Medley LOOPS: The Basic System

Lisp Object-Oriented Programming
System

(LOOPS)
Volume I: The Basic System

By
Stephen H. Kaisler

Version 1.2
July 2024

Medley LOOPS: The Basic System

Acknowledgement

Many people have contributed to resurrecting, restoring, and
modernizing Medley Interlisp. Among them are Nick Briggs,
Ron Kaplan, Frank Halasz, Matt Heffron, Bill Stumbo, Paolo
Amoroso, and many others.

A special thanks to Larry Masinter, one of original
developers, for his assistance in debugging some of test code for
the LOOPS active value feature. And, to Paolo Amoroso for his
careful review of the text.

Medley LOOPS: The Basic System

Table of Contents

LiSt OF FIQUIES ...t 12
LiSt OF TabIES ...eeeeeeeeece e 14
INEFOTUCTION. ... e 15
1.1 SOME HISLOIYvecviiiiiciice e 17
1.2 LOOPS ParadigmsS........ccccvveieiiiiieiese e e sre e 17
1.3 Structure of the Documentation............ccccoovvvereneneneneiieene, 19
Chapter ONE .. .ocviiiecec et sne s 20
Introduction to LOOPS Paradigmscccceevivevienenievieseeiee e 20
1.1 Introduction to Object-Oriented Programming............ccccc..... 21
1.2 Classes and INSTANCES........cccvevererierieieeie e e 23
1.2.1 Variables and Property ListS.........ccccccvvveveiiiiveeneseeinee, 23
1.2.2 PrOPEITIES ..ovveticieeecte ettt sttt 27
1.2.3 INSLANCESvieiiieiiie ettt 27
1.2.4 MENOGS. ..o 29
1.2.5 MELACIASSESvveveveriesieiieiieieieee et 30
1.2.6 ADSLract ClasSeSccvvverieiieierirsiee et 31
1.3 Generic Class DeSCrPLION...........covvieiiiierene e 32
1.4 Class HIErarchyccccooeieeieneieere e 33
1.4.1 The Concept of INheritance...........c.ccoovvveveneneieicieenn, 34
1.4.2 Simple Hierarchy ... 35
1.4.3 A Complex Hierarchy ..o, 39

Medley LOOPS: The Basic System

1.5 INterlisp ODJECESccvviiiiiiieiieeeee e 39
1.5.1 Testing for Lisp Data TYPES.......ccvevervevieieiieeie e 40
1.5.2 Assigning Names to LOOPS Objectsccoceveivvenenne. 46
1.5.3 Class Objects and LOOPS Namesc.cccoeevvverereaeene. 47
1.5.4 NamMedODJECTcovviiiriieiieeeee s 48
1.5.5 DatedODJECEocvveiiiiiiie e 48

1.6 System Variables and FUNCLIONS..........cccccevviiieveiiciece e, 49

Chapter TWO......coiiiiiie e 53
Obiject-Oriented Programming in LOOPS...........ccccccovviveiveienns 53

2.1 Creating a NeW Class.......ccccccvvveeieie e 53
2.1.1 Creating @ New Class Via NeWc.ccoceveviieiciinnnnnn, 53
2.1.2 Creating a New Class with NewClass...........c.ccccevvevrnnnn 55
2.1.3 Creating a New Class with DefineClassc.c.ccoveuee. 55
2.1.4 LispClassTable. ..o 58

2.2 Creating an Instance of @ Class..........cccovvriiiiinencicienns 58
2.2.1 SIMPIE FOMM. .ot 59
2.2.2 Creating a New Class as a Subclass...........cccceeevvieennenn 60
2.2.3 Initializing @ New CIasscccovvirinineneneneeeeeee 61

2.3 Creating an Instance of a Class Using SENDcccccceeu. 62

2.4 Instance Variables and Properties........c.ccocovveveveiieveinennenne. 63
2.4.1 Instance Variable Operations...........ccccveeveriivicinnnnnn 63

2.5 LOOPS NAIMES....coiiiiiieiieiieesiee e sie e snieesteesteesseessensaeeneeens 64

2.6 INSLANCE NAMESoviiiiieiee et 64
2.6.1 Working with LOOPS Names..........cccovvveveerersinesieeneeens 65

Medley LOOPS: The Basic System

2.7 EdItiNg @ ClaSSoveieieiciee e 66
2.8 The Class RECOIUcouviiiririnii e 68
2.8.1 ObjJeCt FUNCLIONSccvvcviiiiie e 69
Chapter TRIEE.....cui i 71
Class Messages and FUNCLIONS............coovrinerieieinie e 71
3.1 Sending a Message to an Object.........ccccccvvvveveviicieve s, 71
3.2 Checking OBJECHIVILYccoveieiicece e 73
3.3 Class OPEratiONScccovrireriineriereieesesese s 73
3.3.1 Creating a NeW CIasS........ccccoveveieeiieiiieeie e 73
3.3.2 Editing @ ClaSSc.ccoveiiiiieiieiece et 76
3.3.3 Editing @ Method..........ccceiiiiiiiecicic e 77
3.3.4 Naming an ODJECtcccviiiiiiiie e 78
3.4 ACCESSING SUPEIS ...veveeieiteciie ettt et sre et re e e 79
3.5 Accessing Variables. ..o 79
3.5.1 Getting Variable and Property Valuesccccoevnene. 82
3.5.2 Putting Variable and Property Values...........c.ccccoovevvennene 86
3.5.3 Non-triggering Get and Put...........c.ccccoevvveveieiic e 98
3.5.4 Local Get FUNCHIONS.......ccciviieievir e 99
3.5.5 Accessing Class and Method Properties.............cccceee.... 100
3.5.6 Accessing Class Propertiescccoovveevevevieeviesnennene. 102
3.5.7 Adding Variables to0 a Class........cccccvevevverriieeresrerinnn 105
3.5.8 Generalized Get and Put Functions...........cc.cccecvvvenenen. 109
3.5.9 Putting IV Value and Property........ccccoocevevvieenvnnnennn. 113
3.5.10 Dual Use of Get and Put Functions.............cc.ccecveeenee. 114

Medley LOOPS: The Basic System

3.6 AcCessing MEthodscceveiiiiininiseee e 114
3.6.1 Accessing Method Properties........ccocoovevvvevceevesineinene. 115
3.7 Delete FUNCLIONScoiiiieieieicisiese e 117
3.8 DeStroying ClasSesS........ccviverieieinininisisiese e 118
3.8.1 RemOVINg @ ClaSS.......cccviirvireieieisisse e 118
3.8.2 Destroying a Classcccccvveveveeiene et 119
3.8.3 Ensuring Removal of Subclasses.........ccccoevvvveveivnnnenne. 121
3.9 INNEIITANCE. .. .i it 121
3.10 Compact Forms for Accessing Datac.ccccoevevieieaeenne 123
3.10.2 IV Delimiters ...cccviiiiiievienieieeeeeesese s 128
3.11 Class Method Operations............ceovvvrerenerenienierieieeeniens 129
3.11.1 Defining a Method ..o 129
3.11.2 Defining a Method by a Definercccooeevevvivennne. 137
3.11.3 Defining A Method by Messagecccccoerverveininnne. 140
3.11.4 Deleting a Method..........c.coooeveiiniinincicceeee 142
3.11.5 Editing a Method...........cocoiviiiciicccceee e, 142
3.11.6 SubclassRepsonsibility...........cccoeviiiieiiniiiiicceceeee, 145
3.11.7 Alternatives to Executing Methods............ccccecevvennne. 145
3.12 Manipulating Methods Across Classes.........ccocevvvveiienins 149
3.12.1 Renaming a Method..........cccooeevveviiiciccecc e, 149
3.12.2 Moving a Method between CIassescccoevrvvenenne. 150
3.12.3 Alternate Moving a Method...........cccccoceviieniicinnnn, 151
3.12.4 Moving Methodsto a File.........cccccoooeiiienciee, 152

3.12.5 Getting Functions Called from a Class Set.................. 152

Medley LOOPS: The Basic System

3.13 Methods Concerning the Class of an Object...................... 153
3.13.1 Finding the Class of an Object.........c.cccceevvvveveininenne. 153
3.13.2 Getting the Class Name..........cccccevvvvivevieniiiecce e, 154
3.13.3 Determining an Instance of a Class.........cc.cccccvvvennee. 156
3.13.4 Copying INStANCESccerverreieieieieese s 156

Chapter FOUNccuiiieiececc e 158
Instance Functions and Methods............ccocerevniniiiicnicnienesee 158

4.1 Defining a New INStanCe..........cccvvveieiniiine e 158
4.1.1 Sending the Class the Message NEWccccccevennee. 158
4.1.2 Using NewInstance MeSSagecccovvevvereneerresveernene. 162
4.1.3 Creating an Instance with Initial Values....................... 164
4.1.4 Creating an Instance with Immediate Messaging 165

4.2 Data Storage for New INStanceccccevveeveeveiieeveseennene, 167
4.2.1 IVValUEMISSINGc.ooviiiiiieiieieiecesee s 168
4.2.2 NOESELVAIUEooviiicie e 169
4.2.3:NIFOMM L s 170
4.2.4 Changing the Number of IVs in an Instance................. 171

Chapter FIVE ...t 174
Metaclass Functions and Methods.............ccooveveiieiiveie e 174

5.1 Base MEtacClassesccovevereeieininiiise e 174
5.1.1 ADSEract ClaSseS......ccccvevuvreerierieeeerie e se e et 175

5.2 PSEUAOCIASSESveveieieiesieeiesie sttt 176
5.2.1 Pseudoclass FUNCLIONS...........ccccoeeeieiieiiniiee e 176

5.3 Metaclass FUNCHIONS.........cccoeiiiieiiieee e 177

Medley LOOPS: The Basic System

5.3.1 Defining a New Metaclassccoovvreiincneicncnnn, 178
L0 T (] T SR 179
Sending Messages AILErNativesccccceevvveeieviecceesese e, 179
6.1 Sending A Message to a LOOPS Objectcccovvvvenennne 179
8.2 et 181
8.3 IV e 181
B.4 Ty et et 182
5.5 _SUPET ..o 183
B.5. 1 SUPEI? oottt 184
6.5.2 SUPEIFIINGE.....iiieie et 184
B.6 INEW ..o 184
6.7 FEtChMEthOdocvviie e 186
ChapLer SEVENocuveie ettt s 188
INErOUCEION T0.....eecieeie e 188
Data-Oriented Programming...........coceverereesieneneneneseseneeeas 188
7.1 Specifying an Active Value ... 190
7.1.1getFnand PULFN (.o 191
7.1.2 Defining an Active Value ..., 191
7.1.3 Nested ACtiVe ValUES........cccevvveeie e 194
7.1.4 Using Active ValUESccccoveveieic e 194
7.2 Active Value FUNCLIONS..........cccoveriieeecece e 196
T2 L FIrstFetCh .o 196
7.2.2 INAIFECT ACCESSveenecee ettt 198
7.2.3RePIACEME ... 199

Medley LOOPS: The Basic System

7.2.4 User-Defined FUNCLION.........ccoocvvvii v 200
7.2.5 Local State FUNCLIONS..........covvviiininie e 201
7.2.6 Annotated ValUES.........cooeveieiiiiinesc e 202
7.2.7 Managing Annotated Values............ccccooeveieinininnnn. 206
7.3 The ActiveValue CIassccccveeereiierieniiie e 209
7.3.1 Using Active ValUESccceveveiiee e 209
7.3.2 Specializing an Active Value...........cccccoevivivevcnnenen, 210
7.3.3 Breaking and Tracing Active Values...........cccceoeevenenne. 221
7.3.4 Appending to a Super Valuecccccovevveveieevcinenene, 222
7.3.5 InheritedValue..........ccooeiiieiniii e 223
7.3.6 REPIACEMEAV ...t 223
7.3.7 NOSEtVAIUL ..ot 224
7.3.8 User Specializations of Active Values............cccccveueenee. 224
7.4 Active Value Methodscccccveveiiiineieniiie e 225
7.4.1 Adding and Deleting Active Valuescccceeevvennnne. 225
7.4.2 Wrapped Value Methods ..o, 228
7.5 Annotated Properties........ccceiivieeve i 230
7.6 Defensive Programmingccccoeveerinenenenenesieesieseneens 231
7.7 ACHIVEVAIUL USES.......eoivveiieie e 232
ChAPLEE 8. 233
INErOAUCEION T0.....ee i 233
Rule-Oriented Programming.........ccoevereeinienienenene e 233
8.1 RuleSets and RUIESccoeeiiiieiieeeee e 234

8.2 Organizing a Rule-based Systemc.cccccoevvvviviiieiecinnnnn, 235

Medley LOOPS: The Basic System

B3 RUIESEL ...t 235
8.3.1 RuleSet Class Definition..........cccceevvviineneneneiciee, 236
8.3.2 RUIESELSOUICE.......ccviiiiriiie e 237
8.3.3 RUIESEL STIUCLUIEeoeee e 239
8.3.4 RuleSet Methods........coovveereiieiee e 239
8.3.5 INVOKING RUIESELS........covvciveieiecice e 239

8.4 RUIESEIMELA.......cuicviriiiie e 240

8.5 RUIESEINOUEcvveveeee et 241

8.6 RUIESELSOUICE.ccviiviiiiieieieeee s 242

BT RUIE ... 242
8.7.1 Rule Class Definitionc.cccocvevverievivereninniese e 243
8.7.2 Variables Used in RUIESccevvevvvivevinniie e 244
8.7.3 Infix Operators Used in RUIES..........ccccvveviiiievcinenee. 246
8.7.4 Use of Interlisp Functions in Rules............c.cccoevvvinnne. 247
8.7.5 Use of LOOPS Objects and Message Selectors........... 248

8.8 RUNNING RUIESELS........coviiiieiececece e 250

8.9 Using RuleSets as Methods..........ccccooveveiiiieviiieic e 250
8.9.1 Defining A RuleSet as a Methodc.ccocevevivinnnnne. 251

8.10 Control Structures for Selecting Rules...........ccccceovivinnnnne 251
8.10.1 Singleton Rule EXecution..........c.ccccoevevveveiieevicsivennene. 253

RETEIENCESo e 254

Appendix A: Running MEDLEY ... 257
AL RUNNINg MedIeY ..o 257

APPENAIX B ... 262

10

Medley LOOPS: The Basic System

Installing and Running LOOPSccooiiiiiiiiiiiinee e 262
B.2 Loading LOOPSRULES and GAUGES.cccccvvvenene. 267
B.3 Setting System Variables..........ccccccoovvvieviiiiiciece e 267

B.3.1 Connect to the LOOPS System Directory.................... 268

APPENTIX C oo 269

Testing LOOPS Installation...........ccccccovveeeiieiineveieiic e 269
C.1 LOOPS 1.1 TESES...uevirerieriirreisierieresesresieseseeseseeseseesesessesnns 269

Appendix C: Test ApPPlICAtIONS.........cccooververieiiniiiseresc e 275
C.1 Source Code for TESLAV.IXL.....ccccvvviririrenerieserieeeesenieas 275
C.2 Source Code for NeWTEStAV.IXEcvvviiverierieieieisencnins 277

INAEX o 280

11

Medley LOOPS: The Basic System

List of Figures

1-1. LOOPS Lattice

1-2. Object Representation
1-3. Truckin Player Class

1-4. A Class and Its Instances
1-5. Method Structure

1-6. A MetaClass Example
1-7. Generic Class Description
1-8. The Subclass Point3D

2-1. LOOPS Forms for Name Manipulation
2-2. LOOPS Object Functions

3-1. Tofu Specializations
3-2. Editing a Class Definition
3-3. Variable Locations
3-4. Method Edit Menu

3-5. Method Display
3-6. Functions Called From Window

4-1. Shaping a Window After Creating it.
5-1. Base Metaclasses
7-1. ActiveValue and its specializations

12

Medley LOOPS: The Basic System

A-1. Medley Directory Contents

B-1. B-1. Loading LOOPS

B-2. Starting Medley with the LOOPSRULES Sysout
B-3. LOOPSRULES Sysout Running

B-x. Directory Variables

13

3-1.
3-2.
3-3.

4-1.

5-1.

7-1.
7-2.
7-3.

8-1.
8-2.
. Infix Operators in LOOPS Rules
8-4.

14

Medley LOOPS: The Basic System

List of Tables

. Basic Inheritance Principles
. LOOPS System Variables

. Object Functions

Tofu Message Descriptions

Compact Access Forms

Instance Variable Delimiters in Compact Forms
IVValueMissing Behavior

Base Metaclass Descriptions

IndirectVariable Instance Variables
LocalStateActiveValue Instance Variables

NoUpdatePermittedAV Instance Variables

Types of LOOPS Variables
Reserved Word Usage

RuleSet Control Structures

Medley LOOPS: The Basic System

Introduction

The Medley Interlisp Project has ported the Medley release of
Interlisp to modern operating system environments, including
Windows, Linux, and MacOS. This port includes the Interlisp Core,
selected LispUsers packages, and selected applications developed for
Interlisp-D.

This document describes the Installation and Use of the Lisp
Object-Oriented Programming System (LOOPS) running on the
Medley Interlisp system. LOOPS is unique in that it integrates
different paradigms for program development that allow the
programmer to utilize the best approach to specifying data structures
and manipulating them in efficient and effective ways.

LOOPS was developed at Xerox Palo Alto Research Center
(PARC) to support the development of expert systems as part of their
research program. LOOPS extends MEDLEY Interlisp with additional
programming paradigms, which provide a powerful programming
environment for multi-paradigm applications. The primary paradigms
provided by LOOPS are (Stefik 2003):

e Procedure-Oriented Programming: Interlisp is an imperative,
procedure-oriented programming language. Historically, Lisp
was one of the first major programming languages based on
work by John McCarthy (circa 1956). Programs consist of
procedures and data, where procedures operate upon data to
transform it and generate new data. Procedures consist of a set
of instructions, typically executed sequentially, and formed by
the syntactic rules of the language.;

15

Medley LOOPS: The Basic System

e Object-Oriented Programming (OOP): LOOPS provides
“classes and objects, class variables, instance variables,
methods, multiple-inheritance mechanisms, and interactive
class browsers”;

e Access-Oriented Programming (AOP) based on active values
attached to variables which are triggered whenever certain
operations are applied to the variable; and

e Rule-Oriented Programming (ROP) based on a simple
forward-chaining(?)/backward-chaining rule language.

Programming experience has shown that it is easier to build a
program that can successfully solve a problem when the programming
paradigm matches the structure of the problem space of the domain of
interest. Complex problems often require multiple approaches to
representing data and computations where the problem can be
decomposed into subproblems which can be addressed by different
programming approaches, but working together can represent a more
effective solution to the problem.

LOOPS was originally implemented in Interlisp-D for the D-
machines developed by Xerox PARC for direct execution of both
Interlisp and Smalltalk. After Common Lisp became an accepted
standard for the Lisp community at large, it was recoded and extended
to incorporate some Common Lisp features and was renamed
Common Loops (Bobrow, Kahn, Kiczales, Masinter, Stefik, and Zdybel.
1986).

NOTE: Capitalization Style: LOOPS used CamelCase rather than
ALL CAPS as the capitalization style in its documentation. We
have preserved the use of CamelCase in this volume.

16

Medley LOOPS: The Basic System

1.1 Some History

LOOPS was based on research performed at Stanford University,
Massachusetts Institute of Technology (MIT), other universities, and
Xerox PARC. Some of these previous efforts include:

Knowledge Representation Language (KRL), which
developed concepts on frame-based knowledge representation
concurrently with OOP concepts (Bobrow 77).

Units, which provided a testbed for experiments in problem
solving using OOP concepts (Stefik 79).

EMYCIN, an early rule-based system for diagnostic system,
which demonstrated the power of reasoning systems given
incomplete data (VanMelle 80).

Smalltalk, which pioneered many concepts in object-oriented
programming and was developed at the same time as Interlisp
at Xerox PARC (Ingalls 78, Goldberg 81, Goldberg 82).
Flavors, developed at MIT for the Lisp Machine(s), and which
also pioneered object-oriented programming, but also focused
on non-hierarchical inheritance (Cannon 82).

Numerous papers that influenced LOOPS are mentioned in the
References.

1.2 LOOPS Paradigms

LOOPS incorporates four programming paradigms. As Stefik,
Bobrow, Mittal, and Conway 1983 note, LOOPS was developed to
support knowledge programming and the building of knowledge-
based systems. An important principle was that different paradigms
were appropriate for different purposes, e.g., different representation
and problem solving purposes. This approach is substantially different

17

Medley LOOPS: The Basic System

from the commonly accepted idea that a single programming
paradigm is suitable for every type of problem.
The primary paradigms provided by LOOPS are (Stefik 2003):

18

Procedure-Oriented Programming: Medley Interlisp is an
imperative, procedure-oriented programming language.
Historically, Lisp was one of the first major programming
languages based on work by John McCarthy (circa 1956).
Programs consist of procedures and data, where procedures
operate upon data to transform it and generate new data.
Procedures consist of a set of instructions, typically executed
sequentially, and formed by the syntactic rules of the
language. Interlisp-D is shown at the base of the LOOPS logo
as it provides the foundation on which he rest of LOOPS is
built.

Object-Oriented Programming (OOP): Information is
organized into objects which are classes or instance of classes.
More complex (“larger”) objects are built from simpler
objects. Objects are arranged in a hierarchy or tree with the
most general objects at the top of the tree. LOOPS provides
“classes and objects, class variables, instance variables,
methods, multiple-inheritance, and interactive class
browsers)” among other elements of its ecosystem.
Access-Oriented Programming (AOP) based on active values
attached to variables. We can think of active values as entities
associated with variables which monitor their value. An active
value is an entity that can be triggered (e.g. activated) when
the value of the variable is either read or changed. An active
value can have an expression which performs additional
computations when reading or putting a value to the variable.
For example, the value of a variable can be displayed as its
changes using a gauge implemented as an active value.

Medley LOOPS: The Basic System

Gauges are described in VVolume 1I: Medley LOOPS: Tools
and Utilities.

Rule-Oriented Programming (ROP) is a paradigm for
building decision-making processes in a knowledge-based
program It is based on a simple forward-
chaining(?)/backward-chaining rule language. Rule-based
programming is described in Volume IlIl: Medley
Loops:Rule-based Systems.

1.3 Structure of the Documentation

This volume, Medley LOOPS: The Basic System, the first of three

describing elements of LOOPS and its application, will introduce the
basic elements of LOOPS — classes, active values, and rules, and then
focus on object-oriented programming in LOOPS with active values.

A second volume, Medley LOOPS Tools and Utilities, discusses

LOOPS extensions to Medley utilities, such as windows, browsers,
and the file manager.

A third volume, Medley LOOPS: Rule-Based Systems, will

describe the LOOPSRULES features and how to write rule-based
systems. The Truckin® Game, A LOOPS Application, describes the
structure and use of LOOPS to develop an interactive game.

19

Medley LOOPS: The Basic System

Chapter One

Introduction to LOOPS Paradigms

LOOPS supports four programming paradigms:
1. Procedure-oriented programming;

2. Object-oriented programming;

3. Data/Access programming;

4. Rule-based programming.

These are reflected in the LOOPS lattice, Figure 1-1, which
depicts the major components of the LOOPS ecosystem.

20

Medley LOOPS: The Basic System

Cl MetaCl: AbstractCl D lass
Y

DestroyedObject

Method
IndirectVariable
Inheriting AV
ExplicitFnActiveValue
NoUpdatePermittedAV
ActiveValue ! Act LispWindowAV
BreakOnPut: BreakOnPutOrGet
TraceOnPut TraceOnPutOrGet
Object| NotSetValue: etValue

Tofu
AppendSuperValue

FirstFetchAV

ReplaceMeAV.

IndexedObject

InspectorClassIVs

lconWindow
NonRectangwarWindow:
<|_oopslcﬂﬂ
Window.

FileBrowser
CIassBrowser<SupersBrowser
MetaBrowser

InstanceBrowser

LatticeBrowser-

'‘AnnotatedValue

Figure 1-1. LOOPS Lattice
Source: LOOPS Reference Manual, Medley Release, November 1991

It is assumed that the reader is familiar with Interlisp procedure-
oriented programming, so it will not be discussed further.

1.1 Introduction to Object-Oriented Programming

LOOPS provides a rich infrastructure for describing data to be
represented and manipulated. The object-oriented paradigm represents
programs as objects consisting of both procedures, called methods,
and data, called variables. Objects have local data and local
procedures to manipulate that data as depicted in Figure 1-2.

21

Medley LOOPS: The Basic System

LOOPS Object

Varl .. Valuel P
Var2 .. Value2
% ®
& |VarN ... ValueN X\ A
= -
2
=3
[= 1
<
Method1
B
o
F= ®
@
=
MethodM

Figure 1-2. Object Representation
Source: Adapted from LOOPS Reference Manual

A LOOPS class is a (partial) description of one or more objects.
Every object is an instance of exactly one class. All instances have the
same structure, but are differentiated by the values of their variables.

As Stefik and Bobrow (1986) noted, actions come from sending
messages between objects. A class instance responds to messages sent
to it which activate methods belonging to the class. Instances of
classes respond to message by invoking the methods defined in a class
(or its superclass(es)). The methods are Interlisp functions (Stefik
1979). But, rather than calling the function directly, LOOPS sends a
message to an object which causes it to select a method and execute
it.

22

Medley LOOPS: The Basic System

As Stefik and Bobrow (1986) further note, this uses the principle
of data abstraction to isolate the method’s implementation from its
invocation and execution. The calling program does not know of the
method’s implementation and should not make assumptions about its
implementation.

An object’s methods are invoked to manipulate its variables — get
and put values, sometimes transform them, and sometimes to compute
another value. One object may invoke a procedure in another object
by sending a message to that object and receiving a message with a
result back. This section describes the object-oriented paradigm as it
is implemented within LOOPS.

1.2 Classes and Instances

The basic structure in LOOPS is a class. A class serves as a
description, a template if you will, for one or more similar objects. An
instance is an object described by a class. Every object in LOOPS is
an instance of exactly one class.

All LOOPS and user classes are subclasses of a class named Class.
As we will see, one can create a new class using the function
DEFCLASS or sending the message NEW to Class. The new class is
a subclass of the class specified as its MetaClass (or parent class).

1.2.1 Variables and Property Lists

Variables are containers that hold values and are used to describe
a class or an instance. A class variable is defined in the class
description. It is is shared by all subclasses and instances of a class.
It is generally used to store information about a class as a whole. An

23

Medley LOOPS: The Basic System

instance variable contains information about a specific instance of a
class. A definition for a class Point might look like:

(Point
(x0)
(v 0)

where x and y represent the coordinates of the point. X and Y are
referred to as the descriptors of the object Point. The value 0 is the
default value that is assigned when any instance of a point is created.
Both types of variables have names and values, and may have other
properties.

[Note: Some O-O books use the term “properties” to describe the
variables x and y. Some O-O books also use the term attributes. In this
volume, we use descriptors because property is reserved for another
aspect of a variable or method.]

Figure 1-3 represents the Player class from the Truckin game,
which is described in LOOPS Volume I1I: Rule-Based Systems. This
example is reformatted for readability.

(DEFCLASS Player
(MetaClass PlayerMeta
doc "Participant in the Truckin Simulation."
Edited%: (* sm%: "16-SEP-83 15:42"))
(Supers SystemPlayer)
(ClassVariables
(Handicap 0

24

25

Medley LOOPS: The Basic System

(InstanceVariables
(timeUsed

(movesMade

doc "Free time allowed to
compensate for slowness™))

0

DefaultGauge LCD

doc "total time used so far")

0

DefaultGauge LCD

Doc ™actual number of moves made.
Used by TimeGameMaster™)

(pendingRequest NIL

(maxMove

inProcess NIL

whenSent 0

doc “pending request. inProcess —
is the request already sent
to Master for processing.
whenSent - time when process
sent in IDATE form)

0

doc "maxMove that can be made
in current attempt™)

(processHandle NIL

(started At

doc "process handle for the
player's UserProcess")

0

doc "CLOCK time when player
process was last started")

(unchargedTime O

Doc "time not charged for in
a given move")

(wakeReason NIL

Medley LOOPS: The Basic System

Doc "value to be returned when
player process is resumed")
(staySuspend NIL
Doc "setto T when player suspended
pending request completion™)
(schCount 0
Doc "number of times player
was scheduled™)
(remoteMachine NIL
doc "name of mc on which running™)

)

Figure 1-3. Truckin Player Class

This looks complex. We will not describe it here, but just point
out some of the features of the definition so you can begin to recognize
them as we proceed.

The name of the class is Player. A player is a participant in the
Truckin game. Its MetaClass is PlayerMeta (not shown here), but
which provides a template for all types of players in Truckin. In
particular, the superclass of Player is SystemPlayer (not shown here).

Player has one class variable, Handicap, which is associated with
every player. Handicap has a value and a property, doc, which
describes what a handicap is.

Player has instance variables which describe data the player needs
to participate in the Truckin game. Each instance of Player will have
these variables with values specific to that instance.

26

Medley LOOPS: The Basic System

1.2.2 Properties

Many of the variables and methods have properties that further
describe characteristics of the variable, including constraints,
documentation, etc.

A property is an attribute of either a variable or a method, which
has a value that can provide additional information about the variable
or method. Properties are stored on property lists associated with the
variable or method. For example, one property you will see quite often
in the LOOPS code is ‘doc’, which has a value that is a string and
provides documentation about the object it is attached to.

Unlike some other object-oriented programming languages
(OOPLs), property lists are extendible and dynamically modifiable.
This allows a programmer to add new properties to a class or instance
description by adding them to the property list.

It is strongly recommended that you add properties to your
variables and methods, especially, the doc property, which describes
the role and use of the variable.

1.2.3 Instances

An instance of a class is a description of a particular entity in a
LOOPS program. Each instance inherits copies of the parent classes’
instance variables. An instance may have a local value of some or all
of the parent classes’ class variables. When an instance is sent a
message, LOOPS uses the selector, e.g., the name of the method in the
message to find the appropriate method to use in the parent class or

27

one of its superclasses. Every object in LOOPS is an instance of one
class. Figure 1-4 depicts a class with instances.

Medley LOOPS: The Basic System

Instancel

Varl
Var2

VarN

... Valuel
... Value2

... ValueN

LOOPS Object
Varl .. Valuel
K Var2 .. Value2
= °
=
“ |varN ..ValueN
Selectorl Methodl
5
o
b= @
@
=
SelectorM MethodM
InstanceN
Varl ..Valuel
Var2 ..Value2
VarN ... ValueN

Figure 1-4. A Class and Its Instances

28

Medley LOOPS: The Basic System

1.2.4 Methods

A class has behavior that is represented by a set of methods. A
method is a procedural construction like a subroutine or function in
other programming languages. Associated with a message is a selector
represented by a Lisp atom. A selector typically has the same name as
amethod in the object, which allows LOOPS to invoke the appropriate
method when an object receives a message. Figure 1-5 depicts the
general structure of a method.

(Method <name> (<parameters>)
<statement-1>
[<more statements>]

A method receives its arguments, if any, by a message. A method
may have zero or more parameters defined for it. All methods -
implicitly — receive an argument, self, which represents the handle of
the receiving object. Users do not have to encode self in a method
definition.

All class instances have the same set of methods. Two instances
of a class may respond differently to a message based on the values of
their instance variables. The different behaviors are encoded in the
method body.

This approach differ from procedure-oriented programming
(POP) in that the object determines what method to use to respond to
a message, whereas in POP, the calling procedure determines what
procedure to use.

29

Medley LOOPS: The Basic System

If a method is not defined within a class when invoked through
one of its instances, LOOPS searches upward through the class
hierarchy to find the method definition. If the method is not found in
any of the superclasses of the class receiving the message, an error
occurs.

A special type of method invocation can be used to determine the
class or method name dynamically at run-time, which provides
extensible flexibility in program construction.

1.2.5 Metaclasses

Classes may have subclasses. The class that has subclasses is
referred to as a metaClass or a superclass. When a class is sent a
message, the method handling that message may be defined in the
class itself or in its metaClass. If its definition resides in the class and
its is not a local method, we say the class has inherited the method
from its metaClass.

If the method does not reside in the class, but in its metaClass, its
metaClass determines the response. Subclasses may have additional
methods defined for them that are not specified within the metaClass.
These are termed local methods. This allows the user to elaborate the
functionality of a class. A class hierarchy is a class with its subclasses
(and their subclasses, if they have them, recursively) arranged as a tree
to show the dependency relationship.

The user should think of a metaClass as a template for possibly
several classes each of which somehow distinguishes a particular set
of objects with properties. In section 1.2.1, PlayerMeta is a metaClass
for Player from the Truckin application.

30

Medley LOOPS: The Basic System

Leverage comes from allowing different subclasses to respond to
the same message, but in possibly different ways. A program can treat
uniformly objects from different classes. This uses the principle of
modularity by reusing pieces of code in more than one class.

1.2.6 Abstract Classes

Another class available in the LOOPS ecosystem is
AbstractClass. Abstract classes are useful when creating classes that
implement general functionality, which are then specialized into
instantiable classes. Instances of this class are classes that cannot be
instantiated. An example of an AbstractClass is ActiveValue, which is
described in Chapter 7.

Figure 1-6 is an example of a MetaClass and its instances.

