
Medley LOOPS: The Basic System

1

Lisp Object-Oriented Programming

System

(LOOPS)

Volume I: The Basic System

By

Stephen H. Kaisler

Version 1.2

July 2024

Medley LOOPS: The Basic System

2

Acknowledgement

 Many people have contributed to resurrecting, restoring, and

modernizing Medley Interlisp. Among them are Nick Briggs,

Ron Kaplan, Frank Halasz, Matt Heffron, Bill Stumbo, Paolo

Amoroso, and many others.

 A special thanks to Larry Masinter, one of original

developers, for his assistance in debugging some of test code for

the LOOPS active value feature. And, to Paolo Amoroso for his

careful review of the text.

Medley LOOPS: The Basic System

3

Table of Contents
List of Figures ... 12

List of Tables .. 14

Introduction ... 15

I.1 Some History .. 17

I.2 LOOPS Paradigms .. 17

I.3 Structure of the Documentation .. 19

Chapter One .. 20

Introduction to LOOPS Paradigms ... 20

1.1 Introduction to Object-Oriented Programming 21

1.2 Classes and Instances ... 23

1.2.1 Variables and Property Lists ... 23

1.2.2 Properties .. 27

1.2.3 Instances .. 27

1.2.4 Methods ... 29

1.2.5 Metaclasses ... 30

1.2.6 Abstract Classes .. 31

1.3 Generic Class Description .. 32

1.4 Class Hierarchy .. 33

1.4.1 The Concept of Inheritance ... 34

1.4.2 Simple Hierarchy .. 35

1.4.3 A Complex Hierarchy ... 39

Medley LOOPS: The Basic System

4

1.5 Interlisp Objects ... 39

1.5.1 Testing for Lisp Data Types .. 40

1.5.2 Assigning Names to LOOPS Objects 46

1.5.3 Class Objects and LOOPS Names 47

1.5.4 NamedObject .. 48

1.5.5 DatedObject .. 48

1.6 System Variables and Functions .. 49

Chapter Two.. 53

Object-Oriented Programming in LOOPS 53

2.1 Creating a New Class ... 53

2.1.1 Creating a New Class via New 53

2.1.2 Creating a New Class with NewClass 55

2.1.3 Creating a New Class with DefineClass 55

2.1.4 LispClassTable .. 58

2.2 Creating an Instance of a Class .. 58

2.2.1 Simple Form .. 59

2.2.2 Creating a New Class as a Subclass 60

2.2.3 Initializing a New Class .. 61

2.3 Creating an Instance of a Class Using SEND 62

2.4 Instance Variables and Properties .. 63

2.4.1 Instance Variable Operations .. 63

2.5 LOOPS Names ... 64

2.6 Instance Names .. 64

2.6.1 Working with LOOPS Names ... 65

Medley LOOPS: The Basic System

5

2.7 Editing a Class ... 66

2.8 The Class Record ... 68

2.8.1 Object Functions ... 69

Chapter Three.. 71

Class Messages and Functions .. 71

3.1 Sending a Message to an Object .. 71

3.2 Checking Objectivity ... 73

3.3 Class Operations .. 73

3.3.1 Creating a New Class .. 73

3.3.2 Editing a Class .. 76

3.3.3 Editing a Method ... 77

3.3.4 Naming an Object ... 78

3.4 Accessing Supers ... 79

3.5 Accessing Variables ... 79

3.5.1 Getting Variable and Property Values 82

3.5.2 Putting Variable and Property Values 86

3.5.3 Non-triggering Get and Put ... 98

3.5.4 Local Get Functions .. 99

3.5.5 Accessing Class and Method Properties 100

3.5.6 Accessing Class Properties ... 102

3.5.7 Adding Variables to a Class .. 105

3.5.8 Generalized Get and Put Functions 109

3.5.9 Putting IV Value and Property 113

3.5.10 Dual Use of Get and Put Functions 114

Medley LOOPS: The Basic System

6

3.6 Accessing Methods .. 114

3.6.1 Accessing Method Properties .. 115

3.7 Delete Functions .. 117

3.8 Destroying Classes ... 118

3.8.1 Removing a Class.. 118

3.8.2 Destroying a Class .. 119

3.8.3 Ensuring Removal of Subclasses 121

3.9 Inheritance.. 121

3.10 Compact Forms for Accessing Data 123

3.10.2 IV Delimiters .. 128

3.11 Class Method Operations ... 129

3.11.1 Defining a Method .. 129

3.11.2 Defining a Method by a Definer 137

3.11.3 Defining A Method by Message 140

3.11.4 Deleting a Method ... 142

3.11.5 Editing a Method ... 142

3.11.6 SubclassRepsonsibility.. 145

3.11.7 Alternatives to Executing Methods 145

3.12 Manipulating Methods Across Classes 149

3.12.1 Renaming a Method .. 149

3.12.2 Moving a Method between Classes 150

3.12.3 Alternate Moving a Method .. 151

3.12.4 Moving Methods to a File ... 152

3.12.5 Getting Functions Called from a Class Set 152

Medley LOOPS: The Basic System

7

3.13 Methods Concerning the Class of an Object 153

3.13.1 Finding the Class of an Object 153

3.13.2 Getting the Class Name ... 154

3.13.3 Determining an Instance of a Class 156

3.13.4 Copying Instances ... 156

Chapter Four ... 158

Instance Functions and Methods ... 158

4.1 Defining a New Instance .. 158

4.1.1 Sending the Class the Message NEW 158

4.1.2 Using NewInstance Message .. 162

4.1.3 Creating an Instance with Initial Values 164

4.1.4 Creating an Instance with Immediate Messaging 165

4.2 Data Storage for New Instance .. 167

4.2.1 IVValueMissing .. 168

4.2.2 NotSetValue .. 169

4.2.3:initForm .. 170

4.2.4 Changing the Number of IVs in an Instance 171

Chapter Five .. 174

Metaclass Functions and Methods .. 174

5.1 Base Metaclasses ... 174

5.1.1 Abstract Classes .. 175

5.2 Pseudoclasses ... 176

5.2.1 Pseudoclass Functions... 176

5.3 Metaclass Functions ... 177

Medley LOOPS: The Basic System

8

5.3.1 Defining a New Metaclass .. 178

Chapter Six.. 179

Sending Messages Alternatives .. 179

6.1 Sending A Message to a LOOPS Object 179

6.2 _! .. 181

6.3 _IV ... 181

6.4 _Try .. 182

6.5 _Super .. 183

6.5.1 _Super? ... 184

6.5.2 _SuperFringe ... 184

6.6 _New .. 184

6.7 FetchMethod .. 186

Chapter Seven ... 188

Introduction to ... 188

Data-Oriented Programming ... 188

7.1 Specifying an Active Value ... 190

7.1.1 getFn and putFn .. 191

7.1.2 Defining an Active Value ... 191

7.1.3 Nested Active Values .. 194

7.1.4 Using Active Values ... 194

7.2 Active Value Functions .. 196

7.2.1 FirstFetch .. 196

7.2.2 Indirect Access .. 198

7.2.3 ReplaceMe .. 199

Medley LOOPS: The Basic System

9

7.2.4 User-Defined Function .. 200

7.2.5 Local State Functions .. 201

7.2.6 Annotated Values .. 202

7.2.7 Managing Annotated Values ... 206

7.3 The ActiveValue Class .. 209

7.3.1 Using Active Values ... 209

7.3.2 Specializing an Active Value .. 210

7.3.3 Breaking and Tracing Active Values 221

7.3.4 Appending to a Super Value ... 222

7.3.5 InheritedValue ... 223

7.3.6 ReplaceMeAV ... 223

7.3.7 NotSetValue .. 224

7.3.8 User Specializations of Active Values 224

7.4 Active Value Methods ... 225

7.4.1 Adding and Deleting Active Values 225

7.4.2 Wrapped Value Methods .. 228

7.5 Annotated Properties .. 230

7.6 Defensive Programming .. 231

7.7 ActiveValue Uses ... 232

Chapter 8 ... 233

Introduction to ... 233

Rule-Oriented Programming ... 233

8.1 RuleSets and Rules .. 234

8.2 Organizing a Rule-based System ... 235

Medley LOOPS: The Basic System

10

8.3 RuleSet ... 235

8.3.1 RuleSet Class Definition ... 236

8.3.2 RuleSetSource ... 237

8.3.3 RuleSet Structure .. 239

8.3.4 RuleSet Methods ... 239

8.3.5 Invoking RuleSets ... 239

8.4 RuleSetMeta ... 240

8.5 RuleSetNode .. 241

8.6 RuleSetSource .. 242

8.7 Rule .. 242

8.7.1 Rule Class Definition .. 243

8.7.2 Variables Used in Rules .. 244

8.7.3 Infix Operators Used in Rules 246

8.7.4 Use of Interlisp Functions in Rules 247

8.7.5 Use of LOOPS Objects and Message Selectors 248

8.8 Running RuleSets ... 250

8.9 Using RuleSets as Methods.. 250

8.9.1 Defining A RuleSet as a Method 251

8.10 Control Structures for Selecting Rules 251

8.10.1 Singleton Rule Execution .. 253

References ... 254

Appendix A: Running MEDLEY ... 257

A.1 Running Medley .. 257

Appendix B ... 262

Medley LOOPS: The Basic System

11

Installing and Running LOOPS .. 262

B.2 Loading LOOPSRULES and GAUGES 267

B.3 Setting System Variables... 267

B.3.1 Connect to the LOOPS System Directory 268

Appendix C ... 269

Testing LOOPS Installation .. 269

C.1 LOOPS 1.1 Tests ... 269

Appendix C: Test Applications ... 275

C.1 Source Code for TestAV.txt .. 275

C.2 Source Code for NewTestAv.txt ... 277

Index ... 280

Medley LOOPS: The Basic System

12

List of Figures

1-1. LOOPS Lattice

1-2. Object Representation

1-3. Truckin Player Class

1-4. A Class and Its Instances

1-5. Method Structure

1-6. A MetaClass Example

1-7. Generic Class Description

1-8. The Subclass Point3D

2-1. LOOPS Forms for Name Manipulation

2-2. LOOPS Object Functions

3-1. Tofu Specializations

3-2. Editing a Class Definition

3-3. Variable Locations

3-4. Method Edit Menu

3-5. Method Display

3-6. Functions Called From Window

4-1. Shaping a Window After Creating it.

5-1. Base Metaclasses

7-1. ActiveValue and its specializations

Medley LOOPS: The Basic System

13

A-1. Medley Directory Contents

B-1. B-1. Loading LOOPS

B-2. Starting Medley with the LOOPSRULES Sysout

B-3. LOOPSRULES Sysout Running

B-x. Directory Variables

Medley LOOPS: The Basic System

14

List of Tables

1-1. Basic Inheritance Principles

1-2. LOOPS System Variables

2-1. Object Functions

3-1. Tofu Message Descriptions

3-2. Compact Access Forms

3-3. Instance Variable Delimiters in Compact Forms

4-1. IVValueMissing Behavior

5-1. Base Metaclass Descriptions

7-1. IndirectVariable Instance Variables

7-2. LocalStateActiveValue Instance Variables

7-3. NoUpdatePermittedAV Instance Variables

8-1. Types of LOOPS Variables

8-2. Reserved Word Usage

8-3. Infix Operators in LOOPS Rules

8-4. RuleSet Control Structures

Medley LOOPS: The Basic System

15

Introduction

 The Medley Interlisp Project has ported the Medley release of

Interlisp to modern operating system environments, including

Windows, Linux, and MacOS. This port includes the Interlisp Core,

selected LispUsers packages, and selected applications developed for

Interlisp-D.

 This document describes the Installation and Use of the Lisp

Object-Oriented Programming System (LOOPS) running on the

Medley Interlisp system. LOOPS is unique in that it integrates

different paradigms for program development that allow the

programmer to utilize the best approach to specifying data structures

and manipulating them in efficient and effective ways.

 LOOPS was developed at Xerox Palo Alto Research Center

(PARC) to support the development of expert systems as part of their

research program. LOOPS extends MEDLEY Interlisp with additional

programming paradigms, which provide a powerful programming

environment for multi-paradigm applications. The primary paradigms

provided by LOOPS are (Stefik 2003):

• Procedure-Oriented Programming: Interlisp is an imperative,

procedure-oriented programming language. Historically, Lisp

was one of the first major programming languages based on

work by John McCarthy (circa 1956). Programs consist of

procedures and data, where procedures operate upon data to

transform it and generate new data. Procedures consist of a set

of instructions, typically executed sequentially, and formed by

the syntactic rules of the language.;

Medley LOOPS: The Basic System

16

• Object-Oriented Programming (OOP): LOOPS provides

“classes and objects, class variables, instance variables,

methods, multiple-inheritance mechanisms, and interactive

class browsers”;

• Access-Oriented Programming (AOP) based on active values

attached to variables which are triggered whenever certain

operations are applied to the variable; and

• Rule-Oriented Programming (ROP) based on a simple

forward-chaining(?)/backward-chaining rule language.

 Programming experience has shown that it is easier to build a

program that can successfully solve a problem when the programming

paradigm matches the structure of the problem space of the domain of

interest. Complex problems often require multiple approaches to

representing data and computations where the problem can be

decomposed into subproblems which can be addressed by different

programming approaches, but working together can represent a more

effective solution to the problem.

 LOOPS was originally implemented in Interlisp-D for the D-

machines developed by Xerox PARC for direct execution of both

Interlisp and Smalltalk. After Common Lisp became an accepted

standard for the Lisp community at large, it was recoded and extended

to incorporate some Common Lisp features and was renamed

Common Loops (Bobrow, Kahn, Kiczales, Masinter, Stefik, and Zdybel.

1986).

NOTE: Capitalization Style: LOOPS used CamelCase rather than

ALL CAPS as the capitalization style in its documentation. We

have preserved the use of CamelCase in this volume.

Medley LOOPS: The Basic System

17

I.1 Some History

 LOOPS was based on research performed at Stanford University,

Massachusetts Institute of Technology (MIT), other universities, and

Xerox PARC. Some of these previous efforts include:

• Knowledge Representation Language (KRL), which

developed concepts on frame-based knowledge representation

concurrently with OOP concepts (Bobrow 77).

• Units, which provided a testbed for experiments in problem

solving using OOP concepts (Stefik 79).

• EMYCIN, an early rule-based system for diagnostic system,

which demonstrated the power of reasoning systems given

incomplete data (VanMelle 80).

• Smalltalk, which pioneered many concepts in object-oriented

programming and was developed at the same time as Interlisp

at Xerox PARC (Ingalls 78, Goldberg 81, Goldberg 82).

• Flavors, developed at MIT for the Lisp Machine(s), and which

also pioneered object-oriented programming, but also focused

on non-hierarchical inheritance (Cannon 82).

 Numerous papers that influenced LOOPS are mentioned in the

References.

I.2 LOOPS Paradigms

 LOOPS incorporates four programming paradigms. As Stefik,

Bobrow, Mittal, and Conway 1983 note, LOOPS was developed to

support knowledge programming and the building of knowledge-

based systems. An important principle was that different paradigms

were appropriate for different purposes, e.g., different representation

and problem solving purposes. This approach is substantially different

Medley LOOPS: The Basic System

18

from the commonly accepted idea that a single programming

paradigm is suitable for every type of problem.

 The primary paradigms provided by LOOPS are (Stefik 2003):

• Procedure-Oriented Programming: Medley Interlisp is an

imperative, procedure-oriented programming language.

Historically, Lisp was one of the first major programming

languages based on work by John McCarthy (circa 1956).

Programs consist of procedures and data, where procedures

operate upon data to transform it and generate new data.

Procedures consist of a set of instructions, typically executed

sequentially, and formed by the syntactic rules of the

language. Interlisp-D is shown at the base of the LOOPS logo

as it provides the foundation on which he rest of LOOPS is

built.

• Object-Oriented Programming (OOP): Information is

organized into objects which are classes or instance of classes.

More complex (“larger”) objects are built from simpler

objects. Objects are arranged in a hierarchy or tree with the

most general objects at the top of the tree. LOOPS provides

“classes and objects, class variables, instance variables,

methods, multiple-inheritance, and interactive class

browsers)” among other elements of its ecosystem.

• Access-Oriented Programming (AOP) based on active values

attached to variables. We can think of active values as entities

associated with variables which monitor their value. An active

value is an entity that can be triggered (e.g. activated) when

the value of the variable is either read or changed. An active

value can have an expression which performs additional

computations when reading or putting a value to the variable.

For example, the value of a variable can be displayed as its

changes using a gauge implemented as an active value.

Medley LOOPS: The Basic System

19

Gauges are described in Volume II: Medley LOOPS: Tools

and Utilities.

• Rule-Oriented Programming (ROP) is a paradigm for

building decision-making processes in a knowledge-based

program It is based on a simple forward-

chaining(?)/backward-chaining rule language. Rule-based

programming is described in Volume III: Medley

Loops:Rule-based Systems.

I.3 Structure of the Documentation

 This volume, Medley LOOPS: The Basic System, the first of three

describing elements of LOOPS and its application, will introduce the

basic elements of LOOPS – classes, active values, and rules, and then

focus on object-oriented programming in LOOPS with active values.

 A second volume, Medley LOOPS Tools and Utilities, discusses

LOOPS extensions to Medley utilities, such as windows, browsers,

and the file manager.

 A third volume, Medley LOOPS: Rule-Based Systems, will

describe the LOOPSRULES features and how to write rule-based

systems. The Truckin’ Game, A LOOPS Application, describes the

structure and use of LOOPS to develop an interactive game.

Medley LOOPS: The Basic System

20

Chapter One

Introduction to LOOPS Paradigms

 LOOPS supports four programming paradigms:

1. Procedure-oriented programming;

2. Object-oriented programming;

3. Data/Access programming;

4. Rule-based programming.

 These are reflected in the LOOPS lattice, Figure 1-1, which

depicts the major components of the LOOPS ecosystem.

Medley LOOPS: The Basic System

21

Figure 1-1. LOOPS Lattice

Source: LOOPS Reference Manual, Medley Release, November 1991

 It is assumed that the reader is familiar with Interlisp procedure-

oriented programming, so it will not be discussed further.

1.1 Introduction to Object-Oriented Programming

 LOOPS provides a rich infrastructure for describing data to be

represented and manipulated. The object-oriented paradigm represents

programs as objects consisting of both procedures, called methods,

and data, called variables. Objects have local data and local

procedures to manipulate that data as depicted in Figure 1-2.

Medley LOOPS: The Basic System

22

Figure 1-2. Object Representation

Source: Adapted from LOOPS Reference Manual

 A LOOPS class is a (partial) description of one or more objects.

Every object is an instance of exactly one class. All instances have the

same structure, but are differentiated by the values of their variables.

 As Stefik and Bobrow (1986) noted, actions come from sending

messages between objects. A class instance responds to messages sent

to it which activate methods belonging to the class. Instances of

classes respond to message by invoking the methods defined in a class

(or its superclass(es)). The methods are Interlisp functions (Stefik

1979). But, rather than calling the function directly, LOOPS sends a

message to an object which causes it to select a method and execute

it.

Medley LOOPS: The Basic System

23

 As Stefik and Bobrow (1986) further note, this uses the principle

of data abstraction to isolate the method’s implementation from its

invocation and execution. The calling program does not know of the

method’s implementation and should not make assumptions about its

implementation.

 An object’s methods are invoked to manipulate its variables – get

and put values, sometimes transform them, and sometimes to compute

another value. One object may invoke a procedure in another object

by sending a message to that object and receiving a message with a

result back. This section describes the object-oriented paradigm as it

is implemented within LOOPS.

1.2 Classes and Instances

 The basic structure in LOOPS is a class. A class serves as a

description, a template if you will, for one or more similar objects. An

instance is an object described by a class. Every object in LOOPS is

an instance of exactly one class.

 All LOOPS and user classes are subclasses of a class named Class.

As we will see, one can create a new class using the function

DEFCLASS or sending the message NEW to Class. The new class is

a subclass of the class specified as its MetaClass (or parent class).

1.2.1 Variables and Property Lists

 Variables are containers that hold values and are used to describe

a class or an instance. A class variable is defined in the class

description. It is is shared by all subclasses and instances of a class.

It is generally used to store information about a class as a whole. An

Medley LOOPS: The Basic System

24

instance variable contains information about a specific instance of a

class. A definition for a class Point might look like:

(Point

 (x 0)

 (y 0)

)

where x and y represent the coordinates of the point. X and Y are

referred to as the descriptors of the object Point. The value 0 is the

default value that is assigned when any instance of a point is created.

Both types of variables have names and values, and may have other

properties.

[Note: Some O-O books use the term “properties” to describe the

variables x and y. Some O-O books also use the term attributes. In this

volume, we use descriptors because property is reserved for another

aspect of a variable or method.]

 Figure 1-3 represents the Player class from the Truckin game,

which is described in LOOPS Volume III: Rule-Based Systems. This

example is reformatted for readability.

(DEFCLASS Player

 (MetaClass PlayerMeta

 doc "Participant in the Truckin Simulation."

 Edited%: (* sm%: "16-SEP-83 15:42"))

 (Supers SystemPlayer)

 (ClassVariables

 (Handicap 0

Medley LOOPS: The Basic System

25

 doc "Free time allowed to

 compensate for slowness"))

 (InstanceVariables

 (timeUsed 0

 DefaultGauge LCD

 doc "total time used so far")

 (movesMade 0

 DefaultGauge LCD

 Doc "actual number of moves made.

 Used by TimeGameMaster")

 (pendingRequest NIL

 inProcess NIL

 whenSent 0

 doc "pending request. inProcess –

 is the request already sent

 to Master for processing.

 whenSent - time when process

 sent in IDATE form)

 (maxMove 0

 doc "maxMove that can be made

 in current attempt")

 (processHandle NIL

 doc "process handle for the

 player's UserProcess")

 (startedAt 0

 doc "CLOCK time when player

 process was last started")

 (unchargedTime 0

 Doc "time not charged for in

 a given move")

 (wakeReason NIL

Medley LOOPS: The Basic System

26

 Doc "value to be returned when

 player process is resumed")

 (staySuspend NIL

 Doc "set to T when player suspended

 pending request completion")

 (schCount 0

 Doc "number of times player

 was scheduled")

 (remoteMachine NIL

 doc "name of mc on which running")

))

Figure 1-3. Truckin Player Class

 This looks complex. We will not describe it here, but just point

out some of the features of the definition so you can begin to recognize

them as we proceed.

 The name of the class is Player. A player is a participant in the

Truckin game. Its MetaClass is PlayerMeta (not shown here), but

which provides a template for all types of players in Truckin. In

particular, the superclass of Player is SystemPlayer (not shown here).

 Player has one class variable, Handicap, which is associated with

every player. Handicap has a value and a property, doc, which

describes what a handicap is.

 Player has instance variables which describe data the player needs

to participate in the Truckin game. Each instance of Player will have

these variables with values specific to that instance.

Medley LOOPS: The Basic System

27

1.2.2 Properties

 Many of the variables and methods have properties that further

describe characteristics of the variable, including constraints,

documentation, etc.

 A property is an attribute of either a variable or a method, which

has a value that can provide additional information about the variable

or method. Properties are stored on property lists associated with the

variable or method. For example, one property you will see quite often

in the LOOPS code is ‘doc’, which has a value that is a string and

provides documentation about the object it is attached to.

 Unlike some other object-oriented programming languages

(OOPLs), property lists are extendible and dynamically modifiable.

This allows a programmer to add new properties to a class or instance

description by adding them to the property list.

 It is strongly recommended that you add properties to your

variables and methods, especially, the doc property, which describes

the role and use of the variable.

1.2.3 Instances

 An instance of a class is a description of a particular entity in a

LOOPS program. Each instance inherits copies of the parent classes’

instance variables. An instance may have a local value of some or all

of the parent classes’ class variables. When an instance is sent a

message, LOOPS uses the selector, e.g., the name of the method in the

message to find the appropriate method to use in the parent class or

Medley LOOPS: The Basic System

28

one of its superclasses. Every object in LOOPS is an instance of one

class. Figure 1-4 depicts a class with instances.

Figure 1-4. A Class and Its Instances

Medley LOOPS: The Basic System

29

1.2.4 Methods

 A class has behavior that is represented by a set of methods. A

method is a procedural construction like a subroutine or function in

other programming languages. Associated with a message is a selector

represented by a Lisp atom. A selector typically has the same name as

a method in the object, which allows LOOPS to invoke the appropriate

method when an object receives a message. Figure 1-5 depicts the

general structure of a method.

 A method receives its arguments, if any, by a message. A method

may have zero or more parameters defined for it. All methods -

implicitly – receive an argument, self, which represents the handle of

the receiving object. Users do not have to encode self in a method

definition.

 All class instances have the same set of methods. Two instances

of a class may respond differently to a message based on the values of

their instance variables. The different behaviors are encoded in the

method body.

 This approach differ from procedure-oriented programming

(POP) in that the object determines what method to use to respond to

a message, whereas in POP, the calling procedure determines what

procedure to use.

Medley LOOPS: The Basic System

30

 If a method is not defined within a class when invoked through

one of its instances, LOOPS searches upward through the class

hierarchy to find the method definition. If the method is not found in

any of the superclasses of the class receiving the message, an error

occurs.

 A special type of method invocation can be used to determine the

class or method name dynamically at run-time, which provides

extensible flexibility in program construction.

1.2.5 Metaclasses

 Classes may have subclasses. The class that has subclasses is

referred to as a metaClass or a superclass. When a class is sent a

message, the method handling that message may be defined in the

class itself or in its metaClass. If its definition resides in the class and

its is not a local method, we say the class has inherited the method

from its metaClass.

 If the method does not reside in the class, but in its metaClass, its

metaClass determines the response. Subclasses may have additional

methods defined for them that are not specified within the metaClass.

These are termed local methods. This allows the user to elaborate the

functionality of a class. A class hierarchy is a class with its subclasses

(and their subclasses, if they have them, recursively) arranged as a tree

to show the dependency relationship.

