
November, 1991
Medley Release

Venue LOOPS Library Modules Manual

Address comments to:
Venue
User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

LOOPS LIBRARY MODULES MANUAL

November, 1991

Copyright © 1988, 1991 by Venue.

All rights reserved.

LOOPS and Medley are trademarks of Venue.

UNIX® is a registered trademark of UNIX System Laboratories.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Venue.
While every effort has been made to ensure the accuracy of this
document, Venue assumes no responsibility for any errors that
may appear.

Text was written and produced with Venue text formatting tools;
Xerox printers were used to produce text masters. The typeface is
Classic.

i i iLOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE ... v

GAUGES... 1

Description/Introduction ... 1

Prerequisites .. 2

Installation/Loading Instructions... 2

Application/Module Functionality.. 3

Gauge Classes ... 3

Gauge Methods .. 15

Examples .. 18

Limitations .. 19

MASTERSCOPE .. 21

Description/Introduction ... 21

Installation/Loading Instructions... 21

Relations .. 21

Limitations .. 24

VIRTUAL COPIES .. 27

Description/Introduction ... 27

Installation/Loading Instructions... 27

Application/Module Functionality.. 27

Overview of Operation .. 27

Operands .. 28

Example.. 30

i v LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

Limitations .. 31

References... 32

vLOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

[This page intentionally left blank]

vLOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

PREFACE

Overview of the Manual

The LOOPS Library Modules Manual describes the Library Modules for
Venue’s Lisp Object-Oriented Programming System, LOOPS. These Library
Modules, which can be loaded into Medley, provide additional functionality to
LOOPS.

This manual describes the current release of the LOOPS Library Modules,
which run under Medley.

Organization of the Manual and How to Use It

This manual is divided into chapters, with each chapter focussing on a
particular Library Module. A Table of Contents is included to help you find
specific material.

Conventions

This manual uses the following conventions:

• Case is significant in LOOPS and Medley. All selectors, methods,
arguments, etc., must be typed as shown. Typically, this means that
method names are capitalized and variables are not.

• You need to use an Interlisp Exec to enter all exec expressions.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples are shown in the Interlisp Exec and appear in the following
typeface:

89←(←LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all LOOPS expressions.

• Methods with an exclamation mark (!) suffix usually perform operations
deeply into class structure instead of only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth
functions.

• Methods often appear in the form ClassName.SelectorName.

v i LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

PREFACE

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

This manual describes the LOOPS items (functions, methods, etc.) by using
the following template:

Purpose: Gives a short statement of what the item does.

Behavior: Provides the details of how the item operates.

Arguments: Describes each argument in the following format:

argument Description

Returns: States what the item returns, and does not appear if the item does not return a
value. The phrase "Used as a side effect only." means that the purpose of
the item is to perform a computation or action that is independent of any
returned value, not to return a particular value.

Categories: A way to group related methods. For example, all the methods related to
Masterscope on the class FileBrowser have the category Masterscope, not
FileBrowser. This item appears only for methods.

Specializes: The next higher class in the class hierarchy that contains a method with the
same selector. For example, RectangularWindow.Open can specialize
Window.Open. This appears only for methods.

Specializations: The next lower class in the class hierarchy that contains a method with the
same selector. For example, Window.Open is a specialization of
RectangularWindow.Open. This appears only for methods.

Example: An example is often included to show how to use the item and what result it
produces. Some examples may appear differently on your system, depending
on the settings of various print flags. See the LOOPS Reference Manual for
details.

References

The following books and manuals augment this manual.

LOOPS Reference Manual

LOOPS Release Notes

LOOPS Users’ Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Common Lisp Implementation Notes

Lisp Release Notess

Lisp Library Modules Manual

1LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Description/Introduction

Gauges are an important part of the LOOPS user interface for both developers
and end users. Gauges assist in understanding the dynamic nature of the
programs. This is in contrast to the more typical case of debugging programs
using static means. In the creation of user-friendly interfaces, you can use
gauges to display, in analog or digital form, various data that may be
changing. Also, by employing active gauges, you can provide a convenient
way to interact with a system.

One of the features of gauges is the ease with which you can use them in a
system. In more traditional languages, if you want to understand how a
variable is changing over the course of a computation, you must make
modifications in your program wherever you want to begin or end the
examination of a variable. Given the capabilities of active values used by
gauges, you need only attach or detach a gauge to the data that you are
interested in monitoring.

The following types of gauges are available:

• Meter; a circular instrument that wraps around any number of times.

• Dial; a bounded dial, like an automobile speedometer.

• LCD; a gauge that uses the entire window to display a value.

• Scale; a horizontal or vertical display of a gauge.

• ActiveScale; a scale that allows you to change the gauge value.

Gauges are an example of the combination of programming capabilities within
LOOPS. The different types of gauges are defined within the context of an
inheritance lattice. This allows the more general functionality and variables to
be allocated to more general gauge classes, with specific functionality placed
in more restricted classes. You can also see the use of mixins to add a small
amount of functionality to several different classes of gauges.

Note: Mixins are classes that are used only in conjunction with another class
to create a subclass.

The methods within gauges are built upon both function calling and message
sending. Gauges are "attached" to objects through the mechanism of active
values. Since gauges are built upon the mechanism of active values, gauges
can only be attached to data within objects. It is not possible to use gauges to
monitor any arbitrary Lisp variable.

2 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Prerequisites

The default font for gauges is Modern 10.

Installation/Loading Instructions

Gauges are divided among several different files to allow you to load only
those objects and functions that you need. The table below lists the files to
load for each type of gauge. The filecoms for each file will try to load any
other required gauge files from LOOPSLIBRARYDIRECTORY. The file
GAUGES.DFASL and either GAUGEINSTRUMENTS.DFASL or
GAUGEALPHANUMERICS.DFASL will always be loaded; other files may also
be loaded.

Gauge File to load

LCD GAUGEALPHANUMERICS.DFASL

METER GAUGEMETERS.DFASL

DIAL GAUGEDIALS.DFASL

SCALE GAUGESCALES.DFASL

ACTIVE SCALEGAUGEACTIVE.DFASL

Additionally, the file GAUGESELFSCALEMIXIN.DFASL can be loaded to add
the class SelfScaleMixin, and GAUGEALARMS.DFASL can be loaded to add
the class AlarmMixin.

To load the required files, first set the value of LOOPSDIRECTORY to include
the directory where the gauges files are stored, then type the following
expression in the Executive:

(LOAD ’FILENAME)

To load all of the gauges, load the file GAUGELOADER and then enter
(LOADGAUGES). GAUGELOADER also sets the variables: GAUGEFILES
and GaugeClasses.

(LOADGAUGES LDFLG SOURCES?FLG) [Function]

Purpose: Loads all the gauges.

Behavior: Assumes that all of the gauge files are on the LOOPSDIRECTORY search
path.

All the gauge files will be loaded based upon the settings of LDFLG and
SOURCES?FLG. A FILESLOAD expression is built up and evaluated.

Arguments: LDFLG Can be NIL, PROP, or SYSLOAD. See the LDFLG discussion
under loading in the Interlisp-D Reference Manual.

SOURCES?FLG
Can be NIL or T. If NIL, this attempts to load the compiled files
before trying to load the sources. If T, only the sources are
loaded.

Returns: Used for side effect only.

3LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

GAUGEFILES [Variable]

Behavior: Initialized to (GAUGEACTIVE GAUGEALARMS GAUGEALPHANUMERICS
GAUGEBOUNDEDMIXIN GAUGEDIALS GAUGEDIGIMETER
GAUGEDIGISCALE GAUGEINSTRUMENTS GAUGEMETERS GAUGES
GAUGESCALES GAUGESELFSCALEMIXIN)

GaugeClasses [Variable]

Behavior: Initialized to (GaugeAV ActiveGaugeMixin Gauge AlarmMixin BoundedMixin
SelfScaleMixin)

Call (Browse GaugeClasses) to open a browser of all of the gauge classes.

Application/Module Functionality

This section describes the gauge classes and methods.

Gauge Classes

This section describes the available gauges shown in the following browser.

Note: The browser does not include the optional mixin classes.

Within the class description of each class, the instance variables and class
variables that are specializations only because they have different default
values are not listed.

Name Type Description

ActiveGaugeMixin AbstractClass A gauge class that allows you to set the value of the
variable being monitored with the cursor, via a SET menu.

ActiveHorizontalScale Class An active gauge that displays the value on a horizontal
scale.

ActiveVerticalScale Class An active gauge that displays its value on a vertical scale.

AlarmMixin AbstractClass A mixin that adds alarm functionality to any gauge.

AlphaNumeric AbstractClass A gauge that gives an alphanumeric display of a value.

4 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

BarChart Class A gauge that displays more than one VerticalScale side-by
side.

BoundedMixin AbstractClass Creates a bounded scale for displayVal; to be used as a
mixin for instruments.

Dial Class A bounded dial, like an automobile speedometer.

DigiMeter Class A gauge that displays both an LCD and a meter.

DigiScale Class A gauge that displays both an LCD and a horizontal scale.

Gauge AbstractClass A class for objects that present a dynamic graphical image
of a LOOPS value.

GaugeAV Class An active value associated with a gauge.

HBarChart Class A gauge that displays more than one HorizontalScale
side-by side.

HorizontalScale Class A labeled, bounded scale with a bar that fills to the right.

HSGraphics AbstractClass Gauge that is displayed in the form of a singe horizontal
scale or bar.

Instrument AbstractClass A numeric gauge that is externally scaled by inputLower
and inputRange and scaled internally by lower and range.

LCD Class Differs from AlphaNumeric in that the entire gauge window
is the printing region.

LCDMixin AbstractClass Computes print region differently from LCD.

Meter Class A circular instrument that wraps around any number of
times.

RoundScale AbstractClass Abstract Class for instruments with circular (arc) scales.

SelfScaleMixin AbstractClass Provides for the gauge to rescale according to the reading.

SSBarChart Class A self-scaling version of BarChart.

SSDigiMeter Class A self-scaling version of DigiMeter.

SSHBarChart Class A self-scaling version of HBarChart.

SSHorizontalScale Class Gauge that is displayed in the form of a single scale or bar
which rescales itself accordingly.

SSVerticalScale Class Gauge that is displayed in the form of a single vertical scale
or bar which rescales itself accordingly.

StraightScale AbstractClass Abstract Class for instruments with straight scales.

VSGraphics AbstractClass Gauge that is displayed in the form of a single vertical scale
or bar.

VerticalScale Class Gauge that is displayed in the form of a single vertical scale
or bar.

ActiveGaugeMixin [Class]

Description: A gauge class that allows you to set the value of the variable being monitored
with the cursor, via a SET menu.

MetaClass: AbstractClass

5LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Supers: Object

Class Variables: None.

Instance Variables: cursor The cursor to use when changing the scale; the default is NIL.

ActiveHorizontalScale [Class]

Description: An active gauge that displays the value on a horizontal scale. This gauge
shows the value of the data it is connected with and allows you to change that
data with the gauge.

MetaClass: Class

Supers: ActiveGaugeMixin, HorizontalScale

Class Variables: None.

Instance Variables: cursor Cursor to use when changing the scale; its property :initform is
set to HorizontalAGCursor.

Example: These gauges have an attached menu at the bottom of the gauge. When you
position the cursor over this menu and press a mouse button, the cursor
changes to the following shape:

While the left button is held down, the system tracks movements of the cursor
and changes the value that the gauge is monitoring.

ActiveVerticalScale [Class]

Description: Similar to ActiveHorizontalScale, except that a vertical scale is used.

MetaClass: Class

Supers: ActiveGaugeMixin, VerticalScale

Class Variables: None.

Instance Variables: cursor Cursor to use when changing the scale; its :initform property is
set to VerticalAGCursor.

Example: Similar to ActiveHorizontalScale. When setting, the cursor changes to the
following shape:

6 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

AlarmMixin [Class]

Description: A mixin that adds alarm functionality to any gauge. An alarm is defined as
warning object that is set off when the value being monitored falls outside of
the specified range. The gauge flashes and stays inverted when the alarm is
tripped.

CAUTION

When a new class of gauges is created that will use the properties of
AlarmMixin, AlarmMixin should be the first class on the Supers list of the
new class. This guarantees that the AlarmMixin.Set method is invoked.

MetaClass: AbstractClass

Supers: Object

Class Variables: MiddleButtonItems

Instance Variables: lowTripPoint
Alarm is triggered when reading goes below this point.

hiTripPoint Alarm is triggered when reading goes above this point.

flashNumber
Number of times alarm will flash when it is tripped.

flashInverval
Interval in milliseconds between flashes.

AlphaNumeric [Class]

Description: This class contains some of the methods and data for the LCD classes.
These gauges can display any type of character, letters, or numbers.

MetaClass: AbstractClass

Supers: Gauge

Class Variables: None.

7LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Instance Variables: precision Number of characters displayed in the reading. The default value
is 5.

BarChart [Class]

Description: A gauge that can display more than one VerticalScale at once, side-by side.

MetaClass: Class

Supers: VerticalScale

Class Variables: None.

Instance Variables: maxLabelWidth
Maximum width of labels on each bar. Default value is 0 which
means no limit.

scaleLeft
Offset within the gauge window from the left for the leftmost bar.
Default value is 3.

scaleBottom
Offset within the gauge window from the bottom for all the bars.
Default value is 30.

Example: Here is a BarChart showing the size and shape of a window. It is displaying
the values 15, 21, 13, and 6.

BoundedMixin [Class]

Description: This mixin is a super of the scale classes and Dial. If a gauge that has
BoundedMixin as a super class tries to display a new setting that is outside of
the range of the gauge, the gauge will display the minimum or maximum
value as appropriate and place a "??" in the window.

MetaClass: AbstractClass

Supers: Object

Class Variables: None.

Instance Variables: None.

Example: Here is a vertical scale that displays a reading greater than its maximum.

8 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Dial [Class]

Description: A bounded dial, like an automobile speedometer.

MetaClass: Class

Supers: BoundedMixin, RoundScale

Class Variables: None.

Instance Variables: This class specializes the same instance variables as RoundScale.

Example: The angle of the arc changes with the shape of the window.

DigiMeter [Class]

Description: A gauge that combines both a meter and an LCD.

MetaClass: Class

Supers: Meter, LCDMixin

Class Variables: None.

Instance Variables: spaceForLCD
Vertical space required by LCD within the gauge. Defaults to 30.

Example: This DigiMeter is displaying 55.

9LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

DigiScale [Class]

Description: A gauge that combines both a horizontal scale having no ticks and an LCD.

MetaClass: Class

Supers: HorizontalScale, LCDMixin

Class Variables: None.

Example: This DigiScale is displaying 63 with its scale set from 0 to 100.

Gauge [Class]

Description: A class for objects that present a dynamic graphical image of a LOOPS value.
This class provides most of the methods for using gauges.

MetaClass: AbstractClass

Supers: Window

Class Variables: LeftButtonItems
Menu options associated with the left mouse button.

MiddleButtonItems
Menu options associated with the middle mouse button.

Instance Variables: reading External value of reading. The default value is 0.

containedInAV
Active value that connects the gauge to the data it is monitoring.
It should be an instance of the class GaugeAV.

font Font that is used by a gauge; default value is (Modern 10).

width Width of a gauge; has property min, which specifies the
minimum width for a gauge.

height Height of a gauge; has property min, which specifies the
minimum height for a gauge.

GaugeAV [Class]

Description: An active value that is associated with a gauge.

MetaClass: Class

Supers: LocalStateActiveValue

1 0 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Class Variables: None.

Instance Variables: gauge The gauge connected to this active value.

object The object containing the variable associated with the active
value.

propName The property name of the associated variable.

type Data type of the associated variable.

varName Name of the associated variable.

HBarChart [Class]

Description: A gauge that can display more than one HorizontalScale at once, side-by
side.

MetaClass: Class

Supers: HorizontalScale

Class Variables: None.

Instance Variables: maxLabelWidth
Maximum width of labels on each bar. Default value is 0 which
means no limit.

scaleLeft
Offset within the gauge window from the left for the leftmost bar.
Default value is 3.

Example: Here is an HBarChart showing the size and shape of a window. It is
displaying the values 15, 21, 13, and 6.

HorizontalScale [Class]

Description: A labeled, bounded scale with a bar that fills to the right.

MetaClass: Class

Supers: HSGraphics

Class Variables: None.

Instance Variables: None.

Example: This HorizontalScale is reading 350 on a scale from 0 to 500.

HSGraphics [Class]

1 1LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Description: This class provides some of the methods for displaying the graphics of a
horizontal scale.

MetaClass: AbstractClass

Supers: StraightScale

Class Variables: None.

Instance Variables: scaleBottom
Bottom edge of scale in pixels. The default value is 10.

scaleLeft Left edge of scale in pixels. The default value is 12.

scaleWidth Width of inside of scale in pixels. The default value is 120.

scaleHeight Height of scale in pixels. The default value is 15.

Instrument [Class]

Description: A class that provides additional methods and data for gauges that display only
numerical data. This data is externally scaled by inputLower and
inputRange, and scaled internally by lower and range.

MetaClass: AbstractClass

Supers: Gauge

Class Variables: None.

Instance Variables: ticks Scale marks on the instrument; value is a number or NIL;
smallTicks property indicates the number of smaller ticks
between each large tick.

displayVal Internal value relative to instrument.

range Range for internal displayVal .

inputRange Range for external reading.

lower Lower bound for internal displayVal.

inputLower Lower bound for external reading.

brushWidth Scale factor for width of ticks, rays, and circles in pixels.

labels The labels that will be displayed on the gauge.

labelScale A dotted pair representing the sign and exponent of a reading.

spaceForLabelScale
Extra vertical space to display scale label.

LCD [Class]

Description: Differs from LCDMixin in that the entire gauge window is the printing region.

MetaClass: Class

Supers: AlphaNumeric

Class Variables: None.

Instance Variables: None.

1 2 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Example: This LCD is displaying the string "Mumble", and has been Shapedto 120 x 60.

LCDMixin [Class]

Description: Computes printing region differently from LCD so that an LCD may be added
into another window.

MetaClass: AbstractClass

Supers: AlphaNumeric

Class Variables: None.

Instance Variables: precision Number of characters displayed in the reading; the default value
is 3. Its property is readingRegion; the default value is NIL.

readingY Y position of bottom of reading. The default value is 7.

Meter [Class]

Description: A circular instrument that wraps around any number of times. It displays a
sign and exponent in the lower left corner of its window.

MetaClass: Class

Supers: RoundScale

Class Variables: None.

Instance Variables: This class specializes the same instance variables as RoundScale.

Example: The Meter on the left is displaying a negative value.

RoundScale [Class]

Description: Abstract Class for instruments with circular (arc) scales.

MetaClass: AbstractClass

Supers: Instrument

Class Variables: None.

Instance Variables: needleLength
Radius of needle in pixels. The default value is 15.

1 3LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

radius Radius of arc in pixels. The default value is 10.

xc x-coordinate window coordinate of center of arc. (See
DRAWARC in the Lisp Release Notes.)

yc y-coordinate window coordinate of center of arc. (See
DRAWARC in the Lisp Release Notes.)

SelfScaleMixin [Class]

Description: Provides for the gauge to rescale according to the reading.

MetaClass: AbstractClass

Supers: Object

Class Variables: None.

Instance Variables: lowScaleFactor
Rescales if reading shrinks so that it will fit more than
lowScaleFactor times in inputRange. The default value is 5.

SSBarChart [Class]

Description: A self-scaling version of BarChart.

MetaClass: Class

Supers: BarChart

Class Variables: None.

Instance Variables: None.

SSDigiMeter [Class]

Description: A self-scaling version of DigiMeter.

MetaClass: Class

Supers: DigiMeter

Class Variables: None.

Instance Variables: None.

SSHBarChart [Class]

Description: A self-scaling version of HBarChart.

MetaClass: Class

Supers: HBarChart

Class Variables: None.

Instance Variables: None.

SSHorizontalScale [Class]

Description: Gauge that is displayed in the form of a single horizontal scale or bar which
rescales itself accordingly.

1 4 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

MetaClass: Class

Supers: VerticalScale

Class Variables: None.

Instance Variables: None.

SSVerticalScale [Class]

Description: Gauge that is displayed in the form of a single vertical scale or bar which
rescales itself accordingly.

MetaClass: Class

Supers: HorizontalScale

Class Variables: None.

Instance Variables: None.

StraightScale [Class]

Description: Abstract class for instruments with straight scales.

MetaClass: AbstractClass

Supers: BoundedMixin, Instrument

Class Variables: None.

Instance Variables: shade Shade of bar; numeric value from 0 to 65535. The default value
is 65535, which is BLACKSHADE.

VerticalScale [Class]

Description: Gauge that is displayed in the form of a singe vertical scale or bar.

MetaClass: Class

Supers: VSGraphics

Class Variables: None.

Instance Variables: None.

Example: This VerticalScale is displaying the value .55 and has its Shade set to 1258.

1 5LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

VSGraphics [Class]

Description: Similar to HSGraphics but for vertical scales.

MetaClass: AbstractClass

Supers: StraightScale

Class Variables: None.

Instance Variables: scaleBottom
Bottom edge of scale in pixels. The default value is 12.

scaleLeft Left edge of scale in pixels. The default value is 15.

scaleWidth Width of inside of scale in pixels. The default value is 15.

scaleHeight Height of scale in pixels. The default value is120.

Gauge Methods

This section describes the available methods and functions which are used to
manipulate gauges. In many cases, a particular gauge class specializes a
method defined in the class Gauge. In this case, the specialized method
definition is not explicitly defined; instead, this is noted in the
Specializes/Specializations field of the description.

Name Type Description

Attach Method Connects a gauge to an object.

Attached? Method Determines what the gauge is attached to.

ChangeFont Method Sets the gauge’s instance variable font and updates the gauge.

Close Method Detaches the gauge and closes the window.

Destroy Method Destroys the gauge, detaching it first.

Detach Method Detaches the gauge from the variable it is attached to.

Reset Method Resets the gauge’s instance variable reading .

SetScale Method Sets the scale for the gauge.

Shape Method Sweeps a new region.

ShapeToHold Method Shapes the gauge window to its smallest possible size.

Update Method Reinitializes the gauge and its display window to reflect the
current state.

(← self Attach obj varName propName type xOrPos y) [Method of Gauge]

Purpose: Connects a gauge to an object.

Behavior: Displays the gauge on the screen and associates that gauge with the variable
varName of obj. If propName is specified, the gauge will montior the
variable’s property. If xOrPos and y are not specified, a small box will
appear which must be positioned to place the gauge.

Arguments: obj A pointer to the object to which the gauge is to be attached.

1 6 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

varName The name of the instance variable, class variable, or method to
which the gauge is to be attached.

propName If non-NIL, the gauge will be attached to this property.

type One of IV, CV, or METHOD, within the object being connected to
the gauge. If NIL, it defaults to IV.

xOrPos A numerical value to specify where, in screen coordinates, the
gauge will be placed on the display. If NIL, you are asked to
place the gauge on the screen. This can be a number to specify
the x coordinate or a position. If it is a number, also specify y .

y If xOrPos is not a position, this specifies the y coordinate in
screen coordinates for the gauge.

Returns: self

Specializations: StraightScale.Attach has an additional shade argument so that the shade of
the scale may be specified at the time the gauge is attached. The following
shows the argument list for this method:

(← ($ instance OfHorizontalScale) Attach obj varName shade propName type
xOrPos y)

The Attach methods for BarChart, HBarChart, and their subclasses take an
additional label argument. If no label argument is given, the bar is labeled with
varName. The label argument comes last, as follows:

(← ($ instance OfBarChart) Attach obj varName propName propName type
xOrPos y label)

(← self Attached? don’tPrintFlg) [Method of Gauge]

Purpose: Determines what a gauge is attached to.

Behavior: If don’tPrintFlg is non-NIL this returns the value of the gauge instance variable
containedInAV. If dontPrintFlg is NIL, the object and the varName the gauge
is attached to will be printed in an attached window.

Arguments: don’tPrintFlg
Suppresses displaying what the gauge is attached to.

Returns: NIL

(← self ChangeFont newFont) [Method of Gauge]

Purpose/Behavior: Sets the gauge’s instance variable font to newFont and updates the gauge. If
the gauge is too small for newFont, it is reshaped.

Arguments: newFont A font in which to display the gauge’s text.

Returns: Previous value of font.

(← self Close) [Method of Gauge]

Purpose/Behavior: Detaches the gauge and closes the window.

Returns: CLOSED

(← self Destroy) [Method of Gauge]

Purpose/Behavior: Destroys the gauge, detaching it first before closing the window.

1 7LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Returns: NIL

(← self Detach) [Method of Gauge]

Purpose/Behavior: Detaches the gauge from the variable to which it is attached. This prints in an
attached window that the gauge is being detached, and deletes all of the links
connecting the gauge, active value, and object being monitored. Does not
close the window.

Returns: NIL

(← self Reset newReading) [Method of Gauge]

Purpose/Behavior: Sets the gauge’s instance variable reading to newReading and updates the
gauge. If the gauge is too small for newReading and it is SelfScaling, it is
reshaped.

Arguments: newReading
Sets the instance variable reading to newReading, and updates
the gauge without going through any intermediate steps.

Returns: NIL if gauge is AlphaNumeric or RoundScale; otherwise self.

Specializations: Alphanumeric.Reset, RoundScale.Reset

Example: The following example causes the LCD to be redisplayed with the
newReading:

13←(← ($ lcd1) Reset "New Title")

(← self SetScale min max) [Method of Gauge]

Purpose/Behavior: Sets the scale for the gauge; computes the new scale values and redisplays if
necessary.

 Arguments: min Lowest value on scale.

max Highest value on scale.

Returns: self

(← self Shape newRegion noUpdateFlg) [Method of Gauge]

Purpose/Behavior: If newRegion is NIL, you are prompted to sweep out a region which has a
minimum sized based upon a min property of IV width and height:,min. If
newRegion is non-NIL, it is first checked to guarantee that it is at least as large
as width:,min by height:,min.

 Arguments: newregion List specifying the external coordinates of the window in which
the gauge is displayed; list is of the form (left, bottom, width,
height).

noUpdateFlg
If NIL, reshapes the gauge.

Returns: NIL

Specializes: Window

Specializations: LCD, Meter, DigiMeter. Meter.Shape has an extra argument ExtraSpaceFlg.
If T, this will allow you to shape a fairly arbitrary region for the gauge; if NIL,
the meter is constrained to be close to a square. This latter behavior is what
the user sees when trying to shape the meter from the window menu.

1 8 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

BarChart, HBarChart , and their subclasses can only be freely Shaped in the
direction their bars run (i.e., BarCharts can be Shaped vertically and
HBarCharts can be Shaped horizontally). Their size along the other
dimension is fixed by the number of values attached to the chart .

Example: This example reshapes the gauge to a location where the lower left corner is
at (10,100) a width of 50 and a height of 150.

14←(← ($ lcd1) Shape ’(10 100 50 150))

(← self ShapeToHold) [Method of Gauge]

Purpose/Behavior: Shapes the gauge window to its smallest possible size based on width:,min
and height:,min and redisplays the gauge.

 Returns: NIL

Specializations: LCD.Shape

(← self Update) [Method of Gauge]

Purpose/Behavior: Reinitializes the gauge and its display window to reflect the current state.

 Returns: self

Categories: Window

Examples

The typical use pattern for a gauge is to first create it, set the scale to the
appropriate value, and attach it to the desired data.

To attach a horizontal scale to a LOOPS window, w1, first enter

15←(← ($ Window) New ’w1)
#,($& HorizontalScale (|OZW0.1Y:.;h.Qm:| . 495))

16←(← ($ HorizontalScale) New ’hs1)
#,($& HorizontalScale (|OZW0.1Y:.;h.Qm:| . 496))

17←(← ($ hs1) SetScale 0 500)
NIL

Now make the connection.

18←(← ($ hs1) Attach ($ w1) ’width GRAYSHADE)
#,($& HorizontalScale (|OZW0.1Y:.;h.Qm:| . 496))

The following gauge appears and you are prompted to place it .

The title of the gauge shows the instance variable being monitored.

1 9LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

Gauges can be shaped larger. The graphics used to display scales do not
change; extra white space is added to the top or right. You can use this space
to print additional information, as follows:

19←(MOVETOUPPERLEFT (@ ($ hs1) window))
{WINDOW}#372,7104

20←(PRIN1 "This is an example of printing additional
information above a gauge.

Be aware that when the gauge is next updated, this
additional text will disappear." (@ ($ hs1) window))
"This is an example of printing additional information
above a gauge.

Be aware that when the gauge is next updated, this
additional text will disappear."

Limitations

When a font is changed, a gauge occasionally needs to be updated to be
correctly displayed.

Instruments can have only floating point numbers for labels, and cannot have
integers.

2 0 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

GAUGES

[This page intentionally left blank]

2 1LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

MASTERSCOPE

Description/Introduction

Masterscope has been modified to provide for analysis of files created under
the Koto or Lyric/Medley release of LOOPS. A full explanation of Masterscope
can be found in the Lisp Library Modules Manual. In addition to the relations
explained there, LOOPS defines the relations described in this chapter.

Note: Masterscope data base files created under Buttress Loops will not
function properly in this release. Those data base files will have to be
recreated.

Installation/Loading Instructions

• Load MASTERSCOPE from your Lyric/Medley library floppies according to
its loading instructions. This should load the compiled files
MASTERSCOPE, MSANALYZE, and MSPARSE.

• Load LOOPSMS.DFASL from wherever you installed the LOOPS Library
Modules. This should load versions of MASTERSCOPE and MSPARSE
that extend Masterscope to handle LOOPS constructs.

Relations

LOOPS defines the following relations:

Name Type Description

SEND Relation Collects all places where the method is sent.

SEND SELF Relation Collects all places where the method is sent to self.

SEND NOTSELF Relation Collects all places where the method is sent to an object other
than self.

GET Relation Locates all places where the value of an instance variable is
retrieved.

GET CV Relation Locates all places where the value of a class variable is
retrieved.

PUT Relation Locates all places where the value of an instance variable is set.

PUT CV Relation Locates all places where the value of a class variable is set.

IMPLEMENT Relation Locates all methods that specialize the given selector.

SPECIALIZE Relation Locates all methods that specialize the given selector and use
←Super in the body of the method.

OVERRIDE Relation Locates all methods that specialize the given selector and do not
use ←Super in the body of the method.

2 2 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

MASTERSCOPE

USE IV Relation Used with an instance variable name to locate all places where
the instance variable is used in a GET or PUT.

USE CV Relation Used with a class variable name to locate all places where the
class variable is used in a GET or PUT.

USE OBJECT Relation Used with an object name to locate all places where the object is
used.

SEND [Relation]

Purpose/Behavior: Used between method names and selectors to collect all places where the
method is sent. For example, the form

. WHO IS SENT BY ’Helicopter.Move

works, but

. WHO IS SENT BY Move

does not work.

Example: The following command allows you to edit all code that sends the message
New.

. EDIT ALL WHO SEND New

SEND SELF [Relation]

Purpose/Behavior: Used between method names and selectors to collect all places where the
method is sent to self. Places where

(← self methodName)

is found are collected, while places where

(← otherInstance methodName)

is found are not.

Example: The following command allows you to edit all code that sends the message
Clear to self.

. WHO SENDS SELF Clear

SEND NOTSELF [Relation]

Purpose: Same as SEND SELF, except the only places where the message is sent to
an object other than self.

Example: The following allows you to edit all code that sends the message Clear to any
instance other than self.

. SHOW ALL WHO SEND NOTSELF Clear

GET [Relation]

Purpose: Used with an instance variable name to locate all places where the value of
the instance variable is retrieved. This relation can be used along with the
SELF and NOTSELF modifiers.

2 3LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

MASTERSCOPE

Example: This command allows you to edit all code that gets the value of the instance
variable width from an instance other than self and the value of the instance
variable height from self.

. SHOW ALL WHO GET NOTSELF width AND GET SELF height

GET CV [Relation]

Purpose: Same as GET, except that GET CV locates places where the value of the
class variable is retrieved. This relation can be used with the SELF and
NOTSELF modifiers.

Example: This command allows you to edit all code that accesses the value of the class
variable height of self.

. SHOW ALL WHO GET CVSELF height

PUT [Relation]

Purpose: Used with an instance variable name to locate all places where the value of
the instance variable is set. This relation can be used along with the SELF
and NOTSELF modifiers.

Example: This command allows you to edit all code that sets the value of the instance
variable width.

. EDIT ANY WHO PUT width

PUT CV [Relation]

Purpose: Same as PUT, except locates places where a specified class variable is set.
This relation can be used along with the SELF and NOTSELF modifiers.

Example: This command list all the sections of code that set the value of the class
variable width for an instance other than self.

. WHO PUTS CV NOTSELF width

IMPLEMENT [Relation]

Purpose: Used with a method name to locate all methods that specialize the given
selector.

Example: This returns a list of classes where the method Clear is defined.

. WHO IMPLEMENTS Clear

SPECIALIZE [Relation]

Purpose: Used with a method name to locate all methods that specialize the given
selector and use ←Super in the body of the method.

Example: This command allows you to edit all the methods that are specializations of
Clear and use the ←Super form.

. EDIT ANY WHO SPECIALIZE Clear

OVERRIDE [Relation]

Purpose: Like SPECIALIZE above, except it locates all methods that specialize the
given selector and ←Super is not used in the body of the method.

2 4 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

MASTERSCOPE

Example: This command allows you to edit all the specializations of Clear that do not
make use of the ←Super form.

. EDIT ALL WHO OVERRIDE Clear

USE IV [Relation]

Purpose: Used with an instance variable name to locate all places where the instance
variable is used in a Get or Put. It is equivalent to using the relation form of
GET IVName or PUT IVName.

Example: This command allows you to edit all code that either sets or accesses the
instance variable width.

. EDIT ANY WHO USE THE IV width.

USE CV [Relation]

Purpose: Used with a class variable name to locate all places where the class variable
is used in a Get or Put. It is equivalent to using the relation form: GET CV
CVName OR PUT CV CVName.

Example: This command allows you to edit all code where the class variable
commonWindow is either set or accessed.

. EDIT ANY WHO USE THE CV commonWindow

USE OBJECT [Relation]

Purpose Uses an object name to locate all places where the object is used.

Example This command returns a list of all code where the object Window is used.

. WHO USES THE OBJECT Window??

Limitations

Masterscope has several limitations:

• Names of methods must be quoted when used with Masterscope; for
example, the method name Helicopter.Move must be entered as
’Helicopter.Move.

• The following expression will not find a call to GetValue when in a method:

. WHO CALLS GetValue

Masterscope does not record calls to GetValue and PutValue explicitly; it
records them under the Get- relation along with calls of the form

(← foo Get ’bar)

Similarly, the following functions are recorded under relations instead of
their names:

GetClassValue Get CV

2 5LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

MASTERSCOPE

PutClassValue Put CV
GetClassIV Get IV
PutClassIV Put IV

If you want to find the explicit calls to Get/PutValue, use

. WHO GETS ANY AND NOT SENDS Get

• Masterscope currently assumes calls to GetValue and similar accessors
are accessing instance variables; i.e.,

(GetValue foo ’bar)

records an access to the instance variable bar. This is not necessarily the
case; bar could also be a class variable.

• The methods and functions that create class and instance variables
populate the appropriate PUT NOTSELF relations. For example, a function
that does

(←($ foo) AddCV ’bar)

will be found by the query

. WHO PUTS CV NOTSELF ’bar

An exception occurs with the generalized Add and Delete method. For
example,

($ foo) Add ’IV ’bar)

will not be noticed as accessing the instance variable bar.

Also, the templates for methods and functions that accept property lists
generally only notice the first property. For example,

((←($ foo) NewWithValues ’((bar baz chain link
sausage)))

notices baz as a property, not a link.

2 6 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

MASTERSCOPE

[This page intentionally left blank]

2 7LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Description/Introduction

In many knowledge-based systems, it is useful to represent knowledge as
interconnected sets of instances. A virtual copy mechanism allows a network
of instances to be viewed as a prototype which can be copied. The copy of the
prototype is virtual in that the contents of each instance is not completely
copied at creation time. Instead, it inherits default values from the prototype
(also called the original), thus continuing to share the parts not modified in the
copy. The copied network is virtual also in the sense that only those instances
needed in the processing are copied.

A virtual copy of an object in the prototype network has the following
properties:

• It responds to at least the same set of messages as the prototype object
and in the same way; that is, a copy has the same procedural behavior that
is defined for the prototype.

• A copy inherits variables and their values from the prototype, and continues
to do so until an explicit change is made in the copy. At that point, the new
value is stored in the copy and it stops tracking the prototype for that
variable. A fetch operation on a value that is not stored locally either finds
or creates a virtual copy of the value obtained from the prototype.

Installation/Loading Instructions

The implementation of virtual copies is contained in the file
LOOPSVCOPY.LCOM. No other files are necessary.

Application /Module Functionality

A network of instances is tied together through the values of instance variables
within each of the instances. Assume an object A has an instance variable x,
the value of which is the object B. A virtual copy of A will also have an
instance variable named x. The value of x in the copy will point to B if B is a
shared object, or x may point to a copy of B if it is to be virtual. Changing the
value of x in the copy will not change the value in the original.

Overview of Operation

By default, virtual copies share instance variables. This means that changing
the value of an instance variable in the original will be tracked by the copy.

2 8 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Virtual copies are implemented with two additional classes:

• VirtualCopyMixin

The class VirtualCopyMixin is a subclass of Tofu which contains two
instance variables:

- % copyMap%
- % copyOf%

(These unusual names are used to avoid conflicts with any other instance
variable names users may create.) This class contains several methods,
most of which are required to implement virtual copies and are not used by
a programmer.

Printing a virtual copy instance is a specialization of how regular instances
are printed. All instances print as #,($& <class-name> UID). The class of a
virtual copy is a dynamic mixin of the class VirtualCopyMixin and the class
of the original object (see the LOOPS Reference Manual for more
information on mixins). The virtual copy print function adds the name or
unique identifier (UID) of the original object. For example,

#,($& (VirtualCopyMixin Container1) (JFW0.0X:.aF4.R>8 . 3) c1)

is a copy of the object named c1.

• VirtualCopyContext

The class VirtualCopyContext has no methods and only one instance
variable, copyMap. Instances are used as an argument for calls to
MakeVirtualMixin.

Since copies can be made of copies, you often need to determine the original
object of a chain of copies with the UltimateOriginal function.

Operands

This section describes the functions, methods, class variables, and instance
variables that operate on virtual copies.

VirtualIVs [Class Variable]

Purpose/Behavior: Helps specify a class whose instances may be made into virtual copies. The
value of this class variable should be either the symbol ALL, or a list of
instance variables contained within instances of the class. If the value is ALL,
all objects pointed to by any of the instance variables will be copied. If the
value is a list of instance variables, only the instance variables on this list will
have their values copied. Other instance variable values will be shared
between the copy and the original.

(MakeVirtualMixin x copyContextObj) [Function]

Purpose: Creates a virtual copy of an object.

Behavior: Creates a dynamic mixin class combining the classes VirtualCopyMixin and
the class of x. An instance of this resulting class is created and it is returned.

2 9LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Arguments: x An object to be copied; must have the class variable VirtualIVs
as described above.

copyContextObj
Usually NIL; used internally by MakeVirtualMixin when it calls
itself. It can be an instance of VirtualCopyContext if you are
creating an instance that is intended to be part of a currently
existing network of copies starting from another entry point. See
description in Limitations below for a further explanation of this
point.

Returns: An object that is a copy of x.

Example: Refer to the section, "Example."

% copyMap% [Instance Variable of VirtualCopyMixin]

Purpose/Behavior: A mapping of original nodes (which are objects) in a network to the copied
nodes. This map is stored in an instance of the class VirtualCopyContext.

% copyOf% [Instance Variable of VirtualCopyMixin]

Purpose/Behavior: Within an instance that is a copy, the value of this instance variable is a
pointer to the object that was copied.

(← self VirtualCopy?) [Method of VirtualCopyMixin]

Purpose: Determines if an object is a virtual copy.

Returns: self

Categories: Object, VirtualCopyMixin

copyMap [Instance Variable of VirtualCopyContext]

Purpose/Behavior: The value of this instance variable is a list of dotted pairs. The CAR of each
pair is the original; the CDR, the copy.

(UltimateOriginal self) [Function]

Purpose: Determines what an object is ultimately copying.

Behavior: If self is not a virtual copy, self is returned.

If self is a virtual copy, this recurses through the value of the instance variable
% copyOf% until it finds the original and returns it.

Arguments: self A LOOPS object.

Returns: self or what is at the top of self’s copy chain.

3 0 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

Example

Create a class called test and edit it as shown.

44←(←($ Class) New ’test)
#,($C test)

45←(ED ’test)

Create an instance called t0 of this class and inspect it.

46←(←($ test) New ’t0)
#,($& test (N^W0.1Y%:.;h.Lh9 . 556))

47←(← ($ test)
NewWithValues
(BQUOTE ((atom 1)

(atomCopy 2)
(list (a b c))
(listCopy (A B (\, (← ($ test) New (QUOTE t1)))))
(obj (\, (← ($ test) New (QUOTE t2))))
(objCopy (\, (← ($ test) New (QUOTE t3)))))))

#,($& test (N^W0.1Y%:.;h.Lh9 . 560))

48←(← IT SetName ’t0)
#,($& test (N^W0.1Y%:.;h.Lh9 . 560))

49←(INSPECT IT]
{WINDOW}#52,51234

Make a copy called t0copy and inspect it.

57←(← (MakeVirtualMixin ($ t0))
 SetName
 (QUOTE t0copy))
#,($& (VirtualCopyMixin test) N^W0.1Y%:.;h.Lh9 . 562)

3 1LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

58←(INSPECT IT)
{WINDOW}#53,10150

Make the following changes to t0 and then reinspect t0copy.

60←(for iv in ’(atom atomCopy list listCopy obj objCopy)
as val in (LIST 11 22 ’(a b c d) ’(A B C) ($ t3) ($ t1))
do (PutValue ($ t0) iv val]
NIL

61← (INSPECT IT)
{WINDOW}#53,10152

The copied instance variables have not changed since they do not track changes in the original object.

Limitations

Some subtle issues are involved in building and using prototype structures so
that the structure is preserved in the copied network. These involve how the
network is typically traversed.

A general constraint is that all the links to any shared node in the prototype
either all be marked as virtual variables, or none of them are. If they are all
marked, then a single copy will be made and used. If none are, then the
original object from the prototype will be used. Sharing with the prototype can
be useful if this object is a repository for standard information that is
independent of context. However, if this constraint is violated, the topology of
the virtual copy will be different from that of the prototype.

In the simplest situation the network has a single entry node. In this case, a
copy-map (see the section "Operands") can be created when the entry node
object is first copied. After that all values are copied using this copy-map. The
mechanism works well in this situation, even if there is sharing and there are
cycles within the network.

At the other extreme, networks can have arbitrary connectivity, including
multiple entries from outside the network, for example, from other networks or

3 2 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

VIRTUAL COPIES

non-objects. In this case, the following constraints are necessary to ensure
correctness of the virtual copy mechanism.

The first constraint states that all access to the network must start through a
copy of one of the nodes in the prototype. This condition is necessary because
the criteria for copying are contained in the links from one object to another,
not in the objects themselves, and a shared node could not specify a link to a
node to be copied. This constraint ensures that all accesses from the outside
will be copied if and only if that object would have been copied because of an
internal link. Otherwise, an analogous situation would occur in which you could
either reach a copy or the original node of the prototype itself depending upon
which path you follow when the paths lead to the same node in the prototype.

The final constraint requires that all entries to the network should be passed
the same copy-map if they are to share structure. The underlying concern in
imposing these constraints is that a network be always copied the same way
to maintain its topology regardless of where you start.

Suppose you want to make a virtual copy of a virtual copy, that is, to use a
virtual copy of a network as a prototype itself. This is very useful if you are
using a network to hold the state of a partial design and you want to try two
alternative continuations of the design. Some hidden costs are associated
with such multiple-level virtual copies.

Suppose further that a network N1 is used as a prototype and you make a
virtual copy, N1-VC. Furthermore, N1-VC-VC is defined to be a copy of N1-
VC. Values missing from N1-VC-VC are found in the corresponding object of
N1-VC. If the value is missing there, the process recurs, and N1 is examined.
If the value is to be a virtual copy, then this process will add a virtual copy in
N1-VC, and then a second level copy in N1-VC-VC. This is necessary to
preserve the semantics presented, but implies that many levels of virtual copy
cannot easily do inexpensive incremental searches of a network.

References

Mittal, S. , Bobrow, D. G., and Kahn, K. Virtual Copies, Between Classes and
Instances. ACM OOPLSA-86 Conference Proceedings, Portland, Oregon,
1986.

I N D E X - 1LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

INDEX

A
ActiveGaugeMixin (Class) 4
ActiveHorizontalScale (Class) 5
ActiveVerticalScale (Class) 5
AlarmMixin (Class) 6
AlphaNumeric (Class) 6
Attach (Method of Gauge) 16
Attached? (Method of Gauge) 16

B
BoundedMixin (Class) 7

C
ChangeFont (Method of Gauge) 17
Close (Method of Gauge) 17
copyMap (Instance Variable of VirtualCopyContext)

29

D
Destroy (Method of Gauge) 17
Detach (Method of Gauge) 17
Dial (Class) 8
DigiMeter (Class) 8
DigiScale (Class) 9

G
Gauge (Class) 9
gauge classes 3
gauge methods 15
GaugeAV (Class) 9
GaugeClasses (Variable) 3
GAUGEFILES (Variable) 3
gauges 1
GET (Relation) 23
GET CV (Relation) 23

H
HorizontalScale (Class) 10
HSGraphics (Class) 11

I
IMPLEMENT (Relation) 23
Instrument (Class) 11

L
LCD (Class) 11
LCDMixin (Class) 12
LOADGAUGES (Function) 2

M
MakeVirtualMixin (Function) 28
Masterscope 21
Meter (Class) 12

O
OVERRIDE (Relation) 24

P
PUT (Relation) 23
PUT CV (Relation) 23

R
Reset (Method of Gauge) 17
RoundScale (Class) 12

S
SelfScaleMixin (Class) 13
SEND (Relation) 22
SEND NOTSELF (Relation) 22
SEND SELF (Relation) 22
SetScale (Method of Gauge) 17
Shape (Method of Gauge) 18
ShapeToHold (Method of Gauge) 18
SPECIALIZE (Relation) 23
SSHorizontalScale 14
SSVerticalScale 14
StraightScale (Class) 14

U
UltimateOriginal (Function) 29
Update (Method of Gauge) 18
USE CV (Relation) 24
USE IV (Relation) 24
USE OBJECT (Relation) 24

V
VerticalScale (Class) 14
virtual copies 27
VirtualCopy? (Method of VirtualCopyMixin) 29
VirtualIVs (Class Variable) 28
VSGraphics (Class) 15

%
% copyMap% (Instance Variable of

VirtualCopyMixin) 29
% copyOf% (Instance Variable of VirtualCopyMixin)

29

I N D E X - 2 LOOPS LIBRARY MODULES MANUAL, MEDLEY RELEASE

INDEX

[This page intentionally left blank]

Lyric/Medley Release
July 1988

XEROX LOOPS
LIBRARY MODULES MANUAL

XEROX

XEROX LOOPS LIBRARY MODULES MANUAL

Lyric /Medley Release

July 1988

Copyright © 1988 by Xerox Corporation.

Xerox LOOPS is a trademark.

All rights reserved.

i i iXEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE v

GAUGES 1

Description/Introduction 1

Prerequisites 2

Installation/Loading Instructions 2

Application/Module Functionality 3

Gauge Classes 3

Gauge Methods 15

Examples 18

Limitations 19

MASTERSCOPE 21

Description/Introduction 21

Installation/Loading Instructions 21

Relations 21

Limitations 24

VIRTUAL COPIES 27

Description/Introduction 27

Installation/Loading Instructions 27

Application/Module Functionality 27

Overview of Operation 27

Operands 28

i v XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

Example 30

Limitations 31

References 32

vXEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

[This page intentionally left blank]

vXEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

Overview of the Manual

The Xerox LOOPS Library Modules Manual describes the Library Modules for
Xerox’s Lisp Object-Oriented Programming System, Xerox LOOPS (TM).
These Library Modules, which can be loaded into your Xerox Artificial
Intelligence Environment, provide additional functionality to Xerox LOOPS.

This manual describes the Lyric/Medley Release of the Xerox LOOPS Library
Modules, which run under the Lyric and Medley Releases of Xerox Lisp.

Organization of the Manual and How to Use It

This manual is divided into chapters, with each chapter focussing on a
particular Library Module. A Table of Contents is included to help you find
specific material.

Conventions

This manual uses the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods,
arguments, etc., must be typed as shown. Typically, this means that
method names are capitalized and variables are not.

• You need to use an Interlisp Exec to enter all exec expressions.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples are shown in the Interlisp Exec and appear in the following
typeface:

89_(_LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all Xerox LOOPS expressions.

• Methods with an exclamation mark (!) suffix usually perform operations
deeply into class structure instead of only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth
functions.

• Methods often appear in the form ClassName.SelectorName.

v i XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

This manual describes the Xerox LOOPS items (functions, methods, etc.) by
using the following template:

Purpose: Gives a short statement of what the item does.

Behavior: Provides the details of how the item operates.

Arguments: Describes each argument in the following format:

argument Description

Returns: States what the item returns, and does not appear if the item does not return a
value. The phrase "Used as a side effect only." means that the purpose of
the item is to perform a computation or action that is independent of any
returned value, not to return a particular value.

Categories: A way to group related methods. For example, all the methods related to
Masterscope on the class FileBrowser have the category Masterscope, not
FileBrowser. This item appears only for methods.

Specializes: The next higher class in the class hierarchy that contains a method with the
same selector. For example, RectangularWindow.Open can specialize
Window.Open. This appears only for methods.

Specializations: The next lower class in the class hierarchy that contains a method with the
same selector. For example, Window.Open is a specialization of
RectangularWindow.Open. This appears only for methods.

Example: An example is often included to show how to use the item and what result it
produces. Some examples may appear differently on your system, depending
on the settings of various print flags. See the Xerox LOOPS Reference
Manual for details.

References

The following books and manuals augment this manual.

Xerox LOOPS Reference Manual

Xerox LOOPS Release Notes

Xerox LOOPS Users’ Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Xerox Common Lisp Implementation Notes, Lyric Release

Xerox Lisp Release Notes, Lyric and Medley Releases

Xerox Lisp Library Modules Manual, Lyric and Medley Release s

1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

Writer’s Notes -- Conventions

This file includes notes on conventions for Xerox LOOPS Library Modules Manual, Lyric Beta Release. This
manual is packaged with the Xerox LOOPS Release Notes and Xerox LOOPS Reference Manual to form one
binder.

Writer: Raven Kontur Brewster

Printing Date: >>DA<< >>MO<< 1988

Directories and Files

The directory {ERIS}<Doc>Loops>Lyric>Beta>LibMods> contains the files for the manual. This directory has the
following subdirectories:

• {ERIS}<Doc>Loops>Lyric>Beta>LibMods>Z-ReleaseInfo> contains this file on writing conventions and a file on
production details.

Filenames describe the contents of the file. For example, the filename

{ERIS}<Doc>Loops>Lyric>Beta>LibMods>Gauges

contains the chapter on gauges.

Assemble the files in the following order for the manual:

{ERIS}<Doc>Loops>Lyric>Beta>LibMods>A1-TitlePage.tedit
{ERIS}<Doc>Loops>Lyric>Beta>LibMods>A2-TOC.tedit
{ERIS}<Doc>Loops>Lyric>Beta>LibMods>A3-Preface.tedit
{ERIS}<Doc>Loops>Lyric>Beta>LibMods>Gauges.tedit
{ERIS}<Doc>Loops>Lyric>Beta>LibMods>Masterscope.tedit
{ERIS}<Doc>Loops>Lyric>Beta>LibMods>VC.tedit

Conventions

This manual uses the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods, arguments, etc., must be typed as
shown. Typically, this means that method names are capitalized and variables are not.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89_(_LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended Exec for all Xerox LOOPS
expressions.

2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

• Methods with an exclamation mark (!) suffix usually perform operations deeply into class structure instead of
only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth functions.

• Methods often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

This manual describes the Xerox LOOPS items (functions, methods, etc.) by using the following template:

Purpose: Gives a short statement of what the item does.

Behavior: Provides the details of how the item operates.

Arguments: Describes each argument in the following format:

argument Description

Returns: States what the item returns, and does not appear if the item does not return a
value. The phrase "Used as a side effect only." means that the purpose of
the item is to perform a computation or action that is independent of any
returned value, not to return a particular value.

Categories: A way to group related methods. For example, all the methods releated to
Masterscope on the class FileBrowser have the category Masterscope, not
FileBrowser. This item appears only for methods.

Specializes: The next higher class in the class hierarchy that contains a method with the
same selector. For example, RectangularWindow.Open can specialize
Window.Open. This appears only for methods.

Specializations: The next lower class in the class hierarchy that contains a method with the
same selector. For example, Window.Open is a specialization of
RectangularWindow.Open. This appears only for methods.

Example: An example is often included to show how to use the item and what result it
produces. Some examples may appear differently on your system, depending
on the settings of various print flags.

Style Sheet Addenda

Here are some guidelines I used when writing the LOOPS manuals. Items
appear in rather random order.

• Avoid contractions.

• Avoid subscripts. Use WORD1 rather than WORD1 to avoid inconsistent
line leading.

• Avoid wording that starts "Note that..." or "Notice that...". Either make it a
note with correct format or eliminate the "Note that".

• Use semicolons rather than m-dashes.

• Each item in the template starts with an initial capital letter; e.g.,
"Describes..."

• The arguments are identical in the call and in the argument description.

3XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

• Parenthesies appear around expressions and square brackets appear
around the name of the functionality.

• The arrow in the expression is the NS character ←, not _. These
characters appear similarly when printed, but differently on the screen. See
the section, "Special Notes and Cautions," for details

• A period appears after the word None, after argument descriptions, and
Returns: item.

• Items are set to or return T (instead of true).

• Menus contain options, not items or selections.

• You drag (not roll) the mouse to the right of a menu option to see its
submenu.

• Use "above" and "below" when referrering to things in the same section,
section numbers and names when referrering to things in the same chapter,
and chapter numbers and names when referrering to things in another
chapter.

• Please study the following style sheet carefully before you start to edit. The
various appearances of active value and annotated values are especially
crazy making.