Instances
of Window

window1

— Instances L
MetaClass of Class

window2

N\

Window

Instances

/
v
Y
Point N f Point
~ o
< \\
\ N

Class
™ 1 point1

Instances
AbstractClass of AbstractClass

N \ point2

/

Na] Activevalue

31

Medley LOOPS: The Basic System

Figure 1-6. A MetaClass Example
Source: PARC LRM91

NOTE: It seems SuperClass was used in earlier documentation,
but MetaClass was introduced to explicitly capture the idea of a
class of classes. Thus, in LOOPS documentation you will find
references to both superclasses and metaclasses. Our
understanding is that these names refer to the same type of object
in LOOPS.

1.3 Generic Class Description

A generic class description has the form presented in Figure 1-7.
Figure 1-8 depicts a graphic picture using a notational mechanism
borrowed from UML.

(DEFCLASS <class-name>
(Supers) ; a list of immediate superclasses (metaclasses).

(ClassVariables ; a list of variables that describe this class and
; differentiate it from its superclasses.

(<CV-1> <CValue-1> [doc <description-1>])

(<CV-n> <CValue-n> [doc <description-n>]))
(InstanceVariables ; a list of instance variables which are inherited
; (defined in) each instance of the class.
(<IV-1> <IValue-1> [doc <descrption-1>])

(<IV-n> <IValue-n> [doc <description-n>]))
(Methods ; a list of methods implementing the behavior ;
; of this class.
(<method-name-1> <argument-list-1> [doc <description>])

32

Medley LOOPS: The Basic System

(<method-name-n> <arguments-list-n> [doc <description>])

Figure 1-7. Generic Class Description

<class name>

<superclasses names>

<variables>

<methods>

Figure 1-8. Graphic Depiction of a Class
1.4 Class Hierarchy

Classes are arranged in a class hierarchy beginning with the most
general class, Object, and organized as an inheritance network
descending from it. We use the term ‘network’ here because LOOPS
allows a class to descend (inherit from) multiple superclasses.

33

Medley LOOPS: The Basic System

We said that every instance is defined by a single class. If we want
to define a combination of classes — each contributing some attributes
to the concept being described, we must define a new class that
inherits from each of the superclasses whose attributes are to be
combined to describe the entity.

1.4.1 The Concept of Inheritance

Inheritance is a major organizing principle in general-purpose
OOPLs. It allows programmers to specify many objects that are
“almost like” other objects, but differ only in a few incremental
changes. Thus, the programmer does not have to specify redundant
information that is common to every subclass of a class. It also
minimizes errors because information only needs to be updated in one
place. The structure of classes and subclasses is referred to as an
inheritance network.

Inheritance adheres to the following principles described in Table
1-1.

Table 1-1. Basic Inheritance Principles

An instance object inherits the instance variables and message responses
from its superclass.

All descriptions in a class are inherited by a subclass unless overridden in
a subclass.

Methods do not have to be defined in a subclass unless their behavior is
being overridden.

Class variables do not have to be assigned a value in a subclass unless their
value is being overridden.

34

Medley LOOPS: The Basic System

When a class variable or a method is referenced in an instance of a
subclass, a search is made up the class hierarchy for the class in which the
variable or method is defined to retrieve the value.

1.4.2 Simple Hierarchy

A simple inheritance hierarchy consists of one superclass for each
class. A superclass may have multiple subclasses. In this case, the
hierarchy is organized as Directed Acyclic Graph (DAG). Here is an
example using a general notation:

(DEFINECLASS Point
(x 0)
(v 0)

... methods for manipulating the instances

(DEFINECLASS ColoredPoint
(Supers Point)
(color “blue™)
(methods
(setColor (newcolor) ... docs set color to newcolor)

As we see, Point has two instance variables (IVs): x and y. In the
class definition of Point, the default values are 0 for x and 0 for y.
When a new instance of Point is created, unless otherwise specified,
the values of x and y are initially set to 0.

35

In

Medley LOOPS: The Basic System

ColoredPoint, a new attribute, Color, which further

characterizes a Point, is defined. It is used to define a ColoredPoint as
a subclass of Point. Thus, points can be colored or not depending on
the class the new point belongs to.

36

Now, let us create a point in 3-dimensional space, which we will
call Point3D. This subclass Point3D of Point will have a new 1V, z,
which represents its location along the z-axis. We depict this
arrangement in Figure 1-9.

We note several things in this figure:

©oOoNOR~ WD PR

el
— o

Instance ptl is an instance of class Point;

Class Point has a class variable (CV) lastPoint;

Class Point has two instance variables: x and y;

Ptl has instance variables x and y;

Class Point3D is a subclass of class Point;

Class Point3D does not have CV lastPoint;

Class Point3D declares a new IV z;

Implicitly, class Point3D inherits IVs x and y from class Point;
Instance pt2 is a subclass of class Point3D;

. Pt2 has three 1Vs: X, y, and z inherited from class Point3D;
. Class Point3D has the same selector Al, which is modified

from class Point and new selector C.

Medley LOOPS: The Basic System

Class
Point

Methods

selectorl1 methodA
selector2 methodB

instance-of CVs
Instance JlastPoint NIL
pt1
Instance Variables IVs - default values
X 33 X 0
y 100 y
subclass-of
Class
3DPoint
Methods
selectorl1 methodA1
selector3 methodC
instance-of CVs
Instance
pt2
IVs - default values
Instance Variables

z 0
X 3
10
z 50

Figure 1-9. The Subclass Point3D
Source: PARC LRM91

37

Medley LOOPS: The Basic System

As Figure 1-9 demonstrates, a simple hierarchy consists of a single
superclass for a class. All instance variables specified in the superclass
are inherited and present in the subclass. Of course, the superclass may
have its own superclasses and, thus, has all of their instance variables
as well.

1.4.2.1 Multiple Superclasses

A LOOPS class may have more than one superclass. Multiple
superclasses allow separation of functionality across superclasses, but
support the concept of object composition, which allows a new class
to combine the features and methods from many classes. This
powerful inheritance mechanism allows substantial flexibility in
defining applications using a variety of combinations of classes.

The concept of multiple inheritance is both powerful and fraught
with danger.

1.4.2.2 Name Conflict Resolution

When more than one Superclass is specified for a new class, it is
possible that some of the names of variables in the superclasses may
be the same. The superclasses are specified as a list of classes when
defining the new class.

When referencing a variable or method that has been specified in
one or more superclasses, which superclass should be used to provide
the variable or method to any operations in the class? LOOPS uses the
order of the names in the superclass list to establish the precedence for
search when looking for the value of an variable or method in a

38

Medley LOOPS: The Basic System

superclass - from left to right in the superclass list. The first occurrence
of the name in a superclass is the one that is used to resolve the name
conflict resolution to determine the value.

1.4.3 A Complex Hierarchy

LOOPS allows a subclass to inherit from multiple superclasses.
Consider the following example:

(DEFINECLASS Point3D
(Supers Point2D)
(z0)

(DEFINECLASS ColoredPoint3d
(Supers Point3d ColoredPoint2D)

Class ColoredPoint3D has the IVs inherited from Point3D and
from ColoredPoint. It responds to setColor by traversing up the
hierarchy to ColoredPoint. It responds to the methods in class Point3D
by traversing up the hierarchy because Point3D is named before
ColoredPoint.

1.5 Interlisp Objects

To access an Interlisp object, one needs to have a handle
(sometimes, called a “pointer”) to it. The handle should be assigned to
an Interlisp variable or a LOOPS instance variable, usually viaa SETQ
statement. Lisp objects can be passed as arguments to functions to be

39

Medley LOOPS: The Basic System

examined and operated upon by Lisp functions by passing their
handles.

Handle

A handle is a reference to an object in memory. A handle is NOT a
pointer, although the term has sometimes been used
interchangeably with ‘pointer’. Rather, a handle is a value that
allows the Medley Interlisp run-time system to locate an object —
either Medley Interlisp or Medley LOOPS - in virtual memory. A
handle has a value that can serve as an index into a table of objects,
sone of which are located in physical memory and some of which
are located in virtual memory The object table entry has fields
describing attributes of the object.

A handle can reference a Lisp object or a LOOPS object. Which
type of object is determined by the values of an attribute in the object
table.

1.5.1 Testing for Lisp Data Types

LOOPS defines three Lisp data objects: annotatedValue, class,
and instance. LOOPS provides macros to test the data type of a Lisp
object. We can load Richardl from the Plantagenet data set:

(*; "This data set describes the Plantagenet Family™)
(*; "Prepared by Steve Kaisler")

(DEFINE-FILE-INFO -PACKAGE "INTERLISP" -READTABLE
"INTERLISP" -BASE 10)

(*; "Richard I")

40

Medley LOOPS: The Basic System

(SETQ Richardl (SEND Person New))
(SEND Richardl SetName 'Richardl)
(PutValue Richardl 'Gender 'Male)

(PutValue Richardl 'Birthdate (LIST 09 08 1157))
(PutValue Richardl 'Deathdate (LIST 04 06 1199))

(putFather Richardl 'Henryll)
(putMother Richardl 'EleanorOfAquitaine)

(PRINT "Loaded Richard!")
STOP

2/11¢ (LOAD *Richardl.txt T T)

{02k}<home>stever LOOPS-MAIN>Richardl. . txt;l
3

3
#, (34 Person (92 . BE2EA))
#,(% RichardlI}

Male

{9 8 1157)

(4 5 1199}

HenryIl

ze1f iz an unbound variable,

(NOTE: Remember files to be loaded by Interlisp must be terminated

by a STOP atom.)

The SETQ statements assigns the handle to a variable named
Richardl. The SEND line assigns the name to the variable which
allows it to be used in LOOPS expressions without using the ($...)

notation (see below).

41

Medley LOOPS: The Basic System

The last two arguments, “T T, direct Interlisp to print the results
of each statement as it is executed.

In this example, we see that Richardl is an instance of Person,
which is a class. The first line, #,($& Person (92 . 65200)), after the
“;’s”, specifies the handle, which allows the run-time system to locate
the object named Richardl in virtual memory. The second line, #, ($
Richardl), is the result of the SetName message. It specifies the name
of this instance is Richardl, so we can use Richardl to reference this
instance in other Lisp expressions. The other lines present the values
of other attributes describing Richardl

Note: To send a message to an object, we can use the following form
in the Interlisp EXEC window:

ass7+ (SETQ Richardl (+ Person SetMNarne ‘Richardl})
wl#, ($C RichardI)

On the keyboard, we would type “... (_ Person ...), but this is
translated by the Interlisp readtable into “€ . Alternatively, the

function to send a message to an object is SEND as indicated in the
listing above. SEND is described in Section 3.1.

Note: The Plantagenet data set is presented in Appendix ??.
1.5.1.1 Testing for Lisp

To test if the value of a variable is a Lisp object, you can use the
Object? macro as follows:

Macro: Object?
42

Medley LOOPS: The Basic System

Arguments: X, an arbitrary lisp variable.
Value: Returns T, if a Lisp Object;
otherwise, NIL.

For example, testing Richardl:

2r12¢ (Dbject? Richardl)
qT

So, yes, Richardl is a Lisp object.

Note: Since we assigned the name Richardl to the object Richardl, we
can now reference it by its name.

1.5.1.2 Testing for a Class

To test if a variable is a class, you can use the macro Class?:

Macro: Class?
Arguments: X, a possible class.
Return: Returns T, if X is a class;

otherwise, NIL.

For example, to test Richardl as a class:

z2/13+ (Class? Richardl)
MIL

So, Richardl is not a class.

43

Medley LOOPS: The Basic System

1.5.1.3 Instance?

To test if a variable is an instance, you can use the macro
Instance?:

Macro: Instance?
Arguments: X, a possible instance.
Return: Returns T, if X is an instance;

otherwise, NIL.

For example, is Richardl an instance of a class?

2/15+ {Instance? Richardl)
T

So, Richardl is an instance of a class.
1.5.1.4 AnnotatedValue

AnnotatedValue is a class that allows an annotatedValue to be
treated as an object. An annotatedValue was an Interlisp-D data type
that wrapped each ActiveValue instance. AnnotatedVValue will be
described in Section 7.2.6).

To test if a variable is an annotatedValue, you can use the macro
annotatedValue?:

44

Medley LOOPS: The Basic System

Macro: AnnotatedValue?
Arguments: X, a possible annotatedValue.
Return: Returns T, if X is an annotatedValue;

otherwise, NIL.

asz7+ (AnnotatedYalue? Richardl)
MMIL

So, Richardl is not an annotatedVallue.
1.5.1.5 Understands

To test if an object will respond to a self message, you can use the
macro Understands:

Macro: Understands

Arguments: <object>, an instance or a class.
<message>, a method name.

Return: T, if self is a class or an instance of a class that
understands the message; otherwise, NIL.

2722+ (SEND Richardl Understands 'GetValue)
HIL

Richardl does not understand GetValue, because GetValue is a
function, not a message. An alternative test is:

; Py {SEND {% Richardl) GetValue *Father}
(GetWalue #,($& Perszon (YZabh=7W1.8.0.1+«: . 4)) Father) not possible.

45

Medley LOOPS: The Basic System

1.5.2 Assigning Names to LOOPS Objects

To manipulate Lisp objects, one can also assign a “LOOPS name”
to it, whence it can be referenced by that name. A name can be
assigned to an Interlisp object via the message SetName.

Message: SetName

Arguments: 1

Arguments: 1) <name>, the name to be assigned to the
object.

Value: Sets the LOOPS name <name> to refer to

the Interlisp object.

LOOPS names are unique in a LOOPS environment. A LOOPS
environment establishes a name space to partition the total name space
of all possible name strings. The global variable CurrentEnvironment
specifies a description of the current environment.

An attempt to assign a name that is already in use within the
current environment generates an error if the ErrorOnNameConflict
issetto T.

If ErrorOnNameConflict is NIL, and an object already has the
specified name, the name is unassigned from the existing object and
assigned to the new object, without generating an error.

For example, suppose ILV1 is a Lisp variable. You can assign a
LOOPS Name to the Interlisp object whose handle is its value via:

(<- ILV1 SetName ‘SHKFoo)
46

Medley LOOPS: The Basic System

Thereafter, the user can refer to this object as ($ SHKFoo0), which
will return the handle for the Lisp object. Here is an example:

asav+ (SETQ Person (DefineClass 'Person NIL ($ Class)))

The LOOPS name Person was assigned as the name of the LOOPS
class object Person. Line 47 of the example shows that Person is a
class, indicated by $C. Once a LOOPS name is assigned to the class
object in Line 48, it can now be referenced by its LOOPS name as seen
in Line 49.

The user can use a computed LOOPS name. For example, let lisp
variable X have the atom Richardl. Using the form ($! <expr>), then
($! X) is translated as ($ Richardl). We can then set the value of
RichardI’s Father via:

4 2/4s¢ (SETQ X Richard)

#,0%% Person {|¥ZaB=7x1.8.0.1«:| . 433
i arase (Put¥alue (%! X) 'Father 'Tom)

4 Tom

1.5.3 Class Objects and LOOPS Names

Class objects are automatically given LOOPS names when they
are created.

47

Medley LOOPS: The Basic System

1.5.4 NamedObject

Any LOOPS object can be named. The class NamedObject,
usually used as a superclass, allows a LOOPS object - either class or
instance — to have a name. NamedObject has only one instance
variable, name.

GlobalNamedObjects are named in the global name table. They
are named independently of the environment they reside in, whereas
NamedObijects are only known in their local environment. The names
in one local environment may be reused in another local environment
without conflict.

1.5.5 DatedObject

DatedObject has active values associated with its instance
variables, so that they are filled in when an object is created:

created, the date and time of creation of the object
creator, the USERNAME of the creator of the object

A LOOPS object should have DatedObiject as a super when the
environment in which is resides is shared by multiple users, so that the
individuals who created objects can be identified. This is useful when
an individual is responsible for objects that she or he creates.

48

Medley LOOPS: The Basic System

1.6 System Variables and Functions

When LOOPS is loaded, several LOOPS system variables are set
by the LOADLOOPS function. LOOPS system variables are
described in Table 1-2a and LOOPS directory variables are described
in Table 1-2b.

49

Medley LOOPS: The Basic System

Table 1-2a. LOOPS System Variables

Variable

Description

LoopsVersion

Specifies the current release of
LOOPS.

2/45¢+ LoopsVersion
Lyric/MedTey

LoopsDate

The date when LOADLOOPS was
executed to create the current instance
of LOOPS.

2rave Luupsl]hte
fUi7-0ct-Z@E3 12:2@: 29"

FEATURES

LOADLOOPS added the symbol
LOOPS to this variable.

aegs SFEATURES*
(LOOPS :LOOPS LODRS :LOOPS :CLOS :XERDX-MEOLEY :INTERLISP :RERDX
EE-FLOATING-POINT :MEDLEY)

LoadLoopsForms

A list of forms that were evaluated
when LOOPS was loaded. Initialized
to NIL using the File Manager
command INITVARS.

LispUserFilesForLoops

A list of files required by LOOPS.

il zres+« LispUserFilesForLoops
(BRAPHER)

OptionalLispUserFiles

A list of files that is loaded when
LOOPS is loaded. Initialized using the
File Manager command INITVARS.

50

Medley LOOPS: The Basic System

Table 1-2b. LOOPS Directory Variables

Directory Variable

Description

LOOPSDirectory

Initialized to the directory from which
the file LOADLOOPS is loaded using
the File Manager command
INITVARS. Depends on where
LOOPS is installed in the user’s
system.

LOOPSLIBRARYDIRECTORY

The directory where the LOOPS
library files reside. Depends on where
LOOPS is installed in the user’s
system.

#l2/60¢ LODPSLIBRARYDIRECTORY
DSK}<home>Steve? loops-mainy LIBRARY >

LOOPSUSERSDIRECTORY

The directory where the LOOPS
User’s Modules reside. Depends on
where LOOPS is installed in the user’s
system.

se2¢ LOOPSUSERSDIRECTORY
DSK}<home» 3teve? loops-mainy USERS>

LOOPSUSERSRULESDIRECTORY

The directory where the LOOPS Rules
User Module resides.

2/8e« LODPSUSERSRULESDIRECTORY
{D8K}<home>Stever Toops-main>USERS>RULES>

LoopsPatchFiles

A list of files passed to FILESLOAD
that is used during the loading of
LOOPS. Initialized to NIL.

LOOPSFILES

The list of LOOPS files loaded by
LOADLOOPS when building a
LOOPS sysout.

ClearAllCatches

A list of forms each of which is
evaluated within a call to the function
ClearAllCaches. Initially set to NIL

o1

Medley LOOPS: The Basic System

LOOPSFILES contains the list of files loaded by LOADLOOPS.

ase2+ LOOPSFILES

4 (LOADLOOPS LOOPSSITE BLOCKLOOKUP LOOPSSPEEDUP LOOPSODATATYPES LOOPSSTRUC LOOP
#SPRINT LOOPS-FILEPKG LOOPSACCESS LOOPSUID LOOPSEDIT LOOPSMETHODS LOOPSKERMEL
o LOOPSACTIVEMALUES LOOPSUTILITY LOOPSIMSPECT LOOPESWINDOW LOOPSBROWSE LOOPZDE
BUG LOOPSUSERINTERFACE LOOPS-TTYEDIT INSPECT-FATCH)

52

Medley LOOPS: The Basic System

Chapter Two

Object-Oriented Programming in LOOPS
This chapter describes how to do object-oriented programming in
LOOPS.
Note: Entities enclosed in “[]” are considered optional arguments.

Convention: In the following examples, the “_* ithat appears in the
LOOPS Manual is represented by the solid left arrow that appears in
theMedley Interlisp Exec window.

2.1 Creating a New Class

LOOPS provides several methods for creating a new class that
provide the user with control over the definition details.

2.1.1 Creating a New Class via New

The method for creating a new class is to send the message New
to a metaClass. The metaClass ‘Class’ is used to define new classes.
The format is:

(_ <metaClass> New <className> [<supersList>])

53

Medley LOOPS: The Basic System

where: <metaClass> is either ‘Class’ or an existing class in the
workspace.

New is the message to create a new class object.
<className> is the name of the new class.

<supersList> is a list of superclasses in the class hierarchy
<metaClass>.

As an example, create a new class named ‘Person’:

iz 0e (SETQ Person (& (% Class) New 'Person))
#,(3C Perzon)
2/10%

Notice that the left arrow in the example above is used to send
message to an object. However, in Word, it appears as an ““_”. This is
due to the font differences between Word and Interlisp.

LOOPS returns a handle to the Person object of the form #.($C
Person) where the $C indicates a class. By storing this handle in a Lisp
atom, we can reference it later. The new class is a subclass of Class.

If the <supersList> is NIL or not specified then then the superclass
of the new class is set to its <metaClass>.

The form (_ <object> <selector> <argl ... arg2) is a compiler
MACRO that is expanded into a function call of the form:

(APPLY* (FetchMethodOrHelp <object> ‘<selector>)
<object>
<selector>

argl ... argN)

54

Medley LOOPS: The Basic System

You can also use this form within a program if you want to edit
the selector and arguments to the selector for several selectors
associated with the object.

2.1.2 Creating a New Class with NewClass

Another approach is to use the LOOPS function NewClass, which
creates a class of the given name. Its format is:

Function: NewClass

Arguments: <classname>, the name for the class.
<metaclass>, the parent class of the new class.

Return: The class record.

This function does not check for an existing definition of the class.

2/3¢ (SETQ PERSON (NewClass 'Person ($ Class))

it)
i, (30 Person)
2.1.3 Creating a New Class with DefineClass

Another approach is to use the LOOPS function DefineClass,
which creates a class of the given name. Its format is:

Function: DefineClass
Arguments: <classname>, the name for the class as a
litatom.

<supers>, a list of superclasses or NIL.
<object>, the parent class of the new class.

55

Medley LOOPS: The Basic System

Return: The new class handle.

47+ (SET() Person {DefineClass *Person NIL (% Class)))
LE40 Person)
/43¢ (# Person SetNarne 'Person)

(40 Person)
/0%

If <supers> is not NIL, it is a list of class designators each atom
of which is a class designator.

If <supers> is a list of classes, the class has multiple superclasses.

If some superclass is not yet a class, then DefineClass asks the
user to correct the list.

356 (SET) APERSON (DefineClass ‘aPerson {LIST 'MotAClass) (% Class)))
hould WothClass he defined as a new class 7 No
otAClazs must be replaced in definition, or defined as a clazs,

In ERROE:
(Hot&Class) iz a bad supers list

The default for supers is (Object) if <object> is Class or is (Class)
if <object> is MetaClass or one of its subclasses.

e/a2+ (SETQ BPERSON (DefineClass Person NIL ($ MetaClass))) i
4#, (80 bPeran) R

56

Medley LOOPS: The Basic System

G E (PP bPerson)
CLAZSES definition for bPerzaon:

(OEFCLASSES hPersan)

(DEFCL&33 bPerson

(Metallazs MetaClazs Editedt: **COMMENT®*)
(Bupers Glass))

NIL

NOTE: DefineClass yields two different declarations if one
specifies ($ Class) as an <object> without specifying <supers> as a
NIL. For example:

z2/75+ {DefineClass "State *(Class))
#,03C Ztate)

2/7a+ {DefineClass "State2 NIL *{Class))
#, 040 Sratel)

a/v5+ (PP State)

YARZ definition for State:

(RPAQQ State #,(% State))
CLASZES definition for 2tate:

{DEFCLASSES State)

(DEFCLASS State
(MetalClazs Class Edited®: **OOMMENT**)
(Supers Clazs))

MIL
asvee (PP Statel)
CLASEES definition for StateZ:

{DEFCLASSES State?)
{DEFCLASE State?
(MetaClazs (Clazsz)
Editedi: #RCOMMEMT®#*

J
(Supersz Object))
MIL

57

Medley LOOPS: The Basic System

In line 73, “State” is defined as a subclass of ”Class”, whereas
in line 74, ”State2” is defined as a subclass of “Object”. This cause
considerable confusion concerning how to access “State” in a
program.

The class is built with the Edited: property containing the date and
time it was created and the value of the variable INITIALS. To track
which users create new classes in a multiuser application, you should
set the variable INITIALS to those of the person creating new classes.

The new class has no class variables, instance variables, or
methods associated with it.

The variable LASTWORD is set to <classname>, which is added
to USERWORDS for spelling escape completion. LASTWORD
tracks the last object defined by a user.

2.1.4 LispClassTable

LispClassTable is a hash table, which is a list of classes based on
object type. For example,

zreae (PP Lisp[:lassTaiJIE}
ﬁiHﬁHS definition for LizpClazzTahle:

(RP&0Q LispClassTable #<Hash-Tahle ® 137,106452))
ANIL

2.2 Creating an Instance of a Class

58

Medley LOOPS: The Basic System

We can create an instance of a class by sending the message New
to the class. The format of this method is:

Method: New
Arguments: <class>, the handle of the class.
<name>, a LOOPS Name for the new class.
<supers>, a list of classes.
<initl>,
<init2>,
<init3>.
Return: The handle of the new class.

Upon return, the new class is sent the message newClass with the
arguments <initl>, <init2>, <init3>.

2.2.1 Simple Form

For example, the simplest form of creating a new class to use the
NEW message:

z¢g+ {SETQ Henryll {% Person) NEW 'Henryll)
HenryIl

as7+ (PP Henryll}

VARS definition for Henryll

(EP&Q] Henryll #,(% Perzon))
MIL

Note that specifying Henryll as the name of the new class only
allows you to access the new class via ($ Henryll). By setting the
handle to Henryll (the variable), you can now access it as shown
above.

59

Medley LOOPS: The Basic System

The initial values of the instance variables of the instance are
usually taken from the instance variables as defined in the class
definition.

We can set the gender of Henryll to Male using PutValue (see
Section 3.5.2.1):

as33¢ (PutValue Henryll 'Gender ‘Male)
itale

Jar34¢ (pp Henryll)

Jpp {in EVALY} -» PP ? ves

AVARS definition for Henryll:

J(RPAQD Henryll #,(% HenryII))

JIMSTANCES definition for HenryIl:

J(DEFINST Perzon (Henryll {DZ%tY9TalU1.0.0.9Y¥7 . 15))
i (Gender Ma]e?}l

Note that Interlisp is case sensitive. PP is the name of a function
that prettyprints the definition of an object. In line 34, ‘pp’ was
specified, which is not the name of a function. Interlisp, using DWIM,
asks the user to correct the function name. When the user types ‘yes’,
it uses PP.

2.2.2 Creating a New Class as a Subclass

To create a new class as a subclass, you can provide a value for
the <supers> argument:

(SETQ myWindow (SEND ($ Class) New myClass ‘(Window))

which sets myWindow with the handle of the new class. myWindow
is a subclass of Window. After it is created, it is sent the message
newClass.

60

Medley LOOPS: The Basic System

2.2.3 Initializing a New Class

After creating a new class, it can be initialized using the init
variables provided in the method format. After the class is created, it
is sent the message newClass with the three init variables as
arguments.

First, create a new class with DefineClass as follows:
(DefineClass ‘SHKClass NIL ‘(Class))

Second, assign the method newClass to myClass as follows:

(DefineMethod (S SHKClass)
‘newClass
‘(<init1> <init2> <init3>)
‘(PROGN
(PutClass self <init1> ‘propl) Self)

Third, send SHKCclass the message newClass:

(SEND (S SHKclass)
New
‘testClass
NIL

“steve’s class”

61

Medley LOOPS: The Basic System

2.3 Creating an Instance of a Class Using SEND

An alternate method is to use the function SEND to send the
message to the class. Thus, we can create a new instance as follows:

(SETQ Henryll (SEND Person New ‘Henryll))

o e

2;19{- (3ETQ) Henryll (SEND Person Mew ‘Henryll})
#. (3% Person (DZ%+V9TalUL.8.8.9¥7 . 18))

We can assign a name to Henryll (the instance) of Henryll (the
name) as:

#, (3% Person (DZ%+Y8TalU1.8.0.8Y7 . 15))
2r31+ (SEND Henryll SetNare ‘Henryll)

#, (3% Person (DZ¥%+Y9TalU1.8.0.9Y7 . 15))
arz2¢ (PP Henryll)

WARS definition for HenrylII:

(RPAQD Henryll #, (% HenryII))
INSTANCES deﬁmtwn for Henr
{(DEFINST I;ersnn {Henryll (DZ%WBTaLm 0.0.9¥7 . 1h))

Note that the handle for an instance is more complex than a class.
Users do not need to interpret the meaning of a handle in their use of
Interlisp as it is translated by the runtime system into an address in
memory as needed.

62

Medley LOOPS: The Basic System

2.4 Instance Variables and Properties

An instance has two types of variables:

e Its private instance variables, and
e The class variables that it shares with all instances of the
class.

When a class is defined, it specifies the instance variables for each
instance of a class. An instance variable in a class may have a value,
When accessing an IV through an instance, if the IV is not defined in
the instance, LOOPS looks up the class hierarchy for it in one of the
superclasses and uses the value found there.

By private instance variables, we mean IVs that have a value
specific to that instance of a class. A private 1V, then, is a copy of the
IV defined in the class, but has a, perhaps, unique value for that
instance. Since searching up the hierarchy required additional
operations, performance could be improved by creating a copy of the
IV in the instance.

A class variable was defined in the class and had the same value
for all instances of the class. Accessing a CV required a search up the
class hierarchy to find it definition. CVs could be cached in instances
in order to improve access performance.

2.4.1 Instance Variable Operations
There are two types of operations upon these variables:
e (Getting operations to retrieve a value of an instance variable,

or
e Putting operations that set the value of an instance variables.

63

Medley LOOPS: The Basic System

LOOPS provides a wide variety of functions for these operations
which provides the programmer with substantial flexibility in
manipulating the values of these instance variables. Section 3.5.2
describes the operations.

For Person, we can specify an instance variable (IV) named
“Birthdate” and a method that computes the person’s age from the
current date and their birthdate. But, this method should also check to
see if DeathDate is defined, and then compute the person’s age at
death by subtracting the birthdate from the deathdate. Both birthdate
and deathdate should be private Vs because they should have unique
values for each instance.

2.5 LOOPS Names

LOOPS maintains a separate name space for LOOPS objects from
the Interlisp name space. Names are stored in a separate object name
table for LOOPS, which is distinct from the object name table for
Interlisp objects.

2.6 Instance Names

Instances are not created with names. To access them, one needs
to keep a handle to reference an instance. One way to do this is to
supply a name when the instance is created by assigning the handle to
a variable. For example:

2/73¢ (SETQ window 1 {+ (% Window) New})
fil#, ($& window (DL%@.UC1.8d5.349 . 22))

64

Medley LOOPS: The Basic System

which creates an instance of the class Window and stores its handle
in the Interlisp variable windowl. A program can use windowl To
reference the instance.

z2:75¢ (PP {$ windnow 1))
EXPRESEIONE definition for {§ windnowl):

(3 windnowl)
NI

A second approach is to use a LOOPS name. One can assign a
LOOPS name when the instance is created as follows which allows
the instance to be referred to be the LOOPS form ($ Window?2).
Similarly, one can also assign the handle to a variable named
window2;

lareee (€ ($ Window) New *Window2)
il#, (44 Window (DL%E.UCL, BdE.J99 . 213)

Alternatively, one can use the message SetName to assign a
LOOPS name to an instance if you have a pointer to that object. For
example:

2/ve+ (SEND (% Window2) SetName "Window2)
i, (%4 Window (DL%@.UC1.8d5.Ji3 . 21))

which allows the program to reference the instance as Window2.
2.6.1 Working with LOOPS Names

There are several forms for working with LOOPS names as
described in Table 2-1.

65

Medley LOOPS: The Basic System

Table 2-1. LOOPS Forms for Name Manipulation

Form Type Description
$ Nlambda Specifies that the LOOPS name
and macro will be used; does not evaluate its

argument.

$! Function Specifies that the LOOPS name
will be used; evaluates its
argument.

SetName Method Assigns a LOOPS name to an
instance.

UnSetName Method Removes a name from an instance.

Rename Method Changes the name of an instance.

GetObjectNames | Function Returns the names of an instance,
including its UID.

Some examples are:

z2/8+ ($ Edwardill)

#, ($& Person (FEXNPGZUL.@.0.n%<

2711+ ($! Edwardill)

#, ($& Person (FEXNPGZUL.@.0.n%<

. 133

. 133

The variable ErrorOnNameConflict causes a break when an
attempt is made to assign a LOOPS name to an instance that already
has a LOOPS name. The initial value is NIL.

2.7 Editing a Class

Once a new class has been defined, its structure can be further
elaborated using the editing capability in LOOPS. The format is:

66

Medley LOOPS: The Basic System

(_ ($ <className>) Edit)

We can use the function EC to invoke the structure editor as:

SEdit Account Package: INTERLISP
((MetaClasz Class Editedi: ; Edited 25-May-2022 1357 by

; root
]
(Zupers Ohject)
(ClassVWariahles)
(InstanceVariables)
(MethodFns))

For example, here is the Edit window for State:

67

Medley LOOPS: The Basic System

z ge: INTERLISP
((MetaClass Class Editedi: ; Edited 5-Jun-2024
y 09:95 by Steve
i
(Supers Claszs)
(ClassVYariahles)
[InztanceVariables
(Dezcription "A& component of the United States" doc
{# IY added by STEVE))
(3tateCapital NIL doc (* IY added by STEWE))
{PartOf MIL doc (* IY added by STEYED)
(Population WIL doc (* IY added hy STEVE))
(Date0fPopulation MNIL doc (* IV added by STEWE))
{Cities MIL doc {* IV added by STEYE))
(Counties WNIL doc (* IY added by STEWE)))
(MethodFns))

2.8 The Class Record

A class is described by a class record in which several fields store
data about CVs and CIVs:

e cvNames is a list of all the class variables;

e cvDescrs is a list of the descriptors for each of the CVs; and

e locallVs is a list of instance variables local tot his class.

