIME The time, in milliseconds, since the mouse state was

last read. This variable is a 16-bit integer which

rolls over every 65+ seconds.

And, for the keyset buttons.

Table 4-3. Values of LASTMOUSEBUTTONS

Value Usage

200Q left keyset button

100Q leftmiddle keyset button

40Q middle keyset button

20Q rightmiddle keyset button

10Q right keyset button

Table 4-4. Values of LASTKEYBOARD

Value Meaning

200Q lock key

100Q left shift

40Q crtl

10Q right shift

4Q blankBottom

177

1Q blankTop

4.3 CURSOR MANAGEMENT

 The cursor is a symbol which is displayed on the screen which

addresses specific bits of the display screen. The cursor is moved by

moving the mouse. You may edit the cursor bit map to design your own

cursors. Many applications will design new cursors for different

subsystems or functions provided by the application in order to provide

you with meaningful information on the state of the program. As you

enter a new subsystem, the shape of the cursor changes.

4.3.1 REPRESENTING THE CURSOR

 A cursor is represented by a record which has the definition:

((CURSORBITMAP . CURSORHOTSPOT)

 (CURSORHOTSPOT <- (create POSITION)

 (ACCESSFNS

 ((CURSORHOTSPOTX

 (fetch (POSITION XCOORD)

 of (fetch (CURSOR CURSORHOTSPOT)

 of DATUM))

 (replace (POSITION XCOORD)

 of (fetch (CURSOR CURSORHOTSPOT) of DATUM))

 with NEWVALUE))

 ((CURSORHOTSPOTY

 (fetch (POSITION YCOORD)

 of (fetch (CURSOR CURSORHOTSPOT) of DATUM))

 (replace (POSITION YCOORD)

 of (fetch (CURSOR CURSORHOTSPOT) of DATUM))

 with NEWVALUE))))

 (TYPE?

 (AND

 (type? BITMAP

 (fetch (CURSOR CURSORBITMAP)

 of (LISTP DATUM)))

 (type? POSITION

178

 (fetch (CURSOR CURSORHOTSPOT) of DATUM))

))

 (SYSTEM))

 An example of a cursor record (with sample values) is:

CURSORHOTSPOTX 0

CURSORHOTSPOTY 15

CURSORHOTSPOT (0 . 15)

CURSORBITMAP {BITMAP}#74,124644

 The cursor bitmap is displayed on the screen by bit-blitting the

cursor bit map to the display screen bit map. The standard Interlisp cursor

bit map has the following appearance:

<-(EDITBM (CURSORBITMAP))

{BITMAP}#70,167770

 The area of the cursor is defined by two variables:

CURSORWIDTH and CURSORHEIGHT.

179

Figure 4-3. Standard Cursor Bitmap

 The cursor has a location called the hot spot. This hot spot is a point

position within the cursor bit map whose coordinates are returned when

the cursor is position is queried.

4.3.1.1 Accessing the Current Cursor's Bitmap

 The current cursor is represented by a bitmap which may be obtained

by executing the function CURSORBITMAP, which takes the form:

 Function: CURSORBITMAP

 # Arguments: 0

 Arguments: N/A

 Value: A bitmap handle.

180

Consider the following example:

<-(CURSORBITMAP)

{BITMAP}#70,167770

which, in this case, represents the bitmap of the standard cursor.

 This function is particularly useful for checking modes if you switch

cursors to indicate different modes of interaction to the user. By checking

the cursor bitmap, you can determine which mode you are in.

4.3.1.2 Getting the Cursor's Hotspot Coordinates

 Because you can change the coordinates of the cursor's hotspot, you

also need to be able to access those coordinates to determine if the cursor

is actually pointing at something. You can use the function

CURSORHOTSPOT:

 Function: CURSORHOTSPOT

 # Arguments: 1

 Arguments: 1) POSITION, the coordinates of a new

 hotspot

 Value: A position representing the cursor's

 hotspot.

 This function retrieves the hotspot coordinates of the current system

cursor. Consider the following examples:

<-(CURSORHOTSPOT)

(0 . 15)

<-(CURSORHOTSPOT (POINT 5 5))

(0 . 15)

<-(CURORHOTSPOT)

(5 . 5)

181

 In this example, I also changed the coordinates of the hotspot of the

current system cursor (the arrow) to midway down the length of the

arrow.

 In general, you must be careful about changing the hotspot of a

cursor to some obvious feature. Otherwise, as the user tries to position

the cursor near an object, they may make the wrong selection. It is

personally frustrating to see the cursor positioned on an object but not

know where its hot spot is.

4.3.1.3 Interlisp Cursors

 Interlisp defines several cursors that indicate specific conditions to

be observed or subsystems in operation as described in the following

table.

Table 4-5. Interlisp Cursors

Cursor Usage

Waiting Cursor The waiting cursor takes the form of an hour

glass. It indicates that a long computation is in

progress by the system.

Garbage

Collection Cursor

The Garbage Collection Cursor indicates that

Interlisp is currently sweeping your virtual

memory to gather garbage and place it on the

free space lists.

Saving Cursor The Saving Cursor indicates that Interlisp is

saving a copy of your virtual memory to the

external disk

SYSOUT Cursor The sysout cursor indicates that Interlisp is

creating a sysout for you.

182

The Waiting Cursor

Figure 4-4. The Waiting Cursor

The Garbage Collection Cursor

 The Garbage Collection Cursor indicates that Interlisp is currently

sweeping your virtual memory to gather garbage and place it on the free

space lists.

The Saving Cursor

 The Saving Cursor indicates that Interlisp is saving a copy of your

virtual memory to the external disk. It is depicted in Figure 4-5.

183

Figure 4-5. The Saving Cursor

The SYSOUT Cursor

 The sysout cursor indicates that Interlisp is creating a sysout for

you.

4.3.2 CREATING A CURSOR

 You may create a new cursor object using the function

CURSORCREATE:

 Function: CURSORCREATE

 # Arguments: 3

 Arguments: 1) BITMAP, a bitmap of the new cursor

 2) X, the X coordinate of the hot spot of

 the cursor

 3) Y, the Y coordinate of the hot spot of

 the cursor

 Value: A cursor handle.

 CURSORCREATE creates a new cursor object. BITMAP is the

representation of the cursor which will be displayed on the display

184

screen. The position (X . Y) is the hot spot coordinates of the cursor

within the bit map. X and Y are subject to the following conditions:

1. 0 < X < CURSORWIDTH

2. 0 < Y < CURSORHEIGHT

 If X is NIL, it defaults to 0. If Y is NIL, it defaults to

CURSORHEIGHT-1. Consider the following example:

<-(SETQ SHKCURSOR

 (CURSORCREATE (BITMAPCREATE 16 16 1) 0 15))

({BITMAP}#57,171504 0 . 15)

 This cursor contains my initials. The cursor was created by editing

the bitmap.

4.3.3 OBTAINING THE CURSOR POSITION

 The cursor position may be obtained using the function

CURSORPOSITION:

Function: CURSORPOSITION

Arguments: 3

Arguments: 1) NEWPOSITION, a new position for

 the cursor

 2) DISPLAYSTREAM, a display stream

 handle

 3) OLDPOSITION, a position variable

Value: The value of the old position of the

 cursor.

 CURSORPOSITION retrieves the old position of the cursor relative

to the coordinate system of the specified display stream. If

DISPLAYSTREAM is NIL, it is determined relative to the current

display stream (usually, the window most recently written to). If

OLDPOSITION is a position, the cursor position will be assigned to it.

Consider the following example:

<-(CURSORPOSITION)

(489 . 110)

185

which is relative to the Interlisp Executive Window because it is the last

window activated.

<-(CURSORPOSITION NIL (PROMPTWINDOW))

(262 . -257)

where the cursor is positioned away from the prompt window.

 Consider the region AREGION = (200 200 600 600). When we

attempt to test against a region:

<-(CURSORPOSITION NIL AREGION)

FILE NOT OPEN

(200 200 600 600)

but, testing against the window AWINDOW = (CREATEW

AREGION):

<-(CURSORPOSITION NIL AWINDOW)

(297 . 273)

 If NEWPOSITION is non-NIL and is a position, the cursor will be

placed at the position indicated by NEWPOSITION relative to the

specified display stream or the current display stream. Consider the

following examples:

<-(CURSORPOSITION)

(490 . 109)

<-(CURSORPOSITION (POINT 300 300) AWINDOW)

(297 . 273)

<-(CURSORPOSITION)

(493 . 136)

<-(CURSORPOSITION (POINT 400 400) AWINDOW)

(593 . 236)

186

4.3.4 ADJUSTING THE CURSOR POSITION

 You may adjust the current position of the cursor by specifying the

number of pixels to move in either the X or Y directions or both. The

adjustments may be positiove or negative. Typically, they are integer

values. You use the function ADJUSTCURSORPOSITION:

 Function: ADJUSTCURSORPOSITION

 # Arguments: 2

 Arguments: 1) DELTAX, adjustment

 for the X axis

 2) DELTAY, adjustment for the Y axis

 Value: NIL.

 ADJUSTCURSORPOSITION moves the cursor DELTAX pixels in

the X direction and DELTAY pixels in the Y direction. If either

DELTAX or DELTAY is NIL, it defaults to 0. Consider the following

example:

<-(CURSORPOSITION)

(1046 . -65)

<-(ADJUSTCURSORPOSITION -100 50)

NIL

<-(CURSORPOSITION)

(946 . -15)

 Note that the cursor position is given in absolute screen coordinates

relative to the window which currently has control of the mouse. In these

examples, this is the Interlisp Executive Window. If either DELTAX or

DELTAY or both is large enough to move the cursor beyond the

boundaries of the current display stream or window. Consider the

following example:

<-(CURSORPOSITION)

(335 . 69)

<-(ADJUSTCURSORPOSITION 2000 1000)

187

NIL

moves the cursor to the upper right hand corner of the display screen.

The presumed cursor position obtained by adding 2000 to 335 and 1000

to 69 would place the cursor outside the physical boundaries of the

screen. Interlisp moves the cursor to the farthest physical boundary of

the screen.

4.3.5 COPYING A CURSOR RECORD

 A copy of the record describing the current cursor may be obtained

using the function CURSOR:

 Function: CURSOR

 # Arguments: 1

 Arguments: 1) NEWCURSOR, a

 cursor handle

 Value: The handle of the old cursor.

 CURSOR, without any arguments, returns a copy of the record

describing the current cursor. Consider the following example:

<-(CURSOR)

({BITMAP}#65,123644 0 . 15)

 If NEWCURSOR is a cursor record instance, the cursor will be set

to the values specified by NEWCURSOR. Consider the following

example:

<-(CURSOR shkcursor)

({BITMAP}#57,171746 0 . 15)

which is the record associated with the old cursor.

 If NEWCURSOR is T, the cursor is set to the Interlisp default cursor

whose handle is the value of DEFAULTCURSOR. Consider the

following example:

<-(CURSOR T)

188

({BITMAP}#57,171272 0 . 15)

which causes the cursor to again become the arrow pointing to the upper

left corner.

4.3.6 SETTING THE CURSOR

You may set the cursor by using the function SETCURSOR:

 Function: SETCURSOR

 # Arguments: 1

` Arguments: 1) NEWCURSOR, a cursor handle

 Value: The X coordinate of the hot spot.

 SETCURSOR acts just like CURSOR in establishing the features of

the cursor except that it does not return the handle of the old cursor. Thus,

it does not use any storage. Consider the following examples:

<-(SETCURSOR)

ILLEGAL ARG

NIL

<-(SETCURSOR DEFAULTCURSOR)

0

<-(SETCURSOR shkcursor)

0

4.3.7 INVERTING THE CURSOR

 The cursor is normally displayed as a black-on-white bitmap. You

may invert the cursor bit map using the function FLIPCURSOR:

 Function: FLIPCURSOR

 # Arguments: 0

 Arguments: N/A

 Value: NIL

189

 FLIPCURSOR inverts the cursor as it is displayed on the screen. It

does not invert the bitmap used to create the cursor.

 Inverting the cursor is a useful way to indicate to the user that he or

she should wait for an operation to finish or that some background

operation is being performed by the system. For example, when the

standard cursor inverts, the systems has invoked the garbage collection

subsystem. Figure 4-6 displays an image of the standard cursor when it

is inverted.

Figure 4-6. An Inverted Standard Cursor

4.3.8 ALERTING THE USER

 In many applications, you need to catch the user's attention when a

message is displayed to which he or she should respond. One way to do

this is to flip the cursor rapidly as a means of signaling that he or she

should look for a message. Let us define a simple function

ALERT.USER, which prints a message in the prompt window and

flashes the cursor at the user. ALERT.USER may be defined as:

<-(DEFINEQ (alert.user (msg #times)

190

 (AND msg (PROMPTPRINT msg))

 (FOR I FROM 1 TO #times

 DO (FLIPCURSOR))

))

(ALERT.USER)

4.3.9 SAVING CURSORS IN A FILE

 Once you have created a cursor, you may save it for later use on a

file using the CURSORS file package command. Consider the following

example:

4.4 PROMPTFORWORD

 PROMPTFORWORD is a function that reads an arbitrary

sequence of characters from the keyboard without involving the READ

function syntax. It provides many optional features through a large

number of arguments. However, the default value for most of these

options is NIL so that simple calls can easily be made. When using

PROMPTFORWORD, you may supply a prompt string to initiate the

data entry. You may also supply a candidate string which is printed and

which becomes the default response if a word terminator is typed or a

timeout occurs.

4.4.1 USING PROMPTFORWORD

 A call to PROMPTFORWORD takes the following form:

 Function: PROMPTFORWORD

 # Arguments: 8

 Arguments: 1) PROMPT.STR, the prompt string

 2) CANDIDATE.STR, the candidate

 default answer

 3) GENERATE?LIST.FN, a help

 function or string

 4) ECHO.CHANNEL, A display stream

191

 to echo input

 5) DONTECHOTYPEIN.FLG, inhibits

 echoing of input

 6) URGENCY.OPTION, the time

 duration to wait for input

 7) TERMINCHARS.LST, a list of word

 terminator character codes

 8) KEYBD.CHANNEL, a display

 stream for receiving input

 Value: The input string, if any.

 As you can see, PROMPTFORWORD provides you with

considerable flexibility in receiving input from the user. The individual

arguments will be discussed in the sections below.

 The default input and echo streams are both from the keyboard. The

terminal table in effect during type-in allows most control characters to

be indicated.

 PROMPTFORWORD returns NIL if you type a null string.

Consider the following example:

<-(PROMPTFORWORD)<CR>

NIL

 NIL is returned when no candidate string is given and you type a

word terminator such as a carriage return. Normally,

PROMPTFORWORD returns a string. Consider the following example:

<-(PROMPTFORWORD "Enter name:")

Enter Name: Steve

"Steve"

4.4.1.1 The Prompt String

 Usually, you will need to alert the user that input is expected. The

argument PROMPT.STR is a string which is printed when

PROMPTFORWORD is executed. If PROMPT.STR is not a string,

192

PROMPTFORWORD coerces it to a string via MKSTRING. When the

string is printed, an additional space is printed to separate the prompt

string from the answer. Consider the following example:

<-(PROMPTFORWORD "Enter file name:")

Enter file name: X.TXT<CR>

"X.TXT"

 It is suggested that you terminate the prompt string with a

punctuation mark that is usually associated with queries, such as ? or :.

4.4.1.2 The Candidate String

 You may specify a default answer as the value of the argument

CANDIDATE.STR. After the prompt string, if any, is printed, the

candidate string will be printed. This string is offered as the initial

contents of the input buffer. If you type any characters other than word

terminator characters, the candidate string will be erased and the new

input becomes the contents of the input buffer. Consider the following

example:

<-(PROMPTFORWORD "Enter file name:" "SHK.LISP")

Enter file name: SHK.LISP<CR>

"SHK.LISP"

which shows the default behavior. Now, consider the example:

<-(PROMPTFORWORD "Enter file name:" "SHK.LISP")

Enter file name: TOM.LISP<CR>

"TOM.LISP"

 The cursor is placed at the end of the default string. You may move

it via the mouse or by pressing the backspace key. Then, you may retype

any characters that you wish to change.

4.4.1.3 Providing Help

193

 Additional help may be invoked during type-in by entering the

character ?. You may provide additional help to the user in one of two

ways:

1. An additional help string

2. A function which is applied to PROMPT.STR and

CANDIDATE.STR to generate a list of potential candidates

 Either of these values is assigned to the argument

GENERATE?LIST.FN. If GENERATE?LIST.FN is a function

(typically, a LAMBDA expression), it is given the strings

PROMPT.STR and CANDIDATE.STR as its arguments. It should

return a list of potential candidates which will be printed on a separate

line. More likely, this function will return NIL, but will independently

print the list of potential candidates in some useful format. After the

candidates are printed, the prompt is restarted and any type-in is re-

echoed. Consider the following examples:

<-(PROMPTFORWORD

 "Select a color"

 "Red"

 (FUNCTION

 (LAMBDA (PROMPT CANDIDATE)

 (LIST "Yellow" "Orange" "Blue"))

))

Select a color: Red?<CR>

{Yellow Orange Blue}

Select a color: Red<CR>

Red

 If GENERATE?LIST.FN is a function, its value is cached so that it

will be executed at most once per call to PROMPTFORWORD.

4.4.1.4 The Echo Channel

 Usually, input is echoed to the terminal. Thus, the value NIL for this

argument defaults to T, the terminal display stream. Normally, this

output stream will be the value returned by TTYDISPLAYSTREAM.

194

 However, you may direct that the characters typed-in be echoed to

another display stream by assigning a display stream handle as the value

of ECHO.CHANNEL. If you want to echo the input to the current output

stream (whatever it is!), you should use the expression (GETSTREAM

NIL 'OUTPUT) as the value of the argument ECHO.CHANNEL. The

display stream where the next input will be echoed has a flashing caret

to indicate where the input will be displayed.

4.4.1.5 Inhibiting Echoing of Input

 The echoing of characters typed-in by the user may be inhibited by

assigning T as the value of the argument DONTECHOTYPEIN.FLG.

Consider the following example:

<-(PROMPTFORWORD "Enter name:" "Steve" NIL NIL T)

Enter name: "Steve"

 When the characters "Steve" were typed, they were not echoed on

the input screen. Once a <CR> was typed, PROMPTFORWORD

displayed "Steve" as the value it returns.

 If the value of DONTECHOTYPEIN.FLG is a single character atom

or string, its value will be echoed instead of the actual input. The IRM

notes that LOGIN will prompt you for a password with the value of

DONTECHOTYPEIN.FLG set to "*".

4.4.1.6 Input Wait Time

 You may specify how long PROMPTFORWORD will wait for the

user to type in a response to the query by assigning a value to the

argument URGENCY.OPTION.

 If URGENCY.OPTION is NIL, PROMPTFORWORD will

essentially wait "forever" for the user to enter data, just as READ does.

Alternatively, if it is T, PROMPTFORWORD waits "forever", but

periodically will flash the window associated with the display stream to

alert the user that input is expected.

195

 If URGENCY.OPTION is a number, it specifies the number of

seconds to wait for the user to type in a response. If time expires before

the user types input, then CANDIDATE.STR is returned.

 If URGENCY.OPTION is the atom TTY, then

PROMPTFORWORD seizes the keyboard immediately. The cursor will

be changed (temporarily) to a different shape (see below) to indicate that

input is urgently requested.

4.4.1.7 The Word Terminator List

 When you type input in response to a query from

PROMPTFORWORD, the input must be terminated by a valid word

terminator. The argument TERMINCHARS.LST is a list of character

codes specifying those characters which are word terminators. The

default value is (CHARCODE (EOL ESCAPE LF SPACE TAB)). It

may also be a single character code.

 Usually, you will use the default word terminator set for most input.

However, for certain applications it may be both feasible and desirable

to specify certain special characters to terminate segments of the input.

4.4.1.8 The Input Stream

 Normally, input for PROMPTFORWORD will be taken from the

keyboard input stream. However, you may specify an alternative input

stream by assigning a non-NIL value to the argument

KEYBD.CHANNEL.

 Note that the terminal input stream T is a buffered keyboard input

stream (see Section 14.1,I). It is not suitable for PROMPTFORWORD

according to the IRM.

4.4.2 RESPONSE TO CONTROL CHARACTERS

 PROMPTFORWORD will recognize several special characters as

described in the following table:

196

Table 4-6: Special Characters

Character Response

CTRL-A Deletes the last character typed and erases it

from the echo stream

BACKSPACE Deletes the last character typed and erases it

from the echo stream

DELETE Deletes the last character typed and erases it

from the echo stream

CTRL-Q Erases all type-in so far

CTRL-R Reprints the accumulated input string

CTRL-V "Quotes" the next character so that it is added

to the accumulated input string regardless of

any special meaning it may have

CTRL-W Erases the last word

? Invokes the "help" facility whose response is

determined by the value of the argument

GENERATE?LIST.FN

197

5. WINDOW MANAGEMENT

 A window is a rectangular area mapped onto the display screen

through which you interact with a program. Typically, we speak of a

program being "embedded" within the window.

 Windows form the kernel of a multiprogramming paradigm. One

window corresponds to one program. You can interact with or operate as

many programs as you have windows present on the screen. Each

program may be different: viewing a stack frame, executing a function,

inspecting a data structure, etc.

 Windows may overlap each other on the screen without the loss of

information. Windows are ordered in depth from the user to the

background. The currently active window will be highlighted by having

its brought to the top of the occlusion stack. To activate another window,

you merely place the cursor in any portion of the window and click the

leftmost button. The window is brought to the top of the stack of

windows.

5.1 WINDOW CHARACTERISTICS

 Each window has a number of characteristics that define its identity

and how it may be used.

5.1.1 WINDOW REPRESENTATION

 A window is represented on the display screen as a rectangular area.

Each window has a border of variable width. Interior to the border is the

pane of the window where data may be displayed. When the cursor

enters the pane, the mouse buttons may become active. The operations

associated with the mouse buttons depend on the underlying functions

attached to the window properties. At the top of the window is a title

pane where the name of the window is displayed.

5.1.2 WINDOW STATES

 Windows may exist in one of two states: open or closed. An open

window is placed on Interlisp's occlusion stack. It will be visible on the

display screen unless it is obscured by other windows. When a window

is in the open state, it is susceptible to mouse operations. When a window

198

is in a closed state, it is not visible nor represented on the screen. A

window in the closed state cannot be operated upon by the mouse until

it is opened. However, under program control, a window may be forced

open by printing to it.

 Even when a window is closed, its window handle is still defined in

the system. You may reopen a closed window by referencing its window

handle.

5.1.3 ICONS

 An icon is a small rectangle containing text or a bitmap which

identifies a shrunken window. The icon may be moved about the screen

by placing the cursor in the icon and pressing the left mouse button. You

may then drag the icon about the screen to the position that you want.

Releasing the left mouse button deposits the icon at that screen position.

 The icon may be expanded to the window it represents by placing

the cursor in the icon and clicking the middle mouse button. When an

icon is created, it will be cached under the window property

ICONWINDOW on the window with which it is associated. This permits

repeated calls to SHRINKW and EXPANDW using the same icon.

5.2 WINDOW TYPES

 When Interlisp is initialized from the baseline sysout, three windows

will appear on the screen as depicted in Figure 5-1.

Table 5-1. Initial Interlisp Windows

Window Description

Prompt Window Displays help messages or information

requests emitted by Interlisp, but may also be

used by applications programs.

Interlisp

Executive

Window

Corresponds to the file T in the EXEC

process where the top level read-eval-print

loop operates.

Logo Window Displays the Interlisp logo.

199

Figure 5-1. Initial Interlisp-D Windows

5.2.1 MANIPULATING THE PROMPT WINDOW

 The Prompt Window is used by many of the Interlisp subsystems to

display help messages or to request additional information through

prompt messages. The identifier of the prompt window is bound to the

global variable PROMPTWINDOW:

<-PROMPTWINDOW

{WINDOW}#74,25640

 Of course, the address of the PROMPTWINDOW handle varies

with the amount of memory you have in your system.

 The prompt window is intentionally sized to be rather small. Its

background shade is BLACKSHADE so that any messages that are

printed to it appear in a white-on-black format. This is intended to catch

you attention. You may resize the prompt window by selecting the

Shape operation from the window operations menu (selected via the

RIGHT mouse button).

5.2.1.1 Printing to the Prompt Window

 An expression may be printed in the prompt window using the

function PROMPTPRINT, which takes the following form:

 Function: PROMPTPRINT

 # Arguments: 1

200

 Arguments: 1) EXPRESSION, an expression

 Value: NIL.

 EXPRESSION is evaluated and its value is displayed in the prompt

window as depicted in Figure 5-2:

<-(PROMPTPRINT "Use the right button to select the window menu")

NIL

 Note that the prompt window is cleared at each call to

PROMPTPRINT. If you do not want to clear the prompt window when

writing to it, then you should use the system variable

PROMPTWINDOW as the second argument to one of the PRINx

functions.

Figure 5-2. Printing to the Prompt Window

5.2.1.2 Clearing the Prompt Window

 When a message is displayed in the prompt window, it remains until

it is overwritten or the prompt window is cleared. You may clear the

prompt window using the function CLRPROMPT:

 Function: CLRPROMPT

 # Arguments: 0

 Arguments: none

 Value: NIL

 CLRPROMPT erases the prompt window pane. You should clear

the prompt window before each new prompt messgae is written to the

window in order not to confuse the user.

5.2.2 MANIPULATING THE LOGO WINDOW

 The Logo Window has the appearance depicted in Figure 5.-3. The

identifier of the logo window is bound to the global variable LOGOW:

201

<-LOGOW

{WINDOW}#65,125234

Many application programs replace the Interlisp logo with a logo of their

own design when they are loaded into memory.

Figure 5-3. Interlisp Logo Window

 Of course, the Logo window handle address varies with the amount

of memory in your system.

5.2.2.1 Creating a Logo Window

 A user may create his or her own logo window using the function

LOGOW:

 Function: LOGOW

 # Arguments: 4

 Arguments: 1) STRING, the string to be

 printed

 2) WHERE, the position of the

 lower left corner of the window

 3) TITLE, the title of the

 window

 4) ANGLEDELTA, the angle

 of the boxes in the picture.

 Value: A window handle.

202

 LOGOW creates a duplicate of the standard Interlisp logo window.

However, it substitutes the value of STRING for the phrase "Interlisp".

If STRING has the value NIL, the string displayed is "Interlisp". Figure

5-4 depicts a logo window created using my initials:

<-(LOGOW "SHK")

{WINDOW}#65,125150

Figure 5-4. Example of a Custom Logo Window

 WHERE specifies the coordinates of the lower left corner of the

window in which the logo will be displayed. If WHERE has the value

NIL, you will be prompted to specify a position via the mouse. Interlisp

sizes the window to accommodate the boxes and the logo string.

 TITLE is the title of the window. If NIL, it defaults to the Xerox

copyright notice and date.

 ANGLEDELTA is the angle (in degrees) or pitch between the boxes

in the picture. If NIL, it defaults to 23 degrees. Examples of the boxes

pitched at 10 and 40 degrees are shown in Figures 5-5 and 5-6.

203

Figure 5-5. Logos with 10 Degree Pitch Angle

Figure 5-6. Logos with 40 Degree Pitch Angle

5.2.3 INTERLISP EXECUTIVE WINDOW

 The major window through which you interact with Interlisp is

called the Interlisp Executive Window (formerly the Top-Level

Typescript Window). When you log onto Interlisp, the window is blank

except for a number and left arrow which indicates the history event

number.

 A user may type any Interlisp expression after the left arrow. It will

be accepted by LISPXREAD as part of the "read-eval-print" loop. Figure

5-7 depicts the Interlisp Executive Window with some commands

already executed in it.

204

Figure 5-7. The Interlisp Executive Window

5.3 INTERACTIVE WINDOW OPERATIONS

 A user may interactively manipulate windows on the display screen

using the mouse to point to the window. A number of standard functions

are defined for a window when it is created. These functions are accessed

by placing the cursor in the window pane and pressing the rightmost

mouse button. The standard Window Menu of window operations will

appear at the location designated by the cursor. You may select one of

the operations in the menu by moving the cursor until the operation is

highlighted and, then, releasing the rightmost mouse button.

205

Figure 5-8. The Standard Window Menu

5.3.1 CLEARING A WINDOW

 To clear a window, select the CLEAR operation from the window

operation menu. When the mouse button is released, the contents of the

window pane will be erased and the cursor will be repositioned to the

upper lefthand corner.

 Clearing a window fills the window with its background shade.

Usually, this will be WHITESHADE, but the background shade may be

switched to some other texture.

5.3.2 CLOSING A WINDOW

 A window may be closed by selecting the CLOSE operation from

the window operation menu. When the mouse button is released, the

window will be removed from the screen. The window is removed from

the occlusion stack. Note that closing a window does not release its

window handle. A closed window may be re-opened using the function

OPENW.

206

5.3.3 BURYING A WINDOW

 A user may bury a window by selecting the BURY operation from

the window operation menu. When the mouse button is released, the

window is placed at the bottom of the occlusion stack. Any windows that

were obscured by the window that is buried will now be visible. Figure

5-9 depicts this operation where I selected the Bury operation for the

Logo Window. It is now obscured behind an Inspector window.

Figure 5-9. Burying a Window

5.3.4 MOVING A WINDOW

 A window may be moved to another location on the screen by

selecting the MOVE operation from the window operation menu. When

the right mouse button is released, you should depress the left mouse

button. At this time, a "ghost frame" of the same dimensions will appear

on the screen. You can move the ghost frame by moving the mouse.