These things appear in bold:
class variables
functions
instance variables
messages
methods
variables

ActiveValue - specific class/instance
active value - general information
activeValue - previous implementation of ActiveValue

annotatedValue - data type
AnnotatedValue - specific class
annotated values - general information

bitmap

data type

file package
filecoms

inspector

Lisp Library package
localState - instance variable

non-NIL

prettyprints

supers list

• Figures

Paragraph Formatting

4 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

The text has the following format:

Bulleted lists have the following format:

The template has the following format:

The Arguments section of the template has the second line start at 18 instead of 13.

5XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

Page Layout

Page numbering varies with the chapter.

6 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

Bitmaps, Graphs, and Sketches

To do SEdit and Inspector examples for the manual, you need to reset your FONTPROFILE and scale the
resulting windows to 0.8.

-- In your Interlisp Executive, enter (DV FONTPROFILE)

-- Edit the FONTPROFILE to be as follows. (some of this is probably overkill, but it does eliminate any suprizes)

7XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

-- In your Interlisp Executive, enter
(FONTPROFILE FONTPROFILE)
(SEDIT.RESET)

-- Make bitmaps of the resulting windows, and scale these bitmaps to 0.8

To get the pop-up menus (and their drag-through submenus) into a bitmap for using as an illustration:

--Move your type-in point to the exec window.

--Bring up your pop-up menu.

--control-G

--When the menu comes up, select Mouse *run. This will cause a break and spawn a new mouse process, so
that the mouse continues to work.

--Move your type-in point to the tedit window.

--Shift-snap the menu image into the tedit window.

--Move the type-in point to the break window and type ^.

8 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

--To have your browser menus be a different font, type in your Interlisp Exec

 (SETQ MENUFONT (FONTCREATE ’TERMNIAL 12 ’BOLD))

--The global variable MENUFONT which is currently set to (HELVETICA 10 MRR).

--The menus that have already been created will still display this old font. Either recreate the browsers to force
the menus to be recreated, or send a message to the browser

 (_ browser ClearMenuCache)

 to force that browser to recreate its menus.

Special Notes and Cautions

Make sure you have changed the underscore to be a left arrow before loading and printing any files. To do this,

- Enter the following commands into your Executive:

(GETCHARBITMAP (CHARCODE _) ’(MODERN 10 MRR))
(EDITBM IT)

- When the bitmap editor apears, delete the underscore and insert the following left arrow:
..........
..........
..........
..........
..........
....X.....
...XX.....
..XXXXXX..
...XX.....
....X.....
..........
..........
..........
..........

- Finally, enter the following commands into your Executive to store the pattern:

(PUTCHARBITMAP (CHARCODE _) ’(MODERN 10 MRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(MODERN 10 BRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 10 MRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 10 BRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 12 BRR) IT)

I N D E X - 1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

INDEX

A
ActiveGaugeMixin (Class) 4
ActiveHorizontalScale (Class) 5
ActiveVerticalScale (Class) 5
AlarmMixin (Class) 6
AlphaNumeric (Class) 6
Attach (Method of Gauge) 16
Attached? (Method of Gauge) 16

B
BoundedMixin (Class) 7

C
ChangeFont (Method of Gauge) 17
Close (Method of Gauge) 17
copyMap (Instance Variable of VirtualCopyContext)

29

D
Destroy (Method of Gauge) 17
Detach (Method of Gauge) 17
Dial (Class) 8
DigiMeter (Class) 8
DigiScale (Class) 9

G
Gauge (Class) 9
gauge classes 3
gauge methods 15
GaugeAV (Class) 9
GaugeClasses (Variable) 3
GAUGEFILES (Variable) 3
gauges 1
GET (Relation) 23
GET CV (Relation) 23

H
HorizontalScale (Class) 10
HSGraphics (Class) 11

I
IMPLEMENT (Relation) 23
Instrument (Class) 11

L
LCD (Class) 11
LCDMixin (Class) 12
LOADGAUGES (Function) 2

M
MakeVirtualMixin (Function) 28
Masterscope 21
Meter (Class) 12

O
OVERRIDE (Relation) 24

P
PUT (Relation) 23
PUT CV (Relation) 23

R
Reset (Method of Gauge) 17
RoundScale (Class) 12

S
SelfScaleMixin (Class) 13
SEND (Relation) 22
SEND NOTSELF (Relation) 22
SEND SELF (Relation) 22
SetScale (Method of Gauge) 17
Shape (Method of Gauge) 18
ShapeToHold (Method of Gauge) 18
SPECIALIZE (Relation) 23
SSHorizontalScale 14
SSVerticalScale 14
StraightScale (Class) 14

U
UltimateOriginal (Function) 29
Update (Method of Gauge) 18
USE CV (Relation) 24
USE IV (Relation) 24
USE OBJECT (Relation) 24

V
VerticalScale (Class) 14
virtual copies 27
VirtualCopy? (Method of VirtualCopyMixin) 29
VirtualIVs (Class Variable) 28
VSGraphics (Class) 15

%
% copyMap% (Instance Variable of

VirtualCopyMixin) 29
% copyOf% (Instance Variable of VirtualCopyMixin)

29

I N D E X - 2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

INDEX

[This page intentionally left blank]

1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Description/Introduction

Gauges are an important part of the LOOPS user interface for both developers
and end users. Gauges assist in understanding the dynamic nature of the
programs. This is in contrast to the more typical case of debugging programs
using static means. In the creation of user-friendly interfaces, you can use
gauges to display, in analog or digital form, various data that may be
changing. Also, by employing active gauges, you can provide a convenient
way to interact with a system.

One of the features of gauges is the ease with which you can use them in a
system. In more traditional languages, if you want to understand how a
variable is changing over the course of a computation, you must make
modifications in your program wherever you want to begin or end the
examination of a variable. Given the capabilities of active values used by
gauges, you need only attach or detach a gauge to the data that you are
interested in monitoring.

The following types of gauges are available:

• Meter; a circular instrument that wraps around any number of times.

• Dial; a bounded dial, like an automobile speedometer.

• LCD; a gauge that uses the entire window to display a value.

• Scale; a horizontal or vertical display of a gauge.

• ActiveScale; a scale that allows you to change the gauge value.

Gauges are an example of the combination of programming capabilities within
LOOPS. The different types of gauges are defined within the context of an
inheritance lattice. This allows the more general functionality and variables to
be allocated to more general gauge classes, with specific functionality placed
in more restricted classes. You can also see the use of mixins to add a small
amount of functionality to several different classes of gauges.

Note: Mixins are classes that are used only in conjunction with another class
to create a subclass.

The methods within gauges are built upon both function calling and message
sending. Gauges are "attached" to objects through the mechanism of active
values. Since gauges are built upon the mechanism of active values, gauges
can only be attached to data within objects. It is not possible to use gauges to
monitor any arbitrary Lisp variable.

2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Prerequisites

The default font for gauges is Modern 10.

Installation/Loading Instructions

Gauges are divided among several different files to allow you to load only
those objects and functions that you need. The table below lists the files to
load for each type of gauge. The filecoms for each file will try to load any
other required gauge files from LOOPSLIBRARYDIRECTORY. The file
GAUGES.DFASL and either GAUGEINSTRUMENTS.DFASL or
GAUGEALPHANUMERICS.DFASL will always be loaded; other files may also
be loaded.

Gauge File to load

LCD GAUGEALPHANUMERICS.DFASL

METER GAUGEMETERS.DFASL

DIAL GAUGEDIALS.DFASL

SCALE GAUGESCALES.DFASL

ACTIVE SCALEGAUGEACTIVE.DFASL

Additionally, the file GAUGESELFSCALEMIXIN.DFASL can be loaded to add
the class SelfScaleMixin, and GAUGEALARMS.DFASL can be loaded to add
the class AlarmMixin.

To load the required files, first set the value of LOOPSDIRECTORY to include
the directory where the gauges files are stored, then type the following
expression in the Executive:

(LOAD ’FILENAME)

To load all of the gauges, load the file GAUGELOADER and then enter
(LOADGAUGES). GAUGELOADER also sets the variables: GAUGEFILES
and GaugeClasses.

(LOADGAUGES LDFLG SOURCES?FLG) [Function]

Purpose: Loads all the gauges.

Behavior: Assumes that all of the gauge files are on the LOOPSDIRECTORY search
path.

All the gauge files will be loaded based upon the settings of LDFLG and
SOURCES?FLG. A FILESLOAD expression is built up and evaluated.

Arguments: LDFLG Can be NIL, PROP, or SYSLOAD. See the LDFLG discussion
under loading in the Interlisp-D Reference Manual.

SOURCES?FLG
Can be NIL or T. If NIL, this attempts to load the compiled files
before trying to load the sources. If T, only the sources are
loaded.

Returns: Used for side effect only.

3XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

GAUGEFILES [Variable]

Behavior: Initialized to (GAUGEACTIVE GAUGEALARMS GAUGEALPHANUMERICS
GAUGEBOUNDEDMIXIN GAUGEDIALS GAUGEDIGIMETER
GAUGEDIGISCALE GAUGEINSTRUMENTS GAUGEMETERS GAUGES
GAUGESCALES GAUGESELFSCALEMIXIN)

GaugeClasses [Variable]

Behavior: Initialized to (GaugeAV ActiveGaugeMixin Gauge AlarmMixin BoundedMixin
SelfScaleMixin)

Call (Browse GaugeClasses) to open a browser of all of the gauge classes.

Application/Module Functionality

This section describes the gauge classes and methods.

Gauge Classes

This section describes the available gauges shown in the following browser.

Note: The browser does not include the optional mixin classes.

Within the class description of each class, the instance variables and class
variables that are specializations only because they have different default
values are not listed.

Name Type Description

ActiveGaugeMixin AbstractClass A gauge class that allows you to set the value of the
variable being monitored with the cursor, via a SET menu.

ActiveHorizontalScale Class An active gauge that displays the value on a horizontal
scale.

ActiveVerticalScale Class An active gauge that displays its value on a vertical scale.

AlarmMixin AbstractClass A mixin that adds alarm functionality to any gauge.

AlphaNumeric AbstractClass A gauge that gives an alphanumeric display of a value.

4 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

BarChart Class A gauge that displays more than one VerticalScale side-by
side.

BoundedMixin AbstractClass Creates a bounded scale for displayVal; to be used as a
mixin for instruments.

Dial Class A bounded dial, like an automobile speedometer.

DigiMeter Class A gauge that displays both an LCD and a meter.

DigiScale Class A gauge that displays both an LCD and a horizontal scale.

Gauge AbstractClass A class for objects that present a dynamic graphical image
of a LOOPS value.

GaugeAV Class An active value associated with a gauge.

HBarChart Class A gauge that displays more than one HorizontalScale
side-by side.

HorizontalScale Class A labeled, bounded scale with a bar that fills to the right.

HSGraphics AbstractClass Gauge that is displayed in the form of a singe horizontal
scale or bar.

Instrument AbstractClass A numeric gauge that is externally scaled by inputLower
and inputRange and scaled internally by lower and range.

LCD Class Differs from AlphaNumeric in that the entire gauge window
is the printing region.

LCDMixin AbstractClass Computes print region differently from LCD.

Meter Class A circular instrument that wraps around any number of
times.

RoundScale AbstractClass Abstract Class for instruments with circular (arc) scales.

SelfScaleMixin AbstractClass Provides for the gauge to rescale according to the reading.

SSBarChart Class A self-scaling version of BarChart.

SSDigiMeter Class A self-scaling version of DigiMeter.

SSHBarChart Class A self-scaling version of HBarChart.

SSHorizontalScale Class Gauge that is displayed in the form of a single scale or bar
which rescales itself accordingly.

SSVerticalScale Class Gauge that is displayed in the form of a single vertical scale
or bar which rescales itself accordingly.

StraightScale AbstractClass Abstract Class for instruments with straight scales.

VSGraphics AbstractClass Gauge that is displayed in the form of a single vertical scale
or bar.

VerticalScale Class Gauge that is displayed in the form of a single vertical scale
or bar.

ActiveGaugeMixin [Class]

Description: A gauge class that allows you to set the value of the variable being monitored
with the cursor, via a SET menu.

MetaClass: AbstractClass

5XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Supers: Object

Class Variables: None.

Instance Variables: cursor The cursor to use when changing the scale; the default is NIL.

ActiveHorizontalScale [Class]

Description: An active gauge that displays the value on a horizontal scale. This gauge
shows the value of the data it is connected with and allows you to change that
data with the gauge.

MetaClass: Class

Supers: ActiveGaugeMixin, HorizontalScale

Class Variables: None.

Instance Variables: cursor Cursor to use when changing the scale; its property :initform is
set to HorizontalAGCursor.

Example: These gauges have an attached menu at the bottom of the gauge. When you
position the cursor over this menu and press a mouse button, the cursor
changes to the following shape:

While the left button is held down, the system tracks movements of the cursor
and changes the value that the gauge is monitoring.

ActiveVerticalScale [Class]

Description: Similar to ActiveHorizontalScale, except that a vertical scale is used.

MetaClass: Class

Supers: ActiveGaugeMixin, VerticalScale

Class Variables: None.

Instance Variables: cursor Cursor to use when changing the scale; its :initform property is
set to VerticalAGCursor.

Example: Similar to ActiveHorizontalScale. When setting, the cursor changes to the
following shape:

6 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

AlarmMixin [Class]

Description: A mixin that adds alarm functionality to any gauge. An alarm is defined as
warning object that is set off when the value being monitored falls outside of
the specified range. The gauge flashes and stays inverted when the alarm is
tripped.

CAUTION

When a new class of gauges is created that will use the properties of
AlarmMixin, AlarmMixin should be the first class on the Supers list of the
new class. This guarantees that the AlarmMixin.Set method is invoked.

MetaClass: AbstractClass

Supers: Object

Class Variables: MiddleButtonItems

Instance Variables: lowTripPoint
Alarm is triggered when reading goes below this point.

hiTripPoint Alarm is triggered when reading goes above this point.

flashNumber
Number of times alarm will flash when it is tripped.

flashInverval
Interval in milliseconds between flashes.

AlphaNumeric [Class]

Description: This class contains some of the methods and data for the LCD classes.
These gauges can display any type of character, letters, or numbers.

MetaClass: AbstractClass

Supers: Gauge

Class Variables: None.

7XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Instance Variables: precision Number of characters displayed in the reading. The default value
is 5.

BarChart [Class]

Description: A gauge that can display more than one VerticalScale at once, side-by side.

MetaClass: Class

Supers: VerticalScale

Class Variables: None.

Instance Variables: maxLabelWidth
Maximum width of labels on each bar. Default value is 0 which
means no limit.

scaleLeft
Offset within the gauge window from the left for the leftmost bar.
Default value is 3.

scaleBottom
Offset within the gauge window from the bottom for all the bars.
Default value is 30.

Example: Here is a BarChart showing the size and shape of a window. It is displaying
the values 15, 21, 13, and 6.

BoundedMixin [Class]

Description: This mixin is a super of the scale classes and Dial. If a gauge that has
BoundedMixin as a super class tries to display a new setting that is outside of
the range of the gauge, the gauge will display the minimum or maximum
value as appropriate and place a "??" in the window.

MetaClass: AbstractClass

Supers: Object

Class Variables: None.

Instance Variables: None.

Example: Here is a vertical scale that displays a reading greater than its maximum.

8 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Dial [Class]

Description: A bounded dial, like an automobile speedometer.

MetaClass: Class

Supers: BoundedMixin, RoundScale

Class Variables: None.

Instance Variables: This class specializes the same instance variables as RoundScale.

Example: The angle of the arc changes with the shape of the window.

DigiMeter [Class]

Description: A gauge that combines both a meter and an LCD.

MetaClass: Class

Supers: Meter, LCDMixin

Class Variables: None.

Instance Variables: spaceForLCD
Vertical space required by LCD within the gauge. Defaults to 30.

Example: This DigiMeter is displaying 55.

9XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

DigiScale [Class]

Description: A gauge that combines both a horizontal scale having no ticks and an LCD.

MetaClass: Class

Supers: HorizontalScale, LCDMixin

Class Variables: None.

Example: This DigiScale is displaying 63 with its scale set from 0 to 100.

Gauge [Class]

Description: A class for objects that present a dynamic graphical image of a Xerox LOOPS
value. This class provides most of the methods for using gauges.

MetaClass: AbstractClass

Supers: Window

Class Variables: LeftButtonItems
Menu options associated with the left mouse button.

MiddleButtonItems
Menu options associated with the middle mouse button.

Instance Variables: reading External value of reading. The default value is 0.

containedInAV
Active value that connects the gauge to the data it is monitoring.
It should be an instance of the class GaugeAV.

font Font that is used by a gauge; default value is (Modern 10).

width Width of a gauge; has property min, which specifies the
minimum width for a gauge.

height Height of a gauge; has property min, which specifies the
minimum height for a gauge.

GaugeAV [Class]

Description: An active value that is associated with a gauge.

MetaClass: Class

Supers: LocalStateActiveValue

1 0 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Class Variables: None.

Instance Variables: gauge The gauge connected to this active value.

object The object containing the variable associated with the active
value.

propName The property name of the associated variable.

type Data type of the associated variable.

varName Name of the associated variable.

HBarChart [Class]

Description: A gauge that can display more than one HorizontalScale at once, side-by
side.

MetaClass: Class

Supers: HorizontalScale

Class Variables: None.

Instance Variables: maxLabelWidth
Maximum width of labels on each bar. Default value is 0 which
means no limit.

scaleLeft
Offset within the gauge window from the left for the leftmost bar.
Default value is 3.

Example: Here is an HBarChart showing the size and shape of a window. It is
displaying the values 15, 21, 13, and 6.

HorizontalScale [Class]

Description: A labeled, bounded scale with a bar that fills to the right.

MetaClass: Class

Supers: HSGraphics

Class Variables: None.

Instance Variables: None.

Example: This HorizontalScale is reading 350 on a scale from 0 to 500.

HSGraphics [Class]

1 1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Description: This class provides some of the methods for displaying the graphics of a
horizontal scale.

MetaClass: AbstractClass

Supers: StraightScale

Class Variables: None.

Instance Variables: scaleBottom
Bottom edge of scale in pixels. The default value is 10.

scaleLeft Left edge of scale in pixels. The default value is 12.

scaleWidth Width of inside of scale in pixels. The default value is 120.

scaleHeight Height of scale in pixels. The default value is 15.

Instrument [Class]

Description: A class that provides additional methods and data for gauges that display only
numerical data. This data is externally scaled by inputLower and
inputRange, and scaled internally by lower and range.

MetaClass: AbstractClass

Supers: Gauge

Class Variables: None.

Instance Variables: ticks Scale marks on the instrument; value is a number or NIL;
smallTicks property indicates the number of smaller ticks
between each large tick.

displayVal Internal value relative to instrument.

range Range for internal displayVal .

inputRange Range for external reading.

lower Lower bound for internal displayVal.

inputLower Lower bound for external reading.

brushWidth Scale factor for width of ticks, rays, and circles in pixels.

labels The labels that will be displayed on the gauge.

labelScale A dotted pair representing the sign and exponent of a reading.

spaceForLabelScale
Extra vertical space to display scale label.

LCD [Class]

Description: Differs from LCDMixin in that the entire gauge window is the printing region.

MetaClass: Class

Supers: AlphaNumeric

Class Variables: None.

Instance Variables: None.

1 2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Example: This LCD is displaying the string "Mumble", and has been Shapedto 120 x 60.

LCDMixin [Class]

Description: Computes printing region differently from LCD so that an LCD may be added
into another window.

MetaClass: AbstractClass

Supers: AlphaNumeric

Class Variables: None.

Instance Variables: precision Number of characters displayed in the reading; the default value
is 3. Its property is readingRegion; the default value is NIL.

readingY Y position of bottom of reading. The default value is 7.

Meter [Class]

Description: A circular instrument that wraps around any number of times. It displays a
sign and exponent in the lower left corner of its window.

MetaClass: Class

Supers: RoundScale

Class Variables: None.

Instance Variables: This class specializes the same instance variables as RoundScale.

Example: The Meter on the left is displaying a negative value.

RoundScale [Class]

Description: Abstract Class for instruments with circular (arc) scales.

MetaClass: AbstractClass

Supers: Instrument

Class Variables: None.

Instance Variables: needleLength
Radius of needle in pixels. The default value is 15.

1 3XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

radius Radius of arc in pixels. The default value is 10.

xc x-coordinate window coordinate of center of arc. (See
DRAWARC in the Xerox Lisp Release Notes, Lyric Release.)

yc y-coordinate window coordinate of center of arc. (See
DRAWARC in the Xerox Lisp Release Notes, Lyric Release.)

SelfScaleMixin [Class]

Description: Provides for the gauge to rescale according to the reading.

MetaClass: AbstractClass

Supers: Object

Class Variables: None.

Instance Variables: lowScaleFactor
Rescales if reading shrinks so that it will fit more than
lowScaleFactor times in inputRange. The default value is 5.

SSBarChart [Class]

Description: A self-scaling version of BarChart.

MetaClass: Class

Supers: BarChart

Class Variables: None.

Instance Variables: None.

SSDigiMeter [Class]

Description: A self-scaling version of DigiMeter.

MetaClass: Class

Supers: DigiMeter

Class Variables: None.

Instance Variables: None.

SSHBarChart [Class]

Description: A self-scaling version of HBarChart.

MetaClass: Class

Supers: HBarChart

Class Variables: None.

Instance Variables: None.

SSHorizontalScale [Class]

Description: Gauge that is displayed in the form of a single horizontal scale or bar which
rescales itself accordingly.

1 4 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

MetaClass: Class

Supers: VerticalScale

Class Variables: None.

Instance Variables: None.

SSVerticalScale [Class]

Description: Gauge that is displayed in the form of a single vertical scale or bar which
rescales itself accordingly.

MetaClass: Class

Supers: HorizontalScale

Class Variables: None.

Instance Variables: None.

StraightScale [Class]

Description: Abstract class for instruments with straight scales.

MetaClass: AbstractClass

Supers: BoundedMixin, Instrument

Class Variables: None.

Instance Variables: shade Shade of bar; numeric value from 0 to 65535. The default value
is 65535, which is BLACKSHADE.

VerticalScale [Class]

Description: Gauge that is displayed in the form of a singe vertical scale or bar.

MetaClass: Class

Supers: VSGraphics

Class Variables: None.

Instance Variables: None.

Example: This VerticalScale is displaying the value .55 and has its Shade set to 1258.

1 5XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

VSGraphics [Class]

Description: Similar to HSGraphics but for vertical scales.

MetaClass: AbstractClass

Supers: StraightScale

Class Variables: None.

Instance Variables: scaleBottom
Bottom edge of scale in pixels. The default value is 12.

scaleLeft Left edge of scale in pixels. The default value is 15.

scaleWidth Width of inside of scale in pixels. The default value is 15.

scaleHeight Height of scale in pixels. The default value is120.

Gauge Methods

This section describes the available methods and functions which are used to
manipulate gauges. In many cases, a particular gauge class specializes a
method defined in the class Gauge. In this case, the specialized method
definition is not explicitly defined; instead, this is noted in the
Specializes/Specializations field of the description.

Name Type Description

Attach Method Connects a gauge to an object.

Attached? Method Determines what the gauge is attached to.

ChangeFont Method Sets the gauge’s instance variable font and updates the gauge.

Close Method Detaches the gauge and closes the window.

Destroy Method Destroys the gauge, detaching it first.

Detach Method Detaches the gauge from the variable it is attached to.

Reset Method Resets the gauge’s instance variable reading .

SetScale Method Sets the scale for the gauge.

Shape Method Sweeps a new region.

ShapeToHold Method Shapes the gauge window to its smallest possible size.

Update Method Reinitializes the gauge and its display window to reflect the
current state.

(← self Attach obj varName propName type xOrPos y) [Method of Gauge]

Purpose: Connects a gauge to an object.

Behavior: Displays the gauge on the screen and associates that gauge with the variable
varName of obj. If propName is specified, the gauge will montior the
variable’s property. If xOrPos and y are not specified, a small box will
appear which must be positioned to place the gauge.

Arguments: obj A pointer to the object to which the gauge is to be attached.

1 6 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

varName The name of the instance variable, class variable, or method to
which the gauge is to be attached.

propName If non-NIL, the gauge will be attached to this property.

type One of IV, CV, or METHOD, within the object being connected to
the gauge. If NIL, it defaults to IV.

xOrPos A numerical value to specify where, in screen coordinates, the
gauge will be placed on the display. If NIL, you are asked to
place the gauge on the screen. This can be a number to specify
the x coordinate or a position. If it is a number, also specify y .

y If xOrPos is not a position, this specifies the y coordinate in
screen coordinates for the gauge.

Returns: self

Specializations: StraightScale.Attach has an additional shade argument so that the shade of
the scale may be specified at the time the gauge is attached. The following
shows the argument list for this method:

(_ ($ instance OfHorizontalScale) Attach obj varName shade propName type
xOrPos y)

The Attach methods for BarChart, HBarChart, and their subclasses take an
additional label argument. If no label argument is given, the bar is labeled with
varName. The label argument comes last, as follows:

(_ ($ instance OfBarChart) Attach obj varName propName propName type
xOrPos y label)

(← self Attached? don’tPrintFlg) [Method of Gauge]

Purpose: Determines what a gauge is attached to.

Behavior: If don’tPrintFlg is non-NIL this returns the value of the gauge instance variable
containedInAV. If dontPrintFlg is NIL, the object and the varName the gauge
is attached to will be printed in an attached window.

Arguments: don’tPrintFlg
Suppresses displaying what the gauge is attached to.

Returns: NIL

(← self ChangeFont newFont) [Method of Gauge]

Purpose/Behavior: Sets the gauge’s instance variable font to newFont and updates the gauge. If
the gauge is too small for newFont, it is reshaped.

Arguments: newFont A font in which to display the gauge’s text.

Returns: Previous value of font.

(← self Close) [Method of Gauge]

Purpose/Behavior: Detaches the gauge and closes the window.

Returns: CLOSED

(← self Destroy) [Method of Gauge]

Purpose/Behavior: Destroys the gauge, detaching it first before closing the window.

1 7XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Returns: NIL

(← self Detach) [Method of Gauge]

Purpose/Behavior: Detaches the gauge from the variable to which it is attached. This prints in an
attached window that the gauge is being detached, and deletes all of the links
connecting the gauge, active value, and object being monitored. Does not
close the window.

Returns: NIL

(← self Reset newReading) [Method of Gauge]

Purpose/Behavior: Sets the gauge’s instance variable reading to newReading and updates the
gauge. If the gauge is too small for newReading and it is SelfScaling, it is
reshaped.

Arguments: newReading
Sets the instance variable reading to newReading, and updates
the gauge without going through any intermediate steps.

Returns: NIL if gauge is AlphaNumeric or RoundScale; otherwise self.

Specializations: Alphanumeric.Reset, RoundScale.Reset

Example: The following example causes the LCD to be redisplayed with the
newReading:

13_(_ ($ lcd1) Reset "New Title")

(← self SetScale min max) [Method of Gauge]

Purpose/Behavior: Sets the scale for the gauge; computes the new scale values and redisplays if
necessary.

 Arguments: min Lowest value on scale.

max Highest value on scale.

Returns: self

(← self Shape newRegion noUpdateFlg) [Method of Gauge]

Purpose/Behavior: If newRegion is NIL, you are prompted to sweep out a region which has a
minimum sized based upon a min property of IV width and height:,min. If
newRegion is non-NIL, it is first checked to guarantee that it is at least as large
as width:,min by height:,min.

 Arguments: newregion List specifying the external coordinates of the window in which
the gauge is displayed; list is of the form (left, bottom, width,
height).

noUpdateFlg
If NIL, reshapes the gauge.

Returns: NIL

Specializes: Window

Specializations: LCD, Meter, DigiMeter. Meter.Shape has an extra argument ExtraSpaceFlg.
If T, this will allow you to shape a fairly arbitrary region for the gauge; if NIL,
the meter is constrained to be close to a square. This latter behavior is what
the user sees when trying to shape the meter from the window menu.

1 8 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

BarChart, HBarChart , and their subclasses can only be freely Shaped in the
direction their bars run (i.e., BarCharts can be Shaped vertically and
HBarCharts can be Shaped horizontally). Their size along the other
dimension is fixed by the number of values attached to the chart .

Example: This example reshapes the gauge to a location where the lower left corner is
at (10,100) a width of 50 and a height of 150.

14_(_ ($ lcd1) Shape ’(10 100 50 150))

(← self ShapeToHold) [Method of Gauge]

Purpose/Behavior: Shapes the gauge window to its smallest possible size based on width:,min
and height:,min and redisplays the gauge.

 Returns: NIL

Specializations: LCD.Shape

(← self Update) [Method of Gauge]

Purpose/Behavior: Reinitializes the gauge and its display window to reflect the current state.

 Returns: self

Categories: Window

Examples

The typical use pattern for a gauge is to first create it, set the scale to the
appropriate value, and attach it to the desired data.

To attach a horizontal scale to a Xerox LOOPS window, w1, first enter

15_(_ ($ Window) New ’w1)
#,($& HorizontalScale (|OZW0.1Y:.;h.Qm:| . 495))

16_(_ ($ HorizontalScale) New ’hs1)
#,($& HorizontalScale (|OZW0.1Y:.;h.Qm:| . 496))

17_(_ ($ hs1) SetScale 0 500)
NIL

Now make the connection.

18_(_ ($ hs1) Attach ($ w1) ’width GRAYSHADE)
#,($& HorizontalScale (|OZW0.1Y:.;h.Qm:| . 496))

The following gauge appears and you are prompted to place it .

The title of the gauge shows the instance variable being monitored.

1 9XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

Gauges can be shaped larger. The graphics used to display scales do not
change; extra white space is added to the top or right. You can use this space
to print additional information, as follows:

19_(MOVETOUPPERLEFT (@ ($ hs1) window))
{WINDOW}#372,7104

20_(PRIN1 "This is an example of printing additional
information above a gauge.

Be aware that when the gauge is next updated, this
additional text will disappear." (@ ($ hs1) window))
"This is an example of printing additional information
above a gauge.

Be aware that when the gauge is next updated, this
additional text will disappear."

Limitations

When a font is changed, a gauge occasionally needs to be updated to be
correctly displayed.

Instruments can have only floating point numbers for labels, and cannot have
integers.

2 0 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

GAUGES

[This page intentionally left blank]

2 1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

MASTERSCOPE

Description/Introduction

Masterscope has been modified to provide for analysis of files created under
the Koto or Lyric/Medley release of Xerox LOOPS. A full explanation of
Masterscope can be found in the Xerox Lisp Library Modules Manual, Lyric
and Medley Releases. In addition to the relations explained there, Xerox
LOOPS defines the relations described in this chapter.

Note: Masterscope data base files created under Buttress Loops will not
function properly in this release. Those data base files will have to be
recreated.

Installation/Loading Instructions

• Load MASTERSCOPE from your Lyric/Medley library floppies according to
its loading instructions. This should load the compiled files
MASTERSCOPE, MSANALYZE, and MSPARSE.

• Load LOOPSMS.DFASL from wherever you installed the Xerox LOOPS
Library Modules. This should load versions of MASTERSCOPE and
MSPARSE that extend Masterscope to handle Xerox LOOPS constructs.

Relations

Xerox LOOPS defines the following relations:

Name Type Description

SEND Relation Collects all places where the method is sent.

SEND SELF Relation Collects all places where the method is sent to self.

SEND NOTSELF Relation Collects all places where the method is sent to an object other
than self.

GET Relation Locates all places where the value of an instance variable is
retrieved.

GET CV Relation Locates all places where the value of a class variable is
retrieved.

PUT Relation Locates all places where the value of an instance variable is set.

PUT CV Relation Locates all places where the value of a class variable is set.

IMPLEMENT Relation Locates all methods that specialize the given selector.

SPECIALIZE Relation Locates all methods that specialize the given selector and use
_Super in the body of the method.

OVERRIDE Relation Locates all methods that specialize the given selector and do not
use _Super in the body of the method.

2 2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

MASTERSCOPE

USE IV Relation Used with an instance variable name to locate all places where
the instance variable is used in a GET or PUT.

USE CV Relation Used with a class variable name to locate all places where the
class variable is used in a GET or PUT.

USE OBJECT Relation Used with an object name to locate all places where the object is
used.

SEND [Relation]

Purpose/Behavior: Used between method names and selectors to collect all places where the
method is sent. For example, the form

. WHO IS SENT BY ’Helicopter.Move

works, but

. WHO IS SENT BY Move

does not work.

Example: The following command allows you to edit all code that sends the message
New.

. EDIT ALL WHO SEND New

SEND SELF [Relation]

Purpose/Behavior: Used between method names and selectors to collect all places where the
method is sent to self. Places where

(← self methodName)

is found are collected, while places where

(← otherInstance methodName)

is found are not.

Example: The following command allows you to edit all code that sends the message
Clear to self.

. WHO SENDS SELF Clear

SEND NOTSELF [Relation]

Purpose: Same as SEND SELF, except the only places where the message is sent to
an object other than self.

Example: The following allows you to edit all code that sends the message Clear to any
instance other than self.

. SHOW ALL WHO SEND NOTSELF Clear

GET [Relation]

Purpose: Used with an instance variable name to locate all places where the value of
the instance variable is retrieved. This relation can be used along with the
SELF and NOTSELF modifiers.

2 3XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

MASTERSCOPE

Example: This command allows you to edit all code that gets the value of the instance
variable width from an instance other than self and the value of the instance
variable height from self.

. SHOW ALL WHO GET NOTSELF width AND GET SELF height

GET CV [Relation]

Purpose: Same as GET, except that GET CV locates places where the value of the
class variable is retrieved. This relation can be used with the SELF and
NOTSELF modifiers.

Example: This command allows you to edit all code that accesses the value of the class
variable height of self.

. SHOW ALL WHO GET CVSELF height

PUT [Relation]

Purpose: Used with an instance variable name to locate all places where the value of
the instance variable is set. This relation can be used along with the SELF
and NOTSELF modifiers.

Example: This command allows you to edit all code that sets the value of the instance
variable width.

. EDIT ANY WHO PUT width

PUT CV [Relation]

Purpose: Same as PUT, except locates places where a specified class variable is set.
This relation can be used along with the SELF and NOTSELF modifiers.

Example: This command list all the sections of code that set the value of the class
variable width for an instance other than self.

. WHO PUTS CV NOTSELF width

IMPLEMENT [Relation]

Purpose: Used with a method name to locate all methods that specialize the given
selector.

Example: This returns a list of classes where the method Clear is defined.

. WHO IMPLEMENTS Clear

SPECIALIZE [Relation]

Purpose: Used with a method name to locate all methods that specialize the given
selector and use _Super in the body of the method.

Example: This command allows you to edit all the methods that are specializations of
Clear and use the _Super form.

. EDIT ANY WHO SPECIALIZE Clear

OVERRIDE [Relation]

Purpose: Like SPECIALIZE above, except it locates all methods that specialize the
given selector and _Super is not used in the body of the method.

2 4 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

MASTERSCOPE

Example: This command allows you to edit all the specializations of Clear that do not
make use of the _Super form.

. EDIT ALL WHO OVERRIDE Clear

USE IV [Relation]

Purpose: Used with an instance variable name to locate all places where the instance
variable is used in a Get or Put. It is equivalent to using the relation form of
GET IVName or PUT IVName.

Example: This command allows you to edit all code that either sets or accesses the
instance variable width.

. EDIT ANY WHO USE THE IV width.

USE CV [Relation]

Purpose: Used with a class variable name to locate all places where the class variable
is used in a Get or Put. It is equivalent to using the relation form: GET CV
CVName OR PUT CV CVName.

Example: This command allows you to edit all code where the class variable
commonWindow is either set or accessed.

. EDIT ANY WHO USE THE CV commonWindow

USE OBJECT [Relation]

Purpose Uses an object name to locate all places where the object is used.

Example This command returns a list of all code where the object Window is used.

. WHO USES THE OBJECT Window??

Limitations

Masterscope has several limitations:

• Names of methods must be quoted when used with Masterscope; for
example, the method name Helicopter.Move must be entered as
’Helicopter.Move.

• The following expression will not find a call to GetValue when in a method:

. WHO CALLS GetValue

Masterscope does not record calls to GetValue and PutValue explicitly; it
records them under the Get- relation along with calls of the form

(_ foo Get ’bar)

Similarly, the following functions are recorded under relations instead of
their names:

GetClassValue Get CV

2 5XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

MASTERSCOPE

PutClassValue Put CV
GetClassIV Get IV
PutClassIV Put IV

If you want to find the explicit calls to Get/PutValue, use

. WHO GETS ANY AND NOT SENDS Get

• Masterscope currently assumes calls to GetValue and similar accessors
are accessing instance variables; i.e.,

(GetValue foo ’bar)

records an access to the instance variable bar. This is not necessarily the
case; bar could also be a class variable.

• The methods and functions that create class and instance variables
populate the appropriate PUT NOTSELF relations. For example, a function
that does

(_($ foo) AddCV ’bar)

will be found by the query

. WHO PUTS CV NOTSELF ’bar

An exception occurs with the generalized Add and Delete method. For
example,

($ foo) Add ’IV ’bar)

will not be noticed as accessing the instance variable bar.

Also, the templates for methods and functions that accept property lists
generally only notice the first property. For example,

((_($ foo) NewWithValues ’((bar baz chain link
sausage)))

notices baz as a property, not a link.

2 6 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

MASTERSCOPE

[This page intentionally left blank]

1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

Writer’s Notes -- Production Details

This file includes notes on the production of Xerox LOOPS Library Modules Manual, Lyric Beta Release. This
manual is packaged with the Xerox LOOPS Release Notes and Xerox LOOPS Reference Manual to form one
binder.

Writer: Raven Kontur Brewster

Printing Date: >>DA<< >>MO<< 1988

Files Needed

To edit or print the manual, make sure you have the following files loaded:

IMTOOLS
SKETCH
GRAPHER

Fonts Used

{ERIS}<LISP>FONTS>

Modern font
18-point bold
14-point bold
12-point bold
10-point regular
10-point italic
10-point bold

Terminal font
10-point regular

Printing Information

The manual was printed under a Lyric sysout on the Tsunami printer.

Artwork

• The cover page for the binder is in the file {ERIS}<Doc>Loops>Lyric>Beta>BinderCover.tedit.

Special Notes and Cautions

If you bring the file into a TEdit window to print it, you must first make sure your underscore character is redefined
as a left arrow. See the file on conventions for details. This restriction does not apply if you use the Hardcopy
option from the File Browser.

2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

2 7XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

VIRTUAL COPIES

Description/Introduction

In many knowledge-based systems, it is useful to represent knowledge as
interconnected sets of instances. A virtual copy mechanism allows a network
of instances to be viewed as a prototype which can be copied. The copy of the
prototype is virtual in that the contents of each instance is not completely
copied at creation time. Instead, it inherits default values from the prototype
(also called the original), thus continuing to share the parts not modified in the
copy. The copied network is virtual also in the sense that only those instances
needed in the processing are copied.

A virtual copy of an object in the prototype network has the following
properties:

• It responds to at least the same set of messages as the prototype object
and in the same way; that is, a copy has the same procedural behavior that
is defined for the prototype.

• A copy inherits variables and their values from the prototype, and continues
to do so until an explicit change is made in the copy. At that point, the new
value is stored in the copy and it stops tracking the prototype for that
variable. A fetch operation on a value that is not stored locally either finds
or creates a virtual copy of the value obtained from the prototype.

Installation/Loading Instructions

The implementation of virtual copies is contained in the file
LOOPSVCOPY.LCOM. No other files are necessary.

Application /Module Functionality

A network of instances is tied together through the values of instance variables
within each of the instances. Assume an object A has an instance variable x,
the value of which is the object B. A virtual copy of A will also have an
instance variable named x. The value of x in the copy will point to B if B is a
shared object, or x may point to a copy of B if it is to be virtual. Changing the
value of x in the copy will not change the value in the original.

Overview of Operation

By default, virtual copies share instance variables. This means that changing
the value of an instance variable in the original will be tracked by the copy.

Virtual copies are implemented with two additional classes:

• VirtualCopyMixin

The class VirtualCopyMixin is a subclass of Tofu which contains two
instance variables:

2 8 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

VIRTUAL COPIES

- % copyMap%
- % copyOf%

(These unusual names are used to avoid conflicts with any other instance
variable names users may create.) This class contains several methods,
most of which are required to implement virtual copies and are not used by
a programmer.

Printing a virtual copy instance is a specialization of how regular instances
are printed. All instances print as #,($& <class-name> UID). The class of a
virtual copy is a dynamic mixin of the class VirtualCopyMixin and the class
of the original object (see the Xerox LOOPS Reference Manual for more
information on mixins). The virtual copy print function adds the name or
unique identifier (UID) of the original object. For example,

#,($& (VirtualCopyMixin Container1) (JFW0.0X:.aF4.R>8 . 3) c1)

is a copy of the object named c1.

• VirtualCopyContext

The class VirtualCopyContext has no methods and only one instance
variable, copyMap. Instances are used as an argument for calls to
MakeVirtualMixin.

Since copies can be made of copies, you often need to determine the original
object of a chain of copies with the UltimateOriginal function.

Operands

This section describes the functions, methods, class variables, and instance
variables that operate on virtual copies.

VirtualIVs [Class Variable]

Purpose/Behavior: Helps specify a class whose instances may be made into virtual copies. The
value of this class variable should be either the symbol ALL, or a list of
instance variables contained within instances of the class. If the value is ALL,
all objects pointed to by any of the instance variables will be copied. If the
value is a list of instance variables, only the instance variables on this list will
have their values copied. Other instance variable values will be shared
between the copy and the original.

(MakeVirtualMixin x copyContextObj) [Function]

Purpose: Creates a virtual copy of an object.

Behavior: Creates a dynamic mixin class combining the classes VirtualCopyMixin and
the class of x. An instance of this resulting class is created and it is returned.

Arguments: x An object to be copied; must have the class variable VirtualIVs
as described above.

copyContextObj
Usually NIL; used internally by MakeVirtualMixin when it calls
itself. It can be an instance of VirtualCopyContext if you are
creating an instance that is intended to be part of a currently
existing network of copies starting from another entry point. See
description in Limitations below for a further explanation of this
point.

2 9XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

VIRTUAL COPIES

Returns: An object that is a copy of x.

Example: Refer to the section, "Example."

% copyMap% [Instance Variable of VirtualCopyMixin]

Purpose/Behavior: A mapping of original nodes (which are objects) in a network to the copied
nodes. This map is stored in an instance of the class VirtualCopyContext.

% copyOf% [Instance Variable of VirtualCopyMixin]

Purpose/Behavior: Within an instance that is a copy, the value of this instance variable is a
pointer to the object that was copied.

(← self VirtualCopy?) [Method of VirtualCopyMixin]

Purpose: Determines if an object is a virtual copy.

Returns: self

Categories: Object, VirtualCopyMixin

copyMap [Instance Variable of VirtualCopyContext]

Purpose/Behavior: The value of this instance variable is a list of dotted pairs. The CAR of each
pair is the original; the CDR, the copy.

(UltimateOriginal self) [Function]

Purpose: Determines what an object is ultimately copying.

Behavior: If self is not a virtual copy, self is returned.

If self is a virtual copy, this recurses through the value of the instance variable
% copyOf% until it finds the original and returns it.

Arguments: self A Xerox LOOPS object.

Returns: self or what is at the top of self’s copy chain.

3 0 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

VIRTUAL COPIES

Example

Create a class called test and edit it as shown.

44_(_($ Class) New ’test)
#,($C test)

45_(ED ’test)

Create an instance called t0 of this class and inspect it.

46_(_($ test) New ’t0)
#,($& test (N^W0.1Y%:.;h.Lh9 . 556))

47_(_ ($ test)
NewWithValues
(BQUOTE ((atom 1)

(atomCopy 2)
(list (a b c))
(listCopy (A B (\, (_ ($ test) New (QUOTE t1)))))
(obj (\, (_ ($ test) New (QUOTE t2))))
(objCopy (\, (_ ($ test) New (QUOTE t3)))))))

#,($& test (N^W0.1Y%:.;h.Lh9 . 560))

48_(_ IT SetName ’t0)
#,($& test (N^W0.1Y%:.;h.Lh9 . 560))

49_(INSPECT IT]
{WINDOW}#52,51234

Make a copy called t0copy and inspect it.

57_(_ (MakeVirtualMixin ($ t0))
 SetName
 (QUOTE t0copy))
#,($& (VirtualCopyMixin test) N^W0.1Y%:.;h.Lh9 . 562)

3 1XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

VIRTUAL COPIES

58_(INSPECT IT)
{WINDOW}#53,10150

Make the following changes to t0 and then reinspect t0copy.

60_(for iv in ’(atom atomCopy list listCopy obj objCopy)
as val in (LIST 11 22 ’(a b c d) ’(A B C) ($ t3) ($ t1))
do (PutValue ($ t0) iv val]
NIL

61_ (INSPECT IT)
{WINDOW}#53,10152

The copied instance variables have not changed since they do not track changes in the original object.

Limitations

Some subtle issues are involved in building and using prototype structures so
that the structure is preserved in the copied network. These involve how the
network is typically traversed.

A general constraint is that all the links to any shared node in the prototype
either all be marked as virtual variables, or none of them are. If they are all
marked, then a single copy will be made and used. If none are, then the
original object from the prototype will be used. Sharing with the prototype can
be useful if this object is a repository for standard information that is
independent of context. However, if this constraint is violated, the topology of
the virtual copy will be different from that of the prototype.

In the simplest situation the network has a single entry node. In this case, a
copy-map (see the section "Operands") can be created when the entry node
object is first copied. After that all values are copied using this copy-map. The
mechanism works well in this situation, even if there is sharing and there are
cycles within the network.

At the other extreme, networks can have arbitrary connectivity, including
multiple entries from outside the network, for example, from other networks or

3 2 XEROX LOOPS LIBRARY MODULES MANUAL, LYRIC/MEDLEY RELEASE

VIRTUAL COPIES

non-objects. In this case, the following constraints are necessary to ensure
correctness of the virtual copy mechanism.

The first constraint states that all access to the network must start through a
copy of one of the nodes in the prototype. This condition is necessary because
the criteria for copying are contained in the links from one object to another,
not in the objects themselves, and a shared node could not specify a link to a
node to be copied. This constraint ensures that all accesses from the outside
will be copied if and only if that object would have been copied because of an
internal link. Otherwise, an analogous situation would occur in which you could
either reach a copy or the original node of the prototype itself depending upon
which path you follow when the paths lead to the same node in the prototype.

The final constraint requires that all entries to the network should be passed
the same copy-map if they are to share structure. The underlying concern in
imposing these constraints is that a network be always copied the same way
to maintain its topology regardless of where you start.

Suppose you want to make a virtual copy of a virtual copy, that is, to use a
virtual copy of a network as a prototype itself. This is very useful if you are
using a network to hold the state of a partial design and you want to try two
alternative continuations of the design. Some hidden costs are associated
with such multiple-level virtual copies.

Suppose further that a network N1 is used as a prototype and you make a
virtual copy, N1-VC. Furthermore, N1-VC-VC is defined to be a copy of N1-
VC. Values missing from N1-VC-VC are found in the corresponding object of
N1-VC. If the value is missing there, the process recurs, and N1 is examined.
If the value is to be a virtual copy, then this process will add a virtual copy in
N1-VC, and then a second level copy in N1-VC-VC. This is necessary to
preserve the semantics presented, but implies that many levels of virtual copy
cannot easily do inexpensive incremental searches of a network.

References

Mittal, S. , Bobrow, D. G., and Kahn, K. Virtual Copies, Between Classes and
Instances. ACM OOPLSA-86 Conference Proceedings, Portland, Oregon,
1986.

This directory contains all the documentation for Xerox Loops in all its
various incarnations. Directories are as follows:

{ERIS}<Doc>LOOPS> - most general information
{ERIS}<Doc>loops>ProductionSpecs> - specs for all versions of Koto LOOPS

{ERIS}<Doc>Loops>Koto>Final - Product Release for Koto LOOPS (Oct 87)
{ERIS}<Doc>Loops>Lyric>Alpha - Alpha Lyric LOOPS (Jan 88)

Most directories have the following subdirectories:
Ref> - Reference Manual
RelNote> - Release Notes
LibMod> - Library Modules Manual (Lyric Release)
LibPkg> - Library Packages Manual (Koto Release)
UserMod> - Users’ Modules Manual (Lyric Release)
UserPkg> - Users’ Packages Manual (Koto Release)

And even further in the diectory maze,
X-Index> - has IMPTR files and resulting index
Z-ReleaseInfo> - holds more details on conventions and production details.

Enjoy,
 Raven Brewster

A - 1LOOPS RELEASE NOTES, MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION
PROCEDURE

This appendix describes how to install the LOOPS System files, Library
Modules files, and Users’ Modules files on the Sun Workstation.

Overview of the Distribution Kit

The distribution kit for LOOPS on the Sun consists of a single 1⁄4-inch tape
cartridge. It contains the complete release in "tar" format and creates
appropriate directories when its contents are extracted.

Preparation

Preparing to install LOOPS requires that the Medley release of Lisp is already
installed and that adequate file space is available.

Before installing LOOPS, remember that

• the Medley 1.0, 1.1 or 1.2 release of Lisp must already be installed on your
Sun Workstation;

• the complete LOOPS distribution requires about 1.2 MBytes of file space.

Installation

The software installation procedure shows the steps required for installing the
Medley LOOPS software on a Sun Workstation with Medley already installed.
Examples are given where appropriate. Only those users who are system
administrators and have root privileges can install the LOOPS, Medley
release.

Before starting software installation, remember that the LOOPS software
requires about 1.2 MBytes of file space.

 1. Log in under your username.

login yourname

prompt%

where yourname is replaced by your username.

 2. Check for available space with the df command:

A - 2 LOOPS RELEASE NOTES, MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

prompt% df

Filesystem kbytes used avail capacity Mounted on

/dev/xy0a 7437 5470 1223 82% /

/dev/xy0h 148455 4900 128709 96% /usr/misc

 3. Determine if you need to run su to make a directory for the distribution. If
so, type in su:

prompt% su

 4. Make a directory for the distribution. This directory should be named
/usr/local/lde/loops. If you have enough space on the file system
containing /usr/local/lde, then

prompt# mkdir /usr/local/lde/loops/

If you don’t have enough space on /usr/local/lde, go to step 6.

 5. Make yourself owner of this directory:

prompt# /etc/chown yourname /usr/local/lde/loops/

where yourname is your username.

 6. If you don’t have space on the file system which contains /usr/local/lde,
but do have space somewhere else, for instance on /usr1, then make the
directory there and link /usr/local/lde/loops to it:

prompt# mkdir /usr1/loops

prompt# /etc/chown yourname /usr/usr1/loops

prompt# ln -s /usr1/loops /usr/local/lde/loops

 7. If you ran su, leave the privileged shell by typing:

prompt% exit

 8. Insert the 1⁄4-inch cartridge tape, containing the LOOPS software, in the
drive.

 9. Connect to /usr/local/lde/loops:

prompt# cd /usr/local/lde/loops

10. Load the Medley software from tape. Indicate the appropriate device
abbreviation for your tape by replacing xx in the example below with

ar for the Archive drive,

st for a SCSI tape drive.

 This example shows the command entry sequence:

prompt# tar xvpf /dev/rxx0

As the software is loaded (a process that takes some time) the system
prints a series of lines in the following form:

x ./system/LOOPS., 28552 bytes, 56 tape blocks

The x at the beginning of the line indicates that the file is being extracted
from the tape.

A - 3LOOPS RELEASE NOTES, MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

This creates directories named:

/usr/local/lde/loops/system/

/usr/local/lde/loops/library/

/usr/local/lde/loops/users/

This is a good time to set the protection of the extracted directories and
files so that the work group using LOOPS has at least read access to
them.

11. Boot Medley Lisp.

12. Open an Interlisp Executive Window.

13. Make certain the time is set correctly.

14. Set the DIRECTORIES and DISPLAYFONTDIRECTORIES variables
appropriately so the sysout can find your Lyric/Medley library and font
files.

15. Make the LOOPS System directory your connected directory:

CONN {DSK}/usr/local/lde/loops/system/

16. Enter the following into your Exec:

LOAD(LOOPS)

 A menu appears that looks like this:

17. Select the menu option Install from distribution.

The following menu appears:

This menu shows the current (or default, if unset) values of the variables
LOOPS examines when it loads things.

If you have installed LOOPS under /usr/local/lde/loops/ click the mouse on
the menu items to set these directories to point where the tape was
unloaded:

LOOPSDIRECTORY {dsk}/usr/local/lde/loops/system/
LOOPSLIBRARYDIRECTORY {dsk}/usr/local/lde/loops/library/
LOOPSUSERSDIRECTORY {dsk}/usr/local/lde/loops/users/
LOOPSUSERSRULESDIRECTORY {dsk}/usr/local/lde/loops/users/

As the last installation step, the installation tool automatically modifies the
file LOOPSSITE, writes it out to the vaule of the variable
LOOPSDIRECTORY, and compiles it.

When this step is finished, the first menu reappears:

A - 4 LOOPS RELEASE NOTES, MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

18. Select the menu option Load into sysout to load LOOPS into your
system. The following menu appears:

19. Select LOOPS from the menu to load LOOPS from the location where
you installed it.

Once LOOPS is loaded the LOOPS System menu reappears. To load
one of the other LOOPS library or Users’ modules, select the appropriate
name in the Load Which? menu.

20. Position your mouse cursor anywhere on the screen except for the Load
Which? menu, then press the left mouse button to exit the installation
procedure.

Medley LOOPS is now installed on your Sun Workstation.

Loading After Installation

This section describes how to reload LOOPS into a newly started Lisp sysout
after LOOPS has been previously installed.

 1. Start up Medley on your Sun Workstation.

 2. Open an INTERLISP Exec window.

 3. Make sure DIRECTORIES points to a directory containing
GRAPHER.LCOM, and DISPLAYFONTDIRECTORIES points to a
directory containing the Helvetica display font files from your Lisp
distribution kit.

 4. Connect to the directory containing the LOOPS system files:

(CNDIR ’{DSK}/USR/LOCAL/LDE/LOOPS/SYSTEM/)

 5. Load LOOPS loader program:

(FILESLOAD LOADLOOPS)

 6. Run the LOOPS loader program:

(LOADLOOPS)

This procedure loads only the LOOPS system files. Please see the manuals
describing the LOOPS Library and Users’ Modules for their loading
procedures.

CAUTION
LOOPS uses the new compiler and its macrolet facilities. When LOOPS is
loaded, it sets your *DEFAULT-CLEANUP-COMPILER* to ’CL:COMPILE-

A - 5LOOPS RELEASE NOTES, MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

FILE. More information on this cleanup flag and the new compiler is available
in the Lisp Release Notes, in your Medley Lisp kit.