 The user should think of a metaClass as a template for possibly

several classes each of which somehow distinguishes a particular set

of objects with properties. In section 1.2.1, PlayerMeta is a metaClass

for Player from the Truckin application.

Medley LOOPS: The Basic System

31

 Leverage comes from allowing different subclasses to respond to

the same message, but in possibly different ways. A program can treat

uniformly objects from different classes. This uses the principle of

modularity by reusing pieces of code in more than one class.

1.2.6 Abstract Classes

 Another class available in the LOOPS ecosystem is

AbstractClass. Abstract classes are useful when creating classes that

implement general functionality, which are then specialized into

instantiable classes. Instances of this class are classes that cannot be

instantiated. An example of an AbstractClass is ActiveValue, which is

described in Chapter 7.

 Figure 1-6 is an example of a MetaClass and its instances.

Medley LOOPS: The Basic System

32

Figure 1-6. A MetaClass Example

Source: PARC LRM91

NOTE: It seems SuperClass was used in earlier documentation,

but MetaClass was introduced to explicitly capture the idea of a

class of classes. Thus, in LOOPS documentation you will find

references to both superclasses and metaclasses. Our

understanding is that these names refer to the same type of object

in LOOPS.

1.3 Generic Class Description

 A generic class description has the form presented in Figure 1-7.

Figure 1-8 depicts a graphic picture using a notational mechanism

borrowed from UML.

(DEFCLASS <class-name>

 (Supers) ; a list of immediate superclasses (metaclasses).

 (ClassVariables ; a list of variables that describe this class and

 ; differentiate it from its superclasses.

 (<CV-1> <CValue-1> [doc <description-1>])

 …

 (<CV-n> <CValue-n> [doc <description-n>]))

 (InstanceVariables ; a list of instance variables which are inherited

 ; (defined in) each instance of the class.

 (<IV-1> <IValue-1> [doc <descrption-1>])

 …

 (<IV-n> <IValue-n> [doc <description-n>]))

 (Methods ; a list of methods implementing the behavior ;

 ; of this class.

 (<method-name-1> <argument-list-1> [doc <description>])

Medley LOOPS: The Basic System

33

 …

 (<method-name-n> <arguments-list-n> [doc <description>])

)

Figure 1-7. Generic Class Description

Figure 1-8. Graphic Depiction of a Class

1.4 Class Hierarchy

 Classes are arranged in a class hierarchy beginning with the most

general class, Object, and organized as an inheritance network

descending from it. We use the term ‘network’ here because LOOPS

allows a class to descend (inherit from) multiple superclasses.

Medley LOOPS: The Basic System

34

 We said that every instance is defined by a single class. If we want

to define a combination of classes – each contributing some attributes

to the concept being described, we must define a new class that

inherits from each of the superclasses whose attributes are to be

combined to describe the entity.

1.4.1 The Concept of Inheritance

 Inheritance is a major organizing principle in general-purpose

OOPLs. It allows programmers to specify many objects that are

“almost like” other objects, but differ only in a few incremental

changes. Thus, the programmer does not have to specify redundant

information that is common to every subclass of a class. It also

minimizes errors because information only needs to be updated in one

place. The structure of classes and subclasses is referred to as an

inheritance network.

 Inheritance adheres to the following principles described in Table

1-1.

Table 1-1. Basic Inheritance Principles

An instance object inherits the instance variables and message responses

from its superclass.

All descriptions in a class are inherited by a subclass unless overridden in

a subclass.

Methods do not have to be defined in a subclass unless their behavior is

being overridden.

Class variables do not have to be assigned a value in a subclass unless their

value is being overridden.

Medley LOOPS: The Basic System

35

When a class variable or a method is referenced in an instance of a

subclass, a search is made up the class hierarchy for the class in which the

variable or method is defined to retrieve the value.

1.4.2 Simple Hierarchy

 A simple inheritance hierarchy consists of one superclass for each

class. A superclass may have multiple subclasses. In this case, the

hierarchy is organized as Directed Acyclic Graph (DAG). Here is an

example using a general notation:

(DEFINECLASS Point

 (x 0)

 (y 0)

 … methods for manipulating the instances

)

(DEFINECLASS ColoredPoint

 (Supers Point)

 (color “blue”)

 (methods

 (setColor (newcolor) … docs set color to newcolor)

)

)

 As we see, Point has two instance variables (IVs): x and y. In the

class definition of Point, the default values are 0 for x and 0 for y.

When a new instance of Point is created, unless otherwise specified,

the values of x and y are initially set to 0.

Medley LOOPS: The Basic System

36

 In ColoredPoint, a new attribute, Color, which further

characterizes a Point, is defined. It is used to define a ColoredPoint as

a subclass of Point. Thus, points can be colored or not depending on

the class the new point belongs to.

 Now, let us create a point in 3-dimensional space, which we will

call Point3D. This subclass Point3D of Point will have a new IV, z,

which represents its location along the z-axis. We depict this

arrangement in Figure 1-9.

 We note several things in this figure:

1. Instance pt1 is an instance of class Point;

2. Class Point has a class variable (CV) lastPoint;

3. Class Point has two instance variables: x and y;

4. Pt1 has instance variables x and y;

5. Class Point3D is a subclass of class Point;

6. Class Point3D does not have CV lastPoint;

7. Class Point3D declares a new IV z;

8. Implicitly, class Point3D inherits IVs x and y from class Point;

9. Instance pt2 is a subclass of class Point3D;

10. Pt2 has three IVs: x, y, and z inherited from class Point3D;

11. Class Point3D has the same selector A1, which is modified

from class Point and new selector C.

Medley LOOPS: The Basic System

37

Figure 1-9. The Subclass Point3D

Source: PARC LRM91

Medley LOOPS: The Basic System

38

 As Figure 1-9 demonstrates, a simple hierarchy consists of a single

superclass for a class. All instance variables specified in the superclass

are inherited and present in the subclass. Of course, the superclass may

have its own superclasses and, thus, has all of their instance variables

as well.

1.4.2.1 Multiple Superclasses

 A LOOPS class may have more than one superclass. Multiple

superclasses allow separation of functionality across superclasses, but

support the concept of object composition, which allows a new class

to combine the features and methods from many classes. This

powerful inheritance mechanism allows substantial flexibility in

defining applications using a variety of combinations of classes.

 The concept of multiple inheritance is both powerful and fraught

with danger.

1.4.2.2 Name Conflict Resolution

 When more than one Superclass is specified for a new class, it is

possible that some of the names of variables in the superclasses may

be the same. The superclasses are specified as a list of classes when

defining the new class.

 When referencing a variable or method that has been specified in

one or more superclasses, which superclass should be used to provide

the variable or method to any operations in the class? LOOPS uses the

order of the names in the superclass list to establish the precedence for

search when looking for the value of an variable or method in a

Medley LOOPS: The Basic System

39

superclass - from left to right in the superclass list. The first occurrence

of the name in a superclass is the one that is used to resolve the name

conflict resolution to determine the value.

1.4.3 A Complex Hierarchy

 LOOPS allows a subclass to inherit from multiple superclasses.

Consider the following example:

(DEFINECLASS Point3D

 (Supers Point2D)

 (z 0)

)

(DEFINECLASS ColoredPoint3d

 (Supers Point3d ColoredPoint2D)

)

 Class ColoredPoint3D has the IVs inherited from Point3D and

from ColoredPoint. It responds to setColor by traversing up the

hierarchy to ColoredPoint. It responds to the methods in class Point3D

by traversing up the hierarchy because Point3D is named before

ColoredPoint.

1.5 Interlisp Objects

 To access an Interlisp object, one needs to have a handle

(sometimes, called a “pointer”) to it. The handle should be assigned to

an Interlisp variable or a LOOPS instance variable, usually via a SETQ

statement. Lisp objects can be passed as arguments to functions to be

Medley LOOPS: The Basic System

40

examined and operated upon by Lisp functions by passing their

handles.

Handle

A handle is a reference to an object in memory. A handle is NOT a

pointer, although the term has sometimes been used

interchangeably with ‘pointer’. Rather, a handle is a value that

allows the Medley Interlisp run-time system to locate an object –

either Medley Interlisp or Medley LOOPS - in virtual memory. A

handle has a value that can serve as an index into a table of objects,

sone of which are located in physical memory and some of which

are located in virtual memory The object table entry has fields

describing attributes of the object.

 A handle can reference a Lisp object or a LOOPS object. Which

type of object is determined by the values of an attribute in the object

table.

1.5.1 Testing for Lisp Data Types

 LOOPS defines three Lisp data objects: annotatedValue, class,

and instance. LOOPS provides macros to test the data type of a Lisp

object. We can load RichardI from the Plantagenet data set:

(* ; "This data set describes the Plantagenet Family")

(* ; "Prepared by Steve Kaisler")

(DEFINE-FILE-INFO -PACKAGE "INTERLISP" -READTABLE

"INTERLISP" -BASE 10)

(* ; "Richard I")

Medley LOOPS: The Basic System

41

(SETQ RichardI (SEND Person New))

(SEND RichardI SetName 'RichardI)

(PutValue RichardI 'Gender 'Male)

(PutValue RichardI 'Birthdate (LIST 09 08 1157))

(PutValue RichardI 'Deathdate (LIST 04 06 1199))

(putFather RichardI 'HenryII)

(putMother RichardI 'EleanorOfAquitaine)

(PRINT "Loaded RichardI")

STOP

(NOTE: Remember files to be loaded by Interlisp must be terminated

by a STOP atom.)

 The SETQ statements assigns the handle to a variable named

RichardI. The SEND line assigns the name to the variable which

allows it to be used in LOOPS expressions without using the ($ …)

notation (see below).

Medley LOOPS: The Basic System

42

 The last two arguments, “T T”, direct Interlisp to print the results

of each statement as it is executed.

 In this example, we see that RichardI is an instance of Person,

which is a class. The first line, #,($& Person (92 . 65200)), after the

“;’s”, specifies the handle, which allows the run-time system to locate

the object named RichardI in virtual memory. The second line, #, ($

RichardI), is the result of the SetName message. It specifies the name

of this instance is RichardI, so we can use RichardI to reference this

instance in other Lisp expressions. The other lines present the values

of other attributes describing RichardI

Note: To send a message to an object, we can use the following form

in the Interlisp EXEC window:

 On the keyboard, we would type “… (_ Person …), but this is

translated by the Interlisp readtable into “ ”. Alternatively, the

function to send a message to an object is SEND as indicated in the

listing above. SEND is described in Section 3.1.

Note: The Plantagenet data set is presented in Appendix ??.

1.5.1.1 Testing for Lisp

 To test if the value of a variable is a Lisp object, you can use the

Object? macro as follows:

 Macro: Object?

Medley LOOPS: The Basic System

43

 Arguments: X, an arbitrary lisp variable.

 Value: Returns T, if a Lisp Object;

 otherwise, NIL.

 For example, testing RichardI:

So, yes, RichardI is a Lisp object.

Note: Since we assigned the name RichardI to the object RichardI, we

can now reference it by its name.

1.5.1.2 Testing for a Class

 To test if a variable is a class, you can use the macro Class?:

 Macro: Class?

 Arguments: X, a possible class.

 Return: Returns T, if X is a class;

 otherwise, NIL.

 For example, to test RichardI as a class:

So, RichardI is not a class.

Medley LOOPS: The Basic System

44

1.5.1.3 Instance?

 To test if a variable is an instance, you can use the macro

Instance?:

Macro: Instance?

 Arguments: X, a possible instance.

 Return: Returns T, if X is an instance;

 otherwise, NIL.

 For example, is RichardI an instance of a class?

So, RichardI is an instance of a class.

1.5.1.4 AnnotatedValue

 AnnotatedValue is a class that allows an annotatedValue to be

treated as an object. An annotatedValue was an Interlisp-D data type

that wrapped each ActiveValue instance. AnnotatedValue will be

described in Section 7.2.6).

 To test if a variable is an annotatedValue, you can use the macro

annotatedValue?:

Medley LOOPS: The Basic System

45

 Macro: AnnotatedValue?

 Arguments: X, a possible annotatedValue.

 Return: Returns T, if X is an annotatedValue;

 otherwise, NIL.

So, RichardI is not an annotatedVallue.

1.5.1.5 Understands

 To test if an object will respond to a self message, you can use the

macro Understands:

 Macro: Understands

 Arguments: <object>, an instance or a class.

 <message>, a method name.

 Return: T, if self is a class or an instance of a class that

 understands the message; otherwise, NIL.

 RichardI does not understand GetValue, because GetValue is a

function, not a message. An alternative test is:

Medley LOOPS: The Basic System

46

1.5.2 Assigning Names to LOOPS Objects

 To manipulate Lisp objects, one can also assign a “LOOPS name”

to it, whence it can be referenced by that name. A name can be

assigned to an Interlisp object via the message SetName.

 Message: SetName

 # Arguments: 1

 Arguments: 1) <name>, the name to be assigned to the

 object.

 Value: Sets the LOOPS name <name> to refer to

 the Interlisp object.

 LOOPS names are unique in a LOOPS environment. A LOOPS

environment establishes a name space to partition the total name space

of all possible name strings. The global variable CurrentEnvironment

specifies a description of the current environment.

 An attempt to assign a name that is already in use within the

current environment generates an error if the ErrorOnNameConflict

is set to T.

 If ErrorOnNameConflict is NIL, and an object already has the

specified name, the name is unassigned from the existing object and

assigned to the new object, without generating an error.

 For example, suppose ILV1 is a Lisp variable. You can assign a

LOOPS Name to the Interlisp object whose handle is its value via:

(<- ILV1 SetName ‘SHKFoo)

Medley LOOPS: The Basic System

47

 Thereafter, the user can refer to this object as ($ SHKFoo), which

will return the handle for the Lisp object. Here is an example:

 The LOOPS name Person was assigned as the name of the LOOPS

class object Person. Line 47 of the example shows that Person is a

class, indicated by $C. Once a LOOPS name is assigned to the class

object in Line 48, it can now be referenced by its LOOPS name as seen

in Line 49.

 The user can use a computed LOOPS name. For example, let lisp

variable X have the atom RichardI. Using the form ($! <expr>), then

($! X) is translated as ($ RichardI). We can then set the value of

RichardI’s Father via:

1.5.3 Class Objects and LOOPS Names

 Class objects are automatically given LOOPS names when they

are created.

Medley LOOPS: The Basic System

48

1.5.4 NamedObject

 Any LOOPS object can be named. The class NamedObject,

usually used as a superclass, allows a LOOPS object - either class or

instance – to have a name. NamedObject has only one instance

variable, name.

 GlobalNamedObjects are named in the global name table. They

are named independently of the environment they reside in, whereas

NamedObjects are only known in their local environment. The names

in one local environment may be reused in another local environment

without conflict.

1.5.5 DatedObject

 DatedObject has active values associated with its instance

variables, so that they are filled in when an object is created:

 created, the date and time of creation of the object

 creator, the USERNAME of the creator of the object

 A LOOPS object should have DatedObject as a super when the

environment in which is resides is shared by multiple users, so that the

individuals who created objects can be identified. This is useful when

an individual is responsible for objects that she or he creates.

Medley LOOPS: The Basic System

49

1.6 System Variables and Functions

 When LOOPS is loaded, several LOOPS system variables are set

by the LOADLOOPS function. LOOPS system variables are

described in Table 1-2a and LOOPS directory variables are described

in Table 1-2b.

Medley LOOPS: The Basic System

50

Table 1-2a. LOOPS System Variables

Variable Description

LoopsVersion Specifies the current release of

LOOPS.

LoopsDate The date when LOADLOOPS was

executed to create the current instance

of LOOPS.

FEATURES LOADLOOPS added the symbol

LOOPS to this variable.

LoadLoopsForms A list of forms that were evaluated

when LOOPS was loaded. Initialized

to NIL using the File Manager

command INITVARS.

LispUserFilesForLoops A list of files required by LOOPS.

OptionalLispUserFiles A list of files that is loaded when

LOOPS is loaded. Initialized using the

File Manager command INITVARS.

Medley LOOPS: The Basic System

51

Table 1-2b. LOOPS Directory Variables

Directory Variable Description

LOOPSDirectory Initialized to the directory from which

the file LOADLOOPS is loaded using

the File Manager command

INITVARS. Depends on where

LOOPS is installed in the user’s

system.

LOOPSLIBRARYDIRECTORY The directory where the LOOPS

library files reside. Depends on where

LOOPS is installed in the user’s

system.

LOOPSUSERSDIRECTORY The directory where the LOOPS

User’s Modules reside. Depends on

where LOOPS is installed in the user’s

system.

LOOPSUSERSRULESDIRECTORY The directory where the LOOPS Rules

User Module resides.

LoopsPatchFiles A list of files passed to FILESLOAD

that is used during the loading of

LOOPS. Initialized to NIL.

LOOPSFILES The list of LOOPS files loaded by

LOADLOOPS when building a

LOOPS sysout.

ClearAllCatches A list of forms each of which is

evaluated within a call to the function

ClearAllCaches. Initially set to NIL

Medley LOOPS: The Basic System

52

 LOOPSFILES contains the list of files loaded by LOADLOOPS.

Medley LOOPS: The Basic System

53

Chapter Two

Object-Oriented Programming in LOOPS

 This chapter describes how to do object-oriented programming in

LOOPS.

Note: Entities enclosed in “[]” are considered optional arguments.

Convention: In the following examples, the “_“ ithat appears in the

LOOPS Manual is represented by the solid left arrow that appears in

theMedley Interlisp Exec window.

2.1 Creating a New Class

 LOOPS provides several methods for creating a new class that

provide the user with control over the definition details.

2.1.1 Creating a New Class via New

 The method for creating a new class is to send the message New

to a metaClass. The metaClass ‘Class’ is used to define new classes.

The format is:

(_ <metaClass> New <className> [<supersList>])

Medley LOOPS: The Basic System

54

where: <metaClass> is either ‘Class’ or an existing class in the

workspace.

 New is the message to create a new class object.

 <className> is the name of the new class.

 <supersList> is a list of superclasses in the class hierarchy

<metaClass>.

As an example, create a new class named ‘Person’:

 Notice that the left arrow in the example above is used to send

message to an object. However, in Word, it appears as an “_”. This is

due to the font differences between Word and Interlisp.

 LOOPS returns a handle to the Person object of the form #.($C

Person) where the $C indicates a class. By storing this handle in a Lisp

atom, we can reference it later. The new class is a subclass of Class.

 If the <supersList> is NIL or not specified then then the superclass

of the new class is set to its <metaClass>.

 The form (_ <object> <selector> <arg1 … arg2) is a compiler

MACRO that is expanded into a function call of the form:

(APPLY* (FetchMethodOrHelp <object> ‘<selector>)

 <object>

 <selector>

 arg1 … argN)

Medley LOOPS: The Basic System

55

 You can also use this form within a program if you want to edit

the selector and arguments to the selector for several selectors

associated with the object.

2.1.2 Creating a New Class with NewClass

 Another approach is to use the LOOPS function NewClass, which

creates a class of the given name. Its format is:

 Function: NewClass

 Arguments: <classname>, the name for the class.

 <metaclass>, the parent class of the new class.

 Return: The class record.

 This function does not check for an existing definition of the class.

2.1.3 Creating a New Class with DefineClass

 Another approach is to use the LOOPS function DefineClass,

which creates a class of the given name. Its format is:

 Function: DefineClass

 Arguments: <classname>, the name for the class as a

 litatom.

 <supers>, a list of superclasses or NIL.

 <object>, the parent class of the new class.

Medley LOOPS: The Basic System

56

 Return: The new class handle.

 If <supers> is not NIL, it is a list of class designators each atom

of which is a class designator.

 If <supers> is a list of classes, the class has multiple superclasses.

 If some superclass is not yet a class, then DefineClass asks the

user to correct the list.

 The default for supers is (Object) if <object> is Class or is (Class)

if <object> is MetaClass or one of its subclasses.

Medley LOOPS: The Basic System

57

 NOTE: DefineClass yields two different declarations if one

specifies ($ Class) as an <object> without specifying <supers> as a

NIL. For example:

Medley LOOPS: The Basic System

58

 In line 73, “State” is defined as a subclass of ”Class”, whereas

in line 74, ”State2” is defined as a subclass of “Object”. This cause

considerable confusion concerning how to access “State” in a

program.

 The class is built with the Edited: property containing the date and

time it was created and the value of the variable INITIALS. To track

which users create new classes in a multiuser application, you should

set the variable INITIALS to those of the person creating new classes.

 The new class has no class variables, instance variables, or

methods associated with it.

 The variable LASTWORD is set to <classname>, which is added

to USERWORDS for spelling escape completion. LASTWORD

tracks the last object defined by a user.

2.1.4 LispClassTable

 LispClassTable is a hash table, which is a list of classes based on

object type. For example,

2.2 Creating an Instance of a Class

Medley LOOPS: The Basic System

59

 We can create an instance of a class by sending the message New

to the class. The format of this method is:

 Method: New

 Arguments: <class>, the handle of the class.

 <name>, a LOOPS Name for the new class.

 <supers>, a list of classes.

 <init1>,

 <init2>,

 <init3>.

 Return: The handle of the new class.

 Upon return, the new class is sent the message newClass with the

arguments <init1>, <init2>, <init3>.

2.2.1 Simple Form

 For example, the simplest form of creating a new class to use the

NEW message:

 Note that specifying HenryII as the name of the new class only

allows you to access the new class via ($ HenryII). By setting the

handle to HenryII (the variable), you can now access it as shown

above.

Medley LOOPS: The Basic System

60

 The initial values of the instance variables of the instance are

usually taken from the instance variables as defined in the class

definition.

 We can set the gender of HenryII to Male using PutValue (see

Section 3.5.2.1):

 Note that Interlisp is case sensitive. PP is the name of a function

that prettyprints the definition of an object. In line 34, ‘pp’ was

specified, which is not the name of a function. Interlisp, using DWIM,

asks the user to correct the function name. When the user types ‘yes’,

it uses PP.

2.2.2 Creating a New Class as a Subclass

 To create a new class as a subclass, you can provide a value for

the <supers> argument:

(SETQ myWindow (SEND ($ Class) New myClass ‘(Window))

which sets myWindow with the handle of the new class. myWindow

is a subclass of Window. After it is created, it is sent the message

newClass.

Medley LOOPS: The Basic System

61

2.2.3 Initializing a New Class

 After creating a new class, it can be initialized using the init

variables provided in the method format. After the class is created, it

is sent the message newClass with the three init variables as

arguments.

 First, create a new class with DefineClass as follows:

 (DefineClass ‘SHKClass NIL ‘(Class))

 Second, assign the method newClass to myClass as follows:

 (DefineMethod ($ SHKClass)

 ‘newClass

 ‘(<init1> <init2> <init3>)

 ‘(PROGN

 (PutClass self <init1> ‘prop1) Self)

)

 Third, send SHKclass the message newClass:

 (SEND ($ SHKclass)

 New

 ‘testClass

 NIL

 “steve’s class”

)

Medley LOOPS: The Basic System

62

2.3 Creating an Instance of a Class Using SEND

 An alternate method is to use the function SEND to send the

message to the class. Thus, we can create a new instance as follows:

(SETQ HenryII (SEND Person New ‘HenryII))

 We can assign a name to HenryII (the instance) of HenryII (the

name) as:

 Note that the handle for an instance is more complex than a class.

Users do not need to interpret the meaning of a handle in their use of

Interlisp as it is translated by the runtime system into an address in

memory as needed.

Medley LOOPS: The Basic System

63

2.4 Instance Variables and Properties

 An instance has two types of variables:

• Its private instance variables, and

• The class variables that it shares with all instances of the

class.

 When a class is defined, it specifies the instance variables for each

instance of a class. An instance variable in a class may have a value,

When accessing an IV through an instance, if the IV is not defined in

the instance, LOOPS looks up the class hierarchy for it in one of the

superclasses and uses the value found there.

 By private instance variables, we mean IVs that have a value

specific to that instance of a class. A private IV, then, is a copy of the

IV defined in the class, but has a, perhaps, unique value for that

instance. Since searching up the hierarchy required additional

operations, performance could be improved by creating a copy of the

IV in the instance.

 A class variable was defined in the class and had the same value

for all instances of the class. Accessing a CV required a search up the

class hierarchy to find it definition. CVs could be cached in instances

in order to improve access performance.

2.4.1 Instance Variable Operations

 There are two types of operations upon these variables:

• Getting operations to retrieve a value of an instance variable,

or

• Putting operations that set the value of an instance variables.

Medley LOOPS: The Basic System

64

 LOOPS provides a wide variety of functions for these operations

which provides the programmer with substantial flexibility in

manipulating the values of these instance variables. Section 3.5.2

describes the operations.

 For Person, we can specify an instance variable (IV) named

“Birthdate” and a method that computes the person’s age from the

current date and their birthdate. But, this method should also check to

see if DeathDate is defined, and then compute the person’s age at

death by subtracting the birthdate from the deathdate. Both birthdate

and deathdate should be private IVs because they should have unique

values for each instance.

2.5 LOOPS Names

 LOOPS maintains a separate name space for LOOPS objects from

the Interlisp name space. Names are stored in a separate object name

table for LOOPS, which is distinct from the object name table for

Interlisp objects.

2.6 Instance Names

 Instances are not created with names. To access them, one needs

to keep a handle to reference an instance. One way to do this is to

supply a name when the instance is created by assigning the handle to

a variable. For example:

Medley LOOPS: The Basic System

65

which creates an instance of the class Window and stores its handle

in the Interlisp variable window1. A program can use window1 To

reference the instance.

 A second approach is to use a LOOPS name. One can assign a

LOOPS name when the instance is created as follows which allows

the instance to be referred to be the LOOPS form ($ Window2).

Similarly, one can also assign the handle to a variable named

window2:

 Alternatively, one can use the message SetName to assign a

LOOPS name to an instance if you have a pointer to that object. For

example:

which allows the program to reference the instance as WIndow2.

2.6.1 Working with LOOPS Names

 There are several forms for working with LOOPS names as

described in Table 2-1.

Medley LOOPS: The Basic System

66

Table 2-1. LOOPS Forms for Name Manipulation

Form Type Description

$ Nlambda

and macro

Specifies that the LOOPS name

will be used; does not evaluate its

argument.