 When you have selected the location where the window is to be

positioned anew (indicated by the location of the ghost frame), release

the left mouse button. The window will be erased from its current

location and appear at the new location.

207

5.3.5 SHAPING A WINDOW

 A window may be reshaped by selecting the SHAPE operation from

the window operation menu. Reshaping a window means specifying a

new region for the window pane. When the right mouse button is

released, the window may be reshaped using either the leftmost or

middle mouse buttons.

 Using the left mouse button, a window anywhere on the screen can

be reshaped. First, the cursor must be positioned on the screen where the

window is to be located. Then, the left mouse button must be pressed and

the mouse dragged to the right and down. A ghost frame will expand

indicating the dimensions of the window. When the user is satisfied with

the window's shape, release the left mouse button. The contents of the

window will be redisplayed in the pane at its new location.

 Using the middle mouse button, the current dimensions of the

window may be adjusted at its present location. When the middle mouse

button is pressed, the cursor leaps to the nearest corner of the window.

The mouse may be dragged to adjust the dimensions of the window.

Typically, this capability will be used to make small adjustments in the

dimensions of a window which is already correctly positioned on the

screen.

5.3.6 REDISPLAYING A WINDOW

 The contents of a window may be redisplayed by selecting the

REDISPLAY operation from the window operation menu. Redisplaying

may be required for a number of reasons:

1. The contents of the window may have been manipulated

using the mouse such that detritus remains in the window.

2. As a result of reshaping the window, the contents have

been dislocated within the window.

 When the mouse button is released, the contents of the window pane

are redisplayed.

5.3.7 PAINTING IN A WINDOW

 A user may "paint" within a window when the PAINT operation is

selected from the window operation menu. When the rightmost button is

released, cursor control switches to a mode where the cursor affects

208

individual bits in the window pane as its traverses them. The three mouse

buttons have the effect on the cursor described in Table 5-2.

Table 5-2. Effect of Mouse Buttons During Painting

Mouse Button Effect

LEFT When the left mouse button is pressed, bits will be

added to the window pane, i.e., each bit traversed by

the cursor will be "turned on" (even if it is already

on).

MIDDLE When the middle mouse button is pressed, bits will

be erased from the window pane, i.e., each bit

traversed by the cursor will be "turned off" (even if

it is already off).

RIGHT Pops up a command menu that allows you to define

the characteristics of the "paint brush" or exit

painting mode.

The effects of the left and middle mouse buttons are depicted in Figure

5-10.

Figure 5-10. Effect of Left Mouse Button During Painting

5.3.7.1 Paint Commands

 When the right mouse button is pressed while painting, a command

menu appears as depicted in Figure 5-11:

209

Figure 5-11. Paint Command Menu

 Selecting QUIT from the Paint Command Menu leaves the

characteristics of the brush unchanged. The other commands are

discussed in the following sections.

5.3.7.2 SetMode Command

 The SetMode command determines how bits painted on the window

will interact with bits already appearing in the window. There are three

modes which are displayed in an auxiliary pop-up menu as described in

Table 5-3.

Table 5-3. New Bits Interaction with Painted Bits

Mode Command Usage

REPLACE Bits painted in the window replace existing bits

INVERT Bits over which the cursor passes are inverted

ADD Bits over which the cursor passes are added to

existing bits

 The default operation is to REPLACE existing bits.

5.3.7.3 SetShade Command

 The SetShade command allows you to set the shade with which bits

will be painted on the window. The shades are chosen from a pop-up

menu as depicted in Figure 5-12.

210

Figure 5-12. SetShade Option Menu

 If you choose the 4x4 shade option, you are presented with a pop-

up window that allows you to customize the shade which the cursor will

assume. This pop-up window is depicted in Figure 5-13. You must use

the left mouse button to select squares to darken the shade. You must use

the left mouse button to exit from this pop-up window.

Figure 5-13. 4x4 Shade Customization Window

5.3.7.4 SetShape Command

 The SetShape command allows you to select the shape of the brush

with which you will paint bits on the window. The brush shape is selected

from a pop-up menu. The five brush types that are supported are:

1. Diagonal

2. Vertical

3. Horizontal

4. Square

211

5. Round

Figure 5-14 provides some examples of brush types.

Figure 5-14. Examples of Several Brush Types

5.3.7.5 SetSize Command

 The SetSize command allows you to determine the size of the brush

with which you paint bits on the window. The size is selected from a

pop-up menu whose options are: 1, 2, 4, 8, or 16.

5.3.8 TAKING A SNAPSHOT

 A user may take a snapshot of a window's contents by selecting the

SNAP operation from the window operation menu. When the rightmost

mouse button is released, you will be prompted to define a new region

on the screen. Using the leftmost mouse button, define the region for a

new window. A new window is created of the same dimensions as the

existing window. A copy of the contents of the current window is placed

in the new window. This operation is useful for saving images in a

window for later usage. Figure 515 depicts this operation.

212

Figure 5-15. Example of a Snapshot of a Window

5.3.9 SHRINKING A WINDOW

 Screen real estate is limited. Occasionally, you will find that you

create a large number of windows containing useful information.

However, this makes is difficult to access underlying windows because

you must bring them to the top of the stack. If they are obscured, you

must move windows around in order to locate the correct ones to be

accessed.

 Interlisp allows you to create icons to represent windows which,

while open, are not fully displayed on the screen. Icons allow you to

manage you screen space more efficiently. An icon is a small rectangle

containing either text or a bitmap. If text is displayed, it is usually the

title of the window. If a bitmap is displayed, it is some iconic

representation that is a mnemonic for the windows contents. For

example, shrinking the FileBrowser Window displays the icon as shown

in Figure 5-16.

213

Figure 5-16. FileBrowser Icon from SHRINK command

 A window may be shrunk at any time by selecting the SHRINK

operation from the window operation menu. When the right mouse

button is released, the window disappears from the screen and is replaced

by the appropriate icon. You may determine the type of icon that is

produced by associating a function with the proper window property.

5.3.10 EXPANDING A WINDOW

 When a window is represented by an icon, its contents cannot be

manipulated or printed. To access its contents, the window must be

expanded so that its pane is visible again. To expand a window, the user

must select the EXPAND operation from the window operation menu.

When the rightmost mouse button is released, the icon upon which the

cursor rests will be expanded into a fully visible window which will be

placed at the top of the occlusion stack.

 Note that the window operation menu has a slightly different format.

The REDISPLAY and CLEAR operations have been removed, and the

SHRINK operation has been replaced by the EXPAND operation.

5.3.11 DEFAULT WINDOW OPERATION MENU

 The actions associated with the right mouse button may be redefined

through the programmable window operations that are discussed in

Section 5.5. However, the interactive window operations remain

available to the user. Interlisp observes the convention that the

interactive window operations will always be available through the title

or border of a window. To access the standard window operations menu,

place the cursor in the title area or on the border of the window and press

the rightmost mouse button.

214

 The default window menu associated with the right mouse button is

depicted in Figure 5.8. The window handle for this menu is stored in the

system variable WindowMenu and its command list is the value of the

system variable WindowMenuCommands. Their values are shown

below:

<-WindowMenu

{MENU}#64,101410

<-WindowMenuCommands

((Close (QUOTE CLOSEW)

 "Closes a Window")

 (Snap (QUOTE SNAPW)

 "Saves a snapshot of aregion of the screen.")

 (Paint (QUOTE PAINTW)

 "Starts a painting mode in which the mouse can be used to draw

 pictures or make notes on windows.")

 (Clear (QUOTE CLEARW)

 "Clears a window to its gray.")

 (Bury (QUOTE BURYW)

 "Puts a window to the bottom.")

 (Redisplay (QUOTE REDISPLAYW)

 "Redisplays a window using its REPAINTFN.")

 (Hardcopy (QUOTE HARDCOPYIMAGEW)

 "Prints a window using its HARDCOPYFN."

 (SUBITEMS

 ("To a file" (QUOTE HARDCOPYIMAGEW.TOFILE)

 "Puts image on a file; prompts for filename and format")

 ("To a printer" (QUOTE HARDCOPYIMAGEW.TOPRINTER)

 "Sends image to a printer of your choosing")

))

 (Move (QUOTE MOVEW)

 "Moves a window by a corner.")

 (Shape (QUOTE SHAPEW)

 "Gets a new region for a window. Left button down marks fixed

 corner; sweep to other corner.

 Middle button down moves closest corner.")

 (Shrink (QUOTE SHRINKW)

 "Replaces this window with its icon (or title if it doesn't have an

 icon.")

)

215

 The text that is associated with each function will be displayed in

the prompt window if you hold the mouse button down for an appropriate

period of time.

5.3.12 BACKGROUND OPERATIONS

 When the cursor resides in the background, e.g., it is not in any open

window, the right button causes the Background Display Menu to pop-

up. This menu is depicted in Figure 5-17.

Figure 5-17. Background Display Menu

5.4 SCROLLING

 In many applications the contents of a window may be too large to

display within the physical dimensions of the window. This usually

occurs when a lengthy text file or a large graphical display is being

viewed. Interlisp supports the notion of scrolling within a window.

Scrolling allows the user to treat the window pane as a frame which

views only a portion of a larger scene behind the window. By moving

the frame, the user can view different portions of the screen. You may

scroll both vertically and horizontally.

 Each object in a window has its own coordinate system. The object

may have many components which are related to each other and are laid

according to the object's coordinate system (as specified by the display

or image stream that was used to print the object in the window). When

a window is created, the X-OFFSET and Y-OFFSET of its display

stream map the object's origin into the lower left corner of the window's

216

display pane. The clipping region is set to the interior region of the

window.

 There are several "regions" that are associated with a window as

described in Table 5-4.

Table 5-4. Regions of a Window

Region Description

Object Extent This region in the window's coordinate system

which contains the complete image of the

object. It is stored as the value of the EXTENT

window property

Clipping Region This region of the display stream (which is

obtained via DSPCLIPPINGREGION) specifies

the portion of the object that is actually visible

in the window. The clipping region is set so that

it corresponds to the interior region of the

window.

Window Region This region specifies the area on the screen that

the entire window occupies when it is fully

visible. This region is stored as the value of the

window's REGION property.

 When scrolling is enabled and the user attempts to print lines of text

in the window that would run off the bottom, the contents of the window

"scroll up" so that the new lines of text become visible. This feature is

controlled by DSPSCROLL.

 When scrolling is enabled, gray-shaded scrolling bars will appear on

the left and bottom edges of the window. The mouse keys are used

control the scrolling within the window as described in Table 5-5.

Table 5-5. Controlling Scrolling by Mouse Keys

Mouse Key Effect

LEFT This key is used to indicate upward or leftward

scrolling by the amount necessary to move the

selected position to the top of the window or to

its left edge. Thus, if you place the cursor in a

position in the scroll bar corresponding to

some object in the window, pressing the left

217

mouse button will cause that object to be

moved to the top of the window.

MIDDLE This key is used to indicate a global placement

of some object in the window. By placing the

cursor in the gray area of the scroll bar, which

indicates the amount and portion of the object

being viewed, you can manipulate which

portion is viewed by pressing the middle

mouse button and moving the cursor up or

down (or left or right).

RIGHT This key is used to indicate downward or

rightward scrolling by the amount necessary to

move the selected position to the top of the

window or to its left edge. Thus, if you place

the cursor in a position in the scroll bar

corresponding to some object in the window,

pressing the left mouse button will cause that

object to be moved to the top of the window.

 When the mouse button is released in a scroll bar, the function

SCROLLW is called. SCROLLW calls the function associated with the

SCROLLFN property of the window. This function should do the actual

scrolling of the window's contents.

5.4.1 SCROLLING A WINDOW

 You may scroll the contents of a window using the function

SCROLLW:

 Function: SCROLLW

 # Arguments: 4

 Arguments: 1) WINDOW, a window handle

 2) DELTAX, amount to scroll

 in the X-direction

 3) DELTAY, amount to scroll

 in the Y-direction

 4) CONTINUOUSFLG, a flag

 for continuous scrolling

 Value: The window handle.

 This function merely invokes the function, if any, associated with

the SCROLLFN property of the window.

218

5.4.2 HANDLING THE MOUSE DURING SCROLLING

 When the cursor is positioned in the scroll bar, you need to track the

mouse carefully in order to ensure that the scrolling appears to be

continuous. The function SCROLL.HANDLER below, allows you to

track the cursor:

 Function: SCROLL.HANDLER

 # Arguments: 1

 Arguments: 1) WINDOW, a window handle

 Value: The window handle.

 When the cursor leaves the window in the left or downward

direction, SCROLL.HANDLER is called by the mouse handle. If the

WINDOW does not have a scroll bar associated with it in this direction,

a scroll bar is created and attached to the window that is

SCROLLBARIWDTH pixels wide.

 SCROLL.HANDLER then waits for SCROLLWAITTIME

milliseconds. If the cursor is still located in the scroll bar, it opens a

window the size of the scrolling region and changes the cursor to indicate

that scrolling is taking place.

 When a mouse button is pushed, the cursor shape is changed to

indicate the type of scrolling.

 If the mouse button is held for WAITBEFORESCROLLTIME

milliseconds, the function SCROLLW will be called each

WAITBEFORESCROLLTIME milliseconds until the mouse button is

released. During these calls, CONTINUOUSFLG is set to T.

 If the mouse button is released before some interval of

WAITBEFORESCROLLTIME milliseconds, then CONTINUOUSFLG

is set to NIL. The arguments passed to SCROLLW depend on the mouse

button as described in Table 5-6.

Table 5-6. SCROLLW Arguments

Mouse Button Description

LEFT In the vertical scroll region (left side of

window), DELTAY is the distance from the

cursor's position at the time the button was

219

released to the top of the window; DELTAX is

0.

LEFT In the horizontal scroll region (bottom of the

window), DELTAX is the distance from the

cursor's position to the left edge of the

window; DELTAY is 0.

RIGHT In the vertical scroll region, DELTAY is the

distance from the cursor's position at the time

the button was released to the bottom of the

window; DELTAX is 0.

RIGHT In the vertical scroll region, DELTAY is the

distance from the cursor's position at the time

the button was released to the bottom of the

window; DELTAX is 0

MIDDLE In the horizontal scroll region, DELTAX is the

distance from the cursor's position to the right

edge of the window; DELTAY is 0

 If the window does not have a SCROLLFN window property or its

value is NIL, then the window is not scrollable and no scroll regions will

be displayed when the cursor exist the window.

5.4.3 SCROLLING BY REPAINTING

 The standard scrolling function provided with Interlisp is

SCROLLBYREPAINTFN. The IRM [IRM 28.4.9] notes that it should

be used for most scrolling windows.

 Function: SCROLLBYREPAINTFN

 # Arguments: 4

 Arguments: 1) WINDOW, a window handle

 2) DELTAX, amount to scroll in X

 direction

 3) DELTAY, amount to scroll in Y

 direction

 4) CONTINUOUSFLG, a flag for

 continuous scrolling.

 Value: NIL.

 Normally, you would assign this function as the value of the window

property SCROLLFN.

220

 When SCROLLBYREPAINTFN is called, it bitblts the bits that are

to remain visible after scrolling to their new location in the window. It

fills the area vacated by these bits with the background texture, adjusts

the window's coordinate system (relative to the display stream), and calls

the window's REPAINTFN on the exposed region. This function will

scroll any window which has a repaint function. Consider the following

functions which create a scrolling window for displaying an expression:

(DEFINEQ (CREATE.SCROLLING.WINDOW (EXPRESSION)

(PROG (W1)

 (SETQ W1 (CREATEW NIL "Scrolling Window"))

 (WINDOWPROP W1 'EXPRESSION EXPRESSION)

 (WINDOWPROP W1 'REPAINTFN

 (FUNCTION REPAINT.SCROLL.WINDOW))

 (WINDOWPROP W1 'RESHAPEFN

 (FUNCTION RESHAPE.SCROLL.WINDOW))

 (WINDOWPROP W1 'SCROLLFN

 (FUNCTION SCROLLBYREPAINTFN))

 (RESHAPE.SCROLL.WINDOW W1)

 (RETURN W1))

))

 This function sets up some of the window properties that enable

scrolling to be performed. Note that the expression to be displayed is

cached in the window on the window's property list.

(DEFINEQ (RESHAPE.SCROLL.WINDOW (WINDOW)

 (PROG (BOTTOM REGION)

 (DSPRESET WINDOW)

 (WINDOWPROP WINDOW

 'X-ORIGIN

 (DSPXPOSITION NIL WINDOW))

 (WINDOWPROP WINDOW

 'Y-ORIGIN

 (DSPYPOSITION NIL WINDOW))

 (REPAINT.SCROLL.WINDOW WINDOW)

 (SETQ REGION

 (create REGION

 LEFT <- 0

 BOTTOM <-

 (SETQ BOTTOM

 (IPLUS (DSPYPOSITION NIL WINDOW)

 (FONTPROP WINDOW 'ASCENT))

)

 WIDTH <- (WINDOWPROP WINDOW 'WIDTH)

221

 HEIGHT <-

 (IDIFFERENCE (WINDOWPROP WINDOW

 'HEIGHT) BOTTOM)

)

)

 (WINDOWPROP WINDOW 'EXTENT REGION))

))

 This function resets the windows X- and Y-coordinates and then

repaints the window.

(DEFINEQ (REPAINT.SCROLL.WINDOW (WINDOW REGION)

 (MOVETO (WINDOWPROP WINDOW 'X-ORIGIN)

 (WINDOWPROP WINDOW 'Y-ORIGIN)

 WINDOW)

 (PRINTDEF (WINDOWPROP WINDOW 'EXPRESSION)

 0

 NIL

 NIL

 NIL

 WINDOW)

))

 This function moves the cursor to the X- and Y-coordinates of the

window's origin and redisplays the expression. These functions were

modeled after examples that appeared in the IRM. Note that if the

WINDOW has an EXTENT property, the scrolling will be limited in the

X and Y directions by the value of the window property

SCROLLEXTENTUSE.

 If DELTAX or DELTAY is a floating point number, then

SCROLLBYREPAINTFN repositions the window contents proportional

to the distance from the top and left corner as a proportion of the region

given as the EXTENT.

5.4.4 SCROLLING PROPERTIES

 Several window properties are used to control scrolling activities as

described in the following sections.

5.4.4.1 The Extent of the Window

222

 The EXTENT of a window is a region that is used to limit the

scrolling performed by the SCROLLFN. The value of EXTENT is a

region in the window's display stream which contains the complete

image of the object being viewed by the window.

 Note that the extent may be smaller than the window region, but that

this is atypical. Usually, the extent will not be known in one or both

dimensions. This can be indicated to the window operations by

specifying a value of -1 for the WIDTH or HEIGHT of the region which

is the value of EXTENT.

5.4.4.2 The Scrolling Function

 The scrolling function for a window is specified as the value of the

window property SCROLLFN. If this value is NIL, the window is not

scrollable. The function assigned to this property takes four arguments:

1. The window being scrolled.

2. The distance to scroll in the horizontal direction.

3. The distance to scroll in the vertical direction.

4. A flag which is T if a mouse button is held down while

in the scrolling region.

 For arguments (2) and (3), a positive number indicates either right

or up, while a negative number indicates either left or down.

5.4.4.3 No Scroll Bars

 If the window property NOSCROLLBARS is non-NIL, then no

scrollbars will be displayed for the window. In addition, mouse-driven

scrolling is disabled, but you may still scroll the window under program

control using SCROLLW.

5.4.4.4 Scroll Extent

 The window property SCROLLEXTENTUSE is used by

SCROLLBYREPAINTFN to limit the distance that will be scrolled in

the X- and Y-directions. Its possible values are described in Table 5-7.

Table 5-7. Scrolling Extent Property Values

Value Usage

223

NIL The extent is kept visible. The top of the extent

region will not be displayed below the top of the

window pane. The left of the extent region will

not be displayed to the right of the left edge of

the window pane

T The value of EXTENT is not used to control

scrolling.

LIMIT The extent region is always kept visible. The

window is only allowed to view within the

extent. If the extent region is larger than the

current window region, the window is reshaped

to cover the extent region (with the limits of the

screen).

+ The extent region is kept visible in the positive

direction.

- The extent region is kept visible in the negative

direction.

+- or -+ The extent region is kept visible in the window.

(<x-behavior> .

<y-behavior>)

The CAR specifies the scrolling limit in the X-

direction and the CDR specifies the scrolling

limit in the Y-direction. The elements should be

one of the atoms NIL, T, LIMIT, +, -, +-, or -+.

In this case, NIL is treated the same as LIMIT.

 For unlimited scrolling in the Y-direction, you should use the

specification (LIMIT . +) for SCROLLEXTENTUSE.

5.5 WINDOW MANAGEMENT FUNCTIONS

 The window operations discussed in Section 5.3 are implemented

by a set of window management functions which are callable from your

program. These functions allow you to perform all of the window

operations (plus a few more) under program control.

5.5.1 CREATING A WINDOW

 A window may be created from within a program by executing the

function CREATEW.

 Function: CREATEW

 # Arguments: 4

 Arguments: 1) REGION, a specification of the

224

 window size

 2) TITLE, a string naming the window

 3) BORDER, the width of the border in

 bits

 4) NOOPENFLAG, to open or not

 Value: A window handle.

 CREATEW creates a new window as a data structure in memory

and returns the handle of the window object as its value.

 REGION specifies the left and bottom coordinates of the window

on the display screen and the height and width of the window. The usable

height and width are less than the maximum height and width specified

by the region parameters (see below). If REGION is NIL, GETREGION

is called to prompt you to interactively specify a region with the mouse.

 TITLE is a string that specifies the name of the window. The title is

displayed in the top border using the global display stream

WindowTitleDisplayStream. The height of the title is determined by the

font currently associated with that display stream. The default height

may be determined by FONTPROP.

<-(FONTPROP WindowTitleDisplayStream 'HEIGHT)

9

 BORDER specifies the size (in bits) of the border outlining the

window. The default border size, given by WBorder, is 4 bits. If

BORDER is NIL, the default border size will be used.

 NOOPENFLG is a flag that determines whether or not the window

will be opened (e.g., displayed on the screen) when it is created. If

NOOPENFLG is non-NIL, the window will not be opened. This flag is

useful when you are initializing an application because it allows you to

create all of the windows required, but open them only when they are

actually needed.

 Figure 5-18 depicts the effect of CREATEW.

<-newWindow <

 (CREATEW (CREATEREGION 100 100 200 200)

 “Example Window”

 3

 NIL)

225

{WINDOW}#64,77640

Figure 5-18. CREATEW Example

 Note that the new window is empty and displays the background

shade. Usually, you will create a new window with the NoOPENFLG set

to T, then populate the window before opening it for the first time using

OPENW.

 Note that when you create a window, you do not specify its origin

on the screen. The origin of the window is specified by the values of

LEFT and BOTTOM of the region.

5.5.1.1 Usable Area

 The usable area of a window is reduced by the size of the borders.

The region parameters always specify the maximum size of the window.

The usable size is determined by subtracting the border sizes from the

dimensions given by the region parameters.

 If the default border size is used, then the usable height of the

window is reduced by (2 x WBorder + Title Size) and the usable width

is reduced by (2 x WBorder). Otherwise, the usable height and width are

determined by substituting the value of BORDER for WBorder.

226

 Consider the following example. Let us create a window whose

region is 100 by 200. The maximumsize of the window is 100 bits by

200 bits. Using the defaults, the usable size of the window is calculated

as follows:

<-WBorder

4

<-(FONTPROP WindowTitleDisplayStream 'HEIGHT)

9

 So the usable height is 83 bits and the usable width is 192 bits.

 Let us define functions which compute the usable height and width

of a window:

<-(DEFINEQ (usable.width (window)

 (DIFFERENCE (WINDOWPROP window 'WIDTH)

 (COND

 ((WINDOWPROP window 'BORDER)

 (ITIMES 2 (WINDOWPROP window 'BORDER)))

 (T (ITIMES 2 WBorder))

))

))

(USABLE.WIDTH)

<-(DEFINEQ (usable.height (window)

 (DIFFERENCE

 (WINDOWPROP window 'HEIGHT)

 (IPLUS (FONTPROP WindowTitleDisplay

 Stream

 'HEIGHT)

 (COND

 ((WINDOWPROP window 'BORDER)

 (ITIMES 2 (WINDOWPROP window 'BORDER)))

 (T (ITIMES 2 WBorder))

)

))

))

(USABLE.HEIGHT)

 Consider the following examples of their usage:

<-(SETQ XW (CREATEW (CREATEREGION 49 31 401 308)))

227

{WINDOW}#64,77640

<-(USABLE.WIDTH XW)

385

<-(USABLE.HEIGHT XW)

283

 The user will often need to know the usable height and width of a

window when calculating the value of EXTENT for scrolling.

5.5.1.2 A Window Example

 Let us create a window on the display screen. The window will be

200 x 200 bits in extent with the default border. Its title will be "Example

Window". The window will be placed on the display screen so that its

lower lefthand corner is positioned at absolute coordinates (100, 100).

To create this window, we execute the following expressions:

<-(SETQ aregion (CREATEREGION 100 100 200 200))

(100 100 200 200)

<-(SETQ awindow (CREATEW aregion "Example Window" 3 NIL)

{WINDOW}#66,2234

 And the window appears on the display screen as depicted in Figure

5-18.

 The structure of the object representing the window may be viewed

by the Inspector. It contains the following properties and values:

 SCREEN NIL

 WINDOWENTRYFN GIVE.TTY.PROCESS

 PROCESS NIL

 WBORDER 4

 NEWREGION NIL

 WTITLE "Example Window"

 MOVEFN NIL

 CLOSEFN NIL

 HORIZSCROLLWINDOW NIL

 VERTSCROLLWINDOW NIL

 SCROLLFN NIL

 HORIZSCROLLREG NIL

 VERTSCROLLREG NIL

 USERDATA NIL

 EXTENT NIL

228

 RESHAPEFN NIL

 REPAINTFN NIL

 CURSORMOVEDFN NIL

 CURSOROUTFN NIL

 CURSORINFN NIL

 RIGHTBUTTONFN NIL

 BUTTONEVENTFN TOTOPW

 REG (100 100 200 200)

 SAVE {BITMAP}#74,124322

 NEXTW {WINDOW}#74,25150

 DSP {STREAM}#74,125234

 NEXTW is a pointer to the next window in the list of active

windows.

 The rest of these properties will be discussed in Section 5.6.

5.5.1.3 Decoding Window Arguments

 Another function for creating a window is

DECODE.WINDOW.ARG.

 Function: DECODE.WINDOW.ARG

 # Arguments: 6

 Arguments: 1) WHERESPEC, the location of the

window

2) WIDTH, the window width

3) HEIGHT, the window height

4) TITLE, the window title

 5) BORDER, the window border

 6) NOOPENFLG, whether or not to

open the window

 Value: A window handle.

 DECODE.WINDOW.ARG examines its various arguments in

different combinations before passing them to CREATEW.

WHERESPEC may be one of the following:

 A region which is adjusted to be on the screen.

 A position whence it specifies the lower left corner of the

window.

 A window which is returned immediately without calling

CREATEW.

 NIL, whence the user is prompted to specify the region.

229

 A window is open when it is displayed on the display screen.

Otherwise, it is closed. Thus, a window may exist and not be open. The

existence of a window is indicated by the existence of a window handle

which is assigned as the value of a variable. Windows may be opened

and closed at any time.

5.5.2 OPENING A WINDOW

 To open a window that is currently closed, you execute the function

OPENW which takes the form:

 Function: OPENW

 # Arguments: 1

 Argument: 1) WINDOW/STREAM, a window or

 stream handle.

 Value: The window or stream handle.

 If WINDOW/STREAM is a closed window or the stream associated

with a window, OPENW calls any functions that are specified as the

value of the window property OPENFN. There are three cases as

described in Table 5-8.

Table 5-8. OPENFN Values

Value Usage

A non-null list of functions The functions are called in sequence

to display the window (and its

contents, if any) on the screen.

One of the values of OPENFN is

DON'T or one of the functions

returns DON'T

The window will not be displayed on

the screen. Typically, this is the only

value of OPENFN when this type of

behavior is desired.

NIL The window is placed on the

occlusion stack and displayed on the

screen. Its location is determined by

its current region parameters.

 Note that when a window is opened, it is always brought to the top

of the occlusion stack. If the window or stream is already open, OPENW

returns NIL. Consider the following example:

<-(SETQ awindow (CREATEW (CREATEREGION 200 200 300

300)))

{WINDOW}#65,173234

230

<-(OPENW awindow)

NIL

because AWINDOW was opened by the call to CREATEW.

 A window may also be opened by displaying something in it.

Printing to a closed window implies that you want to see the contents of

the message. For example,

<-(CLOSEW awindow)

CLOSED

<-(PRINT "Hi There" awindow)

"Hi There"

which opens AWINDOW and displays the phrase "Hi There" in the

upper left corner.

5.5.3 CLOSING A WINDOW

 An open window maybe closed by executing CLOSEW.

 Function: CLOSEW

 # Arguments: 1

 Argument: 1) WINDOW/STREAM, a window or stream

 handle

 Value: The atom CLOSED.

 If WINDOW/STREAM is an open window or the stream associated

with an open window, CLOSEW calls any functions which are assigned

as the value of the window property CLOSEFN. There are three cases as

described in Table 5-9.