A - 6 LOOPS RELEASE NOTES, MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

[This page intentionally left blank]

DOCUMENT UPDATE SHEET

Document Name: LOOPS Manual

Document Number: 310000

DOC. RELEASE REPLACE INSERT INSTRUCTIONS/
VERSION DATE PAGES PAGES NOTES

Lyric/Medley Oct., 1988 NA NA Please read the Errata Sheet,
accompanying this release
material, for last minute
release notes.

Lyric/Medley Oct., 1988 NA NA The Lyric/Medley LOOPS
documentation contains
numerous references to
Xerox LOOPS. Xerox LOOPS
is now known as Envos

LOOPS.

Medley Oct., 1988 NA A-1-A-4 Add Appendix A, Sun
Installation Procedure, to your
LOOPS Release Notes.

BACK COVER

FONT

REGULAR or
TRIUMVIRAT

E BLACK
ITALIC

Xerox Corporation
AIS Administration
250 North Halstead St.
5910-432
800-824-6449 (Calif.)
800-228-5325 (U.S.)
Pasadena, California 91107

FONT

HELVETICA
BOLD ITALIC

SPINE

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

HELVETICA
BOLD ITALIC

ARTIFICIAL INTELLIGENCE SYSTEMS

 RELEASE NOTES

XEROX LOOPS

ARTIFICIAL INTELLIGENCE SYSTEMS

RELEASE NOTES

NOTE: USE APPROPIRATE POINT SIZES TO ACHIEVE EFFECT
SHOWN BELOW. USE XEROX STANDARDS FOR <<8-1/2x11>> BINDER COVERS

COVER TEXT:

(3 INCH):

RELEASE 1.0

XEROX LOOPS

RELEASE 1.0

 REFERENCE MANUAL
 LIBRARY PACKAGES MANUAL

REFERENCE MANUAL
LIBRARY PACKAGES MANUAL

Subject: Software Configuration: Xerox LOOPS Documentation, Release 1.0
To: Fournier.pasa

I. This is a request to configure for production the artwork for the following Documentation Kit.

Kit: Xerox LOOPS, Release 1.0

For AICCB use only. Xerox Part Number: >>12R number<<
Internal Part Number: >>our number<<

DOCUMENTATION SET

of Books in Set: 4

Volume Names: Xerox LOOPS Reference Manual

Xerox LOOPS Release Notes
Xerox LOOPS Library Packages Manual
Xerox LOOPS Users’ Packages Manual

II. This is a request for artwork for the Documentation Kit.

BINDING

Volume Names: Xerox LOOPS Release Notes
Xerox LOOPS Reference Manual
Xerox LOOPS Library Packages Manual

Book Size: 8-1/2 X 11

Binder Size: 3 inch

Binding Type: vinyl

Book Cover Material:

Other Binding Specifications: plastic sleeves for slipin on front, spine, and back

Binder Rings:

Sheet Lifters: yes

Inside Pocket:

Binder Colors: PMS Gray 422-C

Special Instructions: Bind all manuals in one binder

BINDING

Volume Names: Xerox LOOPS Users’ Packages Manual

Book Size: 8-1/2 X 11

Binder Size: 1 inch

2

Binding Type: vinyl

Book Cover Material:

Other Binding Specifications: plastic sleeves for slipin on front, spine, and back

Binder Rings:

Sheet Lifters:

Inside Pocket:

Binder Colors: PMS Gray 422-C

Special Instructions:

Please see the following files for actual cover artwork specifications:

{ERINYES}<doc>LoopsRef>ProductionSpecs>BackCover.Sketch;2
{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>ComboCoverSpine.sketch;1
{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>UsersCoverSpine.sketch;2

TABS

 Tab Set Part Number: >>For AICCB use: Part Number<<

Please see the following files for the tab specifications:

{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>TabSample1a.Sketch;3
{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>TabSample1B.Sketch;6
{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>TABSAMPLE1C.Sketch;2
{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>TabSample2A.sketch;3
{ERINYES}<doc>LOOPSREF>PRODUCTIONSPECS>TabSample2B.sketch;3

FONT

HELVETICA
BOLD ITALIC

SPINE

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

HELVETICA
BOLD ITALIC

ARTIFICIAL INTELLIGENCE SYSTEMS

XEROX LOOPS RELEASE NOTES

XEROX LOOPS

ARTIFICIAL INTELLIGENCE SYSTEMS
XEROX LOOPS RELEASE NOTES

NOTE: USE APPROPRIATE POINT SIZES TO ACHIEVE EFFECT
SHOWN BELOW. USE XEROX STANDARDS FOR <<8-1/2x11>> BINDER COVERS

COVER TEXT:

(3 INCH):

KOTO RELEASE

XEROX LOOPS
KOTO RELEASE

XEROX LOOPS REFERENCE MANUAL
XEROX LOOPS LIBRARY PACKAGES MANUAL

XEROX LOOPS REFERENCE MANUAL
XEROX LOOPS LIBRARY PACKAGES MANUAL

POINT SIZE:8

TAB TEXT

FONT: OPTIMA

TABS:

XEROX LOOPS RELEASE NOTES

XEROX LOOPS REFERENCE MANUAL

XEROX LOOPS LIBRARY PACKAGES MANUAL

BANK 2

BANK 3

TYPE: MAJOR TABS

TAB SIZE: FULL PAGE (8-1/2 X 11)

NO. OF BANKS: 3

TABS FOR LOOPS (3" BINDER)

NO. TABS PER BANK: 1

BANK 1

See following page

XEROX LOOPS RELEASE NOTES

XEROX LOOPS REFERENCE MANUAL

XEROX LOOPS LIBRARY PACKAGES MANUAL

SUBTABS:

NO. OF BANKS: 5
NO. TABS PER BANK: 5

TAB SIZE: FULL PAGE (8-1/2 X 11)

TYPE: MINOR TABS

TAB COLOR: PMS GRAY 422-C

PACKAGING

DOCUMENTATION SET

of Books in Set: 4

Volume Names: Xerox LOOPS Reference Manual

Xerox LOOPS Release Notes
Xerox LOOPS Library Packages Manual
Xerox LOOPS Users’ Packages Manual

BINDING

Volume Names: Xerox LOOPS Release Notes
Xerox LOOPS Reference Manual
Xerox LOOPS Library Packages Manual

Book Size: 8-1/2 X 11

Binder Size: 3 inch

Binding Type:

Book Cover Material:

Other Binding Specifications:

Binder Rings:

Sheet Lifters:

Inside Pocket:

Binder Colors: PMS Gray 422-C

Special Instructions: Bind all manuals in one binder

BINDING

Volume Names: Xerox LOOPS Users’ Packages Manual

Book Size: 8-1/2 X 11

Binder Size: 1 inch

Binding Type:

Book Cover Material:

Other Binding Specifications:

Binder Rings:

Sheet Lifters:

2

Inside Pocket:

Binder Colors: PMS Gray 422-C

Special Instructions:

FLOPPY DISKS

Floppy Disk Packaging:

Label Specifications:

Special instructions:

PRINTING

Printing Method:

Paper Weight:

Paper Size:

Exceptions (e.g., oversize diagrams):

Special Instructions:

LOOPS PART NUMBERS

3102466 LOOPS Manual (Reference, Release Notes, Installation Guide)

3102477 LOOPS Users’ Packages

NO. OF BANKS: 5
NO. TABS PER BANK: 5

TAB SIZE:FULL PAGE (8-1/2 X 11)

TYPE:MINOR

BANK 2

BANK 3

SUBTABS FOR LOOPS (3" BINDER)

BANK 1

Table of Contents

1. Introduction

2. Instances

3. Classes

4. Metaclasses

5. Active Values

6. Methods

7. Message
Sending Forms

8. Iterative
Statements

9. Miscellaneous

Continued on next page

10. Browsers

11. Errors

12. Breaking

and Breaks

and Tracing

13. Editing

14. File Package

COLOR OF TABS: WHITE

POINT SIZE:

SUBTAB TEXT

FONT:

SUBTABS:

1. Introduction 2. Instances 3. Classes 4.
 Metaclasses

6. Methods 7. Message

Sending Forms

8. Iterative

Statements

9.
 Miscellaneous

11. Errors 12. Breaking

and Tracing

13. Editing 14.
 File Package

16. Performance 17. Processes 18. Reading

and Printing

19.
 User Input/

Output Packages

Table of Contents

5. Active Values

10. Browsers

15. Masterscope

20. LOOPS Windows A. Previous

Active Values

Glossary Index

and Breaks

Issues

FONT

HELVETICA
BOLD ITALIC

SPINE

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

HELVETICA
BOLD ITALIC

ARTIFICIAL INTELLIGENCE SYSTEMS

XEROX LOOPS

ARTIFICIAL INTELLIGENCE SYSTEMS

NOTE: USE APPROPRIATE POINT SIZES TO ACHIEVE EFFECT
SHOWN BELOW. USE XEROX STANDARDS FOR <<8-1/2x11>> BINDER COVERS

COVER TEXT:

(1 INCH):

KOTO RELEASE

XEROX LOOPS
KOTO RELEASE

 USERS’ PACKAGES MANUAL

USERS’ PACKAGES MANUAL

G L O S S A R Y - 1XEROX LOOPS

Read-Me

The two big things about Xerox LOOPS are:

- You have to change your underscore to a left arrow.

- You have to change your FONTPROFILE if you want to any examples of menus.

See the conventions file for details.

{ERIS}<Doc>LOOPS>*>Conventions.tedit

1

5

Annotated Values and Active Values

In the previous chapters, IVs, CVs, and their properties have been treated as passive entities
without structure. Annotated values are a way of associating behavior and annotations with
variables. In keeping with the object oriented programming style of LOOPS, these annotations are
objects. Annotation objects are called active values. When a variable containing an annotated
value is accessed, a message is sent to the active value. This mechanism is dual to the notion of
messages: messages are a way of telling objects to perform operations, which can change their
variables as a side effect; active values are a way of accessing variables, which can send messages as
a side effect.

This chapter first describes the structure and implementation of annotated values. Functions for
explicitly dealing with annotated values are documented. Then the class ActiveValue is
introduced and the standard protocol for active values is described. Next, the standard subclasses of
ActiveValue are explained.

5.1. Annotated Values
LOOPS defines a new INTERLISP data type called annotatedValue. Each annotatedValue contains
a single field. This field contains an object, the annotated value’s active value. The standard
variable access functions described in previous chapters (GetValue, PutValue, GetClassValue,
PutClassValue) treat values that are annotated values specially. GetValue and GetClassValue
do not return the annotated value. Instead, they send the contained active value a message, and
return the result of that message. Similarly, if the current value of a variable is an annotated value,
PutValue and PutClassValue operate by sending the contained active value a message.

type? annotatedValue value [Macro]

Returns true if value is an annotated value, false otherwise. This is the standard way to test to see if
a value is an annotated value.

create annotatedValue annotatedValue ← object [Macro]

Creates a new annotated value with active value object. No checking of object is performed.

L O O P S 2

fetch annotatedValue of value [Macro]

Returns the active value contained in the annotated value value. If value is not an annotated value,
generates an error.

replace annotatedValue of value with object [Macro]

Replaces the active value contained in the annotated value value with object. If value is not an
annotated value, generates an error. No checking of object is performed.

←AV av selector . args [Macro]

←AV is a message sending form that can be used with annotated values. (←AV av selector . args)
→ (← (fetch annotatedValue of av) selector . args) .

AnnotatedValue [Class]

Sometimes people forget to extract the active value from an annotated value, and they end up trying
to use an annotated value as an object. Using the LispDataType feature, LOOPS takes care of this
for you. Annotated values are considered to belong to the LOOPS class AnnotatedValue. If you
send a message to an annotated value, the behavior is found in the class AnnotatedValue. There,
the method for MessageNotUnderstood forwards the message off to the contained active value.
Similarly, if you attempt to get an IV from an annotated value, the get ends up happening to the
wrapped active value.

5.2. The Abstract Class ActiveValue
Active values follow a standard protocol that allow them to be used inside of annotated values.

In the description of methods for active values, the arguments containingObj, varName, propName,
and type are used to describe the variable containing the active value. type is one of IV, CV, or NIL :
a type of IV or NIL indicates that the variable is an instance variable or an instance variable
property of containingObj; a type of CV indicates a class variable or class variable property of
containingObj. If propName is NIL, the variable is either an IV or a CV, otherwise it is an IV or CV
property with name propName. containingObj is the instance or class that contains the variable.

ActiveValue [Abstract class]

The class ActiveValue captures the protocol followed by all active value objects. ActiveValue is
an abstract class, so you cannot make instances of ActiveValue. Specializations of ActiveValue
need to specialize the GetWrappedValueOnly and PutWrappedValueOnly methods. Methods that
you want to specialize include AVPrintSource, GetWrappedValue, PutWrappedValue,
WrappingPrecedence, and CopyActiveValue.

3Annotated Values and Active Values

5.2.1 Displaying Annotated Values

← self AVPrintSource [ActiveValue method]

An annotated value determines how it will print out by sending the AVPrintSource message to the
its active value. This message returns a form suitable for use by the INTERLISP function DEFPRINT.
The result should be a pair of the form (item1 . item2). item1 will be printed using PRIN1, and
then item2 will be printed by PRIN2 (see the IRM description of DEFPRINT for more details).

The default method in ActiveValue returns the list

("#." $AV className avNames (ivName value propName value ...) (ivName ...)...)

which will cause the annotated value to print out as

#.($AV className avNames (ivName value propName value ...) (ivName ...)...).

className is the name of the class of the active value. avNames is a list of names of self; the last
element of avNames is the uid of self. The lists (ivName value propName value ...) describe the
state of the IVs of the active value. Note that the uid of the active value is included in the printed
form, so the identity of the active value object can be recovered. In this way, different annotated
values can share the same active value, and have this sharing maintained across a dump/load-up.

$AV className avNames . ivForms [Special Form]

$AV is used to reconstruct a dumped annotated value. It returns a new annotated value whose
active value is reconstructed from the avNames and ivForms.

5.2.2 Fetching and Replacing Wrapped Values

← self GetWrappedValue containingObj varName propName type [ActiveValue method]

The GetWrappedValue message provides a way to perform arbitrary actions when a variable is
read. When GetValue (or GetClassValue) finds an annotated value in an instance, it does not
return the annotated value. Instead, it sends the contained active value the GetWrappedValue
message and returns the result of this message.

The default method in ActiveValue sends the message GetWrappedValueOnly to self. If this
value is an annotated value, it is triggered by sending it the GetWrappedValue message, and the
result is returned; otherwise the value is returned with no further processing.

← self GetWrappedValueOnly [ActiveValue method]

Returns the immediate "local state" of the variable that is wrapped by the active value self. If this
local state is a nested active value, it is not triggered. The default implementation causes an error
by calling SubclassResponsibility.

L O O P S 4

← self PutWrappedValue containingObj varName
 newValue propName type [ActiveValue method]

The PutWrappedValue message provides a way to perform arbitrary actions when a variable is set.
When PutValue (or PutClassValue) attempts to replace an annotated value, it instead sends the
contained active value the PutWrappedValue message.

The default method in ActiveValue checks to see if the current value is a nested active value by
sending the GetWrappedValueOnly message to self. If the result is an annotated value,
PutWrappedValue forwards the message on the the nested active value; otherwise it sends the
message PutWrappedValueOnly to self and returns the result.

← self PutWrappedValueOnly newValue [ActiveValue method]

Replaces the immediate "local state" of the variable that is wrapped by the active value self. The
current local state is replaced. If the current value is a nested active value, it is not triggered. The
default implementation causes an error by calling SubclassResponsibility.

5.2.3 Inheriting Active Values
Typical implementations of PutWrappedValue store the new value in the active value. However, if
the active value is shared among different instances all these instances would see this change. In
particular, if the active value is inherited from the class of the instance, all other instances of the
class would see this change. This behavior is usually not desired. The GetWrappedValue method of
active values is also free to alter the internal state of the active value, causing the same problem. To
get around this problem, the annotated value is first copied, and this copy is stored in the instance.
The CopyActiveValue method implements this copying. When GetValue or PutValue finds no
local value, it first checks to see if the current value is an annotated value inherited from the class.
If it is, it sends CopyActiveValue to the active value, and stores the result in the instance. The put
or get then proceeds.

← self CopyActiveValue annotatedValue [ActiveValue method]

annotatedValue is an annotated value that surrounds self. CopyActiveValue should return a copy
of annotatedValue, containing a copy of self. It is possible, and in some cases desirable, for an
implementation of CopyActiveValue to return annotatedValue.

The default behavior returns a new annotated value wrapped around a copy of self. IV values of self
are not copied, the values are shared with the copy, except that IVs of self that contain annotated
values are copied using the CopyActiveValue message.

5.2.4 Adding and Deleting Annotations

← self AddActiveValue containingObj varName
 propName type annotatedValue [ActiveValue method]

Adds the annotated value annotatedValue to the variable specified by containingObj, varName,
propName, and type. If annotatedValue is not specified or is NIL, annotatedValue defaults to a
newly created annotated value containing the active value self. If the variable is already an
annotated value, the AddActiveValue method uses the WrappingPrecedence message (below) to

5Annotated Values and Active Values

determine if annotatedValue should be nested in the current annotated value or wrapped around it.
The method returns annotatedValue.

← self WrappingPrecedence [ActiveValue method]

Specifies where an annotated value containing self should be added to an existing annotated value.
T means that this active value must go on the outside of any other annotated values. NIL means it
must go on the inside. A number specifies a precedence: active values with larger
WrappingPrecedence values go outside ones with smaller WrappingPrecedence values. If two
active values have the same (numeric) WrappingPrecedence, the order is not determined. The
default implementation of WrappingPrecedence returns 100.

← self DeleteActiveValue containingObj varName propName type [ActiveValue method]

Finds the first annotated value on the variable specified by containingObj, varName, propName, and
type that has self as its active value and deletes it from that variable. Returns that annotated value
if one was found, NIL otherwise.

← self ReplaceActiveValue newVal containingObj
 varName propName type [ActiveValue method]

It is sometimes desirable to replace an annotated value in a variable with some new value. (← self
ReplaceActiveValue newVal containingObj varName propName type) replaces the annotated
value containing self in the variable described by containingObj, varName, propName, and type with
the new value newVal.

5.2.4 Manipulating Active Values
Some programs need to explicitly test and trigger active values. The following functions can be used
to access IVs and CVs without triggering active values.

GetValueOnly object varName propName [Function]

GetValueOnly is the same as GetValue, except that GetValueOnly does not trigger any active
values. GetValueOnly returns the immediate value of the variable. If this is not an annotated
value, GetValueOnly returns the same value as GetValue. If there is no local value, the inherited
value is returned. See also the function GetIVHere.

GetClassValueOnly object varName propName [Function]

GetClassValueOnly is the same as GetClassValue, except that GetClassValueOnly does not
trigger any active values. GetClassValueOnly returns the immediate value of the variable. If this
is not an annotated value, GetClassValueOnly returns the same value as GetClassValue. object
can be either an instance or a class.

ObjRealValue object varName value propName type [Macro]

If value is not an annotated value returns value, otherwise returns the value of (←AV

GetWrappedValue object varName propName type). This macro is used by GetValue and

L O O P S 6

GetClassValue to trigger active values, and can be used by programs that explicitly test for active
values.

PutValueOnly object varName newValue propName [Function]

PutValueOnly is the same as PutValue, except that PutValueOnly does not trigger any active
values. PutValueOnly replaces the immediate value of the variable with newValue, even if the old
value is an annotated value.

PutClassValueOnly object varName newValue propName [Function]

PutClassValueOnly is the same as PutClassValue, except that PutClassValueOnly does not
trigger any active values. PutClassValueOnly replaces the immediate value of the variable with
newValue, even if the old value is an annotated value. object can be either an instance or a class.

← self HasAV? av [ActiveValue method]

Returns true if the active value (or annotated value) av is nested inside in the active value self.

5.3. Specializations of ActiveValue

ActiveValue

AppendSuperValue

BreakOnPut BreakOnPutOrGet

ExplicitFnActiveValue

FirstFetchAV

IndirectVariable

InheritingAV

LocalStateActiveValue
NoUpdatePermittedAV

NotSetValue

ReplaceMeAV

TraceOnPut TraceOnPutOrGet

The ActiveValue Class Hierarchy

5.3.1 NotSetValue and Variable Inheritance

NotSetValue [Variable]

LOOPS uses annotated values to trigger IV inheritance. When an instance is created, its IVs are
initialized to contain (the value of) NotSetValue. NotSetValue is an annotated value whose active
value is the prototype instance of the class NotSetValue. The class NotSetValue specializes the

7Annotated Values and Active Values

default ActiveValue protocol to trigger IV inheritance. In this way GetValue does not need to do
any special check to see if a value needs to be inherited — all it needs to do is see if the value is an
annotated value. Note that GetValueOnly does need to do a special check for NotSetValue, but
see the function GetIVHere.

NotSetValue form [Macro]

Returns true if form evaluates to NotSetValue, otherwise false. (NotSetValue form) → (EQ form
’NotSetValue). This is the approved way of testing a value to see if it is NotSetValue.

← self AVPrintSource [NotSetValue method]

Returns the pair ("#." . NotSetValue). This causes (the value of) NotSetValue to print out as
#.NotSetValue. This will be read in as the value of the variable NotSetValue.

← self GetWrappedValue containingObj varName propName type [NotSetValue method]

If type is NIL or IV, this evaluates (← containingObj IVValueMissing varName propName
’GetValue) and returns the result; if type is CV, evaluates (← class CVValueMissing varName
propName ’GetValue) (where class is the class of containingObj if containingObj is an instance,
else containingObj if it is a class) and returns the result; otherwise an error is generated. See the
methods IVValueMissing and CVValueMissing on the class Object.

← self PutWrappedValue containingObj varName
 newValue propName type [NotSetValue method]

If type is NIL or IV, this evaluates (← containingObj IVValueMissing varName propName
’PutValue newValue) and returns the result; if type is CV, evaluates (← class CVValueMissing
varName propName ’PutValue newValue) (where class is the class of containingObj if
containingObj is an instance, else containingObj if it is a class) and returns the result; otherwise an
error is generated. See the methods IVValueMissing and CVValueMissing on the class Object.

← self CopyActiveValue annotatedValue [NotSetValue method]

Returns #.NotSetValue. There is only one NotSetValue.

← self WrappingPrecedence [NotSetValue method]

Returns NIL. #.NotSetValue must always be on the inside of any sequence of nested active values.

GetIVHere object varName propName [Function]

If propName is NIL and there is a local value for the IV varName in the instance object, that value is
returned. If propName is not NIL and there is a local value for the IV property propName of the IV
varName in the instance object, that value is returned. Otherwise, if propName is NIL GetIVHere
returns #.NotSetValue, and if propName is not NIL GetIVHere returns (the value of)
NoValueFound.

L O O P S 8

GetCVHere object varName propName [Function]

object must be a class. Returns the value of the class variable that is found in the class object. If
none is found, then returns #.NotSetValue.

GetClassIV class varName propName [Function]

Returns the default value or property value of the instance variable varName in the class class.

PutClassIV class varName newValue propName [Function]

Stores newValue as the default value or property value of teh instance variable varName in the class
class. If varName is not already local to the class, this will cause an error. Returns newValue.

5.3.2. Indirect Variables
In some applications it is important to be able to access values indirectly from other instances. For
example, Steele [Steele80] has recommended this as an approach for implementing equality
constraints.

IndirectVariable [Class]

Mumble.

5.3.3. ReplaceMeAV
The active value mixin ReplaceMeAV can be used when an active value should be replaced when a
variable is first set.

ReplaceMeAV [Abstract class]

Mumble.

5.3.4. LocalStateActiveValue
Many kinds of active values explicitly store the "real" value of the variable in an IV of the active
value.

LocalStateActiveValue [Abstract class]

Mumble.

5.3.5. InheritingAV
Some kinds of active values want to compute a value based on what would have been inherited if the
active value had not been present. For example, it might be desired to append items onto an
inherited value (see the class AppendSuperValue).

InheritingAV [Abstract class]

Mumble.

9Annotated Values and Active Values

5.3.6. FirstFetchAV
Mumble.

FirstFetchAV [Class]

Mumble.

5.3.7. Breaking and Tracing Variable Access
Mumble.

BreakOnPut [Class]

Mumble.

BreakOnPutOrGet [Class]

Mumble.

TraceOnPut [Class]

Mumble.

TraceOnPutOrGet [Class]

Mumble.

UnBreakIt self varName propName type [Class]

Mumble.

5.3.8. NoUpdatePermittedAV
The active value class NoUpdatePermittedAV can be used to prevent a value from being updated.

NoUpdatePermittedAV [Class]

Mumble.

5.3.9. AppendSuperValue
The active value class AppendSuperValue can be used to append data to inherited values.

AppendSuperValue [Class]

Mumble.

L O O P S 1 0

5.3.10. ExplicitFnActiveValue

ExplicitFnActiveValue [Class]

ExplicitFnActiveValue explicitly store functions that will be triggered when the variable is
fetched or replaced. They have three IVs: localState, getFn,and putFn. The localState is the
"real" value of the variable (possibly a nested active value), the getFn and putFn are names of
functions that are applied with standard arguments by the GetWrappedValue and
PutWrappedValue methods. The getFn and putFn are called with arguments containingObj,
varName, oldOrNewValue, propName, activeValue, and type. ExplicitFnActiveValue active
values print out as #.($A localState getFn putFn), where the localState, getFn, and putFn are the
values of the corresponding IVs of the active value.

5.4. Compatibility with older versions
The following existed in older versions of LOOPS, which had a different implementation of active
values. They are provided for compatibility purposes only. New programs should not use them.
They are not fully supported, and will not exist in future releases. The current implementations of
these use the new active values. They are fully compatible with the older versions except where
noted.

5.4.1. Old Style Active Values
LOOPS used to combine the notion of annotated value and active value. Variable annotations were
instances of the INTERLISP datatype activeValue.

activeValue [Record]

In this version of LOOPS, the record activeValue is an access record that converts the three fields of
the old active values to appropriate functions for accessing annotated values. Forms like (type?
activeValue form) and (fetch localState of activeValue) will do the right thing. Reading
in old style active values automatically converts them to annotated values wrapping an instance of
the class ExplicitFnActiveValue.

GetLocalState av self varName propName type [Function]

Works just like in the old LOOPS.

PutLocalState av newValue self varName propName type [Function]

Works just like in the old LOOPS.

GetLocalStateOnly av [Function]

Works just like in the old LOOPS.

1 1Annotated Values and Active Values

PutLocalStateOnly av newValue [Function]

Works just like in the old LOOPS.

ReplaceActiveValue av newVal self varName propName type [Function]

Works just like in the old LOOPS.

MakeActiveValue self varOrSelector newGetFn newPutFn
 newLocalSt propName type [Function]

Works just like in the old LOOPS, except that the interpretation of newLocalSt is different.
MakeActiveValue ignores the value of newLocalSt, and always creates a new active value. This is
the behavior that the old MakeActiveValue produced when newLocalSt was Embed.

5.4.2. GetFns and PutFns

DefAVP fnName putFlg [Function]

Works just like in the old LOOPS.

NoUpdatePermitted self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

FirstFetch self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

GetIndirect self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

PutIndirect self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

ReplaceMe self varname oldOrNewValue propName activeValue type [Function]

Works just like in the old LOOPS.

AtCreation self varname oldOrNewValue propName activeValue type [Function]

No longer works. Instead, you can use either the FirstFetch function, or the :initForm property
of IVs.

L O O P S 1 2

5.5. Summary of Variable Access Functions
The following tables summarizes the available functions for variable access.

Inherit/Trigger Inherit/Don’t Trigger Don’t Inherit/Don’t Trigger

from instances

IV GetValue GetValueOnly GetIVHere

PutValue PutValueOnly

CV GetClassValue GetClassValueOnly <n.a.>
PutClassValue PutClassValueOnly <n.a.>

from classes

IV <n.a.> GetClassIV GetClassIVHere

<n.a.> PutCIVHere PutClassIV

CV GetClassValue GetClassValueOnly GetCVHere

PutClassValue PutClassValueOnly PutCVHere

Last edited:
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Saved on:
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Tailoring MasterScope

Extending analysis of functions

MasterScope maintains a number of tables describing how (analyzed) functions relate to
other objects. The template keywords TEST, PROP, FUNCTION, etc. corespond to some of
these tables. For a number of applications, the user would like to be able to define new template
words and the database tables that go along with them.

(ADDTEMPLATEWORD WORD) [Function]

defines a new table to hold a new MasterScope relation. The name of the table
will be WORD, and WORD can be used in function templates. This is a new function.

Functions are also provided to allow the user to access these new tables inside of a
MasterScope command.

(MSADDRELATION RELATION TABLES) [Function]

defines a new relation for MasterScopes parser and command interpreter. For
example, (MSADDRELATION ’(FETCH FETCHES FETCHING FETCHED))
could have been used to define the FETCH relation.

RELATION is a list of ROOT PRESENT PARTICIPLE and PAST conjugations
of the new relation. TABLES is a list of MasterScope database tables that will be
UNIONed to compute the new relation. (If TABLES is an atom it will be coerced
to a list containing that atom. If the tables do not already exist, they will
automatically be created by ADDTEMPLATEWORD). TABLES defaults to the
ROOT of the relation.

(MSADDMODIFIER RELATION MODIFIERS TABLES) [Function]

defines a new modifier for the given relation. For example, the phrase SET
FREE could have been defined by (MSADDMODIFIER ’SET ’FREE
’(SETFREE)).

RELATION is a known MasterScope relation (either built-in or defined by
MSADDRELATION above). MODIFIERS is a list of equivilent modifiers.
TABLES is a list of MasterScope database tables that should be UNIONed to
compute the new, modified relation. (If any of the tables do not exist, they will be
created by ADDTEMPLATEWORD). This is a new function.

(MSADDTYPE TYPE TABLES HOWUSED SYNONYMS) [Function]

2

tells MasterScope what it means to use an object of a given type. The phrase USE
THE FIELD could be defined by (MSADDTYPE ’FIELD ’(FETCH
REPLACE) ’(USE FETCH REPLACE)).

TYPE is the type of the object being described. The word TYPE can then be used
in MasterScope commands. TABLES indicates how the relation USE THE
<TYPE> ... is defined. HOWUSED is a list of verb describing how the type can
be used. The above example not only lets you use the phrase USE THE FIELD,
but also the phrases FETCH THE FIELD and REPLACEUSE THE FIELD.
The default value of HOWUSED is (USE). Finally, SYNONYMS is a list of
synonyms for TYPE.

In addition to these new functions there are a number of other ways to tailor
MasterScope.

Some MasterScope templates, for example (IF expression template1
template2) can compute the template to be used. These expressions can access the current

form via the free variable EXPR. The free variable PARENT can be used to access the
expression that contains the current expression. This has existed all along, but has not been documented.

ANALYZEUSERFNS [Variable]

is a list each of whose elements is a function that will be APPLY*ed to the name,
definition, and the results of the MasterScope analysis of a function whenever it is
analyzed. The result of each application becomes the new result of the
MasterScope analysis.
The results of the MasterScope analysis is an ALIST associating relations (BIND,
CALL, etc) with the coresponding data for the function. This can be used to
compute relations that are determined by some global context. This has existed all along,
but has not been documented.

(SETSYNONYM PHRASE MEANING -) [Function]

defines a new synonym for MasterScope’s parser. Both MEANING and PHRASE
are lists of words; anywhre PHRASE is seen in a command, MEANING will be
substituted. For example, (SETSYNONYM ’GLOBALS ’(VARS IN
GLOBALVARS OR @(GETPROP X ’GLOBALVAR))) would allow the user
to refer with the single word GLOBALS to the set of variables which are either in
GLOBALVARS or have a GLOBALVAR property.

SETSYNONYM includes a small pattern match ability. A & in PHRASE will match
any word; the word will be substitued for N in MEANING where N is the number
of &’s which have been matched. For example, (SETSYNONYM ’(FOO & &)
’(IN 1 OR ON 2)) will take FOO FIE FUM into IN FIE OR ON FUM.
This is an old function, but the documentation (IRM p 13.20) was incompletežspecifically the pattern match stuff was not
mentioned.

Extending MasterScope commands

3

DESCRIBELST [Variable]

is a list each of whose elements is a list containing a descriptive string and a form.
The form is evaluated (it can refer to the name of the function being described by
the free variable FN); if it returns a non-NIL value, the description string is
printed followed by the value. If the value is a list, its elements are printed with
commas between them. For example, the entry ("types: "
(GETRELATION FN ’(USE TYPE) T) would include a listing of the types
used by each function. From the IRM, p 13.7.

MSCHECKFNS [Variable]

is a list of functions that will be used to extend the CHECK MasterScope
command. The CHECK command will APPLY* each function on MSCHECKFNS
to the list of files being checked. This is new.

Analyzing new types of objects

This doesn’t work yet.

(MSADDANALYZE PLURAL SINGULAR ANALYZEFN RELATIONS) [Function]

defines a new type for MasterScope analysis. For example, (MSADDANALYZE
’CLASSES ’CLASS ’AnalyzeClass ??) will let you execute
MasterScope commands like . ANALYZE ANY CLASS ON ’MYFILE and .
WHAT CLASS DEFINES THE IV foo. The function ANALYZEFN should
be a function of two arguments, the item name and the flag REANALYZE?, and
should return an ALIST associating relation names to coresponding data for the
object. This is a new function.

Need to do

(DUMPDATABASE) needs to store out all the new words, relation, etc.

Analyzing new types of things needs to store the info someplace, and ERASE needs to be able to
find it.

Need a FILEPKGTYPE for the MasterScope words.

Proposal for Loops manual contents.

This ordering is based on the Interlisp Reference manual. Numbers in [[]]’s indicate
the coresponding parts in the (new) IRM. Other comments are enclosed in {}’s I
envision a manual in a single binder, with large tabs marking the IRM volume
separation, and smaller tabs for each chapter.

[[Volume 1 -- Language]]
TOC [[TOC]]
Introduction [[1]]

Classes and Instances
MessageSending
The Golden Braid

Classes [[2]]
{Defines the msg protocol for Classes}

Creating instances
New msg
NewWithValues msg
_New msg sending form

Destroying instances
DestroyInstance msg

Destroying a class
Destroy msg
Destroy! msg

Changing a class
Add msg
Delete msg
Put msg
Rename msg
ReplaceSupers msg
SetName msg

Accessing parts of a class
ListAttribute msg
ListAttribute! msg

Enumerating parts of classes
AllInstances msg
AllInstances! msg
SubClasses msg

Dealing with Methods
SpecializeMethod msg
CopyMethod msg
DefMethod msg

2

MoveMethod msg
MethodDoc msg

Misc
NewClass msg
Subclass msg
Prototype msg

See also _Proto
Instances [[3]]
{Defines the protocol for objects}

Getting the class of an instance
Function Class
Class msg
ClassName msg
Classes for lisp entities -- LispClassTable

Accessing variables
GetValue, PutValue, GetIVHere
GetClassValue, PutClassValue, GetClassIVHere
@, @*, _@

problems with embedded "."’s in IV names
GetIVValue msg if not an instance
NoValueFound

CHANGETRAN
IVMissing msg
CVMissing msg

Creating instances
NewInstance method

Naming instances
SetName msg
UnSetName msg
Rename msg
ErrorOnNameConflict

Changing an instance
AddIV msg
DeleteIV msg

Destroying instances
Destroy message

Copying Instances
CopyShallow message
CopyDeep message

MetaClasses [[4]]
{Defines the msg protocol for MetaClasses}

DestroyClass msg

3

MetaClass
AbstractClass

AnnotatedValues [[5]]
NotSetValue

Methods [[6]]
Method objects

Categories
Method functions

LAMBDA word Method
&OPTIONAL arguments
Advising inherited methods

_Super
_Super?
_SuperFringe
DoMethod
ApplyMethod

Functions ClassNameOfMethodOwner, SelectorOfMethodBeingCompiled,
ArgsOfMethodBeingCompiled

Defining new methods
DefaultComment
SubclassResponsibility

Conditionals and Iterative Statements [[9]]
Date type predicates

Object?
Class?
Instance?
AnnotatedValue?

Other predicates
HasIV, HasIV!, HasCV
Understands

InstOf, InstOf!
Interative statements

in-supers-of

Message sending forms [[10]]
List all message sending forms (even if described elsewhere)

_
_!
_IV
_Try
_Proto
_Super
_Super?
_SuperFringe
_New
_AV

Looking up methods

4

FetchMethod
FetchMethodOrHelp

Miscellaneous [[12]]
System version information
Pattern match function MatchDescr
FEATURES
DELASSOC

[[Volume 2 -- Environment]]
Browsing and Exec Level Commands [[13]]

UNDOable versions of Loops fns (like PutValue) if typed at top level?
LASTWORD set by DefineMethods
LASTCLASS set by DefineClass
Loops Icon

Left button menu
Middle button menu
Right button menu
Background menu command?

Browsers, in general
Interaction with GRAPHZOOM
MaxLatticeHeight
MaxLatticeWidth

Shift selecting from the background of a LatticeBrowser will
COPYINSERT the graph.

Class Browsers
PPDefault
UpdateClassBrowsers?

File Browsers
Other Browsers
Top level commands

DefineClass
LASTWORD
USERWORDS

DefineMethod

Errors and Breaks [[14]]
Function HELPCHECK

LoopsDebugFlg
LoopsDebugFlg
ErrorOnNameConflict
IVMissing
IVValueMissing
MessageNotUnderstood

Breaking and Tracing [[15]]
Breaking and Tracing IV access
Breaking and Tracing methods

5

Gauges
Editing [[16]]

EDITDEF

When do changes take effect?
Copying an AV inside of DEdit really adds a pointer to the same AV!
Edit msg
MakeEditSource msg
InstallEditSource msg

File Package [[17]]
Loading Loops files

Effect of LDFLG = PROP, ALLPROP, ect
UNDOing
Selective loading of classes, etc from a file.

Filepackage coms
CLASSES
METHODS
INSTANCES
THESE-INSTANCES

Noticing changes
ObjectModified message

Moving and adding
MoveToFile msg
MoveToFile! msg

Saving instances
MakeFileSource message
DontSave IV property
SaveInstance message
SaveInstance? message

Compiling [[18]]
Macros for GetValue, PutValue
Refering to Loops objects in compiled code

Masterscope [[19]]
DWIM [[20]]

No method, tries to correct the spelling
No method, but a fn=> use the fn. How about other way?

Performance Issues [[22]]
Garbage Collection
Space
Speed
Caching

ClearAllCaches

Evals all forms on the global var ClearAllCaches
Method lookup caches

6

local cache
global cache hit rate of 97.5% in our tests

IV Lookup caches
local cache
global cache hit rate of 98% in our tests

Processes [[23]]
_Process, _Process!

[[Volume 3 -- Input/Output]]
Reading and Printing [[25]]

The # read macro character
How Classes print

#.($ className) and the function $
Class.FileOut
#.($C className) and the function $C

How Instances print
Object.PrintOn
Object.PP
PPObj
ObjectAlwaysPPFlag
ObjectDontPPFlag

Interaction with SYSPRETTYFLG
How AnnotatedValues print

DefaultActiveValueClassName

UIDs
When assigned
Functions HasUID?, UIDP, UID, GetObjFromUID, MapObjectUID

User Input/Output Packages [[26]]
Inspector
Extensions to ?=

method doc in PROMPTWINDOW
select selector from menu
doesn’t work in the DEdit menu

Loops windows [[28]]
The default menu available on Loops windows is compatible with Lisp. It

even encludes a "Hardcopy" item that works correctly with
LatticeBrowsers.

Methods Window.SetRegion and Window.SetOuterRegion
Interaction with ATTACHEDWINDOWS

Index [[Index]]

[[Loops Library Packages Manual]]
Virtual Copies
Gauges

7

[[Release Notes]]
Installation

Variables LOOPSDIRECTORY, OptionalLispuserFiles, and LoadLoopsForms.
Maybe even LOOPSUSERSDIRECTORIES?

The function LOADLOOPS
The file LOOPSSITE
Just load the file LOOPS
Initial screen setup

Customer Support
Differences from old Loops

KnowledgeBases no longer a part of Loops
Functions ReadLeafObj, AllGlobalNames, RememberName, and GlobalName

no longer exist
Variables WritingSummaryFlg, WritingLayerFlg, LeafInstanceFlg,

FirstEnvFlg, OpenKBFiles, DefaultKBName, CurrentEnvironment,
CurrentNameTable, and CurrentUIDTable no longer exist

Macro Modified no longer exists
Rules no longer a part of Loops

Rules are not distributed. If they are needed, they can be loaded by
first recompiling them and then loading the file LOOPSRULES-
ROOT. This replaces a few functions and methods in the standard
system and then load the rules files.

Code cleaned up
Variables VarNameIndexes, PrintStatusWindow, and TTY no longer exit
Functions DC, DE, UE, EM, EI, EC, and FILE no longer exit
Macro @@ no longer exists. Change (@@ foo) to (@ ::foo), or even (@

foo)

Usermacros PU, UE, and EU no longer exist
The argument that controls updating in the window methods

SetOuterRegion, SetRegion, Shape, and Shape1 have all been changed
to noUpdateFlg. They used to be a mixture of updateFlg and
dontUpdateFlg.

The interpretation of the left, bottom, width, and height IVs in the
class Window is now the same as Lisp windows: left and bottom
refer to the lower left corner of the outside of the window, width and
height refer to the outside dimensions of the window (including
title).

The file LoopsMixin has been deleted. The classes DatedObject,
IndirectObj, Node, Perspective, NamedObject, GlobalNamedObject,
TextItem, VarLength, StrucMeta, ListMetaClass, TempClass, and
Template no longer exist.

Old messages List and List! are now called ListAttribute and
ListAttribute!. This change was required for future migration to

8

CommonLoops. The old methods for List and List! are still
available in the LOOPSBACKWARDS file.

The functions DebugLoops, LOOPSDIR, i/d, and TESTLOOPS have been
removed from the system.

The functions CheckDestroyedObjects and RemoveClassDef have been
removed from the system.

I/O
Support for reading in old style read macros (like #(localState getFn

putFn) or #$Mumble) is available in the file LOOPSBACKWARDS.
UIDs are no longer strings. They are CONSes of session-id’s and uid

numbers.
Active Values

Most of the old functions for active values have been moved to
LOOPSBACKWARDS. The functions GetLocalState,
PutLocalState, GetLocalStateOnly, PutLocalStateOnly,
ReplaceActiveValue, MakeActiveValue, and DefAVP are still around,
and seem to work. The exception is MakeActiveValue — it now
always EMBEDs.

Functions GetActiveValueGetFn, GetActiveValuePutFn,
GetActiveValueLocalState, PutActiveValueGetFn, etc no longer exist.
Replacements are available in the file LOOPSBACKWARDS .

NotSetValue is no longer ?—it is now an active value. This may require
changes to any code that directly refered to ?.

Virtual Copies
The messages MakeCopy99, MakeCopyActiveValue99, MakeCopyList99, and

MakeCopyObject99 in VirtualCopies have been renamed
\Internal/MakeCopy, \Internal/MakeCopyActiveValue, etc

Method properties no longer exist
Function PushNewValue no longer defined. Instead, use CHANGETRAN.
Can’t load new Loops files into old Loops.

Conversion of old Loops code to new Loops
Old code will need to be recompiled.
File LOOPSBACKWARDS
Function ConvertLoopsFiles

Future Directions

Proposal for Loops manual contents.

This ordering is based on the Interlisp Reference manual. Numbers in [[]]’s indicate the
coresponding sections in the (new) IRM.

[[Volume 1 -- Language]]

Introduction [[1]]

Classes [[2]]

The hierarchy
Tofu
Object
Class
LispClassTable

Instances [[3]]

MetaClasses [[4]]

The Golden Braid
MetaClass
AbstractClass

AnnotatedValues [[5]]

NotSetValue

Methods [[6]]

Categories
DefaultComment

SubclassResponsibility

Conditionals and Iterative Statements [[9]]

Date type predicates
Object?
Class?
Instance?
(type? annotatedValue form)

Other predicates
HasIV, HasIV!, HasCV
Understands

InstOf, InstOf!
Interative statements

in-supers-of

Message sending forms [[10]]

List all message sending forms (even if described elsewhere)
Looking up methods

FetchMethod

FetchMethodOrHelp

Miscellaneous [[12]]

2

System version information
Pattern match functions
FEATURES

[[Volume 2 -- Environment]]

Browsing and Exec Level Commands [[13]]

UNDOable version of PutValue?
LASTWORD set by DefineMethods
LASTCLASS set by DefineClass
Loops Icon
Browsers, in general

MaxLatticeHeight

MaxLatticeWidth

Class Browsers
File Browsers
Other Browsers
Top level commands

DefineClass

DefineMethod

Errors and Breaks [[14]]

LoopsDebugFlg

ErrorOnNameConflict

IVMissing
IVValueMissing
MessageNotUnderstood

Breaking and Tracing [[15]]

Breaking and Tracing IV access
Breaking and Tracing methods
Gauges

Editing [[16]]

File Package [[17]]

Compiling [[18]]

Macros for GetValue, PutValue
Refering to Loops objects in compiled code

Masterscope [[19]]

DWIM [[20]]

No method, but a fn=> use the fn. How about other way?
Performance Issues [[22]]

Garbage Collection
Space
Speed
Caching

3

ClearAllCaches

Method lookup caches
IV Lookup caches

Processes [[23]]

_Process, _Process!

[[Volume 3 -- Input/Output]]

Reading and Printing [[25]]

The # read macro character
How Classes print
How Instances print

ObjectAlwaysPPFlag

ObjectDontPPFlag

How AnnotatedValues print
DefaultActiveValueClassName

UIDs
When assigned

User Input/Output Packages [[26]]

Inspector
Extensions to ?=

Loops windows [[28]]

[[Loops Library Packages Manual]]

Virtual Copies [[no chapter]]

Composite Objects [[no chapter]]

[[Release Notes]]

Installation
Customer Support
Conversion From old Loops
Future Directions

610E15980
Lyric/Medley Release
July 1988

XEROX LOOPS

RELEASE NOTES
REFERENCE MANUAL
LIBRARY PACKAGES MANUAL

XEROX

XEROX LOOPS RELEASE NOTES

XEROX LOOPS REFERENCE MANUAL

XEROX LOOPS LIBRARY PACKAGES MANUAL

610E15980

Lyric/Medley Release

July 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Xerox Corporation. While every effort has been made
to ensure the accuracy of this document, Xerox Corporation assumes no responsibility
for any errors that may appear.

Copyright © 1988 by Xerox Corporation.

Xerox LOOPS, Xerox Lisp, and Xerox Common Lisp are trademarks.

All rights reserved.

"Copyright protection claimed includes all forms and matters of copyrightable material
and information now allowed by statutory or judicial law or hereinafter granted,
including, without limitation, material generated from the software programs which are
displayed on the screen, such as icons, screen display looks, etc."

This manual is set in Modern and Terminal typefaces with text written and formatted
on Xerox Artificial Intelligence workstations. Xerox laser printers were used to produce
text masters.

FONT

HELVETICA
BOLD ITALIC

SPINE

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

HELVETICA
BOLD ITALIC

ARTIFICIAL INTELLIGENCE SYSTEMS

XEROX LOOPS RELEASE NOTES

XEROX LOOPS

ARTIFICIAL INTELLIGENCE SYSTEMS
XEROX LOOPS RELEASE NOTES

NOTE: USE APPROPRIATE POINT SIZES TO ACHIEVE EFFECT
SHOWN BELOW. USE XEROX STANDARDS FOR <<8-1/2x11>> BINDER COVERS

COVER TEXT:

(3 INCH):

LYRIC/MEDLEY RELEASE

XEROX LOOPS
LYRIC/MEDLEY RELEASE

XEROX LOOPS REFERENCE MANUAL
XEROX LOOPS LIBRARY PACKAGES MANUAL

XEROX LOOPS REFERENCE MANUAL
XEROX LOOPS LIBRARY PACKAGES MANUAL

Part Number 610E15980

1ERRATA FOR THE LYRIC/MEDLEY RELEASE OF XEROX LOOPS

ERRATA FOR THE LYRIC /
MEDLEY RELEASE OF XEROX

LOOPS

Please note the following corrections to the Lyric/Medley release of
the manual and software. These descriptions and workarounds
supplement the Lyric/Medley Xerox LOOPS Release Notes.

Notes and Cautions

Documentation comments in examples

Documentation props are now strings, as mentioned in the
Lyric/Medley version of the Xerox LOOPS Release Notes.
However, many of the manual’s examples incorrectly show
comments being used for documentation on methods, and instance
and class variables.

Conversion of instance files

We have encountered a case where instance files from Koto
LOOPS failed to load after conversion under Lyric/Medley LOOPS.
This occurs when instances refer to each other (their IVs contain
one another).

This type of instance file must be written out in the INTERLISP
readtable, since only that readtable handles the "hash dot" reader
macro used to write out a reference to an instance. After
conversion of such files, place a MAKEFILE-ENVIRONMENT
property on the file that will cause it to be written and read in the
INTERLISP readtable.

GetIt for missing IV props

There is an inconsistency in GetIt’s behavior when retrieval of
missing instance variable properties is attempted. If the object
being retrieved from is an instance, this returns the value of
NoValueFound, and triggers any active values. However, if the
object being retrieved from is a class, GetIt returns the value of
NotSetValue, and does not trigger active values. A workaround
would be to check for both NoValueFound and NotSetValue as
return values from GetIt.

2 ERRATA FOR THE LYRIC/MEDLEY RELEASE OF XEROX LOOPS

NOTES AND CAUTIONS

LOOPS Rules

The User’s Module "Rules" has changed to track differences
between Koto and Lyric/Medley LOOPS. In Koto LOOPS, one
could create RuleSets that were not methods; this is no longer
possible. RuleSets can no longer reside "bare" in a FNS definition.

Several things follow from this change:

• RunRS no longer works.

• DefRSM is now the only way to create new RuleSets. The
documented New method for the class RuleSet is used internally
by DefRSM; software should no longer specialize or depend on it.

• The RuleSet method CopyRules no longer works. RuleSets can
be copied using CopyMethod.

Converting Koto RuleSets

Converting older RuleSets to run in the Lyric/Medley release of
Xerox LOOPS is a two-step process. The first step takes place in
the Koto release of LOOPS; the second step occurs in the
Lyric/Medley release of LOOPS.

While still running the Koto release of LOOPS, you must first pass
preKoto RuleSets through the converter in the
LOOPSBACKWARDS User’s Module. This will upgrade the
RuleSets to run in Koto LOOPS. RuleSets which reside in FNS
must also be moved into methods at this time. A final ready-to-
convert version of the RuleSet files should then be made.

After starting up the Lyric/Medley release of Xerox LOOPS any
previously prepared Koto RuleSets can be passed through the
converter in the CONVERSION-AIDS User’s Module. Some types
of Koto converted Buttress RuleSets will print out a message during
conversion; these must then be rule-compiled, i.e. translated from
RuleSet to executable code by sending the RuleSet the RE
message and exiting the rule editor with OK&LispCompile.

After these steps all RuleSet formats will be correctly updated and
the fully converted files can be made.

3ERRATA FOR THE LYRIC/MEDLEY RELEASE OF XEROX LOOPS

NOTES AND CAUTIONS

[This page intentionally left blank]

A - 1XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A. ACTIVE VALUES IN BUTTRESS
LOOPS

In the Buttress version of LOOPS, the concept of active values was
implemented differently. The current ExplicitFnActiveValue acts very much
like the old active values, and is used to provide compatibility with existing
Xerox LOOPS code. Most of the functions described in this chapter are found
only in the LOOPSBACKWARDS user package, work as they did in the
Buttress version of LOOPS, and should be used only to bring existing code
into the current system.

Descriptions of the functionality in this appendix are written in terms of the new
ActiveValues wherever possible.

The active value/annotated value system discussed in Chapter 8, Active
Values, is a new implementation. Programs developed using the Buttress
activeValue system automatically convert into the new system when loaded,
using the ExplicitFnActiveValue capability described in Chapter 8, Active
Values, and in this appendix.

Note: The following functions and records are maintained for compatibility
purposes only; they are not fully supported and may not exist in future
Xerox LOOPS releases. Programs that use these records and
functions should be changed. The LOOPSBACKWARDS user
package must be loaded for these functions to work.

A.1 Buttress System of ActiveValues

The Buttress LOOPS implementation combined the notions of annotated value
and active value. To annotate a variable, the value was replaced with an
instance of an Interlisp-D data type called activeValue, but there were no
LOOPS classes with similar names and functions as there are now.

activeValue [Record]

Purpose: Buttress implementation of the active values concept. Specifically, the Lisp
data type equivalent to the present annotatedValue.

Behavior: An activeValue placed as the value of a variable invoked evaluation of code
on access attempts rather than just returning a stored value.

Field Names: localState A place for data storage.

getFn The name of a function applied when the program retrieves the
value of a variable that contained an activeValue.

putFn The name of a function that was applied when the program
replaces the value of a variable that contained an activeValue.

If either the getFn or putFn fields is NIL, default actions returned or replaced
the localState, respectively. Nesting was accomplished by the localState of
an activeValue being itself an activeValue.

A - 2 XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A.1 BUTTRESS SYSTEM OF ACTIVE VALUES

A - 3XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A.1 BUTTRESS SYSTEM OF ACTIVE VALUES

ExplicitFnActiveValue [Class]

Purpose: Mimics the behavior of the Buttress-style active values and allows simple
changes to the user code triggered by the ActiveValue mechanism.

Behavior: Get accesses to the wrapped variable cause the getFn to be called, and Put
accesses cause putFn to be called. Enables the old style activeValues to look
like the new style without changing any functionality.

Instance Variables: localState A place for data storage.

getFn The name of a function applied when the active variable is read.

putFn The name of a function applied when the active variable is
changed.

(MakeActiveValue self varOrSelector newGetFn newPutFn newLocalState propName type) [Function]

Purpose: Makes the value of some variable an active value.

Behavior: Creates a new activeValue record and installs it according to the arguments.