$! Function Specifies that the LOOPS name

will be used; evaluates its

argument.

SetName Method Assigns a LOOPS name to an

instance.

UnSetName Method Removes a name from an instance.

Rename Method Changes the name of an instance.

GetObjectNames Function Returns the names of an instance,

including its UID.

Some examples are:

 The variable ErrorOnNameConflict causes a break when an

attempt is made to assign a LOOPS name to an instance that already

has a LOOPS name. The initial value is NIL.

2.7 Editing a Class

 Once a new class has been defined, its structure can be further

elaborated using the editing capability in LOOPS. The format is:

Medley LOOPS: The Basic System

67

 (_ ($ <className>) Edit)

 We can use the function EC to invoke the structure editor as:

For example, here is the Edit window for State:

Medley LOOPS: The Basic System

68

2.8 The Class Record

 A class is described by a class record in which several fields store

data about CVs and CIVs:

• cvNames is a list of all the class variables;

• cvDescrs is a list of the descriptors for each of the CVs; and

• localIVs is a list of instance variables local tot his class.

 A function fetches cvNames of a class to access the list of class

variable names or fetch cvDescrs to access the list of class variable

descriptors. GetSourceCV is used to fetch the class variables defined

in the class.

Medley LOOPS: The Basic System

69

 A function uses the function GetSourceIVs to access a list of local

instance variable descriptors.

2.8.1 Object Functions

 Several functions take the name of an object and return its handle.

These are described in Table 2-2. NLambda functions do not evaluate

their arguments. If no object by name exists, $ and $! returns NIL.

Table 2-2. LOOPS Object Functions

Function Type Usage

$ NLambda Returns the handle of the object given its name.

$! Lambda Returns a handle after evaluating the argument

as the name to yield an object.

$C NLambda Returns the class record.

 For example, to retrieve the class record for ‘Country’, use:

Medley LOOPS: The Basic System

70

 As an example, A NewClass does not exist, so $! Attempts to

evaluate it and gets an error:

 If no object exists by then name, $C will attempt to create the class

using the name.

Medley LOOPS: The Basic System

71

Chapter Three

Class Messages and Functions

 LOOPS includes a variety of functions for manipulating objects

in the LOOPS environment. In LOOPS, as noted, there are three types

of objects:

• Instances, which represent entities in the domain and are

described by a template – a class;

• Classes, which define a set of instances by specifying a data

structure and operators on the data structure; and

• Metaclasses, which specify a set of like classes.

 An inheritance hierarchy of classes specifies a set of classes

representing a sequence of refinements from an initial class to a class

whose members are instances. Each class can have a list of one or

more superclasses from which it inherits instance variables, class

variables, and methods.

3.1 Sending a Message to an Object

 In Chapter Two, sending the New message to Class to create a

new class was demonstrated. Sending the message New to a class to

create an instance of a class was also demonstrated. These were

examples of the more general capability of sending a message to an

object to cause it to perform some action.

 The general form of sending a message is:

Medley LOOPS: The Basic System

72

 (<object> <message> <arg1> … <argN>)

 (SEND <object> <message> <arg1> … <argN>)

where: <object> is a LOOPS object

 <message> is a selector for a message handler embedded in the

 object (or one of its superclasses)

 <arg1> is the first argument for the <message>

 <argN> is the nth argument to the <message>.

 The symbol is used operator to send a message to a LOOPS

object. Alternately, SEND is a macro which is expanded to the

function to send the message to a LOOPS <object>.

 Typically, the selector usually has the same name as the method

which will handle the message. For example, we can create a new

instance as follows:

 (SEND ($ Person) New ‘Stephen)

which creates a new instance whose name is ‘Stephen’.

Note: Your keyboard may not be able to generate a , so it is advised

to use the SEND form. In test files, it will be easier to read.

Note: Send is defined in LOOPSMETHODS.

Medley LOOPS: The Basic System

73

3.2 Checking Objectivity

 To manipulate a LOOPS object, it is necessary to have a handle

for that object. We can determine if an object is a LOOPS object using

the function Object?, whose format is:

 Function: Object?

 Arguments: An object.

 Return: T, if a LOOPS object; NIL, otherwise.

3.3 Class Operations

 This section will describe the basic class and instance operations

provided by LOOPS. Subsequent sections will at look at advanced

functions and methods.

3.3.1 Creating a New Class

 We create a new class by sending the message New to the

metaclass Class. The format is:

 Message: New

 #Arguments: <className> is the new class name.

 <superClassList> is a list of superclasses

 of the class.

 Return: A handle for the new class.

Medley LOOPS: The Basic System

74

3.3.1.1 Using DEFINECLASS

 Let us define a Person with some attributes:

(*: "Define a generic person as a template")

(SETQ Person (DefineClass 'Person NIL ($ Class)))

(* ; "add instance variables to class Person")

(* ; "Family Relationships")

(PutCIVHere Person 'Father NIL 'doc)

(* ; "father of the person")

(PutCIVHere Person 'Mother NIL 'doc)

(* ; "mother of the person")

(PutCIVHere Person 'Sisters NIL 'doc)

(* ; "sister(s) of the person")

(PutCIVHere Person 'Brothers NIL 'doc)

(* ; "brother(s) of the person")

(PutCIVHere Person 'Spouses NIL 'doc)

(* ; "Spouses of Person")

(* ; "Attributes of a Person")

(* ; "gender of the person - male or female")

(PutCIVHere Person 'Gender NIL 'doc)

(* ; "The birthdate and deathdate of the person as a list")

(PutCIVHere Person 'Birthdate NIL 'doc)

Medley LOOPS: The Basic System

75

(PutCIVHere Person 'Deathdate NIL 'doc)

(* ; "Country of Residence")

(PutCIVHere Person 'CitizenOf NIL 'doc)

(* ; "To check, describe the person")

(PP Person)

 We can check the definition of Person using the PP function:

3.3.1.2 Using SEND

 You can use SEND to also create a new class as shown in the

following example:

3.3.1.3 The DC Function

 An alternate form is the function DC to define a class, whose

format is:

Medley LOOPS: The Basic System

76

 Function: DC

 Arguments: <className>, the name of the new class.

 <superClassList> is a list of the superclasses

 of the class.

 Return: A handle for the new class.

Note: DC seems to operate differently from the specification in the

LRM. Here is an example:

Apparently, DC is only usable with the SEDIT structure editor.

3.3.2 Editing a Class

 Once a new class has been defined, its structure can be defined by

editing the class by sending the message Edit to the new class. The

format for the message sent to the new class is:

 Message: Edit

 Arguments: None

 Return: An edited object.

 Interlisp opens a new window using SEdit as shown in Figure 3-

1.

Medley LOOPS: The Basic System

77

Figure 3-1. Editing a Class Definition

3.3.3 Editing a Method

 A method may be edited using the function EM, which invokes

the Interlisp Editor to edit the method:

 Function: EM

 Arguments: <className>, the name of the new class.

 <methodName>, the name of the method.

 Result: ??

 Note: This function seems to be undefined in Medley. It is

being investigated.

 You may also use the LOOPS browser to edit a method. This will

be described in Medley Loops:Tools and Utilities.

Medley LOOPS: The Basic System

78

3.3.4 Naming an Object

 We can give an object a LOOPS name by sending it the message

SetName as follows:

 We can inspect the definition of Arthur using PP:

 An instance variable, name, receives the <name> specified for the

message SetName. name is an instance variable of the class

NamedObject, which would be specified as a superclass of the class.

 We also create another person named Bertram.

 We can test if Bertram is an object in our environment via the

Object? function.

Medley LOOPS: The Basic System

79

 And, we can set Bertram’s name just as we did with Arthur.

3.4 Accessing Supers

 The superclasses of a class can be obtained using the function

Supers, whose format is:

 Function: Supers

 Arguments: <class record>, the handle for the class.

 Return: A list of the superclasses.

 For example, we defined Person using DefineClass. To find

Person’s supers, we can use:

which shows that Class and Object are its superclasses. Tofu is an

internal name, supposedly meaning “Top of the Universe”, that was

used by the PARC staff. It is embedded in the LOOPS source code.

3.5 Accessing Variables

 There are different types of variables and properties that are

associated with a class. Many of the functions referring to these

variables and properties are associated with getting or putting their

Medley LOOPS: The Basic System

80

values. LOOPS provides many general functions for performing these

operations. LOOPS also introduced a compact programming notation

for accessing variables and properties. The general functions are

discussed in the section and the compact programming notation in a

following section. Figure 3-2 depicts where variables are stored.

Figure 3-2. Variable Locations

Medley LOOPS: The Basic System

81

 Figure 3-2 depicts the relationship of variable storage to LOOPS

objects.

 A class may have both class variables and instance variables. A

class variable may have a value or NIL. If it has a value, that value is

passed down to each instance as an initial value. If no local variable

for a class variable is specified in an instance, then the value of the

class variable is fetched from the class, unless the program has

specified a local value for the class variable. Each class variable may

also have a <property list>.

 An instance may have instance variables each of which may have

a local value set by the program. Although instances have handles

which distinguish them one from another, from the program

perspective, instances are distinguished by the different values of their

instance variables. Each instance variable may also have a property

list.

 A class may inherit class variables from its <superClassList>. If

the class does not set a local value for an inherited class variable, the

value of the most immediate predecessor in the <superClassList> that

has set a value for the class variable is cached in the class.

 To demonstrate some of these functions, a class from TRUCKIN

from the directory <home>steve>LOOPS-MAIN>TRUCKIN-src was

loaded. Prettyprinting it yields:

Medley LOOPS: The Basic System

82

 Since TruckinParameters is a class, an instance was created called

My Parameters via:

3.5.1 Getting Variable and Property Values

 Two functions are used to get the value of a variable or a property.

If the value of the variable or property is an active value, then the

associated getFn is invoked on the value.

3.5.1.1 Getting a Variable Value

 GetValue returns the value of a variable or a property of an

sometimes, IV from an instance of a class. The format is:

Medley LOOPS: The Basic System

83

 Function: GetValue

 Arguments: <object>, the handle of a LOOPS instance

 object.

 <varName>, the name of a variable in the

 instance.

 <propName>, the name of a property

 associated with <varName>.

 Return: A value or NIL.

 If <propName> is NIL, then GetValue returns the value of

<varName>. <varName> may be an instance variable.

 If <varName> is an IV, then the value is a local value resident in

the instance object.

 If <varName> is a CV and no local value was set, then the value

returned is the default value of the variable resident in the class.

 If there is no IV or CV by that name, then a break occurs.

 So, we can fetch the value of CopyCV from MyParameters:

 which is NIL, because its value is not defined in MyParameters

and its value is NIL in TruckinParameters. Note that MyParameters is

a handle of the object.

 We can try to fetch the value of ‘banditcount’ from

MyParameters:

Medley LOOPS: The Basic System

84

 Finally, let us fetch the value of the doc property of banditCount:

 If <propName> is not NIL, GetValue returns the value of the

<propName> from the property list of the IV.

 If no value is found in the local property list, GetValue returns the

default value for the property for the IV found in the class or one of

its superclasses.

 If no property value was found in any of the superclasses, the

value returned is that of the global variable NotSetValue, which is

initially set to ‘?’.

 If there is no property by the name <propName>, GetValue

returns the value of the variable NoValueFound.

Note: Returning the value of NotSetValue by LOOPS is different

from Interlisp, which returns NIL.

Note: It is an error to try to use GetValue to fetch the property of an

instance variable in a class.

3.5.1.2 Getting a Class Variable Value

 GetClassValue returns the value of a class variable or property of

a CV for a class object. The format is:

 Function: GetClassValue

 Arguments: <object>, the handle of a LOOPS class object.

 <varName>, the name of a class variable in the

 class.

Medley LOOPS: The Basic System

85

 <propName>, the name of a property

 associated with <varName>.

 Return: A value or NIL.

 Class variables may be inherited from superclasses or defined

within a class definition. They are shared by all instance of a class. All

instances of a class could see the value of a CV.

 If <object> is an instance of a class, then:

• If the class of the instance has a variable <varName> and it

has a value, then the value is returned.

• If the <varName> is not found in the class, LOOPS searches

for the class upward through the class hierarchy until it finds

<varName> in a superclass and returns the value associated

with <varName> from that superclass.

• If <varName> is not found in any superclass, NIL is returned.

 Search was not thought to be an expensive operation since a class

hierarchy was not expected to be very deep.

 We can fetch the value of the CV CopyCV from MyParameters”

 Now, let us try fetching the value of banditCount, which we will

pretend we do not know is not a CV:

Medley LOOPS: The Basic System

86

 We see that Interlisp opens an error window and informs us that

banditCount is not a CV of MyParameters and displays a prompt to

possibly take remedial action. One such action might be to create an

instance of bandit count in the instance of the class.

3.5.2 Putting Variable and Property Values

 Two functions are used to put (set) the value of a variable or a

property. If the value of the variable or property was an active value,

then the associated <putFn> is invoked on the value.

Medley LOOPS: The Basic System

87

3.5.2.1 Putting a Variable Value

 PutValue sets the value of a variable or property of an instance

variable for an instance of a class. The format is:

 Function: PutValue

 Arguments: <object>, the handle of a LOOPS object

 <varName>, the name of a variable in the

 instance.

 <newValue>, the value for the variable or

 property.

 <propName>, the name of a property associated

 with <varName>.

 Return: <newValue> or NIL.

 If <propName> is NIL, then PutValue stores <newValue> as the

value of <varName>. <varName> may be an IV or a CV. The value

returned depends on whether <varName> is an IV or a CV:

• If <varName> is an IV, then the value is a local value resident

in the instance object.

• If <propName> is not NIL, PutValue sets the value of the

<propName> in the property list of the IV.

 Let us change the value of gameDebugFlg from NIL to T:

Note: It is an error to try to use PutValue to fetch the property of an IV

in a class.

Medley LOOPS: The Basic System

88

Extended Example:

 This example puts a value to an IV of EdwardIII where the IV is

specified in the Person class. Since EdwardIII is an instance of Person,

LOOPS cannot find it in EdwardIII as originally created since ‘Son’

was added to Person after EdwardIII was created. So, it looks in the

Supers of EdwardIII, which is Person, and finds ‘Son’ as a CIV. It

creates the IV locally in EdwardIII.

Here is the source code for the test:

(* ; "Set Son as an IV of Person'")

(PutCIVHere ($ Person) 'Son)

(* ; "Set an IV in EdwardIII")

(SETQ result (PutValue ($ EdwardIII) 'Son 'Edward))

(PRIN1 "Son of ")

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT result)

(SETQ result (PutValue ($ EdwardIII) 'Son 'Edward))

Medley LOOPS: The Basic System

89

(PRIN1 "Checking Son of ")

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT (GetValue ($! 'EdwardIII) 'Son))

(* ; "Set the value of the doc property for Son.")

 (PutValue ($ EdwardIII) 'Son 'doc "The Black Prince")

(PRIN1 "EdwardIII:Son doc is ")

(SETQ doc1 (GetValue ($ 'EdwardIII) ‘Son 'doc))

(PRINT doc1)

STOP

and, here is the results from executing the tests:

An Error Example

Medley LOOPS: The Basic System

90

 If we try to put the value of a class IV in an instance of a class,

when the CIV has not been declared in the class, we get an error as

depicted in the following:

 Looking back at the definition of Ireland’s Super class, we see that

Country does not have ‘Population’ declared as a CIV:

(* ; "Country - a Geographic Area")

(SETQ Country

 (DefineClass 'Country

 '(GeographicArea)

 ($ Class))

)

(SEND ($ Country) SetName 'Country)

(PutCIVHere ($ Country)

 'Description

 "A component of a Geographic Area"

)

Medley LOOPS: The Basic System

91

(PutCIVHere ($ Country) 'Part NIL)

(PutCIVHere ($ Country) 'Provinces NIL)

(PutCIVHere ($ Country) 'States NIL)

(PP Country)

which causes the error. So, we must declare ‘Population’ in Country

for the put to succeed. We must do the same for CapitalCity.

3.5.2.2 Putting a Class Variable Value

 PutClassValue sets the value of a class variable or property of a

class variable for a class. The format is:

 Function: PutClassValue

 Arguments: <object>, the handle of a LOOPS object.

 <varName>, the name of a class variable in the

 class.

 <newValue>, the newValue to store.

 <propName>, the name of a property associated

 with <varName>.

 Return: <newValue>.

 Class variables may be inherited from superclasses or defined

within a class definition. They are shared by all instance of a class. All

instances of a class could see the value of a CV.

 If <object> is an instance of a class, then:

• If the class of the instance has <varName> and it has a value,

then it sets the value of the variable.

Medley LOOPS: The Basic System

92

• If the <varName> is not found in the class, LOOPS sets the

value of the variable in the first class in the class hierarchy for

which <varName> occurs.

• If <varName> is not found in any superclass, NIL is returned.

 Let us change the value of CopyCV in TruckinParameters from

NIL to T.

 According to the LRM, search was not thought to be an expensive

operation since a class hierarchy was not expected to be very deep.

 Another example. Set CitizenOf as a CV for Person, then attempt

to put a value for that CV. We defined the CV via:

(PutCVHere Person 'CitizenOf NIL 'doc)

 and here we see it when we prettyprint Person:

 Then, we put value of the CV via:

Medley LOOPS: The Basic System

93

and, we try to retrieve it via:

(PutClassValue Person 'CitizenOf 'England)

(PROG NIL

 (PRIN1 "CitizenOf ")

 (PRIN1 ($ Person)

 (PRIN1 " ")

 (PRINT (GetClassValue Person 'CitizenOf))

)

(PRINT " ")

(* ; "Get the same class value from EdwardIII")

(PROG NIL

 (PRIN1 "CitizenOf ")

 (PRIN1 ($ EdwardIII))

 (PRIN1 " ")

 (PRINT (GetClassValue Person 'CitizenOf))

)

Medley LOOPS: The Basic System

94

 So, we see that we can get the class value from Person, and when

we reference EdwardIII, the CV is retrieved from its parent class.

 3.5.2.3 Pushing Values onto Variables

 Two functions – PushValue and PushClassValue - push a new

value onto the front of a list which is the value of an IV or a class

variable. Their format is:

 Function: PushValue

 PushClassValue

 Arguments: <object>, the handle of a LOOPS object.

 <varName>, the name of a variable in the

 instance or class object.

 <newValue>, the newValue to store.

 <propName>, the name of a property associated

 with <varName>.

 Return: <newValue>.

 The value of <varName> or <propName> of an IV must be a list.

 We can push a new value onto ‘Son’ of EdwardIII:

(* ; "Get the value of Son of EdwardIII")

(SETQ result1 (GetValue ($ EdwardIII) 'Son))

Medley LOOPS: The Basic System

95

(PRIN1 "Son of ")

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT result1)

(* ; "If value of Son is an atom, make it a list.")

(COND

 ((ATOM result1)

 (PutValue ($ EdwardIII) 'Son (LIST result1))

 (PP EdwardIII)

)

)

(* ; "Try to Push a Value - Edmund onto Son.")

(SETQ result2 (PushValue ($ EdwardIII) 'Son 'Edmund))

(PRIN1 "Son of ")

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT result2)

<<Note: Why is this undefined? Need to search source code.>>

Medley LOOPS: The Basic System

96

 If the value of either <varName> or <propName> is an active

value, then when the list is fetched, its <getFn> is invoked. After the

<newValue> has been stored on the list, the <putFn> will be triggered

when the list is stored.

 PushClassValue performs like PutClassValue for class variables.

3.5.2.4 Adding a Value to a Variable

 A value can be added to the end of a variable list - either the value

of the variable or to a property list using the function AddValue. It

takes the format:

 Function: AddValue

 Arguments: <object>, the handle of a LOOPS object.

 <varName>, the name of a class variable in the

 instance.

 <newValue>, the newValue to store.

 <propName>, the name of a property

associated with <varName>.

 Return: <newValue>.

 Let us try to add a value to the end of Son of EdwardIII. If Son is

not a list, LOOPS first makes it so.

(* ; "Push a new value onto an IV of an instance.")

(* ; "If the value is not a list, make it so")

(* ; "Get the value of Son of EdwardIII")

(SETQ result1 (GetValue ($ EdwardIII) 'Son))

(PRIN1 "Son of ")

Medley LOOPS: The Basic System

97

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT result1)

(* ; "If value of Son is an atom, make it a list.")

(COND

 ((ATOM result1)

 (PutValue ($ EdwardIII) 'Son (LIST result1))

 (PP EdwardIII)

)

)

(* ; "Try to add a value to the end of Son.")

(SETQ result3 (AddValue ($ EdwardIII) 'Son 'Edmund))

(PRIN1 "Son of ")

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT result3)

(* ; "Try to Push a Value = Edmund onto Son.")

(SETQ result2 (PushValue ($ EdwardIII) 'Son 'Edmund))

(PRIN1 "Son of ")

(PRIN1 ($ EdwardIII))

(PRIN1 " is ")

(PRINT result2)

Medley LOOPS: The Basic System

98

STOP

<<Note: Need to check source code why AddValue is not defined.>>

3.5.3 Non-triggering Get and Put

 Although a value of a variable or a property list may have an active

value associated with it, there are cases where one needs to access the

value without triggering the active value. These functions take the

format:

 Function: GetValueOnly

 GetClassValueOnly

 Arguments: <object>, the handle of a LOOPS object.

 <varName>, the name of an instance or class

 variable in instance

 <propName>, the name of a property

Result: A value.

 These functions access the specified value only without invoking

the active value functions.

 GetValueOnly accesses and returns the default value from a

superclass if none exists for a class variable in the instance.

 Similar functions for putting a value directly to a variable or a

property have the format.

Medley LOOPS: The Basic System

99

 Function: PutValueOnly

 PutClassValueOnly

 Arguments: <object>, the handle of a LOOPS object.

 <varName>, the name of an instance or class

 variable in instance.

 <newValue>, the new value for the variable or

 Property.

 <propName>, the name of a property

Result: <newValue>.

 GetClassValueOnly and PutClassValueOnly will only take class

objects as arguments.

3.5.4 Local Get Functions

 You may need to determine if a value or property is set in a class

or instance without inheriting any information or triggering active

values. Two functions, GetIVHere and GetCVHere, allow you to do

this. Their format is:

 Function: GetIVHere

 GetCVHere

 Arguments: <object>, the handle of a LOOPS object.

 <varName>, the name of an instance or class

 variable in instance.

 <propName>, the name of a property.

Result: The <varName> or the <propName>, if it is

 non-NIL.

Medley LOOPS: The Basic System

100

 If the value of <varName> or <propName> was not yet stored in

the <object>, the value of the variable NotSetValue is returned.

 Now, if we PutValue of “left” on T1:

 We can get the value of the class CV Project for Person via:

 There was no need (so far, according to the 1991 LRM) to have

local put functions since all put functions were local to the class or

instance. The necessary effect can be achieved by using PutValueOnly

and PutClassValueOnly.

3.5.5 Accessing Class and Method Properties

 Several of the functions in the preceding sections only worked

with instances of classes. Two functions, GetClassIV and

Medley LOOPS: The Basic System

101

PutClassIV, access the default value or property value of an instance

variable which is stored in the class.

 Function: GetClassIV

 Arguments: <class>, the name of a class.

 <varName>, the name of a variable defined in

 the class.

 <propName>, the name of a property of the

 instance variable in the class.

 Return: The default value.

 Function: PutClassIV

 Arguments: <class>, the name of a class.

 <varName>, the name of a variable defined in

 the class.

 <newValue>, the new value to be stored.

 <propName>, the name of a property of the

 instance variable in the class.

 Return: <newValue>.

 PutClassIV stores <newValue> as the value of an instance

variable or its property. The variable must be local to the class. For

example:

(DefineClass ‘FireEngine '(Class))

(SEND ($ FireEngine) SetName 'FireEngine)

Medley LOOPS: The Basic System

102

 Sending the message AddIV to the class with the proper

arguments allow us to add an IV.

3.5.6 Accessing Class Properties

 LOOPS classes can have property lists for themselves and for

methods of classes. One use of this feature is to document both the

class and its methods. There are several methods for access these

property lists. GetClass, GetClassOnly, and GetClassHere return a

value of property on the property list of a class. Their format is:

Medley LOOPS: The Basic System

103

 Function: GetClass

 GetClassHere

 GetClassOnly

 Arguments: <class>, the name of a class.

 <propName>, the name of a property of the

 class.

 Return: The value of <propName> of the class.

 If <propName> was NIL, GetClass returned the metaclass of a

class.

 Class properties are inherited like class variables,. If <propName>

was not in <class>, LOOPS searched the superclasses of <class> for

<propName>, If it was not found, NIL was returned.

 A class property could be an active value, in which case its getFn

was triggered by GetClass. GetClassOnly did not trigger an active

value. An example of GetClass returning the doc property of its

superclass::

 However, if we stored a value for doc in the class itself, we would

see:

Medley LOOPS: The Basic System

104

 GetClassHere returned the local value of <propName> in <class>,

If <propName> was not found in <class>, it returned the value of the

global variable NotSetValue.

 PutClass and PutClassOnly are used to store a new value into a

class property. Their format is:

 Function: PutClass

 PutClassOnly

 Arguments: <class>, the name of a class.

 <newValue>, the value to be stored.

 <propName>, the name of a property of the

 class.

 Return: <newValue>.

 PutClass sets the value of <propName> in <class> to <newValue>

If <propName> was NIL, then it set the metaclass of <class> to

<newValue>. PutClassOnly did not trigger the putFn of <propName>

if it was an active value.

Medley LOOPS: The Basic System

105

 Here is an example using PutClassOnly:

3.5.7 Adding Variables to a Class

 LOOPS provides two functions for adding variables to a class:

PutCVHere and PutCIVHere. These methods add the variable of the

given type locally to the class and record it in the class record.

3.5.7.1 Putting a Class Variable Locally

 PutCVHere adds a CV locally to a class, whether or not it is

defined in a superclass. Its format is:

Medley LOOPS: The Basic System

106

 Function: PutCVHere

 Arguments: <class>, the name of the class.