Table 5-9. CLOSEFN Values

Value Usage

A non-null list of

functions

The functions are called in sequence to close

the window. This allows preprocessing of the

window's contents before closing the window

(such as saving certain bit patterns)

One of the values is

DON'T or one of the

The window will not be closed and CLOSEW

will return NIL

231

functions returns the value

DON'T

NIL The window is removed from the occlusion

stack. The bits that it obscured are redisplayed

on the screen.

 If the window or stream is already closed, NIL is returned by

CLOSEW. Consider the following example:

<-(SETQ awindow (CREATEW (CREATEREGION 200 200 300

300)))

{WINDOW}#65,173234

<-(CLOSEW awindow)

CLOSED

<-(CLOSEW awindow)

NIL

<-awindow

{WINDOW}#65,173234

NOTE: Closing a window does not delete the window handle associate

with the window. By sending output to the display stream associated

with the window, you cause it to be displayed on the screen.

5.5.4 REMOVING A WINDOW

 A window may be closed and its window handle released using the

function REMOVEWINDOW:

 Function: REMOVEWINDOW

 # Arguments: 1

 Arguments: 1) WINDOW, a window handle

 Value: NIL.

 Note that closing a window does not release its window handle or

the storage associated with a window. REMOVEWINDOW closes a

window if it is open and releases the window handle. Attempting to

reopen the window will not succeed because the window handle has been

released. Consider the following example:

<-(OPENW awindow)

232

(WINDOW}#66,2234

<-(REMOVEWINDOW awindow)

NIL

 Once a window’s handle has been released, it cannot be opened.

5.5.5 TESTING WINDOWS

 The status of a window of may be tested, its identity determined,

and whether it is open or not. The user may also test whether or not the

Window Manager has been enabled.

5.5.5.1 Testing for Window Existence

 The user may determine whether an arbitrary Lisp object is a

window handle or not by executing WINDOWP:

 Function: WINDOWP

 # Arguments: 1

 Argument: 1) X, an arbitrary Lisp object

 Value: The value of X if it is a window;

 otherwise, NIL.

 WINDOWP determines if the value of X is a window handle. If so,

it returns that value; otherwise, NIL. Consider the following examples:

<-(SETQ awindow (CREATEW aregion "Example Window" NIL 3))

{WINDOW}#74,25000

<-(WINDOWP awindow)

{WINDOW}#74,25000

5.5.3.2 Testing for an Open Window

 The user may test whether or not a window is open by executing

OPENWP:

 Function: OPENWP

 # Arguments: 1

 Argument: 1) WINDOW, a window handle

 Value: The window handle if

233

 WINDOW represents an open

 window.

 OPENWP returns the window handle if the window it represents is

an open window; otherwise, NIL. Let AWINDOW contain the address

of a window handle. Then, we can test whether or not the window is open

using the following expression:

<-(OPENWP awindow)

{WINDOW}#74,25000

5.5.3.3 Obtaining the Open Windows

 The user may obtain a list of all open windows by executing

OPENWINDOWS:

 Function: OPENWINDOWS

 # Arguments: 0

 Arguments: N/A

 Value: A list of the handles of open windows.

 OPENWINDOWS returns the value of the occlusion stack. When

Interlisp is initialized, three windows appear on the screen. Executing

OPENWINDOWS, we obtain the list:

<-(OPENWINDOWS)

({WINDOW}#74,25554

 {WINDOW}#74,25640

 {WINDOW}#74,25470)

 Of course, the addresses of the window handles depend on how

much memory you have in your machine, whether or not you do any

automatic processing at logon (such as file loading), and the condition of

your SYSOUT.

 It is difficult to correlate the window handles with the windows on

the screen. You can determine which handles refer to the prompt

window, the logo window, and the executive window fairly easily.

However, for windows opened by your application, it is useful to keep

their handles in separate system variables.

234

5.5.3.4 Determining the Window of a Position

 In many cases, the user will want to know which window contains a

particular position as indicated by a pair of X-Y coordinates. This is

useful when you point at something on the screen with the mouse and

expect a program to respond. The program must determine the response

based on the current window and its associated properties. Which

window contains a position may be determined by executing

WHICHW.

 Function: WHICHW

 # Arguments: 2

 Arguments: 1) X, an X-axis coordinate

 2) Y, a Y-axis coordinate

 Value: The window handle containing

 the position.

 X may be a position, whence the value of Y will be ignored. If X

and Y are coordinates, they must both be numbers valid within the

screen's coordinate system. Let AWINDOW contain the window handle

of the window whose region is (100 100 200 200). We can test the point

(150 150) as follows:

<-(WHICHW 150 150)

{WINDOW}#74,25000

 If X and Y are NIL, then WHICHW uses the current position of the

cursor:

<-(WHICHW)

{WINDOW}#74,25000

after I have placed the cursor in the window AWINDOW. And, moving

the cursor to the Logo window:

<-(WHICHW)

{WINDOW}#74,25554

 The position given by X,Y may occur in more than one window if a

number of windows are stacked on top of one another. When this occurs,

WHICHW returns the window handle of the topmost window.

235

5.5.3.5 Determining if Windows Are Enabled

 The user may determine (usually from within a program) whether or

not the Window Manager is enabled using the function

WINDOWWORLDP.

 Function: WINDOWWORLDP

 # Arguments: 0

 Arguments: N/A

 Value: T, if the Window Manager is

 enabled; otherwise, NIL.

 This function is meant to be used from within a program which

might be ported between different environments (e.g., Interlisp-10 and

Interlisp). Rarely will you want to disable the Window Manager in the

Interlisp environment. At the top level, it returns T as follows:

<-(WINDOWWORLDP)

T

5.5.3.6 Determining the Active Windows

 The active windows that are known to Interlisp may be determined

using the function ACTIVEWINDOWS.

 Function: ACTIVEWINDOWS

 # Arguments: 0

 Arguments: N/A

 Value: A list of window handles.

 The list of open windows, which is returned by OPENWINDOWS,

is a subset of the list of active windows. Consider the following example:

<-(ACTIVEWINDOWS)

({WINDOW}#64,152150

 {WINDOW}#65,20470

 {WINDOW}#60,164770

 {WINDOW}#65,20064

 {WINDOW}#64,152320

 {WINDOW}#64,152234

 {WINDOW}#64,152000

 {WINDOW}#74,25460

236

 {WINDOW}#74,25470)

 The set of active windows includes all windows for which window

handles exist. However, the windows may not be open whence they will

not appear in the result of OPENWINDOWS.

5.5.6 DETERMINING WINDOW ATTRIBUTES

 As mentioned above, the behavior of a window is controlled by a set

of window properties. Some window properties are already defined by

the Interlisp Window Manager. You may define additional window

properties for your own use as long as their names do not conflict with

those used by the Window Manager. Window properties are retrieved

and set using the functions described in the following sections.

5.5.6.1 Retrieving and Setting a Window Property

 The user may retrieve or set a window property using the function

WINDOWPROP.

 Function: WINDOWPROP

 # Arguments: 2-3

 Arguments: 1) WINDOW, a window handle

 2) PROP, a window property name

 3) NEWVALUE, a value to be stored in

 PROP

 Value: The previous value of PROP.

 WINDOWPROP is a nospread function. It returns the previous (or

current) value of the window property. Consider the following example:

<-XW

{WINDOW}#57,15320

<-(WINDOWPROP XW 'BORDER)

4

 If NEWVALUE is given, it is stored as the new value of the window

property. Consider the following example:

<-(WINDOWPROP XW 'BORDER 16)

4

237

 When the window is next redisplayed, its border will be changed. If

NEWVALUE is specified as NIL, then NIL is stored as the new value of

the window property. Consider the following example:

<-(WINDOWPROP XW 'BORDER NIL)

16

 Note that this differentiates from the case where the third argument

is not specified which indicates that the value of PROP is to be retrieved.

If PROP is not recognized as a window property, it is stored on a property

list under the property USERDATA. Consider the following example:

<-(WINDOWPROP XW 'PAINTBRUSH)

(PAINT 36873 (DIAGONAL 16))

 Note that the property USERDATA cannot be directly accessed by

WINDOWPROP.

 Some window properties cannot be set by the user because they are

intimately tied with the Window Manager's management of the

interactive display environment. Attempting to set such properties will

cause an error.

5.5.6.2 Adding a New Window Property

 The user may add a new item to a window property using the

function WINDOWADDPROP.

 Function: WINDOWADDPROP

 # Arguments: 3

 Arguments: 1) WINDOW, a window handle

 2) PROP, a window property name

 3) ITEMTOADD, the value of an item to

 add to PROP

 Value: NIL.

 WINDOWADDPROP adds a new item to the end of the list of items

constituting the value of the window property. Consider the following

example:

<-(WINDOWPROP IOWINDOW 'MOVEFN)

NIL

238

<-(WINDOWADDPROP IOWINDOW 'MOVEFN (FUNCTION

MOVE.IT))

NIL

<-(WINDOWPROP IOWINDOW 'MOVEFN)

(MOVE.IT)

 If the item is already present (via EQ) in the list of values, nothing

is returned. If the current value of the window property is not a list, it is

converted to a list before the new item is added.

 Typically, WINDOWADDPROP will be used to add functions

associated with one or more window properties such as OPENFN or

CLOSEFN to the list of functions which is the value of the property.

Also, you may define any properties required for your application which

are associated with a window. You should ensure that you do not use

names for your properties that are the same as window properties.

5.5.6.3 Deleting an Item from a Window Property

 The user may delete an item from a list of items that is the value of

a window property using the function WINDOWDELPROP.:

 Function: WINDOWDELPROP

 # Arguments: 3

 Arguments: 1) WINDOW, a window handle

 2) PROP, a window property name

 3) ITEMTODELETE, the value of the

 item to be deleted from PROP

 Value: The previous value of PROP.

 WINDOWDELPROP deletes an item from a list of items which

constitute the value of the window property. If ITEMTODELETE was a

member of the list, the previous value of the list is returned. Consider the

following example:

<-(WINDOWPROP IOWINDOW 'MOVEFN)

(MOVE.IT)

<-(WINDOWDELPROP IOWINDOW 'MOVEFN (FUNCTION

MOVE.IT))

239

(MOVE.IT)

<-(WINDOWPROP IOWINDOW 'MOVEFN)

NIL

 If ITEMTODELETE was not a member of the list, NIL is returned:

<-(WINDOWPROP IOWINDOW 'MOVEFN)

NIL

<-(WINDOWDELPROP IOWINDOW 'MOVEFN (FUNCTION

MOVE.IT))

NIL

5.5.7 SHAPING AND SHRINKING WINDOWS

 Windows do not have to remain the same size once you have created

them. You may adjust their size to fit the available screen real estate, the

importance of the window, or the amount of information it must display.

5.5.7.1 Shaping a Window

 When a window is created, it is given certain dimensions.

Sometimes, these dimensions are arbitrarily chosen and need to be

modified to accommodate more information or a different screen

position. You may change the shape of a window by assigning it a new

region by executing SHAPEW:

 Function: SHAPEW

 # Arguments: 2

 Arguments: 1) WINDOW, a window handle

 2) NEWREGION, a new region handle

 Value: The window handle.

 SHAPEW calls the functions, if any, which are the value of the

window property RESHAPEFN. If WINDOW is open, it is reshaped to

conform to the parameters given by NEWREGION. If NEWREGION is

NIL, GETREGION is called to prompt the user for a region specification

using the mouse. Let us define a new region - NEWREGION - via:

<-(setq newregion (create region 400 100 200 200))

(400 100 200 200)

240

<-(SHAPEW awindow newregion)

{WINDOW}#74,25000

which erases the previous display of the window on the screen and

redisplays it at the location specified by NEWREGION.

5.5.7.2 Shaping a Window to a Region

 SHAPEW1 changes a window's size and position on the display

screen to be a specified region. It takes the form:

 Function: SHAPEW1

 # Arguments: 2

 Arguments: 1) WINDOW, a window handle

 2) REGION, a region description

 Value: A new window handle.

 After clearing the specified region of the display screen, SHAPEW1

invokes the window's RESHAPEFN with three arguments:

1. the window handle;

2. a bitmap containing the window's previous screen image;

3. the region of the window's old image within the bitmap.

 Consider the following example in which we reshape XW to a new

region specification:

<-(SHAPEW1 XW (CREATEREGION 1 1 300 300))

{WINDOW}#64,77640

<-(WINDOWSIZE XW)

(300 . 300)

<-(WINDOWPOSITION XW)

(1 . 1)

5.5.7.3 Shrinking a Window

 In many cases, a window is used to display information for short

periods of time. It is expensive to open and close a window repeatedly,

and much more expensive to create and destroy windows. Interlisp

allows you to shrink a window to an icon which represents the window.

241

 Shrinking windows is a method of screen space management. Many

applications have a large number of windows occupying the screen

although not all of these windows are accessed concurrently. By

shrinking windows into icons, you make screen space available for other

windows while creating an indicator that a window exists.

 An icon is a small rectangle containing text or bitmap which

represents a particular window.

 To shrink a window to an icon, the user must execute SHRINKW.

 Function: SHRINKW

 # Arguments: 4

 Arguments: 1) WINDOW, a window handle

 2) TOWHAT, the icon specification

 3) ICONPOSITION, a position for the

 icon on the screen

 4) EXPANDFN, an icon expansion

 function

 Value: The window handle for the icon.

 When we shrink the window without specifying an icon, the icon

becomes a rectangle (in inverted video) enclosing the title of the window.

The window handle for the icon is returned:

<-(SHRINKW awindow)

{WINDOW}#66,2404

 When Interlisp shrinks a window to an icon, it records the

information necessary to expand the icon to a full window under the

property USERDATA. The information stored under this property is:

(ICONWINDOW {WINDOW}#65,173640

 ICONPOSITION (400 . 100)

 OPENFN (CLOSEICONWINDOW))

 CLOSEICONWINDOW is an internal function of the Interlisp

kernel.

 ICONPOSITION specifies the position that the icon will assume on

the display screen. If it is NIL, the icon will be placed at the corner of

the window furthest from the center of the screen.

242

 TOWHAT, if given, indicates the image that the icon representing

the window will have. It can have one of the values described in Table

5-10.

Table 5-10. TOWHAT Values

Value Usage

String, Atom, or List If TOWHAT is a string, atom, or list, the icon

will be represented as a title only window with

the value of TOWHAT displayed as the title.

Bitmap If TOWHAT is a bitmap, the icon's image will

be a copy of the bitmap. Figure 5-19 depicts the

icon representing the File Browser.

Window If TOWHAT is a window handle, that window

will be used as the icon.

NIL If TOWHAT is NIL, then the following rules

are applied to determine how to create an icon

for the window:

1. If the window has an ICONFN property,

the function which is the value of this

property is called with two arguments: the

window handle and the previously created

icon, if any.

2. If the window has an ICON property, it is

used as the value of TOWHAT.

3. If the window has neither the ICONFN or

ICON property, the icon will be the

window's title, but if the window has no

title, it will be merely the date and time

that the icon was created.

Figure 5-19. Icon Representing the File Browser

243

5.5.5.4 Expanding an Icon

 When a window has been shrunk to an icon, you may not perform

any operations upon the window until it has been expanded. To expand

an icon to the full window representation, the user must execute

EXPANDW.

 Function: EXPANDW

 # Arguments: 1

 Argument: 1) ICON, an icon specification

 Value: The window handle for the window

 corresponding to the icon.

 EXPANDW erases the icon from the screen, opens the window to

the region specified in its handle, and redisplays the window's contents.

Consider the following example:

<-(EXPANDW (WINDOWPROP FBW 'ICONWINDOW))

{WINDOW}#74,25064

 This opens a window associated with the File Browser. I had

previously saved the File Browser's window handle in the variable FBW.

5.5.8 MOVING WINDOWS

 In many applications, you will find it advantageous to reorganize the

screen real estate from time to time. You may reorganize in two ways:

1. Shrink some windows to icons

2. Move some windows to different positions to make

them less obscured

5.5.8.1 Moving a Window to a New Position

 A window may be moved to a new position by executing MOVEW:

 Function: MOVEW

 # Arguments: 3

 Arguments: 1) WINDOW, a window

 handle

 2) POSorX, an X-axis

 coordinate or a position

 3) Y, a Y-axis coordinate

 Value: The new position of the

244

 window; otherwise, NIL if the

 window can't be moved.

 If the window is not open when MOVEW is called, the window is

moved without being opened. For this operation to occur, POSorX must

be non-NIL. Otherwise, the window is opened, because the user must be

prompted to specify the location of the new window.

 If WINDOW has the atom DON'T as the value of its MOVEFN

window property, the window will not be moved. If WINDOW has a

non-NIL MOVEFN window property, it should be a list of functions that

will be called before the window is moved.

 If WINDOW is moved and it has an AFTERMOVEFN window

property, the value of this property should be a list of functions that will

be called after the window is moved.

 If MOVEW moves any part of the window from off-screen onto the

screen, that part of the window is redisplayed by calling REDISPLAYW

with WINDOW as its argument.

 MOVEW operates according to a set of rules as described in the

following paragraphs.

POSorX is NIL

 If POSorX is NIL, the Window Manager calls GETBOXPOSITION

to read the position from the user. If WINDOW has a

CALCULATEREGION window property, the associated function is

called with WINDOW as an argument to calculate the new region for the

window. This function should return a region which will be used to

prompt the user. If WINDOW does not have such a window property,

the region of the window is used to prompt the user. Consider the

following example:

<-(SETQ awindow (CREATEW (CREATREGION 200 200 300 300)))

{WINDOW}#65,125000

<-(MOVEW awindow)

(409 . 38)

which is the new position of the lower left corner.

245

<-(WINDOWPROP awindow 'REGION)

(409 38 300 300)

POSorX is a Position

 If POSorX is a position, POSorX is used the move the window's

lower left corner to the new absolute screen coordinate. Consider the

following example:

<-(SETQ awindow (CREATEW (CREATEREGION 200 200 300

300)))

{WINDOW}#65,125000

<-(MOVEW awindow (POINT 150 150))

(150 . 150)

<-(WINDOWPROP awindow 'REGION)

(150 150 300 300)

POSorX and Y are Both Numbers

 If POSorX and Y are both numbers (e.g., they satisfy NUMBERP),

the Window Manager creates a position from the two numbers and uses

it to specify the new lower left corner coordinates of the window.

Consider the following example:

<-(SETQ awindow (CREATEW (CREATEREGION 200 200 300

300)))

{WINDOW}#74,25554

<-(MOVEW awindow 150 150)

(150 . 150)

<-(WINDOWPROP awindow 'REGION)

(150 150 300 300)

POSorX is a Region

If POSorX is a region, a position is created by selecting its LEFT as the

X-coordinate of a position and its BOTTOM as the Y-coordinate of a

246

position which will specify the new lower left corner of the window.

Consider the following example:

<-(SETQ awindow (CREATEW (CREATEREGION 200 200 300

300)))

{WINDOW}#74,25554

<-(SETQ aregion (CREATEREGION 150 175 400 400))

(150 175 400 400)

<-(MOVEW awindow aregion)

(150 . 175)

<-(WINDOWPROP awindow 'REGION)

(150 175 400 400)

5.5.8.2 Relative Window Displacement

 MOVEW moves a window to a location whose position is composed

from absolute screen coordinates. RELMOVEW moves a window to a

position relative to its current location. It takes the form:

Function: RELMOVEW

Arguments: 2

Arguments: 1) WINDOW, a window handle

 2) POSITION, a position handle

Value: NIL.

 Consider the following example to move a window left and down

one screen point:

<-(SETQ XW (CREATEW (CREATEREGION 1 1 300 300)))

{WINDOW}#64,77640

which positions the window in the lower left hand corner of the screen,

and

<-(WINDOWPROP XW 'REGION)

(1 1 300 300)

<-(RELMOVEW XW (POINT -1 -1))

NIL

247

which moves part of the window off the screen.

<-(WINDOWPROP XW 'REGION)

(0 0 300 300)

<-(RELMOVEW XW (POINT 100 100))

NIL

<-(WINDOWPROP XW 'REGION)

(100 100 300 300)

5.5.8.3 Moving a Window to the Top

 When a window is displayed on the screen, it may be obscured in

whole or in part by one or more windows. You may move a window to

the top of the occlusion stack and, thus, make it completely visible by

executing TOTOPW:

 Function: TOTOPW

 # Arguments: 2

 Arguments: 1) WINDOW, a window handle

 2) NOCALLTOTOPFNFLG, a flag

 Value: The window handle.

 If WINDOW is closed, it is opened by the Window Manager.

However, this is also done whenever you display text or graphics in a

partially obscured or closed window.

 If NOCALLTOTOPFNFLG is NIL, the function associated with the

TOTOPFN window property, if any, is called; otherwise, it is not. This

permits the function assigned as the value of TOTOPFN to call

TOTOPW without causing an infinite loop.

248

Figure 5-20. Obscured Logo Window

 Figure 5.20 depicts three windows in which the Interlisp Logo

Window is obscured. Consider the following example:

<-(TOTOPW LW)

{WINDOW}#74,25554

 Figure 5.21 depicts the result of executing TOTOPW.

249

Figure 5-21. TOTOPW Example

5.5.8.4 Burying a Window

 When a window is displayed on the screen, it may obscure in whole

or in part one or more other windows. To make one or more of those

windows more visible, you may bury the obscuring window by moving

it to the bottom of the occlusion stack. BURYW buries a window, i.e., it

makes it least visible by placing it at the bottom of the occlusion stack.

It takes the form:

Function: BURYW

Arguments: 1

Argument: 1) WINDOW, a window handle

Value: The window handle.

Consider the following example:

250

<-(BURYW LW)

{WINDOW}#74,25554

which returns the Logo Window to the position it previously occupied in

Figure 5.20.

5.5.9 CLEARING AND REDISPLAYING WINDOWS

 When a window is displayed on the screen and data is written to it,

the data is positioned according to the coordinates specified in the

function writing to the window. Typically, when text is written to a

window, its contents scroll upwards thus maintaining a clean interface.

However, when drawing on a window, the contents may obscure each

other or overwrite each other. Two functions permit you to refresh the

contents of a window: CLEARW and REDISPLAYW.

5.5.9.1 Clearing a Window

 The current contents of a window may be cleared using the function

CLEARW.

Function: CLEARW

Arguments: 1

Arguments: 1) WINDOW, a window object

Value: NIL

 CLEARW erases the current contents of the bit map associated with

the window. It then fills the window with its background texture. The X

and Y coordinates of the window are set to the left margin and the top of

the window less the font ascent. For most windows the background

texture will be WHITESHADE. Consider the following example:

<-(SETQ awindow (CREATEW aregion))

{WINDOW}#74,25000

<-(PRINT "Hi There" awindow)

"Hi There"

<-(CLEARW awindow)

NIL

251

5.5.9.2 Redisplaying a Window

 An entire window or just a region of it may be redisplayed using the

function REDISPLAYW.

 Function: REDISPLAYW

 # Arguments: 3

 Arguments: 1) WINDOW, a window object

 2) REGION, a region object

 3) ALWAYSFLG, a flag specifying

 when the window is to be redisplayed.

 Value: The window handle.

 Typically, you will redisplay an entire window whence you will set

REGION to NIL. Otherwise, you may redisplay a region of a window by

providing the appropriate region handle.

 Consider a window composed of a number of regions. One region

may control the contents of another region such as one region accepting

the name of a country and another region displaying its map and key

cities. Changing the name of the country in the first region will

automatically force the contents of the second region to change.

 ALWAYSFLG determines how redisplay requests are handled. If T,

the contents of the region of the window are always redisplayed.

However, if ALWAYSFLG is NIL, and the window does not have a

repaint function, the contents of the window remain unchanged and an

error message is displayed in the prompt window. The text of the error

message is: "Window has no REPAINTFN. Can't Redisplay".

5.5.10 TESTING FOR A FULL PAGE

 A "full page" is the number of characters which, when written to a

window, will cause the contents of the window to scroll upwards when

the next character is written to the window. You may test for the page

full condition using the function PAGEFULLFN.

 Function: PAGEFULLFN

 # Arguments: 1

 Arguments: 1) WINDOW, a window object

 Value: T or NIL.

252

 PAGEFULLFN is invoked if the PAGEFULLFN property of the

window is NIL. It is the default function to be invoked when a "page

full" condition is detected in a window. PAGEFULLFN returns T if there

are characters remaining in the type-in buffer for the window. Otherwise,

it inverts the window and waits for you to type a character. When you

type a character the contents of the window scroll upwards to

accommodate the new character. Consider the following example:

<-(PAGEFULLFN XW)

NIL

 You may demonstrate this behavior by the following example:

<-(APROPOS 'TEXT T)

<a big list of atoms and their values>

 APROPOS prints all atoms (and their values) which have the string

"TEXT" in their name to the Executive Window. When APROPOS has

filled the window, PAGEFULLFN is called. It inverts the window and

waits for you to type something. Note that a caret is placed after the last

character typed at the bottom of the window. Figure 5-22 depicts this

condition.

Figure 5-22. Page Full Condition

253

5.5.11 RESHAPING A WINDOW BY REPAINTING

 A window may be reshaped by repainting the contents of the

window using the function RESHAPEBYREPAINTFN :

 Function: RESHAPEBYREPAINTFN

 # Arguments: 4

 Arguments: 1) WINDOW, a window

 handle

 2) OLDIMAGE, a bitmap

 handle

 3) IMAGEREGION, a region

 within the bitmap

 specified by OLDIMAGE

 4) OLDSCREENREGION,

 the old screen region of the

 window

Value: The window handle.

 RESHAPEBYREPAINTFN is the default function for the window

property REPAINTFN. It bit-blits the contents of the old region, given

by IMAGEREGION, into the new region which is determined by

executing (WINDOWPROP <window> 'REGION). If the new window

shape is larger in either or both dimensions, the newly exposed areas are

redisplayed by calling the function associated with the window property

REPAINTFN.

 WINDOW is the handle of a window that has been reshaped from

the screen region (in absolute display system coordinates) to a new shape

as determined above. OLDIMAGE is the bitmap handle of the bitmap

containing the contents of the window. IMAGEREGION is the region

within OLDIMAGE that contains the old image.

 RESHAPEBYREPAINTFN determines which areas of the

window's contents to remove or extend as follows:

1. If WINDOW's new region shares an edge with

OLDSCREENREGION, that edge of the window will

remain fixed and any addition or reduction in that

dimension will be performed on the opposite side of

the window.

2. If WINDOW has an EXTENT property and the newly

exposed window area is outside it, any extra area will

254

be added so as to show extent that was not previously

visible.

3. The current X,Y position is kept visible, if it was

visible before the reshape.

5.5.12 INVERTING A WINDOW

 A window’s contents may be inverted (e.g., change its background

texture) using the function INVERTW.

 Function: INVERTW

 # Arguments: 2

 Arguments: 1) WINDOW, a window

 handle

 2) SHADE, a texture handle

 Value: The window handle.

 INVERTW fills the window with the specified texture in inverted

mode. If SHADE is NIL, the default value of BLACKSHADE will be

used. INVERTW returns the window handle so that it can be used inside

a RESETFORM. Consider the following example:

<-(INVERTW LOGOW)

{WINDOW}#74,25554

 Note that the default shade for inverting a window is

BLACKSHADE. The inverted logo window is depicted in Figure 5-23.

255

Figure 5-23. Inverted Logo Window with BLACKSHADE

<-(INVERTW LOGOW GRAYSHADE)

{WINDOW}#74,25554

 Inverting a window with GRAYSHADE leaves some residue of

structure and form, but these are just barely discernible. This is because

the shades chosen for printing the contents of the window correspond to

GRAYSHADE. Figure 5-24 depicts an inverted window with

GRAYSHADE. You may use GRAYSHADE to indicate a window that

is not currently active within your application.

Figure 5-24. Inverting Logo Window with GRAYSHADE

 Finally, consider inverting the logo window with a checkerboard

pattern which I created using the Bitmap Editor.

<-(INVERTW LOGOW CHECKBRUSH)

{WINDOW}#74,25554

 Note that the contents of the window have been totally obliterated.

You will find it useful to experiment with different shades when

inverting windows.

 One reason for inverting a window is to indicate that its contents are

no longer valid (such as when the underlying data structures have been

updated) or that the functions associated with that window cannot be

256

performed at this stage of the data processing. Another reason is if one

is using multicolored fonts, inverting the window’s contents may make

it easier to read the contents.

5.5.13 FLASHING A WINDOW

 The contents of a window may be flashed (i.e., rapidly inverting its

contents) as a means of catching the user's attention using the function

FLASHWINDOW.

 Function: FLASHWINDOW

 # Arguments: 4

 Arguments: 1) WINDOW, a window handle

 2) N, the number of times to flash

 3) FLASHINTERVAL, the length of

 time between flashes

 4) SHADE, a texture handle

 Value: NIL.

 Generally, you will want to flash a window to alert the user that a

particularly important result is being displayed, that some erroneous

input has been entered, or that an urgent input is required.

 FLASHWINDOW flashes the specified window by inverting it

twice. It will flash the window N times. The default number of flashes is

1. FLASHINTERVAL specifies the time to wait in milliseconds between

flashes. The default is 200 milliseconds.

 When the window is first inverted, it will be given the texture

specified by SHADE. If SHADE is NIL, then BLACKSHADE will be

used.

 If WINDOW is NIL, the entire screen is flashed.

5.5.14 DETERMINING THE MINIMUM WINDOW SIZE

 The user may determine the minimum size required by a window

using the function MINIMUMWINDOWSIZE:

 Function: MINIMUMWINDOWSIZE

 # Arguments: 1

 Arguments: 1) WINDOW, a window

 handle

257

 Value: A dotted pair giving the

 minimum window size.