A function fetches cvNames of a class to access the list of class
variable names or fetch cvDescrs to access the list of class variable
descriptors. GetSourceCV is used to fetch the class variables defined
in the class.

68

Medley LOOPS: The Basic System

se5¢ fix 67

s+ (GetSourceCys ($ Window))

(Titleltems MIL doc "special items to be done if in title part of window") (LeftB
ttonltems {{Update {(QUOTE Update) "Update window to agree with object Ivs")) doc
Items to ke done if Left button iz selected in main window") (ShiftLeftButtonltem
NIL doc “"Items to he done if Left button is selected in main window with SHIFT k
y down, ") (MiddleButtonltems NIL doc "Items to be done if Middle button iz select
d in main window") {(ShiftMiddleButtonItems NIL doc "Items to be done if Middle bu
ton iz selected in main window with SHIFT key down.") (RightButtonltems ({Close (
Togze (Cloze Destroy))) Znap Paint Clear Bury Repaint {Hardcopy (Hardcopy (Hardcop
ToFile HardcopyToPrinter))) Move Shape Shrink) doc "Items to be done if Right hut
on iz zelected"))
S EEE

A function uses the function GetSourcel Vs to access a list of local
instance variable descriptors.

EEEHSQG (GetSourcelVs ($ State))

Hi((Description "A component of the United States" doc (* IV added by STEYE)) (8
HrateCapital NIL doc (* IV added by STEVE)) (PartOf NIL doc (* IY added by STEY
HE)Y (Population NIL doc (* I¥ added by STEYE)) (DateOfPopulation WIL doc (* IV
] added by STEVE)) (Cities NIL doc (* IV added by STEVE)) (Counties MNIL doc (*
EEIV added by STEVE))) "

2.8.1 Object Functions

Several functions take the name of an object and return its handle.
These are described in Table 2-2. NLambda functions do not evaluate
their arguments. If no object by name exists, $ and $! returns NIL.

Table 2-2. LOOPS Object Functions

Function | Type Usage
$ NLambda | Returns the handle of the object given its name.
$! Lambda Returns a handle after evaluating the argument
as the name to yield an object.
$C NLambda | Returns the class record.

For example, to retrieve the class record for ‘Country’, use:

69

Medley LOOPS: The Basic System

E§2r42+ (% State)
4, (3C State)

asaze (%) State)
i, (30 State)
#laraae (B0 State)
sl#, (30 State)

As an example, A NewClass does not exist, so $! Attempts to
evaluate it and gets an error:

zsvs+ ($! ANewClass)
AMewllazs iz an unbound wvariable,

If no object exists by then name, $C will attempt to create the class
using the name.

70

Medley LOOPS: The Basic System

Chapter Three

Class Messages and Functions

LOOPS includes a variety of functions for manipulating objects
in the LOOPS environment. In LOOPS, as noted, there are three types
of objects:

e Instances, which represent entities in the domain and are

described by a template — a class;

o Classes, which define a set of instances by specifying a data

structure and operators on the data structure; and

o Metaclasses, which specify a set of like classes.

An inheritance hierarchy of classes specifies a set of classes
representing a sequence of refinements from an initial class to a class
whose members are instances. Each class can have a list of one or
more superclasses from which it inherits instance variables, class
variables, and methods.

3.1 Sending a Message to an Object

In Chapter Two, sending the New message to Class to create a
new class was demonstrated. Sending the message New to a class to
create an instance of a class was also demonstrated. These were
examples of the more general capability of sending a message to an
object to cause it to perform some action.

The general form of sending a message is:

71

Medley LOOPS: The Basic System

(¢ <object> <message> <argl> ... <argN>)

(SEND <object> <message> <argl> ... <argN>)

where: <object> is a LOOPS object
<message> is a selector for a message handler embedded in the
object (or one of its superclasses)
<argl> is the first argument for the <message>
<argN> is the nth argument to the <message>.

The symbol + is used operator to send a message to a LOOPS
object. Alternately, SEND is a macro which is expanded to the
function to send the message to a LOOPS <object>.

Typically, the selector usually has the same name as the method
which will handle the message. For example, we can create a new
instance as follows:

(SEND (S Person) New ‘Stephen)

which creates a new instance whose name is ‘Stephen’.

Note: Your keyboard may not be able to generate a #, so it is advised
to use the SEND form. In test files, it will be easier to read.

Note: Send is defined in LOOPSMETHODS.

72

Medley LOOPS: The Basic System

3.2 Checking Objectivity

To manipulate a LOOPS object, it is necessary to have a handle
for that object. We can determine if an object is a LOOPS object using
the function Object?, whose format is:

Function: Object?
Arguments: An object.
Return: T, if a LOOPS object; NIL, otherwise.

z/z21+ (Dbject? Arthur)
7

a2zt ,

3.3 Class Operations

This section will describe the basic class and instance operations
provided by LOOPS. Subsequent sections will at look at advanced
functions and methods.

3.3.1 Creating a New Class

We create a new class by sending the message New to the
metaclass Class. The format is:

Message: New

#Arguments: <className> is the new class name.
<superClassList> is a list of superclasses
of the class.

Return: A handle for the new class.

73

Medley LOOPS: The Basic System

3.3.1.1 Using DEFINECLASS

74

Let us define a Person with some attributes:

(*: "Define a generic person as a template")
(SETQ Person (DefineClass 'Person NIL ($ Class)))

(* ; "add instance variables to class Person")

(* ; "Family Relationships")
(PutCIVHere Person 'Father NIL 'doc)
(* ; "father of the person")
(PutCIVHere Person 'Mother NIL 'doc)
(* ; "mother of the person")
(PutCIVHere Person 'Sisters NIL 'doc)
(* ; "sister(s) of the person")
(PutCIVHere Person 'Brothers NIL 'doc)
(* ; "brother(s) of the person")
(PutCIVHere Person 'Spouses NIL 'doc)
(* ; "Spouses of Person")

(* ; "Attributes of a Person")
(* ; "gender of the person - male or female")
(PutCIVHere Person 'Gender NIL 'doc)

(* ; "The birthdate and deathdate of the person as a list")
(PutCIVHere Person 'Birthdate NIL 'doc)

Medley LOOPS: The Basic System

(PutCIVHere Person 'Deathdate NIL 'doc)

(* ; "Country of Residence")
(PutCIVHere Person 'CitizenOf NIL 'doc)

(* ; "To check, describe the person")
(PP Person)

We can check the definition of Person using the PP function:

(RPAQD Person #, (% Per=zon))
CLAS2ES definition for Person:

(DEFCLASSES Person)
(DEFCLASS Person
(MetaClass Class Edited: #HCOMMENT**)
(Zupers Object)
(InstanceVariables (Father #,NotZetValue doc NIL)
(Mother #,NotZetValue doc MNIL)
(Zisters #,NotdetValue doc WIL)
(Brothers #,Not3etValue doc NIL)
(Zpouses #,NotdetValue doc WIL)
(Gender #,NotZetValue doc NIL)
(Birthdate #,Not3ZetValue doc WIL)
(Deathdate #,NotZetValue doc WIL)
(CitizenOf #,Not3etValue doc WIL)))

3.3.1.2 Using SEND

You can use SEND to also create a new class as shown in the
following example:

3.3.1.3 The DC Function

An alternate form is the function DC to define a class, whose
format is:

75

Medley LOOPS: The Basic System

Function: DC

Arguments: <className>, the name of the new class.
<superClassList> is a list of the superclasses
of the class.

Return: A handle for the new class.

Note: DC seems to operate differently from the specification in the
LRM. Here is an example:

Tawn has no FILEE definition.
s NIL

Apparently, DC is only usable with the SEDIT structure editor.
3.3.2 Editing a Class

Once a new class has been defined, its structure can be defined by
editing the class by sending the message Edit to the new class. The
format for the message sent to the new class is:

Message: Edit
Arguments: None
Return: An edited object.

Interlisp opens a new window using SEdit as shown in Figure 3-

76

Medley LOOPS: The Basic System

& INTERLISP
{(Metallazs Class Editediy: ; Edited 18- Jul.2022
; 08:42 by root

J
{SGupers Object)
(ClasszYariables)
{InstanceVariables)
(MethodFns))

oSt e

i
;
H
f
:
;
;
:

Figure 3-1. Editing a Class Definition
3.3.3 Editing a Method

A method may be edited using the function EM, which invokes
the Interlisp Editor to edit the method:

Function: EM

Arguments: <className>, the name of the new class.
<methodName>, the name of the method.

Result: 7?

Hl=/79¢ (EM County)
SEM iz an undefined function,

Note: This function seems to be undefined in Medley. It is
being investigated.

You may also use the LOOPS browser to edit a method. This will
be described in Medley Loops:Tools and Utilities.

7

Medley LOOPS: The Basic System

3.3.4 Naming an Object

We can give an object a LOOPS name by sending it the message
SetName as follows:

zr19¢ (* Arthur SetName ’Arthur)

#,($& Person (ULX4VEGIKTL.®B.8.ce; . 2))
zrzo+ (% Arthur)

#,($& Person (ULX4VEGIKTL.®B.8.ce; . 2))
arals

We can inspect the definition of Arthur using PP:

iasame (& Arthur SetMame *Arthur)

#,03& Person (UL%+YSEiKTL.@.8,ce; . 2))
z¢z0¢ (PP Arthur)

WARS definitian for Arthur:

(RPEQD Arthur #,(% Arthur))
INSTANCES def1n1t1on for A
{DEFINST I;‘er'snn (Arthur (UL%TUSGlKT1 0.0.c+; . 2))

An instance variable, name, receives the <name> specified for the
message SetName. name is an instance variable of the class
NamedObiject, which would be specified as a superclass of the class.

We also create another person named Bertram.

as17+ (SET() Bertram (¢ Person New))
L (3& Perzon (UL%+WEGiKTL. 8. 8.ce; . 300
S5 4

We can test if Bertram is an object in our environment via the
Object? function.

#Jz/15« (Object? Bertram)
HT

78

Medley LOOPS: The Basic System

And, we can set Bertram’s name just as we did with Arthur.
3.4 Accessing Supers

The superclasses of a class can be obtained using the function
Supers, whose format is:

Function: Supers
Arguments: <class record>, the handle for the class.
Return: A list of the superclasses.

For example, we defined Person using DefineClass. To find
Person’s supers, we can use:

2se+ {Supers (% Person))
(#,($C Clas=) #,($C Object) #,(%C Tofu))

iHar1ee (Supers NorthAmerica)
(#, (30 GeoRegion) #,($C Countries&Regions) #,($C Object) #,($C Tofu))
2r117E

which shows that Class and Obiject are its superclasses. Tofu is an
internal name, supposedly meaning “Top of the Universe”, that was
used by the PARC staff. It is embedded in the LOOPS source code.

3.5 Accessing Variables

There are different types of variables and properties that are
associated with a class. Many of the functions referring to these
variables and properties are associated with getting or putting their

79

Medley LOOPS: The Basic System

values. LOOPS provides many general functions for performing these
operations. LOOPS also introduced a compact programming notation
for accessing variables and properties. The general functions are
discussed in the section and the compact programming notation in a
following section. Figure 3-2 depicts where variables are stored.

Class

™| Class Variable Value

— { <property list>}

] Instance
Variable

— { <property list>}

Instance

L Instance

Variable

Value “a local value”

— { <property list>}

Figure 3-2. Variable Locations

80

Medley LOOPS: The Basic System

Figure 3-2 depicts the relationship of variable storage to LOOPS
objects.

A class may have both class variables and instance variables. A
class variable may have a value or NIL. If it has a value, that value is
passed down to each instance as an initial value. If no local variable
for a class variable is specified in an instance, then the value of the
class variable is fetched from the class, unless the program has
specified a local value for the class variable. Each class variable may
also have a <property list>.

An instance may have instance variables each of which may have
a local value set by the program. Although instances have handles
which distinguish them one from another, from the program
perspective, instances are distinguished by the different values of their
instance variables. Each instance variable may also have a property
list.

A class may inherit class variables from its <superClassList>. If
the class does not set a local value for an inherited class variable, the
value of the most immediate predecessor in the <superClassList> that
has set a value for the class variable is cached in the class.

To demonstrate some of these functions, a class from TRUCKIN
from the directory <home>steve>LOOPS-MAIN>TRUCKIN-src was
loaded. Prettyprinting it yields:

81

Medley LOOPS: The Basic System

zs20¢ (PP "TruckinPararmeters)
CLASSES definition for TruckinParameters:

{DEFCLASSES TruckinParameters)
(DEFCLAZE TruckinParameters
(MetaClass GameClass Edited¥: HEGOMMENT *#* doc "Used for
Zetting/resetting Truckin parameters")
(Supers GameParameters)
(ClazzYariablez (CopyCW¥ MWIL))
{Inztancevariahles (banditCount 2 goodYal MUMBERP exp banditCount
doc "Number of Banditz in game")
{timeTrace MIL goodwal (T NIL)
exp timeTrace doc "If T then printsz time taken
by each player after each reguest")
(debughode T goodYal (T WIL)
exp debugMaode doc "If T then rule violations
bring up RuleExec")
{gameDebugF 1y MIL goodival (T NIL)
exp gamelebugFlg doc "If T then prints some
extra diaghostic meszages")
{truckinLogF1g MWIL goodval {T NIL)
exp truckinLogFlg doc "If T then keepz a log of all
Game Printout in Status window")
{truckDelay B goodyal NUMBERP exp truckDelay doc "Controls
speed at which trucks move.
Higher delay means slower motion")))

MIL
Since TruckinParameters is a class, an instance was created called
My Parameters via:

zs25+ (SETQ MyParameters (¢ (% TruckinParameters) New))
#,($& TruckinParameters (YWX+WDh;ET1.8.08.784 . E31))

3.5.1 Getting Variable and Property Values

Two functions are used to get the value of a variable or a property.
If the value of the variable or property is an active value, then the
associated getFn is invoked on the value.

3.5.1.1 Getting a Variable Value

GetValue returns the value of a variable or a property of an
sometimes, 1V from an instance of a class. The format is:

82

Medley LOOPS: The Basic System

Function: GetValue

Arguments: <object>, the handle of a LOOPS instance
object.
<varName>, the name of a variable in the
instance.

<propName>, the name of a property
associated with <varName>.
Return: A value or NIL.

If <propName> is NIL, then GetValue returns the value of
<varName>. <varName> may be an instance variable.

If <varName> is an 1V, then the value is a local value resident in
the instance object.

If <varName> is a CV and no local value was set, then the value
returned is the default value of the variable resident in the class.

If there is no IV or CV by that hame, then a break occurs.
So, we can fetch the value of CopyCV from MyParameters:

é;gee (GetYalue MyPararmeters 'CopyCY NIL)
WIL

which is NIL, because its value is not defined in MyParameters
and its value is NIL in TruckinParameters. Note that MyParameters is
a handle of the object.

We can try to fetch the value of ‘banditcount’ from
MyParameters:

z/s5¢ (GetValue MyParameters ‘banditCount NMIL)
z

83

Medley LOOPS: The Basic System

Finally, let us fetch the value of the doc property of banditCount:

z/55¢+ (GetValue MyParameters ‘banditGount ‘doc)
"Number of Bandits in game"

If <propName> is not NIL, GetValue returns the value of the
<propName> from the property list of the IV.

If no value is found in the local property list, GetValue returns the
default value for the property for the IV found in the class or one of
its superclasses.

If no property value was found in any of the superclasses, the
value returned is that of the global variable NotSetValue, which is
initially set to ‘2.

If there is no property by the name <propName>, GetValue
returns the value of the variable NoValueFound.

Note: Returning the value of NotSetValue by LOOPS is different
from Interlisp, which returns NIL.

Note: It is an error to try to use GetValue to fetch the property of an
instance variable in a class.

3.5.1.2 Getting a Class Variable Value

GetClassValue returns the value of a class variable or property of
a CV for a class object. The format is:

Function: GetClassValue

Arguments: <object>, the handle of a LOOPS class object.
<varName>, the name of a class variable in the
class.

84

Medley LOOPS: The Basic System

<propName>, the name of a property
associated with <varName>.
Return: A value or NIL.

Class variables may be inherited from superclasses or defined
within a class definition. They are shared by all instance of a class. All
instances of a class could see the value of a CV.

If <object> is an instance of a class, then:

e If the class of the instance has a variable <varName> and it

has a value, then the value is returned.

e |f the <varName> is not found in the class, LOOPS searches
for the class upward through the class hierarchy until it finds
<varName> in a superclass and returns the value associated
with <varName> from that superclass.

e |f <varName> is not found in any superclass, NIL is returned.

Search was not thought to be an expensive operation since a class
hierarchy was not expected to be very deep.

We can fetch the value of the CV CopyCV from MyParameters”

2/3a¢ {GetClassYalue MyParameters 'CopyCY)
NTI

Now, let us try fetching the value of banditCount, which we will
pretend we do not know is not a CV:

85

Medley LOOPS: The Basic System

|2f40<— (GetClassValue MyParameters ’banditGount)

Help! LoopsHelp: banditCount not a CY of # ($C TruckinParame
Help! LoopsHelp: banditCount not a CV of #,{§C Truckin

We see that Interlisp opens an error window and informs us that
banditCount is not a CV of MyParameters and displays a prompt to
possibly take remedial action. One such action might be to create an
instance of bandit count in the instance of the class.

3.5.2 Putting Variable and Property Values

Two functions are used to put (set) the value of a variable or a
property. If the value of the variable or property was an active value,
then the associated <putFn> is invoked on the value.

86

Medley LOOPS: The Basic System

3.5.2.1 Putting a Variable Value

PutValue sets the value of a variable or property of an instance
variable for an instance of a class. The format is:

Function; PutValue

Arguments; <object>, the handle of a LOOPS object
<varName>, the name of a variable in the
instance.
<newValue>, the value for the variable or
property.
<propName>, the name of a property associated
with <varName>.

Return: <newValue> or NIL.

If <propName> is NIL, then PutValue stores <newValue> as the
value of <varName>. <varName> may be an IV or a CV. The value
returned depends on whether <varName> isan IV or a CV:

e If <varName> is an IV, then the value is a local value resident

in the instance object.

e If <propName> is not NIL, PutValue sets the value of the

<propName> in the property list of the IV.

Let us change the value of gameDebugFlg from NIL to T:

zr/48+ {PutValue MyParareters 'gameDebugFig T NIL)
T

z/a7v+ {GetWalue MyPararneters ‘garmeDebugFlg NIL)
T

Note: It is an error to try to use PutValue to fetch the property of an IV
in a class.

87

Medley LOOPS: The Basic System

z/51¢ (PutValue {$ TruckinParameters) ‘garnDebugFlg NIL *doc)
gamDebugF 1y
iz not a local IV, g0 cannot be changed in #, ($C TruckinParameters)

Extended Example:

This example puts a value to an IV of Edwardlll where the IV is
specified in the Person class. Since Edwardlll is an instance of Person,
LOOPS cannot find it in EdwardllI as originally created since ‘Son’
was added to Person after Edwardlll was created. So, it looks in the
Supers of Edwardlll, which is Person, and finds ‘Son’ as a CIV. It
creates the 1V locally in Edwardlll.

Here is the source code for the test:

(*; "Set Son as an IV of Person'")
(PutCIVHere (S Person) 'Son)

(*;"Setan IV in Edwardlll")

(SETQ result (PutValue ($ Edwardlll) 'Son 'Edward))
(PRIN1 "Son of ")

(PRIN1 ($ Edwardlll))

(PRIN1 "is"

(PRINT result)

(SETQ result (PutValue ($ Edwardlll) 'Son 'Edward))

88

Medley LOOPS: The Basic System

(PRIN1 "Checking Son of ")

(PRIN1 ($ EdwardlIl))

(PRIN1 "is ")

(PRINT (GetValue (S! 'Edwardlll) 'Son))

(* ; "Set the value of the doc property for Son.")
(PutValue (S Edwardlll) 'Son 'doc "The Black Prince")
(PRIN1 "Edwardlll:Son docis ")

(SETQ docl (GetValue ($ 'Edwardlll) ‘Son 'doc))
(PRINT docl)

STOP

and, here is the results from executing the tests:

{02k} <homerBtever Toops-testsrplantagenetsr TestEdwardlIT. ;1
2on of #,(% EdwardIIl) iz Edward

Checking Son of #,($ EdwardIIl) iz Edward

EdwardIII:2on doc isg (* I added by STEWE)

VARS definition for EdwardIIl:

(RPAQ0 Edwardll #, (% Edwardln))
INSTANCES def1n1t1on for Edward
{DEFINET Perzon (Edwardll (FA%O UG1 0od5s.U8s . 13))
{Father EdwardII)
{Mother IzakellaCapet)
(2pouszes Philippadfvesnes)
[Gender Male)
{Birthdate (11 13 1312))
{Deathdate (6 21 1377))
{2on Edward "The Black Prince" doc "The Black Prince" doc
"The Black Prince" doc "The Black Prince" doc))

An Error Example

89

Medley LOOPS: The Basic System

If we try to put the value of a class IV in an instance of a class,
when the CIV has not been declared in the class, we get an error as
depicted in the following:

"An island country of Europe"
Europe
TRETS

Help! LoopsHelp: Population natan 1Y of # (5& Country L+
Help! LoopszHelp: Fopulation not an IV of #,(%& Coun
(LekaeTyl.@.8.[]5 . 15))

HELP
LoopzHe1p
Object, IMizsing

STTMHAHUNWIND-PROTECTR 24 20%)
LoAD

Looking back at the definition of Ireland’s Super class, we see that
Country does not have ‘Population’ declared as a CIV:

(* ; "Country - a Geographic Area")
(SETQ Country
(DefineClass 'Country
'(GeographicArea)
(S Class))
)
(SEND (S Country) SetName 'Country)
(PutCIVHere (S Country)
'Description
"A component of a Geographic Area"

)
90

Medley LOOPS: The Basic System

(PutCIVHere (S Country) 'Part NIL)
(PutCIVHere (S Country) 'Provinces NIL)
(PutCIVHere (S Country) 'States NIL)
(PP Country)

which causes the error. So, we must declare ‘Population’ in Country
for the put to succeed. We must do the same for CapitalCity.

3.5.2.2 Putting a Class Variable Value

PutClassValue sets the value of a class variable or property of a
class variable for a class. The format is:

Function: PutClassValue

Arguments: <object>, the handle of a LOOPS object.
<varName>, the name of a class variable in the
class.

<newValue>, the newValue to store.
<propName>, the name of a property associated
with <varName>.

Return: <newValue>.

Class variables may be inherited from superclasses or defined
within a class definition. They are shared by all instance of a class. All
instances of a class could see the value of a CV.

If <object> is an instance of a class, then:

e If the class of the instance has <varName> and it has a value,
then it sets the value of the variable.

91

Medley LOOPS: The Basic System

e If the <varName> is not found in the class, LOOPS sets the
value of the variable in the first class in the class hierarchy for
which <varName> occurs.

e If <varName> is not found in any superclass, NIL is returned.

Let us change the value of CopyCV in TruckinParameters from
NIL to T.

2/54+ (PutClassValue {$ TruckinParamneters) 'CopyCY T NIL)
T

2/55¢ {GetClassValue {$ TruckinParameters) ‘CopyCV NIL)
I

According to the LRM, search was not thought to be an expensive
operation since a class hierarchy was not expected to be very deep.

Another example. Set CitizenOf as a CV for Person, then attempt
to put a value for that CV. We defined the CV via:

(PutCVHere Person 'CitizenOf NIL 'doc)

and here we see it when we prettyprint Person:

(DEFCLASSER Perszon)
(DEFCLASS Person
EMetaE1ass E1a§3 Edited: #HCOMMENT**)
Supers Object
(Classvariables {(Citizen0f MWIL doc #HQOMMENT** 1)
{InztanceYariahles {(Father #,NotSetValue doc MWIL)
{Mother #,NotSetValue doc MWIL)
[Zisters #,Not8etvwalue doc NIL)
(Brothers #,NotSetValue doc MIL)
[Spouses #,NotBetvalue doc NIL)
[Gender #,NotSetValue doc MWIL)
(Birthdate #,MotSetWalue doc MIL)
(Deathdate #,MotSetWalue doc MNIL)
(Title #,NotZetWalue doc MWILY))

Then, we put value of the CV via:

92

Medley LOOPS: The Basic System

z/7+ {PutClassValue Person 'CitizenOf *England)
England

and, we try to retrieve it via:

(PutClassValue Person 'CitizenOf 'England)
(PROG NIL

(PRIN1 "CitizenOf ")

(PRIN1 (S Person)

(PRIN1" ")

(PRINT (GetClassValue Person 'CitizenOf))

(PRINT " ")

(* ; "Get the same class value from EdwardIll")
(PROG NIL

(PRIN1 "CitizenOf ")

(PRIN1 ($ Edwardlll))

(PRIN1" ")

(PRINT (GetClassValue Person 'CitizenOf))

93

Medley LOOPS: The Basic System

a/25+ (LOAD ‘TestlietPut.txt)

{03k <homerztever LOOPS-MATH) TestBetPut txt ;1
CitizenOf #,($ Person) England

NIL

CitizenOf #,($ EdwardIII) England

{08k} homersteverLOOPS-MATNY TestGetPut, txt, 1

So, we see that we can get the class value from Person, and when
we reference Edwardlll, the CV is retrieved from its parent class.

3.5.2.3 Pushing Values onto Variables

Two functions — PushValue and PushClassValue - push a new
value onto the front of a list which is the value of an IV or a class
variable. Their format is:

Function: PushValue
PushClassValue
Arguments: <object>, the handle of a LOOPS object.

<varName>, the name of a variable in the
instance or class object.
<newValue>, the newValue to store.
<propName>, the name of a property associated
with <varName>.

Return: <newValue>.

The value of <varName> or <propName> of an IV must be a list.
We can push a new value onto ‘Son’ of EdwardIII:

(* ; "Get the value of Son of EdwardlIIl")
(SETQ resultl (GetValue (S Edwardlll) 'Son))

94

Medley LOOPS: The Basic System

(PRIN1 "Son of ")
(PRIN1 ($ Edwardlll))
(PRIN1 " is ")

(PRINT result1)

(* ; "If value of Son is an atom, make it a list.")

(COND
((ATOM resultl)
(PutValue (S Edwardlll) 'Son (LIST result1))
(PP Edwardlll)

)

(*; "Try to Push a Value - Edmund onto Son.")

(SETQ result2 (PushValue (S Edwardlll) 'Son 'Edmund))
(PRIN1 "Son of ")

(PRIN1 ($ Edwardlll))

(PRIN1 " is "

(PRINT result2)

asaae
z/2g« {IL:Push¥alue {$ Edwardill) 'Son "Edrnund)
Push¥alue iz an undefined function.

<<Note: Why is this undefined? Need to search source code.>>

95

Medley LOOPS: The Basic System

If the value of either <varName> or <propName> is an active
value, then when the list is fetched, its <getFn> is invoked. After the
<newValue> has been stored on the list, the <putFn> will be triggered
when the list is stored.

PushClassValue performs like PutClassValue for class variables.
3.5.2.4 Adding a Value to a Variable

A value can be added to the end of a variable list - either the value
of the variable or to a property list using the function AddValue. It
takes the format:

Function: AddValue

Arguments: <object>, the handle of a LOOPS object.
<varName>, the name of a class variable in the
instance.

<newValue>, the newValue to store.

<propName>, the name of a property
associated with <varName>.

Return: <newValue>.

Let us try to add a value to the end of Son of Edwardlll. If Son is
not a list, LOOPS first makes it so.

(* ; "Push a new value onto an IV of an instance.")

(* ; "If the value is not a list, make it so")

(* ; "Get the value of Son of EdwardlIll")
(SETQ resultl (GetValue (S Edwardlll) 'Son))
(PRIN1 "Son of ")

96

Medley LOOPS: The Basic System

(PRIN1 (S Edwardlll))
(PRIN1 "is")
(PRINT result1)

(*; "If value of Son is an atom, make it a list.")

(COND
((ATOM resultl)
(PutValue (S Edwardlll) 'Son (LIST result1))
(PP EdwardIll)

)

(*; "Try to add a value to the end of Son.")

(SETQ result3 (AddValue (S Edwardlll) 'Son 'Edmund))
(PRIN1 "Son of ")

(PRIN1 ($ Edwardlll))

(PRIN1 " is "

(PRINT result3)

(*; "Try to Push a Value = Edmund onto Son.")

(SETQ result2 (PushValue (S Edwardlll) 'Son 'Edmund))
(PRIN1 "Son of ")

(PRIN1 ($ Edwardlll))

(PRIN1 " s "

(PRINT result2)

97

Medley LOOPS: The Basic System

STOP

as3g+ (LOAD 'TestPushWalue.txt)

{08k} <home»steve>LO00PS-MAIN>TestPushYalue, txt; 1
San of #,(% EdwardIII) iz (Edward)
Add¥alue iz an undefined function,

<<Note: Need to check source code why AddValue is not defined.>>
3.5.3 Non-triggering Get and Put

Although a value of a variable or a property list may have an active
value associated with it, there are cases where one needs to access the
value without triggering the active value. These functions take the
format:

Function: GetValueOnly
GetClassValueOnly
Arguments: <object>, the handle of a LOOPS object.

<varName>, the name of an instance or class
variable in instance
<propName>, the name of a property

Result: A value.

These functions access the specified value only without invoking
the active value functions.

GetValueOnly accesses and returns the default value from a
superclass if none exists for a class variable in the instance.

Similar functions for putting a value directly to a variable or a
property have the format.

98

Medley LOOPS: The Basic System

Function: PutValueOnly
PutClassValueOnly
Arguments; <object>, the handle of a LOOPS object.

<varName>, the name of an instance or class
variable in instance.
<newValue>, the new value for the variable or
Property.
<propName>, the name of a property

Result: <newValue>.

GetClassValueOnly and PutClassValueOnly will only take class
objects as arguments.

3.5.4 Local Get Functions

You may need to determine if a value or property is set in a class
or instance without inheriting any information or triggering active
values. Two functions, GetlVHere and GetCVHere, allow you to do
this. Their format is:

Function: GetlVHere
GetCVHere
Arguments: <object>, the handle of a LOOPS object.

<varName>, the name of an instance or class

variable in instance.

<propName>, the name of a property.
Result: The <varName> or the <propName>, if it is

non-NIL.

99

Medley LOOPS: The Basic System

If the value of <varName> or <propName> was not yet stored in
the <object>, the value of the variable NotSetValue is returned.

zs53¢ (SETQ T1 (& (% Window) New “w1))
#,0F8& Window (|8¥+vze0nTli.8.8.8d:| . 2))
assa+ (GetlvYHere T1 ‘left)
#,HotZet¥Walue

Now, if we PutValue of “left” on T1:

e+ (PutValue T1 ’left T NIL)
o+ (GetlYHere T1 ‘left)

B~k y

We can get the value of the class CV Project for Person via:

Wil zrese (GetC¥Here Person 'Project)
Kinzhip
ilaseds ,

There was no need (so far, according to the 1991 LRM) to have
local put functions since all put functions were local to the class or
instance. The necessary effect can be achieved by using PutValueOnly
and PutClassValueOnly.

3.5.5 Accessing Class and Method Properties

Several of the functions in the preceding sections only worked
with instances of classes. Two functions, GetClasslV and

100

Medley LOOPS: The Basic System

PutClasslV, access the default value or property value of an instance
variable which is stored in the class.

Function:

Arguments:

Return:

Function:

Arguments:

Return:

GetClasslV

<class>, the name of a class.

<varName>, the name of a variable defined in
the class.

<propName>, the name of a property of the
instance variable in the class.

The default value.

PutClasslV

<class>, the name of a class.

<varName>, the name of a variable defined in
the class.

<newValue>, the new value to be stored.
<propName>, the name of a property of the
instance variable in the class.

<newValue>.

PutClasslV stores <newValue> as the value of an instance
variable or its property. The variable must be local to the class. For

example:

(DefineClass ‘FireEngine '(Class))
(SEND (S FireEngine) SetName 'FireEngine)

101

Medley LOOPS: The Basic System

il 2-25¢ (PP FireEngine)
EEDLASSES definition for FireEngine:

o (DEFCLASSES FireEnagine)

d(DEFCcLAZE FireEngine

: (MetaClazs Class Editedi: *HCOMMENT**)
(Zupers Clazs))

il 2raae {* (% FireEngine) AddlV 'Color ‘red)
Calar
#| zs52+ (pp FireEngine)

Sending the message AddIV to the class with the proper
arguments allow us to add an IV.

il 2+a0+ (PP FireEngine)
CLAZSES definition for FireEngine:

{DEFCLASRES FireEngine)
{DEFCLASE FireEngine
(Metallazs Classz Edited¥: ##COMMENT*+ 1
(Buperz Class)
{(Instancevariahlez (Color red doc ##COMMEMT*+ 11

BINIL

3.5.6 Accessing Class Properties

LOOPS classes can have property lists for themselves and for
methods of classes. One use of this feature is to document both the
class and its methods. There are several methods for access these
property lists. GetClass, GetClassOnly, and GetClassHere return a
value of property on the property list of a class. Their format is:

102

Medley LOOPS: The Basic System

Function: GetClass
GetClassHere
GetClassOnly
Arguments: <class>, the name of a class.
<propName>, the name of a property of the
class.
Return: The value of <propName> of the class.