 <varName>, the name of the variable.

 <value>, the initial value of the variable.

 Return: The value of the variable.

 PutCVHere uses AddCV to add the variable to the class locally, if

it is not already defined locally, and check it using GetValue.

 After adding some CVs to Person, we can use PP to print the class

description:

3.5.7.2 Putting an Instance Variable Locally

 PutCIVHere locally adds an IV, whether it is defined in a

superclass or not, to a class. Its format is:

Medley LOOPS: The Basic System

107

 Function: PutCIVHere

 Arguments: <class>, the name of the class.

 <varName>, the name of the variable.

 <value>, the initial value of the variable.

 <prop>, the name of a property.

 Return: The value of the variable.

 PutCIVHere uses AddCIV to add the variable to the class locally,

if it is not already defined locally. If <prop> is NIL, then AddCIV adds

the variable with <value> to the local IVs. If <prop> is non-NIL, then

it used GetClassIV to retrieve the value of the IV from the class or its

superclasses and add the that value to the property.

 We can create the IV population in Maryland and initialize it to

NIL:

 We can assign the value of the population of Maryland to the IV

Population (circa 2022):

Medley LOOPS: The Basic System

108

 If you use DefineClass to create the new class, then you need to

use SetName to attach a name before you can use the name in these

functions.

3.5.7.3 AddCIV

 The AddCIV function adds a new class IV to a class if it does not

exist locally within the class. Its format is:

 Function: AddCIV

 Arguments: <class>, the name of the class.

 <varName>, the name of the variable.

 <value>, the initial value of the variable.

 <prop>, the name of a property.

 Return: The value of the variable.

 Let us add “Dinosaur” as an IV of a State because some states do

indeed have state dinosaurs:

Medley LOOPS: The Basic System

109

 Maryland is one of the states that has a state dinosaur, so we can

specify that fact as:

3.5.8 Generalized Get and Put Functions

 Generalized Get and Put functions accept a type argument, which

is used to select a more specialized function – such as the ones

described in the previous sections – to perform a get or put operation.

3.5.8.1 Generalized Get Functions

 Three generalized Get functions were provided: Get It,

GetItOnly, and GetItHere. The <type> argument could have one of

the values IV, CV, CLASS, or METHOD.

Medley LOOPS: The Basic System

110

 Function: Get It

 GetItOnly

 GetItHere

 Arguments: <object>, the handle of a LOOPS object.

 <varOrMethod>, the name of the variable or

 method to be invoked.

 <propName>, the name of a property of the

 method.

 <type>, the type of function to be perform.

 Return: The value of <propName, if non-NIL.

 If <type> is NIL, IV is assumed. <varOrMethod> was interpreted

as a variable.

 If IV or CV was specified by <type>, <varOrMethod> was an IV

or CV name.

 If <type> was METHOD, <varOrMethod> was a message name.

 If <type> was CLASS, <varOrMethod> was ignored.

 The functions invoked the functions previously described:

 (GetIt … ‘IV) ➔ (GetValue …)

 (GetIt … ‘CV) ➔ (GetClassValue …)

 (GetIt … ‘CLASS) ➔ (GetClass …)

 (GetIt … ‘METHOD) ➔ (GetMethod …)

Medley LOOPS: The Basic System

111

 This approach allows the user to parameterize the ‘get functions

based on the application and the task to be performed. As an example:

Another Example:

Note: If not fetching the value of a property, that argument must be set

to NIL.

Medley LOOPS: The Basic System

112

3.5.8.2 Generalized Put Functions

 Two generalized Put functions were provided: PutIt and

PutItOnly. The <type> argument could have one of the values IV,

CV, CLASS, or METHOD.

 Function: PutIt

 PutItOnly

 Arguments: <object>, the handle of a LOOPS object.

 <varOrMethod>, the name of the variable or

 method to be invoked.

 <newValue>, the new value to be stored.

 <propName>, the name of a property of the

 method.

 <type>, the type of function to be perform.

 Return: The value of <propName, if non-NIL.

 If <type> is NIL, IV is assumed. <varOrMethod> was interpreted

as a variable.

 If IV or CV was specified by <type>, then <varOrMethod> was

an IV or CV name.

 If <type> was METHOD, then <varOrMethod> was interpreted

as a message name.

 If <type> was CLASS, then the function was ignored.

 These functions act in a manner like the GetIt functions except

they store the <newValue> as described in previous sections.

Medley LOOPS: The Basic System

113

3.5.9 Putting IV Value and Property

 LOOPS provides functions for setting the value of an IV or the

property of an IV: PutIVValue and PutIVProp.

 Function: PutIVValue

 Arguments: <class>, the name of class having the IV.

 <varname>, the name of the instance variable.

 <newvalue>, the new value to be assigned to

 the IV.

 Return: <newvalue>

 PutIVValue uses PutIt to assign the new value to the IV in the

IVDescr. Here is an example:

 If the IV is missing, e.g., not found in the list of IVDescrs, it uses

PutValue to create the IV in the class and assign the value to it.

Medley LOOPS: The Basic System

114

 Function: PutIVProp

 Arguments: <class>, the name of class having the IV.

 <varname>, the name of the instance variable.

 <newvalue>, the new value to be assigned to the

 IV’s property.

 <propname>, a property of the IV.

 Return: <newvalue>

 PutIVProp uses PutIt to assign the new value to the property of

the IV in the IVDescr.

 If the property is missing on the IVs list of propDescrs, then it uses

PutValue to create the property in the propDescrs of the IV and assigns

newvalue to its property.

3.5.10 Dual Use of Get and Put Functions

 Some of the Get and Put functions have dual usage in that they set

either an CV/IV value or a property of one of these. This may be

confusing to some users until they determine the conditions under

which they want to set values to either of these entities.

3.6 Accessing Methods

 Methods are Lisp functions which respond to a message sent to an

object. Methods are defined in a class. When a method is sent to an

instance, the method is located in its parent class or superclasses and

invoked with the parameters in the message.

Medley LOOPS: The Basic System

115

3.6.1 Accessing Method Properties

 LOOPS defines several functions for getting the values of

methods defined for classes.

3.6.1.1 Getting Methods

 Three functions are used to retrieve a method or the value of its

properties: GetMethod, GetMethodOnly, and GetMethodHere.

Their format was:

 Function: GetMethod

 GetMethodOnly

 GetMethodHere

 Arguments: <class>, the name of a class.

 <method>, the name of the method to be

 invoked.

 <propName>, the name of a property of the

 method..

 Return: The name of the <method> or the value of

 <propName, if non-NIL.

 GetMethod returns the method’s Interlisp function name, which

implemented the method, if <propName> was NIL. Since method

properties are inherited, if the <propName> did not have a value in the

<class>, LOOPS searches the superclasses to find the <method> and

<propName> to retrieve the value.

 GetMethodOnly does not trigger an active value if one was

associated with the <propName>.

 GetMethodHere returns the value of <propName> if it was

defined locally; otherwise, it returned the value of NotSetHere.

Medley LOOPS: The Basic System

116

 Note: These functions work only on classes, not on instances.

3.6.3.2 Putting Methods

 Two functions are used to add a new value for a method property:

PutMethod and PutGetMethodOnly. Their format iss:

 Function: PutMethod

 PutMethodOnly

 Arguments: <class>, the name of a class.

 <method>, the name of the method to be

 invoked.

 <newValue>, the new value to be stored.

 <propName>, the name of a property of the

 method.

 Return: <newValue>.

 PutMethod stores <newValue> as the implementing function of

<method>, if <propName> iss NIL. Otherwise, it sets the value of

<propName> associated with <method>.

 PutMethodOnly does not invoke the putFn of an active value if

one was associated with <propName>, but sets the value directly.

 If a <method> or <class> is inherited, the value is changed in the

class in which the <method> is defined, not the method of the class

presented as an argument.

 Note: These functions work only on classes, not on instances.

Medley LOOPS: The Basic System

117

3.7 Delete Functions

 LOOPS provides two functions for deleting variables within a

class definition: DeleteCV and DeleteCIV:

 Function: DeleteCV

 DeleteCIV

 Arguments: <class>, the name of the class.

 <varname>, the name of the variable.

 <prop>, the name of a property of the class.

 Return: The <varname>, if deleted; otherwise, NIL.

 DeleteCV fetches cvNames from the class record and searches it

for the name of the variable. If found, it fetches the cvDescrs from the

class record, locates the variable’s descriptor from the record, deletes

the class variable’s name from cvNames, and sets the new values into

the class record.

 DeleteCIV works similarly but uses the value of the field

LocalIVs in the class record, to search for the IV name, and delete it,

if found. Here is an example:

 If <prop> is non-NIL, the <varname> is the name of a property

which is removed from either the cvDescrs or the ivDescrs.

Medley LOOPS: The Basic System

118

3.8 Destroying Classes

 You may also destroy classes using the following methods.

3.8.1 Removing a Class

 The Destroy method removes a class from the LOOPS system. Its

format is:

 Method: Destroy

 Arguments: <class>, the handle of the class.

 Return: NIL.

 This method sends the method DestroyClass to the metaclass of

the specified class.

 For example”

(* ; "This data set is used for testing the features of LOOPS")

(* ; "Prepared by Steve Kaisler")

(* ; "Assumes that plantagenet.txt has been loaded.")

(* ; "Create a new class, Joker, of Person.")

(SETQ Joker (SEND Person New))

(SEND Joker SetName 'Joker)

(PP Joker)

(* ; "Now destroy the subclass Joker.")

(SETQ result (SEND Joker Destroy))

Medley LOOPS: The Basic System

119

(PP Joker)

(PRIN1 "Joker has been destroyed: ")

(PRINT result)

And, loading TestClass.txt:

Note: users should be careful in destroying a class, especially one that

is in the midst of a class hierarchy. Before destroying a class, users

should use the Classbrowser to check where the class is positioned in

the class hierarchy. Destroying a class in the midst of a class hierarchy

without forethought may invalidate downstream classes and cause

portions of the system to fail.

3.8.2 Destroying a Class

 The method DestroyClass is not generally used by user programs,

but is sent by Destroy to perform the actions of destroying a class. Its

format is:

Medley LOOPS: The Basic System

120

 Method: DestroyClass

 Arguments: <class>, the metaclass of the class to destroy.

 <classToDestroy>, the class to destroy.

 Return: NIL.

 This method performed the following functions within the

LOOPS system:

• Removed <classToDestroy> from any files on FILELST.

• Sends the Destroy! message to all methods associated with

<classToDestroy>.

• Removed <classToDestroy> from any subclass data

contained within its <supers>.

• Changes the class name to “aDestroyedClass”.

• Changes the supers list of <classToDestroy> to

DestroyedObject and Object.

• Changes the metaclass of <classToDestroy> to

DestroyedClass.

• Sets all fields of the internal class data structure to NIL.

 This class can be specialized to change the way classes are

destroyed. For example, if the user program wants to preserve some

data in the class to be destroyed before it is actually removed from the

system.

Medley LOOPS: The Basic System

121

3.8.3 Ensuring Removal of Subclasses

 The method Destroy! destroys a class and all subclasses. Its

format is:

 Method: Destroy!

 Arguments: <class>, the handle of the class to destroy.

 Return: NIL.

 Recursively sends the Destroy message to self and its subclasses.

This allows users to remove entire branches of the class hierarchy.

Note: Users should be very careful in using this method as it generally

wipes out a subbranch of the class hierarchy. Unless the user has saved

the commands for creating each subclass and setting its attributes, the

user will not be able to recover the subbranch of the class hierarchy.

3.9 Inheritance

 Classes exist in a class-subclass hierarchy. In each class, the

supers list defines where the class is in the hierarchy. When a class is

created as a subclass of one or more classes, it contains the IVs of all

the class in the supers list, and all IVs of the classes up the hierarchy

to the metaclass.

 The highest class in the LOOPS hierarchy is called Tofu, which

stands for Top of the Universe. This class is very simple. It has no

instance variables and three defined messages:

• MessageNotUnderstood

• MessageNotFound

• SuperMethodNotFound

Medley LOOPS: The Basic System

122

 Table 3-1 describes these three messages (Xerox 1991b).

Table 3-1. Tofu Message Descriptions

Message Description

MessageNotUnderstood Provides an error handling mechanism

for when a message is sent to an object

which cannot respond to the message.

MessageNotFound Provides a mechanism for intermediate

checking before sending the message

MessageNotUnderstood.

SuperMethodNotFound Provides a mechanism for intermediate

checking before sending the message

MessageNotUnderstood.

 Tofu has two specializations as indicated in Figure 3-1:

Figure 3-1. Tofu Specializations

Source: Xerox 1991b

 The Object class is the root of most of the other LOOPS classes.

AnnotatedValue is the root used with Active Values. It is

recommended that Tofu only be specialized for some necessary

conditions such as a new capability.

Medley LOOPS: The Basic System

123

 Consider the following example:

The result is:

 The result “not understood” is the result of sending the

MessageNotUnderstood to Tofu.

3.10 Compact Forms for Accessing Data

 LOOPS provides compact forms as macros that, when expanded,

yielded data access functions as previously described in this chapter.

These compact forms used the ‘@’ character as an element of a

function call in a method. Table 3-2 describes the compact forms.

Table 3-2. Compact Access Forms

Access

Form

Description

@ Yielded GetValue and GetClassValue functions.

@* Yielded GetValue functions.

_@ Yielded PutValue and PutClassValue forms for

assigning a new value.

Medley LOOPS: The Basic System

124

3.10.1.1 @ Form

 The @ form took an argument of an access path to a variable. The

access path could consist of one to three arguments:

• One argument: self is assumed to be the object and the access

path specifies an instance variable. For example, the form (@

iv3) translates to (GetValue self ‘iv3).

• Two arguments: the first argument is an object and the second

argument is an IV. For example, (@ ($ w) center) would

translate to (GetValue ($ w) ‘center).

• Three arguments: the first argument is an object, the second

argument is an IV, and the third argument is a property. For

example, (@ ($ w) menus ‘DontSave) would translate to:

(GetValue ($ w) ‘menus ‘DontSave).

 Now, we can get the value of Spouses from EdwardIII using the

GetValue function:

 But, if we use the ‘@’ notation, we have:

because ‘@’ is an Nlambda form, which does not evaluate the

arguments. Thus, the second argument does not need to be quoted.

Medley LOOPS: The Basic System

125

3.10.1.2 @* Form

 The @* form generates GetValue forms. It takes an <access path>

followed by a list of IV names. For example,

(@* ($ foo) a b c)

(GetValue (GetValue (GetValue ($ foo) ‘a) ‘b) ‘c)

3.10.1.3 _@ Form

 The _@ form is used to assign a new value to an IV. It takes an

<access path> followed by a new value. For example:

<example>

Medley LOOPS: The Basic System

126

3.10.1.4 Testing @ Forms

Consider the definition of EdwardIII from the Plantagenet data set:

And, here is the complete set of tests:

Medley LOOPS: The Basic System

127

Note: the ‘_@’ symbol is interpreted by Interlisp as ‘ ’

Medley LOOPS: The Basic System

128

As we see, the Spouses of EdwardIII is now NIL.

3.10.2 IV Delimiters

 A “:” is a delimiter that indicated instance variable access. Table

3-3 depicts the delimiters and describes their meaning. Each of these

delimiters is followed by the name of a variable

Table 3-3. Instance Variable Delimiters in Compact Forms

Delimiter Usage

: Accesses the value of the IV.

:: Accesses the value of the CV.

:, Accesses the value of the property.

. Sends a message to the object with the selector.

! Evaluates the next expression.

\ Specifies the next symbol is a Lisp symbol.

$ Specifies the net object is a LOOPS object.

 Here are some examples that demonstrate the use of these

delimiters. These delimiters can be tested using:

(Parse@ (List <access path>) ‘IV)

(@ foo)

(Parse@ (List ‘foo) ‘IV)

is translated to

Medley LOOPS: The Basic System

129

3.11 Class Method Operations

 LOOPS provides several types of operations for the methods of a

class.

3.11.1 Defining a Method

 We can define a method for a class using the LOOPS function

DefineMethod, which has the format:

 Function: DefineMethod

 Arguments: <className>, the name of the new class.

 <methodName>, the name of the method.

 <args>, a list of arguments.

 <expr>, an expression defining the function.

 <file>, the file where the method is located. (optional)

 Return: Varies according to the arguments.

 For Person, we can define both put and get methods to access the

values of these attributes within an instance of the class. But, we define

these methods in the class definition so every instance has access to

them. The following examples defines some of these methods:

Medley LOOPS: The Basic System

130

(* ; "Define put methods for person")

(DefineMethod ($ Person) 'PutFather '(person newValue)

 '(PutValue person 'Father newValue)

)

(DefineMethod ($ Person) 'PutMother '(person newValue)

 '(PutValue person 'Mother newValue)

)

(* ; "Define get methods for Person")

(DefineMethod ($ Person) 'GetFather '(person)

 '(GetValue person 'Father)

)

(DefineMethod ($ Person) 'GetMother '(person)

 '(GetValue person 'Mother)

)

 To check the definition of the methods, we can use PP again to

print data about the method:

Medley LOOPS: The Basic System

131

Medley LOOPS: The Basic System

132

3.11.1.1 Extended Example

 We will define a method called SetDeathDate for Person and then

set the death date for HenryII.

(DefineMethod Person 'SetDeathdate '(day month year)

 '((PROG NIL

 (COND

 ((NOT (AND (> day 0) (< day 32)))

 (PRIN1 day)

 (PRINT "is not in range [1...31].")

 (RETURN NIL)

)

)

 (COND

 ((NOT (AND (> month 0) (< month 13)))

 (PRIN1 month)

 (PRINT "is not in range [1...12].")

 (RETURN NIL)

)

)

 (COND

 ((NOT (AND (> year 0) (< year 2100)))

 (PRIN1 month)

 (PRINT "is not in range [1...2100].")

 (RETURN NIL)

)

)

Medley LOOPS: The Basic System

133

 (* ; "Set Deathdate")

 (SETQ Deathdate (LIST day month year))

 (RETURN Deathdate)

)

)

 A similar method has been defined for setting the birthdate as

well.

Note: The function definition should be enclosed in a PROG.

 A second example shows that an external function may be called

from the function definition of the method. Here, the function

ComputeAge is called from the method to compute the age of the

person.

Medley LOOPS: The Basic System

134

(* ; "**************")

(* ; "Person Methods")

(* ; "Compute Age of a Person given deathdate and birthdate")

(DefineMethod ($ Person) 'Age '(person)

 '(PROG (age)

 (PRIN1 'Computing age of ")

 (PRINT person)

 (SETQ age (ComputeAge person))

 (PRIN1 "The age of ")

 (PRIN1 person)

 (PRIN1 " is ")

 (print age)

 (RETURN age)

)

)

 If we execute the function (PP Person.age), we see:

Medley LOOPS: The Basic System

135

3.11.1.2 Invoking the Editor

 If the <args> and the <expr> are NIL, then Interlisp invokes the

editor to define the function and its arguments.

Medley LOOPS: The Basic System

136

Medley LOOPS: The Basic System

137

3.11.2 Defining a Method by a Definer

 A variant allows the user more control over defining a method for

a class using a definer, Method, which takes the form:

 Definer: Method

 Arguments: <type>, specifies The:FUNCTION-TYPE

 (optional).

 <class>, the class to which the method is

 attached.

 <message>, the new method’s selector.

 <object>, this argument must be first in the list.

 <args>, a list of arguments.

 <body>, the body of the method.

 Return: The name of the method function.

 The :FUNCTION-TYPE specifies the type of function:

• :IL, the body of the function uses Interlisp syntax, including

CLISP, or

• :CL, the body of the function uses Common Lisp syntax.

As an example, consider the following (LRM 1993):

Medley LOOPS: The Basic System

138

(Method :FUNCTION-TYPE:CL

 ((Window myWindow)

 self bar

 &Optional baz

 &REST glorp)

 (CL:FORMAT T

 T “Bar -s baz glorp -s%%”

 Bar baz glorp)

)

 The method can be invoked for the class using the

<methodName>.<form>, which is interpreted as:

• If <form> is non-nil, then <argsOrFnName> is interpreted as

a list of arguments for the function and <form> is the body of

that function.

• If <argsOrFnName> and <form> are NIL, the Definer creates

a skeleton definition for a function and then invokes the

Interlisp editor.

• If <form> is NIL, then <argsOrFnName> is interpreted as the

name of an Interlisp function to be used as the implementation

of the method.

 The structure of the function is specified as

 (LAMBDA <argsOrFnName> . <form>).

 If the first element of <argsOrFnName> is not self, then self is

inserted at the front of the list by LOOPS prior to executing the

menthod.

Medley LOOPS: The Basic System

139

 The Definer creates a function name as the concatenation of

<className>, ‘.’ (period), and <methodName>. The function would

appear as:

 (DEFINEQ

 (<className>.<methodName>)

 (LAMBDA (self) <comment>

 (@:myValue (ADD1 (@:myValue)))

)

)

 The interpretation of this syntax was discussed in Section 3.10 on

accessing variable values.

Medley LOOPS: The Basic System

140

3.11.3 Defining A Method by Message

 A method may also be defined by sending the message

DefMethod to the class:

 Message. DefMethod

 Arguments: <className>, the name of the new class.

 <methodName>, the name of the method.

 <argsOrFnName>, a list of arguments or an

 Interlisp function name.

 <form>, a function implementing the method.

 Return: Catenated method name of <class>.<method>.

 As an example, consider:

And, we can see the result:

Medley LOOPS: The Basic System

141

 Alternatively, here is another example:

(* ; "Using DefMethod to define a method in a class.")

(SEND Person

 DefMethod 'SetTitle

 '(person title)

 '(LAMBDA (person title)

 (PutValue person 'Title title)

)

)

which we can view with (PP Person.SetTitle):

Medley LOOPS: The Basic System

142

3.11.4 Deleting a Method

 A method may be deleted from a class using the Delete Method

function, which is defined as follows:

 Function: DeleteMethod

 Arguments: <class>, the class from which the methods is to be

 deleted,

 <method>, the name of the method to be deleted,

 <prop>, T if the function definition is to be deleted;

 otherwise, NIL.

 Return: NIL.

3.11.5 Editing a Method

 A method may be edited using the Structure Editor by sending a

class the message EditMethod:

 Class Method: EditMethod

 Arguments: <class>, handle of the class,

 <method>, the name of the method,

 <commands>, a list of editf commands,

 <okCategories>, atom or list specifying valid

 categories.

 Result: TBD

Medley LOOPS: The Basic System

143

 The behavior of this method varies with the arguments:

• If <method> was NIL, a menu of methods of the class was

presented using the message PickSelector in okCategories.

This was used to restrict the methods that a user might be able

to delete;

• If <method> was non-NIL and was not a method defined in

the class, the user was asked whether the method should be

created in the class or not;

• If <method> could not be found, the spelling corrector was

invoked to find a correct local method. If it can be corrected,

the local method was edited, or an inherited method was made

local and edited. EDITF was invoked with the argument

<commands>.

So, send EditMethod to Person:

 which pops up a window asking which method we would like to

edit:

Figure 3-4. Method Edit Menu

Medley LOOPS: The Basic System

144

 If we click on getBrothers in menu in the window, Interlisp

prompts us to define a SEdit window in which it displays the

getBrothers method:

Figure 3-5. Method Display

 If EditMethod cannot find the method selector in the specified

class, it opens the spelling corrector to find the a local selector whose

spelling might be corrected. If it can be corrected, the local method is

sued or an inherited method from a superclass is used. When the

method name is determined, EDITF is invoked with commands passed

as the second argument.

 The ClassInheritanceBrowser could also be used to edit the

method.

Medley LOOPS: The Basic System

145

3.11.6 SubclassRepsonsibility

 If the result of either DeleteMethod or EditMethod was to define

a new method in the class, then as part of creating the new method, a

template is displayed which included SubclassResponsibility as an

entry.

3.11.7 Alternatives to Executing Methods

 Alternative functions were available to execute methods to the

messaging syntax. These functions allowed the programmer to

determine the method to be dynamically applied to an instance based

on the current state of the program.

3.11.7.1 Executing a Method

 DoMethod computed an action which should be a method,

associated a class, and applied it to an object and arguments, which

were defined as follows:

 Function: DoMethod

 Arguments: <object>, an instance of a class to which the action

 is to be applied;

 <method>, name of the method to be execute,

 <class>, the class in which the method resided, or NIL,

 <args>, the arguments for the method.

 Return: Value returned by the method.

Medley LOOPS: The Basic System

146

 All arguments were evaluated. If <class> was NIL, DoMethod

used the class of <object>. If the <method> did not exist in the class,

an error was generated.

 The TestDoMethod file has the following definition:

(* ; "Test DoMethod")

(DoMethod EdwardIII 'Age Person '(EdwardIII))

STOP

Note: That STOP must be the last statement in any Interlisp file to be

loaded.

And the result of running it is:

 DoMethod allows the user to dynamically select a method to be

applied to a class based on criteria set by the program state.

3.11.7.2 Applying a Method

 ApplyMethod applies the specified method to the already

evaluated arguments of an instance; otherwise, it operates the same as

DoMethod. It was defined as:

Medley LOOPS: The Basic System

147

 Function: ApplyMethod

 Arguments: <object>, the instance to which the action is to be

 applied,

 <method>, the method to be applied,

 <arglist>, the argument for the method,

 <class>, the class containing the method.

 Return: The value returned by the method.

 The definition of TestApplyMethod is:

(* ; "Test ApplyMethod")

(ApplyMethod EdwardIII 'Age '(EdwardIII) Person)

STOP

and, the result is:

Medley LOOPS: The Basic System

148

 The following example, taken from the LRM 1991, demonstrates

ApplyMethod with MessageNotUnderstood.