 MINIMUMWINDOWSIZE returns a dotted pair which is the

minimum window size. The CAR of the dotted pair is the minimum

width and the CDR is the minimum height. The minimum size of a

window is determined by the value of the window property MINSIZE.

If the value of MINSIZE is NIL, the default value is a width of 26 and

the height required to display the title, border, and one line of text (in the

current font). Consider the following example:

<-awindow

{WINDOW}#65,23554

<-(MINIMUMWINDOWSIZE awindow)

(26 . 29)

<-(WINDOWPROP awindow 'MINSIZE)

NIL

 If MINSIZE is a literal atom, it should be the name of a function

which is called with WINDOW as its argument. This function should

return a dotted pair specifying the minimum size of the window.

5.5.15 OBTAINING A WINDOW FROM A DISPLAY STREAM

 Each window has an associated display stream. You may determine

the window handle from the display stream using WFROMDS:

 Function: WFROMDS

 # Arguments: 2

 Arguments: 1) DISPLAYSTREAM, a display

 stream handle

 2) DONTCREATE, a flag

 Value: The window handle.

 WFROMDS obtains the window handle from the display stream

object and returns it as its value. It will return NIL if the destination of

the display stream is not a bitmap that supports a window system (for

example, it could be a bitmap associated with a printer).

258

 DONTCREATE determines whether or not to create a window if

one does not exist in the current set of windows. If T, a window is not

created.

 WFROMDS is called from TTYDISPLAYSTREAM with

DONTCREATE set to T so that it will not create a window

unnecessarily. Consider the following examples:

<-MYTEXTSTREAM

{STREAM}#64,107554

<-(WFROMDS MYTEXTSTREAM)

{WINDOW}#55,141404

5.6 WINDOW PROPERTIES

 Windows are represented by objects in the Interlisp system. Each

window has a number of properties that record its basic attributes and

control its behavior in response to certain events such as the mouse

entering or leaving the window.

 You may add any arbitrary properties that you want to the existing

set of window properties as required by your programs. However, care

should be taken not to conflict with existing window property names as

many of them are used by the system code.

5.6.1 BASIC WINDOW PROPERTIES

 Each window is described by a set of properties established by the

system when the window is created. A few of these properties may not

be changed by WINDOWPROP.

5.6.1.1 The Window Display Stream

 The display stream associated with the window is maintained under

the property DSP. All system functions operate on either the window or

its display stream. Consider the following example:

<-(CREATEW NIL "An Example Window" 3 NIL)

{WINDOW}#56,41404

 The display stream object address may be obtained via:

259

<-(WINDOWPROP awindow 'DSP)

{STREAM}#65,122000

 For many display functions, it is possible to specify either the

window or its display stream as an argument and achieve the same result.

5.6.1.2 Window Size

 The interior dimensions of the window are described by two

properties: HEIGHT and WIDTH. The interior space of a window is the

space usable for display by the program and does not include the border

or title areas. The height and width of the window created above may be

obtained via:

<-(WINDOWPROP awindow 'HEIGHT)

392

<-(WINDOWPROP awindow 'WIDTH)

392

 Section 5.5.1.1 described two functions for computing the usable

height and width of a window. The function WINDOWSIZE returns a

dotted pair consisting of the value of these two properties.

5.6.1.3 The Window Region

 The region of a window is the space occupied by the window on the

physical screen real estate. The window region includes the title and

border areas of the window. It is represented as a region object under the

window property REGION. The region of the window created above

may be obtained via:

<-(WINDOWPROP awindow 'REGION)

(577 0 400 400)

5.6.1.4 The Window Title

 The window title is a label added to the window to identify the

purpose of the window. The title is displayed in the top border of the

window when it is open. Otherwise, the title becomes the name of the

260

icon when the window has been collapsed. The window title is

maintained under the window property TITLE. The window title for the

window created above may be obtained via:

<-(WINDOWPROP awindow 'TITLE)

"Example Window"

 The title of a window is always represented as a string or NIL. If the

title is not a string when presented to WINDOWPROP, it coerces it to a

string via MKSTRING. The size of the title is determined by the default

font (GACHA 10 MRR). The title of a window by providing a third

argument to WINDOWPROP. Consider the following example:

<-(WINDOWPROP awindow 'TITLE "Steve's Window")

NIL

 The title of a window by setting the value of TITLE to NIL:

<-(WINDOWPROP awindow 'TITLE NIL)

NIL

 Note that the size of the border at the top of the window shrinks and

expands to adjust to the size and length of the title as specified by the

window title font.

 The background texture of the window title may be set by assigning

a value to WINDOWTITLESHADE. Its value is initially

BLACKSHADE. Consider the following example:

<-(WINDOWPROP W1 'WINDOWTITLESHADE 'CHECKSHADE)

NIL

which is depicted in Figure 5.26. Black is always used as the background

of the title letters so that they can easily be read. The remaining space is

painted with the new title shade.

5.6.1.5 The Window Border

 The border of a window is specified as a the width in pixels. Its value

is stored under the window property BORDER. You may obtain the

border of the window created above via:

261

<-(WINDOWPROP awindow 'BORDER)

4

 If no border is specified when the window is created, the default

border size stored in the system variable, WBorder, is used. Initially, the

value of WBorder is 4. You may not specify NIL as the new value of

BORDER.

5.6.1.6 The Window Extent

 The window extent is the region in the window's display stream that

contains the complete image of the object being viewed. The display

stream contents may exceed the size of the window. Thus, the user must

scroll up and down (perhaps side to side as well) in order to view the

complete object. It is kept under the window property EXTENT. The

extent of the window created above may be obtained via:

<-(SETQ FBW (WHICHW))

{WINDOW}#65,20064

<-(WINDOWPROP FBW 'REGION)

(394 16 316 449)

<-(WINDOWPROP FBW 'EXTENT)

(0 -243 445 684)

which indicates that part of the extent would exist off of the screen.

 The extent of a window may be NIL whence the window is not

scrollable.

 Setting the height of the extent to -1 indicates to the Window

Manager that you do not know how high the extent will be. The scroll

handling functions recognize this situation as meaning that the vertical

dimension of the extent is unknown. The same is true for the horizontal

parameter for the extent.

5.6.1.7 Assigning the TTY Process

 If the PROCESS window property is non-NIL, it will be made the

TTY process upon entry to the window. The value of this property must

be a process handle.

262

 Typically, different processes will be assigned to different windows.

Whenever a window associated with a process is entered, you want to

ensure that that process will respond to keyboard input. This is

accomplished by making that process the TTY process for the window.

5.6.1.8 Detecting Page Full Conditions

 If the window property PAGEFULLFN is non-NIL, it will be called

with the window object as its argument whenever the Window Manager

determines that the window is full. A page full condition is detected by

the Window Manager when enough characters have been printed in the

window such that the next character printed would cause some

information to scroll off the top of the window. If PAGEFULLFN is

NIL, the system function PAGEFULLFN is invoked.

5.6.2 EVENT PROPERTIES FOR WINDOWS

 Event properties of a window are associated with the interactive

operations that you may perform on a window by accessing the primary

window menu with the right mouse button when the cursor is located in

the window. The examples mentioned in the following sections are taken

from an inspection of a FileBrowser window.

5.6.2.1 Closing Windows

 The event property CLOSEFN records a single function or a list of

functions which will be executed when a window is closed by CLOSEW.

Each function is called with the window handle as its argument. If any

of the functions return the value DON'T, the window will not be closed.

To prevent a window from being closed, the atom DON'T may be

assigned as the value of CLOSEFN:

<-(WINDOWPROP <window> 'DON'T 'CLOSEFN)

NIL

 When you attempt to close XW either via CLOSEW or from the

Standard Window Menu, the Window Manager ignores the request.

 None of the functions associated with CLOSEFN should call

CLOSEW on its argument as it will enter an infinite loop.

263

5.6.2.2 Opening Windows

 The event property OPENFN records a single function or a list of

functions which will be executed after a window is opened by OPENW

 The File Browser has as its value for OPENFN a call to two

functions:

 It calls OPENATTACHEDWINDOWS to open associated

windows for the menu and command panes.

 It calls CLOSEICONWINDOW to close the window displaying

the icon that represents this instance of the file browser.

 You may prevent a window from being opened by assigning the

atom DON'T as the value of OPENFN via:

<-(WINDOWPROP <window> 'DON'T 'OPENFN)

NIL

 Note that the value of OPENFN is stored under the USERDATA

property associated with the window handle.

5.6.2.3 Bring a Window to the Top

 Whenever a window is brought to the top of the occlusion stack

(and, therefore, made wholly visible), the function(s) associated with the

event property TOTOPFN are executed. These functions may bring other

windows to the top of the stack, expand them or open them, or cause

them to be redisplayed.

 If the argument NOCALLTOPWFN is non-NIL, the function(s)

associated with TOTOPFN will not be executed.

 The File Browser calls the function TOPATTACHEDWINDOWS

to bring to the top the attached windows associated with the display pane

of the file browser.

5.6.2.4 Shrinking Windows

 The event property SHRINKFN records a single function or a list of

functions which will be executed immediately prior to the shrinking of a

window into an icon by SHRINKW. If any of these functions returns the

value DON'T, the window will not be shrunk.

264

 The File Browser calls the function

SHRINKATTACHEDWINDOWS as the value of SHRINKFN to shrink

the associated attached windows.

 You may prevent a window from being shrunk by assigning the

value DON'T to SHRINKFN as follows:

<-(WINDOWPROP <window> 'DON'T 'SHRINKFN)

NIL

 The PROMPTWINDOW is a window which cannot be shrunk.

Inspection of the USERDATA window property will show the atom

DON'T as the value of SHRINKFN.

5.6.2.5 Determining a Window's Icon

 SHRINKW may be called without specifying the TOWHAT

argument. This usually occurs when the SHRINK command is invoked

from the window menu. In this case, the value of ICONFN is used. This

value should be a function which returns a bitmap handle of the icon to

be displayed on the screen while the window is shrunk. The function

which is the value of ICONFN is called with two arguments:

 The window handle

 A previously created icon bitmap handle, if any

5.6.2.6 Caching an Icon's Bitmap

 When an icon is created for a window using a bitmap, the bitmap is

cached under the ICON window property of the window with which it is

associated.

5.6.2.7 Caching an Icon's Window Handle

 When an icon is created for a window, the window handle of the

icon is cached under the ICONWINDOW window property of the

window with which it is associated. This permits SHRINKW to be called

repeatedly while using the same icon. ICONWINDOW is stored in

USERDATA.

265

 This icon may be overridden (e.g., redesigned) only by invoking

ICONFN explicitly or giving SHRINKW a TOWHAT argument.

Consider an example using the Interlisp Logo Window:

<-(WINDOWPROP LOGOW 'ICONWINDOW)

{WINDOW}#64,40150

 The position of the icon is cached under USERDATA under the

property ICONPOSITION:

<-(WINDOWPROP LOGOW 'ICONPOSITION)

(610 . 715)

5.6.2.8 Bringing a Window to the Top

 Whenever a window is brought to the top of the obscuration stack,

the function assigned to TOTOPFN is invoked. It is given the window

handle as its sole argument. One use of this function is to make other

windows visible and to bury or shrink windows which are no longer

needed.

5.6.2.9 Before and After Moving a Window

 Before a window is moved, if its MOVEFN window property is non-

NIL, it will be invoked by MOVEW. The value of MOVEFN should be

a function or a list of functions that will be called before the Window

Manager moves the window. Each function is invoked with two

arguments: the window handle and the new position of the lower left

corner of the window.

 If the value of MOVEFN is the atom DON'T or any of the functions

returns the atom DON'T, the window will not be moved.

 If the function (respectively, the last one) which is the value of

MOVEFN returns a position, the window will be moved to that position

rather than the one originally specified.

 AFTERMOVEFN, if non-NIL, is a window property which is

invoked by MOVEW after a window is moved. Its value is a function or

list of functions which are called with the window handle as an argument.

266

 CALCULATEREGION, if non-NIL, is a window property which is

used by GETBOXPOSITION. MOVEW calls GETBOXPOSITION if

the new region for a window is NIL. GETBOXPOSITION invokes the

function which is the value of CALCULATEREGION to determine a

region which is used to prompt the user for the position of the window.

The function is given the window handle as its argument. If

CALCULATEREGION is NIL, the window region is used to prompt the

user.

5.6.2.10 Reshaping a Window

 When a window is reshaped by SHAPEW, the function or list of

functions which are the value of the window property RESHAPEFN are

invoked after the window has been reshaped. Each function is called with

four arguments:

 the window handle

 a bitmap with the image of the old window in its old shape

 the region within the bitmap that contains the window's old

image

 the region of the screen previously occupied by this window

 If the value of RESHAPEFN is the atom DON'T, the window will

not be reshaped. The default value for RESHAPEFN is the function

RESHAPEBYREPAINTFN.

5.6.2.11 Repainting a Window

 When a window is redisplayed by REDISPLAYW, the function or

functions associated with the window property REPAINTFN will be

invoked by the Window Manager with two arguments: the window

handle and the region to be repainted. The region is specified in the

coordinates of the window's display stream.

 Before the REPAINTFN is called, the clipping region of the window

is set to clip all display operations to the area of interest so that the

REPAINTFN can redisplay the entire window but only the area of

interest will actually be displayed.

 The IRM notes that you should not use CLEARW inside a

REPAINTFN because it resets the window's coordinate system to the

upper left corner. Rather, you should use DSPFILL.

267

5.6.2.12 The New Region Function

 If SHAPEW invokes GETREGION to prompt the user for a region,

the value of the window property NEWREGIONFN is passed to

GETREGION as its NEWREGIONFN argument.

5.6.2.13 Specifying the Initial Corners

 INITCORNERSFN is a window property whose value is a function

that returns a list of the initial corners of the ghost region used to prompt

the user. This function is given the window handle as its argument.

 The ghost region is a list of the form (BASEX BASEY OPPX

OPPY) where (BASEX BASEY) specify the anchored corner of the box

and (OPPX OPPY) specify the trackable corner.

 If SHAPEW calls GETREGION, this function is called to determine

the initial ghost region presented to the user to prompt him to specify a

region for the window.

5.6.2.14 Shaping a Window

 If the window property DOSHAPEFN is non-NIL, its value should

be a function which is called by SHAPEW to shape a window. It is called

with two arguments: the window handle and the new region.

5.6.2.15 Expanding a Window

 When EXPANDW expands a window, it invokes the function or

functions which are the value of EXPANDFN after the window is

expanded. However, if the value of EXPANDFN is the atom DON'T, the

window will not be expanded. Each of the functions which is the value

of EXPANDFN is called with the window handle as its single argument.

5.6.3 Mouse Function Window Properties

 A number of window properties are associated with responses to

mouse activity while the cursor is located in the window. Perhaps the

most important are the entry and exit of the mouse to and from the

window. Each of these properties takes one or more functions as its

value. Each function will be called with the window handle as its

268

argument. These functions are invoked asynchronously, so they perform

any terminal input/output from their own window.

 The IRM notes that each of these functions should be self-contained.

Each function should communicate with other functions solely through

other window properties. It suggests that these functions should not

expect to access variables bound on the stack as the stack context is

formally undefined at the time that these functions are called.

5.6.3.1 Entering a Window

 Whenever the cursor moves into the window, the CURSORINFN

function(s) are executed. Typically, you will use these functions to set

variables for the window, perhaps display a menu of operations, and even

preposition the cursor to some object in the window.

5.6.3.2 Exiting a Window

 Whenever the cursor leaves a window, the CURSOROUTFN

function(s) are executed. One possible application is where you have

opened a window under program control and moved the cursor to that

window. When the cursor leaves the window, you can automatically

close it by placing a call to CLOSEW as the value of CURSOROUTFN.

5.6.3.3 Moving the Cursor in a Window

 Whenever the cursor moves within a window, the

CURSORMOVEDFN function(s) are called.

 Tracking the cursor movement allows you to implement the notion

of active regions within a window. You determine the region by

matching the cursor position against some list of regions and performing

the appropriate actions associated with each region. Typically, this is to

establish various menus based on the region.

5.6.3.4 Assigning the TTY to a Window

 Whenever a button is pressed while the cursor is within a window,

the WINDOWENTRYFN function(s) are called. The default function for

this window property is GIVE.TTY.PROCESS, which gives the process

269

associated with the window the terminal display stream and then invokes

the functions which are the value of BUTTONEVENTFN.

5.6.3.5 Handling Mouse Button Events

 The BUTTONEVENTFN function(s) are called whenever there is a

change in the state of any of the mouse buttons (e.g., moving up or down)

while the cursor is located in the window. If another button event occurs

while the function(s) associated with BUTTONEVENTFN are running,

another event will not occur.

5.6.3.6 Handling the Right Mouse Button

 When the right mouse button is pressed while the cursor is in a

window, the function(s) associated with RIGHTBUTTONFN will be

called in lieu of the function DOWINDOWCOM. This permits you to

supply you own right button function while the cursor is in the display

pane of the window.

 The standard window operation menu for the right button will be

invoked whenever the right button is pressed while the cursor is in the

title pane of the window.

Note: If you supply a right button function, you should call

DOWINDOWCOM whenever the cursor is not in the interior region of

a window.

5.7 BACKGROUND DISPLAY OPERATIONS

 Underlying the windows displayed on the screen is an absolute

coordinate system for the display screen. The shade of the background

is a uniform color. Whenever the mouse is in the background, the right

mouse button will activate a background menu. The background display

menu has been depicted in Figure 5.17.

 Because the File Browser and TEdit subsystems have been loaded

into this sysout, these subsystems are accessible through the background

menu. The following sections describe the standard background display

commands.

270

5.7.1 BACKGROUND OPERATIONS

 The background operations that may be performed from the menu

depicted in Figure 5.17 are described in Table 5-11.:

Table 5-11. Background Operations

Operation Description

FileBrowser Invokes the File Browser (described in Medley

Interlisp: Tools and Utilities).

Idle Causes the system to enter an idle state; options

are discussed below.

SaveVM Causes the current state of the virtual memory to

be written to the appropriate disk partition.

Snap Allows you to save a snapshot of the virtual

memory as a file on your external disk. You are

prompted for the file name where the snapshot will

be written.

Hardcopy Allows you to obtain a hard copy of a bitmap

selected from the display screen. Options are to a

file or to a printer.

PSW Opens a Process Status Window (described in

Medley Interlisp: Tools and Utilities).

TEdit Opens a TEdit window for editing some Lisp

object (described in Medley Interlisp: Tools and

Utilities).

5.7.1.1 Idle Options

 When you select the Idle operation from the background operations

menu, you may drag the mouse to the right (through the gray triangle) to

obtain a display of the options that are provided by Interlisp, which are

described in Table 5-12.

Table 5-12. Idle Operation Options

Option Description

Show Profile Displays the current idle profile in the prompt

window.

Set Timeout Prompts the user to set the timeout period.

After this interval has expired without any

activity by the user (pressing a key, moving the

mouse or pressing a mouse button), Interlisp

271

automatically enters idle mode to protect the

display screen.

Choose Display Allows you to choose the form of the idle

display.

 The structure of the idle profile appears as follows:

 Allowed Logins: (<previous user> <anyone>)

 Forget: T

 Timeout: 20 minutes

 Displayfn: IDLE.BOUNCING.BOX

 SaveVM: 10 minutes

 Authenticate: T

 Selecting the Choose Display option causes Interlisp to prompt you

with a menu of the choices for the idle display. Currently, Interlisp

supports two choices:

 Bouncing Box

 Bouncing Username

 If you choose "Bouncing Username", Interlisp displays the message

in the prompt window:

 New Idle Displayfn:

 (LAMBDA (W) (IDLE.BOUNCING.BOX W (USERNAME NIL

T)))

 If the current user name is NIL, then Interlisp uses the symbol

"Interlisp" as the default user name. Note that by setting IdleDisplayfn

to some other Lambda expression or function, you may create your own

idle display.

5.7.2 BACKGROUND VARIABLES

 The following variables have corresponding impacts to those

discussed in Section 5.6.3:

 BACKGROUNDBUTTONEVENTFN

 BACKGROUNDCURSORINFN

 BACKGROUNDCURSOROUTFN

 BACKGROUNDCURSORMOVEDFN

 These variables provide a way of processing cursor action when the

cursor is in the background. Each may take the value NIL or a list of one

272

or more functions. When the cursor is in the background and a mouse

button changes state, the function(s) associated with the appropriate

variable will be executed.

273

6. MENUS

 A menu is a list of items from which one or more selections may be

made. Interlisp uses menus to provide alternative choices in a visible, but

easily accessible manner. Rather than typing in the command, you may

"mouse" the menu item and cause that selection to be invoked. There are

two types of menus that you may define:

1. Pop-Up menus, which appear momentarily while you make

your selection, and then disappear. This type of menu is used

for infrequent selections so as to avoid screen clutter. An

example of this type of menu is the window operations menu

that appears when you press the right mouse button while the

cursor resides in a window.

2. Fixed menus, which are attached to windows, and are

permanently displayed while the window is open. These

menus are used to select frequently used operations that affect

the window. An example of this type of menu is the Operator

Menu associated with the DEDIT window.

6.1 MENU STRUCTURE

 A menu consists of two components: a list of items comprising the

possible choices and a "when selected" function that is used to process

the choice. Menus are represented as datatypes. Menus are created using

the create command from the record package. The definition of a menu

as a DATATYPE is shown below:

(DATATYPE MENU

 (IMAGE

 SAVEIMAGE

 ITEMS

 MENUROWS

 MENUCOLUMNS

 MENUGRID

 CENTERFLG

 CHANGEOFFSETFLG

 MENUFONT

 TITLE

274

 MENUOFFSET

 WHENSELECTEDFN

 MENUBORDERSIZE

 MENUOUTLINESIZE

 WHENHELDFN

 MENUPOSITION

 WHENUNHELDFN

 MENUUSERDATA

 MENUTITLEFONT

 SUBITEMFN

 MENUFEEDBACKFLG

 SHADEDITEMS)

 MENUGRID <- (create REGION LEFT <- 0 RIGHT <- 0)

 WHENHELDFN <- (QUOTE DEFAULTMENUHELDFN)

 WHENUNHELDFN <- (QUOTE (CLRPROMPT))

(ACCESSFNS

 ((ITEMWIDTH

 (fetch (REGION WIDTH)

 of

 (fetch (MENU MENUGRID) of DATUM))

 (replace (REGION WIDTH)

 of

 (fetch (MENU MENUGRID) of DATUM)

 with NEWVALUE))

 (ITEMHEIGHT

 (fetch (REGION HEIGHT)

 of

 (fetch (MENU MENUGRID) of DATUM))

 (replace (REGION HEIGHT)

 of

 (fetch (MENU MENUGRID) of DATUM)

 with NEWVALUE))

 (IMAGEWIDTH

 (fetch (BITMAP BITMAPWIDTH)

 of (CHECK/MENU/IMAGE DATUM)))

 (IMAGEHEIGHT

 (fetch (BITMAP BITMAPHEIGHT)

 of (CHECK/MENU/IMAGE DATUM)))

 (MENUREGIONLEFT

 (IDIFFERENCE

275

 (fetch (REGION LEFT)

 of

 (fetch (MENU MENUGRID) of DATUM))

 (fetch MENUOUTLINESIZE of DATUM)))

 (MENUREGIONBOTTOM

 (IDIFFERENCE

 (fetch (REGION BOTTOM)

 of

 (fetch (MENU MENUGRID) of DATUM))

 (fetch MENUOUTLINESIZE of DATUM)))

))

 (SYSTEM))

 You may manipulate this definition using DEdit on the atom

MENU. Consider a menu for selecting a color from a set of colors. We

define the menu as follows:

<-(SETQ colormenu

 (create MENU

 ITEMS <- '(RED BLUE GREEN YELLOW ORANGE)

 CENTERFLG <- T

 MENUCOLUMNS <- 2

 MENUFONT <- (FONTCREATE 'HELVETICA 10

 'BOLD)

 TITLE <- "Steve's Color Menu

))

{MENU}#61,176204

will create the following menu when it is displayed on the screen (see

Figure 6-1):

276

Figure 6-1. A Sample Menu

 In this case the selection function has not been explicitly defined, so

Interlisp will assume the default selection function,

DEFAULTWHENSELECTEDFN.

6.1.1 REPRESENTING MENUS

 A menu is represented by an Interlisp record. The structure of a menu record can

be examined using the Inspector. The structure of the menu created above is presented

in Table 6-1.

Table 6-1. Sample Menu Description

Field Value

ITEMWIDTH 60

ITEMHEIGHT 12

IMAGEWIDTH 122

IMAGEHEIGHT 47

MENUREGIONLEFT 0

MENUREGIONBOTTOM 0

IMAGE {WINDOW}#61,52470

SAVEIMAGE NIL

ITEMS (RED BLUE GREEN YELLOW

ORANGE)

MENUROWS 3

MENUCOLUMNS 2

MENUGRID (1 1 60 12)

277

CENTERFLAG T

CHANGEOFFSETFLG NIL

MENUFONT {FONTDESCRIPTOR}#70,171260

TITLE "Steve's Color Menu"

MENUOFFSET (0 . 0)

WHENSELECTEDFN NIL

MENUBORDERSIZE 0

CHANGEOFFSETFLG NIL

MENUFONT {FONTDESCRIPTOR}#70,171260

TITLE "Steve's Color Menu"

MENUOFFSET (0 . 0)

WHENSELECTEDFN NIL

MENUBORDERSIZE 0

MENUOUTLINESIZE 1

WHENHELDFN DEFAULTMENUHELDFN

MENUPOSITION NIL

WHENUNHELDFN CLRPROMPT

MENUUSERDATA NIL

MENUTITLEFONT NIL

SUBITEMFN NIL

MENUFEEDBACKFLG NIL

WHENSELECTEDFN NIL

SHADEDITEMS NIL

6.2 MENU PROPERTIES

 Interlisp provides a large number of properties with which you may

customize menus according to the needs of your applications. These

properties are set when you specify the menu via the create statement.

6.2.1 ITEM LIST

 At a minimum, you must provide a list of items that comprises the

menu. The items represent the entries of the menu which are selectable

by the user. Menu items may be any size. However, the window in which

the menu is displayed is adjusted to accommodate the largest menu item.

278

Because a menu is supposed to prompt you for a selection, menu items

should be both terse and mnemonic.

 The item list is assigned to the ITEM property when the menu is

created. The individual items may any of the following:

1. an atom;

2. a list (whose CAR will be displayed); or

3. a bitmap (whose image will be displayed).

 If an individual item is a list, its format is interpreted as described in

Section 6.2.1.1. In the example given, the items are the colors RED,

BLUE, GREEN, YELLOW, and ORANGE. Figure 6.2 depicts a menu

consisting of bitmaps. This menu is created by the following expression:

(create MENU ITEMS <-

 (LIST

 (LIST SELECT-BIT-MAP 'Select "Selects a non-rectangular

shape")

 (LIST TEXT-BIT-MAP 'Text "Types text at cursor")

 (LIST STRAIGHT-LINE-BIT-MAP 'Straightline "Draws a

straight line")

 (LIST DIAGONAL-LINE-BIT-MAP 'Diagonalline "Draws a

diagonal line")

 (LIST BOX-BIT-MAP 'Box "Draws a rectangular shape")

 (LIST ELLIPSE-BIT-MAP 'Ellipse "Draws an ellipse")

 (LIST CIRCLE 'Circle "Draws a circle")

 (LIST CURVE-BIT-MAP 'Curve "Draws a curve")

 (LIST POLYGON 'Polygon "Draws a polygon"))

 MENUCOLUMNS <- 1

 WHENSELECTEDFN <- (FUNCTION DRAW.OPS.FN)

))

279

Figure 6-2. A menu comprised of bitmaps

6.2.1.1 Item Specifications

 Typically, the item list is just a list of atoms which become the

choices of the menu. You may customize the item list in two ways. First,

if you want to return a complex value based on the item selected, you

may specify an expression which computes the value to be returned.

Second, you may specify a prompt string which is displayed in the

prompt window when the cursor is placed on the menu item.

 The structure of an item specification is:

 (<label> <expression> <prompt string>)

where:

label is displayed on the screen when the menu

is accessed.

expression a form whose value is returned when the

item is selected.

promptstring an explanation string, which is printed in

the prompt window, when you press a

280

mouse key with the cursor pointing at

this item.

6.2.2 MENU PROCESSING FUNCTION

 You may also specify a function that is invoked when an item is

selected from the menu. The name or definition (if it is a Lambda

expression) is assigned to the property WHENSELECTEDFN. The

selection function is called by Interlisp with three arguments:

1. the item selected;

2. the menu; and

3. the mouse key that was pressed to select the item.

 The general structure of a Lambda function might appear as:

 (DEFINEQ (<function> (<item> <menu> <key>)

 (COND

 ((TYPE? <menu> <menu-type for this function>)

 (SELECT <key>

 (LEFT PROCESS.LEFT.KEY.FOR.<menu>)

 (MIDDLE PROCESS.MIDDLE.KEY.FOR.<menu>)

 (RIGHT PROCESS.RIGHT.KEY.FOR.<menu>)

 (PROGN NIL))

))

))

where each of the PROCESS... functions would have the following structure:

 (DEFINEQ (PROCESS... NIL

 (SELECTQ <item>

 (<entry-1> <value-1 or function-1>)

 (<entry-2> <value-2 or function-2>)

 (<entry-N> <value-N or function-N>)

 (PROGN NIL))

))

 You do not have to specify your selection functions in this manner,

but I find that it makes the processing code more readable and

comprehensible.