If <propName> was NIL, GetClass returned the metaclass of a
class.

Class properties are inherited like class variables,. If <propName>
was not in <class>, LOOPS searched the superclasses of <class> for
<propName>, If it was not found, NIL was returned.

A class property could be an active value, in which case its getFn
was triggered by GetClass. GetClassOnly did not trigger an active
value. An example of GetClass returning the doc property of its
superclass::

256+ (GetClass Person ‘doc)
A (* * Thig is the default metaClass for all classes)
Y

However, if we stored a value for doc in the class itself, we would
see:

z/ge+ (GietClass Person *doc)
"the template for Person”

2787

103

Medley LOOPS: The Basic System

GetClassHere returned the local value of <propName> in <class>,
If <propName> was not found in <class>, it returned the value of the
global variable NotSetValue.

PutClass and PutClassOnly are used to store a new value into a
class property. Their format is:

Function: PutClass
PutClassOnly
Arguments: <class>, the name of a class.

<newValue>, the value to be stored.

<propName>, the name of a property of the
class.

Return: <newValue>.

PutClass sets the value of <propName> in <class> to <newValue>
If <propName> was NIL, then it set the metaclass of <class> to
<newValue>. PutClassOnly did not trigger the putFn of <propName>
if it was an active value.

arg5¢ (PutClass Person “the template for Person” 'doc)
"the template for Perzon"
2/B6E ,

104

Medley LOOPS: The Basic System

Here is an example using PutClassOnly:

2/196¢ (GetValueOnly UnitedStates 'States)

qnIL

ies1e7¢ (PutValueOnly UnitedStates 'States (LIST ‘NewYork))
i (Newvork)

Jzs1az¢ (PP UnitedStates)

EEHARS definition for United3tates:

A (RPADO UnitedStates #,($ UnitedStates))
;iCLﬁSSES definition for Unitedstates:

EE(DEFELASSES UnitedStates)
J(DEFCLASE UnitedStates
: [MetaClazs Class Editedd: **COMMENT**)
{Supers Country)
{InztanceVariables (Description "4 set of 4& states, Alazka, and
Hawaii")
{Type Country doc **COMMENT#**+)
(atates (Mewyork)il)

ANIL

3.5.7 Adding Variables to a Class

LOOPS provides two functions for adding variables to a class:
PutCVHere and PutClVHere. These methods add the variable of the

given type locally to the class and record it in the class record.

3.5.7.1 Putting a Class Variable Locally

PutCVHere adds a CV locally to a class, whether or not it is

defined in a superclass. Its format is:

105

Medley LOOPS: The Basic System

Function: PutCVHere

Arguments: <class>, the name of the class.
<varName>, the name of the variable.
<value>, the initial value of the variable.

Return: The value of the variable.

PutCVHere uses AddCV to add the variable to the class locally, if
it is not already defined locally, and check it using GetValue.

+&1¢ (PutC¥Here Person 'Project Kinship)
inghip
=g

After adding some CVs to Person, we can use PP to print the class
description:

DEFCLASZES Perszan)
DEFCLASE Person
{MetaClass Class Edited¥:
{Supers Object)
{Instancevariables (Father #,Not3etWalue doc NIL)
(Mother #,NotZetWalue doc NIL)
(Sizters #,NotdetYalue doc NIL)
(Brothers #,Not3et¥alue doc WIL)
(Gender #,NotSetWalue doc NIL)))

HHGOMMENT**)

3.5.7.2 Putting an Instance Variable Locally

PutCIVHere locally adds an 1V, whether it is defined in a
superclass or not, to a class. Its format is:

106

Medley LOOPS: The Basic System

Function: PutCIVHere

Arguments: <class>, the name of the class.
<varName>, the name of the variable.
<value>, the initial value of the variable.
<prop>, the name of a property.

Return: The value of the variable.

PutCIVHere uses AddCIV to add the variable to the class locally,
if it is not already defined locally. If <prop> is NIL, then AddCIV adds
the variable with <value> to the local IVs. If <prop> is non-NIL, then
it used GetClasslV to retrieve the value of the IV from the class or its
superclasses and add the that value to the property.

250+ (PutClHere Person 'Father NIL NIL)
NIL

2rsee (GetVYalue Person *Father)

We can create the IV population in Maryland and initialize it to
NIL:

I 27201+ (PutClVHere State 'Population MNIL)
HIL

We can assign the value of the population of Maryland to the IV
Population (circa 2022):

107

Medley LOOPS: The Basic System

fana+(PutVaMe Maryland 'Population 6165000}
1G5@EE
saoas (PP Maryland)
ARE definition for Maryland:

RP&Q0 Maryland #, (% Mar*wand))

M3TANCES def1n1t1nn for Mary

DEFINET State (Maryland (SL%GJKIJ‘H 0.0.515 . 53))
{Dezcription "An Eastern 2tate of the United Statez")
[Name Maryland)
{Population G1GEEEE)
{CapitalCity Annapoliz))

If you use DefineClass to create the new class, then you need to
use SetName to attach a name before you can use the name in these

functions.

3.5.7.3 AddCIV

The AddCIV function adds a new class IV to a class if it does not

exist locally within the class. Its format is:

Function: AddCIV

Arguments: <class>, the name of the class.
<varName>, the name of the variable.
<value>, the initial value of the variable.
<prop>, the name of a property.

Return: The value of the variable.

Let us add “Dinosaur” as an IV of a State because some states do

indeed have state dinosaurs:

ildasarae (AddCIY State 'Dinosaur NIL)
innzaur

108

Medley LOOPS: The Basic System

Maryland is one of the states that has a state dinosaur, so we can
specify that fact as:

2f21 4+ (Put¥alue Maryland 'Dinosaur ‘AstrodonJohnstoni)
ﬁstrudnnJuhnstnn1

':::: z/z15¢ (PP Maryland)
YARS definition for Maryland:

{RPAQD Maryland #, (% Mar*wand]l}l

INSTANCES def'|n1t1|:|n far Mar

(DEFINST State (Maryland [SL%GJKIJU‘I 0.0.816 . 530
{Description "#n Eastern State of the United 3tates")
{Mame Maryland)
{Population G1EGEE0E)
{CapitalCity Annapolis)
{Dinosaur Astrodondohnstoni))

3.5.8 Generalized Get and Put Functions

Generalized Get and Put functions accept a type argument, which
is used to select a more specialized function — such as the ones
described in the previous sections — to perform a get or put operation.

3.5.8.1 Generalized Get Functions

Three generalized Get functions were provided: Get It,
GetltOnly, and GetltHere. The <type> argument could have one of
the values 1V, CV, CLASS, or METHOD.

109

Medley LOOPS: The Basic System

Function: Get It
GetltOnly
GetltHere
Arguments: <object>, the handle of a LOOPS object.

<varOrMethod>, the name of the variable or
method to be invoked.

<propName>, the name of a property of the
method.

<type>, the type of function to be perform.
Return: The value of <propName, if non-NIL.

If <type> is NIL, IV is assumed. <varOrMethod> was interpreted

as a variable.

If IV or CV was specified by <type>, <varOrMethod> was an IV

or CV name.

110

If <type> was METHOD, <varOrMethod> was a message name.
If <type> was CLASS, <varOrMethod> was ignored.
The functions invoked the functions previously described:

(Getlt ... ‘IV) =» (GetValue ...)

(Getlt ... ‘CV) = (GetClassValue ...)
(Getlt ... ‘CLASS) = (GetClass ...)
(Getlt ... ‘METHOD) =» (GetMethod ...)

Medley LOOPS: The Basic System

This approach allows the user to parameterize the ‘get functions
based on the application and the task to be performed. As an example:

z/ezs+ (GetltOnly Maryland ‘Dinosaur)
fztrodonJohnstoni

z/zz4+ (GetltHere Maryland *Dinosaur)
fztrodonJohnstoni

zsee5+ (Getlt Maryland *Dinosaur)
Aztrodondohnztoni

Another Example:

A (DEFCLASSES France)

Y (DEFCLASE France

: {Metallass Class Edited¥: **COMMENT**)

{Bupers Country Europe)

{InztanceYariables (Description “& country of Europe")
(PrimaryLanguange French)
(CapitalCity Paris)))

quiL

2/58¢ (GetltHere France 'CapitalCity)
Paris

oot (Getit France ‘CapitalCity NIL V) b
Paris i

Note: If not fetching the value of a property, that argument must be set
to NIL.

111

Medley LOOPS: The Basic System

3.5.8.2 Generalized Put Functions

Two generalized Put functions were provided: Putlt and
PutltOnly. The <type> argument could have one of the values 1V,
CV, CLASS, or METHOD.

Function: Putlt
PutltOnly
Arguments: <object>, the handle of a LOOPS object.

<varOrMethod>, the name of the variable or
method to be invoked.
<newValue>, the new value to be stored.

<propName>, the name of a property of the
method.

<type>, the type of function to be perform.
Return: The value of <propName, if non-NIL.

If <type> is NIL, IV is assumed. <varOrMethod> was interpreted
as a variable.

If IV or CV was specified by <type>, then <varOrMethod> was
an IV or CV name.

If <type> was METHOD, then <varOrMethod> was interpreted
as a message name.

If <type> was CLASS, then the function was ignored.

These functions act in a manner like the Getlt functions except
they store the <newValue> as described in previous sections.

112

Medley LOOPS: The Basic System

3.5.9 Putting IV Value and Property

LOOPS provides functions for setting the value of an IV or the
property of an IV: PutlVVValue and PutlVVProp.

Function: PutlVVValue

Arguments: <class>, the name of class having the IV.
<varname>, the name of the instance variable.
<newvalue>, the new value to be assigned to
the IV.

Return: <newvalue>

PutlVVValue uses Putlt to assign the new value to the IV in the
IVVDescr. Here is an example:

2/230+ (PutCl¥Here State 'Flower NIL)

ANIL

as2z1+ (Putl¥¥alue Maryland ‘Flower 'BlackeyedSusan)
B lackeyediusan

sazze (PP Maryland)

ARS definition for Maryland:

RP&O0 Maryland #,(§ Mary1and))

WETANCES def1n1t1nn far Mary

DEFINST State (Maryland (EL%GJKIJU1 0.0.5156 . H3))
(Description "&n Eastern 3tate of the United States")
(Name Maryland)
(Population GLEEAEA)
(CapitalCity Annapoliz)
(Dinogaur Astrodondohnstoni)
(Flower Blackeyved3uszan))

If the 1V is missing, e.g., not found in the list of I\VVDescrs, it uses
PutValue to create the IV in the class and assign the value to it.

113

Medley LOOPS: The Basic System

Function: PutlVVProp

Arguments: <class>, the name of class having the IV.
<varname>, the name of the instance variable.
<newvalue>, the new value to be assigned to the

IV’s property.
<propname>, a property of the IV.

Return: <newvalue>

PutlVVProp uses Putlt to assign the new value to the property of
the IV in the IVDescr.

If the property is missing on the Vs list of propDescrs, then it uses
PutValue to create the property in the propDescrs of the IV and assigns
newvalue to its property.

3.5.10 Dual Use of Get and Put Functions

Some of the Get and Put functions have dual usage in that they set
either an CV/IV value or a property of one of these. This may be
confusing to some users until they determine the conditions under
which they want to set values to either of these entities.

3.6 Accessing Methods

Methods are Lisp functions which respond to a message sent to an
object. Methods are defined in a class. When a method is sent to an
instance, the method is located in its parent class or superclasses and
invoked with the parameters in the message.

114

Medley LOOPS: The Basic System

3.6.1 Accessing Method Properties

LOOPS defines several functions for getting the values of
methods defined for classes.

3.6.1.1 Getting Methods

Three functions are used to retrieve a method or the value of its
properties: GetMethod, GetMethodOnly, and GetMethodHere.
Their format was:

Function: GetMethod
GetMethodOnly
GetMethodHere
Arguments: <class>, the name of a class.
<method>, the name of the method to be
invoked.

<propName>, the name of a property of the
method..

Return: The name of the <method> or the value of
<propName, if non-NIL.

GetMethod returns the method’s Interlisp function name, which
implemented the method, if <propName> was NIL. Since method
properties are inherited, if the <propName> did not have a value in the
<class>, LOOPS searches the superclasses to find the <method> and
<propName> to retrieve the value.

GetMethodOnly does not trigger an active value if one was
associated with the <propName>.

GetMethodHere returns the value of <propName> if it was
defined locally; otherwise, it returned the value of NotSetHere.

115

Medley LOOPS: The Basic System

Note: These functions work only on classes, not on instances.
3.6.3.2 Putting Methods

Two functions are used to add a new value for a method property:
PutMethod and PutGetMethodOnly. Their format iss:

Function: PutMethod
PutMethodOnly

Arguments: <class>, the name of a class.
<method>, the name of the method to be
invoked.

<newValue>, the new value to be stored.

<propName>, the name of a property of the
method.

Return: <newValue>.

PutMethod stores <newValue> as the implementing function of
<method>, if <propName> iss NIL. Otherwise, it sets the value of
<propName> associated with <method>.

PutMethodOnly does not invoke the putFn of an active value if
one was associated with <propName>, but sets the value directly.

If a <method> or <class> is inherited, the value is changed in the
class in which the <method> is defined, not the method of the class
presented as an argument.

Note: These functions work only on classes, not on instances.

116

Medley LOOPS: The Basic System

3.7 Delete Functions

LOOPS provides two functions for deleting variables within a
class definition: DeleteCV and DeleteCIV:

Function: DeleteCV
DeleteCIV
Arguments: <class>, the name of the class.

<varname>, the name of the variable.
<prop>, the name of a property of the class.
Return: The <varname>, if deleted; otherwise, NIL.

DeleteCV fetches cvNames from the class record and searches it
for the name of the variable. If found, it fetches the cvDescrs from the
class record, locates the variable’s descriptor from the record, deletes
the class variable’s name from cvNames, and sets the new values into
the class record.

DeleteCIV works similarly but uses the value of the field
LocallVs in the class record, to search for the 1V name, and delete it,
if found. Here is an example:

i a/2av+ [PutClv¥Here State ‘FLower MIL)

MIL
z/2z5+ DeleteClY State ‘FLower)

i LD

If <prop> is non-NIL, the <varname> is the name of a property
which is removed from either the cvDescrs or the ivDescrs.

117

Medley LOOPS: The Basic System

3.8 Destroying Classes
You may also destroy classes using the following methods.
3.8.1 Removing a Class

The Destroy method removes a class from the LOOPS system. Its
format is:

Method: Destroy
Arguments: <class>, the handle of the class.
Return: NIL.

This method sends the method DestroyClass to the metaclass of
the specified class.

For example”

(* ; "This data set is used for testing the features of LOOPS")
(* ; "Prepared by Steve Kaisler")
(*; "Assumes that plantagenet.txt has been loaded.")

(* ; "Create a new class, Joker, of Person.")
(SETQ Joker (SEND Person New))

(SEND Joker SetName 'Joker)

(PP Joker)

(* ; "Now destroy the subclass Joker.")
(SETQ result (SEND Joker Destroy))

118

Medley LOOPS: The Basic System

(PP Joker)
(PRIN1 "Joker has been destroyed: ")
(PRINT result)

And, loading TestClass.txt:

z/1e+ (LOAD ‘TestClass.txt)

{02k}<home>stever LOOPE-MAIN> TestClass, txt, 1
YARE definition for Joker:

(RPAQD Joker #, (% Joker))

INSTANCES def1n1t.1u:|n for Jok
(DEFINST Perszon (Joker (F°.'..[°.o'o'|.-'HFIaU1 0.0MP7 . 15))
]

YARE definition for Joker:

(RPAQD Joker #,(%#& Destroveddbject (92 . 6B192)))
Joker has heen destroyed: MNIL

Note: users should be careful in destroying a class, especially one that
is in the midst of a class hierarchy. Before destroying a class, users
should use the Classbrowser to check where the class is positioned in
the class hierarchy. Destroying a class in the midst of a class hierarchy
without forethought may invalidate downstream classes and cause

portions of the system to fail.

3.8.2 Destroying a Class

The method DestroyClass is not generally used by user programs,
but is sent by Destroy to perform the actions of destroying a class. Its

format is:

119

system.

120

Medley LOOPS: The Basic System

Method: DestroyClass
Arguments: <class>, the metaclass of the class to destroy.

<classToDestroy>, the class to destroy.

Return: NIL.

This method performed the following functions within the
LOOPS system:

Removed <classToDestroy> from any files on FILELST.
Sends the Destroy! message to all methods associated with
<classToDestroy>.

Removed <classToDestroy> from any subclass data
contained within its <supers>.

Changes the class name to “aDestroyedClass”.

Changes the supers list of <classToDestroy> to
DestroyedObject and Object.

Changes the metaclass of <classToDestroy> to
DestroyedClass.

Sets all fields of the internal class data structure to NIL.

This class can be specialized to change the way classes are
destroyed. For example, if the user program wants to preserve some
data in the class to be destroyed before it is actually removed from the

Medley LOOPS: The Basic System

3.8.3 Ensuring Removal of Subclasses

The method Destroy! destroys a class and all subclasses. Its
format is:

Method: Destroy!
Arguments: <class>, the handle of the class to destroy.
Return: NIL.

Recursively sends the Destroy message to self and its subclasses.
This allows users to remove entire branches of the class hierarchy.

Note: Users should be very careful in using this method as it generally
wipes out a subbranch of the class hierarchy. Unless the user has saved
the commands for creating each subclass and setting its attributes, the
user will not be able to recover the subbranch of the class hierarchy.

3.9 Inheritance

Classes exist in a class-subclass hierarchy. In each class, the
supers list defines where the class is in the hierarchy. When a class is
created as a subclass of one or more classes, it contains the 1Vs of all
the class in the supers list, and all 1Vs of the classes up the hierarchy
to the metaclass.

The highest class in the LOOPS hierarchy is called Tofu, which
stands for Top of the Universe. This class is very simple. It has no
instance variables and three defined messages:

e MessageNotUnderstood
o MessageNotFound
e SuperMethodNotFound

121

Medley LOOPS: The Basic System

Table 3-1 describes these three messages (Xerox 1991b).

Table 3-1. Tofu Message Descriptions

Message Description

MessageNotUnderstood Provides an error handling mechanism
for when a message is sent to an object
which cannot respond to the message.

MessageNotFound Provides a mechanism for intermediate
checking before sending the message
MessageNotUnderstood.

SuperMethodNotFound Provides a mechanism for intermediate

checking before sending the message
MessageNotUnderstood.

Tofu has two specializations as indicated in Figure 3-1:

Figure 3-1. Tofu Specializations
Source: Xerox 1991b

The Object class is the root of most of the other LOOPS classes.
AnnotatedValue is the root used with Active Values. It
recommended that Tofu only be specialized for some necessary
conditions such as a new capability.

122

is

Medley LOOPS: The Basic System

Consider the following example:

(* ; "Demonstrate Tofu Messages, Section 3.9.1")
(SETQ result (SEND Person WhatsMyLine))

(PRIN1 "Person does not have method: ")
(PRINT result)

The result is:

‘l[<— #, (30 Person) WhatsMyLine --) not understood

The result “not understood” is the result of sending the
MessageNotUnderstood to Tofu.

3.10 Compact Forms for Accessing Data

LOOPS provides compact forms as macros that, when expanded,
yielded data access functions as previously described in this chapter.
These compact forms used the ‘@’ character as an element of a
function call in a method. Table 3-2 describes the compact forms.

Table 3-2. Compact Access Forms

Access Description
Form
@ Yielded GetValue and GetClassValue functions.
@* Yielded GetValue functions.
@ Yielded PutValue and PutClassValue forms for
assigning a new value.

123

Medley LOOPS: The Basic System

3.10.1.1 @ Form

The @ form took an argument of an access path to a variable. The
access path could consist of one to three arguments:

e One argument: self is assumed to be the object and the access
path specifies an instance variable. For example, the form (@
iv3) translates to (GetValue self ‘iv3).

e Two arguments: the first argument is an object and the second
argument is an 1V. For example, (@ ($ w) center) would
translate to (GetValue ($ w) ‘center).

e Three arguments: the first argument is an object, the second
argument is an IV, and the third argument is a property. For
example, (@ ($ w) menus ‘DontSave) would translate to:
(GetValue ($ w) ‘menus ‘DontSave).

Now, we can get the value of Spouses from EdwardlIll using the
GetValue function:

z/9¢; (GetValue ($ Edwardlll) *Spouses)
Philippadfvesznes

But, if we use the ‘@’ notation, we have:

2/13+ (SETQ result2 {@ (% Edwardlll) *Spouses))
Invalid form in access expression:
{QUOTE Spouzes)

2/14+ (SETQ result? {@ (% Edwardlll) Spouses))
Philippadbvesnes

because ‘@’ is an Nlambda form, which does not evaluate the
arguments. Thus, the second argument does not need to be quoted.

124

Medley LOOPS: The Basic System

3.10.1.2 @* Form

The @* form generates GetValue forms. It takes an <access path>
followed by a list of IV names. For example,

(@* ($foo)abc)
(GetValue (GetValue (GetValue ($ foo) ‘a) ‘b) “¢)
3.10.1.3_@ Form

The _@ form is used to assign a new value to an IV. It takes an
<access path> followed by a new value. For example:

<example>

125

Medley LOOPS: The Basic System

3.10.1.4 Testing @ Forms

Consider the definition of Edwardlll from the Plantagenet data set:

#,(%& Person (92 ., 6518410
#,0% EdwardIII)

{11 13 1312)

(6 Z1 1377)

Male

EdwardIl

IzabellaCapet

"Loaded EdwardIII"

"Loaded EdwardIII"
"Philippa d’ &vesnes"

#,(%& Person (92 ., GEEIG))
#,0(% Philippadiévesnes)
Female

(6 24 1311

(8 15 1369)
Philippadiavesnes

EdwardIII

And, here is the complete set of tests:

126

Medley LOOPS: The Basic System

(* ; "Testing the @ Access Forms")
(PRINT "Testing the @ Form")

(SETQ atResult (@ ($ EdwardIII) Father))
(PRIN1 "atResult = ")
(PRINT atResult)

(PRINT "Testing the @+ Form")

(SETQ atResult2 (@* EdwardIII Father))
(PRIN1 "atResult2 = ")
(PRINT atResult2)

(PRINT "Testing the _@ Form")
(SETQ atResult3 (_@ EdwardIII 'Spouses NIL))
(PP EdwardIII)

Note: the @’ symbol is interpreted by Interlisp as “ <&’

{08k} <homerstever LOOPS-MATN> testataccess, txt;l

"Testing the @ Form"

atResult = EdwardIl

"Testing the E* Form"

atResult? = EdwardIl

"Testing the «@ Form"

*Spouses {in (Put¥alue EdwardIII (QUOTE *Spouses) NIL)} -» Spouses 7 v
es

VARS definition for EdwardIIl

{RP&OD Edwardill #, (% EdwardIII}l)
INSTANCES def1n1t1nn for Edua
{DEFINAT Perszon (Edwardll (FM%EEk‘\U1 0.0e07 . 13))
(Father EdwardIl)
(Mother IszabellaCapet)
(Spouses NIL)
(Bender Male)
(Birthdate {11 13 1312))
(Deathdate (6 21 1377)))

127

Medley LOOPS: The Basic System

As we see, the Spouses of Edwardlll is now NIL.
3.10.2 IV Delimiters

A “:” is a delimiter that indicated instance variable access. Table
3-3 depicts the delimiters and describes their meaning. Each of these
delimiters is followed by the name of a variable

Table 3-3. Instance Variable Delimiters in Compact Forms

Delimiter Usage
: Accesses the value of the IV.
Accesses the value of the CV.
N Accesses the value of the property.
Sends a message to the object with the selector.
! Evaluates the next expression.
\ Specifies the next symbol is a Lisp symbol.
$ Specifies the net object is a LOOPS object.

Here are some examples that demonstrate the use of these
delimiters. These delimiters can be tested using:

(Parse@ (List <access path>) ‘1V)

(@ foo)
(Parse@ (List ‘foo) ‘1V)

is translated to

128

Medley LOOPS: The Basic System

iil2aze (ParsePut@ (LIST *foo *1234) 'IV)
Hi(PutHa1ue self (QUOTE foo) 1234)
R XTI

3.11 Class Method Operations

LOOPS provides several types of operations for the methods of a
class.

3.11.1 Defining a Method

We can define a method for a class using the LOOPS function
DefineMethod, which has the format:

Function: DefineMethod
Arguments: <className>, the name of the new class.
<methodName>, the name of the method.
<args>, a list of arguments.
<expr>, an expression defining the function.
<file>, the file where the method is located. (optional)
Return: Varies according to the arguments.

For Person, we can define both put and get methods to access the
values of these attributes within an instance of the class. But, we define
these methods in the class definition so every instance has access to
them. The following examples defines some of these methods:

129

Medley LOOPS: The Basic System

(* ; "Define put methods for person")
(DefineMethod (S Person) 'PutFather '(person newValue)
'(PutValue person 'Father newValue)

(DefineMethod (S Person) 'PutMother '(person newValue)
'(PutValue person 'Mother newValue)

(* ; "Define get methods for Person")
(DefineMethod (S Person) 'GetFather '(person)
'(GetValue person 'Father)

(DefineMethod (S Person) 'GetMother '(person)
'(GetValue person 'Mother)

To check the definition of the methods, we can use PP again to
print data about the method:

130

Medley LOOPS: The Basic System

z2/14+ (PP Person.PutFather)
FNS definition for Person.PutFather:
[OEFINEQ]

(Person.PutFather
[LAMBDA (zelf person newValue)
(CL:COMPILER-LET {(*ArgsOfMethodBeingCompiled* *(self person
newvalue))
(*ClazzMamedfMethodOuner® *Person)
(#8elector0fMethodBeingConpiled® “PutFather)
(*Ze1f0fMethodBeingCompiled® “self))
(Put¥alue perzon % Father newvalue])

)
METHOD-FNE definition for Person.PutFather:

(Method ((Person PutFather) se1f person newvalue) "Method
documentatjan”
(Put¥alue person % Father newvWalue])

METHODS definition for Perszon.PutFather:

(sBatchMethodDefs)
{METH Perzon PutFather {person newValue}
"Method documentation" (category (Person)l)

(Method ((Person PutFather) se1f person newvalue) "Method
documentation”
(Put¥alue person % Father newvWalue])

(“UnbatchMethodDers)

131

Medley LOOPS: The Basic System

3.11.1.1 Extended Example

We will define a method called SetDeathDate for Person and then
set the death date for Henryll.

(DefineMethod Person 'SetDeathdate '(day month year)
'((PROG NIL
(COND

((NOT (AND (> day 0) (< day 32)))
(PRIN1 day)
(PRINT "is not in range [1...31].")
(RETURN NIL)
)

(COND
((NOT (AND (> month 0) (< month 13)))
(PRIN1 month)
(PRINT "is not in range [1...12].")
(RETURN NIL)
)

)
(COND

((NOT (AND (> year 0) (< year 2100)))
(PRIN1 month)

(PRINT "is not in range [1...2100].")
(RETURN NIL)

)

132

Medley LOOPS: The Basic System

(*; "Set Deathdate")
(SETQ Deathdate (LIST day month year))
(RETURN Deathdate)

)

2/31¢« (SEND (% Henryll) SetDeathdate 06 07 1189)
(6 7 11&9)

A similar method has been defined for setting the birthdate as
well.

Note: The function definition should be enclosed in a PROG.

A second example shows that an external function may be called
from the function definition of the method. Here, the function
ComputeAge is called from the method to compute the age of the
person.

133

Medley LOOPS: The Basic System

(%5 mREERERRRRR RR)
’

(* ; "Person Methods")
(* ; "Compute Age of a Person given deathdate and birthdate")
(DefineMethod ($ Person) 'Age '(person)
'(PROG (age)
(PRIN1 'Computing age of ")
(PRINT person)
(SETQ age (ComputeAge person))
(PRIN1 "The age of ")
(PRIN1 person)
(PRIN1 " is ")
(print age)
(RETURN age)

If we execute the function (PP Person.age), we see:

134

Medley LOOPS: The Basic System

ﬁETHDD—FNS definition for Person. &ge:

{Method ({Person Age) self perzon) "Method documentation®
{PROG {age)
(PRIML "Computing age of ")
{PRINT perszon)
(SETQ age (Computefge persaon))
(PRINL "The age of ")
[{PRINL per=zan)
[(PRINL " diz "}
{PRINT age)
(RETURN agel))
METHODE definition faor Perszon, fge:

{“BatchMethodDefs)
{METH Person Age (person)
"Method documentation" (category (Person)))

{Method ({Person Age) =self person} "Method documentation”
(PROG [age)
(PRINL "Computing age of ")
[(PRINT per=zan)
(2ETQ age (Computefge persaon))
{PRINL "The age of ")
(PRINL persaon)
(PRINL " 43 3
{PRINT age)
(RETURN agel))

{“UnbatchMethodDefs)

3.11.1.2 Invoking the Editor

If the <args> and the <expr> are NIL, then Interlisp invokes the
editor to define the function and its arguments.

zrs3¢ {DefineMethod Person Occupation NIL NIL)

135

Medley LOOPS: The Basic System

dit Person. Ococupation Pa ge: INTERLISP
(Method
{{Person Occupation) self)
"Method documentatiaon®
{SubclazsResponzibility))

136

Medley LOOPS: The Basic System

3.11.2 Defining a Method by a Definer

A variant allows the user more control over defining a method for

a class using a definer, Method, which takes the form:

137

Definer: Method

Arguments: <type>, specifies The:FUNCTION-TYPE
(optional).
<class>, the class to which the method is
attached.

<message>, the new method’s selector.
<object>, this argument must be first in the list.
<args>, a list of arguments.
<body>, the body of the method.

Return: The name of the method function.

The :FUNCTION-TYPE specifies the type of function:

o :IL, the body of the function uses Interlisp syntax, including
CLISP, or
e :CL, the body of the function uses Common Lisp syntax.

As an example, consider the following (LRM 1993):

Medley LOOPS: The Basic System

(Method :FUNCTION-TYPE:CL
((Window myWindow)
self bar
&Optional baz
&REST glorp)
(CL:FORMAT T
T “Bar -s baz glorp -s%%”
Bar baz glorp)

The method can be invoked for the class using the
<methodName>.<form>, which is interpreted as:

o If <form> is non-nil, then <argsOrFnName> is interpreted as
a list of arguments for the function and <form> is the body of
that function.

e If <argsOrFnName> and <form> are NIL, the Definer creates
a skeleton definition for a function and then invokes the
Interlisp editor.

e If <form> is NIL, then <argsOrFnName> is interpreted as the
name of an Interlisp function to be used as the implementation
of the method.

The structure of the function is specified as

(LAMBDA <argsOrFnName> . <form>).

If the first element of <argsOrFnName> is not self, then self is
inserted at the front of the list by LOOPS prior to executing the
menthod.

138

Medley LOOPS: The Basic System

The Definer creates a function name as the concatenation of
<className>, ‘.’ (period), and <methodName>. The function would
appear as:

(DEFINEQ
(<className>.<methodName>)
(LAMBDA (self) <comment>
(@:myValue (ADD1 (@:myValue)))

The interpretation of this syntax was discussed in Section 3.10 on
accessing variable values.

139

Medley LOOPS: The Basic System

3.11.3 Defining A Method by Message

A method may also be defined by sending the message
DefMethod to the class:

Message. DefMethod

Arguments: <className>, the name of the new class.
<methodName>, the name of the method.
<argsOrFnName>, a list of arguments or an
Interlisp function name.
<form>, a function implementing the method.

Return: Catenated method name of <class>.<method>.

As an example, consider:

z/15+ (SEND Person DefMethod ‘putMother *(person newVYalue) *(Put¥alue
person ‘Mother newvalue))
Persaon. putiother

And, we can see the result;

Local prope fC P

MetaClazs (Clasz Edited¥: (* ; "Edited 16-Jan
Supers (Obhject)

I¥s (Father Mother 2isters Brothers Zpo

CVs NIL
Methods (putFather putMother putdizter)

140

Medley LOOPS: The Basic System

Alternatively, here is another example:

(* ; "Using DefMethod to define a method in a class.")
(SEND Person
DefMethod 'SetTitle
'(person title)
'(LAMBDA (person title)
(PutValue person 'Title title)

which we can view with (PP Person.SetTitle):

iﬁNS definition for Person.SetTitle:
| (DEFINEQ

| (Person.SetTitle
[LaMBDA (=el1f person title)

(CL:COMPILER-LET {{*Args0fMethodBeingCompiled® " ({zelf person title))
(*#ClagzMamelfMethoduner® “Person)
(#2elector0fMethodBeingCompiled® "SetTitle)
(#2e1f0fMethodBeingConpiled® “=self))

{LANMBDE (perszon title)
(Put¥alue person "Title title])

;METHDD—FNS definition for Perszon,3etTitle:

{itethod ((Person SetTitle) =1 perszon title) "Method documentation®
[LaMBD& {perszon title)

; (Put¥alue perzon “Title title]d

METHODS definition for Person.SetTitle:

|(+BatchMethodDers)

141

Medley LOOPS: The Basic System

3.11.4 Deleting a Method

A method may be deleted from a class using the Delete Method
function, which is defined as follows:

Function: DeleteMethod
Arguments: <class>, the class from which the methods is to be
deleted,

<method>, the name of the method to be deleted,
<prop>, T if the function definition is to be deleted;
otherwise, NIL.