(Method

 ((DwimObject MessageNotUnderstood)

 self

 selector

 messageArguments

 superFlg)

 (LET ((correctSelector (FixSelectorSpelling selector)))

 (COND

 ((correctSelector

 (ApplyMethod correctSelector messageArguments)

))

 (T (_Super))

)

)

)

3.11.7.3 Executing a Method in the Class Hierarchy

 DoFringeMethods is a function that either executes the method

specified for the instance or searches up the class hierarchy to execute

the method in a superclass. It is defined as:

Medley LOOPS: The Basic System

149

 Function: DoFringeMethods

 Arguments: <object>, an instance of a class,

 <method>, a method in the class or one

 of its superclasses,

 <arguments>, a list of arguments to the method.

 Return: NIL.

 All the arguments were evaluated. If the <method> in the class of

the <object> is defined in that class (not through inheritance), the local

method was invoked.

 If there was no local method, it searches the superclass hierarchy

for the definition of the method and executes it in each superclass.

Note: this may result in the method being executed several times with

the most specific version of the method executed first.

3.12 Manipulating Methods Across Classes

 Several functions and methods were provided to move methods,

instance variables, and class variables between classes.

3.12.1 Renaming a Method

 A method in a class could be renamed using the function

RenameMethod, as defined below:

Medley LOOPS: The Basic System

150

 Function: RenameMethod

 Arguments: <class>, the name of the class in which the method

 is defined,

 <oldMethodName>, the old name of the method

 before this function is called,

 <newMethodName>, the new name of the method

 after this function is called.

 Return: If successful, returns <newMethodName>.

 We can rename Person.Age to Person.GetAge as follows:

<<Not sure why it prints Person.Age is not broken>>

 It is likely rare that a user would rename a method. But, one case

where this is appropriate is when a method has evolved over time with

additional code. To make it easier to understand, the user might want

to split the method into a major method and minor methods. The major

method is invoked by the program, perhaps externally, and the minor

methods are invoked from the major method privately.

3.12.2 Moving a Method between Classes

 A method may be move from one class to another with deletion

from the old class, possibly with renaming. MoveMethod is defined

as:

Medley LOOPS: The Basic System

151

 Function: MoveMethod

 Arguments: <oldClassName>, the class containing the method

 before this function is called,

 <newClassName>, the class containing the method

 after the method is moved,

 <method>, the name of the method to be moved,

 <newMethod>, if non-NIL the name of the method

 in the new class,

 <files>, a list of files in which the change is to be

 made.

 Return: <newClassName, if specified;

 otherwise, <oldClassName>.

 When the method was moved to the new class, it was deleted from

the old class.

3.12.3 Alternate Moving a Method

 An alternate approach to using a function to move a method was

use the method version of MoveMethod. It is described as:

 Method: MoveMethod

 Arguments: <object>, the handle of the class from which the

 method will be moved,

 <newClassName>, the class to which the method

 will be named,

 <method>, the name of the method to be moved.

 Return: <newClassName>.

Medley LOOPS: The Basic System

152

3.12.4 Moving Methods to a File

 MoveMethodsToFile moved a method to a file if it had the same

name as a method in the file. It is defined as:

 Function: MoveMethodsToFile

 Arguments: <filename>, the name of the file to which

 the methods are moved.

 Return: NIL, if the method does not have a corresponding

 entry in the file; otherwise, T.

 This method is used when the method has been edited and then its

code was saved to a file to ensure the source code was not lost.

 During a long editing session, perhaps stretching over several

interactive sessions, this was useful for ensuring that the method code

was updated with exiting the interaction session.

3.12.5 Getting Functions Called from a Class Set

 It is often useful to find all functions that are called from one or

more classes using the function CalledFns, which is described as:

 Function: CalledFns

 Arguments: <classes>, a list of classes to search,

 <definedFlg>, either NIL, 1, or T.

 Return: A list of functions; otherwise, NIL.

The user can determine what functions are called from the

Window class as depicted in Figure 3-5:

Medley LOOPS: The Basic System

153

Figure 3-6. Functions Called From Window

3.13 Methods Concerning the Class of an Object

 Given an instance, we can find its class and determine if it is an

instance of a specified class.

3.13.1 Finding the Class of an Object

 We can determine the class of an object. There are two cases:

• If the object is an instance of a LOOPS class, or

• If the object is an instance of a Lisp class.

 Macro: Class

 Arguments: self, a pointer to an object.

 Return: Value depending on the argument.

 If self is a LOOPS object, it returns the class of the object.

 If it is not a LOOPS object, e.g., a Lisp object, the function

(GetLispClass self) is evaluated to return the Lisp class.

Medley LOOPS: The Basic System

154

 For example,

Note that the message Class sent to a LOOPS object yields the same

result as calling the Macro Class on the object.

Another example is shown below (from the OntologyCase file):

where Ireland is a subclass of Tofu, the top-level LOOPS class.

Suppose we define a function as Add1:

where Add1 is not a LOOPS or Lisp class.

3.13.2 Getting the Class Name

 The name of a class can be found using ClassName.

Medley LOOPS: The Basic System

155

 Function: ClassName

 Arguments: <class>, the name of an object.

 Result: Depends on the type of object.

 If <class> is a LOOPS class, it returns the name of the class. If it

is an instance of a class, it returns the name of the parent class of the

instance. EdwardIII is an instance of Person.

 If self is neither a class or an instance of a class, the function

GetLispClass was called with self as an argument. It if returns NIL,

the function LoopsHelp was called with self and “has no class name”.

 where, as previously, Tofu was the top of the class hierarchy for

Lisp classes.

 Similar results can be obtained by sending the message

ClassName to self.

Medley LOOPS: The Basic System

156

3.13.3 Determining an Instance of a Class

 An object can be determined to be an instance of a class by

sending it the message InstOf.

 Method: InstOf

 Arguments: self, a pointer to an object.

 <class>, a pointer to a class or its symbolic name.

 Result: T or NIL.

 Consider the following different forms:

 Showing both forms of sending a message to a LOOPS object.

 A variant if this function, InstOf!, determines if self is an instance

of a class or any of the classes’ subclasses.

3.13.4 Copying Instances

 Two methods can be used for copying instances: deep copying or

shallow copying.

Medley LOOPS: The Basic System

157

 Deep copying Creates a new instance of the same class as

oldInstance. CopyDeep fills the instance variables of the new

instance with copies of lists, active values, and instances pointed to by

the oldInstance.

 Method: CopyDeep

 Arguments: <oldInstance>, a pointer to an instance.

 <newObjList>, an association list.

 Return: The handle of the new list.

Here is an example from the LRM:

Note: CopyDeep seems to be an undefined function in Medley

LOOPS. This is being investigated.

Medley LOOPS: The Basic System

158

Chapter Four

Instance Functions and Methods

 LOOPS provides a diverse set of functions and methods for

defining and manipulating instances of classes.

4.1 Defining a New Instance

 There are several ways to create new instances of a class. When

an instance is created by sending the New message to a class, the

default behavior for Class. New is to send the message NewInstance

to the newly object that was created.

 NewInstance can be specialized if special or additional operations

are required at the time that the new instance is created. The

specialization of NewInstance should return self.

4.1.1 Sending the Class the Message NEW

 A new instance may be defined by sending a class the message

NEW, which has the format:

Medley LOOPS: The Basic System

159

 Method: New

 Arguments: <class>, the name of the class for the new instance.

 <name>, the name to be assigned to the new

 instance.

 <arg1> … <argN>, arguments which are passed to

 NewInstance when it is sent to the new object.

 Return: The handle of the new instance of the <class>.

 After the new instance of the class is created, it is sent the message

NewInstance with the arguments <arg1> … <argN>.

 (SEND ($ <class> NEW ‘<instanceName>)

 (SEND <className> NEW ‘<instanceName>)

 The latter case applies if you have assigned the class record to the

Interlisp variable via SETQ as in:

 (SETQ <instanceName> (SEND ($ <class> NEW ‘<instanceName>))

 (SEND <instanceName> SetName ‘<instanceName>)

 This works because the Lisp name space and the LOOPS name

space are separate name spaces.

 For example, using Person, let us create an instance for EdwardI

from Plantagenets:

(* ; "EdwardI")

(SETQ EdwardI (SEND Person New))

(SEND EdwardI SetName 'EdwardI)

(PutValue EdwardI 'Birthdate (LIST 06 17 1239))

Medley LOOPS: The Basic System

160

(PutValue EdwardI 'Deathdate (LIST 07 07 1307))

(PutValue EdwardI 'Gender 'Male)

(putFather EdwardI 'HenryIII)

(putMother EdwardI 'EleanorBerenger)

(putSpouse EdwardI 'EleanorOfCastile)

(PRINT "Loaded EdwardI")

 In the default case, the New method uses the default values for the

IVs in the new instance.

1.4.1.1 Instance Handles

 In order to manipulate a LOOPS object, we have to be able to

access it. In LOOPS, we need to assign a handle representing the

object to an Interlisp variable that allows us to reference the object

after it has been created.

Medley LOOPS: The Basic System

161

Handle versus Pointer

In the LRM and other references, the term ‘pointer’ is used to specify a

way to access an object. In other programming languages, such as C or

C++, ‘pointer’ often is interpreted as an address in the program’s memory

that allows direct access to the object. Such pointers can be subject to

operations, such as arithmetic or indexing, This violates the notion of an

object as an entity. We use the term ‘handle’ to specify a LOOPS object.

The Interlsp virtual machine translates a handle into an address in the

Interlisp virtual memory. It is not an address.

1.4.1.2 Computed LOOPS Names

 Suppose we attempt to define a new LOOPS object using the

form:

 When we send the selector New to Class, it requires a name for

the class. So, we must use:

 X1 contains the handle of the new object. LOOPS enters the

handle of the object into an internal table.

 Suppose we assign a name to a new LOOPS object using the form:

Medley LOOPS: The Basic System

162

 The object X1 can be referred to by the expression ($ Michael).

So, comparing them:

 We see that the LOOPS object can be referred to by both names.

This is sometimes useful to have an internal name in a program and

an external name for public use.

 Also, suppose we set the variable Y to Michael:

 Then, we can use the form ($! Y) = ($ Michael) to reference the

object.

4.1.2 Using NewInstance Message

 The NewInstance message sent to a newly created instance of a

class allows the program to specialize the initialization of the new

object. It has the format:

Medley LOOPS: The Basic System

163

 Method: NewInstance

 Arguments: <object>, evaluates to the handle of a class.

 <name>, the LOOPS name for the new instance.

 <arg1> … <arg5>, optional arguments to be used

 by user written code that specializes an instance

 of NewInstance.

 Return: LOOPS name of newly created instance.

 A class may have the method self defined for it using the

Assignment @ form:

 (DefineMethod ($ <class>)

 ‘New

 ‘(self name <arg1> … <arg5>)

 ‘(_@ (_ self NewInstance name)

 <arg1>

 …

 <arg5>)

)

 This sets the name of the new instance to <name> when it is

created. The list after NEW are the arguments to be passed to

NewInstance.

 The default case is to use the default values for the instance

variables to initialize the instance variables values in the new instance.

The default values are determined from the definition of the instance

variables in the class.

Medley LOOPS: The Basic System

164

 We can use NewInstance as follows:

where the initialization of the new instance is performed by the class

rather than the metaclass. As noted in the LRM, subclasses of Object

should have a _Super form within the method to allow the execution

of the default behavior.

4.1.3 Creating an Instance with Initial Values

 A new instance of a class may be created and the initial values of

the instance variables specified using the message NewWithValues.

Medley LOOPS: The Basic System

165

 Message: NewWithValues

 Arguments: <class>, the handle of a class.

 <valDescriptionList>, a list of varNames with

 values and, possibly, associated properties and

 their values for <varName>.

 Return: The handle of the new object.

 <valDescriptionList> is a list of value descriptions having the

following form:

 ((<varName1> <value1> <prop1> <propValue1> …)

 (<varName2> <value2> <prop2> <propValue2> …)

 …

)

where: <varNamei> is the name of an instance variable of the class.

 <valuei> is the value associated with <varNamei>

 <propj> indicates the jth property of the variable

 <propValuej> is the value of <propj>.

 NewWithValues does not invoke the New Instance method,

which means the new instance is not recognized by the File Handler.

To be recognized, the new instance must be assigned a name via the

method SetName.

4.1.4 Creating an Instance with Immediate Messaging

 A new instance can be created and have an immediate message

sent to it within one form, using the _New macro.

Medley LOOPS: The Basic System

166

 Macro: _New

 Arguments: <class>, the handle of the parent class for the

 new instance.

 <message>, name of the message to be sent

 to the new instance.

 <args>, the arguments to be sent with the

 message.

 Return: The new instance handle.

 The new instance is created and the message <message> is

immediately sent to it. As an example,

which creates an instance of window and sends it the message Open

to pop-up a new window.

 Then, assign W1 as the name of the new window:

 Then, shape W1 to give it visibility on the desktop:

 The first thing to do after naming the window is to send a SHAPE

message to expand the window something visible. Since there are no

Medley LOOPS: The Basic System

167

arguments to Shape, the cursor appears with a ghost image that allows

you to locate the window and shape it on the desktop. We drew the

shape of the window in the lower left corner of the desktop as shown

in Figure 4-1.

Figure 4-1. Shaping a Window After Creating it.

4.2 Data Storage for New Instance

 When an instance is created, the value of the variable

NotSetValue, which is an active value, is assigned to its instance

variables. Trying to access an instance variable with this active value

triggers the method IVValueMissing.

 Data was stored in instances on all puts and on GetValue methods

when the value was an active value, but NotSetValue.

Medley LOOPS: The Basic System

168

 When reading the value of an instance variable that is not stored

in the instance, changes in the variable at the class level are seen when

the variable is read.

 However, if an :initForm property is specified in a class

description, then the value is stored at the time of creation.

 Testing for whether a value is stored locally can be performed in

two ways:

• Through the user interface in local mode, which returns

#,NotSetValue for values not locally stored; or

• Via the GetIVHere function.

4.2.1 IVValueMissing

 The function IVValueMissing is triggered by an active value

when the value of the variable NotSetValue is found in an instance

variable. IVValueMissing is described as follows:

 Function: IVValueMissing

 Arguments: <varName>, instance variable name.

 <propName>, a property name for the instance

 variable <varName>.

 <typeFlg>, used internally to indicate the type of

 access.

 <newValue>, if a Put ration, the value to be

 stored.

 Return: Depends on behavior.

 The behavior varied with the function that invoked it as described

in Table 4-1.

Medley LOOPS: The Basic System

169

Table 4-1. IVValueMissing Behavior

Invoking Function Description

GetValueOnly Returns the default value of the instance

variable stored in the class.

GetValue Returns the default value of the instance

variable stored in the class if it is not an

active value.

If the value is an active value, then a copy

was made of the active value, stored in the

instance, and sent the message

GetWrappedValuee.

PutValueOnly Stored the new value in the instance.

PutValue Stored the new value in the instance, unless

the default value was an active value. Then,

a copy of the active value was made, stored

in the instance, and sent the

PutWrappedValue message.

4.2.2 NotSetValue

 The function NotSetValue determined if its argument was equal

to the value of the variable NotSetValue. It is defined as:

 Function: NotSetValue

 Argument: <arg>, any value.

 Return: NIL or T.

 After loading Plantagenet data set, we can see that the variables of

Sam are:

Medley LOOPS: The Basic System

170

 We can test the value of Sam’s Mother as follows:

4.2.3:initForm

 The argument :initForm is an IV property, which allowed an

instance variable to be initialized at the time the instance was created.

The :initForm and its value are used in the class definition.

 Its value was evaluated when the instance was created. The

evaluated form’s value was stored in the IV when the new instance

was created. As an example:

Medley LOOPS: The Basic System

171

4.2.4 Changing the Number of IVs in an Instance

 An instance can contain more IVs than are defined within its

parent class. It is an error to attempt to remove an IV from an instance

that was defined in a parent class. In this case, the IVMissing method

is invoked. LOOPS provides several functions and methods for

managing IVs in an instance.

4.2.4.1 Adding an IV

 The function AddIV added an instance variable to an instance. It

is defined as:

 Function: AddIV

 Arguments: <object>, the handle of the instance.

 <name>, the name of the instance variable

 to be added.

 <value>, the value to be assigned to the new IV.

 <propName>,a property name for the IV,

 but may be NIL.

 Return: Used for side effects only.

 If <propName> is not NIL and <name> already exists, it is added

to the IV specified by <name>.

 If <name> already exists and <propName> is NIL, the value of

the IV is set to <value>.

Medley LOOPS: The Basic System

172

 If IV <name> does not exist and <propName> is non-NIL, then

an IV with <name> is added to the instance and assigned the value

NotSetValue. It is given the property <propName> with specified

<value>.

 If both <name> and <properName> exist, the value was assigned

as the value of <propName>.

 The reasons for adding an IV to an instance that is not defined in

the parent class are 1) to add a descriptor to an instance that is unique

to that instance, and 2) to hide certain IVs from casual inspection by

users.

 Add the IV “Children” to EdwardIII:

 We see that “Children” has been added to EdwardIII, but ot to

his parent, EdwardII:

Medley LOOPS: The Basic System

173

 Thus, we can specialize individual instances of a class without

not affecting all instances of the class.

Medley LOOPS: The Basic System

174

Chapter Five

Metaclass Functions and Methods

 A metaclass serves as a template for one to many different classes,

which may differ minimally or a lot from each other. The primary

metaclass is Object.

 Classes are described by metaclasses. Metaclasses may define

methods that are inherited by each subclass (although, we might refer

to these as ‘instance classes’, which is not to be confused with

instances of a class). Sending a message to a class invokes a method

in a metaclass.

 One method defined by MetaClass is New which creates a new

instance of the metaclass. Since ActiveValue is a metaclass, sending

New to ActiveValue would create a new active value. A particular

subclass of a metaclass may override the definition of New and

specialize it for that class.

 A classes’ metaclass is assigned when the class is created.

5.1 Base Metaclasses

 LOOPS has three defined base metaclasses as depicted in Figure

5-1. These are described in Table 5-1.

Medley LOOPS: The Basic System

175

Figure 5-1. Base Metaclasses

Source: LRM 91

Table 5-1. Base Metaclass Descriptions

Metaclass Description

Class This is the default metaclass for all classes

defined within LOOPS. When a class receives

the message New, it creates an instance of itself.

AbstractClass If a class’s metaclass is AbstractClass, then it

cannot be instantiated and a warning message

will be printed in the Exec window. Only

subclasses can be created for an AbstractClass.

DestroyedClass This is a class or metaclass that has been sent

the message Destroy or Destroy! Trying to

instantiate a destroyed class causes an error.

Attempts to destroy a DestroyedClass have no

effect.

5.1.1 Abstract Classes

 An abstract class should be used to define a class which should

not have any instances. An abstract class can be used to create a

template for a set of classes that have a common set of CVs and

methods. The instance of an abstract class has these common CVs and

methods, but can then be specialized or extended by adding CVs and

methods specific to the use of the class.

 Mixins are always used with another class to create a subclass.

Instances are created from the new class that has a mixin as one of its

parents.

Medley LOOPS: The Basic System

176

5.2 Pseudoclasses

 LOOPS provides an interface to Interlisp objects through

pseudoclasses. A pseudoclass associates a class with a Lisp data type.

When messages are sent to Lisp objects, they are actually passed to

the associated pseudoclass. Lisp objects are then considered to be

pseudoinstances of the class.

 Pseudoclasses provides two mechanisms for handling messages to

Lisp objects:

1. A message can be sent to a list whose first element is a class,

which is used to lookup the methods; or

2. A message to a Lisp data type.

 In the second approach, the function GetLispClass is used to

locate the class. It searches an internal Lisp table based on the type

name of the data type. If no associated class is found, it is assumed to be

Tofu. If an associated class is found, the data type is considered a

pseudoclass.

5.2.1 Pseudoclass Functions

 To obtain the Lisp class of a Lisp object, use the function

GetLispClass, whose format is:

 Function: GetLispClass

 Argument: <object>, a Lisp object.

 Result: The pseudoclass of the data type of the <object>.

Medley LOOPS: The Basic System

177

 GetLispClass uses the LispClassTable to map type names of Lisp

objects to pseudoclasses. LispClassTable is a hash table using EQ hashing to

map a name as key to return a pseudoclass, NIL, or a function to be applied.

 GetLispClass gets the hash value for the name using (TYPENAME

<object> from an internal hash table. There are three cases:

1. If the hash value is NIL, ($ Tofu) is returned.

2. If the hash value is not NIL, and it is a pseudoclass, it is

returned.

3. Otherwise, the hash value is a function which is applied to

<object> and the result is returned.

 For example, let us check the Lisp Class of EdwardI:

 whereas:

 Here, EdwardI is a LOOPS class, not a Lisp class.

<<Not sure why GetClassProp doesn’t work!!!>>

5.3 Metaclass Functions

 LOOPS provides multiple functions to create and manage

metaclasses.

Medley LOOPS: The Basic System

178

5.3.1 Defining a New Metaclass

 To create a new Metaclass instance, you send the message New to

MetaClass. The format is:

 (_ ($ MetaClass) New <metaClassName> <supers>)

 This statement will instantiate a new metaclass with Metaclass as

its metaclass. <metaClassName> must be a symbolic name.

 If <supers> is not specified, the default will be (Class); otherwise,

<supers> must evaluate to a list of classes.

 The result is the name of the new metaclass.

Medley LOOPS: The Basic System

179

Chapter Six

Sending Messages Alternatives

 Objects in LOOPS communicate with each other by sending

messages. In Chapter 3, we saw the basic forms for sending messages

to objects. LOOPS provided some advanced forms for sending

messages to objects, which will be discussed in this chapter.

Note: In the following sections, the term <args> stands for a

sequence of arguments, usually represented as <arg1> … <argN>.

Note: In the following sections, Times New Roman does not have

a character representation for which is equivalent to SEND for

message sending. We will use “_“ as an alternate indicator for

in this text.

6.1 Sending A Message to a LOOPS Object

 As a recap, the syntax for sending a message to a LOOPS object

appears as:

 is implemented as a macro in LOOPS with the definition:

Medley LOOPS: The Basic System

180

(DEFMACRO

_ (self selector &REST args)

 `(_! ,self ',selector ,@args))

where the boxes are style indicators (using Notepad++) to view the

source code. As we see, “self” is inserted as the reference to the

LOOPS object.

 The equivalent form for SNED, which is also a macro, is:

(DEFMACRO

SEND (self selector &REST args)

 `(_ ,self ,selector ,@args))

 We can see that these are equivalent definitions, but for two macro

expansions.

 The definition for “_!” is:

(DEFMACRO

_! (self selector &REST args)

 [Once-Only (self)

 `(APPLY* (FetchMethodOrHelp ,self ,selector)

 ,self

 ,@args])

 FetchMethodOrHelp searches up the supers chain for the

selector/message name, and then calls FetchMethod.

 This is offered by way of showing how a method is fetched from

class or up the class hierarchy.

Medley LOOPS: The Basic System

181

6.2 _!

 The form _! Sends a message to an object self after it has evaluated

all arguments. It is defined as:

 Function: _!

 Arguments: <object>, a handle for an object.

 <methodName>, a method, which is not evaluated.

 <args>, a sequence of arguments for the method

 Return: The value returned based on arguments.

 Let us create an instance of a city with name Frederick:

6.3 _IV

 The form _IV invokes the method stored in an instance of a class

specified by <object>. It is defined as:

Medley LOOPS: The Basic System

182

 Function: _IV

 Arguments: <object>, a handle for an object.

 <IVName>, an instance variable name which is not

 evaluated.

 <args>, a sequence of arguments to the function.

 Return: The value of the function; otherwise, breaks.

 _IV calls a method, IVFunction, to determine if the method is

accessible by the instance. If not, it returns the message "No iv

function".

6.4 _Try

 The form _Try invokes the method in self if it exists. It is

defined as:

 Function: _Try

 Arguments: <object>, a handle for an object.

 <methodName>, the name of a method to try.

 <args>, a sequence of arguments for the method.

 Return: The value computed by the method, if it exists;

 Otherwise, NIL.

 Normally, when a message is sent to an object to invoke a method,

if the method does not exist in the object or its parent class, the system

breaks. This function avoids catching this 2break, and just returns

NIL. As an example:

Medley LOOPS: The Basic System

183

 The New message is not sent to City because it is defined in a

superclass, not the object City.

6.5 _Super

 _Super invokes a method in the superclass of an instance by

searching up the class hierarchy for the first occurrence of the method.

It is defined as:

 Function: _Super

 Arguments: <object>, the handle of an object.

 <methodName>, the name of the method to

 invoke.

 <args>< a sequence of arguments to the method.

 Return: ??

 As examples:

 GetMother is not a method defined in either EdwardIII or its

superclass, Person.

 _Super cannot be called directly. Rather, it must be embedded in

another method in a class to invoke a method in a parent class of the

Medley LOOPS: The Basic System

184

class of the instance. To do so, it searches up the class hierarchy to

locate the definition of the method.

 If no arguments were provided, it used the arguments of the

method from which it was called.

 If <methodName> does not exists in a superclass, then a break

was initiated.

6.5.1 _Super?

 A variant, _Super?, uses the single most next general method. It

does not break if there is no occurrence of <methodName> in the

superclass. As with _Super, it must appear in the body of a method.

6.5.2 _SuperFringe

 Another variant, _SuperFringe, invokes <methodName> from

each of the classes on the super’s list of the class. That is, if the class

is inheriting from multiple classes, the <methodName> is invoked, if

it occurs, in each of those superclasses in which it is defined.

6.6 _New

 This form _New creates an instance of a class, then sends a

message with arguments to that instance. It is defined as:

Medley LOOPS: The Basic System

185

 Function: _New

 Arguments: <class>, the class for which an instance is to be

 created.

 <methodName>, the method to be invoked, which

 is not evaluated.

 <args>, a sequence of arguments to the method.

 Return: A handle for the new instance.

 We can create a new window, then shape it using the following

statement:

 Since no arguments are provided to Shape, the user is prompted

with a ghost of a rectangular window to draw the window.

Which yields a ghost image as:

Medley LOOPS: The Basic System

186

 The cursor is located at the lower right corner of the ghost image.

Dragging it defines the coordinates for the window.

6.7 FetchMethod

 FetchMethod fetches the function name of the message that is

sent to the class. The function can be found in the class or its

superclasses. It is defined as:

 Method: FetchMethod

 Arguments: <class>, the handle of the class to which the

 message is sent.