281

 We test for the type of menu at the front of the processing function

in order to avoid erroneous calls. You may wish to share one processing

function across several menus. Then you must test if the function is valid

for those menus.

 You may interchange the code for key selection versus item

selection without affecting the processing of the results. I think it makes

the code neater to process the mouse key first.

 Note that some of the processing functions may not exist. For

example, if it is not possible to use the MIDDLE mouse key with a

certain menu, then you would replace

PROCESS.MIDDLE.KEY.FOR.<menu> by NIL in the SELECTQ

expression above.

6.2.2.1 Default Menu Processing

 If you do not supply a menu processing function when you define a

menu, Interlisp will use DEFAULTWHENSELECTEDFN. This

function evaluates <expression>, the second element of an item

specification, and returns its value. If there is no second element or the

second element is NIL, DEFAULTWHENSELECTEDFN returns the

<item> itself.

6.2.3 MENU EXPLANATION FUNCTION

 You may specify a menu explanation function that is invoked when

a mouse key is held down for an extended duration while the cursor is

pointing at a menu item. The function name or its Lambda definition is

stored as the value of the property WHENHELDFN.

 The menu explanation function will be called when the mouse key

is held down on an item to which the cursor is pointing for

MENUHELDWAIT milliseconds (whose initial value is 1200). The

explanation function is called by Interlisp with three arguments:

1. the item selected;

2. the menu; and

282

3. the mouse key that was pressed to select the item.

The general structure of a Lambda function might appear as:

 (DEFINEQ (<function> (<item> <menu> <key>)

 (COND

 ((TYPE? <menu> <menu-type for this function>)

 (SELECT <key>

 (LEFT EXPLAIN.LEFT.KEY.FOR.<menu>)

 (MIDDLE EXPLAIN.MIDDLE.KEY.FOR.<menu>)

 (RIGHT EXPLAIN.RIGHT.KEY.FOR.<menu>)

 (PROGN NIL))

))

))

where each of the EXPLAIN.... functions would have the following structure:

 (DEFINEQ (EXPLAIN... NIL

 (SELECTQ <item>

 (<entry-1> <value-1 or function-1>)

 (<entry-2> <value-2 or function-2>)

 (<entry-N> <value-N or function-N>)

 (PROGN NIL))))

 You do not have to specify your explanation functions in this

manner, but I find that it makes the processing code more readable and

comprehensible.

 We test for the type of menu at the front of the processing function

in order to avoid erroneous calls. You may wish to share one explanation

function across several menus. Then you must test if the function is valid

for those menus.

 You may interchange the code for key explanation versus item

explanation without affecting the processing of the results. I think it

makes the code neater to process the mouse key first.

 Note that some of the explanation functions may not exist. For

example, if it is not possible to use the MIDDLE mouse key with a

283

certain menu, then you would replace

EXPLAIN.MIDDLE.KEY.FOR.<menu> by NIL in the SELECTQ

expression above.

6.2.3.1 Default Explanation Function

 If you do not supply a menu explanation function when you define

a menu, Interlisp will use the default explanation function

DEFAULTMENUHELDFN. This function displays in the prompt

window the <promptstring> of an item specification, if it exists. If there

is no <promptstring>, the default message "This item will be selected

when the button is released." will be displayed instead.

6.2.4 MENU STATUS CHANGE FUNCTION

 You may specify a menu status change function when you define a

menu that is invoked when you move the cursor from an item in the

menu, when another mouse key is pressed, or you release a key which

has been held down on an item. The name of this function or its Lambda

definition is stored in the property WHENUNHELDFN.

 Typically, you will use this function to clear the screen of some

display that was presented by the menu explanation function. It is called

with the same three arguments as the menu explanation function.

 If you do not specify a menu status change function, Interlisp will

invoke the default menu status change function, CLRPROMPT. This

function merely clears the prompt window.

6.2.5 MENU POSITION

 You may specify the menu position on the display screen when the

menu is created by MENU or ADDMENU. The menu position is stored

in the property MENUPOSITION. There are two cases:

1. If the menu is a pop-up menu, the menu position is the

absolute screen coordinates where the menu will be

displayed. The value of the property is a position.

284

2. If the menu is a fixed menu, the value is the

coordinates of the window in which the menu appears.

The point within the menu image which is placed at

these coordinates is specified by the MENUOFFSET

property (see Section 6.2.6).

 If the value of MENUPOSITION is NIL, then the menu will be

displayed at the current cursor position. Usually, you will want to

position menus so that they do not obscure the window or object with

which they are associated.

6.2.6 MENU DISPLAY OFFSET

 You may specify an anchor point for the menu image which will be

located at MENUPOSITION. The value of the anchor point is stored in

the property MENUOFFSET. The default menu display offset is the

position (0,0) in the menu image.

6.2.7 MENU DISPLAY FONT

 You may specify a font for the display of items when you define a

menu. The value of the font is stored in the property MENUFONT.

Chapter 2 describes the types of fonts and their creation. If you do not

specify a menu font, Interlisp will use the default font Helvetica 10.

6.2.8 TITLE

 You may specify a title when you define a menu. The title is

displayed in the top border of the menu window. The value of the title, a

string, is stored in the property TITLE. Typically, the menu title will be

specified as a string. However, you may also specify a menu title as:

• an atom; or

• a function or expression which dynamically computes a value.

 The title is usually displayed in the same font as window titles, when

MENUTITLEFONT is NIL. You can change the font in which the menu

title is displayed by assigned a new font descriptor to

285

MENUTITLEFONT. I have found that the default menu title font is

adequate unless you are going to adjust the size of the title of the menu.

6.2.9 CENTERING MENU ITEMS

 You may specify that menu items are centered within the menu

window by assigning a non-NIL value to the property CENTERFLG;

otherwise, the items are left-justified within the window.

6.2.10 MENU SHAPE

 A menu does not have to be a linear list of items. It may also be a

matrix of some number of rows and columns. The properties

MENUROWS and MENUCOLUMNS specify the number of rows and

columns that a menu will have.

 Typically, only one of these properties is specified. Interlisp then

calculates the other dimension that is necessary to generate a minimum

rectangular menu. If you do not specify a shape for a menu by specifying

either the number of rows or the number of columns, Interlisp will

display the menu items in a single column.

6.2.11 ITEM BOX SIZE

 You may specify the size of item boxes when they are displayed in

a menu by assigning values to the properties ITEMHEIGHT and

ITEMWIDTH. The item sizes are determined by the font used to display

the items. These properties allow you to adjust the size of the menu for

easier viewing.

 If you do not specify values for either of the properties

ITEMHEIGHT or ITEMWIDTH, Interlisp assumes default values. For

ITEMHEIGHT, the default value is the maximum height of the

following:

1. the height of MENUFONT; or

2. the maximum size of any bitmap appearing as a

<label> in the item list.

286

 For ITEMWIDTH, the default value is the width of the largest item

in the menu.

6.2.12 MENU BORDER SIZE

 You may specify a border that will surround an item box. The size

of the border is stored in the property MENUBORDERSIZE. If you do

not specify a value, 0 (indicating no border) is assumed.

6.2.13 MENU OUTLINE SIZE

 A menu is displayed as a window. You may specify a border size

for the window surrounding the menu by assigning a value to the

property MENUOUTLINESIZE. If you do not specify a value, Interlisp

assumes the maximum of:

1. the number 1; or

2. the value of MENUBORDERSIZE.

 In general, a border enhances the visibility of a menu because it sets

it apart from its surrounding area. This is particularly important when the

menu "pops up" in the middle of a window filled with text or graphics.

6.2.14 CHANGING MENU OFFSET

 Pop-up menus appear wherever the cursor is located on the screen

when the menu is created. CHANGEOFFSETFLAG, if non-NIL,

determines where the menu appears relative to the cursor by specifying

an interpretation for the MENUOFFSET field.

 Consider a value for MENUOFFSET of (-1,0). By setting

CHANGEOFFSETFLAG to the atom Y, the menu will appear such that

the cursor is just to the left of the item last selected. The value of

CHANGEOFFSETFLAG may be the atoms X or Y which specify,

respectively, the X and Y coordinates of the MENUOFFSET field.

287

 6.2.15 IMAGE HEIGHT AND WIDTH

 Interlisp provides two read-only fields which contain the height and

width of the menu. These fields are IMAGEHEIGHT and

IMAGEWIDTH. They contain the height and width of the menu,

respectively.

6.3 MENU MANAGEMENT FUNCTIONS

 Interlisp provides a set of functions for managing the creation and

display of menus.

6.3.1 CREATING A MENU

 You may create a menu using the function MENU:

 Function: MENU

 # Arguments: 4

 Arguments: 1) MENU, the address of a

 menu object

 2) POSITION, a position (in

 screen coordinates)

 at which to display the menu

 3) RELEASECONTROLFLG,

 a flag that determines whether

 the menu is erased

 4) NESTEDFLG, a flag that

 specifies the returned value

 Value: The value computed by the

 function associated with the

WHENSELECTEDFN

property.

 MENU allows you to pop-up a menu as needed. The menu appears

at POSITION. If POSITION is NIL, the menu appears at the position

given by the MENUPOSITION field or the current location of the cursor.

Consider the following example:

<-(SETQ colormenu

288

 (create MENU

 ITEMS <- '(RED BLUE GREEN YELLOW ORANGE)

 CENTERFLG <- T

 MENUCOLUMNS <- 2

 MENUFONT <- (FONTCREATE 'HELVETICA 10

 'BOLD)

 TITLE <- "Steve's Color Menu"))

{MENU}#61,176204

<-(MENU mymenu)

YELLOW

 When the menu is displayed, MENU waits until you select an item

from the menu with a mouse key. Interlisp reverses the video display of

the selected item while a key is pressed. When the key is released, the

WHENSELECTEDFN function is called with three arguments.

WHENSELECTEDFN arguments are:

1. The item selected.

2. The menu.

3. The last mouse key released.

 If no item is selected, MENU returns NIL.

 In the example above, I placed the cursor on the YELLOW item and

pressed the left mouse button. Because the value of

WHENSELECTEDFN was DEFAULTWHENSELECTEDFN, the item

name was returned as the value of MENU. Once an item is selected, the

menu window if closed.

 If RELEASECONTROLFLG is T, the menu is not erased after a

selection is made.

 If NESTEDFLG is T, the Menu handler returns a dotted pair

consisting of the item selected and the key which selected it. Consider

the following examples:

<-(MENU PROPCOPMENU NIL NIL T]

(BT . LEFT)

289

<-(MENU PROCOPMENU NIL NIL T]

(KBD<- . MIDDLE)

6.3.2 ADDING A MENU TO A WINDOW

 You may create a permanent menu (i.e., one which exists until you

destroy it) using the function ADDMENU:

 Function: ADDMENU

 # Arguments: 3

 Arguments: 1) MENU, a menu object

 2) WINDOW, a window object

 3) POSITION, a position object

 Value: The address of the window object in

 which the menu is placed.

 ADDMENU displays the menu at the specified position in the

window. If POSITION is NIL, ADDMENU uses either the value of the

MENUPOSITION field in the menu definition or places the menu near

the cursor. The menu object's address is assigned to the MENU property

of the window. If WINDOW is NIL, a window is created at POSITION

(or the defaults) of the size of MENU. This is an example of a persistent

menu.

 When you add a menu to a window, the window's CURSORINFN

and BUTTONEVENTFN functions are replaced by the value of

MENUBUTTONFN. This allows the menu to be active during a TTY

waiting period. The RESHAPEFN function is set to restore the menu's

image when the window is reshaped.

 Item selection proceeds exactly as described for MENU. More than

one menu can be assigned to a window. However, a menu can be

assigned to only one window at a time. Consider the following example:

<-(ADDMENU mymenu)

{WINDOW}#61,146404

 At anytime, you may close a persistent menu via CLOSEW (see

Section 5.5.2) or through the interactive window operations.

290

6.3.3 DELETING A MENU FROM A WINDOW

 DELETEMENU removes a menu from a window. It takes the

form:

 Function: DELETEMENU

 # Arguments: 3

 Arguments: 1) MENU, a menu object

 2) CLOSEFLG, a flag determining

 whether the window is to be closed or

 not

 3) FROMWINDOW, a window object

 Value: The window handle.

 DELETEMENU removes the menu from the window given by

FROMWINDOW. If MENU was the only menu associated with

FROMWINDOW, the window will be closed if CLOSEFLG is non-NIL.

If FROMWINDOW is NIL, DELETEMENU searches the list of

currently active windows for one that contains MENU. If it is found,

DELETEMENU acts as above; otherwise, it does nothing. Consider the

following example:

<-(DELETEMENU (GET.MENU.FROM.WINDOW MW))

{WINDOW}#55,63234

which produces the figure below.

291

Figure 6-3. Window with Menu Deleted

 After you have deleted the menu, you will want to repaint the

window with its background shade.

6.3.4 DETERMINING THE WINDOW OF A MENU

 You may determine which window a menu is located in using the

function WFROMMENU:

 Function: WFROMMENU

 # Arguments: 1

 Arguments: 1) MENU, a menu object

 Value: The address of the window object in

 which the menu is located;

 otherwise, NIL.

 WFROMMENU returns the address of the window object in which

MENU is located. Consider the following example:

<-(WFROMMENU mymenu)

{WINDOW}#61,146404

292

 You should not attempt to print directly to windows containing

menus as you may overwrite portions of the menu.

6.3.5 EXECUTING A MENU ITEM

 Sometimes, it is useful to be able to execute the function associated

with a menu item without actually displaying the menu and selecting the

item. This permits you to define the processing for an item in one

function only although you may execute it in several different ways. To

execute the function associated with a menu item, you may use the

function DOSELECTEDITEM:

 Function: DOSELECTEDITEM

 # Arguments: 3

 Arguments: 1) MENU, a menu object

 2) ITEM, the name of an item in the

 menu

 3) BUTTON, the name of a mouse key

 used to select the item

 Value: The value returned by

 WHENSELECTEDFN given ITEM and

 BUTTON.

 DOSELECTEDITEM invokes the WHENSELECTEDFN of

MENU with the values for ITEM and BUTTON. The menu is not

displayed on the screen nor is the screen changed in any way. If the

specified key is not supported in the selection function, the default value

(usually NIL) will be returned by the function associated with

WHENSELECTEDFN.

6.3.6 FINDING THE REGION OCCUPIED BY AN ITEM

 You may determine the region occupied by an item in a menu using

the function MENUITEMREGION:

 Function: MENUITEMREGION

 # Arguments: 2

 Arguments: 1) ITEM, an item of the menu

 2) MENU, a menu object

293

 Value: A region object.

 MENUITEMREGION returns the region occupied by ITEM in

MENU when the menu is displayed. Consider the following example:

<-(MENUITEMREGION 0 (GET.MENU.FROM.WINDOW MW))

(51 1 50 50)

where the menu is depicted in Figure 6.4 below.

6.3.7 SHADING A MENU ITEM

 You may shade the region occupied by a menu item using the

function SHADEITEM:

 Function: SHADEITEM

 # Arguments: 4

 Arguments: 1) ITEM, an item in the menu

 2) MENU, a menu descriptor

 3) SHADE, a shade handle

 4) DSORW, either a display stream or a

 window descriptor

 Value: NIL

 SHADEITEM shades the region occupied by the item in the menu.

This is useful when you want to use a menu for several different purposes

but need to indicate that some items are not selectable in certain modes.

Consider the following example for shading an item in a number pad:

<-(SETQ MW (MAKE.NUMBER.PAD "NUMBER PAD"))

<-(SHADEITEM 7 (GET.MENU.FROM.WINDOW MW)

GRAYSHADE MW))

NIL

which produces the figure below.

294

Figure 6-4. Example of Item Shading in a Menu

 If DSORW is a display stream or a window, it is assumed to be

associated with the window in which the menu is displayed. Otherwise,

WFROMMENU is invoked to determine the window in which MENU

is located.

6.3.8 OBTAINING THE FONT OF A MENU TITLE

 You may obtain the font descriptor of a menu title using the function

MENUTITLEFONT:

 Function: MENUTITLEFONT

 # Arguments: 1

 Arguments: 1) MENU, a menu handle

 Value: A font descriptor handle.

295

 This function reads the value of the property MENUTITLEFONT

and returns it. Consider the following example:

<-(MENUTITLEFONT PROCOPMENU)

{FONTDESCRIPTOR}#70,171540

6.3.9 OBTAINING THE MENU REGION

 You may obtain the region specification for a menu by executing the

function MENUREGION:

 Function: MENUREGION

 # Arguments: 1

 Arguments: 1) MENU, a menu handle

 Value: A region specification.

 This function reads the REGION property of the window in which

the menu is displayed. Consider the following example:

<-(MENUREGION PROCOPMENU)

(0 0 194 50)

6.3.10 ERASING A MENU

 When you add a menu to a window via ADDMENU, the menu

remains permanently displayed. You may erase menus added in this

manner using the function ERASEMENUIMAGE:

 Function: ERASEMENUIMAGE

 # Arguments: 2

 Arguments: 1) MENU, a menu handle

 2) WINDOW/STREAM, a

 window/stream handle

 Value: T

 If the menu is displayed in the specified window, its image is erased.

Consider the following example:

<-(ADDMENU PROCOPMENU AWINDOW)

296

{WINDOW}#74,25000

<-(ERASEMENUIMAGE PROCOPMENU AWINDOW)

T

6.3.11 CREATING A MENU FROM A LIST

 In many cases, you will want to create a menu quickly from a list

while assuming defaults for all of the menu properties except the items

in the menu. You may create menus simply and quickly using the

function TYPEINMENU, which takes the following form:

 Function: TYPEINMENU

 # Arguments: 1

 Arguments: 1) LST, a list of items

 Value: A menu handle.

 TYPEINMENU creates a menu whose items consist of the items in

LST. All other properties assume default values. The menu is displayed

at the current location of the cursor. Consider the following example:

<-(TYPEINMENU '(A B C D))

{MENU}#61,167260

The menu properties take the following values:

 ITEMWIDTH 11

 ITEMHEIGHT 12

 IMAGEWIDTH 13

 IMAGEHEIGHT 50

 MENUREGIONLEF 0

 MENUREGIONBOTTOM 0

 IMAGE {WINDOW}#60,150640

 SAVEIMAGE NIL

 ITEMS (A B C D)

 MENUROWS 4

 MENUCOLUMNS 1

 MENUGRID (1 1 11 12)

 CENTERFLAG NIL

 CHANGEOFFSETFLG NIL

297

 MENUFONT {FONTDESCRIPTOR}#70,171260

 TITLE NIL

 MENUOFFSET (0 . 0)

 WHENSELECTEDFN UNREADITEM

 MENUBORDERSIZE 0

 MENUOUTLINESIZE 1

 WHENHELDFN DEFAULTMENUHELDFN

 MENUPOSITION NIL

 WHENUNHELDFN CLRPROMPT

 MENUUSERDATA NIL

 MENUTITLEFONT NIL

 SUBITEMFN NIL

 MENUFEEDBACKFLG NIL

 SHADEDITEMS NIL

6.3.12 SELECTING/DESELECTING A MENU ITEM

 When you select a menu item using the cursor, the menu item is

shaded to indicate that it has been selected. The selection or deselection

of a menu item is controlled by the functions MENUSELECT and

MENUDESELECT, respectively. They take the following form:

 Function: MENUSELECT

 MENUDESELECT

 # Arguments: 2

 Arguments: 1) ITEM, an item in the menu

 2) MENU, a menu handle

 Value: The item selected (MENUSELECT);

 otherwise, NIL.

 MENUSELECT shades the item with GRAYSHADE in the menu

if it is displayed. You may select as many menu items as you wish for

selection in the menu. Consider the following example:

<-(ADDMENU PROCOPMENU)

{WINDOW}#74,25000

<-(MENUSELECT 'BT PROCOPMENU)

BT

298

 Executing MENUSELECT shades the item in the menu as depicted

in Figure 6-5.

Figure 6-5. Example of MENUSELECT

 MENUDESELECT restores the shading of the selected item to

WHITESHADE. Consider the following example:

<-(MENUDESELECT 'BT PROCOPMENU)

NIL

6.3.13 GETTING A MENU ITEM BY GRID COORDINATES

 When a menu is displayed on the screen, the Menu Handler

internally associates a grid with the items in the menu. When the mouse

points to a menu item, the item is determined by the grid coordinates

closest to the mouse's position in the menu. You may obtain the menu

item corresponding to a grid overlaying a menu using the function

GETMENUITEM:

 Function: GETMENUITEM

 # Arguments: 3

 Arguments: 1) MENU, a menu handle

 2) XGRID, the X-coordinate

 3) YGRID, the Y-coordinate

 Value: The menu item closest to the grid

 coordinates.

299

 Consider the menu PROCOPMENUw. The following expressions

return items from the menu:

<-(GETMENUITEM PROCOPMENU 1 1)

INFO

<-(GETMENUITEM PROCOPMENU 2 0)

SUSPEND

 Note that the grid begins in the lower left corner with the indices

(0,0). Thus, the coordinates (1,1) mean "move right 1 and move up 1". If

either of the grid coordinates exceed the grid overlayed on the menu,

GETMENUITEM should return NIL. For Example:

<-(GETMENUITEM PROCOPMENU 3 0)

NIL

because the maximum grid coordinate in the X-direction is 2.

 However, there appears to be a bug in the code such that negative

grid coordinates wrap around the grid as follows:

<-(GETMENUITEM PROCOPMENU -1 0)

WAKE

<-(GETMENUITEM PROCOPMENU -3 0)

BTV

6.4 SOME USEFUL MENUS

 This section describes some commonly used menus along with the

functions for defining and using them.

6.4.1 A YES-NO MENU

 A frequently used menu allows you to respond to a question with a

YES or NO answer. The question can be displayed in the title pane of

the menu. YES and NO becomes the individual items of the menu. The

function YES-NO? creates the menu for you as shown below:

300

<-(DEFINEQ (YES-NO? (message)

 (MENU

 (create MENU

 ITEMS <- '((YES T) (NO 'NIL))

 TITLE <- MESSAGE))))

(YES-NO?)

Consider the following example which asks the question “Delete File?”,

after you have specified a file.

<-(YES-NO? "Delete File:?")

YES

where YES was returned as the item selected from the menu.

6.4.2 A NUMBER PAD

 A menu which you might find frequent use for is a number pad

consisting of the numbers 0 - 9 and the symbols * and #. This menu is

depicted in Figure 6-6.

301

Figure 6-6. A Number Pad Menu

 You may define a number pad using the function

MAKE.NUMBER.PAD as follows:

<-(DEFINEQ

 (MAKE.NUMBER.PAD (message)

 (MENU

 (create MENU

 ITEMS <- '(1 2 3 4 5 6 7 8 9 * 0 #)

 TITLE <- MESSAGE

 CENTERFLG <- T

 MENUCOLUMNS <- 3

 ITEMHEIGHT <- 50

 ITEMWIDTH <- 50

 CHANGEOFFSETFLG <- T))))

(MAKE.NUMBER.PAD)

 When you execute the function MAKE.NUMBER.PAD, it displays

the number pad at the location of the cursor. However, the first selection

from the menu causes the number pad to disappear. For a persistent

number pad, you might modify the function as follows:

<-(DEFINEQ

 (MAKE.NUMBER.PAD (message)

 (ADDMENU

 (create MENU

 ITEMS <- '(1 2 3 4 5 6 7 8 9 * 0 #)

 TITLE <- MESSAGE

 CENTERFLG <- T

 MENUCOLUMNS <- 3

 ITEMHEIGHT <- 50

 ITEMWIDTH <- 50

 CHANGEOFFSETFLG <- T))))

(MAKE.NUMBER.PAD)

302

6.4.3 CREATING A FILE OBJECTS MENU

 A useful menu is one which allows you to select an object from a

file for editing or other operations rather than having to type in its name.

I have created the function FILE.EDIT.MENU which displays a menu

of the types of file package objects. It is defined as:

(DEFINEQ

 (FILE.EDIT.MENU (FILE)

 (PROG (OBJECTS OBJECTS-MENU)

 (SETQ OBJECTS '(VARS FNS COMS RECORDS))

 (SETQ OBJECTS-MENU

 (create MENU

 ITEMS <- OBJECTS

 TITLE <- "File Package Objects"

 MENUCOLUMNS <- 1

 CENTERFLG <- T

 WHENSELECTEDFN

 <- (FUNCTION DISPLAY.OBJECT)))

 (PROMPTPRINT "Select file package object to edit:")

 (MENU OBJECTS-MENU)

 (CLRPROMPT))

))

 I have statically defined the objects to be displayed for purposes of this illustration.

You may want to dynamically compute this value by inspecting the file. Now, if I execute

this function, I obtain the menu depicted in Figure 6-7.

<-(FILE.EDIT.MENU 'SHK)

SQUARE

303

Figure 6-7. File Package Objects Menu

 If I select FNS to obtain a list of the file's functions (assuming they are stored a

variable of the form <file>FNS), I obtain the menu depicted in Figure 6-8.

Figure 6-8. Example Menu after Selecting FNS

 I may then select one of the functions for editing.

304

 The function DISPLAY.OBJECT, which displays all objects of a

particular type in a file is defined as:

(DEFINEQ (DISPLAY.OBJECT (ITEM MENU KEY)

 (PROG NIL

 (* User must select object using LEFT mouse key only!)

 (if (OR (EQ KEY 'RIGHT) (EQ KEY 'MIDDLE))

 then (RETURN NIL))

 (SELECTQ ITEM

 (VARS

 (MENU

 (create MENU

 ITEMS <- (FILECOMLST FILE 'VARS)

 TITLE <- "Select variable"

 MENUCOLUMNS <- 1

 CENTERFLG <- T

 WHENSELECTEDFN <-

 (FUNCTION (LAMBDA (ITEM MENU KEY)

 (APPLY* 'EDITV ITEM)

)

)))

 (FNS

 (MENU

 (create MENU

 ITEMS <- (FILEFNSLST FILE)

 TITLE <- "Select a function:"

 MENUCOLUMNS <- 1

 CENTERFLG <- T

 WHENSELECTEDFN

 <- (FUNCTION

 (LAMBDA (ITEM MENU KEY)

 (APPLY* 'EDITF ITEM)

))

)))

 (RECORD

 (MENU

 (create MENU

 ITEMS <- (FILECOMLST FILE 'RECORDS)

 TITLE <- "Select a record:"

 MENUCOLUMNS <- 1

 CENTERFLG <- T

 WHENSELECTEDFN

 <- (FUNCTION

305

 (LAMBDA (ITEM MENU KEY)

 (APPLY* 'EDITREC ITEM)

))

)))

 (COMS

 (EDIT (FILECOMS FILE)))

 (T

 (PROMPTPRINT "Unknown File Package Object")))

)))

306

7. IMAGE STREAMS

 Interlisp has abstracted the notion of a graphics object as a data

structure called an image object. An image object contains information

about an image, including how to display it, how to print it, and how to

manipulate it when it is included in a collection of images.

 Image objects were created to provide a mechanism whereby images

might be inserted into TEdit files. This permits you to mix text and

graphics in a single file where each data type is manipulated by its own

editor. When the file is printed, the text and graphics are displayed as a

single integrated document.

 You communicate with the image object by calling a standard set of

functions. These functions are defined by the IMAGEFNS data type,

which is a vector of procedures that defines the interfaces from a standard

function name to a specific procedure for a specific image object. By

grouping the image functions into a data type, multiple instances of the

same type of image object can share the same vector of procedures.

 Image objects have been defined for several of the other Interlisp

data structures in Library packages.

7.1 THE STRUCTURE OF AN IMAGE OBJECT

 Image objects are described by the IMAGEOBJ data type which has

the following fields (with simple values):

<-(IMAGEOBJCREATE 'X)

{IMAGEOBJ}#74,36322

Table 7-1. Image Object Data Structure

Field Name Sample Value

OBJECTDATUM X

IMAGEOBJPLIST NIL

IMAGEOBJFNS {IMAGEFNS}#74,34340

307

 The OBJECTDATUM is the name of the object to be represented.

IMAGEOBJPLIST will contain the property list that describes the image

object. IMAGEOBJFNS is the vector of functions which permit you to

operate upon the object. Initially, the vector will have NIL entries for all

functions.

7.1.1 ACCESSING AND SETTING IMAGE OBJECT PROPERTIES

 You may access and set a subset of the properties of the image object

using the function IMAGEOBJPROP, which takes the form:

 Function: IMAGEOBJPROP

 # Arguments: 3

 Arguments: 1) IMAGEOBJECT, an image object handle

 2) PROPERTY, an image object property

 3) NEWVALUE, a new value

 Value: The current value of the property.

 IMAGEOBJPROP is a nospread function. IMAGEOBJPROP

accesses and sets the properties of the image object. If NEWVALUE is

NIL, IMAGEOBJPROP just returns the current value of the property of

the specified object. If NEWVALUE is given, it is assigned as the new

value of the property and the current value is returned.

IMAGEOBJPROP will work on the following image object properties:

OBJECTDATUM

DISPLAYFN

IMAGEBOXFN

PUTFN

GETFN

COPYFN

BUTTONEVENTFN

COPYBUTTONEVENTFN

WHENOPERATEDONFN

PREPRINTFN

308

 It may also be used to save arbitrary properties that you define for

your applications on the image object. Consider the following examples:

<-(IMAGEOBJPROP BOX 'DISPLAYFN)

DRAW.BOX

7.2 CREATING AN IMAGE OBJECT

 You may create an instance of an image object using the function

IMAGEOBJCREATE:

 Function: IMAGEOBJCREATE

 # Arguments: 2

 Arguments: 1) OBJECTDATUM, an arbitrary data

 object

 2) IMAGEFNS, an operations vector

 Value: an image object handle.