Arguments: self Object whose variable is changed to an active value.

varOrSelector
Variable name or method selector where the data type
activeValue is placed.

newGetFn and newPutFn
If NIL, the old values of getFn and putFn are not overwritten. If
T, the values of getFn and putFn are changed to NIL. Any other
values are placed in the getFn and putFn fields of the
activeValue.

newLocalState
The value of this argument is ignored. A new ActiveValue
instance is always created. The contents of localState is
changed to the previous value of the variable or property being
made active.

propName Name of the property, if the active value is to be placed on a
property list. This is NIL if the active value is associated with a
variable or method.

type Indicates the type of the variable varNameOrSelector. Must be
one of IV (or NIL) for instance variable, CV for class variable,
CLASS for a class property, or METHOD for a method property.

(DefAVP fnName putFlg) [Function]

Purpose: Creates a template for defining an active value function.

Behavior: Creates a template and leaves you in the Interlisp-D function editor.

Arguments: fnName Name of the function.

putFlg T indicates function is a putFn; NIL indicates a getFn.

Returns: The function name on exit from the editor.

(GetLocalState activeValue self varName propName type) [Function]

A - 4 XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A.1 BUTTRESS SYSTEM OF ACTIVE VALUES

Purpose: Retrieves data from localState.

Behavior: Retrieves the value stored in the localState of activeValue. Nested active
values will be triggered.

Arguments: activeValue An ActiveValue.

self The object containing the ActiveValue.

varName The name of the variable were the ActiveValue is stored.

propName The name of an instance or class variable property. This is NIL if
the ActiveValue is associated with the value of the variable
itself.

type Specifies where the ActiveValue was stored. NIL means an
instance variable, CV means class variable, CLASS means a
class property, METHOD means a method property.

Returns: Contents of the localState field of activeValue.

(PutLocalState activeValue newValue self varName propName type) [Function]

Purpose: Data replacement.

Behavior: Stores newValue in the localState field of activeValue. Nested active values
will be triggered.

Arguments: activeValue An ActiveValue.

newValue A new value to be stored in localState.

self The object containing the ActiveValue.

varName The name of the variable were the ActiveValue is stored.

propName The name of an instance or class variable property. This is NIL if
the ActiveValue is associated with the value of the variable
itself.

type Specifies where the ActiveValue was stored. NIL means an
instance variable, CV means class variable, CLASS means a
class property, METHOD means a method property.

Returns: The value of newValue.

(GetLocalStateOnly activeValue) [Function]

Purpose: Gets a value from localState without triggering any nested ActiveValue.

Behavior: Retrieves the value stored in the localState field of the ActiveValue without
triggering any nested ActiveValue.

Arguments: activeValue The ActiveValue in which the getFn and putFn is found.

Returns: The contents of localState.

A - 5XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A.1 BUTTRESS SYSTEM OF ACTIVE VALUES

(PutLocalStateOnly activeValue newValue) [Function]

Purpose: Puts a value into a localState without triggering any nested ActiveValues.

Behavior: Replaces the value stored in the localState of activeValue without triggering
any nested ActiveValue.

Arguments: activeValue An ActiveValue.

newValue Value used for the replacement.

Returns: The value of newValue.

(ReplaceActiveValue activeValue newVal self varName propName type) [Function]

Purpose: In an object’s variable which has an ActiveValue installed, overwrites
activeVal with newVal, providing a way of removing an ActiveValue.

Behavior: Searches arbitrarily deep nesting to replace the occurrence of activeVal with
newVal. If no match is found in the list that is the value of the variable
described by the arguments, an error is invoked.

Arguments: activeValue The ActiveValue to be replaced.

newVal A new value to be stored in the object’s variable.

self The object containing the ActiveValue.

varName The name of the variable were the ActiveValue is stored.

propName The name of an instance or class variable property. This is NIL if
the ActiveValue is associated with the value of the variable
itself.

type Specifies where the ActiveValue was stored. NIL means an
instance variable, CV means class variable, CLASS means a
class property, METHOD means a method property.

newValue Value used for the replacement.

Returns: Value of newVal.

A.2 getFns and putFns

In the Buttress version of LOOPS, where the only kind of active value was
equivalent to ExplicitFnActiveValue, specialization of active values was done
not the way it is in Xerox LOOPS, but by the equivalent of putting special
purpose functions into the getFn and putFn instance variables. The following
functions emulate the behaviors they had in the Buttress version, using the
current ActiveValue mechanisms.

In all cases, the functions are installed in the getFn or putFn instance variable
of an ActiveValue, and are called when an attempt is made to get or put the
variable where the ActiveValue is stored. The arguments and values returned
are irrelevant to the use of these functions.

A - 6 XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A.2 GETFNS AND PUTFNS

(NoUpdatePermitted self varName oldOrNewValue propName activeValue type) [Function]

Purpose: putFn for preventing the updating of a variable.

Behavior: LOOPS-defined putFn that causes a break if an attempt is made to replace
the value of the variable containing the ActiveValue.

(FirstFetch self varName oldOrNewValue PropName activeValue type) [Function]

Purpose: getFn for dynamic variable initialization.

Behavior: LOOPS-defined getFn that expects the localState of activeValue to be an
Interlisp-D expression to be evaluated. On the first fetch, the expression is
evaluated and the variable or property is set to the value of the expression.

(GetIndirect self varName oldOrNewValue PropName activeValue type) [Function]

Purpose: LOOPS-defined getFn that functions as a pointer to another variable.

Behavior: GetIndirect and PutIndirect together set up an ActiveValue whose
localState contains a pointer to where the actual value is stored. This is used
when the value of a variable should always be the same as another.

(PutIndirect self varName oldOrNewValue PropName activeValue type) [Function]

Purpose: LOOPS-defined putFn that functions as a pointer to another variable.

Behavior: See GetIndirect.

(ReplaceMe self varName oldOrNewValue PropName activeValue type) [Function]

Purpose: LOOPS-defined putFn which removes both itself and any getFn.

Behavior: In some cases, you may want to compute a default value if given, but replace
the active value by the value given if you set the value of a variable. For this,
you can employ ReplaceMe. Any replacement attempt at the variable
containing an ActiveValue with this as its putFn results in the value of the
variable being replaced, and the ActiveValue disappearing.

(AtCreation self varName oldOrNewValue PropName activeValue type) [Function]

Purpose: LOOPS-defined getFn used to replace the active value with a dynamically
computed value at instance creation.

Behavior: This function no longer works.

To achieve the closest functionality, use the FirstFetchAV specialization of
the class ActiveValue (see Chapter 8, Active Values) or the FirstFetch
function described above.

A - 7XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

A.2 GETFNS AND PUTFNS

[This page intentionally left blank]

LOOPS DOCUMENTATION KIT CONFIGURATIONS

New and Existing LOOPS Customers (Koto to Lyric/Medley):

610E15980 Xerox LOOPS Reference Manual, Lyric/Medley (7/88)
Xerox LOOPS Release Notes
Xerox LOOPS Library Packages Manual

Errata Sheet

610E16000 Xerox LOOPS Users’ Packages Manual, Lyric/Medley (7/88)

POINT SIZE: 10

LYRIC/MEDLEY TAB TEXT

FONT: OPTIMA

TABS:

XEROX LOOPS RELEASE NOTES

XEROX LOOPS REFERENCE MANUAL

XEROX LOOPS LIBRARY PACKAGES MANUAL

0

BANK 2

BANK 3

TYPE: MAJOR TABS

TAB SIZE: FULL PAGE (8-1/2 X 11)

NO. OF BANKS: 3

TABS FOR LYRIC/MEDLEY LOOPS (1-1/2" D-RING BINDER)

NO. TABS PER BANK: 1

BANK 1

See following page

XEROX LOOPS RELEASE NOTES

XEROX LOOPS REFERENCE MANUAL

XEROX LOOPS LIBRARY PACKAGES MANUAL

SUBTABS:

NO. OF BANKS: 5
NO. TABS PER BANK: 5

TAB SIZE: FULL PAGE (8-1/2 X 11)

TYPE: MINOR TABS

TAB COLOR: PMS GRAY 422-C

NO. OF BANKS: 5
NO. TABS PER BANK: 5

TAB SIZE:FIVE CUT

TYPE:MINOR

BANK 2

BANK 3

SUBTABS FOR LYRIC/MEDLEY LOOPS (1-1/2" D-RING BINDER)

BANK 1

Table of Contents

1. Introduction

2. Instances

3. Classes

4. Metaclasses

5. Accessing Data

6. Methods

7. Message
Sending Forms

8. Active Values

9. Data Type

Continued on next page

10. Browsers

11. Errors

12. Breaking

and Breaks

and Tracing

13. Editing

14. File Manager

COLOR OF TABS: WHITE

Predicates

NO. OF BANKS: 5
NO. TABS PER BANK: 5
TAB SIZE:FIVE CUT

TYPE:MINOR

BANK 5

SUBTABS FOR LRYIC/MEDLEY LOOPS (1-1/2" D-RING BINDER)

BANK 4

15. Performance

16. Processes

17. Reading and

18. User Input/

19. Windows

20. System Variables

A. Active Values

Glossary

Index

COLOR OF TABS: WHITE

Issues

Printing

Output Modules

and Functions

POINT SIZE:

LYRIC/MEDLEY SUBTABS TEXT

FONT:

SUBTABS:

1. Introduction 2. Instances 3. Classes
4. Metaclasses

6. Methods 7. Message

Sending Forms

8. Active Values
9. Data Type

11. Errors 12. Breaking

and Tracing

13. Editing
14. File Manager

16. Processes 17. Reading and
Printing

18. User Input/
19. Windows

Table of Contents

5. Accessing Data

10. Browsers

15. Performance

20. System Variables

A. Active Values Glossary Index

and Breaks

Output Modules

Optima

10

Issues

Predicates

and Functions

Replace this page with
XEROX LOOPS RELEASE NOTES

tab

Replace this page with
XEROX LOOPS REFERENCE MANUAL

tab

Replace this page with
XEROX LOOPS LIBRARY PACKAGES

MANUAL
tab

FONT

HELVETICA
BOLD ITALIC

SPINE

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

REGULAR or
TRIUMVIRATE
BLACK
ITALIC

HELVETICA
BOLD ITALIC

ARTIFICIAL INTELLIGENCE SYSTEMS

XEROX LOOPS

ARTIFICIAL INTELLIGENCE SYSTEMS

NOTE: USE APPROPRIATE POINT SIZES TO ACHIEVE EFFECT
SHOWN BELOW. USE XEROX STANDARDS FOR <<8-1/2x11>> BINDER COVERS

COVER TEXT:

(1 INCH):

LYRIC/MEDLEY RELEASE

XEROX LOOPS
LYRIC/MEDLEY RELEASE

 USERS’ PACKAGES MANUAL

USERS’ PACKAGES MANUAL

Part Number 610E16000

LYRIC/MEDLEY LOOPS KIT
on 51⁄4" floppies

for Xerox 1186 workstation
part number LYMLP1186

Documentation

Loose material:
150002 Lyric/Medley LOOPS Cover Letter (single sheet)
400008 Documentation updates (4 pages, stapled)
151010 1186 Lyric LOOPS Floppy Index and Directories (6 pages, stapled)

310000 LOOPS MANUAL assembly: (Xerox P/N 610E15980)
Large binder
White ENVOS front cover
Spine label: "LOOPS MANUAL" (Green)
LOOPS Reference Manual (310001)
LOOPS Library Packages Manual (310002)
LOOPS Release Notes (400009)

310003 LOOPS USERS’ MODULES, manual assembly: (Xerox P/N 610E16000)
Small binder
White ENVOS front cover
Spine label: LOOPS USERS’ MODULES (Green)
LOOPS Users’ Packages Manual

Media

210035 Lyric LOOPS Library
210036 Lyric LOOPS System #1
210037 Lyric LOOPS System #2
210038 Lyric LOOPS Users

Envos Marketing Brochures

ROOMS™ Brochure
ROOMS™ Product Description LOOPS Product Description

 LYRIC/MEDLEY LOOPS KIT
on 8" floppies

for Xerox 1108 workstation
part number LYML1108

Documentation

Loose material:
150002 Lyric/Medley LOOPS Cover Letter (single sheet)
400008 Documentation updates (4 pages, stapled)
151009 1108 Lyric LOOPS Floppy Index and Directories (5 pages, stapled)

310000 LOOPS MANUAL assembly: (Xerox P/N 610E15980)
Large binder
White ENVOS front cover
Spine label: "LOOPS MANUAL" (Green)
LOOPS Reference Manual (310001)
LOOPS Library Packages Manual (310002)
LOOPS Release Notes (400009)

310003 LOOPS USERS’ MODULES, manual assembly: (Xerox P/N 610E16000)
Small binder
White ENVOS front cover
Spine label: LOOPS USERS’ MODULES (Green)
LOOPS Users’ Packages Manual

Media

212014 Lyric LOOPS Library
212015 Lyric LOOPS System
212016 Lyric LOOPS Users

Envos Marketing Brochures

ROOMS™ Brochure
ROOMS™ Product Description LOOPS Product Description

LYRIC/MEDLEY LOOPS KIT
on 1/4" tape or 1/2" tape
for Sun Workstations

part number LYMLP3414 or LYMLP3412

Documentation

Loose material:
150002 Lyric/Medley LOOPS Cover Letter (single sheet)
400008 Documentation updates (4 pages, stapled)
151012 LOOPS Tape Directory (for 1⁄4-Inch tape, 1 page)
 or
151011 LOOPS Tape Directory (for1/2-Inch tape, 1 page)
310000 Sun installation of Lyric/Medley LOOPS (Document Update Sheet)

Large binder w/"LOOPS MANUAL" spine label: (610E15980 Xerox)
LOOPS Reference Manual (310001)
LOOPS Library Packages Manual (310002)
LOOPS Release Notes (400009)

Small binder w/"LOOPS USERS’ MODULES" spine label:
310003 LOOPS Users’ Packages Manual (610E16000 Xerox)

Media

215003 Lyric/Medley LOOPS for the Sun 3, 1⁄4-Inch Tape
 or
216003 Lyric/Medley LOOPS for the Sun 3, 1/2-Inch Tape

Envos Marketing Brochures

ROOMS™ Brochure
ROOMS™ Product Description LOOPS Product Description

(REV 1/26/89)

LYRIC/MEDLEY LOOPS KIT(OBSOLETE)
on 1⁄2" tape

for Sun 3 Workstation
part number LYMLP3412

Documentation

Loose material:
150002 Lyric/Medley LOOPS Cover Letter (single sheet)
400008 Documentation updates (4 pages, stapled)
151011 LOOPS Tape Directory (for 1⁄2-Inch tape, 1 page)

310000 LOOPS MANUAL assembly: (Xerox P/N 610E15980)
Large binder
White ENVOS front cover
Spine label: "LOOPS MANUAL" (Green)
LOOPS Reference Manual (310001)
LOOPS Library Packages Manual (310002)
LOOPS Release Notes (400009)

310003 LOOPS USERS’ MODULES, manual assembly: (Xerox P/N 610E16000)
Small binder
White ENVOS front cover
Spine label: LOOPS USERS’ MODULES (Green)
LOOPS Users’ Packages Manual

Media

216003 Lyric/Medley LOOPS for the Sun 3, 1⁄2-Inch Tape

Envos Marketing Brochures

ROOMS™ Brochure
ROOMS™ Product Description LOOPS Product Description

Created 20 January 1989
© Copyright 1988 Envos Corp. All Rights Reserved.

PN

 xxxxx

Sun 3 & 4 LOOPS — 1⁄4“ tar Tape
Manufacturing Instructions

(Envos Internal Use Only)

1. Go to Tree (or any available Sun 3 with a tape drive on it), and log in.

2. Insert a blank 1⁄4-inch cartridge in the tape drive. You must use a 600-
foot tape.

3. Type the following commands (the text in bold):
tree%: cd /python/loops
tree%: makereleasetape

The system will type something like this:
You should have a tape in the cartridge drive already, and
should be connected to the correct directory. Please verify
that you are connected to the right place.

You are connected to:

/python/loops (or something ending in /python/pcl)

Type ^C to Abort

Type ^D to continue

4. Type control-D. The tape will now get written, followed by a message
telling you that it is finished.

5. When the tape has finished moving (it rewinds automatically), remove
it from the drive, and turn the write-protect tab to the “Safe” setting.

6. Label the cartridge and its container (green LOOPS labels). If those
were the last 2 labels, make another 10 (Chuck’s PC has the files).

7. Don’t forget to log out.

Sun 3 & 4 LOOPS — 1⁄2“ 9-Track 1600 bpi
Manufacturing Instructions

(Envos Internal Use Only)

1. Go to python and load a 1⁄2-inch tape into its tape drive. Hit the
“Density“ button until the light next to “1600“ is lit. You’ll need to use
a small reel of tape for this.

2. At python’s console, log in as yourself.

3. Type the following commands (the text in bold):
python%: cd /python/loops
python%: maketape1600

The system will type something like this:
You should have a tape mounted on python’s mag tape drive, and
should be connected to the correct directory. Please verify
that you are connected to the right place.

You are connected to:

/python/loops (or something ending in /python/pcl)

Type ^C to Abort

Type ^D to continue

4. Type control-D. The tape will now get written, followed by a message
telling you that it is finished.

5. When the tape has finished moving (it rewinds automatically), remove
it from the drive, and remove the write-protect ring.

6. Label the tape (green Loops label). If that was the last label, make
another 10 (Chuck’s PC has the files).

7. Hit the “density” button on the tape drive until the light next to “Host” is
lit.

8. Don’t forget to log out.

November, 1991
Medley Release

Venue LOOPS Reference Manual

Address comments to:
Venue
User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

LOOPS REFERENCE MANUAL

November, 1991

Copyright © 1988, 1991 by Venue.

All rights reserved.

LOOPS and Medley are trademarks of Venue.

UNIX® is a registered trademark of UNIX System Laboratories.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Venue.
While every effort has been made to ensure the accuracy of this
document, Venue assumes no responsibility for any errors that
may appear.

Text was written and produced with Venue text formatting tools;
Xerox printers were used to produce text masters. The typeface is
Classic.

1 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1. INTRODUCTION

LOOPS integrates several programming paradigms to facilitate the design of
artificial intelligence applications.

• Object-oriented programming, in which information is organized in terms of
objects. Every object belongs to a class, and the classes are arranged in
an inheritance lattice which allows complex objects to be described simply.
Objects communicate with each other by sending messages. When an
object receives a message, it performs some action, which can include
sending messages to other objects.

• Procedure-oriented programming, in which smaller subroutines build larger
procedures and in which data and instructions are kept separate.

• Access-oriented programming, in which accessing a value triggers an
action. This paradigm is useful to monitor certain values.

• Rule-oriented programming, in which programs are organized around
recursively composable sets of pattern-action rules. These rules provide a
convenient way to describe flexible responses to a wide range of events.
This part of LOOPS is included in the users’ modules.

As a new user of LOOPS, you first must become familiar with its terminology
and with the fundamental concepts described by that terminology. This
chapter presents the terminology and related concepts.

1.1 Introduction to Objects

This section shows the LOOPS hierarchy, called a lattice, in Figure 1-1, and
describes the key terms in separate subsections. Terms appear in order of
increasing complexity, with simpler terms described first and subsequent
terms building on these simpler terms.

1 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

Tofu

AnnotatedValue

Object

Window

InspectorClassIVs

IndexedObject

ActiveValue

Method

DestroyedObject

Class

LatticeBrowser

NonRectangularWindow

ClassBrowser

ReplaceMeAV

NotSetValue

LocalStateActiveValue

InheritingAV

IndirectVariable

MetaClass

InstanceBrowser

LoopsIcon

IconWindow

MetaBrowser

SupersBrowser

FileBrowser

FirstFetchAV

AppendSuperValue

NestedNotSetValue

TraceOnPut

BreakOnPut

LispWindowAV

NoUpdatePermittedAV

ExplicitFnActiveValue

AbstractClass

TraceOnPutOrGet

BreakOnPutOrGet

DestroyedClass

Figure 1-1. LOOPS Lattice

1.1.1 Object

As shown in Figure 1-2, an object is a structure consisting of data and a
pointer to functionality that can manipulate the data. In procedure-
oriented programming, data and functionality are considered as separate
entities.

Functionality

value1
value2

Data

field1
field2

.

.
.
.

Object

Figure 1-2. An Object

1 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

1.1.2 Message

Sending messages to objects provides an alternative to invoking procedures
or calling functions. An object responds to a message by computing a value to
be returned to the sender of the message, as shown in Figure 1-3. As a side
effect, the data within an object may change during the computation.
Messages contain a selector for the desired functionality. Messages may also
contain arguments, as do procedures.

Functionality

value1
value2

Data

field1
field2

.

.
.
.

Object

returned value

message

Figure 1-3. An Object Responding to a Message

1.1.3 Method

When an object receives a message, it determines what functionality it must
apply to the arguments of the message. This functionality is called a method
and is very similar to a procedure. A key concept that distinguishes methods
from procedures is that in procedure-oriented programming, the calling routine
determines which procedure to apply. In object-oriented programming, you
determine the message to send and the object receiving the message
determines the method to apply.

1.1.4 Selector

A message that is sent to an object contains a selector. The object uses the
selector to determine which method is appropriate to apply to the message
arguments. As shown in Figure 1-4, when an object receives a message with
a specific selector, the object searches a lookup table containing selectors and
methods to find the method associated with that particular selector.

Functionality

selector1
selector2

method1
method2

.

.
.
.

value1
value2

Data

field1
field2

.

.
.
.

Object

message containing
selector and arguments

returned value

Figure 1-4. A Message Containing a Selector

1 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.1 INTRODUCTION TO OBJECTS

1.1.5 Class

A class describes objects that are similar; that is, objects containing the same
type of data fields and responding to the same messages, as shown in Figure
1-5. Think of the class that describes an object as being a template

for the functionality of its objects. When an object is sent a message, the
class that describes that object handles the message, not the object itself.
Different objects of the same class can respond to messages in the same way;
that is, they apply the same method in response to receiving the same
message.

To create new objects, send a message to a class requesting that a new
object be created. Classes respond to messages because they are also
objects.

Object2

Data

field1
field2

.

.
.
.

valueA
valueB

Functionality

selector1
selector2

method1
method2

.

.
.
.

SomeClass

Object1

value1
value2

Data

field1
field2

.

.
.
.

Figure 1-5. Class with Several Objects

1.1.6 Instance

An instance is an object described by a particular class. Every object within
LOOPS is an instance of exactly one class.

1.2 Storage of Data in Objects

The data associated with an object is called an object’s variables. Methods
can change the values of these variables.

1 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.2 STORAGE OF DATA IN OBJECTS

1.2.1 Class Variables and Instance Variables

LOOPS supports two kinds of variables:

• Instance variables, often abbreviated IVs.

Instance variables contain the information specific to an instance.

• Class variables, often abbreviated CVs.

Class variables contain information shared by all instances of the class. A
class variable is typically used for information about a class taken as a
whole.

Both kinds of variables have names, values, and other properties. For
example, the class for Point could specify two instance variables, x and y, and
a class variable, lastPoint, used by methods associated with all points.

For any particular instance, you can access the values for the instance
variables specific to that instance. You can also access the values for the
class variables that are available to all instances of the same class.

Determining the value of a class variable requires a similar lookup procedure
to that occurring when searching for a method to execute. Instance variable
values are stored within the instances, and class variable values are stored
within the class.

A class describes the structure of its instances by specifying the names and
default values of instance variables, as shown in Figure 1-6. In this way, when
a message is sent to a class to create a new instance, LOOPS can determine
from the class description the number of instance variables for which it must
allocate space the the initial values for those variables.

Instance Variables

x
y

33
100

point1

Instance

Instance Variables

x
y

33
100

Instance

point2

Class

Point

Functionality

selector1
selector2

method1
method2

.

.
.
.

Class Variables

lastpoint point1

Figure 1-6. Class Variables and Instance Variables

1 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.2 STORAGE OF DATA IN OBJECTS

1.2.2 Properties

LOOPS provides extensible property lists for classes, their variables, and their
methods. Property lists provide places for storing documentation and
additional kinds of information. For example, in a knowledge engineering
application, a property list for an instance variable could be used to store the
following information:

• Support (reasons for believing a value)

• Certainty factor (numeric assessments of degree of belief)

• Constraints on values

• Dependencies (relationships to other variables)

• Histories (previous values)

1.3 Metaclasses

Classes themselves are instances of some class. Metaclasses are classes
whose instances are classes. When a class is sent a message, its metaclass
determines the response. For example, instances of a class are created by
sending the class the message New. This message is handled by the class
that describes the class receiving the message. For most classes, this
method is provided by the standard metaclass for classes Class.

To create a new class, send a message to the class Class. The class that
handles this message is MetaClass. Instances of MetaClass are classes that
describe objects which are classes. Instances of Class are classes whose
instances are not classes. Figure 1-7 shows an instance of MetaClass, which
is a class named Class, and instances of Class, which are named Window
and Point.

Another class available in the system in AbstractClass. This is useful when
creating classes that implement general functionality, which must then be
specialized into instantiable classes. Instances of this class are classes that
are impossible to instantiate. An example of an AbstractClass is
ActiveValue, which is described in Chapter 5, Active Values.

1 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.3 METACLASSES

Instances
of Window

Instances
of AbstractClass

Instances
of Class

Instances
of MetaClass

ActiveValue

point2

point1

window1

window2

Window

Point

Class

AbstractClass

MetaClass

Instances
of Point

Figure 1-7. A Metaclass and its Instances

1.4 Introduction to Inheritance

Inheritance allows you to organize information in objects. With a few
incremental changes, you can use inheritance to create objects that are
almost like other objects. Inheritance allows you to avoid specifying redundant
information and simplifies updating, since information that is common to
several objects need be changed in only one place.

LOOPS objects exist in an inheritance network of classes. Figure 1-8 shows
an example in which a class 3DPoint is a subclass of another class Point.
Instances of 3DPoint contain instance variables that are defined in

Point as well as 3DPoint. Point is referred to as a superclass of 3DPoint.
When an instance of 3DPoint is created, the instance variables it contains and
the messages to which it responds are not limited to those instance variables
or methods as defined in the class 3DPoint. For example, the object pt2
contains three instance varriables; two of them are inherited from the class
Point and the other defined in the class 3DPoint. This instance can also
respond to three different messages containing one of the three different
selectors: selector1, selector2, or selector3.

All descriptions in a class are inherited by a subclass unless overridden in the
subclass. For methods and class variables, this is implemented by a runtime
search for the information, looking first in the class, and then at the
superclasses specified by its supers list. For instance variables, no search is
made at run time. Default values are cached in the class, and are updated if
any superclass is changed, thus maintaining the same semantics as the
search. Each class can specify inheritance of structure and behavior from any
number of superclasses.

1 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.4 INTRODUCTION TO INHERITANCE

Class

Methods

CVs

IVs - default values

Class

Point

selector1
selector2

Methods

CVs

lastPoint NIL

IVs - default values

x
y

0
0

methodA
methodB

Instance Variables

Instance

x
y

33
100

pt1

3
10
50

Instance Variables

Instance

pt2

x
y
z

selector1
selector3

methodA1
methodC

z 0

3DPoint

instance-of

instance-of

subclass-of

Figure 1-8. A Sample Inheritance Network

1.4.1 Single Superclasses

In the simplest case, each class specifies only one superclass. If the class A
has the supers list (B), which is a one-element list containing B, then all of the
instance variables specified local to A are added to those specified for B,
recursively. That is, A gets all those instance variables described in B and all
of B’s supers. For example, in Figure 1-9, A has instance variables x, z, and
B1.

Any conflict of variable names is resolved by using the description closer to A
in traversing up the hierarchy to its top at the class Object. Method lookup
uses the same conflict resolutiion. The method to respond to a message is
obtained by first searching in A, and then searching recursively in A’s supers
list. For example, in Figure 1-9, the method selector2 uses methodA2 instead
of methodB2.

1 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.4 INTRODUCTION TO INHERITANCE

methodB1
methodB2

selector1
selector2

Methods

CVs

IVs - default values

z
x

0
1

B

Methods

CVs

IVs - default values

z
x

0
1

selector2 methodA2

A

Figure 1-9. A Class with a Single Superclass

1.4.2 Multiple Superclasses

Classes in LOOPS can have more than one class specified on their supers
list. Multiple superclasses permit a modular programming style where the
following conditions hold:

• Methods and associated variables for implementing a particular feature are
placed in a single class.

• Objects requiring combinations of independent features inherit them from
multiple supers.

As in Figure 1-10, if A has the supers list (B C), first the description from A is
used, then the description from B and its supers is inherited, and finally the
description from C and its supers. In the simplest usage, the different features
have unique variable names and selectors in each super. In case of a name
conflict, LOOPS uses a depth first left-to-right precedence.

For example, if any super of B had a method for selector3, then it would be
used instead of the method methodC3 from C. In every case, inheritance
from Object is only considered after all other classes on the recursively
defined supers list. The general rule is left-to-right, depth first, up to where the
separate branches of the hierarchy join together; that is, up to any class that
is repeated. Alternatively, consider the list as generated by listing all the

1 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.4 INTRODUCTION TO INHERITANCE

superclasses in a depth first left-to-right order, eliminating all but the last
occurrence of a class in the list.

selector1
selector2

Methods Methods

CVs CVs

IVs - default values IVs - default values

methodB1
methodB2

B

Methods

CVs

IVs - default values

z
x

0
1

selector2 methodA2

A

selector1
selector3

methodC1
methodC3

C

C1 0B1
x

0
0

Figure 1-10. A Class with Multiple Superclasses

1.5 Introduction to Access-Oriented Programming: Using Active Values

In access-oriented programming, you can specify a particular procedure to
invoke for reqad or write access of any variable of an object. LOOPS checks
every object variable access to determine whether the value is marked as an
active value. An active value is a LOOPS object. If a variable is marked as an
active value, then aa message is sent to the active value object whenever the
variable is read or set. This mechanism is dual to the notion of sending
messages. Messages are a way of telling objects to perform operations,
which can change their variables as a side effect. Active values are a way of
accessing variables, which can send messages as a side effect.

The messages sent to the active value object will depend on the type of
access If you try to read a variable, the message GettingWrapped Value is
sent to the active value object. If you try to set a variable, the message
Putting Wrapped Value is sent. The object receiving the message may or
may not trigger side effects as the result of receiving these messages. In this
way, you have control over the side effects that may occur as a result of
accessing data.

1 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.4 INTRODUCTION TO INHERITANCE

Active values enable one process to monitor another one. For example,
LOOPS has debugging tools that use active values to trace and trap
references to object variables. A graphics module updates views of particular
objects on a display when their variables are changed. In both cases, the
monitoring process is invisible to, and isolated from, the monitored process.
No changes to the code of the monitored object are necessary to enable
monitoring.

Active values can also be used to maintain constraints among data in a
system. As one piece of data changes, the active value associated with that
data can contain functionality that updates other data within the system.
Examples of this are spreadsheets or electric circuit modeling.

A powerful feature of active values is that they can be nested to yield a
natural composition of the access functions.

1.6 Introduction to the LOOPS User Interface

A key feature of LOOPS is its smooth integration with the Venue Medley
environment. Many of the tools within Medley have been extended to provide
the necessary functionality for manipulating objects. Among these tools are
the following:

• SEdit

• The inspector

• Masterscope

• The File Manager

• The Library Module Grapher

This section describes how LOOPS interfaces with each of these Medley
tools.

Another aspect of LOOPS is that objects have a name space that is separate
from the Lisp name space. LOOPS names are Interlisp symbols. Applying a
LOOPS function $ to a Medley symbol extracts a pointer to a LOOPS object.
Objects can also be pointed to as a Lisp value.

1.6.1 SEdit

Class structures are Lisp data types. To change a class structure, LOOPS
creates a list structure source for the class definition. This list can then be
edited easily by SEdit. Upon exiting SEdit, the list structure is converted back
to a data type. This process of converting to and from a list is hidden from
view.

1.6.2 Inspector

Inspector macros have been defined within LOOPS that allow you to view the
necessary class and instance data while hiding implementation details.
Inspectors opened on classes or instances also provide functionality for
changing the way one views an object. As an example, you can inspect a
class and see or not see information inherited from its superclasses.

1 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.4 INTRODUCTION TO INHERITANCE

1.6.3 Masterscope

The Library Module Masterscope has been extended to a LOOPS Library
Module so that message sending and the use of instance and class variables
are understood. The functionality of CHECK has been extended to allow
consistency checking of LOOPS methods.

1.6.4 File Manager

Additional File Manager commands have been added to allow you to save
classes, instances, and methods on files.

1.6.5 Grapher Module

An important part of the LOOPS interface is its ability to show relationships
between objects and to enable the programmer to easily manipulate those
objects. Browsers of various kinds are in the system to allow you to
understand the relationships between classes and how those classes are
related to files. The browsers are built upon the Library module Grapher. You
can easily extend the built-in browsers to create views onto any object
relationship. An example of this is a decision tree where each node was an
object representing a particular state of a system.

1 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

1.4 INTRODUCTION TO INHERITANCE

[This page intentionally left blank]

Functionality

value1
value2

Data

field1
field2

.

.
.
.

Object

Functionality

value1
value2

Data

field1
field2

.

.
.
.

Object

returned value

message

Functionality

selector1
selector2

method1
method2

.

.
.
.

value1
value2

Data

field1
field2

.

.
.
.

Object

message containing
selector and arguments

returned value

Object2

Data

field1
field2

.

.
.
.

valueA
valueB

Functionality

selector1
selector2

method1
method2

.

.
.
.

SomeClass

Object1

value1
value2

Data

field1
field2

.

.
.
.

Instance Variables

x
y

33
100

point1

Instance

Instance Variables

x
y

33
100

Instance

point2

Class

Point

Functionality

selector1
selector2

method1
method2

.

.
.
.

Class Variables

lastpoint point1

Instances
of Window

Instances
of AbstractClass

Instances
of Class

Instances
of MetaClass

ActiveValue

point2

point1

window1

window2

Window

Point

Class

AbstractClass

MetaClass

Instances
of Point

Class

Methods

CVs

IVs - default values

Class

Point

selector1
selector2

Methods

CVs

lastPoint NIL

IVs - default values

x
y

0
0

methodA
methodB

Instance Variables

Instance

x
y

33
100

pt1

3
10
50

Instance Variables

Instance

pt2

x
y
z

selector1
selector3

methodA1
methodC

z 0

3DPoint

instance-of

instance-of

subclass-of

methodB1
methodB2

selector1
selector2

Methods

CVs

IVs - default values

z
x

0
1

B

Methods

CVs

IVs - default values

z
x

0
1

selector2 methodA2

A

selector1
selector2

Methods Methods

CVs CVs

IVs - default values IVs - default values

methodB1
methodB2

B

Methods

CVs

IVs - default values

z
x

0
1

selector2 methodA2

A

selector1
selector3

methodC1
methodC3

C

C1 0B1
x

0
0

i i iLOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE xv

1. INTRODUCTION

1.1 Introduction to Objects ...1-1

1.1.1 Object ..1-2

1.1.2 Message ..1-3

1.1.3 Method...1-3

1.1.4 Selector..1-3

1.1.5 Class..1-3

1.1.6 Instance ...1-4

1.2 Storage of Data in Objects ..1-4

1.2.1 Class Variables and Instance Variables ..1-4

1.2.2 Properties ..1-5

1.3 Metaclasses ...1-6

1.4 Introduction to Inheritance..1-6

1.4.1 Single Superclasses ..1-7

1.4.2 Multiple Superclasses..1-8

1.5 Introduction to Access-Oriented Programming: Using Active Values ...1-9

1.6 Introduction to the LOOPS User Interface ...1-10

1.6.1 SEdit ..1-10

1.6.2 Inspector ..1-10

1.6.3 Masterscope ..1-10

1.6.4 File Manager..1-11

1.6.5 Grapher Module...1-11

i v LOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

2. INSTANCES

2.1 Instance Naming Conventions ..2-1

2.2 Creating Instances ...2-4

2.3 Data Storage in Instances at Creation Time ..2-8

2.4 Changing the Number of Instance Variables in an Instance ..2-10

2.5 Moving Variables..2-13

2.6 Destroying Instances..2-15

2.7 Methods Concerning the Class of an Object..2-16

2.8 Copying Instances..2-19

2.9 Querying Structure of Instances...2-21

2.10 Other Instance Items..2-24

3. CLASSES

3.1 Creating Classes..3-1

3.1.1 Function Calling and Message Sending ..3-2

3.1.2 Dynamic Mixins..3-4

3.2 Destroying Classes ..3-5

3.3 Inheritance ...3-7

3.4 Editing Classes ..3-10

3.5 Modifying Classes ..3-11

3.6 Methods for Manipulating Class Names ..3-16

3.7 Querying the Structure of a Class ..3-17

3.8 Copying Classes and Their Contents...3-23

3.9 Enumerating Instances of Classes...3-24

3.10 Dealing with Inheritance..3-27

4. METACLASSES

4.1 Specific Metaclasses..4-1

4.1.1 Metaclass Class...4-1

vLOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

4.1.2 Metaclass Metaclass ...4-2

4.1.3 Metaclass AbstractClass ...4-2

4.1.4 Metaclass DestroyedClass ..4-2

4.2 Pseudoclasses ..4-2

4.3 Defining New Metaclasses ..4-5

4.4 Tofu ..4-6

5. ACCESSING DATA

5.1 Generalized Get and Put Functions ...5-1

5.2 Accessing Data in Instances ..5-4

5.2.1 Compact Accessing Forms..5-10

5.2.2 Support for Changetran ...5-13

5.3 Accessing Data in Classes...5-13

5.3.1 Metaclasses and Property Access...5-13

5.3.2 Class Variable Access ...5-16

5.3.3 Instance Variable Access ..5-19

6. METHODS

6.1 Categories..6-1

6.2 Structure of Method Functions ...6-3

6.3 Creating, Editing, and Destroying Methods..6-4

6.4 Escaping from Message Syntax...6-6

6.5 Movement between Classes ..6-8

6.5.1 Movement of Methods ...6-8

6.5.2 Stack Method Macros ..6-10

7. MESSAGE SENDING FORMS

v i LOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

8. ACTIVE VALUES

8.1 Using Active Values ...8-2

8.2 Specializations of the Class ActiveValue ...8-2

8.2.1 IndirectVariable..8-3

8.2.2 LocalStateActiveValue...8-6

8.2.2.1 ExplicitFnActiveValue ..8-8

8.2.2.2 NoUpdatePermittedAV...8-9

8.2.2.3 LispWindowAV...8-10

8.2.2.4 Breaking and Tracing Active Values ..8-10

8.2.2.5 AppendSuperValue..8-11

8.2.2.6 FirstFetchAV ..8-12

8.2.3 InheritingAV ...8-14

8.2.4 ReplaceMeAV..8-15

8.2.5 NotSetValue ...8-15

8.2.5.1 NestedNotSetValue ...8-16

8.2.6 User Specializations of Active Values ...8-16

8.3 Active Value Methods ...8-16

8.3.1 Adding and Deleting Active Values..8-17

8.3.2 Fetching and Replacing Wrapped Values ...8-19

8.3.3 Get and Put Functions Bypassing the ActiveValue Mechanism8-22

8.3.4 Shared Active Values in Variable Inheritance..8-22

8.3.5 Creating Your Own Active Values ..8-23

8.4 Annotated Values ..8-24

8.4.1 Explicit Control over Annotated Values ...8-25

8.4.2 Saving and Restoring Annotated Values ...8-26

8.5 Active Values in Class Structures ...8-27

v i iLOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

9. DATA TYPE PREDICATES AND ITERATIVE OPERATORS

9.1 Data Type Predicates...9-1

9.2 Iterative Operators ..9-3

10. BROWSERS

10.1 Types of Built-in Browsers ...10-1

10.1.1 Lattice Browsers ..10-2

10.1.2 Class Browsers..10-2

10.1.3 File Browsers ...10-2

10.1.4 Supers Browsers ...10-2

10.1.5 Metaclass Browsers...10-2

10.1.6 Instance Browsers ...10-3

10.2 Opening Browsers..10-3

10.2.1 Using Menu Options to Open Browsers ..10-3

10.2.1.1 Overview of Background Menu and LOOPS Icon....................................10-3

10.2.1.2 Command Summary ..10-4

10.2.2 Using Commands to Open Browsers ..10-5

10.3 Using Class Browsers, Meta Browsers, and Supers Browsers..10-7

10.3.1 Selecting Options in the Title Bar Menu ...10-8

10.3.1.1 Recompute and its Suboptions ..10-8

10.3.1.2 AddRoot and its Suboptions ..10-10

10.3.1.3 Add Category Menu...10-10

10.3.2 Selecting Options in the Left Menu ...10-11

10.3.2.1 PrintSummary and its Suboptions..10-12

10.3.2.2 Doc (ClassDoc) and its Suboptions ...10-13

10.3.2.3 WhereIs and its Suboptions ...10-14

10.3.2.4 DeleteFromBrowser and its Suboptions ..10-16

10.3.2.5 SubBrowser ...10-16

10.3.2.6 TypeInName ..10-16

10.3.2.7 Extending Functionality with the Left Mouse Button10-16

10.3.3 Selecting Options in the Middle Menu ..10-17

v i i i LOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

10.3.3.1 Box/UnBoxNode ..10-17

10.3.3.2 Methods (EditMethod) and its Suboptions ...10-18

10.3.3.3 Add (AddMethod) and its Suboptions ..10-20

10.3.3.4 Delete (DeleteMethod) and its Suboptions ..10-21

10.3.3.5 Move (MoveMethodTo) and its Suboptions ..10-22

10.3.3.6 Copy (CopyMethodTo) and its Suboptions ...10-23

10.3.3.7 Rename (RenameMethod) and its Suboptions......................................10-23

10.3.3.8 Edit (EditClass) and its Suboptions..10-24

10.4 Using File Browsers ...10-24

10.4.1 Selecting Options in the Title Bar Menu ...10-25

10.4.1.1 Recompute and its Suboptions ..10-25

10.4.1.2 AddRoot and its Suboptions ..10-25

10.4.1.3 Add Category Menu...10-25

10.4.1.4 Change display mode and its Suboptions..10-25

10.4.1.5 Uses IV? and its Suboptions..10-26

10.4.1.6 Edit FileComs and its Suboptions ..10-28

10.4.1.7 CLEANUP file and its Suboptions..10-30

10.4.2 Selecting Options in the Left Menu ...10-30

10.4.2.1 PrintSummary and its Suboptions..10-30

10.4.2.2 Doc (ClassDoc) and its Suboptions ...10-30

10.4.2.3 WhereIs (WhereIsMethod) and its Suboptions10-30

10.4.2.4 DeleteFromBrowser and its Suboptions ..10-31

10.4.2.5 SubBrowser ...10-31

10.4.2.6 TypeInName ..10-31

10.4.2.7 AddSubs and its Suboptions..10-31

10.4.3 Selecting Options in the Middle Menu ..10-31

10.4.3.1 BoxNode ..10-32

10.4.3.2 Methods (EditMethod) and its Suboptions ...10-32

10.4.3.3 Add (AddMethod) and its Suboptions ..10-32

10.4.3.4 Delete (DeleteMethod) and its Suboptions ..10-32

10.4.3.5 Move (MoveMethodTo) and its Suboptions ..10-32

10.4.3.6 Copy (CopyMethodTo) and its Suboptions ...10-32

10.4.3.7 Rename (RenameMethod) and its Suboptions......................................10-32

10.4.3.8 Edit (EditClass) and its Suboptions..10-32

i xLOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

10.4.3.9 UsesIV and its Suboptions...10-33

10.5 Programmer’s Interface to Lattice Browsers ..10-33

10.5.1 Instance Variables for the Class LatticeBrowser ...10-33

10.5.2 Class Variables for the Class LatticeBrowser ..10-34

10.5.3 Methods for the Class LatticeBrowser ...10-35

10.6 Instance Browsers..10-50

10.6.1 Instance Variables for the Class InstanceBrowser ..10-50

10.6.2 Methods for the Class InstanceBrowser ..10-50

10.6.3 Selecting Options in the Title Bar Menu ...10-51

10.6.4 Selecting Options in the Left Menu ...10-51

10.6.5 Selecting Options in the Middle Menu ..10-52

10.7 Automatic Updates of Class Browsers...10-52

11. ERRORS AND BREAKS

11.1 Error Handling Functions and Methods..11-1

11.2 Error Messages..11-5

11.1.1 Classes and Instances...11-6

11.1.2 Methods and Messages...11-7

11.1.3 Naming Objects ...11-8

11.1.4 Annotated and Active Values...11-9

11.1.5 Miscellaneous ..11-9

12. BREAKING AND TRACING

12.1 Breaking and Tracing Methods ..12-1

12.2 Breaking and Tracing Data ..12-3

13. EDITING

13.1 Editing Classes ..13-1

x LOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

13.2 Editing Instances..13-5

14. FILE MANAGER

14.1 Manipulating Files ..14-1

14.2 Loading Files..14-2

14.3 LOOPS File Manager Commands ...14-3

14.4 Saving LOOPS Objects on Files ..14-6

14.5 Storing Files ...14-10

14.6 Compiling Files...14-12

15. PERFORMANCE ISSUES

15.1 Garbage Collection ..15-1

15.2 Instance Variable Access...15-1

15.3 Method Lookup ..15-3

15.4 Cache Clearing ..15-3

16. PROCESSES

17. READING AND PRINTING

17.1 Reading Objects ...17-1

17.2 Print Flags ..17-2

17.3 Printing Classes ...17-4

17.4 Printing Objects ..17-8

17.5 Printing Active Values ..17-11

17.6 Printing Methods ..17-12

17.7 Unique Identifiers (UIDs) ..17-14

x iLOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

18. USER INPUT/OUTPUT MODULES

18.1 Inspector ..18-1

18.1.1 Overview of the User Interface ..18-1

18.1.2 Using Instance Inspectors ...18-2

18.1.2.1 Titles of Instance Inspector Windows ..18-2

18.1.2.2 Menu for the Title Bar ..18-3

18.1.2.3 Menu for the Left Column ..18-4

18.1.2.4 Menu for the Right Column..18-6

18.1.3 Using Class Inspectors ..18-7

18.1.3.1 Titles of Class Inspector Windows...18-7

18.1.3.2 Menu for the Title Bar ..18-8

18.1.3.3 Menu for the Left Column ..18-8

18.1.3.4 Menu for the Right Column..18-8

18.1.4 Using Class IVs Inspectors ...18-9

18.1.4.1 Titles of Class IVs Inspector Windows...18-9

18.1.4.2 Menu for the Title Bar ..18-9

18.1.4.3 Menu for the Left Column ..18-10

18.1.4.4 Menu for the Right Column..18-10

18.1.5 Functional Interface for Instance Inspectors..18-11

18.1.6 Customizing the Inspector ...18-15

18.2 Extensions to ?= ..18-16

18.2.1 Message Sending ..18-16

18.2.2 Record Creation...18-17

19. WINDOWS

19.1 The Class Window ..19-1

19.2 Basic Window Methods ..19-2

19.3 Prompt Windows ..19-9

19.4 Mouse and Menu Functionality ..19-14

x i i LOOPS REFERENCE MANUAL, MEDLEY RELEASE

TABLE OF CONTENTS

19.4.1 Menu Item Structure ..19-17

19.4.2 Caching Menus..19-18

19.5 Subclasses of a Window ..19-18

19.6 Lisp Windows ...19-22

20. SYSTEM VARIABLES AND FUNCTIONS

INDEX ... INDEX-1

GLOSSARY ... GLOSSARY-1

2 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2. INSTANCES

Every object within the LOOPS system is an instance of some class. In this
manual, however, the word instance generally refers to objects that are not
themselves classes. Instances are a data type that contain local storage for
instance variables, a pointer to the class that describes the instance, the
Unique Identifier (UID), and other information.

This chapter describes naming and creating instances, accessing data stored
within instances or pointed to by instances, and other related topics.

2.1 Instance Naming Conventions

A separate name space for LOOPS objects is maintained by the LOOPS
system within a separate object name table. Since Lisp structures and
LOOPS objects are stored in separate name tables, you can use the same
symbol to refer to both a Lisp structure and a LOOPS object.

Note: The separate name space is not implemented by using the Common
Lisp Package System.

Instances are not created with names; therefore, it may be necessary to keep
pointers to them. Two ways are available to create pointers:

• Use Lisp variables, as in:

(SETQ window1 (← ($ Window) New))

This creates an instance of the class Window that can be referenced by the
Lisp variable window1.

• Use a LOOPS name. This can be done in two ways:

- Assign a name at the same time the instance is created. This can be
done by using

(← ($ Window) New ’window2)

as described above. This creates an instance of the class Window that
can be referenced by the LOOPS expression ($ window2).

- Use the message SetName if you have a pointer to an object and want
to assign a LOOPS name to that object.

The following table shows the items that manipulate LOOPS names.

Name Type Description

$ NLambda Distinguishes between the Lisp value of a symbol and the
and Macro LOOPS value of the same symbol; does not evaluate its

argument.

2 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

$! Function Distinguishes between the Lisp value of a symbol and the
LOOPS value of the same symbol; evaluates its argument.

SetName Method Assigns a LOOPS name to an object.

UnSetName Method Removes a name pointer to an object.

Rename Method Changes the name of an object.

GetObjectNames Function Returns the names of an object, including its UID.

ErrorOnNameConflict Variable Causes a break to occur when an attempting to name an object
that already has a LOOPS name.

($ name) [NLambda and Macro]

Purpose/Behavior: Returns a pointer to a LOOPS object specified by the LOOPS name name. If
no object exists for name, NIL is returned.

Arguments: name A LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

Example: Given that

24←(← ($ Window) New ’window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

then

25←($ window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

The returned value is a pointer to the new window instance. For a further
explanation, see Chapter 18, Reading and Printing.

($! name) [Function]

Purpose/Behavior: Returns a pointer to an object specified by the value of the variable name,
given that the value is a LOOPS name. If no object exists for name, NIL is
returned.

Arguments: name Evaluates to a valid LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

Example: Given that

26←(SETQ foo ’Window)
Window

and Window is a LOOPS object, then

27←($! foo)
#,($C Window)

(← self SetName name) [Method of Object]

Purpose: Assigns a LOOPS name to an object.

Behavior: If name is NIL, then a break occurs. If name is not a symbol, a break occurs.
If name is already in use as a LOOPS name, and if the variable

2 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

ErrorOnNameConflict is non-NIL, then a break occurs, giving you the chance
to OK "rebinding" name.

Note: If an object has multiple names, (← self SetName NewName) results
in both the old name and new name appearing when (FILES?) is
executed. The instance is also printed twice on the file if both names
are specified to be saved.

Arguments: self An object.

name The LOOPS name to be given to the object; must be a symbol.

Returns: self

Categories: Object

Specializations: Class

Example: Given the commands

28←(SETQ window1 (← ($ Window) New))
#,($& Window (NEW0.1Y%:.;h.eN6 . 496))

29←(← window1 SetName ’window3)
#,($& Window (NEW0.1Y%:.;h.eN6 . 496))

the Lisp variable window1 and the LOOPS expression

($ window3)

now point to the same object.

(← self UnSetName name) [Method of Object]

Purpose: Removes a LOOPS name pointer to an object.

Behavior: Removes the reference of name to self from the object name table maintained
by the LOOPS system. If name is NIL, all names pointing to self in the object
name table are removed from the files on FILELST. If name is non-NIL and
the instance is associated with any files on FILELST, the instance is removed
from those files. If name is not a valid LOOPS name for the object in question,
an error occurs.

Arguments: self An object.

name A LOOPS name.

Returns: Used for side effect only.

Categories: Object

(← self Rename newName oldNames) [Method of Object]

Purpose: Changes the name of an object.

Behavior: If oldNames is NIL, removes all old names when newName is installed as the
name for self; otherwise replaces only names specified in oldNames by
newName. If oldNames is not a valid LOOPS name for the object in question,
an error occurs.

Arguments: self Evaluates to a LOOPS name.

newName The LOOPS name to be given to the object; must be a symbol.

2 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.1 INSTANCE NAMING CONVENTIONS

oldNames List of symbols whose names are to be removed; if NIL, all old
names are removed when newName is installed as the name for
self.

Returns: self

Categories: Object

Specializations: Class

Example: Examine the following expressions to see the effects of Rename.

30←($ window2)
#,($& Window (NEW0.1Y%:.H53.G2A . 496))

31←(← ($ window2) Rename ’MyWindow)
#,($& Window (NEW0.1Y%:.H53.G2A . 496))

32←($ window2)
NIL

33←($ MyWindow)
#,($& Window (NEW0.1Y%:.H53.G2A . 496))

(GetObjectNames object) [Function]

Purpose/Behavior: Returns the names of object, including its UID.

Arguments: object A LOOPS object.

Returns: The names of object, including its UID.

Example: The command

(PROGN
 (← ($ Window) New ’w1)
 (← ($ w1) SetName ’w1again)
 (GetObjectNames ($ w1)))

returns

(w1again w1 (NEW0.1Y%:.H53.G2A . 497))

ErrorOnNameConflict [Variable]

Purpose/Behavior: Behavior depends on the value.

• If NIL, the existing object is replaced by a new object.

• If non-NIL, a break occurs when an attempt is made to give an object a
name that is already in use as a LOOPS name.

Initially, the value for ErrorOnNameConflict is NIL.

2.2 Creating Instances

When an instance is created by sending the New message to a class, the
default behavior for Class.New is to send the message NewInstance to the
newly created object. If you require that special or additional operations occur
at instance creation time, specialize the method NewInstance.

2 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.2 CREATING INSTANCES

Specializations of the NewInstance method should return self. You also have
the capability to pass arguments to the NewInstance method when the New
message is sent to create the instance. For example, the following defines a
class NamedClass which adds the instance variable name and specializes
New to set that instance variable to the name of the instance when created.

(DefineClass ’NamedClass)
(←($ NamedClass) AddIV ’name)
(DefineMethod ($ NamedClass) ’New ’(self name)
’(←@ (←self NewIstance name) name name))

You can also indicate whether instances are to be saved on files using the File
Manager, which is described in Chapter 14, File Manager.

The following table shows the methods in this section.

Name Type Description

New Method Creates a new object of a particular class.

←New Macro Creates an object and sends a message to it.

NewInstance Method Allows initialization of newly created instances by class.

NewWithValues Method Creates an object with instance variables of assigned values.

(← class New name arg1 arg2 ...) [Method of Class]

Purpose: Creates a new object, which is an instance of the class class.

Behavior: Creates a new instance name and then sends the message
(← "the new instance" NewInstance name arg1arg2 ...)

In the default case, the New method uses the default values for the instance
variable values in the newly created instance. These default values are given
in the instance variable descriptions of the given class. When that process is
finished, the instance can be altered in various ways by sending it messages.
Specializations of the New method should return the new instance, and can
take more arguments after name.

The internal data structure of an instance contains a pointer to the class of
which it is an instance.