Return: NIL.

3.11.5 Editing a Method

A method may be edited using the Structure Editor by sending a
class the message EditMethod:

Class Method: EditMethod

Arguments: <class>, handle of the class,
<method>, the name of the method,
<commands>, a list of editf commands,
<okCategories>, atom or list specifying valid
categories.

Result: TBD

142

Medley LOOPS: The Basic System

The behavior of this method varies with the arguments:

If <method> was NIL, a menu of methods of the class was
presented using the message PickSelector in okCategories.
This was used to restrict the methods that a user might be able
to delete;

If <method> was non-NIL and was not a method defined in
the class, the user was asked whether the method should be
created in the class or not;

If <method> could not be found, the spelling corrector was
invoked to find a correct local method. If it can be corrected,
the local method was edited, or an inherited method was made
local and edited. EDITF was invoked with the argument
<commands>.

So, send EditMethod to Person:

NTI

‘2;1 =+ (SEND Person EditMethod)

which pops up a window asking which method we would like to
edit:

getBrothers
getFather
gethMother
getSisters
getSpouses
putBirthdate
putBErather
putFather
putGender
puthother
putSister
putSpouse

Ay categary *F
#& P i

Figure 3-4. Method Edit Menu

143

Medley LOOPS: The Basic System

If we click on getBrothers in menu in the window, Interlisp
prompts us to define a SEdit window in which it displays the
getBrothers method:

jit Person, getBrothers Pack
Method
({Perzon getBrothers)
#l self person)
"Method documentation®
(GetValue person % Brothers)

Figure 3-5. Method Display

If EditMethod cannot find the method selector in the specified
class, it opens the spelling corrector to find the a local selector whose
spelling might be corrected. If it can be corrected, the local method is
sued or an inherited method from a superclass is used. When the
method name is determined, EDITF is invoked with commands passed
as the second argument.

The ClassInheritanceBrowser could also be used to edit the
method.

144

Medley LOOPS: The Basic System

3.11.6 SubclassRepsonsibility

If the result of either DeleteMethod or EditMethod was to define
a new method in the class, then as part of creating the new method, a
template is displayed which included SubclassResponsibility as an
entry.

3.11.7 Alternatives to Executing Methods

Alternative functions were available to execute methods to the
messaging syntax. These functions allowed the programmer to
determine the method to be dynamically applied to an instance based
on the current state of the program.

3.11.7.1 Executing a Method

DoMethod computed an action which should be a method,
associated a class, and applied it to an object and arguments, which
were defined as follows:

Function: DoMethod
Arguments: <object>, an instance of a class to which the action
is to be applied,;
<method>, name of the method to be execute,
<class>, the class in which the method resided, or NIL,
<args>, the arguments for the method.
Return: Value returned by the method.

145

Medley LOOPS: The Basic System

All arguments were evaluated. If <class> was NIL, DoMethod
used the class of <object>. If the <method> did not exist in the class,
an error was generated.

The TestDoMethod file has the following definition:

(*; "Test DoMethod")
(DoMethod EdwardlIl 'Age Person '(Edwardlll))
STOP

Note: That STOP must be the last statement in any Interlisp file to be
loaded.

And the result of running it is:

zraot (LOAD 'TestDoMethod.txt)

{02k} homerstever loops-testerPlantageneterTestDoMethod., txt;l
Computing age of (EdwardIII)

"Computefge"

The age of (EdwardIII) iz @

f08K}<home>»Stever Jloops-testsrPlantagenetsr TestDoMethod txt; 1

DoMethod allows the user to dynamically select a method to be
applied to a class based on criteria set by the program state.

3.11.7.2 Applying a Method

ApplyMethod applies the specified method to the already
evaluated arguments of an instance; otherwise, it operates the same as
DoMethod. It was defined as:

146

Medley LOOPS: The Basic System

Function: ApplyMethod
Arguments: <object>, the instance to which the action is to be
applied,

<method>, the method to be applied,

<arglist>, the argument for the method,

<class>, the class containing the method.
Return: The value returned by the method.

The definition of TestApplyMethod is:

(*; "Test ApplyMethod")
(ApplyMethod Edwardlll 'Age '(Edwardlll) Person)
STOP

and, the result is:
/g4« (LOAD ‘TestApplyMethod.txt)

{08k} <homer»3tever loops-testzrPlantagenets> TestAppiyiethod . txt; 1
Computing age of EdwardIII

"Computefge"

The age of EdwardIIl is @

{08k} <homerSteve> loops-testzrPlantagenets> TestAppliyiethod ., txtl

147

Medley LOOPS: The Basic System

The following example, taken from the LRM 1991, demonstrates
ApplyMethod with MessageNotUnderstood.

(Method
((DwimObject MessageNotUnderstood)
self
selector
messageArguments
superFlg)
(LET ((correctSelector (FixSelectorSpelling selector)))

(COND
((correctSelector
(ApplyMethod correctSelector messageArguments)

)
(T (_Super))

3.11.7.3 Executing a Method in the Class Hierarchy

DoFringeMethods is a function that either executes the method
specified for the instance or searches up the class hierarchy to execute
the method in a superclass. It is defined as:

148

Medley LOOPS: The Basic System

Function: DoFringeMethods
Arguments: <object>, an instance of a class,

<method>, a method in the class or one

of its superclasses,

<arguments>, a list of arguments to the method.
Return: NIL.

All the arguments were evaluated. If the <method> in the class of
the <object> is defined in that class (not through inheritance), the local
method was invoked.

If there was no local method, it searches the superclass hierarchy
for the definition of the method and executes it in each superclass.

Note: this may result in the method being executed several times with
the most specific version of the method executed first.

3.12 Manipulating Methods Across Classes

Several functions and methods were provided to move methods,
instance variables, and class variables between classes.

3.12.1 Renaming a Method

A method in a class could be renamed using the function
RenameMethod, as defined below:

149

Medley LOOPS: The Basic System

Function: RenameMethod
Arguments: <class>, the name of the class in which the method
is defined,

<oldMethodName>, the old name of the method
before this function is called,
<newMethodName>, the new name of the method
after this function is called.

Return: If successful, returns <newMethodName>.

We can rename Person.Age to Person.GetAge as follows:

#=ras5¢+ (RenarneMethod Person 'Age 'GetAge)
Per=zon.fge iz not broken.
i Person.Gethge

<<Not sure why it prints Person.Age is not broken>>

It is likely rare that a user would rename a method. But, one case
where this is appropriate is when a method has evolved over time with
additional code. To make it easier to understand, the user might want
to split the method into a major method and minor methods. The major
method is invoked by the program, perhaps externally, and the minor
methods are invoked from the major method privately.

3.12.2 Moving a Method between Classes

A method may be move from one class to another with deletion
from the old class, possibly with renaming. MoveMethod is defined
as:

150

Medley LOOPS: The Basic System

Function: MoveMethod

Arguments: <oldClassName>, the class containing the method
before this function is called,

<newClassName>, the class containing the method
after the method is moved,
<method>, the name of the method to be moved,
<newMethod>, if non-NIL the name of the method
in the new class,
<files>, a list of files in which the change is to be
made.

Return: <newClassName, if specified,;
otherwise, <oldClassName>.

When the method was moved to the new class, it was deleted from
the old class.

3.12.3 Alternate Moving a Method

An alternate approach to using a function to move a method was
use the method version of MoveMethod. It is described as:

Method: MoveMethod
Arguments: <object>, the handle of the class from which the
method will be moved,
<newClassName>, the class to which the method
will be named,
<method>, the name of the method to be moved.
Return: <newClassName>.

151

Medley LOOPS: The Basic System

3.12.4 Moving Methods to a File

MoveMethodsToFile moved a method to a file if it had the same
name as a method in the file. It is defined as:

Function: MoveMethodsToFile

Arguments: <filename>, the name of the file to which
the methods are moved.

Return: NIL, if the method does not have a corresponding
entry in the file; otherwise, T.

This method is used when the method has been edited and then its
code was saved to a file to ensure the source code was not lost.

During a long editing session, perhaps stretching over several
interactive sessions, this was useful for ensuring that the method code
was updated with exiting the interaction session.

3.12.5 Getting Functions Called from a Class Set

It is often useful to find all functions that are called from one or
more classes using the function CalledFns, which is described as:

Function: CalledFns

Arguments: <classes>, a list of classes to search,
<definedFlg>, either NIL, 1, or T.

Return: A list of functions; otherwise, NIL.

The user can determine what functions are called from the
Window class as depicted in Figure 3-5:

152

Medley LOOPS: The Basic System

#larase (CalledFns *(Window) T}

(Window.AfterMove Window. AfterReshape Window. AttachLizpWindow Window.B14
k Window.Bury Window,ButtonEventFn Window.ChoiceMenu Window.Clear Window.
Clearfenutache Window.ClearPromptyindow Window.Close Window.ClozePrompth
ndow Window,CreateWindow Window.Cursorlnside? Window.Destray Window,Deta
hLizpWindow Window.BetMenultemns Window. BetPromptWindow Window.BetProp Wi
dow.Hardcopy Window.HardcopyToFile Window.HardcopyToPrinter Window.Hasli

MouseReadtable Window, Move Window, Movel Window,Open Window.Open? Window,
Paint Window.PromptEval Window.PromptForList Window.PromptForString Wind
w.PromptForYord Window, PromptPrint Window.PromptRead Window,Repaint Wind
w.RightButtonFn Window, RightSelection Window.ScrollWindow Window, Setlute
Region Window, SetProp YWindow,3etRegion Window,Shade Window, 3hape Window,
hapel Window.Zhape? Window,. 2hrink Window.3nap Window.TitleSelection Wind
w.ToTop Window. Update Window.WhenMenultemnHeld)

wlasags

Figure 3-6. Functions Called From Window

3.13 Methods Concerning the Class of an Object

Given an instance, we can find its class and determine if it is an
instance of a specified class.

3.13.1 Finding the Class of an Object
We can determine the class of an object. There are two cases:

e If the object is an instance of a LOOPS class, or
e If the object is an instance of a Lisp class.

Macro: Class
Arguments: self, a pointer to an object.
Return: Value depending on the argument.

If self is a LOOPS object, it returns the class of the object.

If it is not a LOOPS object, e.g., a Lisp object, the function
(GetLispClass self) is evaluated to return the Lisp class.

153

Medley LOOPS: The Basic System

For example,

ars15+ (Class Edwardlll)
#,(%C Persaon)

216+« (SEND Edwardlll Class})
#,(8C Per=on)

Note that the message Class sent to a LOOPS object yields the same
result as calling the Macro Class on the object.

Another example is shown below (from the OntologyCase file):

2r55e {Class ‘lreland)
sinl#, (B0 Tofu)

where Ireland is a subclass of Tofu, the top-level LOOPS class.

Suppose we define a function as Add1:

2s17¢ {DEFINEQ (Add1
{LAMBDA (x}
{IPLIS x 1)

)]
(Addl)
ai1a« (Class Add1)
Addl iz an unbound wariable,

where Add1 is not a LOOPS or Lisp class.
3.13.2 Getting the Class Name
The name of a class can be found using ClassName.

154

Medley LOOPS: The Basic System

Function: ClassName
Arguments: <class>, the name of an object.
Result: Depends on the type of object.

If <class> is a LOOPS class, it returns the name of the class. If it
is an instance of a class, it returns the name of the parent class of the
instance. Edwardlll is an instance of Person.

asoz+ (ClassMame Person)
Ferszon

asaz+ (ClassMNarme Edwardill)
Ferszon

as@de

If self is neither a class or an instance of a class, the function
GetLispClass was called with self as an argument. It if returns NIL,
the function LoopsHelp was called with self and “has no class name”.

asz2z« (ClassMarne Add1}
#ddl iz an unbound variable,

zraze (SETQ X (IPLUS X 1))
¥ iz an unbound variable,

zszac BETQ X 20)

bad]

ar25+ (ClassName x})

¥ fin EWALY -» X 7 yes
Tofu

where, as previously, Tofu was the top of the class hierarchy for
Lisp classes.

Similar results can be obtained by sending the message
ClassName to self.

155

Medley LOOPS: The Basic System

zs/ze+ (SEND Edwardlll ClassMName)
Fersan

3.13.3 Determining an Instance of a Class

An object can be determined to be an instance of a class by
sending it the message InstOf.

Method: InstOf
Arguments: self, a pointer to an object.

<class>, a pointer to a class or its symbolic name.
Result: T or NIL.

Consider the following different forms:

z/31+ (SEND Edwardlll InstOf ‘Person)
T

Showing both forms of sending a message to a LOOPS object.

z/z5+ (# (% Edwardlll) InstOf {$ Person))
T

zs3g¢ (SEND (% Edwardlll) InstOf (% Person))
7

A variant if this function, InstOf!, determines if self is an instance
of a class or any of the classes’ subclasses.

3.13.4 Copying Instances

Two methods can be used for copying instances: deep copying or
shallow copying.

156

Medley LOOPS: The Basic System

Deep copying Creates a new instance of the same class as
oldinstance. CopyDeep fills the instance variables of the new
instance with copies of lists, active values, and instances pointed to by
the oldInstance.

Method: CopyDeep

Arguments: <oldlInstance>, a pointer to an instance.
<newObjList>, an association list.

Return: The handle of the new list.

Here is an example from the LRM:

zras+ (SETQ newEdward (CopyDeep Edwardill})
HCopyDeep iz an undefined function,

Note: CopyDeep seems to be an undefined function in Medley
LOOPS. This is being investigated.

157

Medley LOOPS: The Basic System

Chapter Four

Instance Functions and Methods

LOOPS provides a diverse set of functions and methods for
defining and manipulating instances of classes.

4.1 Defining a New Instance

There are several ways to create new instances of a class. When
an instance is created by sending the New message to a class, the
default behavior for Class. New is to send the message Newlnstance
to the newly object that was created.

New Instance can be specialized if special or additional operations
are required at the time that the new instance is created. The
specialization of Newlnstance should return self.

4.1.1 Sending the Class the Message NEW

A new instance may be defined by sending a class the message
NEW, which has the format:

158

Medley LOOPS: The Basic System

Method: New

Arguments: <class>, the name of the class for the new instance.
<name>, the name to be assigned to the new
instance.
<argl> ... <argN>, arguments which are passed to
Newlnstance when it is sent to the new object.

Return: The handle of the new instance of the <class>.

After the new instance of the class is created, it is sent the message
Newlnstance with the arguments <argl> ... <argN>.

(SEND (S <class> NEW ‘<instanceName>)
(SEND <className> NEW ‘<instanceName>)

The latter case applies if you have assigned the class record to the
Interlisp variable via SETQ as in:

(SETQ <instanceName> (SEND (S <class> NEW ‘<instanceName>))

(SEND <instanceName> SetName ‘<instanceName>)

This works because the Lisp name space and the LOOPS name
space are separate name spaces.

For example, using Person, let us create an instance for Edwardl
from Plantagenets:

(* ; "Edwardl!")
(SETQ EdwardI (SEND Person New))
(SEND Edwardl SetName 'Edwardl)

(PutValue Edwardl 'Birthdate (LIST 06 17 1239))

159

Medley LOOPS: The Basic System

(PutValue Edwardl 'Deathdate (LIST 07 07 1307))
(PutValue Edwardl 'Gender 'Male)

(putFather Edwardl 'Henrylll)
(putMother Edwardl 'EleanorBerenger)

(putSpouse Edwardl 'EleanorOfCastile)

(PRINT "Loaded Edwardl")

In the default case, the New method uses the default values for the
IVs in the new instance.

a7+ (PP Edwardl)
ARS definition for Edwardl:

EP&Q] Edwardl #, (% Edward[))
NETANCES def1n1t1on for Edw
DEFINET Person (Edwardl ﬂJUﬁ$h02@3X1 0.0.8j6 . 90
(Father HenryIII)
(Mother EleanorBerenger)
(Zpouses EleanorOfCastile)
(Gender Male)
{Birthdate (& 17 1239))
(Deathdate (7 7 1387)))

1.4.1.1 Instance Handles

In order to manipulate a LOOPS object, we have to be able to
access it. In LOOPS, we need to assign a handle representing the
object to an Interlisp variable that allows us to reference the object
after it has been created.

160

Medley LOOPS: The Basic System

Handle versus Pointer

In the LRM and other references, the term ‘pointer’ is used to specify a
way to access an object. In other programming languages, such as C or
C++, ‘pointer’ often is interpreted as an address in the program’s memory
that allows direct access to the object. Such pointers can be subject to
operations, such as arithmetic or indexing, This violates the notion of an
object as an entity. We use the term ‘handle’ to specify a LOOPS object.
The Interlsp virtual machine translates a handle into an address in the
Interlisp virtual memory. It is not an address.

1.4.1.2 Computed LOOPS Names

Suppose we attempt to define a new LOOPS object using the
form:

it 2sose (SETO X1 {SEND {% Class) New))
MIL must be a LITATOM to be a class name,

When we send the selector New to Class, it requires a name for
the class. So, we must use:

2s102« (SETQ X1 (SEND {% Class) Mew 'X1))
4, (30 H1)

X1 contains the handle of the new object. LOOPS enters the
handle of the object into an internal table.

Suppose we assign a name to a new LOOPS object using the form:

161

Medley LOOPS: The Basic System

2/105+ (SEND (% X1) SetMNarmne "Michael)
#,03C Michael)

a/104« (PP K1)

YARZ definition for ¥1:

(RP&OO X1 #,($ Michae1))
NIL

The object X1 can be referred to by the expression ($ Michael).
So, comparing them:

na

We see that the LOOPS object can be referred to by both names.
This is sometimes useful to have an internal name in a program and
an external name for public use.

Also, suppose we set the variable Y to Michael:

g 1
2/108+ (SETQ ¥ 'Michael)
Michael
za1o07e (B YY)
s, (30 Michael)

Then, we can use the form ($! Y) = ($ Michael) to reference the
object.

4.1.2 Using NewlInstance Message

The Newlnstance message sent to a newly created instance of a
class allows the program to specialize the initialization of the new
object. It has the format:

162

Medley LOOPS: The Basic System

Method: NewInstance

Arguments: <object>, evaluates to the handle of a class.
<name>, the LOOPS name for the new instance.
<argl> ... <arg5>, optional arguments to be used
by user written code that specializes an instance
of Newlnstance.

Return: LOOPS name of newly created instance.

A class may have the method self defined for it using the
Assignment @ form:

(DefineMethod (S <class>)
‘New
‘(self name <argl> ... <arg5>)
(L@ (_ self NewlInstance name)

<argl>

<arg5>)

This sets the name of the new instance to <name> when it is
created. The list after NEW are the arguments to be passed to
Newlnstance.

The default case is to use the default values for the instance
variables to initialize the instance variables values in the new instance.
The default values are determined from the definition of the instance
variables in the class.

163

Medley LOOPS: The Basic System

We can use NewlInstance as follows:

arizs+ (SETQ Sarn (SEMD Person Newlnstance *Sarn})

Mew METHOD-FHWS definition for Zam.ZetTitle.
New METHOD-FHNS definition for Zam.Gethge,
#,(%C zam)

ar1za+ (PP Sam)

VARS definition for Sam:

{RP&OD Sam #, (% Sam))
INSTANCES definition for ZSam:
(DEFCLASS Sam
(MetaClazs Class Editedi: *HCOMMENT**)
(Supers Object)
{ClazsVariablez (Citizendf England doc FHCOMMENT#% %)
{InstanceYariables (Father #,MotZetWalue doc NIL)
{Mother #,MotZetvalue doc MIL)
(Sisters #,Not3etV¥alue doc HNIL)
{Brotherz #,Hot2et¥alue doc MIL)
(Gpouzes #,MNotSetvalue doc WIL)
(Gender #,Not3etvalue doc MWIL)
(Birthdate #,Motsetvalue doc WIL)
{Deathdate #,Hot3etV¥alue doc MWIL)
(Title #,Mot2et¥alue doc MNIL))D

where the initialization of the new instance is performed by the class
rather than the metaclass. As noted in the LRM, subclasses of Object
should have a _Super form within the method to allow the execution
of the default behavior.

4.1.3 Creating an Instance with Initial Values

A new instance of a class may be created and the initial values of
the instance variables specified using the message NewWithValues.

164

Medley LOOPS: The Basic System

Message: NewWithValues

Arguments: <class>, the handle of a class.
<valDescriptionList>, a list of varNames with
values and, possibly, associated properties and
their values for <varName>.

Return: The handle of the new object.

<valDescriptionList> is a list of value descriptions having the
following form:

((<varName1l1> <valuel> <propl> <propValuel> ...)
(<varName2> <value2> <prop2> <propValue2> ...)

where: <varName;> is the name of an instance variable of the class.
<value;i> is the value associated with <varName;>
<propj> indicates the jth property of the variable
<propValue;> is the value of <prop;>.

NewWithValues does not invoke the New Instance method,
which means the new instance is not recognized by the File Handler.
To be recognized, the new instance must be assigned a name via the
method SetName.

4.1.4 Creating an Instance with Immediate Messaging

A new instance can be created and have an immediate message
sent to it within one form, using the _New macro.

165

Medley LOOPS: The Basic System

Macro: _New

Arguments: <class>, the handle of the parent class for the
new instance.
<message>, name of the message to be sent
to the new instance.
<args>, the arguments to be sent with the
message.

Return: The new instance handle.

The new instance is created and the message <message> is
immediately sent to it. As an example,

2107+ (SETQ W1 (&New (% Window)
Open})
#0885 Window (FI%E,UCL,@d5.HLE . 2233

which creates an instance of window and sends it the message Open
to pop-up a new window.

Then, assign W1 as the name of the new window:

zs10e+ (BEND W1 SethMame W 1)
#, (8% Window (FI%E.UCL1. AdE.NLE . 22))

Then, shape W1 to give it visibility on the desktop:

2r115¢ [+ W1 Shﬁpe}
(1E@ 8B 483 323)

The first thing to do after naming the window is to send a SHAPE
message to expand the window something visible. Since there are no

166

Medley LOOPS: The Basic System

arguments to Shape, the cursor appears with a ghost image that allows
you to locate the window and shape it on the desktop. We drew the
shape of the window in the lower left corner of the desktop as shown

in Figure 4-1.
g Medley

T

raurent | #, (43 ¥indow {F138.UC1. 80
s csE (3 W)
et 4, (35 Vin

o (FIT.U01. 0085 . 52)

Figure 4-1. Shaping a Window After Creating it.

4.2 Data Storage for New Instance

When an instance is created, the value of the variable
NotSetValue, which is an active value, is assigned to its instance
variables. Trying to access an instance variable with this active value
triggers the method 1VVValueMissing.

Data was stored in instances on all puts and on GetValue methods
when the value was an active value, but NotSetValue.

167

Medley LOOPS: The Basic System

When reading the value of an instance variable that is not stored
in the instance, changes in the variable at the class level are seen when
the variable is read.

However, if an :initForm property is specified in a class
description, then the value is stored at the time of creation.

Testing for whether a value is stored locally can be performed in
two ways:

e Through the user interface in local mode, which returns

#,NotSetValue for values not locally stored; or

e Viathe GetlVHere function.

4.2.1 IVValueMissing

The function 1VVValueMissing is triggered by an active value
when the value of the variable NotSetValue is found in an instance
variable. IVValueMissing is described as follows:

Function: IVValueMissing

Arguments: <varName>, instance variable name.
<propName>, a property name for the instance
variable <varName>.
<typeFlg>, used internally to indicate the type of
access.
<newValue>, if a Put ration, the value to be
stored.

Return: Depends on behavior.

The behavior varied with the function that invoked it as described
in Table 4-1.

168

Medley LOOPS: The Basic System

Table 4-1. IVValueMissing Behavior

Invoking Function Description

GetValueOnly Returns the default value of the instance
variable stored in the class.

GetValue Returns the default value of the instance
variable stored in the class if it is not an
active value.

If the value is an active value, then a copy
was made of the active value, stored in the
instance, and sent the message
GetWrappedValuee.

PutValueOnly Stored the new value in the instance.

PutValue Stored the new value in the instance, unless
the default value was an active value. Then,
a copy of the active value was made, stored
in the instance, and sent the
PutWrappedValue message.

4.2.2 NotSetValue

The function NotSetValue determined if its argument was equal
to the value of the variable NotSetValue. It is defined as:

Function: NotSetValue
Argument: <arg>, any value.
Return: NIL or T.

2/eee (NotSetValue)
i [T
wlasere

After loading Plantagenet data set, we can see that the variables of
Sam are:

169

Medley LOOPS: The Basic System

ar1zs+ (SETE Sam (SEMND Person Newlnstance *Sam})

Mew METHOD-FMS definition for Zam,ZetTitle.
New METHOD-FHWS definition for 3Zam.Gethge.
#, (30 2am)

z2/124+« (PP Sam)

VARS definition for 3Zam:

(RP&QD Sarn #,(§ Sam))
INSTAMCES definition for Sam:
{DEFCLASE Sam
(MetaCGlazs Clazs Editedi: #HCOMMENT**)
{(Supers Object)
(ClazsVariablez (Citizendf England doc FHCOMMEMT** 1)
{InstanceVariahles (Father #,Hot3etWalue doc HIL)
(Mother #,NotSetvalue doc MWIL)
(Gizters #,Not3etvalue doc WIL)
(Brothers #,MotZet¥alue doc NIL)
(Zpouzes #,MotSetvalue doc WIL)
[Gender #,Hot3et¥alue doc MIL)
(Birthdate #,MNotSet¥alue doc MWIL)
{Deathdate #,MotSetvalue doc WIL)
(Title #,NotSet¥alue doc NIL)I)D

We can test the value of Sam’s Mother as follows:

z/125¢ (NotSetValue (GetValue Sarmn ‘Mother))
T

4.2 .3:initForm

The argument :initForm is an IV property, which allowed an
instance variable to be initialized at the time the instance was created.
The :initForm and its value are used in the class definition.

Its value was evaluated when the instance was created. The
evaluated form’s value was stored in the IV when the new instance
was created. As an example:

170

Medley LOOPS: The Basic System

se5+ (DefineClass 'tetclas)

, 080 tetclaz)

ssec (IL:ADCIY (% testclas) "dte NIL *(| :initForm|] (DATE)))
« NIL ListAttribute --) not underztood

4.2.4 Changing the Number of IVs in an Instance

An instance can contain more 1Vs than are defined within its
parent class. It is an error to attempt to remove an IV from an instance
that was defined in a parent class. In this case, the IVMissing method
is invoked. LOOPS provides several functions and methods for
managing IVs in an instance.

4.2.4.1 Adding an IV

The function AddlV added an instance variable to an instance. It
is defined as:

Function: AddIV

Arguments: <object>, the handle of the instance.
<name>, the name of the instance variable
to be added.

<value>, the value to be assigned to the new IV.
<propName>,a property name for the 1V,
but may be NIL.

Return: Used for side effects only.

If <propName> is not NIL and <name> already exists, it is added
to the 1V specified by <name>.

If <name> already exists and <propName> is NIL, the value of
the 1V is set to <value>.

171

Medley LOOPS: The Basic System

If IV <name> does not exist and <propName> is non-NIL, then
an IV with <name> is added to the instance and assigned the value
NotSetValue. It is given the property <propName> with specified
<value>.

If both <name> and <properName> exist, the value was assigned
as the value of <propName>.

The reasons for adding an IV to an instance that is not defined in
the parent class are 1) to add a descriptor to an instance that is unique
to that instance, and 2) to hide certain Vs from casual inspection by
users.

Add the IV “Children” to EdwardIII:

a1 (AddlY Edwardil "Children)

sINTL

#z/rae Edwardill

¥, (34 Perzon (UNEQNSEXL.8.8.ah7 . 13))
#lzsrse (PP Edwardill)

HVARE definition for EdwardIII:

i (RPAQD Edwardill #, ($ EdwardIIIj]l

S INSTAMCES def1n1t1nn for Edward

S (DEFINST Person (Edwardill [U\I“foﬂnﬁ@x1 0.0.ah7 . 130
; (Father EdwardII)

(Mother IsahellaCapet)

(Zpouzes Philippadivesnes)

(GBender Male)

{Birthdate (11 13 13123}

(Oeathdate (6 21 1377))

{Children NILIY

Hnr

We see that “Children” has been added to EdwardlIIl, but ot to
his parent, Edwardll:

172

Medley LOOPS: The Basic System

#z/74¢ (PP Edwardil)
HVARS definition for EdwardIl:

S {RPAQD Edwardll #,($ EdwardII})

v INSTANCES def1n1t1nn for Edwardl

S1(DEFINZT Perzon (Edwardll (U\.-'%Qn:]@m 0.0.ah7 . 11))
i {Father Edwardl)

{Mother Eleanor0fCastile)

{Zpouzes IzahellaCapet)

{Bender Male)

(Birthdate (4 26 1284))

(Deathdate (9 21 1327)1)

i [

Thus, we can specialize individual instances of a class without
not affecting all instances of the class.

173

Medley LOOPS: The Basic System

Chapter Five

Metaclass Functions and Methods

A metaclass serves as a template for one to many different classes,
which may differ minimally or a lot from each other. The primary
metaclass is Object.

Classes are described by metaclasses. Metaclasses may define
methods that are inherited by each subclass (although, we might refer
to these as ‘instance classes’, which is not to be confused with
instances of a class). Sending a message to a class invokes a method
in a metaclass.

One method defined by MetaClass is New which creates a new
instance of the metaclass. Since ActiveValue is a metaclass, sending
New to ActiveValue would create a new active value. A particular
subclass of a metaclass may override the definition of New and
specialize it for that class.

A classes’ metaclass is assigned when the class is created.
5.1 Base Metaclasses

LOOPS has three defined base metaclasses as depicted in Figure
5-1. These are described in Table 5-1.

174

Medley LOOPS: The Basic System

Class MetaClass AbstractClass DestroyedClass

Figure 5-1. Base Metaclasses
Source: LRM 91

Table 5-1. Base Metaclass Descriptions
Metaclass Description

Class This is the default metaclass for all classes
defined within LOOPS. When a class receives
the message New, it creates an instance of itself.

AbstractClass If a class’s metaclass is AbstractClass, then it
cannot be instantiated and a warning message
will be printed in the Exec window. Only
subclasses can be created for an AbstractClass.

DestroyedClass This is a class or metaclass that has been sent
the message Destroy or Destroy! Trying to
instantiate a destroyed class causes an error.
Attempts to destroy a DestroyedClass have no
effect.

5.1.1 Abstract Classes

An abstract class should be used to define a class which should
not have any instances. An abstract class can be used to create a
template for a set of classes that have a common set of CVs and
methods. The instance of an abstract class has these common CVs and
methods, but can then be specialized or extended by adding CVs and
methods specific to the use of the class.

Mixins are always used with another class to create a subclass.
Instances are created from the new class that has a mixin as one of its
parents.

175

Medley LOOPS: The Basic System

5.2 Pseudoclasses

LOOPS provides an interface to Interlisp objects through
pseudoclasses. A pseudoclass associates a class with a Lisp data type.
When messages are sent to Lisp objects, they are actually passed to
the associated pseudoclass. Lisp objects are then considered to be
pseudoinstances of the class.

Pseudoclasses provides two mechanisms for handling messages to
Lisp objects:
1. A message can be sent to a list whose first element is a class,
which is used to lookup the methods; or
2. A message to a Lisp data type.

In the second approach, the function GetLispClass is used to
locate the class. It searches an internal Lisp table based on the type
name of the data type. If no associated class is found, it is assumed to be
Tofu. If an associated class is found, the data type is considered a
pseudoclass.

5.2.1 Pseudoclass Functions

To obtain the Lisp class of a Lisp object, use the function
GetLispClass, whose format is:

Function: GetLispClass
Argument: <object>, a Lisp object.
Result: The pseudoclass of the data type of the <object>.

176

Medley LOOPS: The Basic System

GetLispClass uses the LispClassTable to map type names of Lisp
objects to pseudoclasses. LispClassTable is a hash table using EQ hashing to
map a name as key to return a pseudoclass, NIL, or a function to be applied.

GetLispClass gets the hash value for the name using (TYPENAME
<object> from an internal hash table. There are three cases:

1. If the hash value is NIL, ($ Tofu) is returned.

2. If the hash value is not NIL, and it is a pseudoclass, it is
returned.

3. Otherwise, the hash value is a function which is applied to
<object> and the result is returned.

For example, let us check the Lisp Class of Edwardl:

z2/16+ (GetLispClass Edwardl)
#,($C Torfu)

whereas:
z/17+ (GetClass Edwardl)]
{« #,(%& Perszon (FL?cYsUl.B.@.7ES . 9)) GetClassProp --) not understood
Here, Edwardl is a LOOPS class, not a Lisp class.
<<Not sure why GetClassProp doesn’t work!!!>>

5.3 Metaclass Functions

LOOPS provides multiple functions to create and manage
metaclasses.

177

Medley LOOPS: The Basic System

5.3.1 Defining a New Metaclass

To create a new Metaclass instance, you send the message New to
MetaClass. The format is:

(_ (S MetaClass) New <metaClassName> <supers>)

This statement will instantiate a new metaclass with Metaclass as
its metaclass. <metaClassName> must be a symbolic name.

If <supers> is not specified, the default will be (Class); otherwise,
<supers> must evaluate to a list of classes.

The result is the name of the new metaclass.

178

Medley LOOPS: The Basic System

Chapter Six

Sending Messages Alternatives

Objects in LOOPS communicate with each other by sending
messages. In Chapter 3, we saw the basic forms for sending messages
to objects. LOOPS provided some advanced forms for sending
messages to objects, which will be discussed in this chapter.