 IMAGEOBJCREATE creates an instance of an image object and

returns its handle. The operations vector for the image functions is

associated with the image object instance. Consider the following

examples:

<-(SETQ boxdemo (IMAGEOBJCREATE 'BOX box))

{IMAGEOBJ}#74,36322

which has the following form:

OBJECTDATUM BOX

IMAGEOBJPLIST NIL

IMAGEOBJFNS {IMAGEFNS}#74,34400

where the IMAGEFNS object is created by an expression described in

Section 7.4 below.

309

7.2.1 TESTING FOR AN IMAGE OBJECT

 You may test whether an arbitrary Interlisp object is an image object

using the function IMAGEOBJP:

 Function: IMAGEOBJP

 # Arguments: 1

 Arguments: 1) X, an arbitrary object

 Value: X, if it is an image object;

 otherwise, NIL.

 IMAGEOBJP returns X if X is an image object; otherwise, it returns

NIL. Consider the following example:

<-(IMAGEOBJP boxdemo)

{IMAGEOBJ}#74,36322

7.3 THE STRUCTURE OF AN IMAGE FUNCTIONS OBJECT

 An image functions object is a vector of function handles that

manipulate an object in an image stream. Typically, the object is

displayed on the display screen whence the image functions are used to

manipulate its representation interactively. The functions contained

within an image functions object are described in Table 7.2. The format

of each function and an example are discussed in the following sections.

7.4 CREATING AN IMAGE FUNCTIONS OBJECT

 You may create an image functions object using the function

IMAGEFNSCREATE:

 Function: IMAGEFNSCREATE

 # Arguments: 13

 Arguments: 1) DISPLAYFN, a display function

 2) IMAGEBOXFN, a function that

 returns the size of the box enclosing the

 image

 3) PUTFN, a function to save the image

310

 object on a file

 4) GETFN, a function to load an image

 object from a file

 5) COPYFN, a function to

 implement the copy-select operation

 6) BUTTONEVENTFN, a function

 invoked when a mouse button is pressed

 while the cursor is in the object

7) COPYBUTTONEVENTFN, a

function called when you press a button

while the cursor is in the object and the

copy key is held down

 8) WHENMOVEDFN, a function

 which is called when the object is

 moved

 9) WHENINSERTEDFN, a function

 which is called when the object is

 inserted into a document

 10) WHENDELETEDFN, a function

 which is called when you attempt to

 delete the object

 11) WHENCOPIEDFN, a function

 which is called when you attempt to

 copy the object

 12) WHENOPERATEDONFN, a

 function which is called when you

 attempt to edit the object

 13) PREPRINTFN, a function which is

 called when you attempt to convert the

 object for printing

 Value: An image functions object handle.

 IMAGEFNSCREATE creates an image functions object and returns

its handle. Each of the arguments should be the name of a function which

is assigned to the corresponding field of the object. The purpose of these

function is described in Section 7.5. Consider the following example:

<-(SETQ BOX

 (IMAGEFNSCREATE (FUNCTION DRAW.BOX)

311

 (FUNCTION COMPUTE.BOX.DIMENSIONS)

 (FUNCTION PUT.BOX)

))

{IMAGEFNS}#74,34400

which creates a vector with the following form:

 DISPLAYFN DRAW.BOX

 IMAGEBOXFN COMPUTE.BOX.DIMENSIONS

 PUTFN PUT.BOX

 GETFN NIL

 COPYFN NIL

 BUTTONEVENTINFN NIL

 COPYBUTTONEVENTINFN NIL

 WHENMOVEDFN NIL

 WHENINSERTEDFN NIL

 WHENDELETEDFN NIL

 WHENCOPIEDFN NIL

 WHENOPERATEDONFN NIL

 PREPRINTFN NIL

 IMAGECLASSNAME NIL

 This data structure will be used in the examples throughout the

remainder of this section as we discuss the different methods associated

with an image object. The values for these different functions are set by

specifying the values in the calling function. In addition, some of these

functions may be set using IMAGEOBJPROP.

7.4.1 TESTING FOR AN IMAGE FUNCTIONS OBJECT

 You may test whether an arbitrary Interlisp object is an image

functions object using the function IMAGEFNSP, which takes the form:

 Function: IMAGEFNSP

 # Arguments: 1

 Argument: 1) X, an arbitrary Interlisp object

 Value: X, if it is an image functions object;

 otherwise, NIL.

312

 IMAGEFNSP returns X if X is an IMAGEFNS object; otherwise, it

returns NIL. Consider the following example:

<-(IMAGEFNSP BOX)

{IMAGEFNS}#74,34614

7.5 IMAGE OBJECT FUNCTIONS

 The image functions object is a vector of standard methods for

operating upon image objects. There are thirteen standard functions that

are currently defined by Interlisp. Each of these functions may be passed

a host stream argument, which is the handle of the stream in which the

image object is located. Currently, a host stream may be one of:

1. a TEdit text stream handle;

2. a File Package file stream handle; or

3. an arbitrary Interlisp object handle.

 The following sections will use the two objects BOXDEMO and

BOX which were created in Sections 7.2 and 7.4 above. I have written

the following function for calling an image method:

(DEFINEQ (call.image.method (imageobj operation window/file/stream)

 (PROG (opfn image.function)

 (RETURN

 (SELECTQ operation

 (DISPLAY

 (PROGN

 (SETQ opfn (IMAGEOBJPROP imageobj 'DISPLAYFN))

 (COND

 ((NULL opfn) NIL)

 (T (EVAL (LIST opfn imageobj

 (WINDOWPROP WINDOW/FILE/STREAM 'DSP)

 NIL

 NIL))

))

))

 (IMAGEBOX

 (PROGN

 (SETQ opfn (IMAGEOBJPROP imageobj 'IMAGEBOXFN))

 (COND

 ((NULL opfn) NIL)

313

 (T (EVAL

 (LIST opfn imageobj

 (WINDOWPROP WINDOW/FILE/STREAM

 'DSP)

 NIL

 NIL))

))

))

 (PUT

 (PROGN

 (SETQ opfn (IMAGEOBJPROP imageobj 'PUTFN))

 (COND

 ((NULL opfn) NIL)

 (T (EVAL (LIST imageobj window/file/stream))

))

))

7.5.1 DISPLAYING AN IMAGE OBJECT

 The method for displaying an object is stored in the DISPLAYFN

field of the image functions object. The function takes the form:

 Method: <DISPLAYFN>

 # Arguments: 4

 Arguments: 1) IMAGEOBJ, an image object handle

 2) IMAGESTREAM, an image stream

 handle

 3) IMAGESTREAMTYPE, the type of

 the image stream

 4) HOSTSTREAM, a host stream handle

 Value: A value returned by the function.

 The DISPLAYFN method is invoked to display the image

object at the current position of the image stream. The value of

IMAGESTREAMTYPE specifies whether it is a display or

other type of image stream. When the DISPLAYFN method is

called, the offset and clipping regions of the stream are set so

that the object's image is positioned at (0, 0). Thus, only the

image area may be modified.

314

 The following example involves drawing a box inside a

specified window. The image object is BOXDEMO. Prior to

calling the display function, you must set the relevant

information concerning the box as properties of the image

object. This may be done using the following set of expressions:

<-(IMAGEOBJPROP BOXDEMO 'XCOORD 100)

100

<-(IMAGEOBJPROP BOXDEMO 'YCOORD 100)

100

<-(IMAGEOBJPROP BOXDEMO 'WIDTH 200)

200

<-(IMAGEOBJPROP BOXDEMO 'HEIGHT 200)

200

 The function DRAW.BOX, which is assigned as the value

of the DISPLAYFN method is defined as follows:

(DEFINEQ

 (DRAW.BOX (imageobj imagestream imagestreamtype hoststream)

 (PROG (xcoord ycoord width height)

 (SETQ xcoord (IMAGEOBJPROP imageobj 'XCOORD))

 (SETQ ycoord (IMAGEOBJPROP imageobj 'YCOORD))

 (SETQ width (IMAGEOBJPROP imageobj 'WIDTH))

 (SETQ height (IMAGEOBJPROP imageobj 'HEIGHT))

 (for I from xcoord to (IPLUS xcoord width)

 do

 (BITMAPBIT imagestream I ycoord 1))

 (for I from xcoord to (IPLUS xcoord width)

 do

 (BITMAPBIT imagestream

 I

 (IPLUS ycoord height)

 1))

 (for I from ycoord to (IPLUS ycoord height)

 do

 (BITMAPBIT imagestream I xcoord 1))

 (for I from ycoord to (IPLUS ycoord width)

315

 do

 (BITMAPBIT imagestream

 I

 (IPLUS xcoord width)

 1))

 (IMAGEOBJPROP imageobj

 'OBJREGION

 (CREATEREGION xcoord

 ycoord

 width

 height))

 (RETURN imageobj))

))

7.5.2 DETERMINING THE SIZE OF AN IMAGE OBJECT

 The method for determining the size of an image object is

stored in the IMAGEBOXFN field of the image functions

object. It takes the form:

 Method: <IMAGEBOXFN>

 # Arguments: 4

 Arguments: 1) IMAGEOBJ, an image object handle

 2) IMAGESTREAM, an image stream

 handle

 3) CURRENTX, the X-coordinate of the

 image

 4) RIGHTMARGIN, the X-coordinate

 of the right margin

 Value: An IMAGEBOX handle.

 The IMAGEBOXFN is invoked to determine the size of an

image object. It returns the size as an IMAGEBOX, which is a

data structure that describes the image that is displayed in terms

of width, height, and descender height. The structure of an

IMAGEBOX is:

XSIZE The width of the image object.

YSIZE The height of the image object.

YDESC The position of the baseline.

XKERN The left edge of the image relative to the baseline.

316

 For characters, YDESC becomes the descent and XKERN is the

amount of left kerning.

 The IMAGEBOXFN looks at the type of stream to

determine the output device if the object's size will change as it

is displayed on different devices. CURRENTX and

RIGHTMARGIN allow an object to know something about its

environment so it can determine its own size.

7.5.3 STORING AN IMAGE OBJECT DESCRIPTION ON A FILE

 The method for storing an image object on a file is stored in the

PUTFN field of the image functions object. It takes the form:

 Method: <PUTFN>

 # Arguments: 2

 Arguments: 1) IMAGEOBJ, an image object handle

 2) FILESTREAM, a file handle

 Value: <user defined>

 The PUTFN method is invoked to write out a description of the

image object to a file. It prints a description on FILESTREAM which

can be read by a corresponding invocation of GETFN to recreate the

image object in memory.

 In our example the function PUT.BOX will print the characteristics

of the object BOX on the specified file. Here is the definition of

PUT.BOX:

<-(DEFINEQ (PUT.BOX (LAMBDA (IMAGEOBJ FILE)

 (PROG (PLIST IMAGEOBJFNS)

 (SETQ PLIST (fetch IMAGEOBJPLIST of IMAGEOBJ))

 (SETQ IMAGEOBJFNS (fetch IMAGEOBJFNS of IMAGEOBJ))

 (PRINTOUT FILE (LIST (QUOTE GET.BOX)))

 (PRINTOUT FILE

 (LIST 'SETQ

 (IMAGEOBJPROP IMAGEOBJ 'NAME)

 (LIST 'IMAGEOBJCREATE

 (IMAGEOBJPROP IMAGEOBJ 'NAME)

317

 (LIST (QUOTE QUOTE)

 (fetch DISPLAYFN of IMAGEOBJFNS))

 (LIST (QUOTE QUOTE)

 (fetch IMAGEBOXFN of IMAGEOBJFNS))

)))

 (for X in PLIST bind (Y <- (CADR PLIST)) by (CDDR X)

 do

 (PRINTOUT FILE

 (LIST 'IMAGEOBJPROP

 (IMAGEOBJPROP IMAGEOBJ 'NAME)

 (LIST (QUOTE QUOTE) X)

 Y)))

))

))

(PUT.BOX)

7.5.4 READING AN IMAGE OBJECT DESCRIPTION FROM A FILE

 The method for reading a description of an image object from a file

is stored in the GETFN field of the image functions object. It takes the

form:

 Method: <GETFN>

 # Arguments: 1

 Arguments: 1) FILESTREAM, a file handle

 Value: An image object descriptor.

 The GETFN method is invoked to read the description of an image

object from a file in order to create the image object in memory.

7.5.5 COPYING AN IMAGE OBJECT

 The method for copying (e.g., duplicating) an image object is stored

in the COPYFN field of the image functions object. It takes the form:

 Method: <COPYFN>

 # Arguments: 3

 Arguments: 1) IMAGEOBJ, an image object handle

 2) SOURCEHOSTSTREAM, the image

 stream handle

318

 where the image object is located

 3) TARGETHOSTSTREAM, the image

 stream where the copy is built

 Value: An image object descriptor.

 The COPYFN method is invoked when the user executes a copy-

select operation. If it returns the literal atom DON'T, copying is

suppressed.

7.5.6 HANDLING BUTTON EVENTS IN AN IMAGE OBJECT

 The method for handling button events inside an image object is

stored in the BUTTONEVENTINFN field of the image functions object.

It takes the form:

 Method: <BUTTONEVENTINFN>

 # Arguments: 8

 Arguments: 1) IMAGEOBJ, an image object handle

 2) WINDOWSTREAM, a window or

 stream handle

 3) SELECTION, a selection handle

 4) RELX, the X-coordinate of the cursor

 location relative to the object's

 boundaries

 5) RELY, the Y-coordinate of the cursor

 location relative to the object's

 boundaries

 6) WINDOW, a window handle

 7) HOSTSTREAM, the source stream

 handle

 8) BUTTON, the mouse button that was

 pressed

 Value: <user defined>

 The BUTTONEVENTINFN method is invoked when you press a

mouse button while the cursor is located inside some object displayed on

the screen. The associated function should decide whether or not to

handle the button event. One option is to track the cursor inside the object

319

as the mouse moves. When the cursor leaves the object, the function

should relinquish control.

 When this function is called, a button has been pressed. It should

support the button-down protocol for descending inside composite

objects contained within the current object. If the

BUTTONEVENTINFN function returns NIL, TEdit treats the button

press as a selection at its level 1.

 When the BUTTONEVENTINFN function is called, the window's

clipping region and offsets are changed so that the lower left corner of

the object has the coordinates (0,0). This restricts changes to the object.

7.5.7 HANDLING BUTTON EVENTS DURING COPYING

 The method for handling button events inside an image object while

copying it is stored in the COPYBUTTONEVENTINFN field of the

image functions object. It takes the form:

 Method: <COPYBUTTONEVENTINFN>

 # Arguments: 2

 Arguments: 1) IMAGEOBJ, an image object handle

 2) WINDOWSTREAM, a window or

 stream handle

 Value: <user defined>

 The COPYBUTTONEVENTINFN is invoked when you press a

mouse button while the cursor is inside an image object and you are

holding down the copy key.

7.5.8 WHEN MOVING AN IMAGE OBJECT

 The method for handling the movement of an object by TEdit is

stored in the WHENMOVEDFN field of the image functions object. It

takes the form:

 Method: <WHENMOVEDFN>

 # Arguments: 4

 Arguments: 1) IMAGEOBJ, an image object handle

320

 2) TARGETWINDOWSTREAM, the

 target window, or

 3) SOURCEHOSTSTREAM, a

 image stream handle

 4) TARGETHOSTSTREAM, an image

 stream handle

 Value: <user defined>

 The WHENMOVEDFN method is invoked when TEdit performs a

MOVE operation on the object. This allows you to perform

housekeeping chores related to the object and its environment.

7.5.9 WHEN INSERTING AN IMAGE OBJECT

 The method for handling the insertion of an image object is stored

in the WHENINSERTEDFN field of the image functions object. It takes

the form:

 Method: <WHENINSERTEDFN>

 # Arguments: 4

 Arguments: 1) IMAGEOBJ, an image object handle

 2) TARGETWINDOWSTREAM, the

 target window or stream handle

 3) SOURCEHOSTSTREAM, an image

 stream handle

 4) TARGETHOSTSTREAM, an image

 stream handle

 Value: <user defined>

 The WHENINSERTEDFN method is invoked when TEdit inserts a

copy of the object in a document. This allows you to perform

housekeeping chores associated with the object and its new environment.

7.5.10 WHEN DELETING AN IMAGE OBJECT

 The method for handling the deletion of an image object is stored in

the WHENDELETEDFN field of the image functions object. It takes the

form:

321

 Method: <WHENDELETEDFN>

 # Arguments: 2

 Arguments: 1) IMAGEOBJ, an image object handle

 2) TARGETWINDOWSTREAM, a

 window or stream handle

 Value: <user defined>

 The WHENDELETEDFN method is invoked when TEdit performs

a delete operation on the object. This allows you to perform

housekeeping chores associated with the object's environment.

7.5.11 NOTIFYING AN IMAGE OBJECT WHEN COPIED

 The method for handling the copying of an image object is stored in

the WHENCOPIEDFN field of the image functions object. It takes the

form:

 METHOD: <WHENCOPIEDFN>

 # Arguments: 4

 Arguments: 1) IMAGEOBJ, an image object handle

 2) TARGETWINDOWSTREAM, the

 target window or stream handle

 3) SOURCEHOSTSTREAM, an image

 stream handle

 4) TARGETHOSTSTREAM, an image

 stream handle

 Value: <user defined>

 The WHENCOPIEDFN method is invoked when TEdit performs a

copying operation on the object. It is called in addition to, but after, the

COPYFN method described above.

7.5.12 NOTIFYING AN IMAGE OBJECT WHEN OPERATED ON

 The method for handling editing operations upon an image object is

stored in the WHENOPERATEDONFN field of the image functions

object. It takes the form:

 Method: <WHENOPERATEDONFN>

322

 # Arguments: 5

 Arguments: 1) IMAGEOBJ, an image object handle

 2) WINDOWSTREAM, a window or

 stream handle

 3) HOWOPERATEDON, the type of

 operation

 4) SELECTION, a TEdit selection

 handle

 5) HOSTSTREAM, an image stream

 handle

 Value: <user defined>

 The WHENOPERATEDONFN method is invoked when an image

object has been selected for editing. This allows you to perform any pre-

editing activities or to invoke the proper editing program (for example,

the bitmap editor).

7.5.13 CONVERTING AN IMAGE OBJECT FOR PRINTING

 The method for handling the conversion of an image object to

something that can be printed in documents is stored in the

PREPRINTFN field of the image functions object. It takes the form:

 Method: <PREPRINTFN>

 # Arguments: 1

 Arguments: 1) IMAGEOBJ, an image object handle

 Value: An Interlisp object that can be printed.

 The PREPRINTFN method is invoked to convert the object to

something that can be printed by PRIN1 or PRIN2. It returns an object

that the receiving window can print to obtain a character representation

of the object. Consider the following example: If the value of

PREPRINTFN is NIL, then the value of the OBJECTDATUM field is

used.

323

7.6 READING AND WRITING IMAGE OBJECTS

 Image objects may be read from and written to files stored on

external disks or at other nodes in the network. Interlisp uses HREAD

and HPRINT to actually read and write the data to/from the file.

7.6.1 READING AN IMAGE OBJECT

 You may read an image object from a file using the function

READIMAGEOBJ:

 Function: READIMAGEOBJ

 # Arguments: 3

 Arguments: 1) STREAM, a file stream

 2) GETFN, an image construction

 function

 3) NOERROR, a flag to ignore errors

 Value: An image object handle.

 READIMAGEOBJ reads the description of an image object from

the file which is accessed by STREAM. Reading begins at the current

file position. It uses the method specified by GETFN to actually

construct the image object. GETFN is first validated by Interlisp.

 If GETFN cannot be validated or isn't defined, READIMAGEOBJ

returns an encapsulated image object. This is an image object that

captures all the information safely. It will display on the screen as a

rectangle with the legend "Unknown IMAGEOBJ Type" and the name

of the required GETFN. Selecting an encapsulated image object causes

Interlisp to attempt to read the object from the file again. This allows you

to load the necessary code required to construct the object description.

 You cannot save encapsulated image objects on files because there

is not enough information available to the system to copy the object to

the file.

324

7.6.2 WRITING AN IMAGE OBJECT

 You may write an image object to a file using the function

WRITEIMAGEOBJ:

 Function: WRITEIMAGEOBJ

 # Arguments: 2

 Arguments: 1) IMAGEOBJ, an image object handle

 2) STREAM, a file stream

 Value: The file stream handle.

 WRITEIMAGEOBJ prints a call to READIMAGEOBJ on the file

so that the image object will be reconstructed in memory when it is

encountered while reading the file. Then, it invokes the PUTFN method

to write a description of the image object given by IMAGEOBJ on

STREAM. Consider the following example:

7.7 COPYING IMAGE OBJECTS BETWEEN WINDOWS

 To copy an image object from one window to another window:

 1. Place the cursor on the object@

 2. Press the copy key on the keyboard@

 3. Press the LEFT mouse button@

 When this sequence of events occurs, the

COPYBUTTONEVENTFN of the source window is invoked. If this

window supports copy-selection, then the implementing function will

track the mouse as it moves the cursor across the display screen. When

the button is released, the COPYBUTTONEVENTFN should create an

image object from the selected information and invoke COPYINSERT

to insert it into the current TTY window. COPYINSERT invokes the

COPYINSERTFN function of the window to insert the image object.

This permits the source and destination windows to independently

determine how they will handle the copying of image objects.

 If the COPYBUTTONEVENTFN is NIL, the BUTTONEVENTFN

will be called instead.

325

 If the COPYINSERTFN is NIL, COPYINSERT will convert the

image object to a string by calling the PREPRINTFN method of the

image object and insert it by calling BKSYSBUF.

7.7.1 COPYING AND INSERTING IMAGE OBJECTS

 You may insert a copy of an image object into the window which

currently possesses the TTY using the function COPYINSERT:

 Function: COPYINSERT

 # Arguments: 1

 Arguments: 1) IMAGEOBJ, an image object handle

 Value: The image object handle.

 COPYINSERT inserts a copy of the image object specified by

IMAGEOBJ in the window which currently possesses the TTY process.

If the window has a COPYINSERTFN property, its valued is called with

the image object handle and the window handle as arguments.

 If no COPYINSERTFN exists for the window, BKSYSBUF is

invoked with the result of calling the PREPRINTFN method which is

given the image object handle as an argument. BKSYSBUF uses PRIN2

to insert the result into the input stream.

7.8 IMAGE STREAMS

 Interlisp performs all image operations through the use of device-

independent graphics (DIG) data structures and functions. DIG is

implemented through the use of image streams, which are identified by

the occurrence of an IMAGEOPS field in the data structure. The

IMAGEOPS field specifies an IMAGEOPS object which is a vector of

meaningful graphics operations.

 An image stream is an output stream which knows how to process

graphical display commands for its associated graphics display device.

Each image stream has an image stream type which specifies the type of

graphic display device that it can process graphics commands for. There

are three built-in image types: DISPLAY, INTERPRESS, and PRESS.

326

 The display streams discussed in Section 3.5 are an instance of the

image stream of type DISPLAY. Not all graphics operations can be

properly executed for all image stream types.

7.8.1 THE STRUCTURE OF AN IMAGE STREAM OBJECT

 The structure of an image stream corresponds to that of a display

stream in that they share many of the same fields. However, the contents

are interpreted differently. The structure appears as depicted in Table 7-

2.

Table 7-2. Image Stream Object

Field Value

CHARSET 0

F10 NIL

FW9 0

CBUFMAXSIZE 512

STRNBOUTFN \BUFFERED.BOUT

STRMBINFN \BUFFERED.BIN

EXTRASTREAMOP NIL

IMAGEDATA {PRESSDATA}#67,37610

IMAGEOPS {IMAGEOPS}#67,54624

OTHERPROPS NIL

ENDOFSTREAMOP \EOSERROR

OUTCHARFN \OUTCHARFN.PRESS

CBUFDIRTY NIL

EOLCONVENTION 0

LINELENGTH 94

DIRTYBITS 0

CHARPOSITION 0

MAXBUFFERS 0

FW8 0

CPAGE 0

BUFFS NIL

BYTESIZE 8

FW7 0

FW6 0

F5 NIL

327

F4 NIL

F3 NIL

F2 NIL

F1 {COREFILEINFOBLK}#71,302

00

EOFFSET 0

EPAGE 0

VALIDATION NIL

DEVICE {FDEV}#77,115000

FULLFILENAME {LPT}.;1

ACCESSBITS 6

USERVISIBLE T

USERCLOSABLE T

MULTIBUFFERHINT NIL

REVALIDATEFLG NIL

NONDEFAULTDATEFL

G

NIL

CBUFPTR NIL

EXTENDABLE T

BOUTABLE T

BINABLE T

CBUFSIZE 0

COFFSET 0

7.8.1.1 Fetching/Replacing the Fields of an Image Stream

 You may fetch or replace the value of a field of an image stream

using the function IMAGESTREAMPROP:

 Function: IMAGESTREAMPROP

 # Arguments: 1

 Arguments: 1) ARGS, a list of arguments

 Value: The value of a field of an image stream

 object.

 IMAGESTREAMPROP is an Nlambda, no spread function. It has

the following arguments presented in Table 7-3.

Table 7-3. IMAGESTREAMPROP Arguments

328

Argument Usage

INSTANCE An instance of an image stream structure

FIELD The name of a field in the image stream structure

VALUE A new value for the field of an image stream

structure (optional)

A sample definition for IMAGESTREAMPROP is:

<-(DEFINEQ

 (IMAGESTREAMPROP

 (NLAMBDA ARGS

 (RECORDACCESS (CADR ARGS)

 (EVAL (CAR ARGS))

 '(DATATYPE STREAM

 ((COFFSET WORD)

 (CBUFSIZE WORD)

 (BINABLE FLAG)

 (BOUTABLE FLAG)

 (EXTENDABLE FLAG)

 (NIL BITS 5)

 (CBUFPTR POINTER)

 (NONDEFAULTDATEFLG FLAG)

 (REVALIDATEFLG FLAG)

 (MULTIBUFFERHINT FLAG)

 (USERCLOSEABLE FLAG)

 (USERVISIBLE FLAG)

 (ACCESSBITS BITS 3)

 (FULLFILENAME POINTER)

 (DEVICE POINTER)

 (VALIDATION POINTER)

 (EPAGE WORD)

 (EOFFSET WORD)

 (F1 POINTER)

 (F2 POINTER)

 (F3 POINTER)

 (F4 POINTER)

 (F5 POINTER)

 (FW6 WORD)

 (FW7 WORD)

 (BYTESIZE BYTE)

 (BUFFS POINTER)

329

 (CPAGE WORD)

 (FW8 WORD)

 (MAXBUFFERS WORD)

 (CHARPOSITION WORD)

 (DIRTYBITS WORD)

 (LINELENGTH WORD)

 (EOLCONVENTION BITS 2)

 (CBUFDIRTY FLAG)

 (NIL BITS 5)

 (OUTCHARFN POINTER)

 (ENDOFSTREAMOP POINTER)

 (OTHERPROPS POINTER)

 (IMAGEOPS POINTER)

 (IMAGEDATA POINTER)

 (EXTRASTREAMOP POINTER)

 (STRMBINFN POINTER)

 (STRMBOUTFN POINTER)

 (CBUFMAXSIZE WORD)

 (FW9 WORD)

 (F10 POINTER)

 (CHARSET BYTE))

 (if (EQ (LENGTH ARGS) 3)

 then

 (QUOTE FREPLACE)

 else

 (QUOTE FFETCH))

 (CADDR ARGS))

))

(IMAGESTREAMPROP)

 This function is not defined in the standard Interlisp sysout.

7.8.2 DEFINING A NEW IMAGE STREAM TYPE

 You may define new image stream types by adding their definitions

to the value of the system variable IMAGESTREAMTYPES. Its initial

value is:

(4045

 (OPENSTREAM OPEN4045STREAM)

 (FONTCREATE \CREATE4045FONT)

330

 (FONTSAVAILABLE \SEARCH4045FONTS)

 (CREATECHARSET \CREATECHARSET.4045))

--Deprecated------------------------------

(INTERPRESS

 (OPENSTREAM OPENIPSTREAM)

 (FONTCREATE \CREATEINTERPRESSFONT)

 (FONTSAVAILABLE \SEARCHINTERPRESSFONTS)

 (CREATECHARSET \CREATECHARSET.IP))

(PRESS

 (OPENSTREAM OPENPRSTREAM)

 (FONTCREATE \CREATEPRESSFONT)

 (FONTSAVAILABLE \SEARCHPRESSFONTS)

 (CREATECHARSET \CREATECHARSET.PRESS))

(PRESSDISPLAY

 (FONTCREATE \FONTCREATE.HCPYMODE.PRESS)

 (CREATECHARSET \FONTCREATE.HCPYMODE.PRESS))

(INTERPRESSDISPLAY

 (FONTCREATE \FONTCREATE.HCPYMODE.INTERPRESS)

 (CREATECHARSET \FONTCREATE.HCPYMODE.INTERPRESS))

--Deprecated------------------------------
(DISPLAY

 (OPENSTREAM

 (LAMBDA (FILE)

 (GETSTREAM

 (CREATEW NIL

 (COND

 ((EQ FILE '{LPT})

 "Display image stream")

 (T FILE))))))

 (FONTCREATE \CREATEDISPLAYFONT)

 (FONTSAVAILABLE \SEARCHDISPLAYFONTS)

))

7.8.3 OPENING AN IMAGE STREAM

 You may open an image stream of a particular type using the

function OPENIMAGESTREAM:

 Function: OPENIMAGESTREAM

 # Arguments: 3

331

 Arguments: 1) FILE, a file name

 2) IMAGETYPE, the type of image

 stream

 3) OPTIONS, an options list

 Value: An image stream handle.