Arguments: class Pointer to a class.

name Name assigned to the instance; if NIL, object does not have a
LOOPS name.

arg1arg2... Arguments passed to the NewInstance method.

Returns: Newly created instance of the class.

Categories: Class

Specializations: AbstractClass, MetaClass

Example: The following command creates a new instance named window1 of class
Window.

20←(← ($ Window) New ’window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

The command

21←(INSPECT (← ($ Window) New))

2 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.2 CREATING INSTANCES

results in the following inspector window:

Some of the values assigned to the various instance variables are default
values. These values are defined in the class Window.

(←New class selector args) [Macro]

Purpose: Creates an instance and sends a message to it within one form.

←New is pronounced "send new."

Behavior: Is equivalent to the form

(← (← class New) selector args)

Arguments: class Evaluates to a class.

selector Name of the message to be sent to the new instance.

args Arguments to be sent to the function invoked by the message.

Returns: The new instance.

Example: The command

23←(←New ($ Window) Open)

creates a new instance of the class Window and then sends the message
Open to the newly created object.

(← self NewInstance name arg1 arg2 arg3 arg4 arg5) [Method of Object]

Purpose: Allows initialization of newly created instances by the class of the instance, as
opposed to the metaclass. Subclasses of Object that specialize this method
should have a ←Super form within the method to allow the execution of the
default behavior.

Behavior: Not normally called directly, but is sent by method New. The default behavior
is as follows.

If name is non-NIL, the message SetName is sent to self.

Within self, instance variables that are bound to the value of NotSetValue and
have an :initForm property in the class description are filled. This allows you
to override the :initForm behavior by setting values for instance variables
before executing the ←Super form. See the discussion of :initForm in
Section 2.3, "Data Storage in Instances at Creation Time."

Sends the message SaveInstance to self with the argument name.

Note: Specializations of the NewInstance method should return self.

Arguments: self Evaluates to a class.

2 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.2 CREATING INSTANCES

name LOOPS name given to a new instance.

arg1...arg5 Optional arguments referenced by user-written specialization
code.

Returns: LOOPS name of new object created.

Categories: Object

Specializations: IndexedObject

(← class NewWithValues valDescriptionList) [Method of Class]

Purpose: Creates a new object and initializes the instance variables specified in
valDescriptionList.

Behavior: Creates the object with no other initialization, directly installs the values and
property lists specified in valDescriptionList, and returns the created object.
Variables that have no description in valDescriptionList are given no value in
the instance and thus inherit the default value from the class.

NewWithValues does not invoke the NewInstance method or the :initForm
properties (see Section 2.3, "Data Storage in Instances at Creation Time").
This means that the instance is not recognized by the File Manager; to be
recognized, the instance must be named.

Arguments: class Pointer to a class.

valDescriptionList
Evaluates to a list of value descriptions, each of which is a list of
variableNames and properties, for example,

((VarName1 value1 prop1a propVal1a prop1b propVal1b ...)
(VarName2 value2 prop2a propVal2a prop2b propVal2b ...) ...)

Returns: The created object.

Categories: Class

Specializations: MetaClass

Example: The command

22←(INSPECT (← ($ Window) NewWithValues ’((width 300)(height 200))))

results in the following inspector window:

Contrast the values for the instance variables width and height with the
inspector window for New, above.

2 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.3 DATA STORAGE IN INSTANCES AT CREATION TIME

2.3 Data Storage in Instances at Creation Time

When an instance is first created, the value of the variable NotSetValue is
assigned to its instance variables. NotSetValue is initialized to be an active
value of the class NotSetValue and should not be changed by the user.
Trying to access an instance variable triggers this active value which in turn
triggers the method IVValueMissing.

Data is stored in instances on all Puts and on GetValues when the default
value is an active value but not NotSetValue. Be aware that in reading the
value of an instance variable that is not stored in the instance, changes in the
default value of the instance variable in the class description are seen in
accesses of the instance.

One exception to this method of data storage at creation time is if an instance
variable has the property :initForm in the class description. In this case, data
is stored in the instance at the time of creation.

Testing for whether data is stored locally in the instance can be done in two
ways:

• Through the user interface, you can inspect an instance in the local mode.
(See Chapter 18, User Input/Output Modules, for more information.)
Values not locally stored appear as #,NotSetValue.

• Programmatically, through the function GetIVHere with the macro
NotSetValue.

The following table describes the items in this section.

Name Type Description

IVValueMissing Method Handles cases when an attempt is made to access the value of
an instance variable that is not stored in an instance.

NotSetValue Macro Determines if its argument is equivalent to the value of
NotSetValue.

:initForm IV Property Signals a property value that can be evaluated.

(← self IVValueMissing varName propName typeFlg newValue) [Method of Object]

Purpose: Invoked by the system to handle the cases when you try to access the value of
an instance variable that is not stored in an instance. This is the mechanism
the system uses to access default values.

Behavior: Varies according to the functionality that invoked it.

• GetValueOnly accesses return the default value of the instance variable
stored in the class.

• GetValue accesses return the default value of the instance variable stored
in the class if it is not an active value. If the default value is an active value,
a copy of the active value is made, stored in the instance, and sent the
GetWrappedValue message.

• PutValueOnly accesses store the new value in the instance.

• PutValue accesses store the new value in the instance unless the default
value of the instance variable stored in the class is an active value. If this is
the case, a copy of the active value is made, stored in the instance, and
sent the PutWrappedValue message.

Arguments: varName Instance variable name.

2 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.3 DATA STORAGE IN INSTANCES AT CREATION TIME

propName Property name for instance variable varName.

typeFlg Used internally to indicate the type of access.

newValue If called by PutValueOnly or PutValue, this is the value to be
placed into the instance variable or property name.

Returns: Value depends on the functionality that invoked this method; see Behavior.

Categories: Object

(NotSetValue arg) [Macro]

Purpose: Determines if arg is EQ to the value of NotSetValue.

Arguments: arg Any value.

Returns: NIL or T.

Example: Given that

51←(← ($ Window) New ’w)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

then

52←(NotSetValue (GetIVHere ($ w) ’title))
T

:initForm [IV property]

Purpose: This allows instance variables to be initialized at the time of the creation of an
instance. The :initForm property and its value are in the class definition. Its
value is a form that is evaluated when an instance is created. The result of the
evaluation is stored as the value of the instance variable containing this
property in the newly created instance.

This behavior does not hold if the value of the instance variable is not
NotSetValue. Refer to the method Object.NewInstance in Section 2.2,
"Creating Instances," for more information.

Example: Given the commands

53←(DefineClass ’testclass)
#,($C testclass)

54←(AddCIV ($ testclass) ’date NIL ’(|:initForm| (DATE)))
date

then

55←(INSPECT (← ($ testclass) New))

returns the following inspector window:

2 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.4 CHANGING THE NUMBER OF INSTANCE VARIABLES IN AN INSTANCE

2.4 Changing the Number of Instance Variables in an Instance

An instance can contain more instance variables than are defined in the class
that describes it. It is not possible to remove an instance variable from an
instance if the instance variable is defined in the class.

When you try to access the value of an instance variable that is not defined as
an instance variable in the instance, the IVMissing method is invoked.

The following table shows the functions and methods in this section.

Name Type Description

AddIV Function Adds an instance variable to an instance.

AddIV Method Adds an instance variable to self.

DeleteIV Function Removes an instance variable or property from an instance.

DeleteIV Method Removes an instance variable or property from self.

ConformToClass Method Makes self contain only those instance variables that are defined
or inherited by the class of self.

IVMissing Method Is sent by the system when an attempt is made to access an
instance variable that does not exist. It is used for recovery.

(AddIV self name value propName) [Function]

Purpose: Adds an instance variable to an instance.

Behavior: Varies according to the arguments.

• If propName is non-NIL and if name already exists, it is added as a property
to the instance variable name with the value value.

• If name already exists, and if propName is NIL, the value of the instance
variable name is changed to value.

• If name does not exist and if propName is non-NIL, the instance variable
name is added to the instance and given the value of the variable
NotSetValue. It is given the property propName with the value value.

• If name and propName already exist, the value of the property prop is
changed to value.

Arguments: self A pointer to the instance.

name The name of the instance variable to be added.

value The value the new instance variable will be assigned.

propName Property name of instance variable name; may be NIL.

Returns: Used for side effect only.

Example: Given that

55←(← ($ Window) New ’w)

the command

56←(AddIV ($ w) ’left 1234)

changes the value of the instance variable left to 1234. The command

2 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.4 CHANGING THE NUMBER OF INSTANCE VARIABLES IN AN INSTANCE

57←(AddIV ($ w) ’foo 1234)

adds the instance variable foo to ($ w) and gives it the value 1234.

(← self AddIV name value propName) [Method of Object]

Purpose: Adds an instance variable to self.

Behavior: Method form of the function AddIV.

Arguments: See the function AddIV.

Returns: NIL

Categories: Object

Specializations: Class

Example: Given that

58←(← ($ Window) New ’w)

the command

59←(← ($ w) AddIV ’left 1234)

changes the value of the instance variable left to 1234. The command

60←(← ($ w) AddIV ’foo 1234)

adds the instance variable foo to ($ w) and gives it the value 1234.

(DeleteIV self varName propName) [Function]

Purpose: Removes an instance variable or property from an instance.

Behavior: Varies according to the arguments.

• If self does not have varName, an error occurs.

• If varName is defined in the class or a super class of self, an error occurs.

• If the instance self has varName, and propName is NIL, the instance
variable is deleted.

• If propName is non-NIL, it is deleted only if it is a locally stored property,
that is, not defined in a class. If propName is not a property of varName or
is defined in a class, no error occurs.

Arguments: self A pointer to the instance from which the instance variable is to
be deleted.

varName The name of the instance variable to be deleted.

propName If non-NIL, specifies that a property, not an instance variable, is
to be deleted.

Returns: If no errors occur, this returns self.

Example: The following command deletes the instance variable foo from ($ w):

62←(DeleteIV ($ w) ’foo)

2 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.4 CHANGING THE NUMBER OF INSTANCE VARIABLES IN AN INSTANCE

(← self DeleteIV varName propName) [Method of Object]

Purpose: Deletes an instance variable or property from self.

Behavior: Method version of the function DeleteIV.

Arguments: See the function DeleteIV.

Returns: If no errors occur, this returns self.

Categories: Object

(← self ConformToClass) [Method of Object]

Purpose/Behavior: Makes self contain only those instance variables that are defined in or
inherited by the class of self.

Returns: NIL

Categories: Object

Example: This example adds an instance variable to an instance and shows how
ConformToClass removes it.

63←(← ($ Window) New ’w1)
(#,($& Window (|MXWO.:F5.G18.Z:?|.18))

64←(← ($ w1) AddIV ’NewIV 1234)
1234

65←(INSPECT ($ w1))

This produces the following inspector window:

66←(← ($ w1) ConformToClass)
NIL

67←(INSPECT ($ w1))

This produces the following inspector window:

(← self IVMissing varName propName typeFlg newValue) [Method of Object]

Purpose: This message is sent by the system when an attempt is made to access an
instance variable that does not exist. It is used for recovery.

2 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.4 CHANGING THE NUMBER OF INSTANCE VARIABLES IN AN INSTANCE

Behavior: Varies according to the arguments.

• If the instance variable varName is now defined in the class, copy it to self.
This can happen if the class was changed after the instance was created.

• If there is a class variable with the name varName, use it. The method of
use is determined by the :allocation class variable property:

- dynamicCached

Copy the class variable to self on puts or gets.

- dynamic

Copy the class variable to self on puts. If the access is by GetValue or
GetValueOnly, then get the value from the class. The value retrieved
from the class is dependent on the value of propName and the class
variable property :initform. If propName is NIL and there is a class
variable property :initform, then retrieve the value returned from
evaluating :initform. Otherwise, retrieve the value of the class variable
varName if propName is NIL or the value of the property propName if it is
non-NIL.

- class (the default if there is no :allocation property)

Do not copy the class variable varName to self. On puts, store the value
in the class. With gets, do the same as the case when the :allocation
property is dynamic. Essentially, this allows you to access class
variables with the same syntax as instance variables.

An attempt is made to correct the spelling of varName and try the above
steps again before breaking.

Arguments: self A pointer to the instance.

varName Instance variable name for self.

propName Property name of instance variable varName.

typeFlg One of PutValue, PutValueOnly, GetValue, GetValueOnly.

newValue Value to be stored in varName.

Returns: If doing a put, this returns NewValue; else this returns the value of the
instance variable name.

Categories: Object

Example: If w1 is a Window, then the following command breaks under
Object.IVMissing because windows do not have an instance variable named
mumble.

(← ($ w1) Get ’mumble)

2.5 Moving Variables

These functions allow you to move variables between classes.

Name Type Description

RenameVariable Function Changes a variable name in a class.

MoveVariable Function Moves an instance variable from one class to another.

2 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.5 MOVING VARIABLES

MoveClassVariable Function Moves an class variable from one class to another.

(RenameVariable className oldVarName newVarName classVarFlg) [Function]

Purpose: Changes oldVarName to newVarName in class className.

Behavior: Can cause inconsistency without warning; does not test for references to the
variable in methods of className.

Arguments: className Class in which function is defined.

oldVarName
Old name of variable.

newVarName
New name of variable.

classVarFlg If not NIL, then oldVarName refers to a class variable.

Returns: If successful, returns newVarName; else NIL.

Example: The following command renames the class variable OldVar to NewVar.

27←(RenameVariable ($ MyClass) ’OldVar ’NewVar T)

(MoveVariable oldClassName newClassName varName) [Function]

Purpose: Moves an instance variable from oldClassName to newClassName.

Behavior: Moves both the varName instance variable and its description to
newClassName. Deletes varName from oldClassName.

Arguments: oldClassName
Source class.

newClassName
Destination class.

varName Variable to be moved.

Returns: Used for side effect only.

(MoveClassVariable oldClassName newClassName varName) [Function]

Purpose: Moves a class variable from oldClassName to newClassName.

Behavior: Moves the class variable varName and its properties to newClassName.
Deletes varName from the oldClassName.

Arguments: oldClassName
Source class.

newClassName
Destination class.

varName Class variable to be moved.

Returns: Used for side effect only.

2 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

2.6 Destroying Instances

A protocol allows you to customize the behavior of the system at instance
destruction time. The naming convention is somewhat asymmetrical to that of
creation time. To programmatically influence instance creation, specialize the
method NewInstance. To programmatically influence instance destruction,
specialize the method Destroy. Include a (←Super) in specializations of
Destroy to guarantee normal system behavior.

The following table describes the methods in this section.

Name Type Description

Destroy Method Removes an object from the environment.

Destroy! Method Removes an object from the environment. If the object is a
class, it also destoys all subclasses.

DestroyInstance Method Modifies the data structure of an instance as described above.

(← self Destroy) [Method of Object]

Purpose: Removes an object from the environment.

Behavior: Sends the DestroyInstance message with self as an argument to the class of
self. UnmarkedAsChanged is called to remove the instance from the notice
of the File Manager.

Arguments: self A pointer to the instance.

Returns: Used for side effect only.

Categories: Object

Specializations: Class, DestroyedClass, IndexedObject, Window

Example: The following command destroys an instance named window1.

70←(← ($ window1) Destroy)

(← self Destroy!) [Method of Object]

Purpose/Behavior: Removes an object from the environment. If the object is a class, it also
destoys all subclasses.

Arguments: self A pointer to the instance.

Returns: Used for side effect only.

Categories: Object

Specializations: Class, DestroyedClass, DestroyedObject

(← class DestroyInstance instance) [Method of Class]

Purpose/Behavior: Destroys instance by overwriting its contents. When an instance is destroyed,
several things occur:

• The instance is removed from any files on FILELST. See the Interlisp-D
Reference Manual.

2 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.6 DESTROYING INSTANCES

• The instance is deleted from system hash tables used for maintaining
object identities.

• The class of the instance is changed to DestroyedObject.

• Other fields of the internal instance data structure are set to NIL.

If an instance is only pointed to by a LOOPS name, its data structure is freed
for garbage collection.

Arguments: class Class of instance.

instance The instance being destroyed.

Returns: Used for side effect only.

Categories: Class

Specializations: MetaClass, DestroyedClass

2.7 Methods Concerning the Class of an Object

Given an instance, you often need to manipulate the class of an instance.
This section describes how to perform this manipulation.

Name Type Description

ChangeClass Method Changes the class of an instance.

Class Macro Determines the class of an object.

Class Method Determines the class of an object.

ClassName Function Returns the class name of an object.

ClassName Method Returns the class name of an object.

InstOf Method Determines if self is an instance of a class.

InstOf! Method Determines if self is an instance of a class or any of its
subclasses.

You can also compute a class corresponding to a Lisp data type for Lisp
objects by using GetLispClass, described in Chapter 4, Metaclasses.

(← self ChangeClass newClass) [Method of Object]

Purpose: Changes the class of an instance.

Behavior: Creates a blank instance of the newClass. Any instance variables that are
locally stored within self are added to the new instance.

If newClass is not the name of a class or a pointer to the class, an error
occurs.

Arguments: self A pointer to an instance.

newClass Either the name of a class or a pointer to the class.

Returns: self

2 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.7 METHODS CONCERNING THE CLASS OF AN OBJECT

Categories: Object

Specializations: IndexedObject

Example: Create an instance of class Window and assign a local value to the instance
variable width - all other instance variables of ($ w) lack local values. Then,
when the class of ($ w) is changed to IndirectVariable, ($ w) will have all of
the instance variables of its new class, plus the one instance variable of its old
class which had a local value, width.

71←(← ($ Window) New ’w)
#,($& Window (NEW0.1Y%:.;h.eN6 . 501))

72←(←@ ($ w) width 123)
123

73←(← ($ w) ChangeClass ’IndirectVariable)
#,($& IndirectVariable (NEW0.1Y%:.;h.eN6 . 502))

74←(← ($ w) Inspect)

This produces the following inspector window:

(Class self) [Macro]

Purpose: Determines the class of an object.

Behavior: If self is a LOOPS object, return its class.

If self is not a LOOPS object, evaluate (GetLispClass self)

Arguments: self A pointer to a LOOPS or Lisp object.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

75←(← ($ Window) New ’window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 503))

then

76←(Class ($ window1))
#,($C Window)

Note: If self is an annotated value, the method Class and the macro Class
return different values. See Chapter 8, Active Values, for more
information on annotated values.

(← self Class) [Method of Object]

Purpose/Behavior: Method version of the macro Class.

Arguments: self A pointer to a LOOPS object or a Lisp data structure.

Returns: Value depends on the arguments; see Behavior of the macro Class.

Categories: Object

2 - 1 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.7 METHODS CONCERNING THE CLASS OF AN OBJECT

Example: Given that

77←(← ($ Window) New ’window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 504))

then

78←(← ($ window1) Class)
#,($C Window)

(ClassName self) [Function]

Purpose: Returns the class name of the class of the object.

Behavior: Varies according to the argument.

• If self is a class, this returns the name of that class.

• If self is an instance, this returns the name of the class that describes that
instance.

• If self is neither of these, an attempt is made to get the class of self by
applying the function GetLispClass to self. If this returns NIL, the function
LoopsHelp is called with the arguments self and "has no class name."

Arguments: self Can have multiple values; see Behavior.

Returns: Value depends on the argument; see Behavior.

Example: The command

80←(ClassName ($ Window))

returns

Window

(← self ClassName) [Method of Object]

Purpose/Behavior: Method version of the function ClassName.

Arguments: See the function ClassName.

Returns: Value depends on the arguments; see Behavior of the function ClassName.

Categories: Object

(← self InstOf class) [Method of Object]

Purpose/Behavior: Determines if self is an instance of class.

Arguments: self A pointer to an instance.

class A symbol name of a class or a pointer to a class.

Returns: T or NIL

Categories: Object

Example: Given that

83←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 505))

2 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.7 METHODS CONCERNING THE CLASS OF AN OBJECT

then

84←(← ($ w1) InstOf ’Window)
T

85←(← ($ w1) InstOf ($ Window))
T

(← self InstOf! class) [Method of Object]

Purpose: Determines if self is an instance of class or any of class’s subclasses.

Behavior: Tests if class of self is a subclass of class.

Arguments: self A pointer to an instance.

class A symbol name of a class or a pointer to a class.

Returns: Object

Categories: Object

2.8 Copying Instances

This section describes the methods for copying instances.

Name Type Description

CopyDeep Method Copies all nested objects, annotated values, and lists.

CopyShallow Method Creates a new instance of the same class as oldInstance. Fills
the instance variables of the new instance with the data
contained in the old instance.

(← oldInstance CopyDeep newObjAList) [Method of Object]

Purpose: Copies all nested objects, annotated values, and lists. All other values are
shared, not copied. This method is similar to the Interlisp function COPYALL.

Behavior: Creates a new instance of the same class as oldInstance. Fills the instance
variables of the new instance with copies of lists, active values, and instances
pointed to by oldInstance.

Arguments: oldInstance A pointer to an instance.

newObjAList
An association list of old copied objects with their associated
copies; used to allow copying of circular structures. Users
typically let this argument default to NIL.

Returns: The value of the new instance.

Categories: Object

Example: Create the class CopyTest with the following structure:

2 - 2 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.8 COPYING INSTANCES

Create the instance CopyTest1 and initialize it as shown in the following
inspector:

Now create a copy and inspect it.

(INSPECT (SETQ DeepCopy (← ($ CopyTest1) CopyDeep)))

The value of the instance variable instance is different. Also,

(EQ (@ ($ CopyTest1) list)(@ DeepCopy list))

returns NIL.

(← oldInstance CopyShallow) [Method of Object]

Purpose/Behavior: Creates a new instance of the same class as oldInstance. Fills the instance
variables of the new instance with the data contained in the old instance.

Arguments: oldInstance
A pointer to an instance.

Returns: A copy filled with the values shared by the instances.

Categories: Object

Example: Compare this example to the CopyDeep example above. Use the same
CopyTest1 instance as above.

(INSPECT (SETQ ShallowCopy (← ($ CopyTest1) CopyShallow)))

The value of the instance variable instance is the same. Also,

(EQ (@ ($ CopyTest1) list)(@ ShallowCopy list))

returns T.

2 - 2 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.9 QUERYING STRUCTURE OF INSTANCES

2.9 Querying Structure of Instances

At run time, user-written code may need to determine the structure of some
object which has been passed into it. This section describes the methods to
do this.

Name Type Description

HasCV Method Determines if a class variable can be accessed via self.

HasIV Method Determines if an instance variable can be accessed via self.

Inspect Method Inspects self as a class or instance.

ListAttribute Method Determines instance variable or instance variable property
names contained in an instance.

ListAttribute! Method Recursively determines instance variable or instance variable
property names contained in an instance.

WhereIs Method Searches the supers hierarchy to find a class where a specified
name is defined.

(← self HasCV cvName propName) [Method of Object]

Purpose: Returns T if the class variable cvName (or its property propName if it is non-
NIL) can be accessed via self; otherwise NIL.

Behavior: Sends the message HasCV to the class of self passing the arguments
cvName and propName.

Arguments: self A pointer to an instance or a class.

cvName Class variable name

propName Property name for class variable cvName.

Returns: T or NIL; see Behavior.

Categories: Object

Specializations: Class

Example: The following command checks if an instance window1 has the class variable
RightButtonItems:

87←(← ($ window1) HasCV ’RightButtonItems)
T

(← self HasIV ivName propName) [Method of Object]

Purpose/Behavior: Returns T if the instance variable ivName (or its property propName if it is non-
NIL) can be accessed via self; otherwise NIL.

Arguments: self A pointer to an instance or a class.

ivName Instance variable name.

propName Property name for instance variable ivName.

Returns: T or NIL; see Behavior.

Categories: Object

2 - 2 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.9 QUERYING STRUCTURE OF INSTANCES

Specializations: Class

(← self Inspect INSPECTLOC) [Method of Object]

Purpose/Behavior: Inspects self as a class or an instance. Uses INSPECTLOC as the region for
the inspector window if it is given.

Arguments: self A pointer to an instance.

INSPECTLOC
The region for the inspector window. If NIL, the system prompts
you to place the window.

Returns: The Lisp window used by the inspector.

Categories: Object

Example: The following command inspects an instance ($ window1)

88←(← ($ window1) Inspect)

This results in the following inspector window:

(← self ListAttribute type name) [Method of Object]

Purpose: Determines instance variable or instance variable property names contained in
an instance.

Behavior: Converts type into uppercase on entry. The remaining behavior varies
according to the arguments.

• If type is one of IV, IVPROPS, or NIL, and name is the name of an instance
variable of self, this returns a list of property names of name that have
property values locally stored in the instance.

• If type is IVS, this returns a list of the instance variable names of self,
whether or not the values for the instance variables are locally stored.

• If type is none of the above, this evaluates (← (Class self) ListAttribute
type name).

Note: Using a type of SUPERS or SUPERCLASSES returns a list of the
names of the super classes.

Arguments: self A pointer to an instance.

type See Behavior.

name If type is one of IV, IVPROPS, or NIL, then name is an instance
variable of self; else it is NIL.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

2 - 2 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.9 QUERYING STRUCTURE OF INSTANCES

Specializations: Class

Example: Given that

90←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

then

91←(← ($ w1) ListAttribute ’IVS)
(left bottom width height title menus)

92←(← ($ w1) ListAttribute ’IV ’menus)
NIL

After opening ($ w1), positioning the cursor anywhere on the window,
and pressing the left and right mouse buttons to create some menus, then

93←(← ($ w1) ListAttribute ’IV ’menus)
(LeftButtonItems RightButtonItems)

(← self ListAttribute! type name verboseFlg) [Method of Object]

Purpose: Provides a recursive form of ListAttribute. Omits inheritance from the
classes Object and Tofu unless verboseFlg is T.

Behavior: Converts type into uppercase on entry. The remaining behavior varies
according to the arguments.

• If type is IVS, this is the same as ListAttribute.

• If type is one of IV, IVPROPS, or NIL, and name is the name of an instance
variable of self, this returns a list of property names of name.

• If type is none of the above, this evaluates (← (Class self) ListAttribute!
type name).

Note: Using a type of SUPERS or SUPERCLASSES returns a list of the
names of the super classes.

Arguments: self A pointer to an instance.

type See Behavior.

name If type is one of IV, PROPS, or NIL, then name is an instance
variable of self; else it is NIL.

verboseFlg T or NIL; if T, inheritance from object and Tofu are included. If
NIL, they are omitted.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializations: Class

Example: Given that

95←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 515))

then

96←(← ($ w1) ListAttribute! ’IV ’menus)
(RightButtonItems doc TitleItems ...)

2 - 2 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.9 QUERYING STRUCTURE OF INSTANCES

2 - 2 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.9 QUERYING STRUCTURE OF INSTANCES

(← self WhereIs name type propName) [Method of Object]

Purpose: Searches supers hierarchy to find class where name is defined.

Behavior: Performs the method Class.ListAttribute for self and for each super class of
self, checking to see if name (or propName as appropriate) is a member of the
list returned. The value returned is the class where name (or propName) is
first found.

The type argument is changed to uppercase and then coerced to a valued
type argument for ListAttribute.

• If type is one of METHOD, METHODS, NIL, or T, it becomes METHODS.
WhereIs then looks for a method with the name name.

• If type is one of IVPROP or IVPROPS, it becomes IVPROPS. WhereIs
then looks for an instance variable property with the name name.

• If type is one of IV or IVS, it becomes IVS. WhereIs then looks for an
instance variable with the name name.

• If type is one of CV or CVS, it becomes CVS. WhereIs then looks for a
class variable with the name name.

Arguments: self A pointer to an instance.

type See Behavior.

name The name of an object attribute being searched for.

propName Property name for instance variable name.

Returns: The class where name or propName is first found.

Categories: Object

Example: The command

97←(← (← ($ LatticeBrowser) New) WhereIs ’left ’IV)

returns

#,($C Window)

2.10 Other Instance Items

This section describes other items involved with instances.

NoValueFound [Variable]

Purpose/Behavior: Returned as a result of various accesses; initially set to NIL. When developing
code, rebind this to the symbol NoValueFound to assist in debugging.

(NoValueFound arg) [Macro]

Purpose/Behavior: Returns value of (EQ NoValueFound arg).

Arguments: arg Any value.

Returns: T or NIL.

2 - 2 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.10 OTHER INSTANCE ITEMS

(ValueFound arg) [Macro]

Purpose/Behavior: Returns value of (NEQ NoValueFound arg).

Arguments: arg Any value.

Returns: T or NIL.

2 - 2 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

2.10 OTHER INSTANCE ITEMS

[This page intentionally left blank]

x i i iLOOPS REFERENCE MANUAL, MEDLEY RELEASE

LIST OF FIGURES

1-1. LOOPS Lattice...1-2

1-2. An Object ..1-2

1-3. An Object Responding to a Message ..1-3

1-4. A Message Containing a Selector ...1-3

1-5. Class with Several Objects ..1-4

1-6. Class Variables and Instance Variables ..1-5

1-7. A Metaclass and its Instances ...1-6

1-8. A Sample Inheritance Network ...1-7

1-9. A Class with a Single Superclass ..1-8

1-10. A Class with Multiple Superclasses ...1-9

3-1. Simple Inheritance Lattice ...3-8

3-2. Multiple Inheritance Lattice ..3-9

3-3. Sample Display Editor Window..3-11

4-1. Class Browser Showing Metaclasses..4-1

4-2. Specializations of Tofu...4-6

8-1. The Class ActiveValue and its Specializations...8-3

10-1. Sample Lattice Browser ...10-2

10-2. Sample Supers Browser ..10-2

10-3. Sample Metaclass Browser ...10-3

10-4. LOOPS Icon...10-4

10-5. Shading Available for a Node ..10-47

18-1. Sample Inspector ...18-1

x i v LOOPS REFERENCE MANUAL, MEDLEY RELEASE

LIST OF FIGURES

[This page intentionally left blank]

3 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3. CLASSES

Classes provide a description of instances within the object domain. The
following information is contained within a class:

• The metaclass for this class. See Chapter 4, Metaclasses, for a discussion
of metaclasses.

• Class Properties. Examples of class properties are an edit stamp and
documentation.

• The supers list for this class. Classes exist in a hierarchy and the supers
list places the class within that hierarchy. Instances of the class contain
data and respond to messages that are described within the class and
superclasses of the class.

• Class variables, their values, and their properties and values.

• Instance variables, their default values, and their properties and values.

This chapter covers creating and destroying classes, editing, accessing data
stored in classes, inheritance, and related topics. Other chapters that contain
information relevant to this chapter are Chapter 4, Metaclasses, since a
metaclass is a class of classes, and Chapter 10, Browsers, since the primary
user interface for manipulating classes is the browser.

3.1 Creating Classes

Several ways are available to create a class:

• Use the browser interface.

• Use function calling or message sending.

• Use dynamic mixins to dynamically create classes.

The rules for naming classes are the same as those for naming instances.
Simply stated, a class name must be a litatom. One exception to this rule is
the naming of dynamic mixin classes, which is discussed later in this chapter.

A class is generally referred to with this form: ($ className). See Chapter 2,
Instances, for more details regarding LOOPS names.

As discussed in Chapter 2, Instances, the protocol that is followed when
instances are created is for the LOOPS system to send the NewInstance
message to the newly created instance. The NewInstance message can be
specialized to incorporate behavior specific to the creation time of an instance.
Similarly, the system follows a prototol when creating a class using the New
message. After the class is created, it is sent the NewClass message.

3 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1 CREATING CLASSES

3.1.1 Function Calling and Message Sending

The following table shows the items in this section.

Name Type Description

DefineClass Function Creates a new class.

New Method Creates a new class.

CreateClass Method Creates a new class.

NewClass Method Provides a placeholder for modifying the class creation protocol.

(DefineClass name supers self) [Function]

Purpose: Creates a new class.

Behavior: If name is not a litatom, a break occurs.

• If supers is non-NIL, it should be a list of classes or names of classes to be
the supers for the newly created class. If the list contains multiple classes,
this results in a class that has multiple super classes (see Section 3.3,
"Inheritance"). The order of classes in the list specifies the order in which
lookup will proceed. If one of the these classes is not a valid class, a break
occurs.

• If supers is NIL and if self is ($ MetaClass), then the supers list is (Class).

• If both supers is NIL and self is NIL, the supers list is (Object).

If self is non-NIL, it is installed as the metaclass for the newly created class.
See Chapter 4, Metaclasses.

A class is then built with an Edited: property containing the date and time and
the value of variable INITIALS. (See the Interlisp-D Reference Manual.)

The newly created class has no class variables, instance variables, or
methods.

The variable LASTWORD is set to name, which is added to USERWORDS for
spelling escape completion. (See the Interlisp-D Reference Manual for
information on LASTWORD and USERWORDS.)

Arguments: name A LOOPS name to be given to the class.

supers A list of classes.

self A metaclass.

Returns: The class object.

Examples: The following command defines a subclass of the class Object.

(DefineClass ’ExampleClass)

The following command defines a subclass of the class Window.

(DefineClass ’MyClass ’(Window))

The following command defines a class with multiple supers: ExampleClass
and Window.

(DefineClass ’AnotherClass ’(ExampleClass Window))

3 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1 CREATING CLASSES

The following command defines a subclass of the class Window that has
AbstractClass as its metaclass.

(DefineClass ’DontMakeMe ’(Window) ($ AbstractClass))

(← class New name supers init1 init2 init3) [Method of Metaclass]

Purpose: Creates a new class.

Behavior: Sends the message CreateClass to class, passing the arguments name and
supers. This returns a new class which is then sent the message NewClass
passing the arguments init1, init2, and init3.

Arguments: class A pointer to a class.

name A LOOPS name to be given to the class.

supers A list of classes.

init1, init2, inti3
See Behavior.

Returns: The new class.

Categories: Object

Specializes: Class

Specializations: AbstractClass

Example: The following command creates the class, AClass, which is a subclass of the
class Window. The metaclass of AClass is Class.

(← ($ Class) New ’AClass ’(Window))

After AClass is created, the system sends the following message:

(← ($ AClass) NewClass)

(← self CreateClass name supers) [Method of Metaclass]

Purpose: Creates a new class.

Behavior: Method version of DefineClass.

Arguments: self A metaclass.

name The name of the newly created class.

supers A list of classes.

Returns: The clsss object.

Categories: MetaClass

(← class NewClass init1 init2 init3) [Method of Class]

Purpose: Provides a hook into class initialization. If you want special actions to occur
when creating a class, specialize this method.

Arguments: class A pointer to a class.

init1, init2, init3
Dependent on user-defined functionality.

3 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1 CREATING CLASSES

Returns: class

Categories: Class

Example: Create a subclass of Class called MyClass:

(DefineClass ’MyClass ’(Class))

 Give it a method NewClass:

(DefineMethod ($ MyClass) ’NewClass ’(init1 init2 init3)
’(PROGN (PutClass self init1 ’prop1) self))

 This looks like the following display editor window:

Now send the class MyClass the following command:

(← ($ MyClass) New ’testclass NIL "this is a test")

This results in the creation of the class shown in the following display editor
window:

To display the class, enter

(← ($ testclass) Edit)

3.1.2 Dynamic Mixins

In some programming situations, you may develop sets of mixins that are
designed to be used together. (Mixins are classes that are used only in
conjunction with another class to create a subclass, or provide some
functionality useful in more than one class.) For example, the class
NamedClass adds one instance variable name and specializes the New
message to ensure that the instance variable name contains the name of the
object.

(DefineClass ’NamedClass)
(← ($ NamedClass) AddIV ’name)
(DefineMethod ($ NamedClass) ’New ’(self name)
’(←@ (←self NewInstance name) name name))

Other classes that want the names of their objects in an instance variable
name can use NamedClass as a mixin.

As another example, assume that you have one set consisting of A1, A2, A3,
and A4 and another set containing B1, B2, and B3. Formerly, to allow
creation of an instance taking properties from arbitrary combinations of an
element from each set, you had to create in advance all 12 combinations of
classes with a super from A and a super from B. This was even more
cumbersome if the As and Bs can also combine with any of a set of 5 Cs.

3 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.1 CREATING CLASSES

What is desired is the ability to create combinations of these classes on the fly,
without having to invent a name for each combination and without having each
present in the system when only a few may be needed in any given
application. To meet this need, LOOPS now provides the dynamic mixin
class. The name of such a class is a list, in order, of the classes which are to
be the supers of the class. Such a class is automatically created the first time
it is referred to. Thus, the following sequence

(DefineClass ’A)
(DefineClass ’B)
(← ($ (A B)) New)

creates the class whose supers are A and B (if it did not already exist), and
builds an instance of that class.

Dynamic mixins appear in browsers as shown in this sample window.

All of the browser operations still function on dynamic mixin classes.

These classes print as

#,($C (A B))

3.2 Destroying Classes

The following messages have been provided to destroy a class that has been
created. Destroyed classes, if not being pointed to in some fashion, are
eventually collected by the garbage collector.

The following table shows the methods in this section.

Name Type Description

Destroy Method Removes a class from the LOOPS system.

Destroy! Method Destroys a class and its subclasses.

DestroyClass Method Destroys a class by deleting its contents.

(← class Destroy) [Method of Class]

Purpose: Removes a class from the LOOPS system.

Behavior: If self has any subclasses, a break occurs and you are prompted to determine
if you want to use Destroy!.

Sends the message DestroyClass to the metaclass of self.

Specializations of this method may be necessary to undo any actions that
might have been performed by user specializations of the NewClass method.
If you specialize Destroy, be sure to include a ←Super to guarantee that the
functionality of the Destroy method is performed.

Arguments: class Must be a class.

3 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.2 DESTROYING CLASSES

Returns: NIL

Categories: Object

Specializes: Object

Specializations: DestroyedClass

Example: The following command destroys the class Datum:

(← ($ Datum) Destroy)

(← class Destroy!) [Method of Class]

Purpose: Destroys a class and its subclasses.

Behavior: Recursively sends the Destroy message to self and its subclasses.

Arguments: class Must be a class.

Returns: NIL

Categories: Object

Specializes: Object

Specializations: DestroyedClass

(← class DestroyClass classToDestroy) [Method of Class]

Purpose: Destroys classToDestroy by deleting its contents. This method is invoked by
the LOOPS system and should generally not be called directly by user code.
However, it can be specialized to change the way classes are destroyed.

Behavior: Performs the following actions:

• Removes classToDestroy from any files on FILELST.

• Sends the Destroy! message to all methods locally associated with
classToDestroy.

• Removes classToDestroy from any subclass data contained in the supers
of classToDestroy.

• Changes the class name of classToDestroy to *aDestroyedClass*.

• Changes the supers list of classToDestroy to DestroyedObject and
Object.

• Changes the metaclass of classToDestroy to DestroyedClass.

• Sets other fields of the internal class data structure to NIL.

Arguments: class Metaclass of classToDestroy.

classToDestroy
Class to destroy.

Returns: NIL

Categories: Class

Specializations: DestroyedClass

3 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3 INHERITANCE

3.3 Inheritance

Classes exist in an ordered lattice or hierarchy. Information contained within a
class - the supers list - defines where that class is located within the lattice.
The supers list specifies the classes immediately above a given class. When
an instance of a class is created, it contains not only the instance variables of
the defining class, but also the instance variables of all of the classes above
the defining class in the class hierarchy. When you try to determine the value
of a class variable associated with an instance, all classes above the defining
class may be searched. When you send a message to an instance, all
classes above the defining class may be searched for the appropriate method.

There are two types of inheritance:

• Simple, in which a class has only one superclass.

• Multiple, in which a class has two or more classes on its supers list.

When an instance is created, it may contain an instance variable that is
defined in more than one class. The default value for that instance variable
depends on its inheritance. In the case of simple inheritance, the instance
variable gets the value from the class that is lowest in the hierarchy. In
multiple inheritance, the instance variable gets the value from the class that is
lowest in an inheritance list. To create this list,

1. Put the first class that describes the instance.

2. Begin with the first class on its supers list and move up from it, making a
list of classes which assume simple inheritance.

3. Build one of these lists for all successive super classes.

4. Append these lists together.

5. Remove all occurrences of any classes that appear in the list a multiple
number of times except for the last entry.

Another way to think about this, which creates the same inheritance list, is the
following:

1. Begin with the first super class and walk up the hierarchy until you reach a
class where the inheritance paths merge.

2. Walk up each path leading from each successive super class to where
paths merge.

3. Take the class where the paths merge and walk up from there.

As an example of simple inheritance, examine Figure 3-1 which shows some
of the class variables and instance variables defined within each class.

3 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3 INHERITANCE

CVs

IVs

LeftButtomItems

..

.
((Update &)&)

.

.

Window

width
height
menus

.

.

12
12
T
.
.

CVs

IVs

LeftButtomItems

..

.
((Boxnode &)&)

.

.

width
height

title

.

.

64
32

"Lattice Browser"
.
.

CVs

IVs

LeftButtomItems

..

. .
.

CVs

IVs

LeftButtomItems

..

.
((Recompute &)&)

.

.

InstanceBrowser

LatticeBrowser

ClassBrowser

((PrintSummary &)&)

title "Class Browser"
.
.

.

.

title "Instance Browser"
subIV NIL

. .

Figure 3-1. Simple Inheritance Lattice

An instance of the class ClassBrowser has this as an inheritance list:

ClassBrowser
LatticeBrowser
Window
Object
Tofu

The instance variable values of this instance are as follows:

IV Value From Class
title "Class browser" ClassBrowser
width 64 LatticeBrowser
height 32 LatticeBrowser
menus T Window

Accessing the value of the class variable LeftButtonItems causes this value
to come from the class ClassBrowser.

Figure 3-2 shows an example of multiple inheritance.

3 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.3 INHERITANCE

Class1

CVs
cv1
cv2

A1

IVs
iv1 11
iv2 21

Class3

CVs
cv3

IVs
iv3
iv4

Class2

CVs
cv1 A2

IVs
iv2
iv3

Class4

CVs
cv1
cv4

A4

IVs

Class5

CVs

IVs
iv4

B1

D4

45

C3

33
43

22
32

Figure 3-2. Multiple Inheritance Lattice

If the order of the supers for Class5 is Class3 and then Class4 (that is, its
supers list is (Class3 Class4)), then the inheritance list for an instance of
Class5 is as follows:

Class5
Class3
Class4
Class2
Class1

The instance variable and class variable values this instance are as follows:

IV Value From Class CV Value From Class
iv1 11 Class1 cv1 A4 Class4
iv2 22 Class2 cv2 B Class1
iv3 33 Class3 cv3 C Class3
iv4 45 Class5 cv4 D4 Class4

3 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.4 EDITING CLASSES

3.4 Editing Classes

Changing the contents of a class typically involves using the display editor,
although programmatical ways to make these changes are available. To edit
a class structure, the LOOPS system first changes the structure to a list and
then passes that list to the display editor. Upon exit from the display editor,
the system translates the modified list back into the class structure.

The editor is most often called from the browser interface. (See Chapter 10,
Browsers.) The following method provides a programmatical way to invoke
the editor.

(← class Edit commands) [Method of Class)

Purpose: Edits a class definition.

Behavior: Calls EDITE (see the Interlisp-D Reference Manual) with the translated class
structure passed as the EXPR argument and commands passed as the COMS
argument.

This method binds the variable LASTCLASS to the class name of self.

Arguments: class Pointer to a class.

commands Commands passed to EDITE.

Returns: Name of the class.

Categories: Object

Specializes: Object

Example: The following command causes a display editor window to appear.

(← ($ LoopsIcon) Edit)

Calling the editor causes a structure to appear in a display editor window. At
this time, you can change the structure of the class by using any of the
following techniques:

• Changing the value of the class’s metaclass. This is done by changing the
class name after the word MetaClass.

• Changing the superclasses for the class. The form for this is :

(Supers class1 class2 ...)

At least one class must be in the supers list. The order of this list
determines the order of inheritance; the first class after the word Supers on
this list is the first class to search for inherited data and methods.

• Adding or removing class properties. Class properties occur within the
same list as MetaClass, after the metaclass class name. The form for this
is

(MetaClass metaclassName classProp1 propVal1 classProp2
propVal2 ...)

• Adding or removing class variables or associated properties. The form for
class variables is:

(ClassVariables
(cvName1 cvVal1 prop1a propVal1a prop1b propVal1b ...)
(cvName2 cvVal2 prop2a propVal2a prop2b propVal2b ...)
...)

3 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.4 EDITING CLASSES

It is not necessary to have any properties for a class variable. If the length
of each class variable list is not an even number, a break occurs under the
editor. The message in the break window describes an odd length list the
first time you try to exit from the editor.

• Adding or removing instance variables or associated properties. These
have the same form as class variables with the distinction that the value
listed for each instance variable is not its value, but only its default value for
the purposes of instanciation.

For example, examine the display editor window in Figure 3-3.

Figure 3-3. Sample Display Editor Window

This figure shows the following information:

• The title bar of the display editor window indicates the class being edited.

• The metaclass of the class IndirectVariable in this example is the class
Class. IndirectVariable has two class properties. The first is a doc
property. The second is an Edited: property.

• This class has one super class: ActiveValue.

• This class has no class variables. It has four instance variables: object,
varName, propName, and type. Each has a doc property.

• The MethodFns are listed in this structure as a convenience. It is not
possible to add or delete elements of this list from the editor and have any
changes actually occur. Selecting one of the method function names and
then selecting Edit (Meta-O in SEdit) allows you to edit that method either
as its method code (METHOD-FNS), its method object (METHODS), or its
Interlisp code (FNS).

3.5 Modifying Classes

In addition to the editing technique for changing a class, you can use
programmatic means to modify the structure of a class. This section describes
the functions and methods for modifying classes.

Name Type Description

Add Method Adds a component to a class.

Delete Method Deletes a component from a class.

DeleteClassProp Function Removes a class property from a class.

3 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.5 MODIFYING CLASSES

AddCV Function Adds a class variable to a class.

AddCV Method Adds a class variable to a class.

DeleteCV Function Deletes a class variable or one of its properties from a class.

AddCIV Function Adds an instance variable to a class; can also add properties to
a class.

AddIV Method Adds an instance variable to a class.

DeleteCIV Function Removes an instance variable or property from a class.

ReplaceSupers Method Changes the super classes of a class.

(← class Add type name value prop) [Method of Class]

Purpose/Behavior: Adds a component to a class.

Arguments: class Pointer to a class.

type One of IV, IVPROP, CV, CVPROP, METACLASS, or METHOD.

name The name of the item to be added.

value The value, or default value if type is one of IV or IVPROP.

prop The name of the property, if a property is to be added.

Returns: NIL

Categories: Class

Example: The following command adds a new instance variable color to class Datum:

(← ($ Datum) Add ’IV ’color)

(← class Delete type name prop) [Method of Class)

Purpose: Deletes a component from a class.

Behavior: Varies according to the arguments.

• If type is one of IV, IVPROP, or NIL, this calls (DeleteCIV class name prop).

• If type is one of CV or CVPROP, this calls (DeleteCV class name prop).

• If type is META, METACLASS, or CLASS, and if prop is NIL, then the
metaclass of self is changed to the class Class.

• If type is META, METACLASS, or CLASS, and if prop is non-NIL, then this
calls (DeleteClassProp class prop).

• If type is METHOD or SELECTOR, this calls (DeleteMethod class name
prop).

Arguments: class A pointer to a class.

type See Behavior.

name IV, CV, or selector name.

prop A property name.

3 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.5 MODIFYING CLASSES

Returns: NIL

Categories: Class

Example: The following command deletes the instance variable color from the class
Datum:

(← ($ Datum) Delete ’IV ’color)

(DeleteClassProp classRec propName) [Function]

Purpose: Removes a class property from a class.

Behavior: Marks classRec as changed.

Arguments: classRec Pointer to a class.

propName Property to be deleted.

Returns: NIL is propName is not found; otherwise propName.

(AddCV class varName newValue) [Function]

Purpose: Adds a class variable to a class.

Behavior: Varies according to the arguments.

• If varName is NIL, you are prompted to enter a name.

• If varName is already a class variable, its value is changed to newValue.
NIL is returned.

• If varName is not a class variable of class, it is added to class with the value
newValue. Also, a doc property is added with the following value:

‘(* CV added by , (USERNAME NIL T))

varName is returned in this case.

Arguments: class A pointer to a class.

varName Name of the new variable.

newValue The new value.

Returns: Value depends on the arguments; see Behavior.

(← class AddCV varName newValue) [Method of Class]

Purpose: Adds a class variable to a class.

Behavior: Provides a method version of the function AddCV.

Arguments: See the function AddCV.

Returns: NIL

Categories: Class

(DeleteCV class varName prop) [Function]

Purpose: Deletes a class variable or one of its properties from a class.

3 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.5 MODIFYING CLASSES

Behavior: Marks class as changed.

Arguments: class Pointer to a class.

varName Class variable name to be deleted.

prop Property to be deleted.

Returns: NIL, if varName is not found, else varName.

(AddCIV class varName defaultValue otherProps) [Function]

Purpose: Adds an instance variable, and perhaps properties, to a class.

Behavior: If the length of otherProps is odd, an error occurs.

The remaining behavior varies according to the arguments.

• If varName is NIL, you are prompted to enter a name.

• If varName is already an instance variable of class, then change its default
value to defaultValue. Properties on otherProps are added or changed as
necessary. NIL is returned.

• If varName is not an instance variable of class, it is added to class and its
default value is defaultValue. Properties on otherProps are also added. If
there is no doc property, it is added and given the following value:

 ‘(* IV added by , (USERNAME NIL T))

varName is returned in this case.

Arguments: class Must be a pointer to a class.

varName New instance variable name.

defaultValue
New default value.

otherProps NIL or a list in property list format.

Returns: Value depends on the arguments; see Behavior.

(← class AddIV varName defaultValue otherProps) [Method of Class]

Purpose: Adds an instance variable to a class.

Behavior: Provides a method version of the function AddCIV.

Arguments: See the function AddCIV.

Returns: NIL

Categories: Object

Specializes: Object

Example: Define a new class TestClass, add an instance variable testIV with two
properties testProp1 and testProp2, all with initial values, and then prettyprint
the class’s variables.

64←(DefineClass ’TestClass)
#,($C TestClass)

65←(← ($ TestClass) AddIV ’testIV 1234

3 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.5 MODIFYING CLASSES

’(testProp1 1 testProp2 2))
testIV

66←(← ($ TestClass) PPV! T)
#,($ TestClass)
MetaClass and its Properties
 Class Edited: (* edited: 24-Sep-87 08:41 by mcgill)
Supers
 (Object Tofu)
Instance Variable Descriptions
 testIV 1234 doc (* IV added by MCGILL)
testProp2 2 testProp1 1
Class Variables

(DeleteCIV class varName prop) [Function]

Purpose: Removes an instance variable or property from a class.

Behavior: If class does not have varName, a break occurs.

Marks class as changed.

Arguments: class Pointer to a class.

varName Instance variable to be deleted.

prop If non-NIL, property to be deleted.

Returns: Value depends on the arguments.

• NIL for removing an instance variable if successful.

• prop for removing a property if successful.

• NIL if prop is not a property.

(← class ReplaceSupers supers) [Method of Class]

Purpose: Changes the super classes of a class.

Behavior: Checks that no circular lists can be made in the inheritance lattice.

• If the super class of class is Tofu, no change occurs.

• If supers is different from the current supers, the supers list of class is
changed and class is marked as changed.

Arguments: class Pointer to a class.

supers A list of class names or classes.

Returns: NIL

Categories: Class

3.6 Methods for Manipulating Class Names

LOOPS classes must have one and only one LOOPS name. The following
functions and methods allow you to change and rename class names.

3 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.6 METHODS FOR MANIPULATING CLASS NAMES

Name Type Description

Rename Method Changes the name of a class. Prompts for name if not
provided, then calls SetName.

SetName Method Changes the name of a class.

UnSetName Method Unnames a class.

ClassName Function Finds the class name of an object.

(← class Rename newName) [Method of Class]

Purpose: Changes the name of a class. Prompts for name if not provided, then calls
SetName.

Behavior: Varies according to the argument.

• If newName is NIL, this causes a break and prompts you for a name.
Rename then sends the message SetName passing this name as an
argument

• If newName is non-NIL, Rename sends the message SetName passing
newName as an argument.

Arguments: class Pointer to a class.

newName A litatom.

Returns: NIL

Categories: Object

Specializes: Object

Example: The following command renames class Datum to Thing:

(← ($ Datum) Rename ’Thing)

(← class SetName newClassName) [Method of Class]

Purpose: Changes the name of a class.

Behavior: Removes the old name of self from ObjNameTable.

SetName uses the Interlisp-D function EDITCALLERS to rename references
to the class name or any file that contains the class. If EDITCALLERS cannot
succeed, for example, when a file is not RANDACCESSP, a message is
printed that the class cannot be renamed on that file. For complete
information on EDITCALLERS, see the Interlisp-D Reference Manual.

The names of the method functions of class are changed to use
newClassName.

Arguments: class Pointer to a class.

newClassName
A litatom.

Returns: NIL

Categories: Object

Specializes: Object

3 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.6 METHODS FOR MANIPULATING CLASS NAMES

(← class UnSetName) [Method of Class]

Purpose: Unnames a class, but does not destroy it. Has limited usefulness for keeping
a class name from being typed in.

Behavior: Removes class from the LOOPS name hash table and from any files on
FILELST. This method is intended to be used internally only; it is not
recommended to create an unnamed class.

Arguments: class Pointer to a class.

Returns: NIL

Categories: Object

Specializes: Object

(ClassName self) [Function]

Purpose: Finds the class name of an object.

Behavior: Varies according to the arguments.

• If self is a class, this returns the name of that class.

• If self is an instance, this returns the name of the class that describes that
instance.

• If self is neither a class or an instance, this returns Tofu.

Arguments: self See Behavior.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

(← ($ Window) New ’w1)

the commands

(ClassName ($ w1))
(ClassName ($ Window))

both return Window.

3.7 Querying the Structure of a Class

The following functions and methods allow you to query what is contained in a
class.

Name Type Description

GetClassProp Method Obtains a class’s metaclass or properties.

HasAttribute Method Determines whether self has an attribute name.

HasAttribute! Method Recursive form of HasAttribute, but works only on classes.

HasCV Method Determines if a class has a class variable with a specified
property.

3 - 1 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.7 QUERYING THE STRUCTURE OF A CLASS

HasItem Method Determines if a class has an item of a given type.

HasIV Method Determines if a class has an instance variable with a specified
property.

HasIV! Method Same as HasIV, except that HasIV! also searches up the supers
chain.

ListAttribute Method Lists the elements of a class that are local to the class.

ListAttribute! Method Lists all the items associated with a class.