Note: In the following sections, the term <args> stands for a
sequence of arguments, usually represented as <argl> ... <argN>.

Note: In the following sections, Times New Roman does not have
a character representation for * which is equivalent to SEND for

message sending. We will use “_“ as an alternate indicator for
in this text.

6.1 Sending A Message to a LOOPS Object

As a recap, the syntax for sending a message to a LOOPS object
appears as:

z/vec (& (% Class) New 'X)
#, (80 %)

€ is implemented as a macro in LOOPS with the definition:

179

Medley LOOPS: The Basic System

(DEFMACRO
_ (self selector &REST args)

“(_!,self ' selector ,@args))

where the boxes are style indicators (using Notepad++) to view the
source code. As we see, “self” is inserted as the reference to the
LOOPS object.

The equivalent form for SNED, which is also a macro, is:

(DEFMACRO
SEND (self selector &REST args)

“(_ ,self ,selector ,@args))

We can see that these are equivalent definitions, but for two macro
expansions.

The definition for « ! is:

(DEFMACRO
_I (self selector &REST args)

[Once-Only (self)
“(APPLY* (FetchMethodOrHelp ,self ,selector)
self

,@args])

FetchMethodOrHelp searches up the supers chain for the
selector/message name, and then calls FetchMethod.

This is offered by way of showing how a method is fetched from
class or up the class hierarchy.

180

Medley LOOPS: The Basic System

6.2 _!

The form _! Sends a message to an object self after it has evaluated
all arguments. It is defined as:

Function: B
Arguments: <object>, a handle for an object.
<methodName>, a method, which is not evaluated.
<args>, a sequence of arguments for the method
Return: The value returned based on arguments.

Let us create an instance of a city with name Frederick:

Harere {(#! City "SetMNarmne ‘Frederick)
ml#, (30 Frederdick)

sez¢ (PP Frederick)
LASSES definition for Frederick:
DEFCLASSES Frederick)
CDEFCLASS Frederick
{MetaClazs Clazs Edited®%: #*¥COMMENT*#)
{Supers State County)
{InstanceYariahles (Description "& component of a 2tate/County of the
United Statez")
{Partdf NIL)
{Population NIL)))

6.3 IV

The form _IV invokes the method stored in an instance of a class
specified by <object>. It is defined as:

181

Medley LOOPS: The Basic System

Function: Y
Arguments: <object>, a handle for an object.
<IVName>, an instance variable name which is not
evaluated.
<args>, a sequence of arguments to the function.
Return: The value of the function; otherwise, breaks.

_IV calls a method, IVVFunction, to determine if the method is
accessible by the instance. If not, it returns the message "No iv
function™.

6.4 _Try

The form _Try invokes the method in self if it exists. It is
defined as:

Function: _Try

Arguments: <object>, a handle for an object.
<methodName>, the name of a method to try.
<args>, a sequence of arguments for the method.

Return: The value computed by the method, if it exists;
Otherwise, NIL.

Normally, when a message is sent to an object to invoke a method,
if the method does not exist in the object or its parent class, the system
breaks. This function avoids catching this 2break, and just returns
NIL. As an example:

182

Medley LOOPS: The Basic System

#2seae (SETQ ANNAPOLIS {€Try City 'New ’Annapolis))
wlHatzent

The New message is not sent to City because it is defined in a
superclass, not the object City.

6.5 _Super

_Super invokes a method in the superclass of an instance by
searching up the class hierarchy for the first occurrence of the method.
It is defined as:

Function: _Super

Arguments: <object>, the handle of an object.
<methodName>, the name of the method to
invoke.
<args>< a sequence of arguments to the method.

Return: 27

As examples:

#lzssae {€Super Edwardill ‘GetMother)

Zelector to <3uper does not match method selector
sl (QUOTE GetMother)

GetMother is not a method defined in either Edwardlll or its
superclass, Person.

_Super cannot be called directly. Rather, it must be embedded in
another method in a class to invoke a method in a parent class of the

183

Medley LOOPS: The Basic System

class of the instance. To do so, it searches up the class hierarchy to
locate the definition of the method.

If no arguments were provided, it used the arguments of the
method from which it was called.

If <methodName> does not exists in a superclass, then a break
was initiated.

6.5.1 Super?

A variant, _Super?, uses the single most next general method. It
does not break if there is no occurrence of <methodName> in the
superclass. As with _Super, it must appear in the body of a method.

6.5.2 _SuperFringe

Another variant, _SuperFringe, invokes <methodName> from
each of the classes on the super’s list of the class. That is, if the class
is inheriting from multiple classes, the <methodName> is invoked, if
it occurs, in each of those superclasses in which it is defined.

6.6 New

This form _New creates an instance of a class, then sends a
message with arguments to that instance. It is defined as:

184

Medley LOOPS: The Basic System

Function: _New
Arguments: <class>, the class for which an instance is to be
created.

<methodName>, the method to be invoked, which

is not evaluated.

<args>, a sequence of arguments to the method.
Return: A handle for the new instance.

We can create a new window, then shape it using the following
statement:

z/7ec (SETQ W1 (+New (% Window) Shape))
J#, (22 Window (FMEE. UCL. BdE.CRS . 16))

Since no arguments are provided to Shape, the user is prompted
with a ghost of a rectangular window to draw the window.

Which yields a ghost image as:

185

Medley LOOPS: The Basic System

The cursor is located at the lower right corner of the ghost image.
Dragging it defines the coordinates for the window.

6.7 FetchMethod

FetchMethod fetches the function name of the message that is
sent to the class. The function can be found in the class or its
superclasses. It is defined as:

Method: FetchMethod
Arguments: <class>, the handle of the class to which the
message is sent.
<methodName>, the method, which is evaluated.
Return: The function name; otherwise, NIL.

If the <methodName> is not found in the class or any of its supers,
FetchMethod returns NIL.

186

Medley LOOPS: The Basic System

A common mistake is to specify an instance of a class as seen
below:

il2,72¢ (FetchMethod Maryland 'States?)
ARG NOT class
#,(%& State {|NY®.UCL,Bd5. Ca:| . 16))

zev3+ (PP Maryland)
YARS definition for Maryland:

(RP&QD Maryland #, (3 Mar‘y'land]l]l

INSTAMCES def'ln'lt'lu:un for Mary

(DEFINET State (Maryland (|M"f’0 UG1 0d5.Ga:| . 16))
(Description "An Eastern State of the Uhited Statez")
{ZtateCapital Annapoliz))

Note, however, what is returned is the class of Maryland, which is
State.

187

Medley LOOPS: The Basic System

Chapter Seven

Introduction to

Data-Oriented Programming

In object-oriented programming, when a message is sent to an
object, the method implementing the message may change the state of
variables within the object.

In data-oriented programming or access-oriented programming
(AOP), an action performed on data may be triggered as a side effect
when the data is accessed. These data structures are called active
values because the act of reading or writing a data item invokes some
action upon the value of the data item or upon other data items. The
action is a specified implicit procedure when the value of the variable
is read or set. As Bobrow and Stefik (1986) noted, this mechanism is
the dual of messages, which tell objects to perform operations that can
change the value of variables as a side effect.

In AOP, for any variable of an object, a procedure can be specified
that is invoked when the variable is accessed for reading or writing. In
LOOPS, this structure was called an active value, because the act of
reading or writing invoked (e.g., caused to be executed) the associated
procedure. As the LRM notes, this mechanism was dual to the concept
of sending a message to perform an operation, which could change the
value of a variable as a side effect.

One aspect of AOP is to provide for “hidden variables” e.g.,
variables not directly accessible by the primary methods associated

188

Medley LOOPS: The Basic System

with messages, but through an indirect action, e.g., the effect of the
active value. Such hidden variables could be changed only through the
action upon another, perhaps “public” variable.

As Bobrow and Stefik (1986) noted, an active value can serve as
the “glue” which connects to subsystems together, but preserves their
independence in terms of programming and functionality. It can also
be used to allow one process to monitor another and to maintain
constraints among data in a system.

Active values enable one process to monitor the behavior of
another process. Figure 7-1 presents the abstract class Activevalue and
its specializations.

ExplicitFnActiveValue

IndirectVariable NoUpdatePermitted AV
LispWindowAY
LocalStateActiveValue
ActiveValue BreakOnPut ——————————— BreakOnPutOrGet
TraceOnPut ————————— TraceOnPutOrGet

InheritingAV //A<Append8upervalue
ReplaceMeAV FirstFetchAV

NotSetValue Value

Figure 7-1. ActiveValue Specializations
Source: LRM 1991

Note: ActiveValues are widely used in the Truckin’ game, which
demonstrates many of the features of LOOPS.

189

Medley LOOPS: The Basic System

7.1 Specifying an Active Value
In LOOPS, an active value is specified as follows:
#(<localState> <getFn> <putFn>)

where <localState> is the variable that stores the data
<getFn> is the name of a function invoked when a program
accesses the active value, and
<putFn> is the name of a function invoked when a program
sets the active value.

This notation is converted by a read macro to the Interlisp data
type activeValue. So, we can picture an activeValue in this way:

G P
E L
T T
: F
N M

activeValue

Figure 7-2. activeValue Structure

190

Medley LOOPS: The Basic System

7.1.1 getFn and putFn

The functions are defined with standard arguments as shown
below. An active value need not specify both a <getFn> and a <putFn>
functions, although typically both are specified.

The default values for the functions operate as follows:

o If <getFn> is NIL, the current value of the <localState> is
returned.

e If <getFn> is non-NIL, then the function is applied to the
value of the variable before it is returned to the calling
function.

e If <putFn> is NIL, the value of <localState> is replaced with
the argument provided.

e If <putFn> is non-NIL, then it is invoked with the new value
before that value was stored at the variable.

Behind the scenes, when a message is sent to an active value,
either GettingWrappedValue on reads or PuttingWrappedValue if
a write is sent to the active value object with the originating message.
The originating message may or may not trigger side effects as a result
of receiving that message.

7.1.2 Defining an Active Value
To define an active value, the following steps are suggested.

1. Start with the definition of a Thermometer as shown below:

191

Medley LOOPS: The Basic System

z/s0+ (LOAD *Therrnorneter.txt)

{08k} home>»Stever loops-testerloopstestsrThermometer , txt;l
I VARS definition for Thermometer:

(RPAQD Thermormeter #,(% Thermometer))
#CLASSES definition for Thermometer:

@l (DEFCLASSES Thermometer)

#iDEFCLAZS Thermometer

: (MetaClazs Class Edited: FRCOMMENT **)
(Zupers Object))

HlyaRs definition for T1:
HrPagD T1 #, (8 T1D)

s INSTANCES def'ln'lt'lu:un far
ggg (DEFIMNET 'ghermumeter‘ (T1 (FP%U UC1.0d5.f88 . 2))

{08k} home>»Stever loops-testerloopstestsrThermometer , txt;l

Thermometer is a class that can define many different instances of
thermometers. One instance is named T1. The code to define a basic
thermometer is below.

(*; "Thermometer Example")

(SETQ Thermometer (DefineClass 'Thermometer NIL ($ Class)))
(SEND ($ Thermometer) SetName 'Thermometer)
(PP Thermometer)

(* ; "Define an instance of a thermometer")
(SETQ T1 (SEND ($ Thermometer) New 'T1))
(SEND ($ T1) SetName 'T1)

(PP T1)

192

Medley LOOPS: The Basic System

To measure the temperature, we need to define a LocalActiveStateValue
variable which will be defined as an active value.

The template for the LocalActiveStateValue us:
#(<localactivestatevalue <getFn> <PutFn>)
The definition for this is:

Hzss1¢ (PutCl¥Here Therrnometer #(Temperature getTemperature
|putTermperature}}

NTL

which appears aa:

2s/53¢ {pp Thermometer)
dlop fin EVALY -> PP 7 ves
EEVARS definition for Thermometer:

il (RPAQQD Therrmometer #,(% Thermometer))
i;CLASSES definition for Thermometer:

{DEFCLASZES Thermometer)

H{DEFCLASS Thermometer

{MetaClass Class Edited: FECOMMENT##*)
(2upers Object)

[Instancevariables (#CARRAY T (3) @ 142,214@> MWIL doc HHCOMMENT**) ﬂ
1 :

HniL

To get the value registered by the Thermometer, we can do:

ars4+ {Get¥Walue Thermometer 'Ternperature)
#,Not2etWalue

Because a value has not been set to Temperature.

193

Medley LOOPS: The Basic System

7.1.3 Nested Active Values

Active values could be nested to allow multiple access functions
to be applied to variable values. As noted in Bobrow and Stefik (1983),
one might want to have two processes - a debugging process and a
display process — to monitor the state of some variable.

Nested active values store the innermost active value as the
localState of the outermost active value. For example, we could have:

H(_ #(XPos NIL UpdateDisplay)
GettingTracedVar
SettingTracedVar)

The putFns are invoked from the outmost AV to the innermost AV. So,
SettingTracedVar would be called with the new value for XPos. But, it would
call the function PutLocalState to set its own localState which it the innermost
AV. The innermost AV putFn — UpdateDisplay — is called with the new value
to update the display and set the value of XPos.

Nested get operations worked in the reverse order with the innermost AV
being called and the progressing outwardly. The returned value is the value
provided by the outermost getFn.

7.1.4 Using Active Values

Active values are a powerful mechanism, although simple in
implementation, that allow the programmer control over the getting and
setting of instance variable values and property values.

Consider an instance variable IV in an instance | of a class C. The default
value of IV has been declared to be the active value AV. Assume that AV has
never been set. The first time a (PutValue | 1V <expr>) is invoked, a copy of
AV is made and inserted into | as the value of IV. The putFn is invoked with

194

Medley LOOPS: The Basic System

the copy of AV, which provides a place where the localState of the AV can
be stored private to I.

The following example is taken from Bobrow and Stefik (1983). Define

a class SUM with three 1Vs: top, bottom, and sum. IVs top and bottom are
initialized to zero. IV sum will be computed when asked for. The LOOPS
code for SUM is:

(DEFCLASS SUM

195

(Metaclass <class>)
(Supers Object)
(InstanceVariables
(top 0)
(bottom 0)
(sum #(Shared ComputeSum NoUpdatePermitted))
)
(ClassVariables)
(Methods
(printOn printColumn)

Note: | have modified the indenting to make the code more readable.

The structure of the AV is specified as follows:

e This IV is an instance of some <class>;

e The <class< is an instance of Object;

e It has three instance variables, which are enumerated;

e There are no class variables specified for <class>, since we did not
show its declaration; and

e It has two methods, presumably inherited from <class>.

The programmer would define ComputeSum to calculate the sum.

Medley LOOPS: The Basic System

NoUpdatePermitted is a LOOPS kernel function which does not allow
the AV to update the sum IV. Since no updating of the IV is allowed, Shared
allows this AV to be shared with other Vs, rather than being copied anew for
each IV.

NOTE: SEdit does not make copies of active values. If AVs are
copied in SEdit, they will share structure, which means that one
AV is modified, all AVs of that type will be modified.

7.2 Active Value Functions

Several functions are provided to manipulate active values, which
are described in this section.

7.2.1 FirstFetch

FirstFetch is a standard getFn that expects the AV’s localState to
be an expression to be evaluated. The first time that a Get function is
performed on the AV, the expression is evaluated and it becomes the
initial value of the AV.

As an example, consider the following class declaration:

(DEFCLASS TestDatum
(MetaClass Class)
(..)
(InstanceVariables
(sample #((RAND 0.0 100.0) FirstFetch <putFn>))

196

Medley LOOPS: The Basic System

When a Get function is executed for the AV, the expression
(RAND 0.0 100.0) is executed to generate a random number between
0.0 and 100.0. This value replaces the expression in the AV.

Let us define Germany with Capital City Munich and an active
value using FirstFetch:

(SETQ Germany (DefineClass 'Germany '(Country) (S Class)))
(SEND ($ Germany) SetName 'Germany)
(PutCIVHere (S Germany)
'CapitalCity
#(Munich FirstFetch 'GetNewCity)
NIL)
(PP Germany)

M (DEFCLASSES Bermany)
H(DEFCLASS Germany
i (MetaClass Class Edited¥: #*¥COMMENT**)
(Supers Country)
(InztanceVariabhles (CapitalCity #CARRAY T (3) @ 134,5426@>)))

: [

Now, trying to fetch CapitalCity

2/94+ (Getlt Germany CapitalCity NIL ‘IV)
B{#CARRAY T (3) B 134,5426@>

197

Medley LOOPS: The Basic System

The definition of GetNewCity is:

(* ; "GetNewCity")

(DEFINEQ, (GetNewCity
(LAMBDA NIL)
(PRINT "Enter new city name:")
(SETQ NewCity (RATOMS T))
(PRINT NewcCity)
(RETURN NewCity)

)

7.2.1.1 FirstFetchAV

FirstFetchAV is a specialization of localStateActiveValue and
the ReplaceMeAV, which has an expression as the value of the
localstate. On the first put access, the expression was evaluated. The
resulting value replaced the FirstFetchAV so that the value of the
variable was no longer an active value. This AV is often used as the
default value of the variable which allows the actual value to be
replaced at run time.

7.2.2 Indirect Access

LOOPS provides a mechanism for accessing a value stored in
another IV through an IV using one of the indirect functions:
Getlndirect and PutIndirect.

198

Medley LOOPS: The Basic System

Function: Getlndirect
Putindirect

Arguments: A localState which is a nested AV specifying
an 1V in that AV.

Return: The value of executing the function.

<<Example>>
7.2.3 ReplaceMe

In some cases, a programmer will want to set a default value for a
variable in a class using an AV, but replace it by a value provided
when the program sets the value of the variable. ReplaceMe
accomplishes this:

Function: ReplaceMe
Arguments:
Return: The value generated to replace the AV.

Consider the following example:
#(NIL ComputeValue ReplaceMe)

NIL is the default value for the localState of the AV. When a Get
function is given the variable, it returns the value computed by
ComputeValue. When a Put function is given the variable, the value
provided is set as the value of the active variable.

199

Medley LOOPS: The Basic System

7.2.4 User-Defined Function

The getFn and putFn functions associated with an active value can
be defined by the user. They take a standard set of arguments:

Function; getFn
putFn
Arguments: <object>, the object containing the active value

<varName> the name of a variable containing

the active value; NIL if not stored in a variable.
<oldOrNewValue>, for a getFn, this is the AV’s
localState; for a putFn, the new value to be stored in
the AV.

<propName>, the name of a property associated with
the AV; if NIL, the is associated with <varName>.

<activeVal>, the AV in which this getFn was found.

<type>, where the AV is stored: NIL for an instance

variable; CV for a class variable; CLASS for a class

property; or METHOD for a method property.
Return: For getFn, the value returned by the Get

operation.

For putFn, it may make changes to the local

state using the function PutLocalState.

When PutLocalState is used, it may trigger any embedded active
values.

200

Medley LOOPS: The Basic System

7.2.5 Local State Functions

Two functions can be used to retrieve or update the localState of
an active value: GetLocalState and PutLocalState.

Function

Arguments:

Return:

GetLocalState

PutLocalState

<activeValue>, the handle for the active value.
[<newValue>, for putFn only, the new value to be
stored.]

<object>, the object containing the active value

<varName>the name of a variable containing the
active value; NIL if not stored in a variable.

<propName>, the name of a property associated with
the AV; if NIL, the is associated with <varName>.
<type>, where the AV is stored: NIL for an instance
variable; CV for a class variable; CLASS for a class
property; or METHOD for a method property.

see below.

For GetLocalState, it returns the value of the localState of the

<activeValue>.

For PutLocalState, it stores the <newValue> in the localState of
the <activeValue> and returns <newValue>.

If the localState of an AV is itself an Av, then its getFn will be
triggered to return the value of the embedded AV. For a putFn, an
embedded Av will only be triggered when PutLocalState is invoked.

201

Medley LOOPS: The Basic System

7.2.5.1 Alternate Functions

Alternative functions GetLocalStateOnly and
PutLocalStateOnly will only retrieve or store a new value in the
localState of the referenced active value. Their format is:

Function: GetLocalStateOnly
Arguments:

Function: PutLocalStateOnly
Arguments:

7.2.5.2 Using LocalState

Most ActiveValue subclasses are specializations of
LocalStateActiveValue, which used an instance variable, localState,
in the ActiveValue to hold the value.

7.2.6 Annotated Values

Interlisp uses a special data type called an annotatedValue data
type, to wrap each instance of an active value, when it is installed in
an object. The annotatedValue contains the activeValue instance.
Thus, GetValue and PutValue can use Interlisp’s type checking
mechanism to see if the value in instance variable should be processed
normally or via the active value mechanism. This mechanism is
transparent to application programs.

In case the user forgets about the distinction between a
annotatedValue and an activeValue, Interlisp has a class,

202

Medley LOOPS: The Basic System

annotatedValue, to mediate when the user program attempts to trat an
annotatedValue as an activeValue.

Each annotatedValue contains a field named annotatedValue. This
field contained an ActiveValue object.

7.2.6.1 AnnotatedValue

The AnnotatedValue class was equivalent to the Lisp data type
annotatedValue. It is an abstract class that cannot be instantiated. Its
superclass is the LOOPS class tofu. Instances of this class are Lisp
data type instances.

LOOPS provides several macros for explicitly controlling
annotatedValues as presented in the following sections.

7.2.6.2 fetch

The fetch macros retrieve the contents of the annotatedValue field
of an annotatedValue instance.

Macro: fetch

Arguments: <value>, an annotatedValue instance.
Return: The contents of the field annotatedValue.
It is coded as:

(fetch annotatedValue of <value>).

203

Medley LOOPS: The Basic System

7.2.6.3 replace

The replace macro replaced the contents of the annotatedValue
field of an annotatedValue instance.

Macro: replace

Arguments: <value>, an annotatedValue instance.
Return: The contents of the field annotatedValue.
It is coded as:

(replace annotatedValue of <value> with <object>).

7.2.6.4 create

The create macro created a new instance of the data type
annotatedValue.

Macro: create

Arguments: <value>, an annotatedValue instance.
<object>, an ActiveValue object to be stored in the field.
No type checking is done on the instance.

Returns: The contents of the field annotatedValue.

It was coded as:
(create annotatedValue _ <object>).

7.2.6.5 type?

The type? Macro performed a type check for an instance of the
Lisp data type annotatedValue.

204

Medley LOOPS: The Basic System

Macro: type?
Arguments: <value>, the value to check as to type..
Return: T, if value is an instance of the data type

annotatedValue; otherwise NIL.

It was coded as:
(type? annotatedValue <value>).

7.26.6_AV

The _AV macro sent a message to the ActiveValue object
wrapped in an annotatedValue.

Macro: _AV
Arguments: <av>, an instance of an annotatedValue.
< method>, a method of the enclosed
ActiveValue.
<args>, arguments to be passed to the method.
Returns: The result of executing the method using
the arguments.

It is coded as:
(_AV <av> <method> . <args>).

7.2.6.7 MessageNotUnderstood

This MessageNotUnderstood macro forwarded a message
intended for the wrapped ActiveValue to that object.

205

Medley LOOPS: The Basic System

Macro: MessageNotUnderstood

Arguments: <object>, the object containing the ActiveValue
instance.

It is coded as:

(_ <object> MessageNotUnderstood).
7.2.7 Managing Annotated Values

LOOPS provides several methods for managing active values.
These methods are defined in the class ActiveValue and inherited by
every instance of ActiveValue.

7.2.7.1 Printing ActiveValue Instances

The method AVPrintSource prints a description of an
ActiveValue instance. Its format is:

Method: AVPrintSource
Arguments: <object>, an instance of ActiveValue.

<classname>< the name of the class of the
ActiveValue.

<avNames>, a list of names of self, the last being
the unique identifier (UID) of self.

Return: A form to be used by DEFPRINT, where the
form has the format (form1 . form2).

206

Medley LOOPS: The Basic System

The LOOPS Manual notes that the default form is something like:

(“#,” SAV <classname>
<avnames (ivname value propname value ...)

(ivname value propname value ...)

The list (ivname value propname value ...) describes the current
state of the instance variable of the ActiveValue instance.

Including the UID in the print form allows the identity of the
ActiveValue instance to be recovered. This allows different
annotatedValues to share the same ActiveValue, and to allow this
sharing to be preserved across saving and reloading into a Lisp
environment. An example from the LOOPS Manual:

#, (SAV IndirectVariable
(HeightFromWidth (NCV0.0X: .SD7 .KR . 8))
(object #. (S SquareWIndow))
(varname width)
(propname NIL)

(type IV)

Note: formatting added.

207

Medley LOOPS: The Basic System

7.2.7.2 $AV

$AV is used to reconstruct an annotatedValue that was saved to a
file. Its format is:

Function: SAV

Arguments; <classname>, the name of the class of ActiveValue.
<avNames>, a list of LOOPS names of ActiveValue
instances.
<ivForms>, a list describing the state of the instance
variables of the ActiveValue.

Return: a new annotatedValue whose ActiveValue is
reconstructed from the second and third arguments
above.

One could construct an active value by typing a form such as:

(SAV <activeValueClassName>
NIL
(<ivhname> <value> <propName> <value>)

(<ivname> <value> <propName> <value>)

None of the arguments were evaluated because $AV was an
NLmbda, Nospread function.

Alternatively, a user could also use the functions PutClasslV,
PutClassValue, PutClassValueOnly, AddCIV, AddcCV, or other
methods to modify or add class and instance variables.

208

Medley LOOPS: The Basic System

7.3 The ActiveValue Class

The ActiveValue class defines the protocol for interaction
followed by all active values. The basic functionality of activeValues
was defined here and inherited by each of its subclasses. ActiveValue
itself is an abstract class, which is a placeholder in the class hierarchy,
and cannot be instantiated.

7.3.1 Using Active Values

LOOPS specified several guidelines for using active values:

o Before you start coding, decide what functionality you want
the active value to provide:

o Will it cause a side effect?

o Will it maintain/enforce constraints between two
pieces of data?

o Will it transform the value provided in the access to
some internal form?

o Will it transform an internal value to an external form
to be deliver to the calling object?

o Will its contents need to be initialized?

o Determine which activeValue subclass that you want to
specialize, if necessary, to achieve the functionality specified
above.

o Create an instance of the activeValue subclass you have
chosen or specialized.

¢ Initialize the contents of the activeValue subclass instance, if
necessary.

o Install the active value on the data that you want to become
active using AddActiveValue.

209

Medley LOOPS: The Basic System

7.3.2 Specializing an Active Value

To use active values, you need to make instances of some subclass
of activeValue or create your own specializations in order to create
instance. Figure 7-1 shows activeValue and its specializations.

ExplicitFnActiveValue

IndirectVariable NoUpdatePermittedAV
LispWindowAV

LocalStateActiveValue

ActiveValue BreakOnPut ———————— BreakOnPutOrGet

TraceOnPut ———————— TraceOnPutOrGet

InheritingAV AppendSuperValue

ReplaceMeAV FirstFetchAV

NotSetValue NestedNotSetValue

Figure 7-1. ActiveValue and its specializations

The following sections describe the specializations of
ActiveValue.

210

Medley LOOPS: The Basic System

7.3.2.1 IndirectVariable

This specialization acted as indirect addressing by returning the
value of another variable as its value. Consider a variable that is
directly addressable by a Get or Put method, while you want to hide
the actual variable from the view of the caller. You can use this
subclass to create instances that perform the actual Get or Put on the
variable referenced by this AV, called the tracked variable. Any
transformation methods would be associated with the AV, which
allow the tracked variable to have a canonical format. Then, different
instances of IndirectVariable could perform different transformations
on it depending how the result would be used. Table 7-1 describes its
instance variables.

Table 7-1. IndirectVariable Instance Variables

Instance Variable Description

object An instance of a class containing varName.

varName The name of the tracked variable which is
referenced by the AV.

propName If non-NIL, a property associated with the IV.

Type Type of variable being referenced. Valid values
are CV, IV, or NIL. Default is an IV.

A specialization of IndirectVariable is created so as not to establish
equality between the two variables. Thus, you also need to specialize
GetWrappedValue and PutWrappedValue.

The definition for GetWrappedValue is:

"Fetch the value wrapped in the active value without triggering any
side-effects."

(SELECTQ (@ type)

211

Medley LOOPS: The Basic System

((NIL 1V)
(GetValueOnly (@ object)
(@ varName)
(@ propName)
)
)
(cv
(GetClassValueOnly (@ object)
(@ varName)
(@ propName)
)

)
(HELPCHECK "Invalid type" (@ type))

The definition for Put WrappedValue is:

"Replace the value wrapped in the active value without triggering any
side-effects."”

(SELECTQ (@ type)

212

((NIL 1V)

(PutValueOnly (@ object)
(@ varName)
newValue
(@ propName)

)
(cv
(PutClassValueOnly (@ object)
(@ varName)
newValue

(@ propName)

Medley LOOPS: The Basic System

)
(HELPCHECK "Invalid type" (@ type))

The function _Supers ensured that the default behavior of
IndirectVariable is used to retrieve or store the data in the tracked
variable. TestAV.txt is an adaptation of a test sequence in the LRM.
The source code is in Appendix C.1. Here is the result of loading
TestAV.ixt.

213

Medley LOOPS: The Basic System

E EELISP)
(IL:LDAD 'TestAV.txt)

{0Ek}I<homerStever loops-testerLoopsTester TestAlY . txr;l
HEXPRESSIONS definition for {§ Tank)

W Tank)
HEXPRESSIONS definition for (§ Pipe)

ds pipe)
H{YARE definition for Tank:

d (rPann Tank NIL)
HCLASSES definition for Tank:

H (DEFCLASSES Tank)

H{DEFCLASS Tank

i (MetaClass Class Edited: #ECOMMENT®+)

(Supers Object)

(Instance¥ariables (outputPressure NIL doc HCOMMENT®# 37)

(ZEND (% Pipe) AddI¥ "dinputPressure)"
YARS definition for Pipe:

 (rPan Pipe NIL)
HOLASSES definition for Pipe:

H (DEFCLASSES Pipe)

H (DEFCLASS Pipe

: (MetaClass Class Edited: *:COMMENT**)

(Supers Object)

(Instancevariables {inputPressure NIL doc **COMMENT** 1))

ﬂ EXPRESSIONS definition for (f Tanki):

H (s Tank1)
HEXPRESSIONS definition for (§ Pipel):

A pipet)
(¢« (} Indirect¥ariable) New 7 ind¥arl)"
EXPRESSIONS definition for ($ indVaril)

(% indvarl)

"bz=ign object and wvarName
(«@ (% ind¥ari) ohject (3 Tanki))"

(«@ {($ ind¥arl) warMame ’outputPresszure)"
HEXPREZSIONS definition for {§ indvarl)

($ dindvari)

"Thstalling ActWalue instance."

(« (} indYarl) AddActiveValue (3 Pipel) °inputPressure)"
HEXPRESSIONS definition for (§ indVarl)

A4 indvarl)

g7 inputPressure {in (Put¥alue Pipel (QUOTE *inputPressure) 100)} -
inputPressure 7 yes

‘outputPressure {in (Put¥alue Tankl (QUOTE ‘outputPressure) 280)} -
outputPressure 7 yes

"##% Fpg of Testhl ##"

{08k}<homerStever Toops-testsrLoopsTesterTestAY txt;l

Jarase ,

214

Medley LOOPS: The Basic System

At the end of the test file, we inspect the two entities: Tank1 and Pipel.

i outputPressure 288

Here is another example of using IndirectVariable.

77 (LOAD 'NewTestAv.txt)

DEk}<{home>Stever Toops-tests»LO0OPETestsrNewTestaY txt ;1
&RES definition for 3Feetdhove:

q(RPAQD 3FeetAbove NIL)
LASSES definition for 3Feetdhove:

DEFCLASSES 3Feetfbove)

4 (DEFCcLaRs JFeetAbove

(MetaClass Class Edited: #HCOMMENT**)
(2upers IndirectVariable))

he height of Binl is B

he height of Binl is B

dSetting heights of Binl and Conveyorl,

JyThe hieght of Conveyorl iz 15

zet the height of Conveyorl

he height of Conveyorl iz 21

He height of Binl iz 21

B DEk}<home>Steve> Toops-tests>LOOPSTesta>NewTestaY . txt; 1
it EXe

And, the variables of 3FeetAbove are:

215

Medley LOOPS: The Basic System

q object #, 0% Binl)
4 vardame height

4 propMame NIL
q tvpe MIL

The code for NewTestAv is found in Appendix C.2.
7.3.2.2 LocalStateActiveValue

LocalStateActiveValue contains the instance variable localState,
which is used to store the value of the tracked variable. It is useful
when you need an activeValue that produces a specific side effect in
your application.

Thus, you also need to specialize GetWrappedValue and
PutWrappedValue. Table 7-2 describes its instance variables.

Table 7-2. LocalStateActiveValue Instance Variables
Instance Variable Description

localState A variable that holds the actual value of the
variable which is wrapped as an active value.

Applying GetWrappedValueOnly to an instance of
LocalStateActiveValue results in calling (GetValueOnly self
(QUOTE localState)). Similarly, applying PutWrappedValueOnly
results in calling (PutValueOnly self (QUOTE localState) (if
(NotSetValue newValue) then NestedNotSetValue else newValue)).

When a LocalStateActiveValue was used as the default value for
an instance variable in a class, it must be copied to each instance of
the class; otherwise, every instance of the class would share a single

216

Medley LOOPS: The Basic System

localState. This copying is done automatically by LOOPS at the first
instance of accessing the instance variable.