 OPENIMAGESTREAM opens an image stream of the type

specified by IMAGETYPE, which must be one of the image stream types

given in the value of the variable IMAGESTREAMTYPES.

<-(SETQ IMS (OPENIMAGESTREAM "Sample Image Stream"

'DISPLAY NIL))

{STREAM}#64,120404

7.8.3.1 Interpreting FILE

 The image stream is opened on the file specified by FILE, which is

interpreted as follows:

 If IMAGETYPE is DISPLAY, then the image stream is opened

as a window on the display screen. FILE becomes the title of

the window. You are prompted to shape the window on the

screen.

 If FILE is the name of a printer, the graphics commands are

stored in a temporary file until the image stream is closed by

CLOSEF. Then, the commands are automatically sent to the

printer.

 FILE may be the name of a disk file in which case all graphics

commands are stored on the file. The file may be sent to the

printer after closing the image stream using

SEND.FILE.TO.PRINTER or LISTFILES.

7.8.3.2 Inferring the Image Type

 If IMAGETYPE is NIL, the image type is inferred from the file

name extension and the EXTENSIONS properties of the list

PRINTFILETYPES. These extensions may be interpreted as follows:

 *** Deprecated ***

332

 The extensions IP, IPR, and INTERPRESS indicate a file

having an Interpress format.

 The extension PRESS indicates a file having a Press format.

*** Deprecated ***

 If there is no extension (e.g., the file name has the form

{LPT}<PRINTERNAME>), then IMAGETYPE assumes the

type of the associated printer.

 If FILE has no extensions and is not a printer device (e.g., no

{LPT} prefix), then IMAGETYPE uses as a default type the

type of the first printer listed in DEFAULTPRINTINGHOST.

7.8.3.3 The Options List

 OPTIONS is a list of optional directives organized in property list

format that modifies the behavior of the image stream. The following

properties are currently defined as presented in Table 7-4.

Table 7-4. Optional Directives

Directive Usage

REGION The value of this option is the region on the page that

text will fill. The position 0,0 is the lower left corner

of the page. It is used to initialize

DSPLEFTMARGIN, DSPRIGHTMARGIN,

DSPBOTTOMMARGIN, and DSPTOPMARGIN. In

its absence, the default value is found in

DEFAULTPAGEREGION.

FONTS The value of this option is a list of fonts that may be

used in the image stream. Any font can be used in the

image stream (subject to limitations of the physical

graphic display device), but certain types of image

streams operate more efficiently if their fonts are

known in advance of printing.

HEADING The value of this option is the heading to be placed at

the top of each page. The heading is placed there

automatically by Interlisp. If NIL, no heading is

displayed.

333

7.8.4 TESTING FOR AN IMAGE STREAM

 You may test whether an object is an image stream and also its

specific type using the function IMAGESTREAMP:

 Function: IMAGESTREAMP

 # Arguments: 2

 Arguments: 1) X, an image stream handle

 2) IMAGETYPE, an image stream type

 Value: X, if it is an image stream;

 otherwise, NIL.

 IMAGESTREAMP is a nospread function. IMAGESTREAMP tests

whether or not X is an image stream if IMAGETYPE is NIL. Consider

the following example:

<-(IMAGESTREAMTYPE IMS)

{STREAM}#64,120404

 If IMAGETYPE is non-NIL, then IMAGESTREAMP tests whether

or not X is an image stream of the specified type. Consider the following

example:

<-(IMAGESTREAMTYPE IMS 'DISPLAY)

{STREAM}#64,120404

<-(IMAGESTREAMTYPE IMS '4045)

NIL

7.8.5 GETTING THE IMAGE STREAM TYPE

 You may obtain the image stream type using the function

IMAGESTREAMTYPE:

 Function: IMAGESTREAMTYPE

 # Arguments: 1

 Arguments: 1) STREAM, an image stream handle

 Value: The image stream type of STREAM.

334

 IMAGESTREAMTYPE returns the image stream type of the image

stream given by STREAM. Consider the following examples:

<-(IMAGESTREAMTYPE IMS)

DISPLAY

<-(IMAGESTREAMTYPE (TTYDISPLAYSTREAM))

DISPLAY

7.8.6 TESTING THE TYPE OF AN IMAGE STREAM

 You may test the type of an image stream using the function

IMAGESTREAMTYPEP:

 Function: IMAGESTREAMTYPEP

 # Arguments: 2

 Arguments: 1) STREAM, an image stream handle

 2) TYPE, an image stream type

 Value: T, if the image stream is of TYPE.

Consider the following examples:

<-(IMAGESTREAMTYPEP IMS 'DISPLAY)

T

<-(IMAGESTREAMTYPE IMS 'PRESS)

NIL

 Note that if TYPE is NIL, the default type assumed is DISPLAY.

<-(IMAGESTREAMTYPEP ((TTYDISPLAYSTREAM))

T

7.9 IMAGE STREAM METHODS

 An image stream has an IMAGEOPS field which contains a vector

of graphics operations to which the image object will respond when sent

335

the appropriate messages. The structure of an IMAGEOPS object for a

Press printer is:

--Deprecated------------------------------

IMCHARSET NILL

IMWRITEPIXEL NILL

IMSCALEDBITBLT \SCALEDBITBLT.PRESS

IMFILLPOLYGON NILL

IMDRAWPOLYGON NILL

IMRESET NILL

IMCLIPPINGREGION \DSPCLIPPINGREGION.PRESS

IMBITMAPSIZE \BITMAPSIZE.PRESS

IMBACKCOLOR NILL

IMCHARWIDTHY NILL

IMCHARWIDTH \CHARWIDTH.PRESS

IMSTRINGWIDTH \STRINGWIDTH.PRESS

IMCOLOR NILL

IMOPERATION NILL

IMFONTCREATE PRESS

IMSPACEFACTOR \DSPSPACEFACTOR.PRESS

IMBOTTOMMARGIN \DSPBOTTOMMARGIN.PRESS

IMTOPMARGIN \DSPTOPMARGIN.PRESS

IMTERPRI NEWLINE.PRESS

IMSCALE \PRESSINITA0017

IMMOVETO \PRESSINITA0039

IMNEWPAGE NEWPAGE.PRESS

IMBITBLT \BITBLT.PRESS

IMBLTSHADE \BLTSHADE.PRESS

IMFILLCIRCLE \PRESSINITA0013

IMDRAWELLIPSE \DRAWELLIPSE.PRESS

IMDRAWCURVE \DRAWCURVE.PRESS

IMDRAWLINE \DRAWLINE.PRESS

IMLINEFEED \DSPLINEFEED.PRESS

IMRIGHTMARGIN \DSPRIGHTMARGIN.PRESS

IMLEFTMARGIN \DSPLEFTMARGIN.PRESS

IMFONT \DSPFONT.PRESS

IMYPOSITION \DSPYPOSITION.PRESS

IMXPOSITION \DSPXPOSITION.PRESS

IMCLOSEFN \CLOSEF.PRESS

336

IMAGETYPE PRESS

--Deprecated------------------------------

 Many of the entries in this sample object have the suffix “.PRESS”

because the type of object is an object prepared for a PRESS printer.

When you create image objects of your own choosing, you will assign

functions corresponding to the uses of the image object within your

applications.

7.9.1 THE IMAGE TYPE

 The image type field specifies the type of image object. It is used to

record information used by other functions in Interlisp. Its value can be

one of those specified in Table 7-5.

Table 7-5. Image Type Values

Type Usage

DISPLAY Indicates the image is to be displayed on the

monochrome display screen.

(COLOR DISPLAY) Indicates the image is to be displayed on a color

display screen

 The following values are deprecated.

PRESS Indicates the image is to be displayed on a PRESS

printer.

INTERPRESS >Indicates the image is to be displayed on an

Interpress printer.

7.9.2 FONT SPECIFICATION

 You may specify the device for which the appropriate font is to be

chosen by assigning a value to IMFONTCREATE. Its value is a device

name which is passed to FONTCREATE when fonts are created for the

stream. In the example above, the name of the device is PRESS

indicating the fonts should be created for a PRESS printer. Because some

printers do not support certain fonts, it is important to indicate the type

of device to be used to display the image object.

337

7.9.3 FETCHING/REPLACING IMAGEOPS FIELDS

 You may fetch or replace the values of fields of an IMAGEOPS

structure using the function IMAGEOPSPROP:

 Function: IMAGEOPSPROP

 # Arguments: 1

 Arguments: 1) ARGS, a variable bound to the list of

 arguments

 Value: The value of the field.

 IMAGEOPSPROP is an Nlambda, nospread function. It requires the

following arguments:

 INSTANCE: An instance of an IMAGEOPS structure.

 FIELD: The name of a field in an IMAGEOPS structure.

 VALUE: A new value to be assigned to the field (optional).

 A sample definition for IMAGEOPSPROP, which I determined by

inspecting the FETCHFN of an INSPECTW associated with an image

object might be:

<-(DEFINEQ (IMAGEOBJPROP (NLAMBDA ARGS)

 (RECORDACCESS (CADR ARGS)

 (EVAL (CAR ARGS))

 '(DATATYPE IMAGEOPS

 (IMAGETYPE

 IMCLOSEFN

 IMXPOSITION

 IMYPOSITION

 IMFONT

 IMLEFTMARGIN

 IMRIGHTMARGIN

 IMLINEFEED

 IMDRAWLINE

 IMDRAWCURVE

 IMDRAWCIRCLE

 IMDRAWELLIPSE

 IMFILLCIRCLE

 IMBLTSHADE

 IMBITBLT

 IMNEWPAGE

338

 IMMOVETO

 IMSCALE

 IMTERPRI

 IMTOPMARGIN

 IMBOTTOMMARGIN

 IMSPACEFACTOR

 IMFONTCREATE

 IMOPERATION

 IMCOLOR

 IMSTRINGWIDTH

 IMCHARWIDTH

 IMCHARWIDTHY

 IMBACKCOLOR

 IMBITMAPSIZE

 IMCLIPPINGREGION

 IMRESET

 IMDRAWPOLYGON

 IMFILLPOLYGON

 IMSCALEDBITBLT

 IMWRITEPIXEL

 IMCHARSET))

 (if (EQ (LENGTH ARGS) 3)

 then

 (QUOTE FREPLACE)

 else

 (QUOTE FFETCH))

 (CADDR ARGS))

))

(IMAGEOPSPROP)

 This function both fetches and replaces fields of an IMAGEOPS

structure. Note that it determines that it must replace the value of a field

by examining the length of the argument list. This function is not defined

in the standard Interlisp sysout.

7.9.4 IMAGE STREAM METHODS

 The methods associated with an image stream are described in the

following sections. The value of each method should be a function which

is called under the appropriate circumstances as described.

339

 The code in the following sections is meant to suggest how to write

the prescribed function. You will have to customize the functions for

your individual applications and devices. Note that the value returned by

the image stream method depends on the value returned by the function

that you have specified as the value of the method.

7.9.4.1 Closing a Stream

 The IMCLOSEFN method is called before the stream is closed by

CLOSEF. It takes the form:

 Method: <IMCLOSEFN>

 # Arguments: 1

 Arguments: 1) STREAM, a stream handle

 Value: <file name>

 This method is used to cleanup the image prior to printing. It may

flush buffers, write header or trailer information, or perform other

housekeeping tasks. Initially, IMCLOSEFN has the value NILL.

 Consider the following definition for the function

IM.CLOSE.STREAM. It saves the page buffer for the page that you have

been constructing and closes the stream.

(DEFINEQ (IM.CLOSE.STREAM (STREAM)

 (PROG (DD)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SAVE.PAGE.BUFFER

 (DISPLAYDATAPROP DD 'DDDestination) STREAM)

 (* The file information block is stored in F1.)

 (CLOSEF (IMAGESTREAMPROP STREAM 'F1))

)))

 The function SAVE.PAGE.BUFFER should copy the bits in the

page buffer, which is a bit map, to the appropriate file stream. How you

do this depends on the device for which you are writing the image stream

methods.

340

7.9.4.2 Drawing a Line

 The IMDRAWLINE method is used to draw a line in the stream

from the point (X1,Y1) to the point (X2,Y2). It takes the form:

 Method: <IMDRAWLINE>

 # Arguments: 9

 Arguments: 1) STREAM, a stream handle

 2) X1, an integer

 3) Y1, an integer

 4) X2, an integer

 5) Y2, an integer

 6) WIDTH, the width of the line

 7) OPERATION, the bitblt operation

 8) COLOR, the color of the line

 9) DASHING, a dashing flag

 Value: The position (X2,Y2).

 IMDRAWLINE typically defaults to calling DRAWLINE.

Consider the function IM.DRAW.LINE which draws a line on an

arbitrary stream.

(DEFINEQ (IM.DRAW.LINE (STREAM X1 Y1 X2 Y2 WIDTH OPERATION

COLOR)

 (PROG (DD)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (\CLIPANDDRAWLINE

 (\DSPTRANSFORMX X1 DD)

 (\DSPTRANSFORMY Y1 DD)

 (\DSPTRANSFORMX X2 DD)

 (\DSPTRANSFORMY Y2 DD))

 (if (NULL WIDTH)

 then 1

 else WIDTH)

 (SELECTQ OPERATION

 (NIL (DISPLAYDATAPROP DD 'DDOperation))

 ((REPLACE PAINT INVERT ERASE)

 OPERATION)

 (\ILLEGAL.ARG OPERATION))

 (DISPLAYDATAPROP DD 'DDDestination)

 (DISPLAYDATAPROP DD 'DDClippingLeft)

341

 (SUB1 (DISPLAYDATAPROP DD 'DDClippingRight))

 (DISPLAYDATAPROP DD 'DDClippingBottom)

 (SUB1 (DISPLAYDATAPROP DD 'DDClippingTop))

 STREAM

 COLOR))

 (MOVETO X2 Y2 STREAM)

))

 This function calls the system routine \CLIPANDDRAWLINE to

draw lines with the arguments appropriate to the stream. It leaves the

cursor at the point (X2,Y2) as if it had finished drawing the line.

7.9.4.3 Drawing a Curve

 The IMDRAWCURVE method is used to draw a curve in an image

stream. It takes the form:

 Method: <IMDRAWCURVE>

 # Arguments: 5

 Arguments: 1) STREAM, a stream handle

 2) KNOTS, a list of points along the

 curve

 3) CLOSED, a flag indicating a closed

 curve

 4) BRUSH, the brush type

 5) DASHING, a flag indicating dashing

 Value: The value of STREAM.

 IMDRAWCURVE typically defaults to DRAWCURVE. Consider

the function IM.DRAW.CURVE which is defined below.

(DEFINEQ (IM.DRAW.CURVE (STREAM KNOTS CLOSED BRUSH)

 (SELECTQ (LENGTH KNOTS)

 (0 NIL)

 (1 (if (type? POSITION (CAR KNOTS))

 then

 (DRAWPOINT (fetch XCOORD OF (CAR KNOTS))

 (Fetch YCOORD OF (CAR KNOTS)))

 Else

 (ERROR "Bad knot point:" (CAR KNOTS))

342

))

 (2 (if (OR (type? POSITION (CAR KNOTS))

 (Type? POSITION (CADR KNOTS)))

 Then

 (\LINEWITHBRUSH

 (fetch XCOORD of (CAR KNOTS))

 (fetch YCOORD of (CAR KNOTS))

 (fetch XCOORD of (CADR KNOTS))

 (fetch YCOORD of (CADR KNOTS))

 BRUSH

 DASHING

 STREAM

 \BRUSHBBT)

 else

 (ERROR "Bad knot points: (LIST (CAR KNOTS)

(CADR KNOTS)))

))

 (\CURVE2

 (PARAMETRICSPLINE KNOTS

 CLOSED

 BRUSH

 DASHING

 \BRUSHBBT

 STREAM)

))

 STREAM

))

 This function tests for the length of KNOTS. It treats a null list as

an empty curve. A single point causes the specified brush shape to be

displayed at the point. Two points yields a line connecting them.

Otherwise, \CURVE2, an internal system function is called to draw a

spline through the points.

7.9.4.4 Drawing a Circle

 The IMDRAWCIRCLE method is used to draw a circle on an

image stream. It takes the form:

 Method: <IMDRAWCIRCLE>

 # Arguments: 6

343

 Arguments: 1) STREAM, an image stream handle

 2) CENTERX, the X-coordinate of the

 circle's center

 3) CENTERY, the Y-coordinate of the

 circle's center

 4) RADIUS, the radius of the circle

 5) BRUSH, the brush type used to draw

 the circle

 6) DASHING, a flag controlling dashing

 Value: NIL.

 IMDRAWCIRCLE draws a circle of the given radius around the

point (CENTERX, CENTERY) in image stream coordinates. It uses

DRAWCIRCLE (see Section 12.4.1, II) to actually place the bits.

Consider the function IM.DRAW.CIRCLE which has the following

possible definition:

(DEFINEQ (IM.DRAW.CIRCLE (STREAM CENTER-X CENTER-Y

RADIUS BRUSH)

 (PROG (DD CX CY D X Y)

 (* Test for a proper radius.)

 (if (OR (NOT (NUMBERP RADIUS)) (ILESSP RADIUS 0))

 then (\ILLEGAL.ARG.RADIUS)

 elseif (EQ RADIUS 0)

 then (RETURN NIL))

 (SETQ DD (fetch IMAGEDATA of STREAM))

 (* Set up for the system curve drawing function.)

 (SETUP.FOR.\BBTCURVEPT.)

 (SETQ CX

 (\DSPTRANSFORMX

 (IDIFFERENCE CENTER-X

 (BRUSHWIDTH BRUSH)) DD))

 (SETQ CY

 (\DSPTRANSFORMY

 (IDIFFERENCE CENTER-Y (BRUSHHEIGHT BRUSH)) DD))

 (* Now, if the radius is 1, just put a single brush down.)

 (if (EQ RADIUS 1)

 then (PROGN

 (\CURVEPT CX CY)

344

 (RETURN NIL)

))

 (* Otherwise, draw the top and bottom points of the circle.)

 (\CURVEPT CX (IPLUS CY RADIUS))

 (\CURVEPT CX (IDIFFERENCE CY RADIUS))

LOOP

 (* Update the points to be drawn.)

 (if (IGREATERP 0 D)

 then

 (PROGN

 (SETQ X (ADD1 X))

 (if (IGREATERP (ITIMES (IPLUS D Y) 2) 1)

 then

 (PROGN

 (SETQ D

 (IPLUS D

 (ITIMES (IDIFFERENCE X Y)2)4))

 (SETQ Y (SUB1 Y)))

 else

 (SETQ D (IPLUS D (ITIMES X 2) 1)))

)

 elseif (OR (EQ 0 D) (IGREATERP X D))

 then

 (PROGN

 (SETQ X (ADD1 X))

 (SETQ D

 (IPLUS D

 (ITIMES (IDIFFERENCE X Y) 2) 4))

 (SETQ Y (SUB1 Y)))

 else

 (PROGN

 (SETQ D

 (IPLUS D

 (ITIMES (IDIFFERENCE X Y)2) 4))

 (SETQ Y (SUB1 Y))

))

 (* Draw the rest of the curve points.)

 (if (EQ Y 0)

 then

 (PROGN

 (\CURVEPT (IPLUS CX X) CY)

345

 (\CURVEPT (IDIFFERENCE CX X) CY))

 else

 (PROGN

 (\CIRCLEPTS CX CY X Y)

 (GO LOOP)

))

 (MOVETO CENTER-X CENTER-Y STREAM)

 (RETURN NIL))

))

7.9.5 DRAWING AN ELLIPSE

 The IMDRAWELLIPSE method is used to draw an ellipse on an

image stream. It takes the form:

 Method: <IMDRAWELLIPSE>

 # Arguments: 8

 Arguments: 1) STREAM, an image stream handle

 2) CENTERX, the X-coordinate of the

 center point of the ellipse

 3) CENTERY, the Y-coordinate of the

 center point of the ellipse

 4) SEMIMINIRRADIUS, the minor axis

 radius

 5) SEMIMAJORRADIUS, the major

 axis radius

 6) ORIENTATION, the angular

 orientation of the ellipse

 7) BRUSH, the type of brush to be used

 8) DASHING, a flag controlling dashing

 Value: NIL.

 IMDRAWELLIPSE draws an ellipse of the given proportions (e.g.,

with the radii given by SEMIMINORRADIUS and

SEMIMAJORRADIUS) about the point (CENTERX, CENTERY) in

image stream coordinates with the specified orientation. It uses

DRAWELLIPSE to actually lay down the bits. Consider the following

definition for IM.DRAW.ELLIPSE:

346

(DEFINEQ

 (IM.DRAWELLIPSE (STREAM CENTER-X CENTER-Y SEMIMINOR

 SEMIMAJOR ORIENTATION BRUSH)

 (PROG (CX CY DD X1 X2 Y1 Y2 COS.OF.ORINETATION

 SIN.OF.ORIENTATION MINOR2 MAJOR2 COS2

 SIN2 CY+ CY- Y-OFFSET C1 C2 A1 B1 D)

 (* C1, C2 ARE CURVATURE TERMS)

 (if (OR (EQ 0 SEMIMINOR) (EQ 0 SEMIMAJOR))

 then

 (PROGN

 (MOVETO CENTER-X CENTER-Y STREAM)

 (RETURN NIL)

))

 (* Validate the semiminor and semimajor radii.)

 (if (ILESSP SEMIMINOR 1)

 then

 (\ILLEGAL..ARG.SEMINMINORRADIUS)

 elseif

 (ILESSP SEMIMAJOR 1)

 then

 (\ILLEGAL.ARG.SEMIMAJORRADIUS)

 elseif

 (OR (NULL ORIENTATION) (EQ SEMIMINOR SEMIMAJOR))

 then

 (SETQ ORIENTATION 0)

 elseif

 (NULL (NUMBERP ORIENTATION))

 then

 (\ILLEGAL.ARG.ORIENTATION))

 (SETQ COS.OF.ORIENTATION (COS ORIENTATION))

 (SETQ SIN.OF.ORIENTATION (SIN ORIENTATION))

 (SETQ COS2 (FTIMES COS.OF.ORIENTATION

COS.OF.ORIENTATION))

 (SETQ SIN2 (FTIMES SIN.OF.ORIENTATION SIN.OF.ORIENTATION))

 (SETQ MINOR2 (ITIMES SEMIMINOR SEMIMINOR))

 (SETQ MAJOR2 (ITIMES SEMIMAJOR SEMIMAJOR))

 (.SETUP.FOR.\BBTCURVEPT.)

 (* Establish the center points.)

 (SETQ DD (fetch DISPLAYDATA of STREAM))

 (SETQ CX

 (\DSPTRANSFORMX

347

 (IDIFFERENCE CENTER-X (BRUSHWIDTH BRUSH))

 DD))

 (SETQ CY

 (\DSPTRANSFORMY

 (IDIFFERENCE CENTER-Y (BRUSHHEIGHT BRUSH))

 DD))

 (SETQ C1 (FPLUS 2 (FTIMES MAJOR2 COS2) (FTIMES MINOR2

SIN2)))

 (SETQ C2

 (FTIMES

 (FPLUS (FTIMES MINOR2 COS2) (FTIMES MAJOR2 SIN2))

 8))

 (SETQ G

 (FTIMES COS.OF.ORIENTATION

 SIN.OF.ORIENTATION

 (TIMES (DIFFERENCE MINOR2 MAJOR2) 2)

))

 (SETQ Y-OFFSET (QUOTIENT (TIMES SEMIMINOR SEMIMAJOR)

(SQRT A)))

 (SETQ CY+ (IPLUS CY Y-OFFSET))

 (SETQ CY- (IDIFFERENCE CY Y-OFFSET))

 (SETQ U (TIMES (FTIMES C1 (TIMES Y-OFFSET 2)) 2))

 (SETQ V (TIMES (FTIMES G Y-OFFSET) 4)))

 (SETQ K

 (TIMES

 (DIFFERENCE

 (TIMES MINOR2 MAJOR2)

 (FTIMES C1 (TIMES Y-OFFSET Y-OFFSET)))

 4))

 (SETQ C1 (TIMES C1 8))

 (SETQ G (TIMES G 4))

 (* Begin drawing in Octant 1)

 (SETQ X1 1)

 (SETQ Y1 0)

 (if (MINUSP V)

 then

 (PROGN

 (SETQ Y2 1)

 (SETQ B1

 (IMINUS

 (IPLUS V

 (IQUOTIENT C1 8)

348

 (HALVE U))))

 (SETQ A1 (IDIFFERENCE U B1))

 (SETQ D

 (IPLUS B1

 (QUOTIENT C1 8)

 (IMINUS (IPLUS K (HALVE U)))

))

))

MOVE

 (if

 (MINUSP D)

 then

 (PROGN

 (SETQ X (IPLUS X X1))

 (SETQ Y (IPLUS Y Y1))

 (SETQ D (IPLUS B1 D)))

 else

 (PROGN

 (SETQ X (IPLUS X X2))

 (SETQ Y (IPLUS Y Y2))

 (SETQ D (IDIFFERENCE D A1))

))

 (if

 (MINUSP X)

 then

 (PROGN

 (MOVETO CENTER-X CENTER-Y STREAM)

 (RETURN NIL

))

 (\CURVEPT (IPLUS CX X) (IPLUS CY+ Y))

 (\CURVEPT (IDIFFERENCE CX X) (IDIFFERENCE CY- Y))

 (if

 (MINUSP B1)

 then

 (GO SQUARE-MOVE))

DIAGONAL-MOVE

 (*

 Make a diagonal transition in an octant

)

349

 (OR (MINUSP A1) (GO MOVE))

 (SETQ X1 (IDIFFERENCE X2 X1))

 (SETQ Y1 (IDIFFERENCE Y2 Y1))

 (SETQ B1 (IPLUS B1 A1))

 (SETQ D (IPLUS B1 (IMINUS D) (IMINUS (HALVE (ADD1 A1)))))

 (OR (MINUSP B1) (GO MOVE))

SQUARE-MOVE

 (*

 Make a vertical/horizontal transition in an octant

)

 (if

 (ZEROP X1)

 then

 (SETQ X2 (IMINUS X2))

 else

 (SETQ Y2 (IMINUS Y2)))

 (SETQ D (IDIFFERENCE (IDIFFERENCE B1 A1) D))

 (GO DIAGONAL-MOVE))

))

7.9.6 FILLING A POLYGON

 The IMFILLPOLYGON method is used to fill an arbitrary

polygon with a given texture. It takes the form:

 Method: <IMFILLPOLYGON>

 # Arguments: 3

 Arguments: 1) STREAM, an image stream descriptor

 2) POINTS, a list of points describing

 the polygon

 3) TEXTURE, a texture object handle

 Value: <user-defined>

 IMFILLPOLYGON shades the arbitrary polygon described by

POINTS with the specified texture.

350

7.9.7 FILLING A CIRCLE

 The IMFILLCIRCLE method is used to fill a circle with a given

texture. It takes the form:

 Method: <IMFILLCIRCLE>

 # Arguments: 5

 Arguments: 1) STREAM, an image stream descriptor

 2) CENTERX, the X-coordinate of the

 center of the circle

 3) CENTERY, the Y-coordinate of the

 center of the circle

 4) RADIUS, the radius of the circle

 5) TEXTURE, a texture object

 Value: <user-defined>

 IMFILLCIRCLE fills a circle of a given radius whose center is

located at the point (CENTERX, CENTERY) in the image stream with

the specified texture. The function IMFILLCIRCLE might be used to fill

a circle:

(DEFINEQ

 (IMFILLCIRCLE (STREAM CENTER-X CENTER-Y RADIUS)

 (PROG (OPERATION DD X Y DBM D CX CY TEXTURE)

 (* DBM is the destination bit map.)

 (if (OR (NOT (NUMBERP RADIUS)) (ILESSP RADIUS 0))

 then (\ILLEGAL.ARG.RADIUS))

 (SETQ X 0)

 (SETQ Y RADIUS)

 (SETQ D (ITIMES 2 (SUB1 RADIUS)))

 (SETQ DD (fetch IMAGEDATA of STREAM))

 (SETQ OPERATION (fetch DDOPERATION of DD))

 (SETQ DBM (fetch DDDestination of DD))

 (SETQ TEXTURE (fetch DDTexture of DD))

 (SETQ CX (\DSPTRANSFORMX CENTER-X DD))

351

 (SETQ CY (\DSPTRANSFORMY CENTER-Y DD))

LOOP

 (if (IGREATERP 0 D)

 then

 (PROGN

 (SETQ X (ADD1 X))

 (if (IGREATERP (ITIMES (IPLUS D Y) 2) 1)

 then

 (SETQ D

 (IPLUS (ITIMES (IDIFFERENCE X Y) 2) 4)))

 else

 (SETQ D (IPLUS D (ITIMES X 2) 1))))

 elseif (OR (ZEROP D) (IGREATERP X D))

 then

 (PROGN

 (SETQ X (ADD1 X))

 (SETQ D (IPLUS (ITIMES (IDIFFERENCE X Y) 2) 4)))

 else

 (SETQ D (IPLUS (IDIFFERENCE D (ITIMES Y 2)) 3)))

 (* Draw the middle line.)