WhoHas Function Determines what classes contains a specified item.

(← class GetClassProp propname) [Method of Class]

Purpose: Obtains a class’s metaclass or properties by following metaclass links.

Behavior: Varies according to the arguments.

• If propname is NIL, this returns the class’s metaclass.

• If propname is non-NIL, this looks first in class for that property. If it cannot
find it there, it looks through class’s metaclass links.

• If no property is found, the value of the variable NotSetValue is returned.

Arguments: class A pointer to a class.

prop Property name.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

Example: The following commands show the variety of responses.

51←(← ($ Window) GetClassProp)
#,($C Class)

52←(← ($ Window) GetClassProp ’doc)
"A LOOPS object which represents a window"

53←(← ($ IconWindow) GetClassProp ’doc)
"An icon window that appears as an irregular shaped image
on the screen -- See the ICONW Library utility"

(← self HasAttribute type name propname) [Method of Class]

Purpose: Determines whether self has an attribute name, with a property propname if
supplied.

Behavior: self can be an instance or a class. Remaining behavior depends on type,
which is converted to uppercase on entry:

• If type is IV, IVPROP, or NIL, this returns T if self has an instance variable
of name, with a property called propname (if propname is non-NIL),
otherwise it returns NIL.

• If type is CV or CVPROP, this returns T if self has a CV called name, with a
property of propname (if propname is non-NIL), otherwise it returns NIL.

• If type is METHOD or SELECTOR, this returns NIL or the name of the
method implementing name.

3 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.7 QUERYING THE STRUCTURE OF A CLASS

HasAttribute applied to an instance reports on the actual state of the
instance; it sees all instance variables and class variables whether local,
inherited, or specially added to the instance. If only local attributes are
required, use (← (Class instance) HasAttribute ...).

Arguments: self Can be an instance or a class.

type See Behavior.

name A symbol which is looked up as the variable or method name.

propname A symbol which is looked up as the property name.

Returns: See Behavior.

Categories: Object

Specializations: Class

Example: The command

(← ($ LoopsIcon) HasAttribute ’IV ’icon)

returns T.

(← class HasAttribute! type name propname) [Method of Class]

Purpose: Recursive form of HasAttribute; only works on classes

Behavior: Similar to HasAttribute, but will also search through class ’s supers.

Arguments: class A class.

type See Behavior under HasAttribute.

name A symbol which is looked up as the variable or method name.

propname A symbol which is looked up as the property name.

Returns: See Behavior.

Categories: Object

Specializations: Class

Example: The command

(← ($ LoopsIcon) HasAttribute ’IV ’left)

returns NIL, but

(← ($ LoopsIcon) HasAttribute! ’IV ’left)

returns T.

(← class HasCV cvName prop) [Method of Class]

Purpose: Determines if a class has a class variable cvName with a property prop.

Note: The preferred form of this method is HasAttribute or HasAttribute!.

Behavior: Varies according to the arguments.

3 - 2 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.7 QUERYING THE STRUCTURE OF A CLASS

• If prop is NIL, this returns T if class contains a class variable called
cvName, else NIL.

• If prop is non-NIL, this returns T if class contains a class variable called
cvName with the property prop, else NIL.

Note: HasCV does not distinguish between locally defined class variables
and inherited class variables. If you need to test a class to see if it
has a class variable defined locally, you can use the HasAttribute
method. For example, the form (←MyClass HasAttribute ’CV ’ABC)
will return a non-NIL value if and only if the class MyClass has a local
definition of the class variable ABC.

Arguments: class A pointer to a class.

cvName A class variable name.

prop Property name.

Returns: NIL or T; see Behavior.

Categories: Object

Specializes: Object

Example: The command

(← ($ Window) HasCV ’TitleItems)

returns T.

(← class HasItem itemName prop itemType) [Method of Class]

Purpose: Determines if a class has an item of a given type.

Note: The preferred form of this method is HasAttribute or HasAttribute!.

Behavior: Varies according to the arguments.

• If itemType is IV or IVS, this sends the message (← class HasIV
itemName prop).

• If itemType is CV or CVS, this sends the message (← class HasCV
itemName prop).

• If itemType is SELECTOR, METHOD, SELECTORS, or METHODS, this
finds the corresponding local method of class.

• If itemType is not one of the above, this returns NIL.

Arguments: class Pointer to a class.

prop Property name.

itemType See Behavior.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← class HasIV IVName prop) [Method of Class]

Purpose: Determines if a class has an instance variable IVName with a property prop.

3 - 2 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.7 QUERYING THE STRUCTURE OF A CLASS

Note: The preferred form of this method is HasAttribute or HasAttribute!.

Behavior: class should point to a class.

• If prop is NIL, this returns T if IVName is contained in class.

• If prop is non-NIL, this returns T if IVName is contained in class, and prop is
a property of IVName in class or one of its supers.

Arguments: class Pointer to a class.

IVName Instance variable name.

prop Property name.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializes: Object

(← class HasIV! IVName prop) [Method of Class]

Purpose/Behavior: Same as HasIV, except that HasIV! also searches up the supers chain.

Note: The preferred form of this method is HasAttribute or HasAttribute!.

Arguments: See the method HasIV.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← class ListAttribute type name) [Method of Class]

Purpose: Lists the elements of a class that are local to the class.

Behavior: type is converted to uppercase on entry. The remaining behavior varies
according to the arguments.

• If type is IVS, this returns the instance variable names (not values) local to
class. name is ignored.

• If type is IV, IVPROPS, or NIL, name should be bound to an instance
variable of class. This returns the property names (not values) of the
instance variable name. If name is not an instance variable of class, this
returns NIL.

• If type is CVS, this returns the class variables local to class. name is
ignored.

• If type is CV or CVPROPS, name should be bound to a class variable of
class. This returns the property names of the class variable name. If name
is not a class variable of class, this returns NIL.

• If type is METHODS or SELECTORS, this returns the selectors for the
class. name is ignored.

Arguments: class Pointer to a class.

type See Behavior.

name See Behavior.

Returns: Value depends on the arguments; see Behavior.

3 - 2 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.7 QUERYING THE STRUCTURE OF A CLASS

Categories: Object

Specializes: Object

Example: The following commands show the variety of responses.

55←(← ($ SupersBrowser) ListAttribute ’IVs)
(title)

56←(← ($ Window) ListAttribute ’iv ’menus)
(DontSave Title LeftButtonItems MiddleButtonItems TitleItems doc)

57←(← ($ IconWindow) ListAttribute ’METHODS)
(GetMenuItems)

(← class ListAttribute! type name verboseFlg) [Method of Class]

Purpose: Lists all items associated with a class.

Behavior: Provides a recursive version of ListAttribute.

If verboseFlg is NIL, items that are inherited from Tofu, Object, or Class are
omitted, unless class is one of Tofu, Object, or Class.

type is converted to uppercase on entry.

• If type is META or METACLASS, this returns the same as ListAttribute.

• If type is IVS or NIL, this returns the instance variables an instance of class
would have.

• If type is SUPERS or SUPERCLASSES, this returns the ordered list of
super classes of class.

• If type is SUBS or SUBCLASSES, this returns all of the subclasses of class.

• If type is any other option that can be passed to ListAttribute, this returns
all local and inherited values.

Arguments: class Pointer to a class.

type See Behavior.

name A litatom.

verboseFlg See Behavior.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializes: Object

(WhoHas name type files editFlg) [Function]

Purpose: Determines what classes contain a specified item.

Behavior: Returns a list of classes on files that contain name. If editFlg is non-NIL, then
edit the methods (if type is METHOD), or the classes before returning.

Arguments: name The item specified.

type One of IV, CV, METHOD, or Method. If type is NIL, it defaults to
METHOD.

3 - 2 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.7 QUERYING THE STRUCTURE OF A CLASS

files A file or a list of files. If files is NIL, it defaults to FILELST.

editFlg T or NIL.

Returns: A list of classes on files that contain name.

3.8 Copying Classes and Their Contents

Inheritance lets classes be described in terms of other classes in a hierarchical
manner. When it is preferable to duplicate a class description in different parts
of a lattice these methods provide the capability.

The following table shows the methods in this section.

Name Type Description

Copy Method Copies a class.

CopyCV Method Copies a class variable to another class.

CopyIV Method Copies an instance variable to another class.

(← class Copy name) [Method of Class]

Purpose: Makes a copy of a class.

Behavior: If name is NIL, you are prompted to supply a name for the new class. This
copies variables and properties and methods.

Arguments: class The class being copied.

name The name of the copy.

Returns: The new class.

Categories: Class

Example: Given that

(DefineClass ’Datum)
(← ($ Datum) AddIV ’someThing)

the following command makes a copy of class Datum and names it Thing:

(← ($ Datum) Copy ’Thing)

(← class CopyCV cvName toClass) [Method of Class]

Purpose/Behavior: Copies a class variable to another class. This also copies the properties of
cvName to toClass.

Arguments: class The source class.

cvName The name of the class variable to copy.

toClass The destination class.

Returns: NIL

3 - 2 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.8 COPYING CLASSES AND THEIR CONTENTS

Categories: Class

(← class CopyIV ivName toClass) [Method of Class]

Purpose/Behavior: Copies an instance variable to another class. This also copies the properties
of ivName to toClass.

Arguments: class The source class.

ivName The name of the instance variable to copy.

toClass The destination class.

Returns: NIL

Categories: Class

3.9 Enumerating Instances of Classes

New instances may be created without names, or without being tracked.
These methods allow you to produce a list of instances according to their
classes. Prototype instances are a convenience used where the methods
defined for a class must be used, but there is no logical instance for the class.

The following table shows the items in this section.

Name Type Description

AllInstances Method Finds all instances of a class.

AllInstances! Method Finds all instances of a class or its subclasses.

IndexedObject Class Keeps track of instances so that AllInstances searches can
proceed more rapidly.

PrintOn Method Modifies how instances of IndexedObject that do not have
LOOPS names will be printed.

Prototype Method Returns an instance of a class that is stored on the class’s class
variable Prototype.

(← class AllInstances) [Method of Class]

Purpose: Finds all instances of a class.

Behavior: Checks if class is a subclass of IndexedObject. If so, a faster search is used
to find all of the instances of class. If not, this checks if each object is an
instance of class. Instances that do not yet have a UID will not be found.

Arguments: class A class.

Returns: A list of the instances found.

Categories: Class

Example: The following command produces a list of all the LOOPS window instances:

61←(← ($ Window) AllInstances)

3 - 2 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.9 ENUMERATING INSTANCES OF CLASSES

(← class AllInstances!) [Method of Class]

Purpose: Finds all instances of a class or its subclasses.

Behavior: Returns a list of instances that are instances of class or any of its subclasses.
Instances that do not have the class IndexedObject as a super class, or that
do not yet have a UID are not found. (See Chapter 18, Reading and Printing,
for more information on UIDs.)

Arguments: class A pointer to a class.

Returns: A list of the instances found.

Categories: Class

IndexedObject [Class]

Purpose: Keeps track of instances so that AllInstances searches can proceed more
rapidly.

Behavior: This class is to be used as a Mixin (an addition superclass), and should be the
first class on a supers list for a class.

IndexedObject provides NewInstance and Destroy protocols that cause
instances to be added to or removed from a global list when they are created
or destroyed. This global list allows the AllInstances protocols to search
more quickly.

IndexedObject also provides a PrintOn protocol that modifies how instances
will be printed if they have no LOOPS name.

MetaClass: Class

Supers: Object

Class Variables: IdentifierVar
The name of an instance variable which will contain a string
which could provide some identification to the user. Used in
PrintOn if variable is in object and filled. shortName, the value
of this class variable, is the default variable name which is used.

(← self PrintOn) [Method of IndexedObject]

Purpose: Modifies how instances of IndexedObject that do not have LOOPS names will
be printed.

Behavior: If self has a LOOPS name, or if self does not have an instance variable with a
name equal to (@ self ::IdentifierVar), then do a (←Super). Otherwise, build a
form that incorporates the value of the instance variableIV referenced by (@
self ::IdentifierVar).

Arguments: self An instance.

Returns: A list ; see example

Categories: Object

Specializes: Object

Example: Create a class, IndexedObjectTest, that has this structure.

3 - 2 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.9 ENUMERATING INSTANCES OF CLASSES

62←(DefineClass ’IndexedObjectTest ’(IndexedObject))
#,($C IndexedObjectTest)

63←(← ($ IndexedObjectTest) AddIV ’shortName ’ioTest)
shortName

Create an instance.

64←(SETQ test (← ($ IndexedObjectTest) New))
#,($& IndexedObjectTest (YMW0.0X%:.>T4.n18 . 36))

65←(←@ test shortName ’changeName)
changeName

66←(← test PrintOn)
("#," $& IndexedObjectTest (changeName (YMW0.0X%:.>T4.n18 . 36)))

(← class Prototype newProtoFlg) [Method of Class]

Purpose: Returns a prototype instance of a class.

Behavior: Varies according to the arguments.

• If class has a class variable Prototype and the variable’s value is an
instance of class, return the value (assuming newProtoFlg is NIL).

• If there is no class variable Prototype, or if there is a class variable
Prototype but its value is not an instance of class, or if newProtoFlg is non-
NIL, then create a new instance of class, store the instance on the class
variable Prototype, and return the instance.

See Proto in Chapter 7, Message Sending Forms, for more information.

Arguments: class A class.

newProtoFlg
If non-NIL, create a new prototype instance.

Returns: The prototype.

Categories: Class

Example: LOOPS defines an icon to make it easy to bring up class browsers and file
browsers. The icon is the Prototype instance of the class LoopsIcon.

To move the icon to the center of the bottom of the screen, enter

71←(←Proto ($ LoopsIcon) Move (QUOTIENT SCREENWIDTH 2) 0)
(576 . 0)

This places the left edge of the icon at the center of the screen. To move the
icon to the center of the screen, enter

72←(LET ((icon (← ($ LoopsIcon) Prototype)))
 (← icon Move (QUOTIENT (DIFFERENCE SCREENWIDTH
 (@ icon width))
 2)
 0))
(544 . 0)

3 - 2 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.10 DEALING WITH INHERITANCE

3.10 Dealing with Inheritance

The inheritance lattice for classes shows how methods and variables are
shared (see Chapter 10, Browsers, for details on how to graph the lattice on
the screen). To programmatically inspect and add to this lattice via
Specialize, use the following functions and methods:

Name Type Description

Fringe Method Finds the leaves of a branch of an inheritance tree.

Specialize Method Creates a subclass of a class.

SubClasses Method Returns a list of subclasses.

Subclass Method Determines if a class is a subclass of another class.

AllSubClasses Function Computes the subclasses of a class.

SubsTree Function Computes all the names of the subclasses of a class.

(← class Fringe) [Method of Class]

Purpose: Finds the leaves of a branch of an inheritance tree.

Behavior: Returns a list of subclasses of class, whether close or distant, that have no
subclasses.

Arguments: class A class, the root of the tree to explore.

Returns: Names of subclasses of class that have no subclasses.

Categories: Class

Example: The following commands show the variety of responses.

73←(← ($ Window) Fringe)
(InstanceBrowser MetaBrowser SupersBrowser FileBrowser
LoopsIcon IconWindow)

74←(← ($ ClassBrowser) Fringe)
(MetaBrowser SupersBrowser FileBrowser)

(← class Specialize newName) [Method of Class]

Purpose: Creates a subclass of a class.

Behavior: Creates a class with class as its only super.

• If newName is non-NIL, this is the name of the new class.

• If newName is NIL, this creates a name consisting of the name of class
followed by an integer.

Arguments: class Pointer to a class.

newName Name of the new subclass.

Returns: The new class.

Categories: Class

Example: Given that

3 - 2 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.10 DEALING WITH INHERITANCE

(DefineClass ’Datum)

the following command creates a specialization of the class Datum called
DatumX:

(← ($ Datum) Specialize ’DatumX)

(← class SubClasses) [Method of Class]

Purpose: Returns a list of subclasses.

Behavior: The classes returned by this are the immediate subclasses of class.

Arguments: class A pointer to a class.

Returns: A list of subclasses.

Categories: Class

Specializations: DestroyedClass

Example: The following command gets a list of the subclasses of the class Window:

(← ($ Window) SubClasses)

(← class Subclass super) [Method of Class]

Purpose: Determines if a class is a subclass of another class.

Behavior: If class is a subclass of super, super is returned, else NIL.

Arguments: class Pointer to a class.

super Either the LOOPS name of a class or a pointer to a class.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

Example: The command

(← ($ DestroyedClass) Subclass ’Class)

returns

#,($C Class)

(AllSubClasses class currentSubs) [Function]

Purpose: Computes the subclasses of a class.

Behavior: This is a recursive function that computes (without duplicates) all of the
subclasses of class.

Arguments: class Must be a pointer to a class, for example, ($ Window).

currentSubs Used by LOOPS; NIL when called by the user.

Returns: A list of classes.

Example: The command

(AllSubClasses ($ LatticeBrowser))

3 - 2 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.10 DEALING WITH INHERITANCE

returns

(#,($C FileBrowser) #,($C SupersBrowser)
#,($C MetaBrowser) #,($C ClassBrowser)
#,($C InstanceBrowser))

(SubsTree class currentList) [Function]

Purpose: Computes the names of the subclasses of a class.

Behavior: Provides a recursive function that computes (without duplicates) all of the
names of the subclasses of class.

Arguments: class Can be a class name or a pointer to a class

currentList Used internally by SubsTree; it should be NIL when called by
the user.

Returns: A list of class names.

Example: The command

(SubsTree ’LatticeBrowser)

returns

(InstanceBrowser ClassBrowser MetaBrowser SupersBrowser
FileBrowser)

3 - 3 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

3.10 DEALING WITH INHERITANCE

[This page intentionally left blank]

x vLOOPS REFERENCE MANUAL, MEDLEY RELEASE

PREFACE

Overview of the Manual

The LOOPS Reference Manual provides a detailed description of all the
methods, functions, classes, and other items available in the Lisp Object-
Oriented Programming System, LOOPS. This manual describes the Medley
Release of LOOPS, which runs under Medley.

This manual is for people who are familiar with LOOPS programming
principles, and is not intended to teach you LOOPS or how to use it. Please
contact your LOOPS distributor for information about classes and training
material.

Organization of the Manual and How to Use It

This manual is divided into chapters, with most chapters focusing on a
particular aspect of LOOPS. The organization of this manual is similar to the
Interlisp-D Reference Manual.

A Table of Contents is included at the beginning of the manual to help you find
specific material. At the end of the manual, a Glossary is included to define
terms within the context of LOOPS.

All readers should review Chapter 1, Introduction, before referring to specific
material.

Conventions

This manual uses the following conventions:

• Case is significant in LOOPS and Lisp. All selectors, methods, arguments,
etc., must be typed as shown. Typically, this means that method names
are capitalized and variables are not.

• Arguments appear in italic type. Optional arguments are indicated by a
dash (-).

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a message sending form appears as follows:

(← self Selector Arg1 Arg2 -)

• Examples appear in the following typeface:

89←(←LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all LOOPS expressions.

• Methods with an exclamation mark (!) suffix usually perform operations
deeply into class structure instead of only on a given object.

x v i LOOPS REFERENCE MANUAL, MEDLEY RELEASE

PREFACE

• Methods with a question mark (?) suffix usually are predicates; that is, truth
functions.

• Method names often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

This manual describes the LOOPS items (functions, methods, etc.) by using
the following template:

Purpose: Gives a short statement of what the item does.

Behavior: Provides the details of how the item operates.

Arguments: Describes each argument in the following format:

argument Description

Returns: States what the item returns, and does not appear if the item does not return a
value. The phrase "Used as a side effect only." means that the purpose of
the item is to perform a computation or action that is independent of any
returned value, not to return a particular value.

Categories: A way to group related methods. For example, all the methods releated to
Masterscope on the class FileBrowser have the category Masterscope, not
FileBrowser. This item appears only for methods.

Specializes: The next higher class in the class hierarchy that contains a method with the
same selector; only appear for methods. For example, the manual entry for
RectangularWindow.Open would say that it specializes Window.Open,
since Window is the first superclass of RectangularWindow that implements
a method for Open.

Specializations: The next lower class(es) in the class hierarchy that contains method(s) with
the same selector; only appears for methods. For example, the manual entry
for Window.Open would say that it has a specialization of
RectangularWindow.Open since RectangularWindow is a subclass of
Window and has its own version of Open method.

Example: An example is often included to show how to use the item and what result it
produces. Some examples may appear differently on your system, depending
on the settings of various print flags. See Chapter 18, Reading and Printing,
for details.

x v i iLOOPS REFERENCE MANUAL, MEDLEY RELEASE

PREFACE

References

The following books and manuals augment this manual.

LOOPS Library Modules Manual

LOOPS Users’ Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Common Lisp Implementation Notes, Medley Release

Lisp Release Notes, Medley Release

Lisp Library Modules Manual, Medley Release

x v i i i LOOPS REFERENCE MANUAL, MEDLEY RELEASE

PREFACE

[This page intentionally left blank]

4 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4. METACLASSES

In object-oriented programming, every object is described by a class.
Instances are described by classes and classes are, in turn, described by
metaclasses. The methods that an instance inherits are defined in the class
definition of that instance and the methods that the class inherits are defined in
the metaclass definition of that class’s metaclass. Sending a message to an
instance invokes method in class. Similarly, sending a message to class
invokes method in metaclass.

The two classes Class and MetaClass are metaclasses of other classes. If
Class or MetaClass refers to the metaclass, it appears in a bold typeface.

One method defined by a class’s metaclass is New, which returns a new
instance of a class. Different classes can initialize their instances in different
ways. For example, one class may need to have certain values assigned to
instance variables at creation, while another does not. The different forms of
New are defined in separate metaclasses.

A class’s metaclass is assigned when the class is created. A new class is
created by sending a metaclass the message New or by specializing an
already existing class. In the latter case, the metaclass defaults to the
metaclass of the class’s super class. The class’s metaclass can be changed
by directly editing the class definition.

This chapter discusses the metaclasses provided with LOOPS, describes
pseudoclasses, explains how to define new metaclasses, and discusses the
root class Tofu .

4.1 Specific Metaclasses

This section describes the metaclasses provided by LOOPS: Class,
MetaClass, AbstractClass, and DestroyedClass. These metaclasses are
shown in Figure 4-1.

Figure 4-1. Class Browser Showing Metaclasses

4.1.1 Metaclass Class

Class is the default metaclass for LOOPS classes. When a class whose
metaclass is Class receives the message New, it creates a new instance of
itself and returns that instance. If this message is sent at the top level, the
definition of the created instance is printed in the Executive window.

4 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.1 SPECIFIC METACLASSES

4.1.2 Metaclass MetaClass

MetaClass is the metaclass for all metaclasses and provides the message
New to all metaclasses. For metaclasses, the result of sending the message
New is the definition of a new metaclass. This is discussed in detail in Section
4.3, "Defining New Metaclasses."

4.1.3 Metaclass AbstractClass

If a class’s metaclass is AbstractClass, then it cannot be instantiated. If an
abstract class is sent the message New, the following message is printed to
the TTY window.

#,($C className) Abstract Class cannot be instantiated

To make a class an AbstractClass, either send the metaclass AbstractClass
the message New or change the metaclass of the class definition directly
using the editor.

Use an abstract class to define a class which should not have any instances.
For example, consider mixin classes. Mixins are always used in conjunction
with another class to create a subclass. Instances are created from the new
subclass that has the mixin as one of its parents. Because mixins never have
instances, they have AbstractClass as their metaclass.

As an example, consider a circuit simulation module that contains various
classes such as Resistors, Inductors, Batteries, and Wires. A possibility is
to define a super class for these classes called AnalogDevice to contain all
the information common to all such classes: current, impedance, voltage drop,
etc. This super class also holds all the methods common to the classes, such
as ApplyOhmsLaw. Since AnalogDevice is not itself intended to be
instantiated (only its subclasses are), its metaclass can be AbstractClass so
that an error occurs if it is accidentally instantiated.

Note: Whenever AnalogDevice is specialized to create a new subclass, be
sure to change its metaclass.

4.1.4 Metaclass DestroyedClass

DestroyedClass is the metaclass for classes that have been sent the
message Destroy or Destroy! Trying to instantiate a DestroyedClass
causes an error. Attempts to destroy a DestroyedClass have no effect.

4.2 Pseudoclasses

Pseudoclasses provide an object interface to Lisp data types, which are also
known as Lisp objects. Pseudoclasses associate a class with the type name
of a Lisp object. When messages are sent to Lisp objects of the named type,
the messages are actually sent to the pseudoclass. Lisp objects which have
pseudoclasses are considered pseudoinstances.

Pseudoclasses provide two special cases in the message-sending
mechanism: for lists whose first element is a class, or for ordinary Lisp data
types.

In the first case, the list’s first element is used as the class to look up the
method to be used.

4 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.2 PSEUDOCLASSES

In the second case, the class of the data type is found by using the
GetLispClass function, which looks in an internal table based on the type
name of the data type. If none is found, it is assumed to be Tofu. If found, the
data type is considered a pseudoclass and instances of it pseudoinstances.

Pseudoclasses also provide special cases in the behavior of GetValue and
PutValue, to allow simulation of variable or property access, as described
below.

(GetValue pseudoinstance varName propName) [Function]

Purpose: A variation on the behavior of GetValue to simulate retrieving variable or
property values on pseudoinstances.

Behavior: If GetValue is called with self bound to a pseudoinstance, then the method
associated with the selector GetValue in the pseudoclass is called with the
arguments:

pseudoinstance varName propName

Arguments: pseudoinstance
A Lisp object which has a pseudoclass.

varName The simulated variable name.

propName The simulated property name, or NIL.

Returns: The result of the call to the GetValue method in the pseudoclass.

(PutValue pseudoinstance varName propName newValue) [Function]

Purpose: A variation on the behavior of PutValue to simulate setting of variable or
property values on pseudoinstances.

Behavior: If PutValue is called with self bound to a pseudoinstance, then the method
associated with the selector PutValue in the pseudoclass is called with the
arguments:

instance varName newValue propName

Arguments: pseudoinstance
A Lisp object which has a pseudoclass.

varName The simulated variable name.

propName The simulated property name, or NIL.

newValue The new value to be placed in the simulated slot.

Returns: The result of the call to the PutValue method in the pseudoclass.

(GetLispClass obj) [Function]

Purpose: Used by the system to compute a class corresponding to a Lisp data type.

Behavior: Gets the hash value for the key (TYPENAME obj) from an internal hash array.

• If this hash value is NIL, ($ Tofu) is returned.

• If the hash value is not NIL and it is a class, it is returned.

• In all other cases, the hash value, which should be a function, is applied to
obj and the result is returned.

Arguments: obj A Lisp object.

4 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.2 PSEUDOCLASSES

Returns: Value depends on the hash value; see Behavior.

Example: The command

79←(GetLispClass (create annotatedValue))

returns

#,($C AnnotatedValue)

LispClassTable [Global Variable]

Purpose: Used by GetLispClass to map type names of Lisp objects to pseudoclasses.

Format: This hash table has EQ hashing. It contains pairs of symbol keys (a type
name) and either classes, NIL, or a function object to be applied (see
GetLispClass).

4.2.1 Example

This example creates a pseudoclass from the Lisp data type STRINGP.

1. Define a class String that receives its messages:

37←(DefineClass ’String)
#,($C String)

2. Place an entry in the LispClass hash table to link the Lisp data type
STRING to the String class.

38←(PUTHASH ’STRINGP ($ String) LispClassTable)
#,($C String)

3. Add methods to String which will operate on Lisp STRINGPs, for example:

39←(DefineMethod ($ String) ’UpCase ’(self)
’(U-CASE self))

String.Upcase

This allows messages like the following:

40←(← "abc" UpCase)
"ABC"

4. Specialize GetValue and PutValue to allow element access in strings, for
example:

41←(DefineMethod ($ String) ’GetValue ’(index)
’(NTHCHAR self index))

String.GetValue

42←(DefineMethod ($ String) ’PutValue ’(index value)
’(RPLSTRING self index value))

String.PutValue

4 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.2 PSEUDOCLASSES

This allows messages to access characters in strings, for example:

43←(← "abc" GetValue 2)
b

44←(← "abc" PutValue 2 ’p)
"apc"

4.3 Defining New Metaclasses

A new metaclass must be defined if you want to create several classes for
which a class message, such as Destroy, needs to be specialized. To create
a new metaclass, an object of the class MetaClass must be instantiated. This
is done by sending MetaClass the message New.

(← ($ MetaClass) New metaClassName supers) [Method of Metaclass]

Purpose: Instantiates a new metaclass with MetaClass as its metaclass,
metaClassName as its name, and supers as a list of its super classes.

Behavior: Evaluates metaClassName, which must evaluate to a symbol. The default for
supers is (Class). If used, supers must evaluate to a list of classes. The
message returns the new metaclass.

Arguments: metaClassName
Name of the new metaclass; must evaluate to a symbol.

supers List of classes.

Categories: MetaClass

Specializes: Class.New

Specializations: AbstractClass.New

Example: Assume the following MetaClass definition:

42←(←($ MetaClass) New ’ListMetaClass ’(Class))
#,($C ListMetaClass)

The message New can then be defined for the metaclass, ListMetaClass. In
this example, it saves all the instances created of a class with the metaclass
ListMetaClass. The instances are stored as the value of the class property
AllInstances. Define the message New using DefineMethod as follows:

DefineMethod ($ ListMetaClass) ’New ’(name arg1 arg2 arg3
arg4 arg5)

’((* * Create an instance and add it to
list in class)

(LET ((newObj (←Super)))

(* * newObj is the instance returned by
sending the New message provided by
the class CLASS.)

(PutClass
 self
 (CONS newObj (LISTP (GetClassHere

self ’AllInstances)))
 ’AllInstances)

4 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.3 DEFINING NEW METACLASSES

(* * LISTP returns list or
NIL if not a list)

(* * GetClassHere returns the value
of a property of a class.)

 newObj]

Now a new class can be defined by sending #,($C ListMetaClass) the
message New. The result is a new class with ListMetaClass as the
metaclass.

43←(←($ ListMetaClass) New ’Book)
#,($C Book) [New class called Book]

44←(←($ Book) New ’Book1)
#,($C Book1)

45←(←($ Book) New ’Book2)
#,($C Book2)

46←(GetClass ($ Book) ’AllInstances)
#,($C Book2) #,($C Book1) [List of all instances created so far]

4.4 Tofu

The highest class in the LOOPS hierarchy is Tofu, which is an acronym for
Top of the Universe. It is the simplest class, having no instance variables and
only three defined messages:

• MessageNotUnderstood

• MethodNotFound

• SuperMethodNotFound

Figure 4-2 shows specializations of Tofu. The most familiar specialization of
Tofu is the class Object, which is the root of the most of the other classes.
Another specialization of Tofu is AnnotatedValue. AnnotatedValue is used
with active values (see Chapter 8, Active Values).

Figure 4-2. Specializations of Tofu

If another evaluation protocol or scheme for catching error conditions is
needed, specialize Tofu and define all the methods required for handling data,
usually some subset of the methods of Object. Specializing Tofu should only
be necessary on very rare occasions.

The following table shows the methods in this section.

Functionality Type Description

MessageNotUnderstood Method Provides the error handling mechanism for when a message is
sent to an object that cannot respond to that message.

4 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.4 TOFU

MethodNotFound Method Provides some intermediate checking before sending the
message MessageNotUnderstood.

SuperMethodNotFound Method Provides some intermediate checking before sending the
message MessageNotUnderstood.

(← self MessageNotUnderstood selector messageArguments superFlg) [Method of Tofu]

Purpose/Behavior: Provides the error handling mechanism for when a message is sent to an
object that cannot respond to that message.

Calls ERROR with a list which includes self, selector, and "not understood."

Arguments: self An object receiving a message with the selector selector.

selector A selector.

messageArguments
A list of the arguments to the message.

superFlg Used internally.

Returns: See Behavior.

Categories: Tofu

Specializations: Object

(← self MethodNotFound selector) [Method of Tofu]

Purpose/Behavior: Provides some intermediate checking before sending the message
MessageNotUnderstood.

Arguments: self An object receiving a message with the selector selector.

selector A selector.

Returns: Used for side effect only.

Categories: Tofu

(← self SuperMethodNotFound selector classOfSendingMethod) [Method of Tofu]

Purpose/Behavior: Provides some intermediate checking before sending the message
MessageNotUnderstood.

Arguments: self An object receiving a message with the selector selector.

selector A selector.

classOfSendingMethod
The class with the method that contains a ←Super.

Returns: Used for side effect only.

Categories: Tofu

4 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

4.4 TOFU

[This page intentionally left blank]

5 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5. ACCESSING DATA

This chapter discusses the various ways to access data:

• Generalized Get and Put functions

• Accessing data in instances

• Accessing data in classes

5.1 Generalized Get and Put Functions

These functions support generalized instance variable and property access for
LOOPS objects. They can be very useful for implementing methods that
support new types of conditional accessing; they have been used to simplify
code in the active values system, for example.

This section deals with the following functions:

Name Type Description

GetIt Function Retrieves values from instance variables and properties.

GetItOnly Function Like GetIt , but returns active values on a variable/property
without triggering them.

GetItHere Function Like GetIt, but returns active values on a variable/property
without triggering them; does not observe NotSetValue as
GetItOnly does.

PutIt Function Stores values into instance variables and properties.

PutItOnly Function Like PutIt, but stores by smashing active values on a
variable/property without triggering them.

(GetIt self varOrSelector propName type) [Function]

Purpose: Retrieves values from instance variables and properties.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(GetValue self varOrSelector propName)

- If self is a class, this is equivalent to
(GetClassIV self varOrSelector propName)

• If type is ’CV,this is equivalent to
(GetClassValue self varOrSelector propName)

5 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

• If type is ’CLASS,this is equivalent to
(GetClass self (OR varOrSelector propName))

• If type is ’METHOD,this is equivalent to
(GetMethod self varOrSelector propName)

Arguments: self A class or an instance.

varOrSelector
An instance variable name or the name of a method.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetIt ($ Window) ’doc NIL ’CLASS)

returns

"A Loops object that represents a window"

(GetItOnly self varOrSelector propName type) [Function]

Purpose: Retrieves values from instance variables and properties without triggering
active values.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(GetValueOnly self varOrSelector propName)

- If self is a class, this is equivalent to
(GetClassIV self varOrSelector propName)

• If type is ’CV,this is equivalent to
(GetClassValueOnly self varOrSelector propName)

• If type is ’CLASS,this is equivalent to
(GetClassOnly self (OR varOrSelector propName))

• If type is ’METHOD,this is equivalent to
(GetMethodOnly self varOrSelector propName)

Arguments: self A class or an instance.

varOrSelector
An instance variable name or the name of a method.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetItOnly (GetClassValue ($ LoopsIcon) ’Prototype) ’window)

returns the LoopsWindowAV that holds the image of the LOOPS icon. Calling
GetIt with similar arguments returns the Lisp window object held by that
LoopsWindowAV.

5 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

(GetItHere self varOrSelector propName type) [Function]

Purpose: Retrieves values from instance variables and properties without triggering
active values; does not observe NotSetValue like GetItOnly.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(GetIVHere self varOrSelector propName)

- If self is a class, this is equivalent to
(GetClassIVHere self varOrSelector propName)

• If type is ’CV,this is equivalent to
(GetCVHere self varOrSelector propName)

• If type is’CLASS,this is equivalent to
(GetClassHere self (OR varOrSelector propName))

• If type is ’METHOD,this is equivalent to
(GetMethodHere self varOrSelector propName)

Arguments: self A class or an instance.

varOrSelector
An instance variable name or the name of a method.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetItHere (GetClassValue ($ LoopsIcon) ’Prototype) ’title)

returns the value of NotSetValue. Calling GetIt with similar arguments returns
the default value for this instance variable, NIL.

(PutIt self varOrSelector newValue propName type) [Function]

Purpose: Stores values into instance variables and properties.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(PutValue self varName newValue propName)

- If self is a class, this is equivalent to
(PutClassIV self varName newValue propName)

• If type is ’CV,this is equivalent to
(PutClassValue self varName newValue propName)

• If type is ’CLASS,this is equivalent to
(PutClass self newValue (OR varName propName))

Arguments: self A class or an instance.

5 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.1 GENERALIZED GET AND PUT FUNCTIONS

varName
An instance variable name.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(PutIt (GetClassValue ($ LoopsIcon) ’Prototype) ’title "foo")

sets the instance variable title of the LOOPS icon prototype to "foo". This can
be verified by inspecting (GetClassValue ($ LoopsIcon) ’Prototype) and
examining the title slot.

(PutItOnly self varOrSelector newValue propName type) [Function]

Purpose: Stores values into instance variables and properties and smashes any active
values it finds in its way without triggering them.

Behavior: Varies according to the arguments.

• If type is ’IV or NIL

- If self is an instance, this is equivalent to
(PutValueOnly self varName newValue propName)

- If self is a class, this is equivalent to
(PutClassIV self varName newValue propName)

• If type is ’CV,this is equivalent to
(PutClassValueOnly self varName newValue propName)

• If type is ’CLASS,this is equivalent to
(PutClassOnly self newValue (OR varName propName))

Arguments: self A class or an instance.

varName
An instance variable name.

propName Property name.

type Specifies the type of the object self.

Returns: Value depends on the arguments; see Behavior.

Example: If the inspector from the PutIt example is used to set a break on the the
instance variable title of the LOOPS icon prototype, then doing

(PutItOnly (GetClassValue ($ LoopsIcon) ’Prototype) ’title "mumble")

will set the instance variable title to "mumble" while smashing the trace active
value.

5.2 Accessing Data in Instances

Two kinds of variables are associated with an instance:

• Its local instance variables, also referred to as IVs.

5 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

• The class variables, also referred to as CVs, that it shares with all instances
of the class.

The data contained within instances are the values of instance variables and
associated properties as well as a pointer to the class that describes the
instance. Details of the LOOPS implementation determine exactly when the
values of instance variables are stored within an instance. In some cases, the
system must look to the class to find the values of instance variables. In
general, you do not need to be concerned with this distinction; however, the
details of it are covered in Chapter 2, Instances.

The types of data that an instance may contain is not limited. The values for
an instance variable or a class variable can be any Lisp or LOOPS data
structure.

The active value is a special case of data. When you try to access a variable
with an active value as its value, the active value may be returned, depending
upon the type of access. Normally, however, data computed by the active
value is returned, not the active value. The details of how this computation is
performed is described in Chapter 8, Active Values.

Instance variable names and class variable names are symbols and are not
necessarily unique to each class. Although it is possible to use the same
symbol for both a class variable name and an instance variable name, it is
advisable not to do this since some of the LOOPS functionality examines both
the instance variables and class variables in the search for data. See the
method IVMissing in the class Object.

This section deals with the following functions and methods. See the LOOPS
Library Modules Manual for information on how these interact with
Masterscope.

Name Type Description

GetValue Function Finds the value of an instance variable.

Get Method Finds the value of an instance variable.

PutValue Function Writes the value of an instance variable.

Put Method Writes the value of an instance variable.

GetValueOnly Function Finds the value of an instance variable without triggering active
values.

PutValueOnly Function Writes the value of an instance variable without triggering active
values.

GetClassValue Function Returns the value of a class variable.

PutClassValue Function Changes the value of a class variable. The change occurs within
the class and therefore causes all instances to access the new
value of the variable.

GetClassValueOnly Function Returns the value of a class variable; does not trigger active
values.

PutClassValueOnly Function Changes the value of a class variable. The change occurs within
the class and therefore causes all instances to access the new
value of the variable. Does not trigger active values.

GetIVHere Function Gets the value stored in an instance variable without invoking
active values.

(GetValue self varName propName) [Function]

5 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

Purpose: Finds the value of an instance variable when varName and propName are to
be computed.

Behavior: Varies according to the arguments.

• If self is an instance and propName is NIL, this returns the value of the
instance variable varName. If there is no instance variable of the name
varName and there is a class variable of that name, this returns the value of
the class variable. See the IVMissing message for a complete discussion
of this behavior. If there is neither an instance variable or class variable of
that name, a break occurs.

• If self is an instance and propName is non-NIL, this returns the value of the
property propName of the instance variable or class variable varName. If
there is no property of the name, propName, this returns the value of the
variable NoValueFound.

• If the value of varName (or propName if it is non-NIL) is an active value, the
active value is activated.

• If self is not an instance, this calls (GetIt self varName propName ’IV)

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self A class or an instance.

varName Instance or class variable name.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

32←(← ($ window1) Shape ’(100 200 300 400))
(100 200 300 400)

then

33←(GetValue ($ window1) ’width)
300

34←(GetValue ($ window1) ’LeftButtonItems)
((Update ...))

(← self Get varName propName) [Method of Object]

Purpose/Behavior: Method version of GetValue.

Arguments: See GetValue.

Categories: Object

(PutValue self varName newValue propName) [Function]

Purpose: Writes the value of an instance variable when varName and propName are to
be computed.

Behavior: Varies according to the arguments.

• If self is an instance and propName is NIL, this changes the value of the
instance variable varName to newValue. This returns newValue. If
varName is not an instance variable of self, this causes a break.

5 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

• If self is an instance and propName is non-NIL, this changes the value of
the property propName of the instance variable varName to newValue. If
propName is not already a property of varName, it is added. This returns
newValue.

• If the value of varName (or propName if it is non-NIL) is an active value, the
active value is activated.

• If self is a class, this calls
(PutIt self varName newValue propName ’IV)

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self A class or an instance.

varName Instance name or class name.

newValue The new value for varName or propName.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: (PutValue ($ window1) ’width 120)

(← self Put varName newValue propName) [Method of Object]

Purpose/Behavior: Method version of the function PutValue.

Arguments: See PutValue.

Categories: Object

Specializations: Class

(GetValueOnly self varName propName) [Function]

Purpose: Similar to GetValue, except that it overrides the active value mechanism.

Behavior: See GetValue. If the value found is an active value, it is returned without
triggering its side effects.

Arguments: See GetValue.

Returns: See Behavior.

Example: The following expressions compare GetValue and GetValueOnly

35←(GetValue ($ window1) ’window)
{WINDOW}#nn,mmmm

36←(GetValueOnly ($ window1) ’window)
#,($AV LispWindowAV ...)

(PutValueOnly self varName newValue propName) [Function]

Purpose: Similar to PutValue, except that it overrides the active value mechanism.

Behavior: See PutValue. The argument newValue overwrites any active value on the
slot without triggering it.

Arguments: See PutValue.

Returns: Used for side effect only.

5 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

(GetClassValue self varName propName) [Function]

Purpose: Returns the value of a class variable.

Behavior: Varies according to the arguments.

• If propName is NIL, this returns the value of the class variable varName. If
varName is not a class variable, a break occurs.

• If propName is non-NIL, this returns the value of the property, prop, of the
class variable varName. If varName has no property of that name, the
value of the variable NoValueFound is returned.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self An instance or a class.

varName Class variable name of self.

propName Property name for class variable varName; may be NIL.

Returns: Value depends on the arguments; see Behavior.

Example: The following commands show a variety of retuned values.

37←(GetClassValue ($ window1) ’window)

This breaks, since window is not a class variable of Window.

38←(GetClassValue ($ window1) ’LeftButtonItems)
 ((Update ...))

39←(GetClassValue ($ window1) ’LeftButtonItems ’qwerty)
NIL

(PutClassValue self varName newValue propName) [Function]

Purpose: Changes the value of a class variable. The change occurs within a class and
therefore causes a class variable lookup by other instances to find the new
value.

Behavior: Varies according to the arguments.

• If propName is NIL, this changes the value of the class variable varName to
newValue. If varName is not a class variable, this breaks.

• If propName is non-NIL, this changes the value of the property, propName,
of the class variable varName to newValue. If varName has no property of
that name, the property is added.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self An instance or a class.

varName Class variable name of self.

newValue Value to be assigned to class variable or property name.

propName Property name for class variable varName; may be NIL.

Returns: newValue

Example: The following command breaks since left is not a class variable name of
Window.

5 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

40←(PutClassValue ($ window1) ’left 1234)

The command

41←(PutClassValue ($ window1) ’TitleItems 1234)

changes the value of TitleItems. The command

42←(PutClassValue ($ window1) ’TitleItems 123 ’asdf)

adds the property asdf with the value 123 to TitleItems.

(GetClassValueOnly self varName propName) [Function]

Purpose: Gets the value of a class variable without triggering active values.

Behavior: Varies according to the arguments.

• If propName is NIL, this returns the value of the class variable varName
without triggering active values. If varName is not a class variable, this
breaks.

• If propName is non-NIL, this returns the value of the property, propName, of
the class variable varName without triggering active values. If varName
has no property of that name, the value of the variable NotSetValue is
returned.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self An instance or a class.

varName Class variable name for self.

propName Property name of class variable varName; may be NIL.

Returns: Value depends on the arguments; see Behavior.

Example: The following command returns the value of the variable NotSetValue since
LeftButtonItems has no property of the name qwerty.

43←(GetClassValueOnly ($ window1) ’LeftButtonItems ’qwerty)
#,NotSetValue

(PutClassValueOnly self varName newValue propName) [Function]

Purpose: Changes the value of a class variable without triggering active values. The
change occurs within a class and therefore causes a class variable lookup by
other instances to find the new value.

Behavior: The behavior is the same as PutClassValue except that the value stored does
not trigger an active value, but overwrites it instead.

Arguments: self An instance or a class.

varName Class variable name of self.

newValue Value to be assigned to class variable or property name.

propName Property name for class variable varName; may be NIL.

Returns: newValue

(GetIVHere self varName propName) [Function]

5 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

Purpose: Gets the value stored in an instance without invoking active values.

Behavior: Returns the value of varName (or the property, propName, if it is non-NIL)
without triggering active values. If the value of varName (or propName) is not
yet stored in self, the value of the variable NotSetValue is returned.

See the LOOPS Library Modules Manual about interaction with Masterscope.

Arguments: self Must be an instance.

varName Instance variable of self.

propName Property name for variable varName; may be NIL.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

44←(← ($ Window) New ’w2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 496))

then

45←(GetIVHere ($ w2) ’left)
#,NotSetValue

After entering the command

46←(PutValue ($ w2) ’left 123)
123

then

47←(GetIVHere ($ w2) ’left)
123

5.2.1 Compact Accessing Forms

When you write methods for classes that you have defined, there are a
number of accesses to the data contained in the object bound to the method
argument self. The following forms have been created to allow a more
concise notation for these accesses.

Name Type Description

@ Macro Provides compact GetValue and GetClassValue forms.

@* Macro Provides compact GetValue forms.

←@ Macro Provides compact PutValue and PutClassValue forms and
assigns a new value.

(@ accessPath) [Macro]

Purpose: Provides compact GetValue or GetClassValue forms.

Behavior: The accessPath can be one, two, or three arguments.

• If the accessPath is one argument, self is assumed to be the object and the
argument points to an instance variable. This is the most common usage in
methods in which you need to get the value of an instance variable
contained in self. For example,

5 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

(@ iv1)

translates to

(GetValue self ’iv1).

• If the accessPath is two arguments, the first argument is an object and the
second argument is an instance variable. For example,

(@ ($ w) left)

translates to

(GetValue ($ w) ’left).

• If the accessPath is three arguments, the first argument is an object, the
second argument is an instance variable, and the third argument is a
property. For example,

(@ ($ w) menus DontSave)

translates to

(GetValue ($ w) ’menus ’DontSave).

When programming using objects, one object often points to another object.
For example, the value of an instance variable is another object. Using
different accessPath forms allows you to write accesses into objects that are
nested inside of other objects. As an example, assume an object ($ pipe) has
an instance variable named output with a value ($ tank), which has an
instance variable named level. The command

(@ ($ pipe) output:level)

which is equivalent to

(@ (@ ($ pipe) output) level)

gets the value of the instance variable level of ($ tank).

The ":" is a delimiter that indicates instance variable access. The following
table shows all the delimiters.

Delimiter Description

: Indicates instance variable access.

:: Accesses the value of a class variable whose name follows the

double colon.

:, Accesses the value of a property whose name follows the colon-
comma.

. Sends a message to the object with the selector following the
period.

! Evaluates the next expression.

\ States that the next symbol refers to a Lisp symbol. This is often
used in conjunction with the exclamation mark, above.

$ States that the next expression is a LOOPS object.

You can test forms using these delimiters by evaluating
(Parse@ (LIST accessPath) ’IV).

5 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

Arguments: accessPath One, two, or three arguments; refer to Behavior.

Returns: See Behavior.

Example: The following examples show the (@ accessPath) form, the Parse@ test, and
the translation.

1. (@ foo)
(Parse@ (LIST ’foo) ’IV)
(GetValue self ’foo)

2. (@ ::fie:foe)
(Parse@ (LIST ’::fie:foe) ’IV)
(GetValue (GetClassValue self ’fie) ’foe)

The following three examples are rarely seen in code, but they are additional
examples of the expressions that can be interpreted by the system.

3. (@ foo::!::fum)
(Parse@ (LIST ’foo::!::fum) ’IV)
(GetClassValue (GetValue self ’foo)(GetClassValue self ’fum))

4. (@ ($ w) fie:,foe.fum)
(Parse@ (LIST ’($ w) ’fie:,foe.fum) ’IV)
(← (GetValue ($ w) ’fie ’foe) fum)

5. (@ $fie.foe:!\fum.!foo)
(Parse@ (LIST ’$fie.foe:!\fum.!foo) ’IV)
(←! (GetValue (← (GetObjectRec ’fie) foe) fum)(GetValue self ’foo))

(@* accessPath) [Macro]

Purpose/Behavior: Provides a concise form for writing embedded GetValue forms.

Arguments: accessPath An object followed by an arbitrary number of instance variable
names.

Returns: The value of a nested instance variable.

Example: The command

(@* ($ foo) a b c)

translates to

(GetValue (GetValue (GetValue ($ foo) ’a) ’b) ’c)

(←@ accessPath newValue) [Macro]

Purpose/Behavior: Similar to the @ macro, but used to assign a new value instead of reading a
value. Evaluates newValue.

Arguments: accessPath See Behavior in the @ macro.

newValue Value to be assigned to variable indicated by accessPath.

Returns: newValue

Example: The following examples show the (←@ accessPath) form, the Parse@ test,
and the translation.

1. (←@ foo 1234)
(ParsePut@ (LIST ’foo 1234) ’IV)
(PutValue self ’foo 1234)

5 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.2 ACCESSING DATA IN INSTANCES

2. (←@ ($ w) ::left 1234)
(ParsePut@ (LIST ($ w) ’::left 1234) ’IV)
(PutClassValue #.($ w) ’left 1234)

3. (←@ ($ w) menus DontSave ’Any)
(ParsePut@ (LIST ($ w) ’menus ’DontSave ’(QUOTE Any)) ’IV)
(PutValue #.($ w) ’menus ’Any ’DontSave)

5.2.2 Support for Changetran

Interlisp uses Changetran to provide an extensive set of facilities for
expressing changes to structures, such as push, pushnew, pop, add, change,
by using access expressions. You can use any LOOPS access expression in
a Changetran context, so that you can now write expressions such as:

(push (@ v1) newTop)
(change (@ x) newValue)
(pushnew (@ colors:,truck) ’red)
(pop (@ ::cv17))
(add (@ x:y:z) 37)

The first two are equivalent to:

(PushValue self ’v1 (CONS newTop(@ V1)))
(_@ x newValue)

This uniform interface allows simpler expressions for changes, and arbitrary
extensions through Changetran. See the Interlisp-D Reference Manual for
more information on Changetran.

5.3 Accessing Data in Classes

A number of functions and methods are available for reading and storing data
within classes. Some of these change existing data, and others change the
structure of the class by adding variables or properties.

When reading or storing data, some of these functions trigger any active
values that are associated with that data. See Chapter 8, Active Values, for a
discussion of their behavior.

5.3.1 Metaclass and Property Access

Associated with a class are a metaclass and properties. This section
describes the following functions to manipulate their values.

Name Type Description

GetClass Function Obtains a class’s metaclass or properties.

PutClass Function Changes the metaclass or class properties of a class.

GetClassOnly Function Obtains a class’s metaclasses or properties without triggering
active values.

PutClassOnly Function Changes the metaclass or class properties of a class without
triggering active values.

5 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

GetClassHere Function Obtains a property local to the class.

(GetClass classRec propName) [Function]

Purpose: Obtains a class’s metaclass or properties by following metaclass links.

Behavior: Sends the message GetClassProp to classRec and passes propName as an
argument.

Varies according to the arguments.

• If propName is NIL, this returns the class’s metaclass.

• If propName is non-NIL, this looks first in class for that property. If it cannot
find it there, it looks through class’s metaclass links.

• If no property is found, the value of the variable NotSetValue is returned.

Arguments: classRec Pointer to a class.

propName Property name.

Returns: See Behavior.

Example: The following commands show the variety of returned values.

31←(GetClass ($ Window))
 #,($C Class)

32←(GetClass ($ Window) ’doc)
" A LOOPS object which represents a window"

33←(GetClass ($ IconWindow) ’doc)
"An icon window that appears as an irregular shaped image
on the screen -- See the ICONW Library utility"

(PutClass classRec newValue propName) [Function]

Purpose: Changes the metaclass or class properties of a class.

Behavior: Varies according to the arguments.

• If propName is NIL, this changes the metaclass of classRec to newValue. If
newValue is not a class or the name of a class, this causes a break.

• If propName is non-NIL and classRec already has this property, this triggers
an active value on propName if it exists and changes the value of
propName to newValue.

• If propName is non-NIL and classRec does not have this property, the
property is added with the value newValue.

Marks the class classRec as changed.

Arguments: classRec Pointer to a class.

newValue See Behavior.

propName Property name.

Returns: Newly created class object.

Example: The following command changes the doc property of class Datum:

5 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

66←(DefineClass ’Datum)
#,($C Datum)

67←(PutClass ($ Datum) ’(* this is the updated doc for class Datum) ’doc)
(* this is the updated doc for class Datum)

(GetClassOnly classRec propName) [Function]

Purpose: Obtains a class’s metaclass or properties by following superclass links,
without triggering active values.

Behavior: Varies according to the arguments.

• If propName is NIL, this returns the classRec’s metaclass.

• If propName is non-NIL, this looks first in classRec for that property. If it
cannot find it there, it looks through classRec’s supers links. This returns
the value of the property found without triggering active values.

• If no property is found, the value of the variable NotSetValue is returned.

Arguments: classRec Pointer to a class.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetClassOnly ($ IconWindow) ’doc)

returns

"An icon window that appears as an irregular shaped image
on the screen -- See the ICONW Library utility"

(PutClassOnly classRec newValue propName) [Function]

Purpose: Changes the metaclass or class properties without triggering active values.