Once the copying is completed, every instance of the class has its
own version of localstate. The copying operation was performed by
the method CopyActiveValue.

Method: CopyActiveValue

Arguments: <object>, the ActiveValue instance.
<annotatedValue, the value to be copied.

Return: A new annotatedValue wrapped round a copy of the
ActiveValue <object>.

Try this example from the LRM 1991.

2/a2¢+ (DefineClass "BlippingActiveValue *(LocalStateActiveValue))
i#, (3C BlippingActiveValus)

2/101+ (& (% BlippingActiveValue)
1 SpecializeMethod
'PutWrappedyalue)

which pops up a SEdit window:

dit BlippingAc falue, PUbWrappedyalue Pa e INTERL
i (Method
{{BlippingActiveYalue PutWrappedyalue)
! ze1f containinglbj wvarbame newWalue proplame type)
@ "Replace the walue wrapped in the active walue"
@l («3uper self PutWrappedv¥alue containingObj varName
: newtalue proplame typel)

Closing the SEdit window yields:

217

Medley LOOPS: The Basic System

ias101¢ (& ($ BlippingActiveValue)

i1 SpecializeMethod

i1 'PutWrappedvalue)
MBlippingActiveYalue, Putirappedialue

Slmllarly for GetWrappedVaIue
Harioze ((— ($ BllpplngActlveValue) SpemallzeMethud ‘GetWrappedvalue)

which also pops up a SEdit window:

dit Blipping A Yalue, GetWrappedivalue Pa e INTERL
Method
((BlippingActivevalue GetWrappedvalue)
ze1f containinglbj wvarName propName type)
"Fetch the wvalue wrapped in the active walue"
{«5uper =elf GetWrapped¥alue containingObj warHame
propiame type))

Closing the SEdit window yields:
; ;z1c||2|<-(;($.Blfp.p-iﬁ!iﬁt':ﬁ;r-e"\..l'a-lll-.llé-)-.S.ﬁét-:'i:ilizehlethud ‘GetWrappedValue)
ElippingdctiveYalue, GetWrappedyalue

Make windowl1 an instance of Window:

2111+ (¢ {$ Window) New 'window 1)
#, (%8 Window {|L+[ZVLX1.8.8.kBC] . 9))

We can see what the default description BlippingActiveValue
GetWrappedValue) is via:

z2/115+ (PRINTOUT PPDefault “!™})

In Exec2, the default TTY we see:

(Methnd ({BlippingActivevalue GetWrappedvalue)
zelf containinglhj varName proplame type)
"Fetch the value wrapped in the active walue"
[+3uper
zelf GetWrappedYalue containinglbj wvarMName propMame type) il

218

Medley LOOPS: The Basic System

Now, let’s set the height of window1:

il 2s118e (€@ (% window 1) height 100)
100

And, add an active value for ‘height to winowl:

i ar11ae (+New (% BlippingActiveVYalue) AddaActiveVYalue ($ window 1) *height)
g, (34 BlippinghctiveValue (|L+[ZYLX1.B.8.kB<] . 18))

Now let’s change the height to 300.

ilari1ee (i-@ ($ wmduw1] hmght 3l]l]}
384

zs1z0+ (@ (% window 1) height)

=101t

7.3.2.3 ExplicitFnActiveValue

ExplicitFnActiveValue emulates an active value that was used in
the previous Buttress version of Interlisp and found in earlier versions
of Truckin. It was also used in LOOPSBACKWARDS, which will be

described in Medley Loops: Rule-based Systems.

Note: The Medley implementation recommends that users do not use

this AV in new projects.

219

Medley LOOPS: The Basic System

7.3.2.4 NoUpdatePermittedAV

NoUpdatePermittedAV is a subclass of activeValue that does
not allow the variable to be updated. This AV is used to effectively
create a constant variable in a class or an instance. When the AV is
created, the current state is stored in the local State. GetValue will
return the value of the variable, but PutValue will cause a break with
the message NoUpdatePermitted!. Table 7-3 describes its instance
variables.

Table 7-3. NoUpdatePermittedAV Instance Variables
Instance Variable Description

localState A variable that holds the actual value of the
variable which is wrapped as an active value.

7.3.2.5 LispWindowAV

LispwWindowAYV is a subclass used by LOOPS to ensure that the
window instance variable within a LOOPSWindow contains an
Interlisp window. It is a specialization of LocalStateActiveValue.

LispWindowAYV is installed on the window variable of a subclass
of LOOPSWindow. It checks to see if localState is a window and
assures that the other instance variables are set correctly. See Medley
LOOPS Advanced Topics for further details.

Note: Medley LOOPS suggests this class provides functionality
required by the LOOPS system, and should not generally be used by
LOOPS users.

220

Medley LOOPS: The Basic System

7.3.2.6 InheritingAV

InheritingAV is an abstract class that is used as a mixin to add
the InheritedValue method to a class. It is also used as a super class of
AppendSuperValue to provide incremental menus in various parts of
LOOPS.

This specialization is used as a mixin to add the InheritedValue
method to a class. This method allows an instance to access the value
of an instance variable defined in the parent class as if there was no
value assigned to the IV in the localState of the instance. It is added
as mixin to other specialization of activeValue in the instance.

7.3.3 Breaking and Tracing Active Values

To facilitate the breaking and tracing active values, LOOPS
defines some specializations of localStateActiveValue for debugging
of LOOPS applications. All breaks and traces occur before the
variable is read or written. Table 7-4 describes the instance variables
found in these subclasses.

Table 7-4 Subclass Instance Variables

Instance Variable | Description

object An instance of a class containing varName.

varName The name of the tracked variable which is
referenced by the AV.

propName If non-NIL, a property associated with the V.

221

Medley LOOPS: The Basic System

7.3.3.1 BreakOnPut

BreakOnPut breaks when an attempt is made to put a new value
to a variable.

7.3.3.2 BreakOnPutOrGet

BreakOnPutOrGet breaks when a variable is read or written.
7.3.3.3 TraceOnPut

TraceOnPut traces attempts to put new value to a variable.

7.3.3.4 TraceOnPutOrGet

TraceOnPutOrGet traces an attempt to read or write a variable.

7.3.4 Appending to a Super Value

A instance variable may have a value both in the parent class of
an instance and defined locally in the instance itself. It is sometimes
useful to know both values to determine which one to use in an
application. Alternatively, the local value may be a refinement of the
value of the instance variable stored in the parent class.

When AppendSuperValue is installed on a variable of an
instance, Get- references return the value of the variable in the
localState of the instance appended to the value of the variable in its
parent class (e.g., the value that is inherited).

Any PutValue replaced the active value as well as the localState
value.

222

Medley LOOPS: The Basic System

Note: Medley LOOPS notes that appendSuperValue was designed for
use in class variables where replacement is infrequent. [It is not clear
why this is s07?]

7.3.5 InheritedValue

InheritedValue allows a user program to access the value of an
IV defined in the parent class or a superclass in the class hierarchy that
the instance would have inherited if the IV had no value in the
localState. InheritedValue has the format:

Method: InheritedValue
Arguments: <object>, InheritingAV instance.
<object>, the class or instance containing the
Variable.
<varName>, the name of the variable.
<propName>, Name of an IV or CV property to be
viewed.
<type>, one of IV, CV, or NIL.
Return: The value which should have been inherited if the local
instance had no value.

7.3.6 ReplaceMeAV

This specialization sets PutWrappedValue to simply replace
itself on the first Put access. It is an abstract class not intended for
instantiation. It is used as a mixin with another specialization to add
its functionality to the subclass. No variables were defined in this
class.

223

Medley LOOPS: The Basic System

As an example, FirstFetchAV combines LocalStateActiveValue
and ReplaceMeAV to get an instance of an ActiveValue that replaces
itself with the value of an expression stored in the instance variable
localState.

7.3.7 NotSetValue

This specialization of ActiveValue is used to implement instance
variable inheritance. It has no instance variable to hold a local value
and is replaced after the first PutValue instance.

When an instance of a LOOPS object is created, all of its Vs were
initialized to contain the value of the variable NotSetValue. Its value
in an IV is replaced by the initialization procedures with another value
generated by the initialization procedures of new instances that were
invoked by the methods NewWithValues and Newlnstance. By
initializing all new instance variables in a new instance, LOOPS
speeds up the initialization process.

The annotatedValue #,NotSetValue is bound to the Lisp variable
NotSetValue. It always had to be on the inside of any set of nested
values. Its WrappingPrecedence method returns NIL.

7.3.7.1 NestedNotSetValue

This is a subclass of NotSetValue that is used by the internal code
of LOOPS to solve the problem of using active values as default
values. It should not be used by the user.

7.3.8 User Specializations of Active Values

When new specializations of the class ActiveValue were defined,
the methods GetWrappedValueOnly and PutWrappedValueOnly might

224

Medley LOOPS: The Basic System

need to be specialized. The user may choose to specialize the methods

described in Table 7-5.

Table 7-5. User Specialization of Selected AV Methods

Method

Description

AVPrintSource

Prints data regarding an ActiveValue
instance.

GetWrappedValue

The method for retrieving an activeValue.

PutWrappedValue

The method for putting an activeValue.

WrappingPrecedence

Returns T, NIL, a number to specify the
order of activeValue nesting.

CopyActiveValue

The method for copying an annotatedValue
and its wrapped activeValue.

7.4 Active Value Methods

The class ActiveValue has numerous methods for implementing
its behavior. These methods fall into several categories which are
described in the following sections.

7.4.1 Adding and Deleting Active Values

This section describes methods for installing, deleting, and
replacing active values in LOOPS objects.

7.4.1.1 AddActiveValue

The AddActiveValue method installs an active value by first
wrapping it in an annotatedValue and then placing the annotated
Value as the value of a variable. Its format is:

225

Medley LOOPS: The Basic System

Method: AddActiveValue

Arguments: <object>, the handle of an instance of ActiveValue.
<object>, the handle of the object containing the
variable.
<varName>, the name of the variable receiving the AV.
<propName>, the name of an IV or CV property to be
transformed into an active value.
<type>, one of IV, CV, CLASS, METHOD or NIL.
<annotatedValue>, an AnnotatedValue object that

will contain the ActiveValue or NIL. If NIL, a new
AnnotatedValue is created.

Result: <annotatedValue>.

An example, from the example in Section 7.3.2.2, is:

i 2r11ae (#New (% BlippingActiveValue) AddActiveValue (% window 1) *height)
#,(§& BlippingfctiveYalue {[L+[ZY¥YLX1.8.8.kB<] . 18))

7.4.1.2 Wrapped Precedence

The WrappedPrecedence method returned a value which
determined how to nest the active value associated with self. It’s
format is:

Method: WrappedPrecedence
Arguments: <object>, an ActiveValue instance.
Result: T, NIL, or a number.

If it returned T, the AV associated with self was installed outside
any other AV.

If it returned NIL, the AV was installed as the innermost AV.
226

Medley LOOPS: The Basic System

If a number, indicated which layer (level of precedence) this AV
would occupy in a set of nested AVs.

If an AV has an IV localState, then the original AV is inserted
into the localState of the new AV to be installed.

7.4.1.3 DeleteActiveValue

The DeleteActiveValue method deleted an AV from a containing
object. It’s format is:

Method: DeleteActiveValue

Arguments: <object>, the handle of an ActiveValue instance.
<object>, the LOOPS object containing the variable
where the AV is stored.
<varName>, the name of the variable receiving the AV.
<propName>, the name of an IV or CV property to be
transformed into an active value.
<type>, one of IV, CV, CLASS, METHOD or NIL.

Return: The deleted AV, if it was found in <varName>.

7.4.1.4 ReplaceActiveValue

The ReplaceActiveValue method replaced an AV in a LOOPS
object variable with a new AV. It was also used to replace an existing
AV with an updated version. Its format is:

227

Medley LOOPS: The Basic System

Method: ReplaceActiveValue

Arguments: <object>, the handle of an ActiveValue instance.
<newVal>, the new value used to replace self.
<object>, the LOOPS object containing the variable
where the AV is stored.
<varName>, the name of the variable receiving
the AV.
<propName>, the name of an IV or CV property
to be transformed into an active value.
<type>, one of IV, CV, or NIL.

Return: The value of <newVal>.

7.4.2 Wrapped Value Methods

As noted, the value of a variable is wrapped in an ActiveValue,
usually in the instance variable localState. This is done by specifying
the behavior of new ActiveValue specializations by specializing the
methods GetWrappedValue and PutWrappedValue. They bypass
the active value mechanism.

7.4.2.1 Getting Wrapped Values

LOOPS provides two methods for getting wrapped value:
GetWrappedValue and GetWrappedValueOnly. Their format is:

228

Medley LOOPS: The Basic System

Method: GetWrappedValue
GetWrappedMethodOnly
Arguments: <object>, the ActiveValue instance
<object>, the LOOPS object containing the variable
where the AV is stored.
<varName>, the name of the variable receiving
the AV.
<propName>, the name of an IV or CV property
to be transformed into an active value.
<type>, one of IV, CV, CLASS, METHOD or NIL.
Return: The value returned from the actions performed by
the GetWrappedValue method.

The method contains the code to be triggered when a get reference
has been made to an active value.

GetWrappedValueOnly allowed the ActiveValue mechanism to
deal with nested active values. Users generally do not have specialize
it, since other instances are available.

7.4.2.2 Putting Wrapped Values

LOOPS provided two mechanisms for putting wrapped values:
PutWrappedValue and PutWrappedValueOnly. Their format is:

229

Medley LOOPS: The Basic System

Method: PutWrappedValue
PutWrappedValueOnly
Arguments: <object>, the ActiveValue instance
<object>, the LOOPS object containing the variable
where the AV is stored.
<varName>, the name of the variable receiving
the AV.
<newValue>, the new value to be stored.
<propName>, the name of an IV or CV property
to be transformed into an active value.
<type>, one of IV, CV, CLASS, METHOD or NIL.
Return: The value of <newValue>.

The method contains the code to be triggered when a put reference
has been made to an active value.

PutWrappedValueOnly allowed the ActiveValue mechanism to
deal with nested active values. Users generally do not have specialize
it, since other instances are available.

7.5 Annotated Properties

In an active value, property annotations can be used to implement
useful, but subsidiary, values. Such properties might include data
about precision, about reliability, about accuracy of the value of the
variable.

A reasoning or other system could store data about the value
without changing the value itself. In the Truckin’ application, we will
see how gauges can be used to change the display of certain data by
inspecting the data.

230

Medley LOOPS: The Basic System

7.6 Defensive Programming

As we have seen, AVs are a powerful mechanism for managing
access to 1Vs/CVs of classes and instances. A particular use is called
defensive programming, which attempts to develop structures that
prevent the programmer from doing damage to the application through
inadvertent use of methods and functions. The basic idea in defensive
programming is to wrap each IV/CV in an AV with the appropriate
getFn and putFn methods that can:

1.
2.

Check incoming data for the right type and value;

Convert incoming data, as necessary, to accurately reflect the
required,

Reformat outgoing data from internal representation to a
format expected by external classes;

Mask all or parts of the outgoing data that should not be shared
by external classes, but are necessary for internal computation
within the class.

Defensive programming requires additional computational time,
but it is a mechanism for trying to eliminate some of the proximal
causes for errors in programs.

231

Medley LOOPS: The Basic System

7.7 ActiveValue Uses

Bobrow and Stefik (1986) described several uses of active values.
In the LOOPS debugging package, AVs were attached to variables
that allowed the changes in the variables values to be traced, including
out of range values for the variables.

Another use in the Gauges package is to change the display in the
gauge whenever the value of a variable changed to which the gauge is
attached. In Volume II: Tools and Utilities, Gauges will be discussed
along with other tools and utilities. In either case, there is no change
to code of the monitoring process.

In Volume 11, Designing Rule-Based Systems with LOOPS, this
capability will be described in more detail when we discuss the
Truckin’ game.

232

Medley LOOPS: The Basic System

Chapter 8

Introduction to

Rule-Oriented Programming

In rule-oriented programming, the behavior of a system is
specified by sets of condition-action pairs. Typically, these have been
symbolically represented by “if...then” statements, as seen in
predicate logic, which are called rules. Rules are organized into rule
sets, which capture an aspect of the behavior of the system. The total
behavior is captured in the collection of rule sets.

Rules are selected by patterns in the data, which may be largely
independent of each other. Typically, however, a collection of rule sets
provides a capability for describing flexible responses to a wide and
varying range of events that may occur in the domain of interest.

This section will provide a brief description of some aspects of
rule-oriented programming in LOOPS. It is provided here only for
completeness of the description of the paradigms incorporated in
LOOPS.

Volume Il of LOOPS documentation, Medley LOOPS: Rule-
based Systems, will describe advanced aspects of rule-oriented
program and how to write rule-based systems using the
LOOPSRULES functions. It will also describe the Truckin’ game
developed by several researchers at Xerox PARC to demonstrate how
rule-based systems should be developed within the LOOPS
environment.

233

Medley LOOPS: The Basic System

8.1 RuleSets and Rules

A RuleSet contains specific control structures for selecting and
executing rules.

Rule-oriented programming was the basis for many early
Artificial Intelligence (Al) projects or building expert systems.
LOOPS has incorporated lessons learned from those early systems to
provide a powerful, flexible capability for rule-oriented programming.

Major features of LOOPS rule-oriented programming include:

1. Rules are organized into RuleSets each of which can have its
own control structures for selecting and executing rules.

2. RuleSets are the building blocks for organizing reasoning
programs in LOOPS.

3. LOOPS provides a workspace for rules, which contains the
name space for rule variables.

4. Rule-oriented programming is integrated with the other
programming paradigms discussed in this manual.

5. RuleSets can be accessed by sending a message to an object
or triggered through an active value as well as being invoked
directly from Lisp programs or other rules.

6. Rules leave an automatic audit trail that can be used to
determine how a program reached its results.

7. RuleSets can be embedded within tasks that enhances the
variety of control mechanisms.

8. A debugging facility allows users to debug their rule sets.

234

Medley LOOPS: The Basic System

8.2 Organizing a Rule-based System

A Rule-Based System (RBS) can be organized in many ways:

e jtcan just be a collection of rules;
e it might be a RuleSet with a collection of rules; or
e it might be a collection of RuleSets.

The complexity of the program increases as we move from the top
of the list to the bottom of the list.

8.3 RuleSet

Early on, most RBSs were organized as a collection of rules. This
was a relatively simple structure, but as the number of rules increased
it became much harder to organize them into groups in accordance
with the domain structure. This difficulty meant it was often hard to
grasp which rules applied to which conditions within the problem
domain.

The concept of a RuleSet is that all rules pertaining to an object or
subproblem within the domain are collected together in one place.
This makes it easier to locate rules focused on a particular aspect of
problem solving within the domain. It also make it easier to add new
rules because the rule are contained within the RuleSet.

235

Medley LOOPS: The Basic System

We can think of RuleSets in the following way:
1. The RuleSet provides a name space such that rules with a

RuleSet must have unique names. However, those names can
be used across different RuleSets.

The Rule Set makes it easy to add new rules to the program
because new rules can be checked within a smaller set of rules,
nit all rules within the system.

A RuleSet makes it easy to select a set of rules to execute
when a specific condition is detected rather having to check
all rules, which depending on the number of rules and
complexity of their IF parts, can be time-consuming.
RuleSets allow for different types of control structures, which
provides more flexibility in structuring the program to reason
within a problem space.

8.3.1 RuleSet Class Definition

A RuleSet is a class which has the following definition:

(DEFCLASS RuleSet

(MetaClass RuleSetMeta
doc "A RuleSet is a set of rules, together with methods for
interpreting them."
Edited%: (* dgb%: "27-Aug-84 17:33"))

(Supers NamedObject Perspective Method)

(InstanceVariables
(compiledRules NIL doc "Name of Lisp Function for
Rules.")
(workSpace NIL doc "name of class for work space.")

(args NIL doc "arguments to the RuleSet other than self.")

236

Medley LOOPS: The Basic System

(tempVars NIL doc "temporary variables.")

(taskVars NIL doc "Task variables.")

(debugVars NIL doc "variables to be printed during a trace
or break.")

(numRules NIL doc "Number of Rules in RuleSet.")
(controlStructure doAll doc "control structure for rules.")
(whileCondition NIL doc "while condition for RuleSet.")
(compilerOptions NIL doc "Compilation options.")
(auditClass #,(SC StandardAuditRecord) doc "name of class
for audit records.")

(metaAssignments NIL doc "RuleSet specific meta
assignment statements.")

(ruleClass #,(SC Rule) doc "name of class for rule objects.")
(taskClass NIL doc "Name of class used for tasking.")

(perspectiveNode #,(SC RuleSetNode) myViewName RuleSet

These fields will be described in more detail in Volume Ili: Rule-based
Systems.

8.3.2 RuleSetSource

A RuleSetSource is a class that stores a list of rule numbers that
contain the rule source code. Its definition is:

(DEFCLASS RuleSetSource
(MetaClass Template
doc "Source code for a RuleSet. Contains editing

information about the RuleSet, and an indexed list of rule

237

Medley LOOPS: The Basic System

objects."
Edited%: NIL
)
(Supers NamedObject Perspective Method)
(InstanceVariables
(compiledRules NIL doc “name of Lisp function for
Rules”)
(workspace NIL doc “name of class for workspace”)
(args NIL doc “arguments to RuleSet other than self”)
(tempVars NIL doc “temporary variables”)
(taskVars NIL doc “task variables”)
(debugVars NIL doc “variables to be printed during a
trace or break”)
(numRules NIL doc « number of rules in the RuleSet”)
(controlStructure doAll doc “control structure for rules”)
(whileCondition NIL doc “while condition for RuleSet")
(compilerOptions NIL doc “compiler options")
(auditClass #,(SC StandardAuditRecord) doc “name for
audit records”)
(metaAssignments NIL doc “RuleSet specific meta
assignment statements”)
(ruleClass #,(SC Rule) doc “name of class for rule
objects”)
(taskClass NIL doc “name of class used for tasking”)
(perspectiveNode #,(SC RuleSetNode) myViewName
RuleSetNode)

)

238

Medley LOOPS: The Basic System

8.3.3 RuleSet Structure

At a high-level, the organization of a rule set appears something
like this (example extracted from Stefik and Bobrow 1983):

RuleSet Name: CheckWashingMachine
Workspace Class; WashingMachine
Control Structure: whilel

While Condition: ruleApplied

8.3.4 RuleSet Methods

LOOPSRULES defines numerous methods for a RuleSet. Many
of these are used internally within the LOOPSRULES code, although
all are accessible to the programmer. However, this manual discusses
just those methods that seem most useful to the programmer defining
and using a RuleSet.

8.3.5 Invoking RuleSets

RuleSets can be executed by invoking them from rules. A simple
double-dot notation can be used to invoke a RuleSet as follows:

RS1..wsl

where RS1 is a variable bound to a RuleSet and the variable wsl is its
workspace. The value returned is that returned from executing the
RuleSet.

239

Medley LOOPS: The Basic System

A RuleSet can also be invoked by its LOOPS object name using
the $ notation as in:

$SHKRules..wsl
which invokes the RuleSet object with the LOOPS name SHKRules.

It is possible to nest the calling of Rules as if we calling a nested
sequence of subroutines. Thus A..B..C has A invoking B which
invokes C. C could also invoke A recursively.

The programmer must beware of coding a recursive invocation
that does not have a termination condition else the recursion will
continue until memory is exhausted.

8.4 RuleSetMeta

RuleSetMeta is the MetaClass for RuleSets. Its structure is:

(DEFCLASS RuleSetMeta
(MetaClass Shkreli’s doc “MetaClass for RuleSets” Edited%:
(* <editor-name>: <data string>))
(Supers Template)

240

Medley LOOPS: The Basic System

8.5 RuleSetNode

A RuleSetNode is a Node for RuleSet Perspectives. Its structure
is:

(DEFCLASS RuleSetNode
(MetaClass Template doc “Node for RuleSet perspectives”
Edited%: (* <editor-name>: <data string>))
(Supers Node Object)
(InstanceVariables

(perspectives NIL source #,(SC RuleSetSource) Ruleset #,(SC
RuleSet)

As noted in the LRM 1983, perspectives provided different views
of an entity based on how it is used in an RBS. An example might be
viewing a man through different role lens such as father, employee, or
traveler. A perspective provides access to the information in different
ways.

NOTE: According to the LRM 1983, perspectives were not
implemented in that version of LOOPS. We are researching this
capability in technical documentation from Xerox PARC.

241

Medley LOOPS: The Basic System

8.6 RuleSetSource

A RuleSetSource contains the source code for a RuleSet. Its
structure is:

(DEFCLASS RuleSetSource
MetaClass Template doc “Source code for a Ruleset, including
editing information and an indexed list of rule objects.”
Edited%: (* <editor-name>: <data string>))
(Supers DatedObject Perspective)
(InstanceVariables
(perspectiveNode #,(SC RuleSetNode) myViewName
source)
(edited NIL doc “Date last edited.”)
(editor NIL doc “last user to edit the rules.”)
(ruleList NIL doc “a list of the rule objects”)

8.7 Rule

A Rule describes one or more actions to be taken when a specified
set of one or more conditions are satisfied. A rule has three major
parts:

1. The left hand side (LHS)
2. The right hand side (RHS)
3. The meta description (MD).

242

Medley LOOPS: The Basic System

Without the meta description, we typically write a rule as:

LHS -> RHS
IF LHS THEN RHS

which are equivalent syntactic representations.

A rule may have no conditions, whence it can be written as:
= RHS
IF T THEN RHS.

A rule can be preceded by a meta description which is enclosed
in curly braces as depicted below:

{MD} LHS -> RHS.

8.7.1 Rule Class Definition

A Rule is a class which has the following definition:

(DEFCLASS Rule

(MetaClass Class doc "Class for describing rules as objects.
Instances of this class (rule objects) are created as a side-effect
when RuleSets are compiled in audit mode."

Edited%: * mjs%: "12-FEB-83 12:19"))
(Supers Object)

(InstanceVariables

243

Medley LOOPS: The Basic System

(source NIL doc "string that was the source of the rule in
The RuleSet.")

(edited NIL doc "person who edited the rule.")

(editor NIL doc "time and date of the editing.")
(ruleNumber 0 doc "sequence number of the rule in the
RuleSet at the time of editing.")

(ruleSet NIL doc "RuleSet to which this rule belongs.")

8.7.2 Variables Used in Rules

LOOPS supports multiple types of variables that are using within
LOOPS programs. Table 8-1 presents these types of variables.

244

Medley LOOPS: The Basic System

Table 8-1. Types of LOOPS Variables

Variable Type

Usage

Class Variables

These variables are descriptive of a class and are
inherited by all instances of the class — either
directly, in which case their value can be
overridden in an instance, or indirectly, through
a search of the class hierarchy.

Instance Variables

These variables are descriptive of a particular
instance of a class.

RuleSet arguments

All RuleSets have the variable self as their
workspace.

Temporary Variables

These variables are allocated when a RuleSet is
invoked and deallocated when the Ruleset
completes its execution

Audit Record Variables

These variables are used in the meta-assignment
statements in the Meta-Description part of a rule.
They describe data to be saved in audit records,
which can be used to create side-effects of rules.

Rule Variables

(REVIEW!!)

These variables hold descriptions of the rules
themselves and are used only in the Meta-
Descriptions of the rules. They specify data
saved in the Rule Object when a rule is
compiled. Theya re declared indirectly as the
instance variables of a Rule Class declaration.

Interlisp Variables

These variables are defined as global in the
Interlisp environment and available to any
function, method, or rule.

Reserved Words

Several variables have specific uses in the
LOOPS environment and a READ-ONLY.
Table 8-2 describes these.

Other Literals

Literals can refer to Interlisp functions, LOOPS
objects, and message selectors as well as strings
and quoted constants.

245

Medley LOOPS: The Basic System

Table 8-2. Reserved Word Usage

Reserved Word Usage

self The current workspace.

rs The current RuleSet.

task The Task representing a current invocation of a
RuleSet.

caller The RuleSet that iinvoked the current RuleSet (rs).

ruleApplied Has value T if a rule was applied in this cycle of a
while condition.

ruleObject This variable represents the rule itself when a
RuleSet is being executed.

ruleNumber This variable is bound to the sequence number of a
rule in a RuleSet when it is executing.

ruleLabel This variable is bound to the label of a rule, if
specified, or NIL.

reasons This variable is bound to a list of audit records
supporting an instance variable of an LHS of the
rule.

auditObject This variable is bound to an object on which a reason
record will be attached at run time.

auditVarName This variable is bound to the name of a variable on
which the reason will be a property.

8.7.3 Infix Operators Used in Rules

Rules can be written in several formats. LOOPS provides several
infix operators that can enhance the readability of rules. Table 8-3
presents these operators.

246

Medley LOOPS: The Basic System

Table 8-3. Infix Operators in LOOPS Rules

Operators Usage

+ -,/ Arithmetic Operators

++, -- Arithmetic Operators Module 4
> < >= <=, =, ~= Relational Operators

== EQUAL

<< Member of a list (FMEMB)

Two unary operators were also supported:
*-¢ (Minus)
‘~* (Not)

The precedence of operators followed the standard conventions.
8.7.4 Use of Interlisp Functions in Rules

Interlisp functions may be invoked in LOOPS rules by enclosing
the function and its arguments, if any, in parentheses. The function
name is the first literal followed by the arguments as literals. Functions
may also be invoked to produce the values of arguments as in the
following example:

(Display <argl> <arg2> (Cursor X y))

247

Medley LOOPS: The Basic System

8.7.5 Use of LOOPS Objects and Message Selectors

LOOPS classes and other named objects may be referenced in rule
using the $<class> notation. As noted above (Section??), messages
may be sent to LOOPS classes using message selectors in the
following format:

<var> _(_ $<class> <selector> [<argl> ... <argN>])
In a rule this might appear as:

IF cell _ (_ $LowCell Occupied? ‘Heavy)
THEN (_ cell Move 3 ‘North);

For unary messages, e.g., messages where only the selector is
specified, an assumption of an implicit self allows the following
format:

tile. Type=‘BlueGreenCross command.Type =’Slide4 >- ...

where Type is the unary message sent to the tile instance variable in
the workspace. tile must be a LOOPS object at run-time else an error
results.

We could also refer to a LOOPS object whose name is Tile as
follows:

$Tile. Type="BlueGreenCross;

248

Medley LOOPS: The Basic System

We can access a variable in named LOOPS object using the colon
notation:

$Tile:type="BlueGreenCross ...
where the type instance variable of the LOOPS object Tile is accessed.

Double colon notation can be used to access a class variable of a
LOOPS obiject, such as:

Truck::MaxGas<45 ::ValueAdded>600 -> ...

where MaxGas is a class variable of an object bound to truck and
ValueAdded is a class variable of self.

Two additional examples demonstrate the colon-comma notation:
wire::capacitance>5 wire:voltage:,support="simulation -> ...

In the first expression, wire is an instance variable of the
workspace and capacitance is a property of that variable.

In the second expression, the value of variable wire is a LOOPS
object which has an instance variable of voltage whose property is
support, which receives the value ‘simulation.

LOOPS provides flexibility of expression, but it takes some time
getting used to the different forms. Thus, it is helpful to read these
expressions twice to ensure you understand what action will be taken
and value produced.

249

Medley LOOPS: The Basic System

8.8 Running RuleSets

A RuleSet can be executed using the RunRS function whose
format is depicted below:

Function: RunRS

Arguments: <RuleSet>, the Rule Set to be run.
<workspace>, a LOOPS object to be used
as a workspace.
<argl>...<argN>, arguments to the
RuleSet.

Result: The value returned by the RuleSet.

8.9 Using RuleSets as Methods

A ruleset can be used as a method by making it the implementation
of a method for a class. As an example (Stefik, Bobrow, and Mittal
1983):

(DEFCLASS WashingMachine
(MetaClass Class doc (* comment) ...)
(InstanceVariables (Owner ...))
(Methods
(Simulate SimulateWMRules)
(Check RunCheckWMRules
doc (* Rules to check WM)

250

Medley LOOPS: The Basic System

When a Simulate message is sent to an instance of
WashingMachine, the SimulateWMRules RuleSet will be run with the
instance as its workspace.

8.9.1 Defining A RuleSet as a Method

The function DefRSM (“define RuleSet as a Method”) can be used
to specify a RuleSet as a method. It takes the form:

Function: DefRSM

Arguments: <ClassName>, the name of a class.
<Selector>, the name of the message to
invoke the RuleSet,
<RuleSetName>, the name of the RuleSet
to be installed as a method.

Result: The name of the RuleSet.

If the RuleSetName is NIL, DefRSM creates a RuleSet object,
opens the Editor for the user to enter rules, compiles the rules into a
Lisp function, and installs the RuleSet as the target of the <selector>
in the class Methods.

8.10 Control Structures for Selecting Rules

251

Medley LOOPS: The Basic System

A control structure is associated with a rule set. It determines
which rules are executed given that the conditions (the if-part) must
be satisfied using the rules in the workspace. Different values for
variables in rules will lead to different rules being executed. Table 8-
4 depicts the control structures.

Table 8-4. RuleSet Control Structures
Control Description

Dol Execute the first rule in the RuleSet whose
conditions are satisfied. The value of the RuleSet is
the value of the rule.

It is used to specify a set of mutually exclusive
actions. Specific rules should be placed before
general rules in the RuleSet.