 <methodName>, the method, which is evaluated.

 Return: The function name; otherwise, NIL.

 If the <methodName> is not found in the class or any of its supers,

FetchMethod returns NIL.

Medley LOOPS: The Basic System

187

 A common mistake is to specify an instance of a class as seen

below:

Note, however, what is returned is the class of Maryland, which is

State.

Medley LOOPS: The Basic System

188

Chapter Seven

 Introduction to

Data-Oriented Programming

 In object-oriented programming, when a message is sent to an

object, the method implementing the message may change the state of

variables within the object.

 In data-oriented programming or access-oriented programming

(AOP), an action performed on data may be triggered as a side effect

when the data is accessed. These data structures are called active

values because the act of reading or writing a data item invokes some

action upon the value of the data item or upon other data items. The

action is a specified implicit procedure when the value of the variable

is read or set. As Bobrow and Stefik (1986) noted, this mechanism is

the dual of messages, which tell objects to perform operations that can

change the value of variables as a side effect.

 In AOP, for any variable of an object, a procedure can be specified

that is invoked when the variable is accessed for reading or writing. In

LOOPS, this structure was called an active value, because the act of

reading or writing invoked (e.g., caused to be executed) the associated

procedure. As the LRM notes, this mechanism was dual to the concept

of sending a message to perform an operation, which could change the

value of a variable as a side effect.

 One aspect of AOP is to provide for “hidden variables” e.g.,

variables not directly accessible by the primary methods associated

Medley LOOPS: The Basic System

189

with messages, but through an indirect action, e.g., the effect of the

active value. Such hidden variables could be changed only through the

action upon another, perhaps “public” variable.

 As Bobrow and Stefik (1986) noted, an active value can serve as

the “glue” which connects to subsystems together, but preserves their

independence in terms of programming and functionality. It can also

be used to allow one process to monitor another and to maintain

constraints among data in a system.

 Active values enable one process to monitor the behavior of

another process. Figure 7-1 presents the abstract class Activevalue and

its specializations.

Figure 7-1. ActiveValue Specializations

Source: LRM 1991

Note: ActiveValues are widely used in the Truckin’ game, which

demonstrates many of the features of LOOPS.

Medley LOOPS: The Basic System

190

7.1 Specifying an Active Value

 In LOOPS, an active value is specified as follows:

 #(<localState> <getFn> <putFn>)

where <localState> is the variable that stores the data

 <getFn> is the name of a function invoked when a program

accesses the active value, and

 <putFn> is the name of a function invoked when a program

sets the active value.

 This notation is converted by a read macro to the Interlisp data

type activeValue. So, we can picture an activeValue in this way:

Figure 7-2. activeValue Structure

Medley LOOPS: The Basic System

191

7.1.1 getFn and putFn

The functions are defined with standard arguments as shown

below. An active value need not specify both a <getFn> and a <putFn>

functions, although typically both are specified.

The default values for the functions operate as follows:

• If <getFn> is NIL, the current value of the <localState> is

returned.

• If <getFn> is non-NIL, then the function is applied to the

value of the variable before it is returned to the calling

function.

• If <putFn> is NIL, the value of <localState> is replaced with

the argument provided.

• If <putFn> is non-NIL, then it is invoked with the new value

before that value was stored at the variable.

 Behind the scenes, when a message is sent to an active value,

either GettingWrappedValue on reads or PuttingWrappedValue if

a write is sent to the active value object with the originating message.

The originating message may or may not trigger side effects as a result

of receiving that message.

7.1.2 Defining an Active Value

 To define an active value, the following steps are suggested.

1. Start with the definition of a Thermometer as shown below:

Medley LOOPS: The Basic System

192

 Thermometer is a class that can define many different instances of

thermometers. One instance is named T1. The code to define a basic

thermometer is below.

(* ; "Thermometer Example")

(SETQ Thermometer (DefineClass 'Thermometer NIL ($ Class)))

(SEND ($ Thermometer) SetName 'Thermometer)

(PP Thermometer)

(* ; "Define an instance of a thermometer")

(SETQ T1 (SEND ($ Thermometer) New 'T1))

(SEND ($ T1) SetName 'T1)

(PP T1)

Medley LOOPS: The Basic System

193

To measure the temperature, we need to define a LocalActiveStateValue

variable which will be defined as an active value.

The template for the LocalActiveStateValue us:

#(<localactivestatevalue <getFn> <PutFn>)

The definition for this is:

 which appears aa:

To get the value registered by the Thermometer, we can do:

Because a value has not been set to Temperature.

Medley LOOPS: The Basic System

194

7.1.3 Nested Active Values

 Active values could be nested to allow multiple access functions

to be applied to variable values. As noted in Bobrow and Stefik (1983),

one might want to have two processes - a debugging process and a

display process – to monitor the state of some variable.

 Nested active values store the innermost active value as the

localState of the outermost active value. For example, we could have:

 #(_ #(XPos NIL UpdateDisplay)

 GettingTracedVar

 SettingTracedVar)

 The putFns are invoked from the outmost AV to the innermost AV. So,

SettingTracedVar would be called with the new value for XPos. But, it would

call the function PutLocalState to set its own localState which it the innermost

AV. The innermost AV putFn – UpdateDisplay – is called with the new value

to update the display and set the value of XPos.

 Nested get operations worked in the reverse order with the innermost AV

being called and the progressing outwardly. The returned value is the value

provided by the outermost getFn.

7.1.4 Using Active Values

 Active values are a powerful mechanism, although simple in

implementation, that allow the programmer control over the getting and

setting of instance variable values and property values.

 Consider an instance variable IV in an instance I of a class C. The default

value of IV has been declared to be the active value AV. Assume that AV has

never been set. The first time a (PutValue I IV <expr>) is invoked, a copy of

AV is made and inserted into I as the value of IV. The putFn is invoked with

Medley LOOPS: The Basic System

195

the copy of AV, which provides a place where the localState of the AV can

be stored private to I.

 The following example is taken from Bobrow and Stefik (1983). Define

a class SUM with three IVs: top, bottom, and sum. IVs top and bottom are

initialized to zero. IV sum will be computed when asked for. The LOOPS

code for SUM is:

(DEFCLASS SUM

 (Metaclass <class>)

 (Supers Object)

 (InstanceVariables

 (top 0)

 (bottom 0)

 (sum #(Shared ComputeSum NoUpdatePermitted))

)

 (ClassVariables)

 (Methods

 (printOn printColumn)

)

)

 Note: I have modified the indenting to make the code more readable.

 The structure of the AV is specified as follows:

• This IV is an instance of some <class>;

• The <class< is an instance of Object;

• It has three instance variables, which are enumerated;

• There are no class variables specified for <class>, since we did not

show its declaration; and

• It has two methods, presumably inherited from <class>.

 The programmer would define ComputeSum to calculate the sum.

Medley LOOPS: The Basic System

196

 NoUpdatePermitted is a LOOPS kernel function which does not allow

the AV to update the sum IV. Since no updating of the IV is allowed, Shared

allows this AV to be shared with other IVs, rather than being copied anew for

each IV.

NOTE: SEdit does not make copies of active values. If AVs are

copied in SEdit, they will share structure, which means that one

AV is modified, all AVs of that type will be modified.

7.2 Active Value Functions

 Several functions are provided to manipulate active values, which

are described in this section.

7.2.1 FirstFetch

 FirstFetch is a standard getFn that expects the AV’s localState to

be an expression to be evaluated. The first time that a Get function is

performed on the AV, the expression is evaluated and it becomes the

initial value of the AV.

 As an example, consider the following class declaration:

(DEFCLASS TestDatum

 (MetaClass Class)

 (…)

 (InstanceVariables

 (sample #((RAND 0.0 100.0) FirstFetch <putFn>))

)

)

Medley LOOPS: The Basic System

197

 When a Get function is executed for the AV, the expression

(RAND 0.0 100.0) is executed to generate a random number between

0.0 and 100.0. This value replaces the expression in the AV.

 Let us define Germany with Capital City Munich and an active

value using FirstFetch:

(SETQ Germany (DefineClass 'Germany '(Country) ($ Class)))

(SEND ($ Germany) SetName 'Germany)

(PutCIVHere ($ Germany)

 'CapitalCity

 #(Munich FirstFetch 'GetNewCity)

 NIL)

(PP Germany)

 Now, trying to fetch CapitalCity

Medley LOOPS: The Basic System

198

 The definition of GetNewCity is:

(* ; "GetNewCity")

(DEFINEQ (GetNewCity

 (LAMBDA NIL)

 (PRINT "Enter new city name:")

 (SETQ NewCity (RATOMS T))

 (PRINT NewCity)

 (RETURN NewCity)

)

)

7.2.1.1 FirstFetchAV

 FirstFetchAV is a specialization of localStateActiveValue and

the ReplaceMeAV, which has an expression as the value of the

localstate. On the first put access, the expression was evaluated. The

resulting value replaced the FirstFetchAV so that the value of the

variable was no longer an active value. This AV is often used as the

default value of the variable which allows the actual value to be

replaced at run time.

7.2.2 Indirect Access

 LOOPS provides a mechanism for accessing a value stored in

another IV through an IV using one of the indirect functions:

GetIndirect and PutIndirect.

Medley LOOPS: The Basic System

199

 Function: GetIndirect

 PutIndirect

 Arguments: A localState which is a nested AV specifying

 an IV in that AV.

 Return: The value of executing the function.

<<Example>>

7.2.3 ReplaceMe

 In some cases, a programmer will want to set a default value for a

variable in a class using an AV, but replace it by a value provided

when the program sets the value of the variable. ReplaceMe

accomplishes this:

 Function: ReplaceMe

 Arguments:

 Return: The value generated to replace the AV.

 Consider the following example:

 #(NIL ComputeValue ReplaceMe)

 NIL is the default value for the localState of the AV. When a Get

function is given the variable, it returns the value computed by

ComputeValue. When a Put function is given the variable, the value

provided is set as the value of the active variable.

Medley LOOPS: The Basic System

200

7.2.4 User-Defined Function

 The getFn and putFn functions associated with an active value can

be defined by the user. They take a standard set of arguments:

 Function: getFn

 putFn

 Arguments: <object>, the object containing the active value .

 <varName>,the name of a variable containing

 the active value; NIL if not stored in a variable.

 <oldOrNewValue>, for a getFn, this is the AV’s

 localState; for a putFn, the new value to be stored in

 the AV.

 <propName>, the name of a property associated with

 the AV; if NIL, the is associated with <varName>.

 <activeVal>, the AV in which this getFn was found.

 <type>, where the AV is stored: NIL for an instance

 variable; CV for a class variable; CLASS for a class

 property; or METHOD for a method property.

 Return: For getFn, the value returned by the Get

 operation.

 For putFn, it may make changes to the local

 state using the function PutLocalState.

 When PutLocalState is used, it may trigger any embedded active

values.

Medley LOOPS: The Basic System

201

7.2.5 Local State Functions

 Two functions can be used to retrieve or update the localState of

an active value: GetLocalState and PutLocalState.

 Function GetLocalState

 PutLocalState

 Arguments: <activeValue>, the handle for the active value.

 [<newValue>, for putFn only, the new value to be

 stored.]

 <object>, the object containing the active value .

 <varName>,the name of a variable containing the

 active value; NIL if not stored in a variable.

 <propName>, the name of a property associated with

 the AV; if NIL, the is associated with <varName>.

 <type>, where the AV is stored: NIL for an instance

 variable; CV for a class variable; CLASS for a class

 property; or METHOD for a method property.

 Return: see below.

 For GetLocalState, it returns the value of the localState of the

<activeValue>.

 For PutLocalState, it stores the <newValue> in the localState of

the <activeValue> and returns <newValue>.

 If the localState of an AV is itself an Av, then its getFn will be

triggered to return the value of the embedded AV. For a putFn, an

embedded Av will only be triggered when PutLocalState is invoked.

Medley LOOPS: The Basic System

202

7.2.5.1 Alternate Functions

 Alternative functions GetLocalStateOnly and

PutLocalStateOnly will only retrieve or store a new value in the

localState of the referenced active value. Their format is:

 Function: GetLocalStateOnly

 Arguments:

 Function: PutLocalStateOnly

 Arguments:

7.2.5.2 Using LocalState

 Most ActiveValue subclasses are specializations of

LocalStateActiveValue, which used an instance variable, localState,

in the ActiveValue to hold the value.

7.2.6 Annotated Values

 Interlisp uses a special data type called an annotatedValue data

type, to wrap each instance of an active value, when it is installed in

an object. The annotatedValue contains the activeValue instance.

Thus, GetValue and PutValue can use Interlisp’s type checking

mechanism to see if the value in instance variable should be processed

normally or via the active value mechanism. This mechanism is

transparent to application programs.

 In case the user forgets about the distinction between a

annotatedValue and an activeValue, Interlisp has a class,

Medley LOOPS: The Basic System

203

annotatedValue, to mediate when the user program attempts to trat an

annotatedValue as an activeValue.

 Each annotatedValue contains a field named annotatedValue. This

field contained an ActiveValue object.

7.2.6.1 AnnotatedValue

 The AnnotatedValue class was equivalent to the Lisp data type

annotatedValue. It is an abstract class that cannot be instantiated. Its

superclass is the LOOPS class tofu. Instances of this class are Lisp

data type instances.

 LOOPS provides several macros for explicitly controlling

annotatedValues as presented in the following sections.

7.2.6.2 fetch

 The fetch macros retrieve the contents of the annotatedValue field

of an annotatedValue instance.

 Macro: fetch

 Arguments: <value>, an annotatedValue instance.

 Return: The contents of the field annotatedValue.

 It is coded as:

 (fetch annotatedValue of <value>).

Medley LOOPS: The Basic System

204

7.2.6.3 replace

 The replace macro replaced the contents of the annotatedValue

field of an annotatedValue instance.

 Macro: replace

 Arguments: <value>, an annotatedValue instance.

 Return: The contents of the field annotatedValue.

 It is coded as:

 (replace annotatedValue of <value> with <object>).

7.2.6.4 create

 The create macro created a new instance of the data type

annotatedValue.

 Macro: create

 Arguments: <value>, an annotatedValue instance.

 <object>, an ActiveValue object to be stored in the field.

 No type checking is done on the instance.

 Returns: The contents of the field annotatedValue.

 It was coded as:

 (create annotatedValue _ <object>).

7.2.6.5 type?

 The type? Macro performed a type check for an instance of the

Lisp data type annotatedValue.

Medley LOOPS: The Basic System

205

 Macro: type?

 Arguments: <value>, the value to check as to type..

 Return: T, if value is an instance of the data type

 annotatedValue; otherwise NIL.

 It was coded as:

 (type? annotatedValue <value>).

7.2.6.6 _AV

 The _AV macro sent a message to the ActiveValue object

wrapped in an annotatedValue.

 Macro: _AV

 Arguments: <av>, an instance of an annotatedValue.

 < method>, a method of the enclosed

 ActiveValue.

 <args>, arguments to be passed to the method.

 Returns: The result of executing the method using

 the arguments.

 It is coded as:

 (_AV <av> <method> . <args>).

7.2.6.7 MessageNotUnderstood

 This MessageNotUnderstood macro forwarded a message

intended for the wrapped ActiveValue to that object.

Medley LOOPS: The Basic System

206

 Macro: MessageNotUnderstood

 Arguments: <object>, the object containing the ActiveValue

 instance.

 It is coded as:

 (_ <object> MessageNotUnderstood).

7.2.7 Managing Annotated Values

 LOOPS provides several methods for managing active values.

These methods are defined in the class ActiveValue and inherited by

every instance of ActiveValue.

7.2.7.1 Printing ActiveValue Instances

 The method AVPrintSource prints a description of an

ActiveValue instance. Its format is:

 Method: AVPrintSource

 Arguments: <object>, an instance of ActiveValue.

 <classname>< the name of the class of the

 ActiveValue.

 <avNames>, a list of names of self, the last being

 the unique identifier (UID) of self.

 Return: A form to be used by DEFPRINT, where the

 form has the format (form1 . form2).

Medley LOOPS: The Basic System

207

 The LOOPS Manual notes that the default form is something like:

(“#,” $AV <classname>

 <avnames (ivname value propname value …)

 (ivname value propname value …)

 ….

)

 The list (ivname value propname value …) describes the current

state of the instance variable of the ActiveValue instance.

 Including the UID in the print form allows the identity of the

ActiveValue instance to be recovered. This allows different

annotatedValues to share the same ActiveValue, and to allow this

sharing to be preserved across saving and reloading into a Lisp

environment. An example from the LOOPS Manual:

#, ($AV IndirectVariable

 (HeightFromWidth (NCV0.0X: .SD7 .KR . 8))

 (object #. ($ SquareWIndow))

 (varname width)

 (propname NIL)

 (type IV)

)

Note: formatting added.

Medley LOOPS: The Basic System

208

7.2.7.2 $AV

 $AV is used to reconstruct an annotatedValue that was saved to a

file. Its format is:

 Function: $AV

 Arguments: <classname>, the name of the class of ActiveValue.

 <avNames>, a list of LOOPS names of ActiveValue

 instances.

 <ivForms>, a list describing the state of the instance

 variables of the ActiveValue.

 Return: a new annotatedValue whose ActiveValue is

 reconstructed from the second and third arguments

 above.

 One could construct an active value by typing a form such as:

($AV <activeValueClassName>

 NIL

 (<ivname> <value> <propName> <value>)

 (<ivname> <value> <propName> <value>)

 ….

)

 None of the arguments were evaluated because $AV was an

NLmbda, Nospread function.

 Alternatively, a user could also use the functions PutClassIV,

PutClassValue, PutClassValueOnly, AddCIV, AddcCV, or other

methods to modify or add class and instance variables.

Medley LOOPS: The Basic System

209

7.3 The ActiveValue Class

 The ActiveValue class defines the protocol for interaction

followed by all active values. The basic functionality of activeValues

was defined here and inherited by each of its subclasses. ActiveValue

itself is an abstract class, which is a placeholder in the class hierarchy,

and cannot be instantiated.

7.3.1 Using Active Values

 LOOPS specified several guidelines for using active values:

• Before you start coding, decide what functionality you want

the active value to provide:

o Will it cause a side effect?

o Will it maintain/enforce constraints between two

pieces of data?

o Will it transform the value provided in the access to

some internal form?

o Will it transform an internal value to an external form

to be deliver to the calling object?

o Will its contents need to be initialized?

• Determine which activeValue subclass that you want to

specialize, if necessary, to achieve the functionality specified

above.

• Create an instance of the activeValue subclass you have

chosen or specialized.

• Initialize the contents of the activeValue subclass instance, if

necessary.

• Install the active value on the data that you want to become

active using AddActiveValue.

Medley LOOPS: The Basic System

210

7.3.2 Specializing an Active Value

 To use active values, you need to make instances of some subclass

of activeValue or create your own specializations in order to create

instance. Figure 7-1 shows activeValue and its specializations.

Figure 7-1. ActiveValue and its specializations

 The following sections describe the specializations of

ActiveValue.

Medley LOOPS: The Basic System

211

7.3.2.1 IndirectVariable

 This specialization acted as indirect addressing by returning the

value of another variable as its value. Consider a variable that is

directly addressable by a Get or Put method, while you want to hide

the actual variable from the view of the caller. You can use this

subclass to create instances that perform the actual Get or Put on the

variable referenced by this AV, called the tracked variable. Any

transformation methods would be associated with the AV, which

allow the tracked variable to have a canonical format. Then, different

instances of IndirectVariable could perform different transformations

on it depending how the result would be used. Table 7-1 describes its

instance variables.

Table 7-1. IndirectVariable Instance Variables

Instance Variable Description

object An instance of a class containing varName.

varName The name of the tracked variable which is

referenced by the AV.

propName If non-NIL, a property associated with the IV.

Type Type of variable being referenced. Valid values

are CV, IV, or NIL. Default is an IV.

A specialization of IndirectVariable is created so as not to establish

equality between the two variables. Thus, you also need to specialize

GetWrappedValue and PutWrappedValue.

 The definition for GetWrappedValue is:

"Fetch the value wrapped in the active value without triggering any

side-effects."

(SELECTQ (@ type)

Medley LOOPS: The Basic System

212

 ((NIL IV)

 (GetValueOnly (@ object)

 (@ varName)

 (@ propName)

)

)

 (CV

 (GetClassValueOnly (@ object)

 (@ varName)

 (@ propName)

)

)

 (HELPCHECK "Invalid type" (@ type))

)

 The definition for Put WrappedValue is:

"Replace the value wrapped in the active value without triggering any

side-effects."

(SELECTQ (@ type)

 ((NIL IV)

 (PutValueOnly (@ object)

 (@ varName)

 newValue

 (@ propName)

)

)

 (CV

 (PutClassValueOnly (@ object)

 (@ varName)

 newValue

 (@ propName)

Medley LOOPS: The Basic System

213

)

)

 (HELPCHECK "Invalid type" (@ type))

)

 The function _Supers ensured that the default behavior of

IndirectVariable is used to retrieve or store the data in the tracked

variable. TestAV.txt is an adaptation of a test sequence in the LRM.

The source code is in Appendix C.1. Here is the result of loading

TestAV.txt.

Medley LOOPS: The Basic System

214

Medley LOOPS: The Basic System

215

At the end of the test file, we inspect the two entities: Tank1 and Pipe1.

Here is another example of using IndirectVariable.

And, the variables of 3FeetAbove are:

Medley LOOPS: The Basic System

216

 The code for NewTestAv is found in Appendix C.2.

7.3.2.2 LocalStateActiveValue

 LocalStateActiveValue contains the instance variable localState,

which is used to store the value of the tracked variable. It is useful

when you need an activeValue that produces a specific side effect in

your application.

 Thus, you also need to specialize GetWrappedValue and

PutWrappedValue. Table 7-2 describes its instance variables.

Table 7-2. LocalStateActiveValue Instance Variables

Instance Variable Description

localState A variable that holds the actual value of the

variable which is wrapped as an active value.

 Applying GetWrappedValueOnly to an instance of

LocalStateActiveValue results in calling (GetValueOnly self

(QUOTE localState)). Similarly, applying PutWrappedValueOnly

results in calling (PutValueOnly self (QUOTE localState) (if

(NotSetValue newValue) then NestedNotSetValue else newValue)).

 When a LocalStateActiveValue was used as the default value for

an instance variable in a class, it must be copied to each instance of

the class; otherwise, every instance of the class would share a single

Medley LOOPS: The Basic System

217

localState. This copying is done automatically by LOOPS at the first

instance of accessing the instance variable.

 Once the copying is completed, every instance of the class has its

own version of localstate. The copying operation was performed by

the method CopyActiveValue.

 Method: CopyActiveValue

 Arguments: <object>, the ActiveValue instance.

 <annotatedValue, the value to be copied.

 Return: A new annotatedValue wrapped round a copy of the

 ActiveValue <object>.

Try this example from the LRM 1991.

which pops up a SEdit window:

Closing the SEdit window yields:

Medley LOOPS: The Basic System

218

Similarly for GetWrappedValue:

which also pops up a SEdit window:

Closing the SEdit window yields:

Make window1 an instance of Window:

We can see what the default description BlippingActiveValue

GetWrappedValue) is via:

In Exec2, the default TTY we see:

Medley LOOPS: The Basic System

219

Now, let’s set the height of window1:

 And, add an active value for ‘height to winow1:

Now, let’s change the height to 300.

7.3.2.3 ExplicitFnActiveValue

 ExplicitFnActiveValue emulates an active value that was used in

the previous Buttress version of Interlisp and found in earlier versions

of Truckin. It was also used in LOOPSBACKWARDS, which will be

described in Medley Loops: Rule-based Systems.

Note: The Medley implementation recommends that users do not use

this AV in new projects.

Medley LOOPS: The Basic System

220

7.3.2.4 NoUpdatePermittedAV

 NoUpdatePermittedAV is a subclass of activeValue that does

not allow the variable to be updated. This AV is used to effectively

create a constant variable in a class or an instance. When the AV is

created, the current state is stored in the local State. GetValue will

return the value of the variable, but PutValue will cause a break with

the message NoUpdatePermitted!. Table 7-3 describes its instance

variables.

Table 7-3. NoUpdatePermittedAV Instance Variables

Instance Variable Description

localState A variable that holds the actual value of the

variable which is wrapped as an active value.

7.3.2.5 LispWindowAV

 LispWindowAV is a subclass used by LOOPS to ensure that the

window instance variable within a LOOPSWindow contains an

Interlisp window. It is a specialization of LocalStateActiveValue.

 LispWindowAV is installed on the window variable of a subclass

of LOOPSWindow. It checks to see if localState is a window and

assures that the other instance variables are set correctly. See Medley

LOOPS Advanced Topics for further details.

Note: Medley LOOPS suggests this class provides functionality

required by the LOOPS system, and should not generally be used by

LOOPS users.

Medley LOOPS: The Basic System

221

7.3.2.6 InheritingAV

 InheritingAV is an abstract class that is used as a mixin to add

the InheritedValue method to a class. It is also used as a super class of

AppendSuperValue to provide incremental menus in various parts of

LOOPS.

 This specialization is used as a mixin to add the InheritedValue

method to a class. This method allows an instance to access the value

of an instance variable defined in the parent class as if there was no

value assigned to the IV in the localState of the instance. It is added

as mixin to other specialization of activeValue in the instance.

7.3.3 Breaking and Tracing Active Values

 To facilitate the breaking and tracing active values, LOOPS

defines some specializations of localStateActiveValue for debugging

of LOOPS applications. All breaks and traces occur before the

variable is read or written. Table 7-4 describes the instance variables

found in these subclasses.

Table 7-4 Subclass Instance Variables

Instance Variable Description

object An instance of a class containing varName.

varName The name of the tracked variable which is

referenced by the AV.

propName If non-NIL, a property associated with the IV.

Medley LOOPS: The Basic System

222

7.3.3.1 BreakOnPut

 BreakOnPut breaks when an attempt is made to put a new value

to a variable.