Behavior: Varies according to the arguments:

• If propName is NIL, this changes the metaclass of classRec to newValue. If
newValue is not a class or the name of a class this causes a break.

• If propName is non-NIL and classRec already has this property, this
changes the value of propName to newValue. Any active values are
replaced.

• If propName is non-NIL and classRec does not have this property, the
property is added with the value newValue.

The class classRec is marked as changed.

Arguments: classRec Pointer to a class.

newValue A class or the name of a class.

propName NIL or the name of a class property.

Returns: newValue

5 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

(GetClassHere classRec propName) [Function]

Purpose: Obtains property local to class.

Behavior: Gets the class property without triggering active values or inheritance. If there
is no local property the value of NotSetValue is returned.

Arguments: classRec Pointer to a class.

propName NIL or the name of a class property.

Returns: newValue

Example: The command

(GetClassHere ($ ActiveValue) ’doc)

returns

#,NotSetValue

5.3.2 Class Variable Access

A class variable can be thought of as being shared by all instances of that
class and by all instances of any of its subclasses. This section describes how
to access class variables with the functions shown in the following table.

Name Type Description

GetClassValue Function Returns the value of a class variable or property.

PutClassValue Function Stores a value in a class variable or property.

GetClassValueOnly Function Returns the value of a class variable or property, without
triggering active values.

PutClassValueOnly Function Stores a value in a class variable or property, without triggering
active values.

GetCVHere Function Returns the value of a class variable in a particular class without
looking for inherited values.

PutCVHere Function Stores a class variable locally with a value if it is not local.

(GetClassValue self varName prop) [Function]

Purpose: Returns the value of a class variable or property.

Behavior: Varies according to the arguments.

If self is an instance, the lookup begins at the class of the instance, since
instances do not have class variables stored locally. If self is a class, the
lookup is in that class.

• If prop is NIL, GetClassValue returns the value of the class variable
varName. If varName is not found, this breaks.

• If prop is non-NIL, GetClassValue returns the value of the property prop,
associated with the class variable varName. If the value is an active value,
it is activated. If varName has no property prop, this returns the value of
the variable NoValueFound.

5 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

If the class does not have a class variable varName, GetClassValue
searches through the super classes of the class until it finds varName. Since
this is rare, class variables are stored only in the class in which they are
defined, and the runtime search is necessary.

Arguments: self An instance or a class.

varName A class variable name.

prop Property name.

Returns: Value depends on the arguments; see Behavior.

Example: Given that

(← ($ Window) New ’window1)

then the command

(GetClassValue ($ window1) ’LeftButtonItems)

 returns the same value as the command

(GetClassValue ($ Window) ’LeftButtonItems)

The command

(GetClassValue ($ Window) ’abcde)

breaks. The command

(GetClassValue ($ Window) ’LeftButtonItems ’wxyz)

 returns the value of NoValueFound.

(PutClassValue self varName newValue propName) [Function]

Purpose: Stores a value in a class variable or property.

Behavior: Varies according to the arguments.

If self is an instance, the lookup begins at the class of the instance, since
instances do not have class variables stored locally. If self is a class, the
lookup is in that class.

• If prop is NIL, PutClassValue changes the value of the class variable
varName.

• If prop is non-NIL, PutClassValue stores newValue as the value of the
property, prop. If an active value is the current value, it is triggered.

If varName is not local to the class, the value is put in the first class in the
inheritance list in which varName is found. If varName is not found, a break
occurs.

Arguments: self An instance or a class.

varName A class variable name.

newValue A new value.

propName Property name.

Returns: newValue

Example: Given that

5 - 1 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

(← ($ Window) New ’window1)

then the command

(PutClassValue ($ window1) ’LeftButtonItems 2 ’number)

adds the property number with the value 2 to the class variable
LeftButtonItems of the class Window. The following command performs the
same action.

(PutClassValue ($ Window) ’LeftButtonItems 2 ’number)

(GetClassValueOnly classRec varName prop) [Function]

Purpose: Returns the value of a class variable or property, without triggering active
values.

Behavior: Similar to GetClassValue, with the following exceptions:

• If GetClassValueOnly finds that the value is an active value, the active
value is returned without being triggered.

• If prop is non-NIL and is not found, GetClassValueOnly returns the value
of the variable NotSetValue.

Arguments: See GetClassValue.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetClassValueOnly ($ Window) ’abcde)

breaks. The command

(GetClassValueOnly ($ Window) ’LeftButtonItems ’wxyz)

 returns the value of NotSetValue.

(PutClassValueOnly self varName newValue propName) [Function]

Purpose: Stores the value of a class variable or property, without triggering active
values.

Behavior: Similar to PutClassValue, except that PutClassValueOnly does not trigger
an active value, but replaces it with newValue.

Arguments: See PutClassValue .

Returns: Used for side effect only.

(GetCVHere classRec varName propName) [Function]

Purpose: Returns the value of a class variable in a particular class without looking for
inherited values.

Behavior: Returns the value of the class variable varName, or the propName property if
propName is non-NIL.

If the value is an active value, it is returned without being triggered.

If there is no varName (or propName), this returns the value of the variable
NotSetValue.

5 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

Arguments: classRec Must be a class.

varName A class variable name.

propName Property name.

Returns: Value depends on the arguments; see Behavior.

Example: The command

(GetCVHere ($ NonRectangularWindow) ’LeftButtonItems)

 returns

#,NotSetValue

The command

(GetCVHere ($ Window) ’LeftButtonItems)

returns

((Update (QUOTE Update)...)

(PutCVHere self varName value) [Function]

Purpose: Puts a class variable locally with a value if it is not local.

Behavior: Calls (AddCV self varName value).

Arguments: self An instance or a class.

varName A class variable name.

value Value for the class variable.

Returns: value

5.3.3 Instance Variable Access

An instance variable can be thought of as being local to each instance of a
class. The class defines what instance variables and their default values will
be in an instance. This section describes the functions that manipulate the
default values in the class.

See the LOOPS Library Modules Manual for interaction with Masterscope.

Name Type Description

GetClassIV Function Gets the default value of an instance variable or associated
property as defined in a class or one of its supers.

GetClassIVHere Function Gets the default value of an instance variable or associated
property as defined in a class.

PutClassIV Function Changes the default value for an instance variable in a class.

(GetClassIV self varName prop) [Function]

Purpose: Gets the default value of an instance variable or associated property as
defined in a class or one of its supers.

5 - 2 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

Behavior: If self is not bound to a class, an error occurs.

Searches through the supers of self to find varName or prop.

• If prop is NIL, this returns the default value for varName.

• If prop is non-NIL, this returns its default value.

If the default value is an active value, it is returned without being triggered.

Arguments: self Must be bound to a class.

varName The name of an instance variable.

prop Name of a property associated with varName.

Returns: Value depends on the arguments; see Behavior.

Example: The commands

(GetClassIV ($ Window) ’window)
(GetClassIV ($ NonRectangularWindow) ’window)

both return

 #,($AV LispWindowAV ...)

(GetClassIVHere self varName prop) [Function]

Purpose: Gets the default value of an instance variable or associated property as
defined in a class.

Behavior: Similar to GetClassIV. This does not search the super classes of self for
varName. If varName or prop is not local to self, this returns the value of
NotSetValue.

Arguments: self Pointer to a class.

varName Name of an instance variable.

prop Name of a property associated with varName.

Returns: The default value of varName or prop or NotSetValue.

Example: The command

(GetClassIVHere ($ Window) ’window)

returns

#,($AV LispWindowAV ...)

the command

(GetClassIVHere ($ NonRectangularWindow) ’window)

returns

#,NotSetValue

(PutClassIV self varName newValue propName) [Function]

Purpose: Changes the default value for an IV in a class.

5 - 2 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

Behavior: If self is not a class that contains the instance variable varName, an error
occurs.

• If propName is NIL, the default value for the instance variable varName is
changed to newValue.

• If propName is non-NIL, the default value for it is changed to newValue.

Arguments: self Must be a class that contains the instance variable varName.

varName An instance variable name.

newValue The new default value.

propName Property name.

Returns: newValue (used for side effect only).

Example: After the commands

68←(DefineClass ’Datum)
#,($C Datum)

69←(← ($ Datum) AddIV ’id# NIL)
id#

the following command changes the default value of the instance variable id#
to ’(7) for all new instances of the class Datum:

70←(PutClassIV ($ Datum) ’id# ’(7))
(7)

5 - 2 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

5.3 ACCESSING DATA IN CLASSES

[This page intentionally left blank]

G L O S S A R Y - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

GLOSSARY

abstract class A class which cannot be instantiated, for example, ActiveValue.

active value The mechanism that carries out access-oriented programming for variables in
LOOPS. Active values send messages as a side effect of having an object’s
variable referenced.

activeValue The previous implementation of the active value concept.

ActiveValue An abstract class that defines the general protocol followed by all active value
objects.

annotatedValue A special Interlisp-D data type that wraps each ActiveValue instance.

AnnotatedValue An abstract class that allows an annotatedValue to be treated as an object.

browser A window that allows you to examine and change items in a data structure.

class A description of one or more similar objects; that is, objects containing the
sames types of data fields and responding to the same messages.

class inheritance The means by which a class inherits variables, values, and methods from its
super class(es).

class lattice A network showing the inheritance relationship among classes.

class variable (CV) A variable that contains information shared by all instances of the class. A
class variable is typically used for information about a class taken as a whole.

inheritance The means by which you can organize information in objects, create objects
that are similar to other objects, and update objects in a simplified way.

Inspector A Lisp display program that has been modified to allow you to view classes,
objects, and active values.

instance An object described by a particular class. Every object within LOOPS is an
instance of exactly one class.

instance variable (IV) A variable that contains information specific to an instance.

instantiate To make a new instance of a class.

lattice An arrangement of nodes in a hierarchical network, which allows for multiple
parents of each node.

Masterscope A Lisp Library Module program analysis tool that has been modified to allow
analysis of LOOPS files.

message A command sent to an object that activates a method defined in the object’s
class. The object responds by computing a value that is returned to the
sender of the message.

metaclass Classes whose instances are classes or abstract classes.

method What an object applies to the arguments of a message it receives. This is
similar to a procedure in procedure-oriented programming, except that here,
you determine the message to send and the object receiving the message
determines the method to apply, instead of the calling routine determining
which procedure to apply.

G L O S S A R Y - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

GLOSSARY

mixin A class that is used in conjunction with another class to create a subclass.
Mixins never have instances, and hence have AbstractClass as their
metaclass.

object A data structure that contains data and a pointer to functionality that can
manipulate the data.

property list A place for storing additional information on classes, their variables, and their
methods.

selector Part of a message that is sent to an object. The object uses the selector to
determine which method is appropriate to apply to the message arguments.

self A method argument that represents the receiver of the message.

specialization The process of creating a subclass from a class, or the result of that process.

subclass A class that is a specialization of another class.

super class A class from which a given class inherits variables, values, and methods.

Tofu An acronym for Top of the universe, which is the highest class in the LOOPS
hierarchy.

Unique Identifier (UID) An alphanumeric identifier that LOOPS uses to store and retrieve objects.
Objects do not have UIDs unless they are named, are instances of indexed
objects, or are instances printed to a file.

wrap Objects have fields that can contain data. Some ActiveValue can be added
so this data is stored within it. When this occurs, the ActiveValue wraps the
data.

6 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6. METHODS

Methods are the expressions that evaluate when a message is sent to an
instance or a class. Methods are analogous to Interlisp-D functions, except
that they are defined by a LOOPS class and invoked by sending a message to
an instance of that class.

This chapter presents the basic constructs used to create and implement
methods. Also included are important methods and functions relevant to the
definition and maintenance of methods.

6.1 Categories

LOOPS methods can be divided into categories. This section contains a brief
description of each method category. These categories serve as additional
documentation only; they do not imply differences in implementation.

Any symbol can be used as a category. Categories can be used as a tool for
the organization of methods. Methods may belong to more than one category.

Class [Category]

Messages associated with a class method can only be sent to an object of
type class. Methods associated with the class Class have this category. See
Chapter 3, Classes, for more information on classes.

Object [Category]

The message associated with an object method can only be sent to an object
of type object. Methods associated with the class Object have this category.

Internal [Category]

Internal methods are low-level system methods, and should not be specialized
by users.

Public [Category]

Public methods are defined by the user or the system. These methods can be
specialized by users.

Any [Category]

Methods that have not been categorized belong to this category by default.

Masterscope [Category]

6 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

Masterscope is an interactive program analysis tool. Methods that are
predefined for Masterscope are local only to Masterscope and can be used
only when Masterscope has been invoked. Refer to the Lisp Library Modules
Manual for more information on Masterscope.

(← self AllMethodCategories) [Method of Class]

Purpose/Behavior: Extracts and lists the categories of all methods defined by the class self.

Arguments: self Pointer to a class.

Returns: The categories of the methods defined by the class of self.

Categories: Class

Example: Line 98 shows the categories of all methods defined in the class self.

98←(← ($ Class) AllMethodCategories)
(Class Object Masterscope)

(← self CategorizeMethods categorization) [Method of Class]

Purpose: Allows you to change how methods are categorized.

Behavior: Varies according to the arguments.

• If categorization is NIL, this opens a display editor window with a form that
represents the current categorizations. After you have exited from the
editor, these new categorizations are installed.

• If categorization is non-NIL, it must be of the following form:

(category1 (selector1 ... selectorN)) (category2 (selector ...)).

A categorization specified by CategorizeMethods deletes any previous
categorization; i.e., if method Print for class Thing was in categories Internal
and I/O, after doing

(← ($ Thing) CategorizeMethods ’((Output
(Print))(Printing (Print))))

Print will be only in categories Output and Printing.

Arguments: self Pointer to a class.

categorization
A list in the form as described in Behavior, or NIL.

Categories: Class

Example: This example shows how to use CategorizeMethods with categorization NIL.

1←(← ($ MetaClass) CategorizeMethods)

The following display editor window appears:

6 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.1 CATEGORIES

(← self ChangeMethodCategory selector newCategory) [Method of Class]

Purpose: Changes the category of a selected method.

Behavior: Varies according to the arguments.

• If selector is NIL, a menu appears showing the selectors for the class of
self. This is done using the message PickSelector to determine the
selector that is to have its category changed.

• If selector is supplied, but not associated with self, this message returns
NIL.

• If newCategory is an atom, adds selector to the category. If newCategory is
a list of atoms, removes selector from all its current categories, then adds it
to the categories in the list. If newCategory is NIL, pops up a menu
showing all of the known categories and an additional item, *other*. If
other is selected, you are prompted to enter a new category name.

Arguments: self Pointer to a class.

selector Method selector for class of self or NIL.

newCategory
An atom, a list of atoms, or NIL.

Returns: The new category if there was a change made; else NIL.

Categories: Class

Example: The following command changes the categories of the method associated with
Shape1.

2←(← ($ Window) ChangeMethodCategory
’Shape1 ’(Window Internal))
(Window Internal)

6.2 Structure of Method Functions

This section discusses the structure of a LOOPS method.

(Method :FUNCTION-TYPE type ((class selector) self args ...) body...) [Definer]

Purpose: Similar to DefineMethod, but gives more control over the argument list and
body syntax. Allows use of Common Lisp lambda argument lists, and
Common Lisp syntax in the body of the method. This is the form you will see
when editing methods.

Behavior: Defines a method whose argument list is either Interlisp (default) or Common
Lisp style. The body of the method may likewise contain either Common Lisp

6 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.2 STRUCTURE OF METHOD FUNCTIONS

or Interlisp syntax. Common Lisp syntax is distinguished by lexical scoping,
etc. (see the Common Lisp Implementation Notes for more information).

Arguments:

type The :FUNCTION-TYPE type clause is optional and defaults to
:IL.

:IL - The body of the method uses Interlisp syntax, allows CLISP
expressions, etc.

:CL - The body of the method uses Common Lisp syntax (is
lexically scoped).

class The class to which the method will be attached.

selector The new method’s selector.

self This argument must be present and first.

args If type was given as :CL this argument list may contain Common
Lisp keys like &OPTIONAL, &KEY and &REST.

body The body of the method. If the type was given as :CL it will be
treated as the body of a Common Lisp lambda is, e.g. scoping
will be lexical.

Returns: The name of the method function.

Example:
12← (Method :FUNCTION-TYPE :CL ((Window Foo) self bar
&OPTIONAL baz &REST glorp)

(CL:FORMAT T "Bar ~s baz ~s glorp ~s~%%" bar baz
glorp))
13← (← ($ Window) New ’Flarb)
14← (← ($ Flarb) Foo 1 2 3 4)
Bar 1 baz 2 glorp (3 4)

6.3 Creating, Editing, and Destroying Methods

This section describes the methods and functions which are used to create,
rename, delete, and edit LOOPS methods.

Name Type Description

DefineMethod Function Defines a new method on a class.

DeleteMethod Function Deletes a method from a class.

EditMethod Method Invokes the editor on a method of a class.

SubclassResponsibility MacroAppears in the template when you create a new method.

(DefineMethod class selector args expr file -) [Function]

6 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.3 CREATING, EDITING, AND DESTROYING METHODS

Purpose: Defines a new method on a class.

Behavior: Varies according to the arguments.

• If args is a non-NIL symbol and expr is NIL, its function definition is installed
as the method for (class selector). This definition must accept an
appropriate number of arguments and otherwise work as a LOOPS method.
Also, args must be a symbol of the form Name1.Name2 for many of the
LOOPS internal routines to handle it properly.

• If args is a list of arguments and expr is a function, its body will be installed
as the definition of class.selector.

Arguments: class Class in which method is defined.

selector Method selector (message).

args List of arguments.

expr Function definition or NIL.

file Place where method is stored.

Example: The following expression shows how to add a method called Increment to a
class called Documentation.

(DefineMethod ($ Documentation) ’Increment ’(Number) ’(PLUS number 1]

(DeleteMethod class selector prop) [Function]

Purpose: Deletes a method from a class.

Behavior: Varies according to the arguments.

• If prop is NIL or T, the method is deleted from the class.

• If prop is T, the function definition is also deleted.

Note: You may also delete methods by using the ClassInheritance
Browser. Position the mouse on the appropriate class, press the
middle mouse button, and select DeleteMethod from the resulting
menu.

Arguments: class Class in which method is defined.

selector Method selector (message).

prop T or NIL; determines whether the function definition is deleted.

Example: The following command deletes the method associated with ’MyOpen from
LatticeBrowser.

(DeleteMethod ($ LatticeBrowser) ’MyOpen)

(← self EditMethod selector commands okCategories) [Method of Class]

Purpose: Invokes the display editor on a method of a class.

Behavior: Varies according to the arguments.

• If selector is NIL, a menu of selectors is presented using the message
PickSelector in okCategories . This can be a list or a symbol.

• If selector is non-NIL, and if it corresponds to a method that is in not self’s
class, you are asked whether the method should be created.

6 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.3 CREATING, EDITING, AND DESTROYING METHODS

• If selector cannot be found, the spelling corrector is invoked to find a correct
local selector. If it can be corrected, the local method is used, or an
inherited method that is made local is used. When the method is finally
determined, EDITF (refer to the Lisp Release Notes and the Interlisp-D
Reference Manual) is invoked with commands passed as the second
argument.

Note: You may also edit methods by using the ClassInheritance Browser.
Position the mouse on the appropriate class, press the middle mouse
button, and select EditMethod from the resulting menu.

Arguments: self Class name.

selector Refers to the method.

commands List of EDITF commands.

okCategories Atom or list specifying valid categories.

Categories: Class

(SubclassResponsibility) [Macro]

Purpose/Behavior: Appears in the template when you create a new method. It is used to make
sure you specialize a method.

6.4 Escaping from Message Syntax

The methods described in the previous section manipulate methods in a
specific order. Sometimes it may be necessary to invoke multiple inherited
methods in some other order. The more general functions in this section
have been provided to do this.

CAUTION

These functions do not conform to the conventions of method inheritance and
should be used as a last resort and with extreme caution.

The following table shows the items in this section.

Name Type Description

DoMethod Function Computes the action which should be a method associated with
a class and applies it to an object and arguments.

ApplyMethod Function Computes the action which should be a method associated with
a class and applies it to an object and argument list.

DoFringeMethod Function Invokes a method in the class of an object or in each of the
super classes for that class.

(DoMethod object selector class arg1 ... argn) [Function]

6 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.4 ESCAPING FROM MESSAGE SYNTAX

Purpose: Computes the action which should be a method associated with class and
applies it to object.

Behavior: All of the arguments are evaluated. If class is NIL, DoMethod uses the class
of object. If no method from class can be computed from selector, an error is
generated.

Arguments: object Instance to which action is applied.

selector Evaluates to a method selector.

class NIL or class in which method name resides.

arg1...argn The arguments for the method.

(ApplyMethod object selector argList class) [Function]

Purpose: Same as DoMethod.

Behavior: Applies the selected method to the already evaluated arguments in argList;
otherwise, this is the same as DoMethod.

Arguments: object Instance to which action is applied.

selector Evaluates to a method name.

arglist The arguments for the method.

class Class in which method name resides.

Example: This example illustrates the MessageNotUnderstood protocol, the function
ApplyMethod, and the macro _Super. This is a specialization of the default
MessageNotUnderstood message that tries to correct the spelling of the
selector. (See Chapter 11, Errors and Breaks, for more information on
MessageNotUnderstood .)

(Method ((DwimObject MessageNotUnderstood)
 self selector mesageArguments superFlg)
 (LET ((correctSelector (FixSelectorSpelling selector)))
 (COND ((correctSelector (ApplyMethod correctSelector mesageArguments))
 (T (_Super))))))

Note: self is included in the list of messageArguments.

(DoFringeMethods object selector arg1 ... argn) [Function]

Purpose: Invokes method for selector in the class of object or in each of the super
classes for that class.

Behavior: Evaluates all of the arguments. If the method for selector in the class of object
is defined in that class (not through inheritance), DoFringeMethods invokes
the local method. If there is no local method, DoFringeMethods goes down
the class of object, and for each super invokes its method for selector if one
exists. If the supers share supers this can result in the same method being
called more than once.

Arguments: object Class instance.

selector Method selector.

arg1...argn Arguments to selector.

Returns: NIL

6 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.5 MOVEMENT BETWEEN CLASSES

6.5 Movement between Classes

This section describes functions and methods that are used in moving
methods between classes, as well as stack method macros.

6.5.1 Movement of Methods

The following functions and methods are used to move methods, instance
variables, and class variables between classes.

Name Type Description

RenameMethod Function Renames a function used as a method.

MoveMethod Function Moves a method from one class to another.

MoveMethod Method Moves a method from one class to another.

MoveMethodToFile Function Moves a method to this file if it has the same name as a function
on a specified file.

CalledFns Function Finds names of all functions called from a set of classes.

(RenameMethod classOrName oldSelector newSelector) [Function]

Purpose: Renames a function used as a method in classOrName.

Behavior: This changes the selector for a method. If no method is associated with
oldSelector or newSelector, this generates an error. Explicit references to
oldSelector such as

(←Super self oldSelector))

will not be fixed by RenameMethod.

Arguments: classOrName
Class in which function is defined.

oldSelector Old name of method; invokes method before this function is
called.

newSelector
New name of method; invokes method after this function is
called.

Returns: If successful, returns newSelector in the form ClassName.Selector.

Example: The following command renames a method named Foo to Fie in the class
MyClass.

24←(RenameMethod ($ MyClass) ’Foo ’Fie)

(MoveMethod oldClassName newClassName selector newSelector files) [Function]

Purpose: Moves a method from oldClassName to newClassName. The method is
deleted from oldClassName.

Behavior: If newSelector is a different name than selector, MoveMethod renames the
method. Explicit references to oldSelector such as

6 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.5 MOVEMENT BETWEEN CLASSES

(←Super self oldSelector))

will not be fixed by RenameMethod.

Note: You may also move methods by using the ClassInheritance
Browser. Position the mouse on the appropriate class, press the
middle mouse button, and select MoveMethod from the resulting
menu.

Arguments: oldClassName
Source class.

newClassName
Destination class.

selector Method selector to be moved.

newSelector
New name; if NIL, the existing selector is preserved.

files Files in which the change is to occur.

Example: The following command moves the method Buy from class Car to class Boat
and renames the method to Purchase.

25←(MoveMethod ($ Car) ($ Boat) ’Buy ’Purchase)
Boat.Purchase

(← self MoveMethod newClassName selector) [Method of Class]

Purpose: Moves a method from the class associated with self to newClassName.

Behavior: Same as the function MoveMethod, except that you cannot rename selector.

Arguments: self Pointer to a class from which the method is taken.

newClassName
Destination class; must be a class, not a class name.

selector Method selector to be moved.

Returns: NewsClass.Selector

(MoveMethodsToFile file) [Function]

Purpose/Behavior: Moves a method to this file if it has the same name as a function on file.

Arguments: file Name of a file to which methods are moved.

Returns: Normally T; NIL if a method does not have the same name as a function on
file.

(CalledFns classes definedFlg) [Function]

Purpose: Finds names of all functions called from a set of classes.

Behavior: Varies according to the arguments.

• If definedFlg is NIL, all the functions associated with classes are returned.

• If definedFlg is T, the defined functions are returned.

• If definedFlg is 1, the undefined functions are returned.

6 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.5 MOVEMENT BETWEEN CLASSES

Arguments: classes List of classes to search.

definedFlg NIL, 1, or T.

Returns: NIL or the list of functions.

Example: The following command finds all functions called from the class Method.

(CalledFns ’(Method))

6.5.2 Stack Method Macros

This section describes macros that access methods on the stack.

(ClassNameOfMethodOwner) [Macro]

Purpose: Uses the stack to perform a help check. Returns the name of the class to
which the method on top of the stack belongs.

(SelectorOfMethodBeingCompiled) [Macro]

Purpose: Uses the stack to perform a help check. Returns the name of the method
being compiled.

(ArgsOfMethodBeingCompiled) [Macro]

Purpose: Uses the stack to perform a help check. Returns all arguments associated
with the method being compiled.

6 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

6.5 MOVEMENT BETWEEN CLASSES

[This page intentionally left blank]

I N D E X - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

A
access-oriented programming 1-1,9
accessing

a class, errors 11-6
an instance, errors 11-6
class variable 5-16
data in classes 5-13
instance variable 5-19

active value 1-9; 5-5; 8-1
adding 8-17
breaking and tracing 8-10
bypassing 8-22
creating 8-23
deleting 8-17
errors 11-9
in class structures 8-27
printing 17-11
replacing 8-17

ActiveValue 8-1
methods 8-16
shared 8-22
specializations 8-2

Add (Inspector Submenu Option) 18-4,10
Add (Method of Class) 3-12
Add (AddMethod) (Browser Menu Option) 10-

20,32
Add Category Menu (Browser Menu Option) 10-

10,25
Add file to browser (Browser Submenu Option)

10-26
Add/Delete (Inspector Menu Option) 18-4,10
AddActiveValue (Method of ActiveValue) 8-17
AddCIV (Function) 3-14
AddCV (Browser Submenu Option) 10-20
AddCV (Function) 3-13
AddCV (Method of Class) 3-13
AddIV (Browser Submenu Option) 10-20
AddIV (Function) 2-10
AddIV (Method of Class) 3-14
AddIV (Method of Object) 2-11
AddMethod (Browser Submenu Option) 10-21
adding an active value 8-17
AddRoot (Browser Menu Option) 10-10,25
AddRoot (Method of LatticeBrowser) 10-36
AddSubs (Browser Menu Option) 10-31
AddSubs! (Browser Submenu Option) 10-31
AddSuper (Browser Submenu Option) 10-21
AfterMove (Method of Window) 19-3
AfterReshape (Method of Window) 19-3
all (Browser Submenu Option) 10-26
All (Inspector Menu Option) 18-8
AllInstances (Method of Class) 3-24
AllInstances! (Method of Class) 3-25
AllMethodCategories (Method of Class) 6-2
AllSubClasses (Function) 3-28
AllValues (Inspector Menu Option) 18-3,10
AnalyzeFile (Browser Submenu Option) 10-28
annotated value 8-24

errors 11-9
explicit control over 8-25
restoring 8-26
saving 8-26

AnnotatedValue (Class) 8-24
AnnotatedValue? (Macro) 9-2
Any (Category) 6-1
AppendSuperValue (Class) 8-11

ApplyMethod (Function) 6-7
ArgsOfMethodBeingCompiled (Macro) 6-10
associatedFiles (Browser Submenu Option) 10-26
AttachLispWindow (Method of Window) 19-22
AVPrintSource (Method of ActiveValue) 8-26; 17-

11
AVPrintSource (Specialization of ActiveValue) 8-16

B
background menu 10-3
Blink (Method of Window) 19-3
Box/UnBoxNode (Browser Menu Option) 10-17
BoxNode (Browser Menu Option) 10-32
BoxNode (Method of LatticeBrowser) 10-37
Break on Access (Inspector Submenu Option) 18-

6
Break on Put (Inspector Submenu Option) 18-6
BreakFunction (Browser Submenu Option) 10-29
breaking 12-1
BreakIt (Function) 12-4
BreakIt (Inspector Menu Option) 18-6
BreakIt (Method of Object) 12-3
BreakMethod (Browser Menu Option) 10-20
BreakMethod (Method of Class) 12-1
BreakOnPut (Class) 8-10
BreakOnPutOrGet (Class) 8-10
BrokenVariables (Global Variable) 12-6
Browse (Function) 10-7
Browse (Inspector Menu Option) 18-8
Browse (Method of LatticeBrowser) 10-6,37
Browse Class (Submenu Option) 10-3,4
Browse File (Submenu Option) 10-3,5
Browse Supers (Submenu Option) 10-4
BrowseFile (Method of FileBrowser) 10-6
browser 10-1
BrowserObjects (Method of LatticeBrowser) 10-38
BrowseSupers (Inspector Submenu Option) 18-8
Bury (Method of Window) 20-4
ButtonEventFn (Method of Window) 19-15

C
cache 15-2,3
CalledFns (Function) 6-9
CallsFunction (Browser Submenu Option) 10-28
categories of a method 6-1
CategorizeMethods (Browser Submenu Option)

10-19
CategorizeMethods (Method of Class) 6-2
Change display mode (Browser Menu Option) 10-

25
ChangeClass (Method of Object) 2-16
ChangeFontSize (Browser Submenu Option) 10-8
ChangeFontSize (Method of LatticeBrowser) 10-38
ChangeFormat (Method of LatticeBrowser) 10-38
ChangeMaxLabelSize (Method of LatticeBrowser)

10-39
ChangeMethodCategory (Browser Submenu

Option) 10-19
ChangeMethodCategory (Method of Class) 6-3
Changetran 5-13
Check (Browser Submenu Option) 10-27
CheckFile (Browser Submenu Option) 10-28
class 1-3,6; 3-1

contents 3-1
copying 3-23
creating 3-1

I N D E X - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

destroying 3-5
editing 3-10; 13-1
enumerating instances 3-24
manipulating 2-16; 3-16
modifying 3-11
printing 17-4
querying the structure 3-17
reading data in 5-13
renaming 3-16
storing data in 5-13

Class (Category) 6-1
Class (Inspector Menu Option) 18-3
Class (Macro) 2-17
Class (Method of Object) 2-17
class browser 10-2

automatic update 10-52
menu interface 10-8

class inspector 18-7
class variable 1-4; 5-5

accessing 5-16
for class LatticeBrowser 10-34

Class? (Macro) 9-2
ClassDoc (Browser Submenu Option) 10-14
CLASSES (File Package Command) 14-4
ClassIV inspector 18-9
ClassName (Function) 2-18; 3-17
ClassName (Method of Object) 2-18
ClassNameOfMethodOwner (Macro) 6-10
CLEANUP file (Browser Menu Option) 10-30
CleanUp File (Submenu Option) 10-5
Clear (Method of Window) 19-4
ClearAllCaches (Function) 15-3; 20-3
ClearAllCaches (Variable) 20-3
ClearLabelCache (Method of LatticeBrowser) 10-

40
ClearMenuCache (Method of Window) 19-15
ClearPromptWindow (Method of Window) 19-10
Close (Method of Window) 19-4
ClosePromptWindow (Method of Window) 19-10
compact accessing forms 5-10
ConformToClass (Method of Object) 2-12
Copy (Method of Class) 3-23
Copy (CopyMethodTo) (Browser Menu Option) 10-

23,32
CopyActiveValue (Method of ActiveValue) 8-22
CopyActiveValue (Specialization of ActiveValue) 8-

16
CopyCV (Method of Class) 3-23
CopyCVTo (Browser Submenu Option) 10-23
CopyDeep (Method of Object) 2-19
copying

class 3-23
instance 2-19

CopyIV (Method of Class) 3-24
CopyIVTo (Browser Submenu Option) 10-23
CopyMethodTo (Browser Submenu Option) 10-23
CopyShallow (Method of Object) 2-20
create annotatedValue (Macro) 8-25
CreateClass (Method of Metaclass) 3-3
CreateWindow (Method of NonRectangular Window)

19-19
CreateWindow (Method of Window) 19-22
creating

active value 8-23
class 3-1
instance 2-4
method 6-4
record 18-17

CursorInside? (Method of Window) 19-4
CV, see class variable
CVDoc (Browser Submenu Option) 10-14
CVMissing (Method of Class) 11-2
CVValueMissing (Method of Class) 11-3

D
data type predicate 9-1
DefaultActiveValueClassName (Variable) 17-12
DEFCLASS (NLambda NoSpread Function) 14-4
DEFCLASSES (NLambda NoSpread Function) 14-

4
DefineClass (Function) 3-2
DefineMethod (Function) 6-5
defining a metaclass 4-5
DEFINST (NLambda NoSpread Function) 14-6
DEFINSTANCES (NLambda NoSpread Function)

14-6
Delete (Inspector Submenu Option) 18-4,10
Delete (Method of Class) 3-12
Delete (DeleteMethod) (Browser Menu Option) 10-

21,32
DeleteActiveValue (Method of ActiveValue) 8-18
DeleteCIV (Function) 3-15
DeleteClass (Browser Submenu Option) 10-22
DeleteClassProp (Function) 3-13
DeleteCV (Browser Submenu Option) 10-21
DeleteCV (Function) 3-14
DeleteFromBrowser (Browser Menu Option) 10-

16,31
DeleteFromBrowser (Browser Submenu Option)

10-16
DeleteFromBrowser (Method of LatticeBrowser)

10-40
DeleteIV (Browser Submenu Option) 10-21
DeleteIV (Function) 2-11
DeleteIV (Method of Object) 2-12
DeleteMethod (Browser Submenu Option) 10-22
DeleteMethod (Function) 6-5
DeleteSubtreeFromBrowser (Browser Submenu

Option) 10-16
DeleteSubtreeFromBrowser (Method of

LatticeBrowser) 10-40
deleting an active value 8-17
DelFromFile (Method of Object) 14-9
Destroy (Method of Class) 3-5
Destroy (Method of Object) 2-15
Destroy (Method of Window) 19-4
Destroy! (Method of Class) 3-6
Destroy! (Method of Object) 2-15
DestroyClass (Method of Class) 3-6
destroying

class 3-5
instance 2-15
method 6-4

DestroyInstance (Method of Class) 2-15
DetachLispWindow (Method of Window) 19-22
Doc (ClassDoc) (Browser Menu Option) 10-13,30
DoFringeMethods (Function) 6-7
DoMethod (Function) 6-7
DontSave (Instance Variable Property Name) 14-10
dynamic mixin 3-4

E
Edit (Browser Submenu Option) 10-27
Edit (Inspector Menu Option) 18-4,8
Edit (Method of Class) 3-10; 13-1

I N D E X - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

Edit (Method of Object) 13-5
Edit (EditClass) (Browser Menu Option) 10-24,32
Edit FileComs (Browser Menu Option) 10-28
Edit Filecoms (Submenu Option) 10-5
Edit Functions (Browser Submenu Option) 10-29
Edit! (Method of Class) 13-3
EditCategory (Browser Submenu Option) 10-19
EditClass (Browser Submenu Option) 10-24
EditClass! (Browser Submenu Option) 10-24
EditComs (Browser Submenu Option) 10-29
EditFns (Browser Submenu Option) 10-29
EditIcon (Method of NonRectangular Window) 19-

19
editing 13-1

a class 13-1
class 3-10
description of window 13-2
method 6-4

EditInstances (Browser Submenu Option) 10-29
EditMacros (Browser Submenu Option) 10-29
EditMask (Method of NonRectangular Window) 19-

20
EditMethod (Browser Submenu Option) 10-18
EditMethod (Method of Class) 6-5
EditMethod! (Browser Submenu Option) 10-18
EditMethodObject (Browser Submenu Option) 10-

18
EditRecords (Browser Submenu Option) 10-29
EditVars (Browser Submenu Option) 10-29
enumerating instances of a class 3-24
error handling 11-1
error message 11-5
ErrorOnNameConflict (Variable) 2-4; 11-2
escaping from message syntax 6-6
ExplicitFnActiveValue (Class) 8-8

F
fetch annotatedValue of (Macro) 8-25
FetchMethod (Method of Class) 7-5
file

storing 14-10
file browser 10-2

menu interface 10-24
file manager 1-11; 14-1

commands 14-3
FileBrowse (Function) 10-7
FileIn (Method of Class) 14-6
FileOut (Method of Class) 17-4
FileOut (Method of Object) 14-11; 17-8
FILES? (Function) 14-7
FirstFetchAV (Class) 8-12
FlashNode (Method of LatticeBrowser) 10-41
FlipNode (Method of LatticeBrowser) 10-41
Fringe (Method of Class) 3-27
function calling 3-2

G
garbage collection 15-1
Get (Method of Object) 5-6
GetClass (Function) 5-14
GetClassHere (Function) 5-16
GetClassIV (Function) 5-20
GetClassIVHere (Function) 5-20
GetClassOnly (Function) 5-15
GetClassProp (Method of Class) 3-18
GetClassValue (Function) 5-8,16
GetClassValueOnly (Function) 5-9,18; 8-22

GetCVHere (Function) 5-18
GetDisplayLabel (Method of LatticeBrowser) 10-41
GetIt (Function) 5-1
GetItHere (Function) 5-3
GetItOnly (Function) 5-2
GetIVHere (Function) 5-10
GetLabel (Method of LatticeBrowser) 10-41
GetLispClass (Function) 4-3
GetObjectNames (Function) 2-4
GetObjFromUID (Function) 17-15
GetPromptWindow (Method of Window) 19-10
GetProp (Method of Window) 19-5
GetSubs (Method of InstanceBrowser) 10-50
GetSubs (Method of LatticeBrowser) 10-42
GettingWrappedValue (Message) 1-9
GetValue (Function) 4-3; 5-6
GetValue (Macro) 15-2
GetValueOnly (Function) 5-7; 8-22
GetWrappedValue (Method of ActiveValue) 8-20
GetWrappedValue (Method of LispWindowAV) 19-

23
GetWrappedValue (Specialization of ActiveValue)

8-16
GetWrappedValueOnly (Method of ActiveValue) 8-

20
global cache 15-2,3
Grapher 1-11; 10-1,33
GraphFits (Method of LatticeBrowser) 10-42

H
Hardcopy (Method of Window) 19-5
Hardcopy file (Browser Submenu Option) 10-30
HardcopyToFile (Method of Window) 19-5
HardcopyToPrinter (Method of Window) 19-5
HasAttribute (Method of Class) 3-18
HasAttribute! (Method of Class) 3-19
HasCV (Method of Class) 3-19
HasCV (Method of Object) 2-21
HasItem (Method of Class) 3-20
HasIV (Method of Class) 3-21
HasIV (Method of Object) 2-21
HasIV! (Method of Class) 3-21
HasLispWindow (Method of Window) 19-23
HasObject (Method of LatticeBrowser) 10-42
HasUID? (Function) 17-14
HELPCHECK (Function) 11-1
HighlightNode (Method of LatticeBrowser) 10-42

I
IconTitle (Method of LatticeBrowser) 10-43
IconWindow (Class) 19-20
ImplementsMethod (Browser Submenu Option)

10-28
in-supers-of (Iterative Statement Operator) 9-3
IndexedObject (Class) 3-25
IndirectVariable (Class) 8-3
inheritance 1-6; 3-7,27
InheritedValue (Method of InheritingAV) 8-14
InheritingAV (Class) 8-14
InPlace (Browser Submenu Option) 10-8
Inspect (Inspector Menu Option) 18-7,10
Inspect (Method of Object) 2-22; 18-2
InspectClass (Browser Submenu Option) 10-24
InspectFetch (Method of Object) 18-12
inspector 1-10; 18-1

customizing 18-15
InspectPropCommand (Method of Object) 18-13

I N D E X - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

InspectProperties (Method of Object) 18-13
InspectStore (Method of Object) 18-13
InspectTitle (Method of Object) 18-14
InspectValueCommand (Method of Object) 18-14
InstallEditSource (Method of Class) 13-3
InstallEditSource (Method of Object) 13-6
instance 1-4

accessing data in 5-4
copying 2-19
creating 2-4
data storage at creation time 2-8
destroying 2-15
editing 13-5
naming 2-1
querying structure 2-21

instance browser 10-3,50
instance inspector 18-2
instance variable 1-4; 5-5

access 15-1
accessing 5-19
changing number of 2-10
delimiters 2-11
for class InstanceBrowser 10-50
for class LatticeBrowser 10-33

Instance? (Macro) 9-2
INSTANCES (File Package Command) 14-5
InstOf (Method of Object) 2-18
InstOf! (Method of Object) 2-19
Internal (Category) 6-1
Invert (Method of NonRectangular Window) 19-20
Invert (Method of Window) 19-5
ItemMenu (Method of Window) 19-15
iterative operator 9-3
IV, see instance variable
IVDoc (Browser Submenu Option) 10-14
IVMissing (Method of Object) 2-12; 11-3
IVs (Inspector Menu Option) 18-4,10
IVValueMissing (Method of Object) 2-8; 11-4

L
lattice 1-1
lattice browser 10-2
Lattice/Tree (Browser Submenu Option) 10-9
left column menu

class inspector 18-8
ClassIV inspector 18-10
instance inspector 18-4

left menu
class, meta, and supers browsers 10-11
file browser 10-30
instance browser 10-51

LeftSelection (Method of LatticeBrowser) 10-43
LeftSelection (Method of Window) 19-16
LeftShiftSelect (Method of LatticeBrowser) 10-43
Lisp window 19-22
LispClassTable (Global Variable) 4-4
LispUserFilesForLoops (Variable) 20-2
LispWindowAV (Class) 8-10
ListAttribute (Method of Class) 3-21
ListAttribute (Method of Object) 2-22
ListAttribute! (Method of Class) 3-22
ListAttribute! (Method of Object) 2-23
LOAD (Function) 14-2
Load PROP file (Browser Submenu Option) 10-30
LOADFNS (Function) 14-3
loading a file 14-2
LoadLoopsForms (Variable) 20-2
Local (Inspector Menu Option) 18-8

local cache 15-2,3
LocalStateActiveValue (Class) 8-6
LocalValues (Inspector Menu Option) 18-4,10
LOOPS icon 10-4
Loops Icon (Menu Option) 10-3
LoopsDate (Variable) 20-2
LoopsDebugFlg (Variable) 11-2
LOOPSDIRECTORY (Variable) 20-2
LOOPSFILES (Variable) 20-2
LoopsHelp (NoSpread Function) 11-2
LoopsIcon (Class) 19-21
LOOPSLIBRARYDIRECTORY (Variable) 20-2
LoopsPatchFiles (Variable) 20-2
LOOPSUSERSDIRECTORY (Variable) 20-2
LOOPSUSERSRULESDIRECTORY (Variable) 20-2
LoopsVersion (Variable) 20-1

M
MakeEditSource (Method of Class) 13-4
MakeEditSource (Method of Object) 13-5
MAKEFILE (Function) 14-11
MakeFileSource (Method of Object) 14-11
MakeFullEditSource (Method of Class) 13-4
MakeFunctionMenu (Browser Submenu Option)

10-29
manipulating

a file 14-1
a class 2-16; 3-16

MapObjectUID (Function) 17-15
Masterscope 1-10
Masterscope (Category) 6-2
MaxLatticeHeight (Variable) 10-48
MaxLatticeWidth (Variable) 10-48
menu 19-14

caching 19-18
item structure 19-17

message 1-3
message sending 3-2
message sending form 7-1; 18-16
message syntax, escaping from 6-6
MessageNotUnderstood (Method of

AnnotatedValue) 8-26
MessageNotUnderstood (Method of Object) 11-5
MessageNotUnderstood (Method of Tofu) 4-7
metaclass 1-6; 5-13

AbstractClass 4-2
Class 4-1
defining 4-5
DestroyedClass 4-2
MetaClass 4-2

metaclass browser 10-2
menu interface 10-8

METH (NLambda NoSpread Function) 14-5
method 1-3; 6-1

creating 6-4
destroying 6-4
editing 6-4
for class InstanceBrowser 10-50
for window 19-2
printing 17-12

method (Definer)
structure 6-3

method lookup 15-3
MethodDoc (Browser Submenu Option) 10-14
MethodDoc (Method of Class) 17-13
MethodMenu (Browser Submenu Option) 10-19
MethodNotFound (Method of Tofu) 4-7
METHODS (File Package Command) 14-5

I N D E X - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

Methods (EditMethod) (Browser Menu Option) 10-
18,32

MethodSummary (Browser Submenu Option) 10-
13

MethodSummary (Method of Class) 17-13
middle menu

class, meta, and supers browsers 10-17
file browser 10-31
instance browser 10-52

MiddleSelection (Method of Window) 19-16
MiddleShiftSelect (Method of LatticeBrowser) 10-

44
modifying a class 3-11
MousePackage (Method) 19-6
MouseReadtable (Method) 19-6
Move (Method of Window) 19-5
Move (MoveMethodTo) (Browser Menu Option)

10-22,32
MoveClassVariable (Function) 2-14
MoveCVTo (Browser Submenu Option) 10-22
MoveIVTo (Browser Submenu Option) 10-22
MoveMethod (Function) 6-8
MoveMethod (Method of Class) 6-9
MoveMethodsToFile (Function) 6-9
MoveMethodTo (Browser Submenu Option) 10-22
MoveSuperTo (Browser Submenu Option) 10-22
MoveToFile (Browser Submenu Option) 10-22
MoveToFile (Method of Class) 14-9
MoveToFile! (Browser Submenu Option) 10-22
MoveToFile! (Method of Class) 14-9
MoveVariable (Function) 2-14
moving a variable 2-13
multiple references of objects 15-1

N
naming an instance 2-1
naming an object, errors 11-8
NestedNotSetValue (Class) 8-16
New (Method of Class) 2-5
New (Method of Metaclass) 3-3; 4-5
NewClass (Method of Class) 3-3
NewInstance (Browser Submenu Option) 10-21,32
NewInstance (Method of Object) 2-6
NewItem (Method of LatticeBrowser) 10-44
NewPath (Method of InstanceBrowser) 10-51
NewWithValues (Method of Class) 2-7
NiceMenu (Function) 19-13
NodeRegion (Method of LatticeBrowser) 10-45
NonRectangularWindow (Class) 19-19
NotSetValue (Class) 8-15
NotSetValue (Macro) 2-9
NoUpdatePermittedAV (Class) 8-9
NoValueFound (Macro) 2-24
NoValueFound (Variable) 2-24

O
object 1-2

multiple references 15-1
printing 17-8
saving on a file 14-6
storing data in 1-4

Object (Category) 6-1
object-oriented programming 1-1,3
Object? (Macro) 9-1
ObjectAlwaysPPFlag (Variable) 17-3
ObjectDontPPFlag (Variable) 17-3

ObjectFromLabel (Method of LatticeBrowser) 10-
45

ObjectModified (Method of Object) 14-8
OldInstance (Method of Object) 14-10
OnFile (Method of Class) 14-8
Open (Method of Window) 19-6
opening a browser 10-3
OptionalLispuserFiles (Variable) 9-2
OverridesMethod (Browser Submenu Option) 10-

28

P
Paint (Method of Window) 19-6
PositionNode (Method of LatticeBrowser) 10-45
PP (Browser Submenu Option) 10-12
PP (Method of Class) 17-5
PP (Method of Object) 17-9
PP! (Browser Submenu Option) 10-12
PP! (Method of Class) 17-6
PP! (Method of Object) 17-9
PPDefault (Variable) 17-12
PPMethod (Browser Submenu Option) 10-13
PPMethod (Method of Class) 17-12
PPV! (Browser Submenu Option) 10-12
PPV! (Method of Class) 17-7
PPV! (Method of Object) 17-10
PrettyPrintClass (Function) 14-11
PrettyPrintInstance (Function) 14-11
PrintCategories (Browser Submenu Option) 10-12
printing 17-1

variables affecting 17-2
PrintOn (Method of IndexedObject) 3-25
PrintOn (Method of Object) 17-8
PrintSummary (Browser Menu Option) 10-12,30
PrintSummary (Browser Submenu Option) 10-13
procedure-oriented programming 1-1,2,3
programming paradigms 1-1
prompt window 19-9
PromptEval (Function) 19-11
PromptForList (Method of Window) 19-11
PromptForString (Method of Window) 19-12
PromptForWord (Method of Window) 19-12
PromptPrint (Method of Window) 19-13
PromptRead (Function) 19-13
Properties (Inspector Menu Option) 18-5,11
Prototype (Method of Class) 3-26
pseudoclass 8-24
pseudoclasses 4-2
pseudoinstances 4-2; 8-24
Public (Category) 6-1
Put (Method of Object) 5-7
PutClass (Function) 5-14
PutClassIV (Function) 5-21
PutClassOnly (Function) 5-15
PutClassValue (Function) 5-8,17
PutClassValueOnly (Function) 5-9,18; 8-22
PutCVHere (Function) 5-19
PutIt (Function) 5-3
PutItOnly (Function) 5-4
PutSavedValue (Function) 19-21
PuttingWrappedValue (Message) 1-9
PutValue (Function) 4-3; 5-6
PutValue (Inspector Menu Option) 18-5
PutValue (Macro) 15-2
PutValueOnly (Function) 5-7; 8-22
PutValueOnly (Inspector Submenu Option) 18-5
PutWrappedValue (Method of ActiveValue) 8-21

I N D E X - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

PutWrappedValue (Method of LispWindowAV) 19-
23

PutWrappedValue (Specialization of ActiveValue)
8-16

PutWrappedValueOnly (Method of ActiveValue) 8-
21

Q
querying

structure of a class 3-17
structure of an instance 2-21

R
reading 17-1
Recompute (Browser Menu Option) 10-8,25
Recompute (Browser Submenu Option) 10-8
Recompute (Method of LatticeBrowser) 10-46
RecomputeInPlace (Method of LatticeBrowser) 10-

46
RecomputeLabels (Browser Submenu Option) 10-

8
RecomputeLabels (Method of LatticeBrowser) 10-

46
record

creating 18-17
Refetch (Inspector Menu Option) 18-4,8,10
RemoveFromBadList (Browser Submenu Option)

10-10
RemoveHighlights (Method of LatticeBrowser) 10-

46
RemoveShading (Method of LatticeBrowser) 10-47
Rename (Method of Class) 3-16
Rename (Method of Object) 2-3
Rename (RenameMethod) (Browser Menu Option)

10-23,32
RenameClass (Browser Submenu Option) 10-23
RenameCV (Browser Submenu Option) 10-23
RenameIV (Browser Submenu Option) 10-23
RenameMethod (Browser Submenu Option) 10-23
RenameMethod (Function) 6-8
RenameVariable (Function) 2-14
replace annotatedValue of (Macro) 8-25
ReplaceActiveValue (Method of ActiveValue) 8-19
ReplaceMeAV (Class) 8-15
ReplaceSupers (Method of Class) 3-15
replacing an active value 5-17
RetireMethod (Browser Submenu Option) 10-23
right column menu

class inspector 18-8
ClassIV inspector 18-10
instance inspector 18-6

RightSelection (Method of Window) 19-16
rule-oriented programming 1-1

S
Save Value (Inspector Menu Option) 18-4,7,11
SavedValue (Function) 19-21
SaveInIT (Method of LatticeBrowser) 10-47
SaveInstance (Method of Object) 14-8
SaveInstance? (Method of Object) 14-9
SaveValue (Browser Submenu Option) 10-8
saving

an object on a file 14-6
ScrollWindow (Method of Window) 19-7
SEdit 1-10
Select file (Browser Submenu Option) 10-26
selectedFile (Browser Submenu Option) 10-25

SelectFile (Lambda NoSpread Function) 19-14
selector 1-3
SelectorOfMethodBeingCompiled (Macro) 6-10
SelectorsWithBreak (Method of Class) 12-3
SEND (Function) 7-2
SEND (Macro) 7-2
sending

a message, errors 11-7
SendsMessage (Browser Submenu Option) 10-28
SetName (Method of Class) 3-16
SetName (Method of Object) 2-2
SetProp (Method of Window) 19-7
ShadeNode (Method of LatticeBrowser) 10-47
Shape (Method of NonRectangular Window) 19-20
Shape (Method of Window) 19-7
Shape? (Method of Window) 19-8
ShapeToHold (Browser Submenu Option) 10-8
ShapeToHold (Method of LatticeBrowser) 10-48
Show (Method of LatticeBrowser) 10-48
Shrink (Method of LatticeBrowser) 10-48
Shrink (Method of Window) 19-8
Snap (Method of Window) 19-8
Specialize (Method of Class) 3-27
SpecializeClass (Browser Submenu Option) 10-21
SpecializedClass (Browser Submenu Option) 10-

32
SpecializeMethod (Browser Submenu Option) 10-

21
SpecializesMethod (Browser Submenu Option) 10-

28
stack method macros 6-10
storing

a file 14-10
data in objects 1-4

SubBrowser (Browser Menu Option) 10-16,31
SubBrowser (Method of LatticeBrowser) 10-49
subclass 1-6
Subclass (Method of Class) 3-28
SubClasses (Method of Class) 3-28
SubclassResponsibility (Macro) 6-6
Substitute (Browser Submenu Option) 10-27
SubsTree (Function) 3-29
superclass 1-7,8
SuperMethodNotFound (Method of Tofu) 4-7
supers browser 10-2

menu interface 10-8
system function 20-1
system variable 20-1

T
THESE-INSTANCES (File Package Command) 14-

5
title

class inspector 18-7
ClassIV inspector 18-9
instance inspector 18-2

title bar menu
class inspector 18-8
class, meta, and supers browsers 10-8
ClassIV inspector 18-9
file browser 10-25
instance browser 10-51
instance inspector 18-3

TitleCommand (Method of Object) 18-15
TitleSelection (Method of LatticeBrowser) 10-49
TitleSelection (Method of Window) 19-16
Tofu 4-6
tools 1-10

I N D E X - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

ToTop (Method of Window) 19-8
Trace on Access (Inspector Submenu Option) 18-6
Trace on Put (Inspector Submenu Option) 18-6
TraceFunction (Browser Submenu Option) 10-29
TraceIt (Function) 12-6
TraceIt (Inspector Menu Option) 18-6
TraceIt (Method of Object) 12-5
TraceMethod (Browser Submenu Option) 10-20
TraceMethod (Method of Class) 12-2
TraceOnPut (Class) 8-10
TraceOnPutOrGet (Class) 8-10
tracing 12-1
type? annotatedValue (Macro) 8-25
TypeInName (Browser Menu Option) 10-16,31

U
UID, see Unique Identifier
UID (Function) 17-15
UnbreakFunction (Browser Submenu Option) 10-

29
UnBreakIt (Function) 12-6
UnBreakIt (Inspector Menu Option) 18-6
UnbreakMethod (Browser Submenu Option) 10-20
UnbreakMethod (Method of Class) 12-2
Understands (Method of Object) 9-3
UNDO (Program Assistant Command) 14-3
Unique Identifier 15-1; 17-14
UnmarkNodes (Method of LatticeBrowser) 10-49
UnSetName (Method of Class) 3-17
UnSetName (Method of Object) 2-3
Update (Method of Window) 19-9
UpdateClassBrowsers (Function) 10-52
UpdateClassBrowsers? (Variable) 10-52
Use saved value (Inspector Submenu Option) 18-5
user interface to inspector 18-2
Uses IV? (Browser Menu Option) 10-26
UsesCV (Browser Submenu Option) 10-28
UsesIV (Browser Menu Option) 10-33
UsesIV (Browser Submenu Option) 10-27
UsesLispVar (Browser Submenu Option) 10-28
UsesObject (Browser Submenu Option) 10-28

V
ValueFound (Macro) 2-25
variable 1-4

W
WhenMenuItemHeld (Method of Window) 19-17
WhereIs (Browser Menu Option) 10-14
WhereIs (Method of Object) 2-24
WhereIs (WhereIsMethod) (Browser Menu Option)

10-30
WhereIsCV (Browser Submenu Option) 10-15
WhereIsIV (Browser Submenu Option) 10-15
WhereIsMethod (Browser Submenu Option) 10-15
WhoHas (Function) 3-22
Window (Class) 19-1
WindowAfterMoveFn (Function) 19-9
WindowButtonEventFn (Function) 19-17
WindowRightButtonFn (Function) 19-17
WindowShapeFn (Function) 19-9
wrapped value 8-19
WrappingPrecedence (Method of ActiveValue) 8-

18
WrappingPrecedence (Specialization of

ActiveValue) 8-16

←
← (Function) 7-1
← (Macro) 7-1
←! (Function) 7-2
←! (Macro) 7-2
←@ (Macro) 5-12
←AV (Macro) 8-26
←IV (Macro) 7-2
←New (Macro) 2-6
←New (NLambda NoSpread Macro) 7-5
←Process (Macro) 16-1
←Process! (Macro) 16-2
←Proto (Macro) 7-3
←Super (Macro) 7-3
←Super (Function) 7-3
←Super? (Macro) 7-5
←SuperFringe (Macro) 7-5
←SuperFringe (Function) 7-5
←Try (Macro) 7-3

#
#, 18-1

$
$ (Macro) 2-2
$ (NLambda Function) 2-2; 17-1
$! (Function) 2-2
$! (Lambda Function) 17-2
$AV (NLambda NoSpread Function) 8-27
$C (NLambda Function) 17-2

*
any (Browser Submenu Option) 10-27
EditAll (Browser Submenu Option) 10-27; 27
FEATURES (Variable) 20-2
hiddenFile (Submenu Option) 10-5
loadFile (Submenu Option) 10-5
newFile (Submenu Option) 10-5
NewFunction (Browser Submenu Option) 10-29
other (Browser Submenu Option) 10-27
SubstituteAll (Browser Submenu Option) 10-27

:
:initForm (Property) 2-9

?
?= 18-16

@
@ (Macro) 5-10
@* (Macro) 5-12

I N D E X - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

INDEX

[This page intentionally left blank]

7 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

Objects in LOOPS communicate with each other by sending messages. This
chapter describes the standard message sending forms used in LOOPS.