 (if (ZEROP Y)

 then

 (PROGN

 (\FILLCIRCLEBLT CX CY X Y)

 (SETQ Y (SUB1 Y))

 (GO LOOP)

))

 (MOVETO CENTER-X CENTER-Y STREAM)

 (RETURN NIL)

))

7.9.8 SHADING THE OBJECT

 The IMBLTSHADE method is used to shade a region of the

specified image stream with the given texture. It takes the form:

352

 Function: <IMBLTSHADE>

 # Arguments: 8

 Arguments: 1) TEXTURE, a texture object

 2) STREAM, an image stream

 descriptor

 3) DESTINATIONLEFT, the

 X-coordinate of the region to be shaded

 4) DESTINATIONBOTTOM, the

 Y-coordinate of the region to be shaded

 5) WIDTH, the width of the region to

 be shaded

 6) HEIGHT, the height of the region to

 be shaded

 7) OPERATION, a BITBLT operation

 8) CLIPPINGREGION, a region

 descriptor

 Value: <user-defined>

 IMBLTSHADE fills the region within STREAM of the given

dimensions (DESTINATIONLEFT, DESTINATIONBOTTOM,

WIDTH, HEIGHT) with the given texture. Its effect is mediated both by

the clipping region and the operation.

7.9.9 BIT-BLITTING TO THE OBJECT

 The IMBITBLT method determines how to bit-blit data into the

specified stream. It takes the form:

 Method: <IMBITBLT>

 # Arguments: 15

 Arguments: 1) SOURCEBITMAP, the source bit

 map handle

 2) SOURCELEFT, the X-coordinate of

 the bits to be copied

 3) SOURCEBOTTOM, the Y

 coordinate of the bits to be copied

 4) STREAM, the destination stream

 handle

 5) DESTINATIONLEFT, the X

353

 coordinate of the location where

 bits are to be placed

 6) DESTINATIONBOTTOM, the Y

 coordinate of the location

 where bits are to be placed

 7) WIDTH, the width of the rectangle to

 copy

 8) HEIGHT, the height of the rectangle

 to copy

 9) SOURCETYPE,

 10) OPERATION, the bitblt operation

 11) TEXTURE, a texture handle

 12) CLIPPINGREGION, a clipping

 region

 13) CLIPPEDSOURCELEFT, left

 coordinate of the clipping region

 coordinate of the clipping region

 15) SCALE, a scaling factor

 Value: <user-defined>

7.9.10 Scaling While Bit-blitting

 The IMSCALEDBITBLT method allows you to scale the data

while bit-blitting it from one stream to another. It takes the form:

 Method: <IMSCALEDBITBLT>

 # Arguments: 15

 Arguments: 1) SOURCEBITMAP, the source bit

 map handle

 2) SOURCELEFT, the X-coordinate of

 the bits to be copied

 3) SOURCEBOTTOM, the Y

 coordinate of the bits to be copied

 4) STREAM, the destination stream

 handle

 5) DESTINATIONLEFT, the X

 coordinate of the location where

 bits are to be placed of the location

354

 where bits are to be placed

 7) WIDTH, the width of the rectangle to

 copy

 9) SOURCETYPE, the source object

 10) OPERATION, the bit-blitting

 operation

 11) TEXTURE, a texture handle

 12) CLIPPINGREGION, a region

 specification

 13) CLIPPEDSOURCELEFT, X

 coordinate of lower left corner

 of the clipping region

 14) CLIPPEDSOURCEBOTTOM, Y

 coordinate of lower

 left corner of clipping region

 15) SCALE, a scaling factor

 Value: <user-defined>

 Each pixel in SOURCEBITMAP is replicated SCALE times in the

X and Y directions in the destination stream. Currently, SCALE must be

an integer (e.g., satisfy FIXP). This method allows you to magnify (or

reduce) an object when bit-blitting it from the source to the destination

bitmap.

7.9.11 MOVING THE OBJECT

 The IMMOVETO method allows you to move the cursor to the

position (X,Y) within the specified stream. It takes the form:

 Method: <IMMOVETO>

 # Arguments: 3

 Arguments: 1) STREAM, a stream handle

 2) X, an integer

 3) Y, an integer

 Value: The position (X,Y).

 IMMOVETO is invoked by MOVETO. If a value is not supplied for

it, a default method composed of calls to IMXPOSITION and

IMYPOSITION is used.

355

7.9.12 DETERMINING STRING WIDTH

 The method IMSTRINGWIDTH is used to determine the width of

a string in units appropriate to the current stream. Because devices have

different display characteristics, the string width must be dynamically

computed when laying out a display. It takes the form:

 Method: <IMSTRINGWIDTH>

 # Arguments: 3

 Arguments: 1) STREAM, a stream handle

 2) STR, a string

 3) RDTBL, a read table handle

 Value: The width of the string.

 IMSTRINGWIDTH is invoked by STRINGWIDTH. it uses the

current font of the specified stream to calculate the width of the string in

pixels. Consider IM.STRING.WIDTH, which calculates the string width

for a generic stream:

(DEFINEQ

 (IM.STRING.WIDTH (STREAM STRING RDTBL)

 (PROG (STRING-WIDTH-BASE DD)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ STRING-WIDTH-BASE

 (DISPLAYDATAPROP DD 'DDWidthscache))

 (RETURN

 (\STRINGWIDTH.GENERIC

 STRING

 STRING-WIDTH-BASE

 RDTBL

 (\GETWIDTH STRINGWIDTH-BASE

 (CHARCODE SPACE))

)))

))

7.9.13 DETERMINING CHARACTER WIDTH

 The IMCHARWIDTH method allows you to compute the width of

a character in the units of the specified stream. It takes the form:

356

 Method: <IMCHARWDITH>

 # Arguments: 2

 Arguments: 1) STREAM, a stream handle

 2) CHARCODE, a character code

 Value: The width of the character.

 Using the current font of the stream, IMCHARWIDTH will

calculate the width of the character as it would be displayed in the stream

in the appropriate units. Consider the function

IM.CHARACTER.WIDTH, which is defined below.

(DEFINEQ

 (IM.CHARACTER.WIDTH (STREAM CHARACTER-CODE)

 (PROG (DD)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (RETURN

 (\GETWIDTH (DISPLAYDATAPROP DD 'DDWidthscache)

 CHARACTER-CODE))

)))

 Note that the character widths for the font currently in use are cached

in the DISPLAYDATA structure for easy access.

7.9.13.1 Determining the Y-Component

 The IMCHARWIDTHY method determines the Y-component of

the width of the character specified as the argument. It takes the form:

 Method <IMCHARWIDTHY>

 # Arguments: 2

 Arguments: 1) STREAM, a stream handle

 2) CHARCODE, a character code

 Value: The Y component of the width of the

 character.

 Given the function for determining the character widths in Section

7.9.13, we can define the function IM.CHARACTER.WIDTHY to

retrieve the Y-component as follows:

357

(DEFINEQ

 (IM.CHARACTER.WIDTHY (STREAM CHARACTER-CODE)

 (CADR (IM.CHARACTER.WIDTH STREAM CHARACTER-CODE))

))

7.9.14 DETERMINING THE BIT MAP SIZE

 The IMBITMAPSIZE method determines the size that a specified

bit map will be when bit-blitted to a destination stream. It takes the form:

 Method: <IMBITMAPSIZE>

 # Arguments: 3

 Arguments: 1) STREAM, a stream handle

 2) BITMAP, a bitmap handle

 3) DIMENSION, the dimension to

 compute

 Value: An integer or dotted pair.

 IMBITMAPSIZE computes the size of the bit map in the units of

the destination stream for the specified dimension. DIMENSION may

take one of three values:

1. WIDTH;

2. HEIGHT; or

3. NIL, whence a dotted pair of (WIDTH . HEIGHT) is returned.

7.9.15 STARTING A NEW PAGE

 The IMNEWPAGE method causes a new page to be started for the

specified stream. It takes the form:

 Method: <IMNEWPAGE>

 # Arguments: 1

 Arguments: 1) STREAM, a stream handle

 Value: The position on the page representing the

 upper left corner.

 If no value is supplied for this method, it defaults to the following

expression:

358

 (\OUTCHAR STREAM (CHARCODE ^L))

 We can define the function IM.NEW.PAGE which will set a new

page for the stream. First, IM.NEW.PAGE saves the current page and

then calls the function IM.START.PAGE to setup the page parameters.

These functions are defined as follows:

(DEFINEQ

 (IM.NEW.PAGE (STREAM)

 (PROG (DD)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SAVE.PAGE.BUFFER

 (DISPLAYDATA DD 'DDDestination) STREAM)

 (IM.START.PAGE STREAM)

)))

(DEFINEQ

 (IM.START.PAGE (STREAM)

 (PROG (DD CLIPPING-REGION PAGE-BUFFER)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ CLIPPING-REGION

 (DISPLAYDATAPROP DD 'DDClippingRegion))

 (SETQ PAGE-BUFFER (DISPLAYDATAPROP DD 'DDDestination)))

 (\BLTSHADE.BITMAP WHITESHAD

 PAGE-BUFFER

 NIL

 NIL

 NIL

 NIL

 'REPLACE)

 (SET.DSP.POSITION STREAM

 (POINT (DISPLAYDATAPROP DD

 'DDLeftMargin)

 (fetch TOP of CLIPPING-REGION)))

)))

 IM.START.PAGE sets the contents of the page buffer bitmap to

white. It then sets the current display stream position to the upper left

hand corner as specified by the left margin and the top of the clipping

region.

359

7.9.16 Starting a New Line

 The IMTERPRI method causes a new line to be started in the

image stream. It takes the form:

 Method: <IMTERPRI>

 # Arguments: 1

 Arguments: 1) STREAM, a stream handle

 Value: <user-defined>

 If no value is supplied for this method, it defaults to the following

expression:

 (\OUTCHAR STREAM (CHARCODE EOL))

 Usually, a function defined for this method will handle line

spacing. Thus, based on a user-defined variable, the function will emit

the appropriate number of EOL characters to ensure the proper spacing.

7.9.17 Resetting the Stream Position

 The IMRESET method resets the X- and Y-coordinates of the image

stream. It takes the form:

 Method: <IMRESET>

Arguments: 1

Arguments: 1) STREAM, a stream handle

Value: NIL.

 The function IM.RESET, which is defined below, resets the X- and

Y-coordinates of the image stream to the upper left hand corner of the

current page.

(DEFINEQ

 (IM.RESET (STREAM)

 (PROG (CLIPPING-REGION DD)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ CLIPPING-REGION

 (DISPLAYDATAPROP DD 'DDClippingRegion))

360

 (SET.DSP.POSITION

 STREAM

 (POINT

 (DISPLAYDATAPROP DD 'DDLeftMargin)

 (fetch TOP of CLIPPING-REGION)))

 (BITBLT NIL

 NIL

 NIL

 STREAM

 (fetch LEFT of CLIPPING-REGION)

 (fetch BOTTOM of CLIPPING-REGION)

 (fetch WIDTH of CLIPPING-REGION)

 (fetch HEIGHT of CLIPPING-REGION)

 'TEXTURE

 'REPLACE

 (DISPLAYDATAPROP DD 'DDTexture))

)))

7.9.18 Setting the X and Y Positions

 The IMXPOSITION and IMYPOSITION methods set the X and

Y positions of the specified stream. They take the form:

Method: <IMXPOSITION>

 <IMYPOSITION>

Arguments: 2

Arguments: 1) STREAM, a stream handle

 2) POSITION, an X or Y position,

 respectively

Value: The X- or Y-coordinate, respectively.

 Two functions, IM.XPOSITION and IM.YPOSITION, are provided

for setting the X- or Y-coordinates, respectively, of the stream.

(DEFINEQ

 (IM.XPOSITION (STREAM XPOSITION)

 (PROG (DD XPOS)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ XPOS (DISPLAYDATAPROP DD 'DDXposition))

 (if (NULL XPOSITION)

 then

361

 NIL

 elseif

 (NUMBERP XPOSITION)

 then

 (DISPLAYDATAPROP DD 'DDXposition XPOSITION)

 else

 (\ILLEGAL.ARG XPOSITION))

 (RETURN XPOS)

)))

(DEFINEQ

 (IM.YPOSITION (STREAM YPOSITION)

 (PROG (DD YPOS)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ YPOS (DISPLAYDATAPROP DD 'DDYposition))

 (if (NULL YPOSITION)

 then NIL

 elseif (NUMBERP YPOSITION)

 then

 (DISPLAYDATAPROP DD 'DDXposition YPOSITION)

 else (\ILLEGAL.ARG YPOSITION))

 (RETURN YPOS)

)))

7.9.19 Setting the Stream Font

 The IMFONT method sets the current font of the specified stream.

It takes the form:

Method: <IMFONT>

 # Arguments: 2

Arguments: 1) STREAM, a stream handle

 2) FONT, a font handle

Value: The old font descriptor.

 The function IMFONT, which sets the font that the image stream

will use to print characters, is defined below:

(DEFINEQ

 (IM.FONT (STREAM FONT)

 (PROG (DD OLDFONT)

362

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ OLDFONT (DISPLAYDATAPROP DD 'DDFONT))

 (if FONT

 then (OR (EQ FONT OLDFONT)

 (DISPLAYDATAPROP DD 'DDFONT FONT)))

 (RETURN OLDFONT)

)))

Note that we only change the font if it is not equal to the old font.

7.9.20 SETTING THE LEFT AND RIGHT MARGINS

 You may set the left and/or right margins of the image stream using

the methods IMLEFTMARGIN and IMRIGHTMARGIN,

respectively. They take the form:

 Method: IMLEFTMARGIN

 IMRIGHTMARGIN

Arguments: 2

Arguments: 1) STREAM, an image stream handle

 2) MARGIN, an integer

Value: The old margin value.

 IMLEFTMARGIN sets the left margin of the image stream. The left

margin is defined as the X-position in the stream to which the cursor is

set when a new line is generated.

 IMRIGHTMARGIN sets the right margin of the image stream. The

right margin is defined as the maximum X-position in the image stream

at which characters will be printed. Attempting to print characters

beyond this position will cause a new line to be started.

 The functions for setting the left and right margins,

IM.LEFT.MARGIN and IM.RIGHT.MARGIN, are defined below:

(DEFINEQ (IM.LEFT.MARGIN (STREAM XPOSITION)

 (PROG (DD LEFTMARGIN)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ LEFTMARGIN (DISPLAYDATAPROP DD 'DDLeftMargin))

363

 (AND XPOSITION

 (if (AND (SMALLP XPOSITION)

 (IGREATERP XPOSITION -1))

 then (DISPLAYDATAPROP DD

 'DDLeftMargin

 XPOSITION)

 else (\ILLEGAL.ARG XPOSITION)

))

 (RETURN LEFTMARGIN)

)))

(DEFINEQ (IM.RIGHT.MARGIN (STREAM XPOSITION)

 (PROG (DD RIGHTMARGIN)

 (SETQ DD

 (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ RIGHTMARGIN

 (DISPLAYDATAPROP DD 'DDRightMargin))

 (if (NULL XPOSITION)

 then (RETURN RIGHTMARGIN)

 elseif (AND (SMALLP XPOSITION) (IGREATERP XPOSITION -1))

 then

 (PROGN

 (DISPLAYDATAPROP DD 'DDRightMargin XPOSITION)

 (\SFFIXLINELENGTH STREAM))

 else (\ILLEGAL.ARG XPOSITION))

 (RETURN RIGHTMARGIN)

)))

 We test for a smallp integer as a bounds test on the value of the left

or right margins. In setting the right margin, the line length may be

affected and so we call the system function \SFFIXLINELENGTH to

calculate a new line length.

7.9.21 Setting the Top and Bottom Margins

 You may set the top and/or bottom margins of the image stream

using the methods IMTOPMARGIN and IMBOTTOMMARGIN,

respectively. They take the form:

Method: IMTOPMARGIN

 IMBOTTOMMARGIN

364

 # Arguments: 2

 Arguments: 1) STREAM, an image stream handle

 2) MARGIN, an integer

Value: The old margin value.

 IMTOPMARGIN sets the top margin of the image stream. The top

margin is defined as the Y-position of the at which the tops of characters

will be printed after a new page is started.

 IMBOTTOMMARGIN sets the bottom margin of the image stream.

The bottom margin is defined as the maximum Y-position at which

characters will be printed. Attempting to print characters beyond this

position will cause a new page to be started.

7.9.22 SETTING THE LINE FEED DISTANCE

 You may set the distance at which a new line will be positioned after

a new page is started using the method IMLINEFEED:

 Method: IMLINEFEED

Arguments: 2

Arguments: 1) STREAM, an image stream handle

 2) DELTA, an integer

Value: The old line feed value.

 The line feed distance is calculated by multiplying the height of the

current font by DELTA. This generates a new Y-position from the top

margin of the image stream. The function IM.LINE.FEED sets a new

line feed value for the stream.

(DEFINEQ (IM.LINE.FEED (STREAM DELTA)

 (PROG (DD LINEFEED)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ LINEFEED (DISPLAYDATAPROP DD 'DDLINEFEED))

 (AND DELTA

 (if (NUMBERP DELTA)

 then (DISPLAYDATAPROP DD

 'DDLINEFEED DELTA)

 else (\ILLEGAL.ARG DELTA)

365

))

 (RETURN LINEFEED)

)))

 While we do not explicitly test for a SMALLP in this example, it

may be a good idea to do so in order to prevent unusual results in the

display.

7.9.23 Determining the Scale of the Display Medium

 You may determine the scale of the current display medium using

the method IMSCALE:

 Method: IMSCALE

Arguments: 2

 Arguments: 1) STREAM, an image stream handle

 2) SCALE, is ignored

Value: The number of device points.

 IMSCALE determines the number of device points per screen point

for the current display medium. Typically, a screen point is

approximately 1/72 of an inch (.0138 of an inch).

7.9.24 SETTING THE SPACE FACTOR

 You may set the spacing between characters using the method

IMSPACEFACTOR:

 Method: IMSPACEFACTOR

 # Arguments: 2

 Arguments: 1) STREAM, an image stream handle

 2) FACTOR, an integer

 Value: The old spacing factor.

 The spacing factor is used to adjust the spacing between characters

in an image stream (e.g., between words which are separated by one or

more spaces). This allows you to adjust the justification of text. The

default value is 1. Thus, if your current font defines the natural width of

a space to be 18 units and you set the space factor to 2, all spaces will

366

appear to be 36 units wide. The values returned by STRINGWIDTH and

CHARWIDTH are affected by the space factor.

7.9.25 SETTING THE DEFAULT BITBLT OPERATION

 You may set the default bit-blit operation using the method

IMOPERATION:

 Method: IMOPERATION

 # Arguments: 2

 Arguments: 1) STREAM, an image stream handle

 2) OPERATION, an operation

 Value: The old default operation.

 IMOPERATION sets the default bit-blit operation to OPERATION.

The function IM.OPERATION, which is defined below, ensures that a

valid operation is set as the new operation for the stream.

(DEFINEQ (IM.OPERATION (STREAM OPERATION)

 (PROG (DD OLD-OPERATION)

 (SETQ DD (IMAGESTREAMPROP STREAM

'IMAGEDATA))

 (SETQ OLD-OPERATION (DISPLAYDATAPROP DD

'DDOPERATION))

 (if OPERATION

 then

 (PROGN

 (OR (MEMBER OPERATION '(PAINT REPLACE

INVERT ERASE))

 (ERROR "ILLEGAL ARG" OPERATION))

 (DISPLAYDATAPROP DD 'DDOPERATION

OPERATION)

 <make other adjustments>

))

 (RETURN OLD-OPERATION)

)))

367

 You may have to modify other system data structures as a result of

changing the operation. Several examples have suggested that the

PILOTBBT data structure (which is not defined in the IRM) may have

to be modified.

7.9.26 SETTING A NEW CLIPPING REGION

 You may set the clipping region of an image stream (analogous to

the clipping region of a display stream) using the method

IMCLIPPINGREGION:

 Method: IMCLIPPINGREGION

 # Arguments: 2

 Arguments: 1) STREAM, an image stream handle

 2) REGION, a region specification

 Value: The old clipping region specification.

 IMCLIPPINGREGION sets the clipping region for the image

stream to the region sepcified by REGION. The function,

IM.CLIPPING.REGION, which is defined below, sets a new clipping

region for the stream.

(DEFINEQ (IM.CLIPPING.REGION (STREAM REGION)

 (PROG (DD OLD-REGION)

 (SETQ DD (IMAGESTREAMPROP STREAM 'IMAGEDATA))

 (SETQ OLD-REGION

 (DISPLAYDATAPROP DD 'DDClippingRegion))

 (if REGION

 then

 (PROGN

 (OR (type? REGION REGION)

 (ERROR REGION "is not a region"))

 (DISPLAYDATAPROP DD 'DDClippingRegion REGION)

 (\SFFIXCLIPPINGREGION DD)

))

 (RETURN OLD-REGION)

)))

 When changing the clipping region for an image stream, you must

also be careful to ensure that other system data structures are updated as

368

well. The system function \SFFIXCLIPPINGREGION appears to do

this.

 INDEX

369

REFERENCES

[mora81]Moran, T.

An Applied Psychology of the User

ACM Computing Surveys, Vol. 13, #1, 1981

[newm79]

Newman, W.M. and R.F. Sproull

Principles of Interactive Computer Graphics

McGraw-Hill, New York, NY, 1979

[shne80]

Shneiderman, B.

Software Psychology

Winthrop Publishers, Cambridge, MA, 1980

 INDEX

370

INDEX

+POSITION, 88

>POSITION, 85

active regions, 269

ACTIVEWINDOWS,

236

ADDMENU, 290

ADJUSTCURSORPOSI

TION, 187

ALERT.USER, 191

BIT.IN.COLUMN, 116

BIT.IN.ROW, 116

BITBLT, 117

bitmap, 103

BITMAP, 104

BITMAPBIT, 109

BITMAPCOPY, 111

BITMAPCREATE, 104

BITMAPHEIGHT, 107

BITMAPIMAGESIZE,

108

BITMAPP, 106

BITMAPWIDTH, 107

BITSPERPIXEL, 108

BLACKSHADE, 145

BORDERP, 95

BOTTOMOFGRIDCOO

RD, 164

BURYW, 250

CARET, 155

CENTERPRINTINREG

ION, 151

CLEARW, 251

clipping region, 140

CLOSEW, 231

COMMENTLINELENG

TH, 46

coordinate system, 104

COPYINSERT, 327

CREATEREGION, 92

CREATETEXTUREFR

OMBITMAP, 126

CREATEW, 224

cursor, 178

CURSOR, 188

CURSORBITMAP, 115,

180

CURSORCREATE, 184

CURSORHOTSPOT,

181

CURSORINSIDEP, 94

CURSORPOSITION,

185

DECODE.WINDOW.A

RG, 229

DECODEBUTTONS,

173

DEFAULTFONT, 32

DEFAULTMENUHELD

FN, 284

DEFAULTWHENSELE

CTEDFN, 282

DELETEMENU, 291

display environment, 19

display stream, 130

DISPLAY.OBJECT, 305

 INDEX

371

DISPLAYFONTDIREC

TORIES, 39

DISPLAYFONTEXTEN

SIONS, 40

Displayfonts, 22

DISTANCE, 90

DOSELECTEDITEM,

293

dotted pair, 80

DSPBACKUP, 153

DSPCLIPPINGREGIO

N, 140

DSPCREATE, 130

DSPDESTINATION,

138

DSPFONT, 145

DSPLEFTMARGIN, 146

DSPLINEFEED, 149

DSPNEWPAGE, 151

DSPOPERATION, 148

DSPRESET, 150

DSPRIGHTMARGIN,

147

DSPSCROLL, 150

DSPSOURCETYPE, 147

DSPTEXTURE, 144

DSPXOFFSET, 139

DSPXPOSITION, 141

DSPXSCREENTOWIN

DOW, 144

DSPYOFFSET, 139

DSPYPOSITION, 141

DSPYSCREENTOWIN

DOW, 144

EDITBM, 121

EDITCHAR, 37

EDITSHADE, 129

ERASEMENUIMAGE,

296

EXPANDBITMAP, 112

EXPANDW, 244

EXTENDREGION, 101

FILE.EDIT.MENU, 303

FLASHWINDOW, 257

FLIPCURSOR, 189

FLOPPY.CAN.READP,

75

FLOPPY.CAN.WRITEP

, 76

FLOPPY.FORMAT, 73

FLOPPY.SCAVENGE,

77

FLOPPY.WAIT.FOR.F

LOPPY, 77

font, 19

descriptor, 23

descriptor handle, 21

face, 20

rotation, 20

Font configurations, 44

font descriptor, 21

font file, 39

font profile, 41

FONTCHANGEFLG, 46

FONTCOPY, 27

FONTCREATE, 21, 22

FONTDEFS, 44

FONTDEFSVARS, 44

FONTESCAPECHAR,

46

FONTNAME, 48

FONTP, 25

FONTPROFILE, 43

FONTPROP, 25

FONTSAVAILABLE, 28

FONTSET, 48

FONTSINCORE, 30, 47

GETCHARBITMAP, 33

 INDEX

372

GETKEY, 56

GETMENUITEM, 299

GETMOUSETSTATE,

173

GRAYSHADE, 145

grid, 158

GRID, 158

GRIDPOSITION.OF.C

URSOR, 163

GRIDXCOORD, 161

GRIDYCOORD, 161

HARDCOPYW, 61

hot spot, 180

icon, 199, 242

image object, 308

IMAGEFNSCREATE,

311

IMAGEFNSP, 313

IMAGEOBJ data type, 308

IMAGEOBJCREATE,

310

IMAGEOBJP, 311

IMAGEOBJPROP, 309

IMAGEOPSPROP, 339

IMAGESTREAMP, 335

IMAGESTREAMPROP,

329

IMAGESTREAMTYPE,

336

IMAGESTREAMTYPE

P, 336

IMBOTTOMMARGIN,

366

IMCLIPPINGREGION,

369

IMDRAWCURVE, 343

IMLEFTMARGIN, 364

IMLINEFEED, 366

IMRIGHTMARGIN,

364

IMSPACEFACTOR, 368

IMTOPMARGIN, 366

IMXPOSITION, 362

IMYPOSITION, 362

INSIDEP, 93, 102

Interlisp Executive

Window, 204

Interlisp-10/VAX, 13

INTERSECTREGIONS,

98

INVERT.TEXTURE,

128

INVERTW, 255

key action, 52

KEYACTION, 52

KEYDOWNP, 51

KEYSETSTATE, 168

LASTMOUSESTATE,

168

LASTMOUSEX, 172

LASTMOUSEY, 172

LEFTOFGRIDCOORD,

164

MAKE.NUMBER.PAD,

302

MAKEWITHINREGIO

N, 102

menu, 274

MENU, 288

menu position, 285

MENUDESELECT, 298

MENUITEMREGION,

293

MENUREGION, 296

MENUSELECT, 298

MENUTITLEFONT,

295

 INDEX

373

METASHIFT, 55

MINIMUMWINDOWSI

ZE, 257

MODIFY.KEYACTION

S, 54

MOUSECONFIRM, 175

MOUSESTATE, 167

MOVEW, 245

OPENIMAGESTREAM

, 333

OPENSTRINGSTREA

M, 157

OPENW, 230

OPENWINDOWS, 234

OPENWP, 234

PAGEFULLFN, 252

PAGEHEIGHT, 156

position, 79

POSITIONP, 81

PRINTBITMAP, 114

PRINTERSTATUS, 63

PRINTERTYPE, 65

PRINTERTYPES, 65

PRINTFILETYPE, 64

PRINTFILETYPES, 68

Prompt Window, 200

PROMPTFORWORD,

191

PUTCHARBITMAP, 34

READBITMAP, 114

READIMAGEOBJ, 325

REDISPLAYW, 252

region, 91

REGIONP, 97

REGIONSINTERSECT

P, 100

RELMOVEW, 247

REMOVEWINDOW,

232

RESHAPEBYREPAINT

FN, 254

ROTATION, 63

SCALE, 86

SCALEFACTOR, 63

SCREENBITMAP, 115

SCROLLBYREPAINTF

N, 220

SCROLLW, 218

SEND.FILE.TO.PRINT

ER, 57

SETCURSOR, 189

SETFONTDESCRIPTO

R, 31

SHADEGRIDBOX, 160

SHADEITEM, 294

SHAPEW, 240

SHAPEW1, 241

SHOWCS, 38

SHRINKBITMAP, 113

SHRINKW, 242

SUBREGIONP, 100

texture, 125

TEXTUREP, 127

TOTOPW, 248

TRANSLATE, 87

TRANSPOSE, 89

TTYDISPLAYSTREAM

, 153

TYPEINMENU, 297

UNIONREGIONS, 99

UNTILMOUSESTATE,

170

VIDEOCOLOR, 49

VIDEORATE, 50

WFROMDS, 258

WFROMMENU, 292

WHENHELDFN, 282

WHICHW, 235

 INDEX

374

WHITESHADE, 145

window, 198

window handle, 143

Window Menu, 205

BURY, 207

CLEAR, 206

CLOSE, 206

EXPAND, 214

MOVE, 207

PAINT, 208

SHAPE, 208

SHRINK, 214

SNAP, 212

WINDOW.BITMAP, 106

WINDOWADDPROP,

238

WINDOWDELPROP,

239

WINDOWP, 233

WINDOWPROP, 237

WINDOWWORLDP,

236

YES-NO?, 301