DoAll For each rule in the RuleSet, every rule whose
conditions are satisfied is executed. The value of the
RuleSet is the value of the last rule executed. If no
rule is executed, the value is NIL.

It is used when many aspects of a situation can be
carried out independently, but should all be carried
out in one invocation of the RuleSet.

Whilel Iterating over the rules of the RuleSet, one rule is
executed in each iteration, and then selection begins
anew from the beginning of the Rule Set.

The value of the RuleSet is the value of the last rule
executed.

If no rule is executed, then the value of the RuleSet
is NIL.

Iteration can be terminated by placing a STOP
statement in the action part of a rule.

WhileAll Iterating over the rules of the RuleSet, if the while
condition is satisfied, every rule for which it is
satisfied is executed.

252

Medley LOOPS: The Basic System

8.10.1 Singleton Rule Execution

In some cases, such as initializing a problem, we want to execute
a rule only once when the Ruleset is first examined. This is termed a
One-Shot Rule, which corresponds to the singleton case in Design
Patterns (Gamma, Johnson, Helms, and Vlissides 1985).

In the Singleton design pattern, a variable was set to false (or 0)
to indicate an action had not yet occurred, then set to true or 1 when
the action was performed. The variable was tested each time for 0
when the action was to be performed. Thereafter, if the value of 1, the
action was never performed again. Figure 8-5 depicts how this might
be done:

Control Structure: Whilel
Temporary Vars: ruleXApplied;

IF ~ruleXApplied <condition;> < condition;>
THEN ruleXApplied _ T <action;>;

LOOPS provides a shorthand notation, which expresses the same
intent:

{1} IF <condition;> < condition,> THEN <action;>;

where the in the braces indicates the number of times the rule is to be
executed

253

Medley LOOPS: The Basic System

References

Bobrow, D.G., and Stefik, M. J. 1986. Perspectives on Artificial Intelligence
Programming. Science 231:4741, pp. 951-956.

-Reprinted in Rich, C. & Waters R.C. (Eds.) Readings in Artificial
Intelligence and Software Engineering, pp. 581-587, Los Altos: Morgan
Kaufman Publishers, 1986.)

Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel,
F. 1986. “CommonLoops: Merging Lisp and Object-Oriented Programming.
OOPSLA ‘86: Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, pp. 17-29, Portland,
Oregon, September 29 — October 2, 1986, Edited by Normal Meyrowitz,
Special Issue of SIGPLAN Notices 21:11, November 1986.

(Reprinted in Peterson, G.E. (ed), Object-Oriented Computing, Volume 1:
Concepts, IEEE Computer Society Press, pp. 169-181, 1987.

Bobrow, D. G. & Stefik, M. J. 1982. LOOPS: Data and Object Oriented
Programming for Interlisp. European Al Conference, Orsay, France.

Bobrow, D. G., Stefik, M. 1983. The Loops Manual. Knowledge-Based VLSI
Design Group Memo KB-VLSI-81-13.

Cannon, H. Flavors: a non-hierarchical approach to object-oriented
programming, Symbolics, Inc., 1982.

Kaisler, S. 1985. Interlisp: The Language and Its Usage, John Wiley
& Sons, Inc., New York, NY

Copyright reverted to author; scanned and converted to PDF — 2021.
Available at Interlisp.org.

254

Medley LOOPS: The Basic System

Kaisler, S. Unpublished. Medley Interlisp: The Interactive
Programming Environment,

Revised and extended 2021. Available at Interlisp.org.

Kaisler, S. Unpublished. Medley Interlisp: Tools and Utilities, Revised
and extended 2021. Available at Interlisp.org.

Malone, T.W., K.R. Grant, and F.A. Turbak. 1986. “The Information
Lens: An Intelligent System for Information Sharing in
Organizations”, CHI’86 Proceedings.

Stefik, M. 1979. “An examination of a frame-structured representation
system”, Proceedings of the International Joint Conference on
Artificial Intelligence, Tokyo, Japan, pp. 845-852.

Stefik, M., D.G. Bobrow, S. Mittal, and L. Conway. 1983. Knowledge
Programming in LOOPS: Report on an Experimental Course, Al
Magazine.

Stefik, M. and Bobrow, D.G., and Kahn, K. 1986. Integrating access-
oriented programming into a multiparadigm environment. IEEE
Software, 3:1, pp. 10-18.

-Reprinted in Peterson, G.E. (ed). 1987. Object-Oriented Computing,
Volume 2: Implementations, IEEE Computer Society Press, pp. 170-
179.

-Also reprinted in Richer, M.H. (ed.) Al Tools and Techniques, pp. 47-
63, Ablex Publishing Corporation, Norwood, New Jersey.

Stefik, M. and Bobrow, D.G., and Kahn, K. 1986. “Access-oriented
programming for a multiparadigm environment”, Proceedings of the
Hawaii International Conference on System Sciences.

255

Medley LOOPS: The Basic System

(Note: This paper won the best paper award out of 80 papers for the
conference. An expanded version of this paper appeared by invitation
in IEEE Software. This paper has also been reprinted in various
books.)

Stefik, M. and Bobrow, D.G. 1986. Object-oriented programming:
Themes and Variations. Al Magazine 6:4, pp. 40-62.

-Reprinted in Peterson, G.E. (ed). 1987. Object-Oriented Computing,
Volume 1: Concepts, IEEE Computer Society Press, pp. 182-204.

-Also reprinted in Richer, M.H. (ed.) Al Tools and Techniques, pp. 3-
45, Ablex Publishing Corporation, Norwood, New Jersey.)

Venue Corporation, San Carlos, CA:

(@) 1991. LOOPS Library Module Manual (LMM)
(b) 1991. LOOPS Reference Manual (LRM)

Xerox Corporation, Palo Alto, CA:
(a) 1986. Xerox LOOPS, A Friendly Primer, 3102242

256

Medley LOOPS: The Basic System

Appendix A: Running MEDLEY

A.1 Running Medley

Under Cygwin, my home directory is /home/steve and my user
name is steve. Within /home/steve, the installer has established
directories for maiko and medley. Maiko is the virtual machine for
executing the Interlisp byte codes. Medley is the directory for Interlisp
software — both source code and compiled code.

To run Medley on Windows 10/11, navigate to your home
directory, which should be c:/users/<name>/il. It should loke
something like this:

257

Medley LOOPS: The Basic System

A <« Steve » |l

Mame

bin

cygwin

dev

etc

home

lib

loops-main

LevingLisp

maiko

medley

notecards

shin

tmp

uninstall

usr

var
@ CommenLisp.pdf
Cygwin.bat
E Cygwin.ico
E Cygwin-Terminal.ico
medley.bat
Medley.ico

v O Search il
Date modified

7/7/2023 11:34 AM
7/9/2024 4:07 PM
7/7/2023 11:33 AM
7/9/2024 4:08 PM
6/5/2024 12:42 PM
77772023 11:54 AM

77720231212 PM
4/18/2024 4:42 PM
5/15/2024 1:42 PM
7/9/2024 4:08 PM
2024 4:08 PM

7/7/2023 11:34 AM
4/19/2024 3:12 PM
7/9/2024 4:07 PM
023 11:54 AM
/772023 11:33 AM
11/25/2009 £:23 PM
7/7/2023 11:34 AM
7/7/2023 11:35 AM
77772023 11:35 AM
7/9/2024 4:08 PM
7/9/2024 4:30 PM

nd

1. Navigate to you home directory, thence to subdirectory /il.
The key directories you are interested in are “loops-main”, where

you will find subdirectories for Medley LOOPS and “home”,

you will find your home directory, <name>.

2. Enter “medley.bat” at the command prompt.

258

where

Medley LOOPS: The Basic System

1. Open a Command window via cmd. You should see something like
this:

B8 Command Prompt - o x

command,

Instead of runningGauges, you should see a runningMedley message.

2. Go to directory il in your home directory, here c:\Users\Stevelil
which initiates a Medley Interlisp environment as seen below:

259

The Basic System

Medley LOOPS

ihem 55 Tine D R

H
w
!
N

el DT oy A0

=

ASL (118 creausd Tussday, 2 Mupues 2822, 18:45:

INTERLISP

gi0i0iai

L
T

) Cowe) Stave)
{08} chome) Seeve i1
(DA} chows) Stever

g virtus Tues

{03} chome: Eteve> Toops-aind
{D5K)Chowe) Steve) Toopa-tests)
{msw)chomsd Stevamatnc >
(DEK)Chowe) Steve i1

{08} Chowe) Sreved § Dvasws

3. Navigate to /home/<name/, which is you home directory for Medley

here you should place all of your project files so

IS W

Here i

Interlisp
that they are easily accessible. Create pr

to hold the

1eS

irectori

ject di
segment of the |

0

isting

les for a specific project. Here is a small i

f

260

Medley LOOPS: The Basic System

B¥ Command Prompt

AM
4 AM

2 PM 6 n-compile
PM g ompile-mac.l
y

4 AM
4 AM
1 PM
AM C
tn-semantics.1

4. Create a LISP.SYSOUT by entering the following command in the
Interlisp window (right window):

>(SYSOUT ‘LISP.SYSOUT)

Now you have a LISP sysout that can be loaded each time you inoke
medley.

I have created .bat files to run various versions of Medley sysouts
(a) without LOOPS, (b) with just LOOPS, or (c) with LOOPSRULES
and GAUGES. | tend to run with LOOPSRULES and GAUGES>

261

Medley LOOPS: The Basic System

Appendix B
Installing and Running LOOPS

In order to run LOOPS, you must have a Medley Interlisp
distribution that runs on Windows 10 or higher, a Linux variant, or
MacOS release. Medley Interlisp assumes that an Xwindows
environment is available for implementing a graphical user interface
(GUI). Medley Interlisp for Windows uses Cygwin, which is included
in the release (see www.Interlisp.org).

LOOPS code is loaded into the directory “loops-main” in the
Interlisp directory accessed by c:\Users/Steve/il.

1. Click on loops-main to open this directory. You should see
something like this.

262

http://www.interlisp.org/

Medley LOOPS: The Basic System

olek

4N <« il + loops.. * v O Search lo..
Marne a Date modified
doc 720231212 PM
internal [202312:12 PM
library 23 12:12 PM
obsolete [202312:12 PM
patches 720231212 PM
system 720231212 PM
test 720231212 PM
truckin 720231212 PM
USErs 720231212 PM
D .gitignore 8/15/2022 1:03 AM
V. README.md 8/15/2022 1:03 AM

2. Navigate to the “system” directory. You should something like this
(partial):

263

Medley LOOPS: The Basic System

=]
1l

4+ <« |oops-.. » system v | Search sys...

Fat

Mame Date modified &

=]
iy
.l|

5/2022 1:03 AM
5/2022 1:03 AM

5/2022 1:03 AM

[] BLOCKLOOKUP
|] BLOCKLOOKUP.DFASL
[] INSPECT-PATCH

[==]
—

.l|
P

[x=]
iy

.l|
P

|j IMSPECT-PATCH.DFASL 8/15/2022 1:03 AM
|j LOADLOOPS 8/15/2022 1:03 AM

[x=]
iy
.l|

5/2022 1:03 AM
5/2022 1:03 AM

5/2022 1:03 AM

| LOADLOOPS.DFASL
|] LOOPSACCESS
[LOOPSACCESS.DFASL

[==]
—

.l|
(%]

[x=]
iy

.l|
P

|j LOOPSACTIVEVALUES 8/15/2022 1:03 AM
|j LOOPSACTIVEVALUES.DRASL 8/15/2022 1:03 AM

[x=]
iy
.l|

5/2022 1:03 AM
5/2022 1:03 AM

5/2022 1:03 AM

|] LOOPSBROWSE
|] LOOPSBROWSE.DFASL
|] LOOPSDATATYPES

(=]
—

.l|
e

[x=]
iy

.l|
P

|j LOOPSDATATYPES.DRASL 8/15/2022 1:03 AM
|j LOOPSDEBUG 8/15/2022 1:03 AM

3. In the Interlisp Window (right window), enter the commands:

(CNDIR "your/loops/system™)
(FILESLOAD LOADLOOQPS)
(LOADLOOPS)

These commands load the compiled version of the LOOPS system
from loops-main/system.

These commands will NOT work in the XCL window (left window).
264

Medley LOOPS: The Basic System

You may also want to load the Masterscope enhancements for
LOOPS via:

>(CNDIR "your/loops/library™)
>(FILESLOAD LOOPSMS)

At this point, you may want to consider creating a LOOPS sysout
that consists of the LOOPS infrastructure. This will allow you to
perform object-oriented programming, which extends the
imperative/functional programming model of Interlisp. To do so, enter
the following command at the prompt:

>(SYSOUT ‘LOOPS.SYSOUT)
4. Loading Gauge. Gauges are described in VVolume 1l: Medl

Medley LOOPS supports graphical widgets called gauges. To
load gauges into your sysout, you need to navigate to loops-
main/library via:

>(CNDIR "your/loops/library™)
>(FILESLOAD GAUGELOADER
>(LOADGAUGES)

to load gauges. Gauges are described in VVolume I1: Medley LOOPS:
Tools and Utilities.

265

Medley LOOPS: The Basic System

IL

134« (LOADLODPSRULES T}
LOADLOOPSRULES"

"Loading LOOPSUSERSFILES"
"Loaded LOOPSUSERSFILES™
"Loading LOOPSLIBRARYFILES"
"Loaded LOOPSLIBRARYFILES"
{DSk}<homersteverLOOPS-MATIN>

24135«

IL
/1384 (SYS0UT 'LOOPSRULES)
{03K}<home>steve>LOOPS-MAIN>LOOPSRULES ., 8YS0UT; 1"

Now, when you want to run with this sysout, you can do so using
this form of run-medley from the operating system prompt:

Figure B-2. Starting Medley with the LOOPSRULES Sysout

The Interlisp Exec appears as shown in Figure B-3.

Exec 2 (INTERLISP)

MIL

z/136¢ (SYS0UT "LOOPSRULES)
#FEFATTENTION USER ROOT:

thiz syszout iz initialized for user STEVE.
To reinitialize, type GREET()

{MIL}

27157+

266

Medley LOOPS: The Basic System

Figure B-3. LOOPSRULES Sysout Running

Note that the title bar will reflect the user as root, but you can
change this by clicking on User and typing the appropriate name, e.g.
steve, in the pop-up window.

B.2 Loading LOOPSRULES and GAUGES

B.3 Setting System Variables

Interlisp uses several system variables to access code and data.
Two of these are:

e DIRECTORIES:
e DISPLAYFONTDIRECTORIES:

You should set these so that so the sysout can find your
Medley library and font files. Figure B-x depicts an example.

=2 (SET() DIRECTORIES (CONS DIRECTORIES ’!homeIsteue.LDDPSIsrcflihrary))
{("f02K}<homerstevermedley? Tibrary?" "{03K}<homerstevermedleyr lispusers>" "{0DSK
*homerstevermedleyr internal> Tibrary> " "{0SK}<homerstevermedleyrsources>") . /h
onessteve. LOOPE/grc/ Tikrary)

403 DISPLAYFONTDIRECTORIES

("{02k}<home>stevermedley>fonterdisplayfonts>” "{0EK}C(home>stevermedley>fontsra
Ttofonts>")

a1,

Figure B-x. Directory Variables

The Medley sysout predefines some locations for directories as
indicated in the figure.

267

Medley LOOPS: The Basic System

B.3.1 Connect to the LOOPS System Directory

You connect to the LOOPS system directory using the CNDIR
function as depicted below.

az: (GNOIR *fhorme fsteve /LOOPS fsrc/system)
{02k} homerstever LOOPErsrchaysteny
43>

268

Medley LOOPS: The Basic System

Appendix C

Testing LOOPS Installation

LOOPS Medley includes a directory with test modules for testing
LOOPS functionality and timing. These are (on my system):

o /home/steve/LOOPS-MAIN/test/loops

e /home/steve/LOOPS-MAIN/test/timing

total 20
4 drwxr-xr—-x 4096 Aug
4 drwxr-xr—-x 4096 Feb

4 drwxr-xr-x 496 Aug
4 drwxr-xr-x 496 Aug
4 drwxr—-xr—x 496 Aug

On your system, the home directory will be different.

We’ll discuss and executes the loops tests first, then move on to
the timing tests.

C.1 LOOPS 1.1 Tests

LOOPS testing should begin with a fresh sysout. LOOPS-
SETUP.TEDIT describes the testing operations.

The first action is to set the system font directories. | did this
during the installation process (refer to Appendix B), I will just display
the font directories:

269

Medley LOOPS: The Basic System

(" {0Ek}<homerstevermedleyrfontsrdizplayfonts> " "{DEK}<homerstevermedleyr

z/12¢ IL:DISPLAYFONTDIRECTORIES
fontzraltofontsr" "{08K}Chomerstevermedley>»fontsradober ")

1. If you want to load SETUP document from within Medley, you
may do so with:

210+ (TEDIT LODPS-SETUP.TEDIT)
#<Process TEdit/134,73614>

Note: Our standard MEDLEY sysout already has TEDIT loaded into
it.

When you run the command above, you are prompted to frame a
TEDIT window which then displays the setup document:

Edit Window

Start with a fresh LISP.2¥20UT from {erinvest<lisprlvricrhasicsy, dated 27-dpr-
g7,

Give no INIT file
Log in.

Type dnto the exec!

{SETQ IL:DISPLAYFOWMTODIREGTORIES *("{ERINYES}<1isp>LYRIC>FONTS>"))
COMM {ERIMYEZ}<1liszprLyricr1ikrary:

{i1:7oad *TEDIT. lcom)

{il:tedit "{erinyes}<{cate3> loops>LO0PS-setup. tedit)

This should bring up this document.
Zhift zelected a1l Tines below here into the EXEC:

2. Next, load the FILEBROWSER using (LOAD’FILEBROWSER).
This loads the file browser functions from the MEDLEY Library.

{DSK}(the)éteve)med]ey)11brary>FILEBRDWSER.;1

270

Medley LOOPS: The Basic System

3. Next, we load WHO-LINE for the Lisp Users packages:

z/1a¢ (ILILOAD "WHO-LINE)

{03K}<home>stevermedley> 1ispusers»WHO-LINE. ;1

File created 26-Mar-2821 11:61:568

WHO-LINECOMS

New fns definition for INSTALL-WHO-LIME-OPTIONS,

New fns definition for WHO-LINE-USERMNAWE.

New fns definition for WHO-LIMNE-CHANGE-USER.

New fns definition for WHO-LINE-USER-AFTER-LOGIN.

New fns definition for WHO-LIMNE-HOST-MAME.

New fns definition for CURRENT-TTY-PACKAGE.

New fns definition for SET-PACKAGE-INTERACTIWELY.

New fns definition for SET-TTY-PACKAGE-INTERACTIWELY.
New fns definition for CURRENT-TTY-READTABLE-MAME,

New fns definition for SET-READTABLE-INTERACTIWELY.

New fns definition for SET-TTY-READTABLE-INTERACTIWELY.
New fns definition for WHO-LINE-TTY-PROCESS.

New fns definition for CHANGE-TTY-PROCESS-INTERACTIVELY.
New fns definition for WHO-LIME-CURRENT-DIRECTORY.

New fns definition for SET-CONNECTED-DIRECTORY-INTERACTIWELY.
New fns definition for WHO-LIMNE-WMEM.

New fns definition for WHO-LIME-3SAWE-VMEM.

New fns definition for WHO-LINE-TIME.

New fns definition for WHO-LINE-SET-TIMWE.

New fns definition for WHO-LINE-SHOW-ACTIVE.

Warning: SUPDATE-WHO-LIME-ACTIYE-FLAG may be unsafe to redefine
-- continue? ...No

“UPDATE-WHO-LINE-ACTIVE-FLAG not redefined

This also generates an error pane as shown below:

-[oLoFAILTL UNDEF INED-FUMC TIOM
s [NEWFAILTL In OLDFAULTL:
: [?%LTE“"L WMEM. CONSISTENTP. s an undefined function,

Ed
WHO-L INE-WHEM
EVAL BACKGROUND/1S(debug)
511 ¢ #UNWIND-FROTEC T
UFDATE -LHO-L INE
511 ¢ #UNWIND-PROTEC T
PERI0DICALLY-UPDATE-WHO-L
h

o

s

e e

271

Medley LOOPS: The Basic System

NOTE: At this time, we will continue, but once we have tested LOOPS,
we will return to diagnose and correct this problem.

4. Next, we load FILEWATCH, which generates an error pane as
shown below:

218+ (IL:LOAD *filewatch)

{02k}<home>stevermedley> Tizspusers>FILEWATCH, ;1
File created 13-Jun-2821 B5:41:87
FILEWATCHCOMS

JOLOFAILTL

NELFAILT1 In OLDFALTL:
F ML TEMAL .)
FAlIL TEMAL FW-InteractMenu iz an unbound variable,

FUW-INIT-MENUS
S10: HINWIND-PROTEC T+ g2s/174;
LAD
Loan
FHMILTEVAL

EWAL
ML INET

Close the error pane by clicking on the top bar and selecting ‘Close’.

NOTE: At this time, we will continue, but once we have tested LOOPS,
we will return to diagnose and correct this problem.

5. Next, we load CROCK.

=s15+ (IL:LDAD 'Crock)

{0sk}chomerstevermedley> Tizspusers»CROCK., ;1
File created Z-8pr-37 B0:37:48

CROCKCOMS

{0sk}chomerstevermedley> Tizspusers»CROCK., ;1

272

Medley LOOPS: The Basic System

6. Next, we load do-test.

a41a+ (IL:LOAD *do-test)
z/21+ CONM internal flibrary

Non-existent directory
internal/library

We have not located do-test in the medley internal and/or library
directories. We will explore reloading the Lyric directories to locate
it.

NOTE: At this time, we will continue, but once we have tested LOOPS,
we will return to diagnose and correct this problem.

7. Set a default compiler option:

23 (SETQ IL:*DEFAULT ¢LEANUP +COMPILER* 'cl:COMPILE-FILE)
COMPILE-FILE

Since there were errors in a number of the attempted loads, |
created a new environment loading only:

e FILEBROWSER

e Filewatch

e Crock

8. Save as LOOPSTEST.SYSOUT in <home>steve>LOOPS-
MAIN/LOOPSTEST.SYSOUT

273

Medley LOOPS: The Basic System

2/11+ (IL:5Y50UT 'LOOPSTEST.SYSOUT)
LOOPS/MEDOLEY Z23-Jan-2B823 ...
Hellao, SirOrMadam.

(NIL)
2,12«

This preserves the files loaded above so can run the tests for
LOOPS.

274

Medley LOOPS: The Basic System

Appendix C: Test Applications

We developed several test to test the LOOPS code. These are
briefly described in the sections below. For purposes of discussion the
source code is also included.

C.1 Source Code for TestAV.txt
This test was copied from the LRM 1991.

(* ; "Define the classes")

(DefineClass 'Tank)

(SETQ Tank (SEND (S Tank) SetName 'Tank))
(PP (S Tank))

(DefineClass 'Pipe)
(SETQ Pipe (SEND (S Pipe) SetName 'Pipe))
(PP (S Pipe))

(* ; "Add outputPressure as IV to Tank")
(SEND (S Tank) AddIV 'outputPressure)
(PP Tank)

(* ; "Add inputputPressure to Pipe")

(PRINT "(SEND (S Pipe) AddIV 'inputPressure)")
(SEND (S Pipe) AddIV 'inputPressure)

(PP Pipe)

275

Medley LOOPS: The Basic System

(* ; "Create subclass of Tank and Pipe named Tank1 and Pipel")
(SETQ Tank1 (_ (S Tank) New (QUOTE Tank1)))
(PP ($ Tank1))

(SETQ Pipel (_ (S Pipe) New (QUOTE Pipe1l)))
(PP (S Pipel))

(* ; "Create an instance of IndirectVariable")

(* ; "Initialize its contents to point to the Tank's pressure")
(PRINT "(_ (S IndirectVariable) New 'indVar1)")

(SETQ indVar1 (_ ($ IndirectVariable) New (QUOTE indVar1)))
(_indVarl SetName (QUOTE indVar1))

(PP (S indVarl))

(PRINT "Assign object and varName")
(PRINT "(_@ (S indVarl) object (S Tank1))")
(_@ indVarl object Tank1)

(PRINT "(_@ (S indVar1) varName 'outputPressure)")
(_@ (S indVarl) varName 'outputPressure)
(PP (S indVar1))

(* ; "Install the active value instance as the pipe's input pressure")
(PRINT "Installing ActValue instance.")

(PRINT "(_ (S indVar1) AddActiveValue ($ Pipel) 'inputPressure)")
(_ (S indVvar1) AddActiveValue (S Pipel) 'inputPressure)

(PP (S indVar1))

(* ; "Accesses to either pipe's input pressure or tank's output pressure")

276

Medley LOOPS: The Basic System

(@ Pipel inputPressure)

(_@ Pipel 'inputPressure 100)
(@ Tank1 outputPressure)

(_@ Tank1 'outputPressure 200)
(@ Pipel inputPressure)

(* ; "Show Inspector Window on Tank1 & Pipel")
(_ Tank1 Inspect NIL)

(_ Pipel Inspect NIL)

(PRINT "** End of TestAV **")
STOP

C.2 Source Code for NewTestAv.txt

This test was copied from the LRM 1991.

(*; "** NewTestAV **")
(*; "From Section 8.2, Example 2 of the LRM **")

(* ; "Create the Bin class for the Conveyor")
(DefineClass 'Bin)

(DefineClass 'Conveyor)

(*; "Add IVs to describe Bin")
(SEND (S Bin) AddIV 'height 0)
(SEND (S Conveyor) AddIV 'height 0)

277

Medley LOOPS: The Basic System

(*; "Create a Bin instance.")
(SETQ Bin1 (SEND ($ Bin) New 'Bin1))
(SETQ Bin1 (SEND ($ Bin1) SetName 'Bin1))

(* ; "Create a Conveyor instance.")
(SETQ Conveyorl (SEND ($ Conveyor) New 'Conveyorl))
(SETQ COnveyor1 (SEND (S Conveyorl) SetName 'Conveyor1))

(* ; "Define 3FeetAbove as a class.")

(DefineClass '3FeetAbove '(IndirectVariable))

(SETQ 3FeetAbove (SEND ($ 3FeetAbove) SetName '3FeetAbove))
(PP 3FeetAbove)

(* ; "Create an instance of 3FeetAbove.")
(*; "Initialize its contents to point to the bin's height.")

(SEND (S 3FeetAbove) New '3fal)

(_@ (S 3fal) object (S Bin1))
(_@ (S 3fal) varName 'height)

(*; "Install 3fal as the value of the conveyor's height.")
(SEND ($ 3fal) AddActiveValue ($ Conveyorl) 'height)
(SEND ($ 3fal) Inspect NIL)

(*; "The height of Bin1 defaults to 0, but what is the height of conveyor?")

(PRINTOUTT "The height of Binlis " (@ ($ Bin1) height) T)
(PRINTOUTT "The height of Binlis " (@ ($ Conveyorl) height) T)

278

Medley LOOPS: The Basic System

(*; "Now, set Binl's height or Conveyor1's height.")

(* ; "See how the track each other.")

(PRINTOUT T "Setting heights of Bin1 and Conveyor1." T)
(_@ ($ Bin1) height 15)

(PRINTOUT T "The hieght of Conveyorlis " (@ ($ Conveyorl) height) T)

(PRINTOUT T "Rset the height of Conveyorl" T)
(_@ (S Conveyorl) height 21)

(PRINTOUT T "The height of Conveyorlis " (@ ($ Conveyorl) height) T)
(PRINTOUT T "THe height of Binl is " (@ ($ Bin1) height) T)

(* ; "Define subclass of LocalStateActiveValue.")
(* ; "Provide two IVs relative to height.")
(DefineClass 'WarningAV '(LocalStateActiveValue))
(SEND ($ WarningAV) AddIV 'lowTrigger 0)

(SEND ($ WarningAV) AddIV 'highTrigger 100)

STOP

279

Medley LOOPS: The Basic System

$AV, 207
<-New, 164, 183
<-Super, 182
<-Super?, 183
access-oriented programming,
187
Access-Oriented
Programming, 16, 18
active values, 187
ActiveValue
tracked variable, 210
ActiveValue, 208
ActiveValue
IndirectVariable, 210
ActiveValue
GetWrappedValue, 210
ActiveValue
PutWrappedValue, 210
ActiveValue
GetWrappedValue, 215
ActiveValue
PutWrappedValue, 215
AddActiveValue, 224
AddClv, 107

280

Index

AddlV, 170

AddValue, 95
AnnotatedValue, 121, 202
annotatedValue data type, 201
annotatedValue?, 44
AppendSuperValue, 220, 221
ApplyMethod, 145
AVPrintSource, 205
CalledFns, 151

class, 23

class variables, 63

Class?, 43
ClassInheritanceBrowser, 143
ClassName, 153

control structure, 251
CopyActiveValue, 216
CopyDeep, 156

data-oriented programming,
187

DatedObject, 48

DC, 74

defensive programming, 230
DefineClass, 55
DefineMethod, 128

Medley LOOPS: The Basic System

DefMethod, 139

DefRSM, 250

Delete Method, 141
DeleteActiveValue, 226
DeleteClV, 116

DeleteCV, 116

Destroy, 117

Destroy!, 120
DestroyClass, 118
Directed Acyclic Graph, 35
DoFringeMethods, 147
DoMethod, 144

Edit, 75

EditMethod, 141

EM, 76
ErrorOnNameConflict, 46
ExplicitFnActiveValue, 218
FetchMethod, 185
FirstFetch, 195
FirstFetchAV, 197
GetClass, 101
GetClassHere, 101
GetClasslV, 99
GetClassOnly, 101
GetClassValue, 83
GetClassValueOnly, 97
GetCVHere, 98
GetlIndirect, 197

Getlt, 108

281

GetltHere, 108
GetltOnly, 108
GetlVVHere, 98
GetLispClass, 175
GetLocalState, 200
GetLocalStateOnly, 201
GetMethod, 114
GetMethodHere, 114
GetMethodOnly, 114
GetSourcelVs, 68
GetValue, 81, 201
GetValueOnly, 97
GetWrappedValue, 227
GetWrappedValueOnly, 227
GlobalNamedObjects, 48
handle, 39
Inheritance, 34
InheritedValue, 222
InheritingAV, 220
instance, 23, 27
Instance?, 44
InstOf, 155
InstOf!, 155
IVVProperty
initForm, 169

IVValueMissing, 166, 167
Lisp

data type, 175

Medley LOOPS: The Basic System

Lisp Object-Oriented

Programming System, 15
LispWindowAYV, 219
LocalStateActiveValue, 215
LOOPS

@ form, 123

@* form, 124

<-! form, 180

<-@ form, 124

<-1V form, 180

<-Try form, 181

abstract class, 174

AbstractClass, 31

class hierarchy, 30, 33

class record, 68

class variable, 23

class variables, 80

Classes, 70

CurrentEnvironment, 46

generic class description, 32

inheritance hierarchy, 70

inheritance network, 33, 34

instance variable, 24

instance variables, 80

Instances, 70

LoopsHelp, 154

metaClass, 30

Metaclasses, 70

Methods, 113

282

name conflict resolution, 39
NotSetHere, 114
NotSetValue, 83, 99
NoValueFound, 83
property annotations, 229
property list, 80
pseudoclass, 175
RuleSet, 233, 234
superclass, 30

Tofu, 120

Variables, 23

LOOPS Reference Manual.
See LRM

LoopsDate, 50
LOOPSDirectory, 51
LOOPSFILES, 51
LoopsVersion, 50
Macro

AV, 204

create, 203

fetch, 202

MessageNotUnderstood,
204

replace, 203

type?, 203
McCarthy, John, 15
MessageNotFound, 121
MessageNotUnderstood, 121
Metaclasses, 173

Medley LOOPS: The Basic System

method, 29

Method, 136

Mixins, 174

MoveMethod, 149, 150

MoveMethodsToFile, 151

NamedObject, 48

New, 70, 72, 177

NEW, 157

NewClass, 55

Newlnstance, 158, 161

NewWithValues, 163

NotSetValue, 166, 168

NoUpdatePermitted, 195

NoUpdatePermittedAV, 219

Object?, 42, 72

object-oriented programming,
187

Object-Oriented
Programming, 16, 18

private instance variables, 63

Procedure-Oriented
Programming, 15, 18

PushClassValue, 93

PushValue, 93

PutCIVHere, 104, 105

PutClass, 103

PutClasslV, 100

PutClassOnly, 103

PutClassValue, 90

283

PutClassValueOnly, 98
PutCVHere, 104
PutGetMethodOnly, 115
PutIndirect, 197

Putlt, 111

PutltOnly, 111
PutlVVProp, 112
PutlVVValue, 112
PutLocalState, 200
PutLocalStateOnly, 201
PutMethod, 115
PutValue, 86, 201
PutValueOnly, 98
PutWrappedValue, 228
PutWrappedValueOnly, 228
RenameMethod, 148
ReplaceActiveValue, 226
ReplaceMe, 198

Rule, 241

rule-oriented programming,
232

Rule-Oriented Programming,
16, 19

rules, 232

RuleSet, 235
RuleSetMeta, 239
RuleSetNode, 240
RuleSetSource, 236, 241
RunRS, 249

Medley LOOPS: The Basic System

selector, 29 Tofu, 78, 175

SetName, 46, 77 Understands, 45

subclasses, 30 WrappedPrecedence, 225
SuperMethodNotFound, 121 Xerox Palo Alto Research
Supers, 78 Center, 15

284