7.3.3.2 BreakOnPutOrGet

 BreakOnPutOrGet breaks when a variable is read or written.

7.3.3.3 TraceOnPut

 TraceOnPut traces attempts to put new value to a variable.

7.3.3.4 TraceOnPutOrGet

 TraceOnPutOrGet traces an attempt to read or write a variable.

7.3.4 Appending to a Super Value

 A instance variable may have a value both in the parent class of

an instance and defined locally in the instance itself. It is sometimes

useful to know both values to determine which one to use in an

application. Alternatively, the local value may be a refinement of the

value of the instance variable stored in the parent class.

 When AppendSuperValue is installed on a variable of an

instance, Get- references return the value of the variable in the

localState of the instance appended to the value of the variable in its

parent class (e.g., the value that is inherited).

 Any PutValue replaced the active value as well as the localState

value.

Medley LOOPS: The Basic System

223

Note: Medley LOOPS notes that appendSuperValue was designed for

use in class variables where replacement is infrequent. [It is not clear

why this is so?]

7.3.5 InheritedValue

 InheritedValue allows a user program to access the value of an

IV defined in the parent class or a superclass in the class hierarchy that

the instance would have inherited if the IV had no value in the

localState. InheritedValue has the format:

 Method: InheritedValue

 Arguments: <object>, InheritingAV instance.

 <object>, the class or instance containing the

 Variable.

 <varName>, the name of the variable.

 <propName>, Name of an IV or CV property to be

 viewed.

 <type>, one of IV, CV, or NIL.

 Return: The value which should have been inherited if the local

 instance had no value.

7.3.6 ReplaceMeAV

 This specialization sets PutWrappedValue to simply replace

itself on the first Put access. It is an abstract class not intended for

instantiation. It is used as a mixin with another specialization to add

its functionality to the subclass. No variables were defined in this

class.

Medley LOOPS: The Basic System

224

 As an example, FirstFetchAV combines LocalStateActiveValue

and ReplaceMeAV to get an instance of an ActiveValue that replaces

itself with the value of an expression stored in the instance variable

localState.

7.3.7 NotSetValue

 This specialization of ActiveValue is used to implement instance

variable inheritance. It has no instance variable to hold a local value

and is replaced after the first PutValue instance.

 When an instance of a LOOPS object is created, all of its IVs were

initialized to contain the value of the variable NotSetValue. Its value

in an IV is replaced by the initialization procedures with another value

generated by the initialization procedures of new instances that were

invoked by the methods NewWithValues and NewInstance. By

initializing all new instance variables in a new instance, LOOPS

speeds up the initialization process.

 The annotatedValue #,NotSetValue is bound to the Lisp variable

NotSetValue. It always had to be on the inside of any set of nested

values. Its WrappingPrecedence method returns NIL.

7.3.7.1 NestedNotSetValue

 This is a subclass of NotSetValue that is used by the internal code

of LOOPS to solve the problem of using active values as default

values. It should not be used by the user.

7.3.8 User Specializations of Active Values

 When new specializations of the class ActiveValue were defined,

the methods GetWrappedValueOnly and PutWrappedValueOnly might

Medley LOOPS: The Basic System

225

need to be specialized. The user may choose to specialize the methods

described in Table 7-5.

Table 7-5. User Specialization of Selected AV Methods

Method Description

AVPrintSource Prints data regarding an ActiveValue

instance.

GetWrappedValue The method for retrieving an activeValue.

PutWrappedValue The method for putting an activeValue.

WrappingPrecedence Returns T, NIL, a number to specify the

order of activeValue nesting.

CopyActiveValue The method for copying an annotatedValue

and its wrapped activeValue.

7.4 Active Value Methods

 The class ActiveValue has numerous methods for implementing

its behavior. These methods fall into several categories which are

described in the following sections.

7.4.1 Adding and Deleting Active Values

 This section describes methods for installing, deleting, and

replacing active values in LOOPS objects.

7.4.1.1 AddActiveValue

 The AddActiveValue method installs an active value by first

wrapping it in an annotatedValue and then placing the annotated

Value as the value of a variable. Its format is:

Medley LOOPS: The Basic System

226

 Method: AddActiveValue

 Arguments: <object>, the handle of an instance of ActiveValue.

 <object>, the handle of the object containing the

 variable.

 <varName>, the name of the variable receiving the AV.

 <propName>, the name of an IV or CV property to be

 transformed into an active value.

 <type>, one of IV, CV, CLASS, METHOD or NIL.

 <annotatedValue>, an AnnotatedValue object that

 will contain the ActiveValue or NIL. If NIL, a new

 AnnotatedValue is created.

 Result: <annotatedValue>.

An example, from the example in Section 7.3.2.2, is:

7.4.1.2 Wrapped Precedence

 The WrappedPrecedence method returned a value which

determined how to nest the active value associated with self. It’s

format is:

 Method: WrappedPrecedence

 Arguments: <object>, an ActiveValue instance.

 Result: T, NIL, or a number.

 If it returned T, the AV associated with self was installed outside

any other AV.

 If it returned NIL, the AV was installed as the innermost AV.

Medley LOOPS: The Basic System

227

 If a number, indicated which layer (level of precedence) this AV

would occupy in a set of nested AVs.

 If an AV has an IV localState, then the original AV is inserted

into the localState of the new AV to be installed.

7.4.1.3 DeleteActiveValue

 The DeleteActiveValue method deleted an AV from a containing

object. It’s format is:

 Method: DeleteActiveValue

 Arguments: <object>, the handle of an ActiveValue instance.

 <object>, the LOOPS object containing the variable

 where the AV is stored.

 <varName>, the name of the variable receiving the AV.

 <propName>, the name of an IV or CV property to be

 transformed into an active value.

 <type>, one of IV, CV, CLASS, METHOD or NIL.

 Return: The deleted AV, if it was found in <varName>.

7.4.1.4 ReplaceActiveValue

 The ReplaceActiveValue method replaced an AV in a LOOPS

object variable with a new AV. It was also used to replace an existing

AV with an updated version. Its format is:

Medley LOOPS: The Basic System

228

 Method: ReplaceActiveValue

 Arguments: <object>, the handle of an ActiveValue instance.

 <newVal>, the new value used to replace self.

 <object>, the LOOPS object containing the variable

 where the AV is stored.

 <varName>, the name of the variable receiving

 the AV.

 <propName>, the name of an IV or CV property

 to be transformed into an active value.

 <type>, one of IV, CV, or NIL.

 Return: The value of <newVal>.

7.4.2 Wrapped Value Methods

 As noted, the value of a variable is wrapped in an ActiveValue,

usually in the instance variable localState. This is done by specifying

the behavior of new ActiveValue specializations by specializing the

methods GetWrappedValue and PutWrappedValue. They bypass

the active value mechanism.

7.4.2.1 Getting Wrapped Values

 LOOPS provides two methods for getting wrapped value:

GetWrappedValue and GetWrappedValueOnly. Their format is:

Medley LOOPS: The Basic System

229

 Method: GetWrappedValue

 GetWrappedMethodOnly

 Arguments: <object>, the ActiveValue instance

 <object>, the LOOPS object containing the variable

 where the AV is stored.

 <varName>, the name of the variable receiving

 the AV.

 <propName>, the name of an IV or CV property

 to be transformed into an active value.

 <type>, one of IV, CV, CLASS, METHOD or NIL.

 Return: The value returned from the actions performed by

 the GetWrappedValue method.

 The method contains the code to be triggered when a get reference

has been made to an active value.

 GetWrappedValueOnly allowed the ActiveValue mechanism to

deal with nested active values. Users generally do not have specialize

it, since other instances are available.

7.4.2.2 Putting Wrapped Values

 LOOPS provided two mechanisms for putting wrapped values:

PutWrappedValue and PutWrappedValueOnly. Their format is:

Medley LOOPS: The Basic System

230

 Method: PutWrappedValue

 PutWrappedValueOnly

 Arguments: <object>, the ActiveValue instance

 <object>, the LOOPS object containing the variable

 where the AV is stored.

 <varName>, the name of the variable receiving

 the AV.

 <newValue>, the new value to be stored.

 <propName>, the name of an IV or CV property

 to be transformed into an active value.

 <type>, one of IV, CV, CLASS, METHOD or NIL.

Return: The value of <newValue>.

 The method contains the code to be triggered when a put reference

has been made to an active value.

 PutWrappedValueOnly allowed the ActiveValue mechanism to

deal with nested active values. Users generally do not have specialize

it, since other instances are available.

7.5 Annotated Properties

 In an active value, property annotations can be used to implement

useful, but subsidiary, values. Such properties might include data

about precision, about reliability, about accuracy of the value of the

variable.

 A reasoning or other system could store data about the value

without changing the value itself. In the Truckin’ application, we will

see how gauges can be used to change the display of certain data by

inspecting the data.

Medley LOOPS: The Basic System

231

7.6 Defensive Programming

 As we have seen, AVs are a powerful mechanism for managing

access to IVs/CVs of classes and instances. A particular use is called

defensive programming, which attempts to develop structures that

prevent the programmer from doing damage to the application through

inadvertent use of methods and functions. The basic idea in defensive

programming is to wrap each IV/CV in an AV with the appropriate

getFn and putFn methods that can:

1. Check incoming data for the right type and value;

2. Convert incoming data, as necessary, to accurately reflect the

required;

3. Reformat outgoing data from internal representation to a

format expected by external classes;

4. Mask all or parts of the outgoing data that should not be shared

by external classes, but are necessary for internal computation

within the class.

 Defensive programming requires additional computational time,

but it is a mechanism for trying to eliminate some of the proximal

causes for errors in programs.

Medley LOOPS: The Basic System

232

7.7 ActiveValue Uses

 Bobrow and Stefik (1986) described several uses of active values.

In the LOOPS debugging package, AVs were attached to variables

that allowed the changes in the variables values to be traced, including

out of range values for the variables.

 Another use in the Gauges package is to change the display in the

gauge whenever the value of a variable changed to which the gauge is

attached. In Volume II: Tools and Utilities, Gauges will be discussed

along with other tools and utilities. In either case, there is no change

to code of the monitoring process.

 In Volume III, Designing Rule-Based Systems with LOOPS, this

capability will be described in more detail when we discuss the

Truckin’ game.

Medley LOOPS: The Basic System

233

Chapter 8

Introduction to

Rule-Oriented Programming

In rule-oriented programming, the behavior of a system is

specified by sets of condition-action pairs. Typically, these have been

symbolically represented by “if…then” statements, as seen in

predicate logic, which are called rules. Rules are organized into rule

sets, which capture an aspect of the behavior of the system. The total

behavior is captured in the collection of rule sets.

Rules are selected by patterns in the data, which may be largely

independent of each other. Typically, however, a collection of rule sets

provides a capability for describing flexible responses to a wide and

varying range of events that may occur in the domain of interest.

This section will provide a brief description of some aspects of

rule-oriented programming in LOOPS. It is provided here only for

completeness of the description of the paradigms incorporated in

LOOPS.

 Volume III of LOOPS documentation, Medley LOOPS: Rule-

based Systems, will describe advanced aspects of rule-oriented

program and how to write rule-based systems using the

LOOPSRULES functions. It will also describe the Truckin’ game

developed by several researchers at Xerox PARC to demonstrate how

rule-based systems should be developed within the LOOPS

environment.

Medley LOOPS: The Basic System

234

8.1 RuleSets and Rules

A RuleSet contains specific control structures for selecting and

executing rules.

 Rule-oriented programming was the basis for many early

Artificial Intelligence (AI) projects or building expert systems.

LOOPS has incorporated lessons learned from those early systems to

provide a powerful, flexible capability for rule-oriented programming.

 Major features of LOOPS rule-oriented programming include:

1. Rules are organized into RuleSets each of which can have its

own control structures for selecting and executing rules.

2. RuleSets are the building blocks for organizing reasoning

programs in LOOPS.

3. LOOPS provides a workspace for rules, which contains the

name space for rule variables.

4. Rule-oriented programming is integrated with the other

programming paradigms discussed in this manual.

5. RuleSets can be accessed by sending a message to an object

or triggered through an active value as well as being invoked

directly from Lisp programs or other rules.

6. Rules leave an automatic audit trail that can be used to

determine how a program reached its results.

7. RuleSets can be embedded within tasks that enhances the

variety of control mechanisms.

8. A debugging facility allows users to debug their rule sets.

Medley LOOPS: The Basic System

235

8.2 Organizing a Rule-based System

 A Rule-Based System (RBS) can be organized in many ways:

• it can just be a collection of rules;

• it might be a RuleSet with a collection of rules; or

• it might be a collection of RuleSets.

 The complexity of the program increases as we move from the top

of the list to the bottom of the list.

8.3 RuleSet

 Early on, most RBSs were organized as a collection of rules. This

was a relatively simple structure, but as the number of rules increased

it became much harder to organize them into groups in accordance

with the domain structure. This difficulty meant it was often hard to

grasp which rules applied to which conditions within the problem

domain.

 The concept of a RuleSet is that all rules pertaining to an object or

subproblem within the domain are collected together in one place.

This makes it easier to locate rules focused on a particular aspect of

problem solving within the domain. It also make it easier to add new

rules because the rule are contained within the RuleSet.

Medley LOOPS: The Basic System

236

 We can think of RuleSets in the following way:

1. The RuleSet provides a name space such that rules with a

RuleSet must have unique names. However, those names can

be used across different RuleSets.

2. The Rule Set makes it easy to add new rules to the program

because new rules can be checked within a smaller set of rules,

nit all rules within the system.

3. A RuleSet makes it easy to select a set of rules to execute

when a specific condition is detected rather having to check

all rules, which depending on the number of rules and

complexity of their IF parts, can be time-consuming.

4. RuleSets allow for different types of control structures, which

provides more flexibility in structuring the program to reason

within a problem space.

8.3.1 RuleSet Class Definition

 A RuleSet is a class which has the following definition:

(DEFCLASS RuleSet

 (MetaClass RuleSetMeta

 doc "A RuleSet is a set of rules, together with methods for

 interpreting them."

 Edited%: (* dgb%: "27-Aug-84 17:33"))

 (Supers NamedObject Perspective Method)

 (InstanceVariables

 (compiledRules NIL doc "Name of Lisp Function for

Rules.")

 (workSpace NIL doc "name of class for work space.")

(args NIL doc "arguments to the RuleSet other than self.")

Medley LOOPS: The Basic System

237

 (tempVars NIL doc "temporary variables.")

(taskVars NIL doc "Task variables.")

(debugVars NIL doc "variables to be printed during a trace

or break.")

(numRules NIL doc "Number of Rules in RuleSet.")

(controlStructure doAll doc "control structure for rules.")

(whileCondition NIL doc "while condition for RuleSet.")

(compilerOptions NIL doc "Compilation options.")

(auditClass #,($C StandardAuditRecord) doc "name of class

for audit records.")

(metaAssignments NIL doc "RuleSet specific meta

assignment statements.")

(ruleClass #,($C Rule) doc "name of class for rule objects.")

(taskClass NIL doc "Name of class used for tasking.")

(perspectiveNode #,($C RuleSetNode) myViewName RuleSet

)

)

 These fields will be described in more detail in Volume III: Rule-based

Systems.

8.3.2 RuleSetSource

 A RuleSetSource is a class that stores a list of rule numbers that

contain the rule source code. Its definition is:

(DEFCLASS RuleSetSource

(MetaClass Template

doc "Source code for a RuleSet. Contains editing

information about the RuleSet, and an indexed list of rule

Medley LOOPS: The Basic System

238

objects."

Edited%: NIL

)

 (Supers NamedObject Perspective Method)

 (InstanceVariables

(compiledRules NIL doc “name of Lisp function for

Rules”)

(workspace NIL doc “name of class for workspace”)

(args NIL doc “arguments to RuleSet other than self”)

(tempVars NIL doc “temporary variables”)

(taskVars NIL doc “task variables”)

(debugVars NIL doc “variables to be printed during a

trace or break”)

(numRules NIL doc « number of rules in the RuleSet”)

 (controlStructure doAll doc “control structure for rules”)

 (whileCondition NIL doc “while condition for RuleSet")

 (compilerOptions NIL doc “compiler options")

 (auditClass #,($C StandardAuditRecord) doc “name for

 audit records”)

 (metaAssignments NIL doc “RuleSet specific meta

 assignment statements”)

 (ruleClass #,($C Rule) doc “name of class for rule

 objects”)

 (taskClass NIL doc “name of class used for tasking”)

 (perspectiveNode #,($C RuleSetNode) myViewName

 RuleSetNode)

)

)

)

Medley LOOPS: The Basic System

239

8.3.3 RuleSet Structure

 At a high-level, the organization of a rule set appears something

like this (example extracted from Stefik and Bobrow 1983):

 RuleSet Name: CheckWashingMachine

 Workspace Class; WashingMachine

 Control Structure: while1

 While Condition: ruleApplied

8.3.4 RuleSet Methods

 LOOPSRULES defines numerous methods for a RuleSet. Many

of these are used internally within the LOOPSRULES code, although

all are accessible to the programmer. However, this manual discusses

just those methods that seem most useful to the programmer defining

and using a RuleSet.

8.3.5 Invoking RuleSets

 RuleSets can be executed by invoking them from rules. A simple

double-dot notation can be used to invoke a RuleSet as follows:

 RS1..ws1

where RS1 is a variable bound to a RuleSet and the variable ws1 is its

workspace. The value returned is that returned from executing the

RuleSet.

Medley LOOPS: The Basic System

240

 A RuleSet can also be invoked by its LOOPS object name using

the $ notation as in:

 $SHKRules..ws1

which invokes the RuleSet object with the LOOPS name SHKRules.

 It is possible to nest the calling of Rules as if we calling a nested

sequence of subroutines. Thus A..B..C has A invoking B which

invokes C. C could also invoke A recursively.

 The programmer must beware of coding a recursive invocation

that does not have a termination condition else the recursion will

continue until memory is exhausted.

8.4 RuleSetMeta

 RuleSetMeta is the MetaClass for RuleSets. Its structure is:

(DEFCLASS RuleSetMeta

 (MetaClass Shkreli’s doc “MetaClass for RuleSets” Edited%:

 (* <editor-name>: <data string>))

 (Supers Template)

)

Medley LOOPS: The Basic System

241

8.5 RuleSetNode

 A RuleSetNode is a Node for RuleSet Perspectives. Its structure

is:

(DEFCLASS RuleSetNode

 (MetaClass Template doc “Node for RuleSet perspectives”

 Edited%: (* <editor-name>: <data string>))

 (Supers Node Object)

 (InstanceVariables

(perspectives NIL source #,($C RuleSetSource) Ruleset #,($C

RuleSet)

)

)

 As noted in the LRM 1983, perspectives provided different views

of an entity based on how it is used in an RBS. An example might be

viewing a man through different role lens such as father, employee, or

traveler. A perspective provides access to the information in different

ways.

NOTE: According to the LRM 1983, perspectives were not

implemented in that version of LOOPS. We are researching this

capability in technical documentation from Xerox PARC.

Medley LOOPS: The Basic System

242

8.6 RuleSetSource

 A RuleSetSource contains the source code for a RuleSet. Its

structure is:

(DEFCLASS RuleSetSource

 MetaClass Template doc “Source code for a Ruleset, including

 editing information and an indexed list of rule objects.”

 Edited%: (* <editor-name>: <data string>))

 (Supers DatedObject Perspective)

 (InstanceVariables

 (perspectiveNode #,($C RuleSetNode) myViewName

 source)

 (edited NIL doc “Date last edited.”)

 (editor NIL doc “last user to edit the rules.”)

 (ruleList NIL doc “a list of the rule objects”)

)

)

8.7 Rule

 A Rule describes one or more actions to be taken when a specified

set of one or more conditions are satisfied. A rule has three major

parts:

`

1. The left hand side (LHS)

2. The right hand side (RHS)

3. The meta description (MD).

Medley LOOPS: The Basic System

243

 Without the meta description, we typically write a rule as:

 LHS -> RHS

 IF LHS THEN RHS

which are equivalent syntactic representations.

A rule may have no conditions, whence it can be written as:

➔ RHS

 IF T THEN RHS.

 A rule can be preceded by a meta description which is enclosed

in curly braces as depicted below:

 {MD} LHS -> RHS.

8.7.1 Rule Class Definition

 A Rule is a class which has the following definition:

(DEFCLASS Rule

(MetaClass Class doc "Class for describing rules as objects.

Instances of this class (rule objects) are created as a side-effect

when RuleSets are compiled in audit mode."

Edited%: * mjs%: "12-FEB-83 12:19"))

(Supers Object)

(InstanceVariables

Medley LOOPS: The Basic System

244

(source NIL doc "string that was the source of the rule in

The RuleSet.")

(edited NIL doc "person who edited the rule.")

(editor NIL doc "time and date of the editing.")

(ruleNumber 0 doc "sequence number of the rule in the

RuleSet at the time of editing.")

(ruleSet NIL doc "RuleSet to which this rule belongs.")

)

)

8.7.2 Variables Used in Rules

 LOOPS supports multiple types of variables that are using within

LOOPS programs. Table 8-1 presents these types of variables.

Medley LOOPS: The Basic System

245

Table 8-1. Types of LOOPS Variables

Variable Type Usage

Class Variables These variables are descriptive of a class and are

inherited by all instances of the class – either

directly, in which case their value can be

overridden in an instance, or indirectly, through

a search of the class hierarchy.

Instance Variables These variables are descriptive of a particular

instance of a class.

RuleSet arguments All RuleSets have the variable self as their

workspace.

Temporary Variables These variables are allocated when a RuleSet is

invoked and deallocated when the Ruleset

completes its execution

Audit Record Variables These variables are used in the meta-assignment

statements in the Meta-Description part of a rule.

They describe data to be saved in audit records,

which can be used to create side-effects of rules.

Rule Variables

(REVIEW!!)

These variables hold descriptions of the rules

themselves and are used only in the Meta-

Descriptions of the rules. They specify data

saved in the Rule Object when a rule is

compiled. Theya re declared indirectly as the

instance variables of a Rule Class declaration.

Interlisp Variables These variables are defined as global in the

Interlisp environment and available to any

function, method, or rule.

Reserved Words Several variables have specific uses in the

LOOPS environment and a READ-ONLY.

Table 8-2 describes these.

Other Literals Literals can refer to Interlisp functions, LOOPS

objects, and message selectors as well as strings

and quoted constants.

Medley LOOPS: The Basic System

246

Table 8-2. Reserved Word Usage

Reserved Word Usage

self The current workspace.

rs The current RuleSet.

task The Task representing a current invocation of a

RuleSet.

caller The RuleSet that iinvoked the current RuleSet (rs).

ruleApplied Has value T if a rule was applied in this cycle of a

while condition.

ruleObject This variable represents the rule itself when a

RuleSet is being executed.

ruleNumber This variable is bound to the sequence number of a

rule in a RuleSet when it is executing.

ruleLabel This variable is bound to the label of a rule, if

specified, or NIL.

reasons This variable is bound to a list of audit records

supporting an instance variable of an LHS of the

rule.

auditObject This variable is bound to an object on which a reason

record will be attached at run time.

auditVarName This variable is bound to the name of a variable on

which the reason will be a property.

8.7.3 Infix Operators Used in Rules

 Rules can be written in several formats. LOOPS provides several

infix operators that can enhance the readability of rules. Table 8-3

presents these operators.

Medley LOOPS: The Basic System

247

Table 8-3. Infix Operators in LOOPS Rules

Operators Usage

+, -, *, / Arithmetic Operators

++. -- Arithmetic Operators Module 4

>, <, >=, <=, =, ~= Relational Operators

== EQUAL

<< Member of a list (FMEMB)

 Two unary operators were also supported:

‘-‘ (Minus)

‘~’ (Not)

 The precedence of operators followed the standard conventions.

8.7.4 Use of Interlisp Functions in Rules

 Interlisp functions may be invoked in LOOPS rules by enclosing

the function and its arguments, if any, in parentheses. The function

name is the first literal followed by the arguments as literals. Functions

may also be invoked to produce the values of arguments as in the

following example:

 (Display <arg1> <arg2> (Cursor x y))

Medley LOOPS: The Basic System

248

8.7.5 Use of LOOPS Objects and Message Selectors

 LOOPS classes and other named objects may be referenced in rule

using the $<class> notation. As noted above (Section??), messages

may be sent to LOOPS classes using message selectors in the

following format:

 <var> _(_ $<class> <selector> [<arg1> … <argN>])

 In a rule this might appear as:

 IF cell _ (_ $LowCell Occupied? ‘Heavy)

 THEN (_ cell Move 3 ‘North);

 For unary messages, e.g., messages where only the selector is

specified, an assumption of an implicit self allows the following

format:

 tile.Type=‘BlueGreenCross command.Type =’Slide4 >- …

where Type is the unary message sent to the tile instance variable in

the workspace. tile must be a LOOPS object at run-time else an error

results.

 We could also refer to a LOOPS object whose name is Tile as

follows:

 $Tile.Type=’BlueGreenCross;

Medley LOOPS: The Basic System

249

 We can access a variable in named LOOPS object using the colon

notation:

 $Tile:type=’BlueGreenCross …

where the type instance variable of the LOOPS object Tile is accessed.

 Double colon notation can be used to access a class variable of a

LOOPS object, such as:

 Truck::MaxGas<45 ::ValueAdded>600 -> …

where MaxGas is a class variable of an object bound to truck and

ValueAdded is a class variable of self.

 Two additional examples demonstrate the colon-comma notation:

 wire::capacitance>5 wire:voltage:,support=’simulation -> …

 In the first expression, wire is an instance variable of the

workspace and capacitance is a property of that variable.

 In the second expression, the value of variable wire is a LOOPS

object which has an instance variable of voltage whose property is

support, which receives the value ‘simulation.

 LOOPS provides flexibility of expression, but it takes some time

getting used to the different forms. Thus, it is helpful to read these

expressions twice to ensure you understand what action will be taken

and value produced.

Medley LOOPS: The Basic System

250

8.8 Running RuleSets

 A RuleSet can be executed using the RunRS function whose

format is depicted below:

 Function: RunRS

 Arguments: <RuleSet>, the Rule Set to be run.

 <workspace>, a LOOPS object to be used

 as a workspace.

 <arg1>…<argN>, arguments to the

 RuleSet.

 Result: The value returned by the RuleSet.

8.9 Using RuleSets as Methods

 A ruleset can be used as a method by making it the implementation

of a method for a class. As an example (Stefik, Bobrow, and Mittal

1983):

(DEFCLASS WashingMachine

 (MetaClass Class doc (* comment) …)

 (InstanceVariables (Owner …))

 (Methods

 (Simulate SimulateWMRules)

 (Check RunCheckWMRules

 doc (* Rules to check WM)

)

Medley LOOPS: The Basic System

251

)

 …

)

 When a Simulate message is sent to an instance of

WashingMachine, the SimulateWMRules RuleSet will be run with the

instance as its workspace.

8.9.1 Defining A RuleSet as a Method

 The function DefRSM (‘define RuleSet as a Method”) can be used

to specify a RuleSet as a method. It takes the form:

 Function: DefRSM

 Arguments: <ClassName>, the name of a class.

 <Selector>, the name of the message to

 invoke the RuleSet,

 <RuleSetName>, the name of the RuleSet

 to be installed as a method.

 Result: The name of the RuleSet.

 If the RuleSetName is NIL, DefRSM creates a RuleSet object,

opens the Editor for the user to enter rules, compiles the rules into a

Lisp function, and installs the RuleSet as the target of the <selector>

in the class Methods.

8.10 Control Structures for Selecting Rules

Medley LOOPS: The Basic System

252

 A control structure is associated with a rule set. It determines

which rules are executed given that the conditions (the if-part) must

be satisfied using the rules in the workspace. Different values for

variables in rules will lead to different rules being executed. Table 8-

4 depicts the control structures.

Table 8-4. RuleSet Control Structures

Control Description

Do1 Execute the first rule in the RuleSet whose

conditions are satisfied. The value of the RuleSet is

the value of the rule.

It is used to specify a set of mutually exclusive

actions. Specific rules should be placed before

general rules in the RuleSet.

DoAll For each rule in the RuleSet, every rule whose

conditions are satisfied is executed. The value of the

RuleSet is the value of the last rule executed. If no

rule is executed, the value is NIL.

It is used when many aspects of a situation can be

carried out independently, but should all be carried

out in one invocation of the RuleSet.

While1 Iterating over the rules of the RuleSet, one rule is

executed in each iteration, and then selection begins

anew from the beginning of the Rule Set.

The value of the RuleSet is the value of the last rule

executed.

If no rule is executed, then the value of the RuleSet

is NIL.

Iteration can be terminated by placing a STOP

statement in the action part of a rule.

WhileAll Iterating over the rules of the RuleSet, if the while

condition is satisfied, every rule for which it is

satisfied is executed.

Medley LOOPS: The Basic System

253

8.10.1 Singleton Rule Execution

 In some cases, such as initializing a problem, we want to execute

a rule only once when the Ruleset is first examined. This is termed a

One-Shot Rule, which corresponds to the singleton case in Design

Patterns (Gamma, Johnson, Helms, and Vlissides 1985).

 In the Singleton design pattern, a variable was set to false (or 0)

to indicate an action had not yet occurred, then set to true or 1 when

the action was performed. The variable was tested each time for 0

when the action was to be performed. Thereafter, if the value of 1, the

action was never performed again. Figure 8-5 depicts how this might

be done:

Control Structure: While1

Temporary Vars: ruleXApplied;

…..

IF ~ruleXApplied <condition1> < condition2>

THEN ruleXApplied _ T <action1>;

 LOOPS provides a shorthand notation, which expresses the same

intent:

{1} IF <condition1> < condition2> THEN <action1>;

where the in the braces indicates the number of times the rule is to be

executed

Medley LOOPS: The Basic System

254

References

Bobrow, D.G., and Stefik, M. J. 1986. Perspectives on Artificial Intelligence

Programming. Science 231:4741, pp. 951-956.

-Reprinted in Rich, C. & Waters R.C. (Eds.) Readings in Artificial

Intelligence and Software Engineering, pp. 581-587, Los Altos: Morgan

Kaufman Publishers, 1986.)

Bobrow, D.G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., and Zdybel,

F. 1986. “CommonLoops: Merging Lisp and Object-Oriented Programming.

OOPSLA ‘86: Proceedings of the ACM Conference on Object-Oriented

Programming Systems, Languages, and Applications, pp. 17-29, Portland,

Oregon, September 29 – October 2, 1986, Edited by Normal Meyrowitz,

Special Issue of SIGPLAN Notices 21:11, November 1986.

(Reprinted in Peterson, G.E. (ed), Object-Oriented Computing, Volume 1:

Concepts, IEEE Computer Society Press, pp. 169-181, 1987.

Bobrow, D. G. & Stefik, M. J. 1982. LOOPS: Data and Object Oriented

Programming for Interlisp. European AI Conference, Orsay, France.

Bobrow, D. G., Stefik, M. 1983. The Loops Manual. Knowledge-Based VLSI

Design Group Memo KB-VLSI-81-13.

Cannon, H. Flavors: a non-hierarchical approach to object-oriented

programming, Symbolics, Inc., 1982.

Kaisler, S. 1985. Interlisp: The Language and Its Usage, John Wiley

& Sons, Inc., New York, NY

Copyright reverted to author; scanned and converted to PDF – 2021.

Available at Interlisp.org.

Medley LOOPS: The Basic System

255

Kaisler, S. Unpublished. Medley Interlisp: The Interactive

Programming Environment,

Revised and extended 2021. Available at Interlisp.org.

Kaisler, S. Unpublished. Medley Interlisp: Tools and Utilities, Revised

and extended 2021. Available at Interlisp.org.

Malone, T.W., K.R. Grant, and F.A. Turbak. 1986. “The Information

Lens: An Intelligent System for Information Sharing in

Organizations”, CHI’86 Proceedings.

Stefik, M. 1979. “An examination of a frame-structured representation

system”, Proceedings of the International Joint Conference on

Artificial Intelligence, Tokyo, Japan, pp. 845-852.

Stefik, M., D.G. Bobrow, S. Mittal, and L. Conway. 1983. Knowledge

Programming in LOOPS: Report on an Experimental Course, AI

Magazine.

Stefik, M. and Bobrow, D.G., and Kahn, K. 1986. Integrating access-

oriented programming into a multiparadigm environment. IEEE

Software, 3:1, pp. 10-18.

-Reprinted in Peterson, G.E. (ed). 1987. Object-Oriented Computing,

Volume 2: Implementations, IEEE Computer Society Press, pp. 170-

179.

-Also reprinted in Richer, M.H. (ed.) AI Tools and Techniques, pp. 47-

63, Ablex Publishing Corporation, Norwood, New Jersey.

Stefik, M. and Bobrow, D.G., and Kahn, K. 1986. “Access-oriented

programming for a multiparadigm environment”, Proceedings of the

Hawaii International Conference on System Sciences.

Medley LOOPS: The Basic System

256

(Note: This paper won the best paper award out of 80 papers for the

conference. An expanded version of this paper appeared by invitation

in IEEE Software. This paper has also been reprinted in various

books.)

Stefik, M. and Bobrow, D.G. 1986. Object-oriented programming:

Themes and Variations. AI Magazine 6:4, pp. 40-62.

-Reprinted in Peterson, G.E. (ed). 1987. Object-Oriented Computing,

Volume 1: Concepts, IEEE Computer Society Press, pp. 182-204.

-Also reprinted in Richer, M.H. (ed.) AI Tools and Techniques, pp. 3-

45, Ablex Publishing Corporation, Norwood, New Jersey.)

Venue Corporation, San Carlos, CA:

(a) 1991. LOOPS Library Module Manual (LMM)

(b) 1991. LOOPS Reference Manual (LRM)

Xerox Corporation, Palo Alto, CA:

(a) 1986. Xerox LOOPS, A Friendly Primer, 3102242

Medley LOOPS: The Basic System

257

Appendix A: Running MEDLEY

A.1 Running Medley

 Under Cygwin, my home directory is /home/steve and my user

name is steve. Within /home/steve, the installer has established

directories for maiko and medley. Maiko is the virtual machine for

executing the Interlisp byte codes. Medley is the directory for Interlisp

software – both source code and compiled code.

 To run Medley on Windows 10/11, navigate to your home

directory, which should be c:/users/<name>/il. It should loke

something like this:

Medley LOOPS: The Basic System

258

1. Navigate to you home directory, thence to subdirectory /il.

 The key directories you are interested in are “loops-main”, where

you will find subdirectories for Medley LOOPS and “home”, where

you will find your home directory, <name>.

2. Enter “medley.bat” at the command prompt.

Medley LOOPS: The Basic System

259

1. Open a Command window via cmd. You should see something like

this:

Instead of runningGauges, you should see a runningMedley message.

2. Go to directory il in your home directory, here c:\Users\Steve\il

which initiates a Medley Interlisp environment as seen below:

Medley LOOPS: The Basic System

260

3. Navigate to /home/<name/, which is you home directory for Medley

Interlisp. Here is where you should place all of your project files so

that they are easily accessible. Create project directories to hold the

files for a specific project. Here is a small segment of the listing:

Medley LOOPS: The Basic System

261

4. Create a LISP.SYSOUT by entering the following command in the

Interlisp window (right window):

>(SYSOUT ‘LISP.SYSOUT)

Now you have a LISP sysout that can be loaded each time you inoke

medley.

 I have created .bat files to run various versions of Medley sysouts

(a) without LOOPS, (b) with just LOOPS, or (c) with LOOPSRULES

and GAUGES. I tend to run with LOOPSRULES and GAUGES>

Medley LOOPS: The Basic System

262

Appendix B

 Installing and Running LOOPS

 In order to run LOOPS, you must have a Medley Interlisp

distribution that runs on Windows 10 or higher, a Linux variant, or

MacOS release. Medley Interlisp assumes that an Xwindows

environment is available for implementing a graphical user interface

(GUI). Medley Interlisp for Windows uses Cygwin, which is included

in the release (see www.Interlisp.org).

 LOOPS code is loaded into the directory “loops-main” in the

Interlisp directory accessed by c:\Users/Steve/il.

1. Click on loops-main to open this directory. You should see

something like this.

http://www.interlisp.org/

Medley LOOPS: The Basic System

263

2. Navigate to the “system” directory. You should something like this

(partial):

Medley LOOPS: The Basic System

264

3. In the Interlisp Window (right window), enter the commands:

(CNDIR "your/loops/system")

(FILESLOAD LOADLOOPS)

(LOADLOOPS)

These commands load the compiled version of the LOOPS system

from loops-main/system.

These commands will NOT work in the XCL window (left window).

Medley LOOPS: The Basic System

265

 You may also want to load the Masterscope enhancements for

LOOPS via:

>(CNDIR "your/loops/library")

>(FILESLOAD LOOPSMS)

 At this point, you may want to consider creating a LOOPS sysout

that consists of the LOOPS infrastructure. This will allow you to

perform object-oriented programming, which extends the

imperative/functional programming model of Interlisp. To do so, enter

the following command at the prompt:

>(SYSOUT ‘LOOPS.SYSOUT)

4. Loading Gauge. Gauges are described in Volume II: Medl

 Medley LOOPS supports graphical widgets called gauges. To

load gauges into your sysout, you need to navigate to loops-

main/library via:

>(CNDIR "your/loops/library")

>(FILESLOAD GAUGELOADER

>(LOADGAUGES)

to load gauges. Gauges are described in Volume II: Medley LOOPS:

Tools and Utilities.

Medley LOOPS: The Basic System

266

 Now, when you want to run with this sysout, you can do so using

this form of run-medley from the operating system prompt:

Figure B-2. Starting Medley with the LOOPSRULES Sysout

The Interlisp Exec appears as shown in Figure B-3.

Medley LOOPS: The Basic System

267

Figure B-3. LOOPSRULES Sysout Running

 Note that the title bar will reflect the user as root, but you can

change this by clicking on User and typing the appropriate name, e.g.

steve, in the pop-up window.

B.2 Loading LOOPSRULES and GAUGES

B.3 Setting System Variables

 Interlisp uses several system variables to access code and data.

Two of these are:

• DIRECTORIES:

• DISPLAYFONTDIRECTORIES:

You should set these so that so the sysout can find your

Medley library and font files. Figure B-x depicts an example.

Figure B-x. Directory Variables

The Medley sysout predefines some locations for directories as

indicated in the figure.

Medley LOOPS: The Basic System

268

B.3.1 Connect to the LOOPS System Directory

 You connect to the LOOPS system directory using the CNDIR

function as depicted below.

Medley LOOPS: The Basic System

269

Appendix C

Testing LOOPS Installation

 LOOPS Medley includes a directory with test modules for testing

LOOPS functionality and timing. These are (on my system):

• /home/steve/LOOPS-MAIN/test/loops

• /home/steve/LOOPS-MAIN/test/timing

 On your system, the home directory will be different.

 We’ll discuss and executes the loops tests first, then move on to

the timing tests.

C.1 LOOPS 1.1 Tests

 LOOPS testing should begin with a fresh sysout. LOOPS-

SETUP.TEDIT describes the testing operations.

 The first action is to set the system font directories. I did this

during the installation process (refer to Appendix B), I will just display

the font directories:

Medley LOOPS: The Basic System

270

1. If you want to load SETUP document from within Medley, you

may do so with:

Note: Our standard MEDLEY sysout already has TEDIT loaded into

it.

When you run the command above, you are prompted to frame a

TEDIT window which then displays the setup document:

2. Next, load the FILEBROWSER using (LOAD’FILEBROWSER).

This loads the file browser functions from the MEDLEY Library.

Medley LOOPS: The Basic System

271

3. Next, we load WHO-LINE for the Lisp Users packages:

This also generates an error pane as shown below:

Medley LOOPS: The Basic System

272

NOTE: At this time, we will continue, but once we have tested LOOPS,

we will return to diagnose and correct this problem.

4. Next, we load FILEWATCH, which generates an error pane as

shown below:

Close the error pane by clicking on the top bar and selecting ‘Close’.

NOTE: At this time, we will continue, but once we have tested LOOPS,

we will return to diagnose and correct this problem.

5. Next, we load CROCK.

Medley LOOPS: The Basic System

273

6. Next, we load do-test.

We have not located do-test in the medley internal and/or library

directories. We will explore reloading the Lyric directories to locate

it.

NOTE: At this time, we will continue, but once we have tested LOOPS,

we will return to diagnose and correct this problem.

7. Set a default compiler option:

 Since there were errors in a number of the attempted loads, I

created a new environment loading only:

• FILEBROWSER

• Filewatch

• Crock

8. Save as LOOPSTEST.SYSOUT in <home>steve>LOOPS-

MAIN/LOOPSTEST.SYSOUT

Medley LOOPS: The Basic System

274

 This preserves the files loaded above so can run the tests for

LOOPS.

Medley LOOPS: The Basic System

275

Appendix C: Test Applications

 We developed several test to test the LOOPS code. These are

briefly described in the sections below. For purposes of discussion the

source code is also included.

C.1 Source Code for TestAV.txt

This test was copied from the LRM 1991.

(* ; "Define the classes")

(DefineClass 'Tank)

(SETQ Tank (SEND ($ Tank) SetName 'Tank))

(PP ($ Tank))

(DefineClass 'Pipe)

(SETQ Pipe (SEND ($ Pipe) SetName 'Pipe))

(PP ($ Pipe))

(* ; "Add outputPressure as IV to Tank")

(SEND ($ Tank) AddIV 'outputPressure)

(PP Tank)

(* ; "Add inputputPressure to Pipe")

(PRINT "(SEND ($ Pipe) AddIV 'inputPressure)")

(SEND ($ Pipe) AddIV 'inputPressure)

(PP Pipe)

Medley LOOPS: The Basic System

276

(* ; "Create subclass of Tank and Pipe named Tank1 and Pipe1")

(SETQ Tank1 (_ ($ Tank) New (QUOTE Tank1)))

(PP ($ Tank1))

(SETQ Pipe1 (_ ($ Pipe) New (QUOTE Pipe1)))

(PP ($ Pipe1))

(* ; "Create an instance of IndirectVariable")

(* ; "Initialize its contents to point to the Tank's pressure")

(PRINT "(_ ($ IndirectVariable) New 'indVar1)")

(SETQ indVar1 (_ ($ IndirectVariable) New (QUOTE indVar1)))

(_ indVar1 SetName (QUOTE indVar1))

(PP ($ indVar1))

(PRINT "Assign object and varName")

(PRINT "(_@ ($ indVar1) object ($ Tank1))")

(_@ indVar1 object Tank1)

(PRINT "(_@ ($ indVar1) varName 'outputPressure)")

(_@ ($ indVar1) varName 'outputPressure)

(PP ($ indVar1))

(* ; "Install the active value instance as the pipe's input pressure")

(PRINT "Installing ActValue instance.")

(PRINT "(_ ($ indVar1) AddActiveValue ($ Pipe1) 'inputPressure)")

(_ ($ indVar1) AddActiveValue ($ Pipe1) 'inputPressure)

(PP ($ indVar1))

(* ; "Accesses to either pipe's input pressure or tank's output pressure")

Medley LOOPS: The Basic System

277

(@ Pipe1 inputPressure)

(_@ Pipe1 'inputPressure 100)

(@ Tank1 outputPressure)

(_@ Tank1 'outputPressure 200)

(@ Pipe1 inputPressure)

(* ; "Show Inspector Window on Tank1 & Pipe1")

(_ Tank1 Inspect NIL)

(_ Pipe1 Inspect NIL)

(PRINT "** End of TestAV **")

STOP

C.2 Source Code for NewTestAv.txt

 This test was copied from the LRM 1991.

(* ; "** NewTestAV **")

(* ; "From Section 8.2, Example 2 of the LRM **")

(* ; "Create the Bin class for the Conveyor")

(DefineClass 'Bin)

(DefineClass 'Conveyor)

(* ; "Add IVs to describe Bin")

(SEND ($ Bin) AddIV 'height 0)

(SEND ($ Conveyor) AddIV 'height 0)

Medley LOOPS: The Basic System

278

(* ; "Create a Bin instance.")

(SETQ Bin1 (SEND ($ Bin) New 'Bin1))

(SETQ Bin1 (SEND ($ Bin1) SetName 'Bin1))

(* ; "Create a Conveyor instance.")

(SETQ Conveyor1 (SEND ($ Conveyor) New 'Conveyor1))

(SETQ COnveyor1 (SEND ($ Conveyor1) SetName 'Conveyor1))

(* ; "Define 3FeetAbove as a class.")

(DefineClass '3FeetAbove '(IndirectVariable))

(SETQ 3FeetAbove (SEND ($ 3FeetAbove) SetName '3FeetAbove))

(PP 3FeetAbove)

(* ; "Create an instance of 3FeetAbove.")

(* ; "Initialize its contents to point to the bin's height.")

(SEND ($ 3FeetAbove) New '3fa1)

(_@ ($ 3fa1) object ($ Bin1))

(_@ ($ 3fa1) varName 'height)

(* ; "Install 3fa1 as the value of the conveyor's height.")

(SEND ($ 3fa1) AddActiveValue ($ Conveyor1) 'height)

(SEND ($ 3fa1) Inspect NIL)

(* ; "The height of Bin1 defaults to 0, but what is the height of conveyor?")

(PRINTOUT T "The height of Bin1 is " (@ ($ Bin1) height) T)

(PRINTOUT T "The height of Bin1 is " (@ ($ Conveyor1) height) T)

Medley LOOPS: The Basic System

279

(* ; "Now, set Bin1's height or Conveyor1's height.")

(* ; "See how the track each other.")

(PRINTOUT T "Setting heights of Bin1 and Conveyor1." T)

(_@ ($ Bin1) height 15)

(PRINTOUT T "The hieght of Conveyor1 is " (@ ($ Conveyor1) height) T)

(PRINTOUT T "Rset the height of Conveyor1" T)

(_@ ($ Conveyor1) height 21)

(PRINTOUT T "The height of Conveyor1 is " (@ ($ Conveyor1) height) T)

(PRINTOUT T "THe height of Bin1 is " (@ ($ Bin1) height) T)

(* ; "Define subclass of LocalStateActiveValue.")

(* ; "Provide two IVs relative to height.")

(DefineClass 'WarningAV '(LocalStateActiveValue))

(SEND ($ WarningAV) AddIV 'lowTrigger 0)

(SEND ($ WarningAV) AddIV 'highTrigger 100)

STOP

Medley LOOPS: The Basic System

280

Index

$AV, 207

<-New, 164, 183

<-Super, 182

<-Super?, 183

access-oriented programming,

187

Access-Oriented

Programming, 16, 18

active values, 187

ActiveValue

tracked variable, 210

ActiveValue, 208

ActiveValue

IndirectVariable, 210

ActiveValue

GetWrappedValue, 210

ActiveValue

PutWrappedValue, 210

ActiveValue

GetWrappedValue, 215

ActiveValue

PutWrappedValue, 215

AddActiveValue, 224

AddCIV, 107

AddIV, 170

AddValue, 95

AnnotatedValue, 121, 202

annotatedValue data type, 201

annotatedValue?, 44

AppendSuperValue, 220, 221

ApplyMethod, 145

AVPrintSource, 205

CalledFns, 151

class, 23

class variables, 63

Class?, 43

ClassInheritanceBrowser, 143

ClassName, 153

control structure, 251

CopyActiveValue, 216

CopyDeep, 156

data-oriented programming,

187

DatedObject, 48

DC, 74

defensive programming, 230

DefineClass, 55

DefineMethod, 128

Medley LOOPS: The Basic System

281

DefMethod, 139

DefRSM, 250

Delete Method, 141

DeleteActiveValue, 226

DeleteCIV, 116

DeleteCV, 116

Destroy, 117

Destroy!, 120

DestroyClass, 118

Directed Acyclic Graph, 35

DoFringeMethods, 147

DoMethod, 144

Edit, 75

EditMethod, 141

EM, 76

ErrorOnNameConflict, 46

ExplicitFnActiveValue, 218

FetchMethod, 185

FirstFetch, 195

FirstFetchAV, 197

GetClass, 101

GetClassHere, 101

GetClassIV, 99

GetClassOnly, 101

GetClassValue, 83

GetClassValueOnly, 97

GetCVHere, 98

GetIndirect, 197

GetIt, 108

GetItHere, 108

GetItOnly, 108

GetIVHere, 98

GetLispClass, 175

GetLocalState, 200

GetLocalStateOnly, 201

GetMethod, 114

GetMethodHere, 114

GetMethodOnly, 114

GetSourceIVs, 68

GetValue, 81, 201

GetValueOnly, 97

GetWrappedValue, 227

GetWrappedValueOnly, 227

GlobalNamedObjects, 48

handle, 39

Inheritance, 34

InheritedValue, 222

InheritingAV, 220

instance, 23, 27

Instance?, 44

InstOf, 155

InstOf!, 155

IVProperty

initForm, 169

IVValueMissing, 166, 167

Lisp

data type, 175

Medley LOOPS: The Basic System

282

Lisp Object-Oriented

Programming System, 15

LispWindowAV, 219

LocalStateActiveValue, 215

LOOPS

@ form, 123

@* form, 124

<-! form, 180

<-@ form, 124

<-IV form, 180

<-Try form, 181

abstract class, 174

AbstractClass, 31

class hierarchy, 30, 33

class record, 68

class variable, 23

class variables, 80

Classes, 70

CurrentEnvironment, 46

generic class description, 32

inheritance hierarchy, 70

inheritance network, 33, 34

instance variable, 24

instance variables, 80

Instances, 70

LoopsHelp, 154

metaClass, 30

Metaclasses, 70

Methods, 113

name conflict resolution, 39

NotSetHere, 114

NotSetValue, 83, 99

NoValueFound, 83

property annotations, 229

property list, 80

pseudoclass, 175

RuleSet, 233, 234

superclass, 30

Tofu, 120

Variables, 23

LOOPS Reference Manual.

See LRM

LoopsDate, 50

LOOPSDirectory, 51

LOOPSFILES, 51

LoopsVersion, 50

Macro

AV, 204

create, 203

fetch, 202

MessageNotUnderstood,

204

replace, 203

type?, 203

McCarthy, John, 15

MessageNotFound, 121

MessageNotUnderstood, 121

Metaclasses, 173

Medley LOOPS: The Basic System

283

method, 29

Method, 136

Mixins, 174

MoveMethod, 149, 150

MoveMethodsToFile, 151

NamedObject, 48

New, 70, 72, 177

NEW, 157

NewClass, 55

NewInstance, 158, 161

NewWithValues, 163

NotSetValue, 166, 168

NoUpdatePermitted, 195

NoUpdatePermittedAV, 219

Object?, 42, 72

object-oriented programming,

187

Object-Oriented

Programming, 16, 18

private instance variables, 63

Procedure-Oriented

Programming, 15, 18

PushClassValue, 93

PushValue, 93

PutCIVHere, 104, 105

PutClass, 103

PutClassIV, 100

PutClassOnly, 103

PutClassValue, 90

PutClassValueOnly, 98

PutCVHere, 104

PutGetMethodOnly, 115

PutIndirect, 197

PutIt, 111

PutItOnly, 111

PutIVProp, 112

PutIVValue, 112

PutLocalState, 200

PutLocalStateOnly, 201

PutMethod, 115

PutValue, 86, 201

PutValueOnly, 98

PutWrappedValue, 228

PutWrappedValueOnly, 228

RenameMethod, 148

ReplaceActiveValue, 226

ReplaceMe, 198

Rule, 241

rule-oriented programming,

232

Rule-Oriented Programming,

16, 19

rules, 232

RuleSet, 235

RuleSetMeta, 239

RuleSetNode, 240

RuleSetSource, 236, 241

RunRS, 249

Medley LOOPS: The Basic System

284

selector, 29

SetName, 46, 77

subclasses, 30

SuperMethodNotFound, 121

Supers, 78

Tofu, 78, 175

Understands, 45

WrappedPrecedence, 225

Xerox Palo Alto Research

Center, 15