The following table shows the macros in this section.

Name Type Description

← Macro and Sends a message to an object.
Function

SEND Macro and Sends a message to an object.
Function

←! Macro and Evaluates the selector and sends a message to an object.
Function

←IV Macro Invokes the function stored in an instance variable of the object.

←Try Macro Sends a message to an object only if it has a corresponding
method.

←Proto Macro Sends a message to the prototype instance of a class.

←Super Macro and Combines an inherited method with local code; must appear
Function in the body of a method.

←Super? Macro Combines an inherited method with local code; must appear in
the body of a method. This does not cause an error if there is no
inherited method.

←SuperFringe Macro and Invokes general methods for objects with more than one
Function super class from which to inherit methods; must appear in the

body of a method.

←New NLambda Creates an instance of a class and then sends a message to
NoSpread that instance.
Macro

FetchMethod Macro Finds the function name which implements the method invoked
by a selector.

In addition, Chapter 8, Active Values, contains a description of ←AV, and
Chapter 15, Performance Issues, contains a description of ←Process and
←Process!.

(← self sel arg1 ... argn) [Macro and Function]

Purpose: Sends the message with the selector sel to an object self. This is the standard
way to send a message.

Behavior: Evaluates all arguments except sel.

When an object receives a message, it tries to match the selector sel with the
names of its methods. If the object or the message does not recognize the
message, a Not Understood error occurs.

7 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

The function version does more error checking than the macro and also
attempts to convert unbound symbols into names for classes and instances.

Arguments: self Pointer to an object.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Returns: The value returned by the method associated with sel.

Example: In this example, the message New is sent to the class Window. This returns
the newly created instance.

76←(← ($ Window) New ’Window1)
#,($& Window (|OZW0.1Y:.;h.Qm:| . 495))

(SEND self sel arg1 ... argn) [Macro and Function]

Purpose: Same as ←, above.

Example: The expression

(SEND ($ Window) ’New ’Window1)

is equivalent to

(← ($ Window) New ’Window1)

(←! self sel arg1 ... argn) [Macro and Function]

Purpose/Behavior: Sends a message with the selector sel to an object self. It differs from ← in
that it evaluates all of its arguments, including sel.

Arguments: self Pointer to an object.

sel Selector, which is evaluated.

arg1...argn Arguments associated with sel.

Example: This example illustrates the fact that ←! evaluates the sel argument.

The code

(for sel in ’(Shape Invert)
 do (←! ($ Window1) sel))

is equivalent to

(←Window1 Shape)(←Window1 Invert)

(←IV self IVName arg1...argn) [Macro]

Purpose: Invokes the function stored in the instance variable IVName of the object self.

Behavior: Gets a function from IVName of self and applies the function to self with the
arguments args. Returns the value of the function or breaks.

←IV does not evaluate IVName.

Arguments: self Pointer to an object.

IVName Instance variable name, which is not evaluated.

7 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

arg1...argn Arguments associated with sel; bound to arguments specified in
the call.

(←Try self sel arg1 ... argn) [Macro]

Purpose: Sends the message with the selector sel to self, but only if there is a
corresponding method.

Behavior: If sel is in fact a selector of self, the method is applied and the appropriate
value is returned. If the method is not a selector of self, the symbol NotSent is
returned.

Arguments: self Pointer to an object.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Example: The expression (←($ Window1) abcd) normally causes a break.

79←(←Try ($ Window1) Update)
NIL

80←(←Try ($ Window1) abcd)
NotSent

(←Proto class sel arg1 ... argn) [Macro]

Purpose: Sends a message to the prototype instance of a class.

Behavior: Creates an instance of a class, if necessary, and puts that instance on the
class variable Prototype of class, marking the class as changed. This
instance is referred to as the prototype instance. Proto then sends the
message sel to that instance.

Arguments: class Pointer to a class.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Example: Usually only one instance of LoopsIcon is needed at a time, so the class
LoopsIcon keeps one in its class variable Prototype.

81←(←Proto ($ LoopsIcon) Open)

(←Super self sel arg1 ... argn) [Macro and Function]

Purpose: Can invoke an inherited method within a method. ←Super must appear in the
body of a method; it cannot be invoked directly.

Behavior: Searches up the class hierarchy and invokes the next more general method of
the same name, even if a specialized method is inherited over a distance. It
returns the value from that super method. You can use the form (←Super)
when the arguments are not changed. If no arguments are provided, ←Super
uses the arguments of the method from which it was called.

←Super and the other similar functions are now lexically scoped; that is, it is
illegal to call ←Super anywhere but within a method body, and any selector
given must be the same as the selector for that method.

Arguments: self Pointer to an object.
sel Selector; not evaluated. Must be the same as the selector of the

method in which the ←Super appears.

7 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

arg1...argn Arguments associated with sel.

Example: Two examples of ←Super are included:

• One example shows where the arguments are not changed.

• to call
ple shows where the arguments are changed.

Example 1: A use of ←Super where the arguments are not changed.

Define a subclass of Window that will call RINGBELLS before a window is
shaped.

(DefineClass ’RingingWindow ’(Window))

Through the browser interface, specialize the method Shape, to create the
following method.

(RingingWindow.Shape
 (Method ((RingingWindow Shape)
 self newRegion noUpdateFlg)
 COMMENT **COMMENT**
 (RINGBELLS)
 (←Super)))

Executing the following command calls RINGBELLS before the new window is
shaped.

(←New ($ RingingWindow) Shape)

In the method above, if the positions of RINGBELLS and (←Super) were
reversed, RINGBELLS would be called after the window was shaped.

Example 2: A use of ←Super where the arguments are changed.

Define a subclass of Window that will be square.

(DefineClass ’SquareWindow ’(Window))

Through the browser interface, specialize the method Shape, to create the
following method.

(SquareWindow.Shape
 (Method ((SquareWindow Shape)
 self newRegion noUpdateFlg)
 COMMENT **COMMENT**
 (←Super self Shape
 (create REGION
 using
 (SETQ newRegion
 (OR newRegion
 (GETREGION)))
 HEIGHT ←(fetch WIDTH
 of
 newRegion))
 noUpdateFlg)))

Executing the following command creates a square window:

(←New ($ SquareWindow) Shape)

7 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

(←Super? self sel arg1 ... argn) [Macro]

Purpose: Invokes the single next most general method; must appear in the body of a
method. This does not cause an error if no inherited method matches.

Behavior: Analogous to ←Super. The difference between ←Super? and ←Super is
that ←Super? does not break if the sel does not have a more general method,
whereas ←Super generates a break if there is not a more general method.

Arguments: self Pointer to an object.

sel Selector; not evaluated. Must be the same as the selector of the
method in which the ←Super? appears.

arg1...argn Arguments associated with sel.

(←SuperFringe self sel arg1 ... argn) [Macro and Function]

Purpose: Invokes general methods for objects with more that one super class from
which you wish to inherit methods; must appear in the body of a method.

Behavior: It invokes and executes the next more general method of the same name from
each of the classes on the super’s list object’s class. Calling ←SuperFringe is
analogous to sending ←Super up through each item on the super’s list. If no
arguments are provided ←SuperFringe uses the arguments of the method
from which it was called.

Arguments: self Pointer to an object.

sel Selector; not evaluated. Must be the same as the selector of the
method in which the ←SuperFringe appears.

arg1...argn Arguments associated with sel.

(←New class selector arg1 ... argn) [NLambda NoSpread Macro]

Purpose: Creates an instance of class and then sends sel and arguments to that
instance.

Behavior: Creates a new instance of a class and sends a message to that instance. It
returns the instance as a value and discards any value that may be returned
by invoking the method specified by selector. ←New is equivalent to (← (←
ClassName New) selector arg1 ... argn).

Arguments: class Pointer to a class.

sel Selector; not evaluated.

arg1...argn Arguments associated with sel.

Returns: The new instance.

Example: This example shows an example of ←New that creates a new instance of the
class Window and asks you to shape it.

99← (←New ($ Window) Shape)
#,($& Window (|OZW0.1Y:.;h.Qm:| . 497))

(← class FetchMethod sel) [Method of Class]

Purpose: Finds the function name which implements the method invoked by sending a
message with the selector sel to an instance of class. The function can be
found in either class or its supers.

7 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

Behavior: Calls the function FetchMethod.

Arguments: class Pointer to a class.

sel Selector; evaluated.

Returns: The function for sel or NIL.

Example: Line 100 shows that the class Window implements the method Update.

100←(← ($ Window) FetchMethod ’Update)
Window.Update

Line 1 shows that neither the class Window nor any of its supers implements
the method abcd.

1←(← ($ Window) FetchMethod ’abcd)
NIL

Line 2 shows that the class Object implements the method PP which will be
triggered when instances of the class Window receive the PP message.

2←(← ($ Window) FetchMethod ’PP)
Object.PP

7 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

7. MESSAGE SENDING FORMS

[This page intentionally left blank]

8 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8. ACTIVE VALUES

Active values are used in LOOPS to transpose the access of data within an
object to a message being sent to a different object. Typical uses include:

• Causing side effects to occur when data is accessed

• Debugging

• Initializing variables

• Maintaining constraints between variables

An ActiveValue is an instance of a subclass of the LOOPS class
ActiveValue. When an ActiveValue instance is installed in the value of a
variable, further references to that variable cause messages to be sent to the
instance.

LOOPS provides several kinds of active values which are described in this
chapter. You can obtain new behavior by specializing one of the existing
LOOPS ActiveValue subclasses.

When GetValue notices that an ActiveValue is installed on the variable, it
sends the GetWrappedValue message to the ActiveValue. Similarly, when
PutValue notices that an ActiveValue is installed on the variable, it sends the
PutWrappedValue message to the ActiveValue. The value returned from the
get or put is the value returned from the message send. Each specialization of
ActiveValue either inherits these methods from its superclasses or specializes
them to call user code. The messages are received and processed by the
ActiveValue instances.

For example, assume that you are modeling a simulation that requires the
value of an instance variable called windSpeed to be a random value. You
can make the value of windSpeed into an active value called ($
RandomWindSpeedAV1). Now, if you try to determine the value of
windSpeed by entering

(@ ($ SomeAirport) windSpeed)

the value returned from this expression is the value returned from

(← ($ RandomWindSpeedAV1) GetWrappedValue . otherArgs)

This returns the required random value.

The variable containing the ActiveValue may still have a current value. Most
system ActiveValue subclasses are specializations of
LocalStateActiveValue, which uses an instance variable localState in the
ActiveValue to hold the value.

For efficient implementation, LOOPS uses a special Interlisp data type, the
annotatedValue data type, to "wrap" each ActiveValue instance when it is
installed as a value within an object; the annotatedValue contains the
ActiveValue instance. That is, if the value of an instance variable is said to
be an active value, in actuality, the value of the instance variable is an
annotatedValue which contains the active value. This allows every GetValue
or PutValue to use Interlisp’s microcoded type checking mechanism to see if it
should be processed normally or via the ActiveValue mechanism. This extra
layer is largely invisible in application programs. LOOPS also contains a class
AnnotatedValue to handle the occasional accident when a user forgets about

8 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.1 USING ACTIVE VALUES

the distinction between annotatedValue and ActiveValue, and attempts to
treat an annotatedValue as a LOOPS object.

The class ActiveValue defines the general protocol followed by all active
value objects. Methods setting up the basic functionality of ActiveValues are
defined in this class and inherited by all its specializations. Methods defined in
this class include AVPrintSource to specify how annotatedValues print,
AddActiveValue to install an ActiveValues, and DeleteActiveValue to delete
an installed ActiveValue.

The class ActiveValue itself is an abstract class; that is, it is a placeholder in
the class hierarchy that is not intended to be instantiated. When this
documentation refers to an active value object, it is referring to an instantiation
of a specialization of the class ActiveValue.

Note: The current ActiveValue is different from the activeValue
implementation in the Buttress version of LOOPS. See Appendix A,
Active Values in Buttress LOOPS, for more information.

8.1 Using Active Values

A general template is available when using active values. As with all
templates, you should not blindly follow it. A good understanding of the active
value mechanism is necessary to avoid errors in more complicated situations.

• Determine the functionality that you want the active value to provide. For
example, will it cause a side effect to occur on access of data? Will it
maintain constraints between two pieces of data? The required
functionality will give an indication of which active value class you should
use.

• Specialize one of the active value classes to satisfy your specific
requirements, if necessary.

• Create an instance of the active value class that you have chosen or
created.

• Initialize the contents of that instance, if necessary.

• Install that active value instance on the data that you want to become
active. This is accomplished by using the AddActiveValue message.

In a number of situations, you may want to install an active value on an
instance variable for every instance of a class. One technique for doing this is
discussed in Section 8.5, "Active Values in Class Structures."

8.2 Specializations of the Class ActiveValue

The class ActiveValue is an abstract class, and therefore cannot be
instantiated. This class contains a number of methods, described in Section
8.3, "ActiveValue Methods," that are necessary for the active value
mechanism to function. As a user, you will be making active values which are
instances of some subclass of ActiveValue, either one of those already
provided or one that you created. Figure 8-1 shows the class ActiveValue
and its specializations. This section describes the subclasses of ActiveValue
in order of their appearance in this figure. Also included is information on
specializing active values.

8 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

ActiveValue

ReplaceMeAV

NotSetValue

LocalStateActiveValue

InheritingAV

IndirectVariable

FirstFetchAV

AppendSuperValue

TraceOnPut

BreakOnPut

LispWindowAV

NoUpdatePermittedAV

ExplicitFnActiveValue

TraceOnPutOrGet

BreakOnPutOrGet

NestedNotSetValue

Figure 8-1. The Class ActiveValue and its Specializations

8.2.1 IndirectVariable

This specialization sets up the functionality of an ActiveValue to return the
value of another variable as its value. It is analogous to the concept of indirect
addressing in other computer languages.

Note: Indirect variables must be the innermost of nested active values.
Wrapping precedence (see Section 8.3, "Active Value Methods")
insures this.

IndirectVariable [Class]

Purpose: Enables variable values to be accessed indirectly from other variables. This
simulates two variables sharing the same memory location. This is a useful
technique for implementing simulations and enforcing constraints.

Behavior: When a Fetch is made on the variable containing the IndirectVariable
instance, this active value retrieves and returns the value of the tracked
variable. If a Store is made with the variable containing the IndirectVariable
instance, this active value stores the new value in the tracked variable.
Essentially, this forces the two variables to share the same data.

Instance Variables: object Object instance containing the tracked value.

varName The name of the variable being tracked.

propName If non-NIL, the name of the variable property being tracked.

type Type of variable being tracked. Value can be CV, IV or NIL,
which defaults to IV.

Examples: Several examples are included to show the use of IndirectVariable.

Example 1: Consider a chemical reactor simulation where you have a tank draining into a
pipe. The output pressure of the tank needs to equal the input pressure of the pipe. The
following demonstrates this.

First, build the appropriate pipe and tank classes and make instances of them.

78← (DefineClass ’Tank)
#,($C Tank)

79← (DefineClass ’Pipe)
#,($C Pipe)

80← (← ($ Tank) AddIV ’outputPressure)
outputPressure

8 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

81← (← ($ Pipe) AddIV ’inputPressure)
inputPressure

82← (← ($ Tank) New ’tank1)
#,($& Tank (NYW0.0X%:.aF4.6R8 . 5))

83← (← ($ Pipe) New ’pipe1)
#,($& Pipe (NYW0.0X%:.aF4.6R8 . 6))

Create an instance of IndirectVariable and initialize its contents to point to the tank’s output
pressure.

84← (← ($ IndirectVariable) New ’indVar1)
#,($& IndirectVariable (NYW0.0X%:.aF4.6R8 . 7))

85← (←@ ($ indVar1) object ($ tank1))
#,($& Tank (NYW0.0X%:.aF4.6R8 . 5))

86← (←@ ($ indVar1) varName ’outputPressure)
outputPressure

Install the active value instance as the value of the pipe’s input pressure.

87← (← ($ indVar1) AddActiveValue ($ pipe1) ’inputPressure)
#,($AV IndirectVariable (indVar1 (NYW0.0X%:.aF4.6R8 . 7)) (object
#,($& Tank (NYW0.0X%:.aF4.6R8 . 5))) (varName outputPressure))

Accesses to either the pipe’s input pressure or the tank’s output pressure produce the same
result.

90← (@ ($ pipe1) inputPressure)
NIL

92← (←@ ($ pipe1) inputPressure 100)
100

94← (@ ($ tank1) outputPressure)
100

95← (←@ ($ tank1) outputPressure 200)
200

96← (@ ($ pipe1) inputPressure)
200

An inspector window of ($ pipe1) appears as follows:

Example 2: Consider a conveyor that must be three feet above a bin. Assume both have an
instance variable named height.

First, create the classes and instances.

53← (DefineClass ’Bin)
#,($C Bin)

54← (DefineClass ’Conveyor)
#,($C Conveyor)

55← (← ($ Bin) AddIV ’height 0)
height

56← (← ($ Conveyor) AddIV ’height 0)
height

8 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

57← (← ($ Bin) New ’bin1)
#,($& Bin (|DAW0.1Y:.H53.]99| . 506))

58← (← ($ Conveyor) New ’conveyor1)
#,($& Conveyor (|DAW0.1Y:.H53.]99| . 507))

Create a specialization of IndirectVariable and specialize the methods GetWrappedValue
and PutWrappedValue. You need to specialize IndirectVariable because you do not want to
maintain equality between the two variables, but instead want to maintain a different
mathematical relationship. The _Supers are used to use the default behavior of
IndirectVariable which takes care of retrieving or storing the data into the tracked variable.

59← (DefineClass ’3FeetAbove
’(IndirectVariable))
#,($C 3FeetAbove)

Create an instance of 3FeetAbove and initialize its contents to point to the bin’s height.

65← (← ($ 3FeetAbove) New ’3fa1)
#,($& 3FeetAbove (|DAW0.1Y:.H53.]99| . 505))

66← (←@ ($ 3fa1) object ($ bin1))
#,($& Bin (|DAW0.1Y:.H53.]99| . 506))

67← (←@ ($ 3fa1) varName ’height)
height

Install this instance of 3FeetAbove as the value of the conveyor’s height.

68← (← ($ 3fa1) AddActiveValue ($ conveyor1) ’height)
#,($AV 3FeetAbove (3fa1 (|DAW0.1Y:.H53.]99| . 505))

(object #,($& Bin (|DAW0.1Y:.H53.]99| . 506)))
(varName height))

The height of bin1 defaults to 0, what is the height of conveyor1?

69← (@ ($ bin1) height)
0

70← (@ ($ conveyor1) height)
3

8 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

Set either bin1’s height or conveyor1’s height and notice how they track each other.

71← (←@ ($ bin1) height 15)
15

72← (@ ($ conveyor1) height)
18

73← (←@ ($ conveyor1) height 21)
21

74← (@ ($ bin1) height)
18

8.2.2 LocalStateActiveValue

This specialization sets up a class of ActiveValue that contains the instance
variable localState, which is used primarily for storing the value of the
referenced variable.

If you need an active value that will produce your own specific side-effect, you
will most likely use your own specialization of LocalStateActiveValue. The
data that would have been accessed, had an active value not been installed, is
stored in the localState instance variable.

LocalStateActiveValue [Class]

Purpose: Creates a subclass of ActiveValue with an instance variable to hold the
current value of the referenced variable.

Behavior: Holds the data that normally is stored in the variable where it is installed. At
installation time, the current variable value is placed in the localState instance
variable of the ActiveValue. Subclasses of LocalStateActiveValues are the
most common ActiveValue instances.

The class LocalStateActiveValue is commonly specialized. In particular, it is
usually desirable to specialize the methods GetWrappedValue and
PutWrappedValue associated with new subclasses of
LocalStateActiveValue. These methods implement the active value
messages sent when the variable is accessed.

Instance Variable: localState Stores the value of the referenced variable.

Examples: Several examples are included to show the use of LocalStateActiveValue.

Example 1: In this example, an active value will print a message if an attempt is made to
store an out-of-range value in an instance variable.

Define a subclass of LocalStateActiveValue and give it two instance variables that will store
the values of the limits.

99← (DefineClass ’WarningAV ’(LocalStateActiveValue))
#,($C WarningAV)

100← (← ($ WarningAV) AddIV ’lowTrigger 0)
lowTrigger

101← (← ($ WarningAV) AddIV ’highTrigger 100)
highTrigger

Specialize LocalStateActiveValue’s PutWrappedValue method to create one for
WarningAV.

8 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

Create an instance of a Bin and attach an instance of a WarningAV to its height.

4← (← ($ Bin) New ’bin3)
#,($& Bin (|DAW0.1Y:.H53.]99| . 513))

5← (←New ($ WarningAV) AddActiveValue ($ bin3) ’height)
#,($& WarningAV (|DAW0.1Y:.H53.]99| . 514))

Attempt to store various values into the bin’s height.

7← (←@ ($ bin3) height 10)
10

8← (←@ ($ bin3) height -10)
The value -10 is out of range.
-10

9← (←@ ($ bin3) height 110)
The value 110 is out of range.
110

10← (@ ($ bin3) height)
110

Example 2: In this example, an active value will return a random number when it is read from.
Puts to it will change the range of the random value returned on gets. This will use
localState for something other than storing the data for active values that provide only pure
side-effect behavior.

99← (DefineClass ’RandomAV ’(LocalStateActiveValue))
#,($C RandomAV)

100← (← ($ RandomAV) AddIV ’localState ’(0 100))
localState

Specialize LocalStateActiveValue’s PutWrappedValue and GetWrappedValue methods to
create them for RandomAV.

8 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

Now, try to test this.

36← (DefineClass ’RandomTest)
#,($C RandomTest)

39← (← IT AddIV ’randomIV)
randomIV

40← (← ($ RandomTest) New ’rt1)
#,($& RandomTest (DCW0.0X%:.aF4.5S; . 518))

41← (←New ($ RandomAV) AddActiveValue ($ rt1) ’randomIV)
#,($& RandomAV (DCW0.0X%:.aF4.5S; . 519))

42← (@ ($ rt1) randomIV)
24

43← redo
32

44← redo
9

45← redo
49

46← (←@ ($ rt1) randomIV ’(4.0 5.0))
(4.0 5.0)

47← (@ ($ rt1) randomIV)
4.190201

48← REDO
4.1129

49← REDO
4.380234

50← REDO
4.397278

8.2.2.1 ExplicitFnActiveValue

ExplicitFnActiveValue emulates the activeValue implementation from the
Butttress version of LOOPS. Users are discouraged from using this particular
form of active values within new projects.

See the LOOPS Users’ Modules for details on LOOPSBACKWARDS, which
describes ExplicitFnActiveValue. See Appendix A, Active Values in Buttress
LOOPS, for details on the compatibility of ActiveValue with activeValue.

8 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

8.2.2.2 NoUpdatePermittedAV

This specialization sets up a class of ActiveValue that prevents the value of a
variable from being replaced.

NoUpdatePermittedAV [Class]

Purpose: Prevents the value of a variable from being replaced using the PutValue
method.

Behavior: Stores the current value of the variable in localState, then prevents it from
being updated. GetWrappedValue requests return the value found in
localState, but PutWrappedValue requests cause a break with the break
message NoUpdatePermitted!, or a message if sent from the Exec.

Example: Suppose an identification number for a piece of data should never be
changed. Installing a NoUpdatePermittedAV in the data’s ID number will
cause a break if a replacement attempt is made.

Start with a user-defined class named Datum. Make a Datum instance named
Datum1. Set the instance variable named idNumber to the value 999. Look
at the instance. Make a new instance of NoUpdatePermittedAV, and name it
NumberGuard. Install the ActiveValue in the instance variable idNumber of
the instance Datum1. Look at the ActiveValue instance; the localState
instance variable contains the previous value of idNumber. To test this
ActiveValue, attempt to replace the idNumber of Datum1 with a new value.

67← (DefineClass ’Datum)
#,($C Datum)

68← (← ($ Datum) AddIV ’idNumber 0)
idNumber

69← (← ($ Datum) New ’Datum1)
#,($& Datum (|DAW0.1Y:.H53.]99| . 524))

70← (←@ ($ Datum1) idNumber 999)
999

71← (← ($ Datum1) PP)
(DEFINST Datum (Datum1 (|DAW0.1Y:.H53.]99| . 524)) (idNumber 999))
#,($& Datum (|DAW0.1Y:.H53.]99| . 524))

74← (← ($ NoUpdatePermittedAV) New ’NumberGuard)
#,($& NoUpdatePermittedAV (|DAW0.1Y:.H53.]99| . 525))

75← (← ($ NumberGuard) AddActiveValue ($ Datum1) ’idNumber)
#,($AV NoUpdatePermittedAV (NumberGuard (|DAW0.1Y:.H53.]99| . 525))
 (localState 999))

76← (← ($ Datum1) PP)
(DEFINST Datum (Datum1 (|DAW0.1Y:.H53.]99| . 524))
 (idNumber #,($AV NoUpdatePermittedAV (NumberGuard

(|DAW0.1Y:.H53.]99| . 525)) (localState 999))))
#,($& Datum (|DAW0.1Y:.H53.]99| . 524))

77← (←@ ($ Datum1) idNumber 888)
No update permitted!
NIL

8 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

8.2.2.3 LispWindowAV

This specialization sets up a class of ActiveValue used by the system to
guarantee that the window instance variable within a LOOPS Window
instance contains an Interlisp window. This class provides functionality
required by the LOOPS system, and should not generally used by LOOPS
users.

LispWindowAV [Class]

Purpose: Guarantees that a variable contains a window which has been made into a
LOOPS window.

Behavior: Meant to be installed only in the instance variable window of instances of
class Window. A specialization of LocalStateActiveValue. Checks to see if
its localState is a window, and assures that other instance variables of the
window instance are set correctly. See Chapter 19, Windows, for further
details.

8.2.2.4 Breaking and Tracing Active Values

The following active values are all specializations of LocalStateActiveValue
and are used for debugging, as described in Chapter 12, Breaking and
Tracing. This chapter also describes UnbreakIt, which unbreaks or untraces
a method of a class. These classes provide functionality required by the
LOOPS system, and are not generally used by LOOPS users.

Note: All breaks and traces occur before the variable is read or modified.

BreakOnPut [Class]

Purpose: Breaks when a replacement attempt is made.

Behavior: Breaks when a replacement attempt is made. Local variables bound at the
time of the break are containingObj, varName, and propName.

BreakOnPutOrGet [Class]

Purpose: Breaks when a retrieval or replacement of a variable is made. This is a
specialization of BreakOnPut.

Behavior: Break occurs before any access to the variable where it is installed. Local
variables bound at the time of the break are containingObj, varName, and
propName.

TraceOnPut [Class]

Purpose: Traces replacements of a variable.

Behavior: Has a specialized PutWrappedValue method that causes the values of the
arguments containingObj, varName, and propName to print in the trace
window when the variable is about to be modified.

TraceOnPutOrGet [Class]

Purpose: Traces retrievals and replacements of a variable. This is a specialization of
TraceOnPut.

8 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

Behavior: The GetWrappedValue method is also specialized so that the variable is
traced before any access of the variable where it is installed.

8.2.2.5 AppendSuperValue

This specialization allows the value of a variable to reside only partially in the
local instance or class. This is a specialization of the ReplaceMeAV,
InheritingAV, and LocalStateActiveValue classes.

AppendSuperValue [Class]

Purpose: Allows the value of a variable to be defined by both a local value and an
inherited value.

Behavior: When an instance of AppendSuperValue is installed in a variable, Get-
references return its localState appended to the end of the inherited value the
variable would have if it had no local value. Any PutValue to the variable
replaces the active value, not just the localState; InheritingAV and its
specializations are designed for use more in class variables where
replacement is infrequent.

Examples: Several examples are included to show the use of AppendSuperValue.

Example 1: Append the localState of the instance variable idNumber to the default value
specified in the class description.

23←(DefineClass ’Datum)
#,($C Datum)

24←(← ($ Datum) AddIV ’idNumber ’(5))
idNumber

25←(← ($ Datum) New ’Datum1)
#,($ Datum1)

26←(@ ($ Datum1) idNumber)
(5)

27←(←@ ($ Datum1) idNumber ’(9))
(9)

28←(@ ($ Datum1) idNumber)
(9)

29←(←New ($ AppendSuperValue) AddActiveValue ($ Datum1) ’idNumber)
#,($& AppendSuperValue (45 . 54648))

30←(@ ($ Datum1) idNumber)
(5 9)

Example 2: In this example, there are two classes of cars; the Two-tone-Car class is a
subclass of the class Car. Each Car class has the instance variable color. The default value
for color in the class Car is (white).

89← (DefineClass ’Car)
#,($C Car)

90← (DefineClass ’Two-tone-Car ’(Car))
#,($C Two-tone-Car)

91← (← ($ Car) AddIV ’color ’(white))
color

8 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

92← (← ($ Two-tone-Car) AddIV ’color)
color

The default value for color in the class Two-tone-Car is an instance of AppendSuperValue
with its localState set to (blue). The technique for adding active values as default values in a
class is discussed in Section 8.3.1, "Adding and Deleting Active Values.".

100← (← ($ AppendSuperValue) New ’asv1)

1← (←@ ($ asv1) localState ’(blue))

2← (PutClassIV ($ Two-tone-Car) ’color
(create annotatedValue

annotatedValue ← ($ asv1)))
#,($AV AppendSuperValue (asv1 (|DAW0.1Y:.H53.]99| . 528))

(localState (blue)))

9← (← ($ Car) New ’car1)
#,($& Car (|DAW0.1Y:.H53.]99| . 531))

10← (← ($ Two-tone-Car) New ’ttcar1)
#,($& Two-tone-Car (|DAW0.1Y:.H53.]99| . 532))

11← (@ ($ car1) color)
(white)

When an instance of a Two-tone-Car is created the default value for its instance variable color
is the combination of the values in both the classes Car and Two-tone-Car. The first inspector
shows the existence of the active value that provides this behavior. As soon as one puts a
value for color in this instance, the AppendSuperValue active value is replaced by the new
value as shown in the second inspector.

12← (@ ($ ttcar1) color)
(white blue)

13← (INSPECT ($ ttcar1))
{WINDOW}#50,5000

14← (←@ ($ ttcar1) color ’(tan brown))
(tan brown)

For another example, see the TitleItems class variable of the class ClassBrowser, where
AppendSuperValue is used to add menu items to an inherited menu.

8.2.2.6 FirstFetchAV

This specialization has instances that have an expression as the value of the
instance variable localState. These active values allow a form to be
evaluated the first time that they are read.

FirstFetchAV [Class]

Purpose: This is a specialization of the ReplaceMeAV mixin and
LocalStateActiveValue. Instances of this class have an expression as the
value of the instance variable localState.

8 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

Behavior: On the first get access, the expression in localState is evaluated. The
resulting value replaces the FirstFetchAV so the variable is no longer an
active value. On the first put access, the put value replaces the FirstFetchAV
so the variable is no longer an active value. A FirstFetchAV is often used as
the default value for a variable. This class also specializes the method
AVPrintSource so that instances print as follows when wrapped in an
annotatedValue:

#,(Defer contentsOfLocalState)

CAUTION

FirstFetchAVs cannot be shared. Unlike lists, SEdit does not make copies of
active values. Hence, if active values are copied in SEdit, they will share
structure, and if one is modified, all will be changed.

Workaround: Use CopyActiveValue to copy the active value instance and
the local state into each instance which uses the FirstFetchAV. See Section
8.3.4, "Shared ActiveValues in Variable Inheritance," for information on
CopyActiveValue.

Example: An example application of FirstFetchAV is an instance variable that stores a
font descriptor. A font descriptor in a class definition does not save
correctly;only the pointer to the descriptor is saved. A FirstFetchAV stores
the expression used to create the descriptor. So, for example the expression
held in the localState of the FirstFetchAV is

(FONTCREATE ’HELVETICA 12 ’BOLD)

On the first access of the instance variable, the font descriptor produced by
calling FONTCREATE replaces the FirstFetchAV.

The complete example follows.

29← (DefineClass ’TextObject)
#,($C TextObject)

30← (← ($ TextObject) AddIV ’font)
font

31← (← ($ FirstFetchAV) New ’ffav1)
#,($& FirstFetchAV (|DAW0.1Y:.H53.]99| . 535))

32← (←@ ($ ffav1) localState ’(FONTCREATE ’HELVETICA 12 ’BOLD)]
(FONTCREATE (QUOTE HELVETICA) 12 (QUOTE BOLD))

33← (PutClassIV ($ TextObject) ’font
(create annotatedValue
annotatedValue ← ($ ffav1)))

#,(Defer (FONTCREATE (QUOTE HELVETICA) 12 (QUOTE BOLD)))

34← (← ($ TextObject) Edit)
TextObject

8 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

35← (← ($ TextObject) New ’to1)
#,($& TextObject (|DAW0.1Y:.H53.]99| . 536))

36← (INSPECT ($ to1))
{WINDOW}#47,125470

37← (@ ($ to1) font)
{FONTDESCRIPTOR}#74,167334

8.2.3 InheritingAV

This specialization of ActiveValue is used as a mixin to add the
InheritedValue method.

InheritingAV [Class]

Purpose: Used as a mixin to add the InheritedValue method.

Behavior: An abstract class, adds a method InheritedValue which allows looking at the
value a variable would have if it had no local value, as NotSetValue would
work. Used as a mixin to add this capability to other specializations of
ActiveValue.

Example: Used as super class of AppendSuperValue to provide incremental menus in
various parts of LOOPS.

(← self InheritedValue containingObj varName propName type) [Method of InheritingAV]

Purpose/Behavior: Allows viewing the value a variable would have inherited if it had no local value
yet assigned. Similar to the way NotSetValue works, it is removed by an
assignment to the variable.

Arguments: self InheritingAV instance.

containingObj
The instance or class that contains the variable to be viewed.

varName In the containingObj the variable to be viewed.

propName Name of an instance variable or class variable property to be
looked at. If propName is NIL, the variable itself is viewed.

8 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

type One of IV, CV, or NIL: a type of IV or NIL indicates that the
variable is an instance variable or an instance variable property
of containingObj; a type of CV indicates a class variable or class
variable property of containingObj.

Returns: The value which would have been inherited if the variable had no local value.

8.2.4 ReplaceMeAV

This specialization of the class ActiveValue sets up the functionality to
replace itself on the first Put- access.

ReplaceMeAV [Class]

Purpose: Specializes the method PutWrappedValue to simply replace itself on the first
Put- request.

Behavior: No variables are defined in this class. It is an abstract class not intended for
instantiation. It is a mixin (see Chapter 3, Classes) to be combined in
specialization with another class to add its functionality to the subclass.

Example: FirstFetchAV combines LocalStateActiveValue and ReplaceMeAV to get an
ActiveValue that replaces itself with the value of an expression stored in the
instance variable localState.

8.2.5 NotSetValue

This section describes where and when instances of this class appear in user-
defined objects.

CAUTION

Do not specialize the classes NotSetValue and NestedNotSetValue. The
documentation is provided here only to explain the functionality that these
classes provide to the LOOPS system.

NotSetValue [Class]

Purpose: This specialization of the class ActiveValue is unique in that it was created
primarily for implementing instance variable inheritance. It has no instance
variable to hold a local value and is replaced after the first Put- variable
access.

Behavior When an instance of any LOOPS object is created, its instance variables are
initialized to contain the value of the variable NotSetValue. NotSetValue is
an annotatedValue whose ActiveValue is the only instance of the class
NotSetValue. The value of NotSetValue stored in an instance variable may
be replaced within other initialization procedures of new instances that are
invoked by the methods NewWithValues and NewInstance and the instance
variable property :initForm.

The class NotSetValue specializes the default ActiveValue protocol to trigger
instance variable inheritance. An annotatedValue check is always done by
GetValue and PutValue. LOOPS speeds up instance generation by always
initializing instance variables to the value NotSetValue. If a retrieval attempt
is made on the variable, NotSetValue finds the inherited value and returns
that value. If no requests are made for the value of the variable, there is no
overhead for the instance variable.

8 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.2 SPECIALIZATIONS OF THE CLASS ACTIVEVALUE

The term local value refers to the values LOOPS has actually written into that
instance’s instance variables. The local value is always equal to NotSetValue
before the first Put- access, and to a new value after the first Put- access.

The annotatedValue #,NotSetValue is bound to the Lisp variable
NotSetValue. It must always be on the inside of any sequence of nested
ActiveValues. Its WrappingPrecedence method returns NIL, ensuring this
functionality. NotSetValue has no localState instance variable to hold any
nested ActiveValues.

See Section 8.3.4, "Shared ActiveValues in Variable Inheritance," for
information on ActiveValues as default values.

Example: Consider the class Datum with the instance variable idNumber. Create a new
instance named Datum2. A standard GetValue or @ call returns the default
value of idNumber, since nothing else has yet been assigned. The call
GetIVHere shows that the value is not stored in the instance, but is actually
returned by NotSetValue.

91←(← ($ Datum) New ’Datum2)
#,($ Datum2)

92←(@ ($ Datum2) idNumber)
NIL

93←(GetIVHere ($ Datum2) ’idNumber)
#,NotSetValue

8.2.5.1 NestedNotSetValue

This subclass of the class NotSetValue is used by the internal of LOOPS to
solve the problem of using active values as default values.

8.2.6 User Specializations of Active Values

If new specializations of the class ActiveValue are defined, the methods
GetWrappedValueOnly and PutWrappedValueOnly might need to be
specialized (LOOPS-defined specializations of ActiveValue, such as
LocalStateActiveValue, have already done this). You may also want to
specialize the following methods:

AVPrintSource Prints an ActiveValue instance.

GetWrappedValue Method associated with getting an ActiveValue.

PutWrappedValue Method associated with putting an ActiveValue.

WrappingPrecedence Returns T, NIL, or a number to specify order of ActiveValue nesting.

CopyActiveValue Copies an annotatedValue and its wrapped ActiveValue.

8.3 Active Value Methods

Methods defined in the class ActiveValue describe how active values work.

8 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

8.3.1 Adding and Deleting Active Values

This section describes the methods to install, delete, and replace active
values.

Name Type Description

AddActiveValue Method Makes a variable or property an active value.

WrappingPrecedence Method Returns a value which determines how to nest the active value.

DeleteActiveValue Method Deletes an active value.

ReplaceActiveValue Method Replaces an active value.

(← self AddActiveValue containingObj varName propName type annotatedValue) [Method of ActiveValue]

Purpose: Accomplishes two tasks fundamental in making a variable or property an
active value. First, the ActiveValue is wrapped inside an annotatedValue.
Second, the annotatedValue is placed as the value of the variable.

Behavior: AddActiveValue associates the annotatedValue with the variable specified by
the arguments. If the argument annotatedValue is not specified or is NIL, a
new annotatedValue is created containing the ActiveValue self. When the
current value of the variable is already an annotatedValue, the
WrappingPrecedence message determines if it should be nested in the
current one or wrapped around it.

Arguments: self ActiveValue instance.

containingObj
The instance or class that contains the variable where the
ActiveValue is to be added.

varName In the containingObj the variable to be made into an
ActiveValue.

propName Name of an instance variable or class variable property to be
made into an ActiveValue. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, CLASS, METHOD, or NIL.

- A type of IV or NIL indicates that varName is an instance
variable or an instance variable property of containingObj.

- A type of CV indicates a class variable or class variable
property of containingObj.

- A type of CLASS indicates access to a class object’s instance
variables and properties.

- A type of METHOD indicates access to a method object ’s
instance variables and properties.

annotatedValue
AnnotatedValue object used to contain this ActiveValue. If
NIL, a new annotatedValue is created.

Returns: annotatedValue

Example: Adds the ActiveValue instance named ($ ActiveValueInstance) to the object
($ ExampleLoopsWindowInstance) in the instance variable width.

8 - 1 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

71←(← ($ ActiveValueInstance) AddActiveValue ($
ExampleLoopsWindowInstance) ’width)

#,($AV IndirectVariable (ActiveValueInstance (NCV0.0X:.SD7.KR . 8))
(object #,($ ExampleLoopsWIndowInstance))(varName width))

(← self WrappingPrecedence) [Method of ActiveValue]

Purpose: Returns a value which determines how to nest the ActiveValue associated
with self.

Behavior: Varies according to the value returned.

• T

The ActiveValue associated with self goes on the outside of any other
active values.

• NIL

This ActiveValue goes on the inside.

If two ActiveValues return either T or NIL, a break occurs.

• Number

Specifies precedence: ActiveValues with larger WrappingPrecedence
values go outside ones with smaller WrappingPrecedence values.

CAUTION

It is potentially dangerous to have more than one class with a T or NIL
precedence.

ActiveValues that have the instance variable localState nest in the following
way. When a new ActiveValue is added to an existing one with equal
WrappingPrecedence, the original ActiveValue is held in the localState of
the new one. ActiveValues not having an instance variable localState must
nest inside of ones that do.

To set the WrappingPrecedence for a user specialization of ActiveValue,
specialize this method to return the proper value.

Arguments: self ActiveValue instance.

Returns: The default method defined in the class ActiveValue returns 100.
WrappingPrecedence for the class NotSetValue returns NIL.
WrappingPrecedence for IndirectVariable returns 50.

(← self DeleteActiveValue containingObj varName propName type) [Method of ActiveValue]

Purpose: Deletes an ActiveValue from containingObj.

Behavior: If the variable defined by the arguments is an ActiveValue, it is deleted. If it
contains a nested ActiveValue, the one matching self is deleted; otherwise,
nothing happens. No ActiveValue messages are triggered. If the deleted
ActiveValue had a localState, it becomes the current value.

Arguments: self ActiveValue instance.

8 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that contains the ActiveValue.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, CLASS, METHOD, or NIL.

- A type of IV or NIL indicates that varName is an instance
variable or an instance variable property of containingObj.

- A type of CV indicates a class variable or class variable
property of containingObj.

- A type of CLASS indicates access to a class object’s instance
variables and properties.

- A type of METHOD indicates access to a method object’s
instance variables and properties.

Returns: The deleted annotatedValue if a match was found, NIL otherwise.

(← self ReplaceActiveValue newVal containingObj varName propName type) [Method of ActiveValue]

Purpose: Replaces an ActiveValue.

Behavior: Replaces the ActiveValue self with newVal. The location of the old
ActiveValue is described by the arguments. No ActiveValue messages are
triggered.

Arguments: self ActiveValue instance.

newVal The new value used to replace self.

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that holds the ActiveValue.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type type is one of IV, CV, or NIL: a type of IV or NIL indicates that
the variable is an instance variable or an instance variable
property of containingObj; a type of CV indicates a class variable
or class variable property of containingObj.

Returns: The value of newVal.

8.3.2 Fetching and Replacing Wrapped Values

The value of a variable is wrapped in an ActiveValue, usually by keeping it in
the instance variable localState. Specify the behavior of new ActiveValue
specializations by specializing the methods GetWrappedValue and
PutWrappedValue. For example, IndirectVariable.GetWrappedValue just
does a GetValue on the slot specified by its object, varName, propName,
and type instance variables. These methods may perform arbitrary work
before returning a value, usually that of localState. The methods
GetWrappedValueOnly and PutWrappedValueOnly are available for
accessing localState and bypassing the ActiveValue mechanism.

8 - 2 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

The following table shows the items in this section.

Name Type Description

GetWrappedValue Method Contains the code to be triggered by a Get- reference to the
variable which has been made an ActiveValue.

GetWrappedValueOnly Method Provides a mechanism to assist in handling nested
ActiveValues.

PutWrappedValue Method Contains the code to be triggered by a Put- reference to the
variable which has been made an ActiveValue.

PutWrappedValueOnly Method Provides a mechanism to assist in handling nested
ActiveValues.

(← self GetWrappedValue containingObj varName propName type) [Method of ActiveValue]

Purpose: Contains the code to be triggered by a Get- reference to the variable which
has been made an ActiveValue.

Behavior: Performs arbitrary actions, but when finished, it must return a value which will
be returned as the value of the Get to the original variable.

This method is fundamental for ActiveValues. When GetValue or
GetClassValue finds an annotatedValue in an instance, it does not return that
as the value. Instead, it sends the contained ActiveValue the
GetWrappedValue message. This method is not usually called explicitly by
users, but is triggered when the GetValue function retrieves the value of a
variable that contains an ActiveValue. It should be specialized when a new
subclass of ActiveValue is defined.

Arguments: self ActiveValue instance.

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that holds the ActiveValue.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, or NIL: a type of IV or NIL indicates that the
variable is an instance variable or an instance variable property
of containingObj; a type of CV indicates a class variable or class
variable property of containingObj.

Returns: The value returned from the actions performed by GetWrappedValue
message.

(← self GetWrappedValueOnly) [Method of ActiveValue]

Purpose: Enables the ActiveValue mechanism to deal with different problems of nested
ActiveValues. You will generally not need to specialize this method, as most
uses of ActiveValues will specialize a subclass of ActiveValue.

Behavior: Specializations of the class ActiveValue may need to specialize this method.
(LocalStateActiveValue, IndirectVariable, and NotSetValue all have
specialized versions of this method.)

The class LocalStateActiveValue specialization simply returns the value of
self’s localState without triggering the active value mechanism.

8 - 2 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

The class IndirectVariable specialization simply returns the value of tracked
variable without triggering the active value mechanism.

The class NotSetValue specialization simply returns the value of
NotSetValue.

 Arguments: self ActiveValue instance.

Returns: See Behavior.

(← self PutWrappedValue containingObj varName newValue propName type) [Method of ActiveValue]

Purpose: Contains the code to be triggered by a Put- reference to the variable which
has been made an ActiveValue.

Behavior: The PutWrappedValue message is similar to GetWrappedValue except that
it is triggered when the local state of the value is to be replaced. When
PutValue or PutClassValue attempts to replace an ActiveValue, it instead
sends the contained ActiveValue the PutWrappedValue message.

The default method found in the class ActiveValue checks for nested
ActiveValues by sending the GetWrappedValueOnly message to self. If the
result is an AnnotatedValue, PutWrappedValue forwards the message on
the nested ActiveValue; otherwise it sends the message
PutWrappedValueOnly to self and returns the result.

Arguments: self ActiveValue instance.

containingObj
The instance or class that contains the variable where the
ActiveValue is found.

varName In the containingObj the variable that holds the ActiveValue.

newValue The value used to replace the ActiveValue containing self.

propName Name of an instance variable or class variable property where
the ActiveValue resides. If propName is NIL, the ActiveValue
is associated with the variable itself.

type One of IV, CV, or NIL: a type of IV or NIL indicates that the
variable is an instance variable or an instance variable property
of containingObj; a type of CV indicates a class variable or class
variable property of containingObj.

Returns: The value of newValue.

(← self PutWrappedValueOnly newValue) [Method of ActiveValue]

Purpose: Enables the ActiveValue mechanism to deal with different problems of nested
ActiveValues. You will generally not need to specialize this method, as most
uses of ActiveValues will specialize a subclass of ActiveValue.

Behavior: Specializations of the class ActiveValue may need to specialize this method.
(LocalStateActiveValue, IndirectVariable, and NotSetValue all have
specialized versions of this method.)

The class LocalStateActiveValue specialization simply stores newValue into
self’s localState without triggering the active value mechanism.

The class IndirectVariable specialization simply stores newValue into tracked
variable without triggering the active value mechanism.

The class NotSetValue specialization causes a break.

8 - 2 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

Arguments: self ActiveValue instance.

newValue The new value for localState.

Returns: See Behavior.

8.3.3 Get and Put Functions Bypassing the ActiveValue Mechanism

ActiveValues normally convert GetValue, GetClassValue, PutValue, and
PutClassValue accesses into messages which invoke methods to return a
value, usually from the localState instance variable of the ActiveValue. The
following functions allow access to class variables and instance variables
without triggering any installed ActiveValue. See Chapter 2, Instances, for
details.

Name Type Description

GetValueOnly Function Finds the value of an instance variable without triggering active
values.

PutValueOnly Function Writes the value of an instance variable without triggering active
values.

GetClassValueOnly Function Returns the value of a class variable; does not trigger active
values.

PutClassValueOnly Function Changes the value of a class variable and changes the value of
a class variable. The change occurs within the class and
therefore causes all instances to access the new value of the
variable. Does not trigger active values.

8.3.4 Shared ActiveValues in Variable Inheritance

When a LocalStateActiveValue is used as the default value for an instance
variable in a class, it must be copied into each instance or else all of the
instances try to share a single localState. This copying is done automatically
by LOOPS when the instance variable is first accessed, which means that all
instances will share the same ActiveValue until that first access. Copying an
ActiveValue implies creating a new annotatedValue, so it must be done with
the specialized method CopyActiveValue.

ActiveValues with no local state may be shared by several variables. In the
most extreme case, one instance of NotSetValue is the default for the
instance variables of all new instances of all classes.

(← self CopyActiveValue annotatedValue) [Method of ActiveValue]

Purpose: Makes a copy of an ActiveValue instance.

Behavior: Copies the AnnotatedValue and the wrapped ActiveValue handling instance
variables as follows:

• Instance variables that contain AnnotatedValues are copied using the
CopyActiveValue method.

• The instance variable localState is copied so that each copy has its own
unique local state.

• All other instance variables are considered shared, and are not copied.

Arguments: self ActiveValue instance.

8 - 2 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

annotatedValue
The annotatedValue that surrounds self.

Returns: A new annotatedValue wrapped around a copy of the ActiveValue self.

8.3.5 Creating Your Own Active Value

This example defines a new kind of active value, a BlippingActiveValue,
which prints out a "blip" of some kind whenever the variable it wraps is read or
written.

First, define the new class as a specialization of LocalStateActiveValue, then
specialize the PutWrappedValue and GetWrappedValue methods. This is
done with the display editor, so in the example they are printed out via the
PPMethod method. In each case, a PRINTOUT function was added before
the call to ←Super.

Create an instance of Window for a location to install a BlippingActiveValue
for the example. Line 38 is required to set the value of height locally to
instance Window1; if this is not done, its initial value is the active value
#,NotSetValue, which would remove any active value as soon as it was
accessed.

The last few statements in the example show how read and write accesses to
height cause a blip character to be printed before height is either read or
written, with a "!" character representing a write access triggering
PutWrappedValue, and a "." character representing a read access triggering
GetWrappedValue.

32←(DefineClass ’BlippingActiveValue ’(LocalStateActiveValue]
#,($ BlippingActiveValue)

33←(← ($ BlippingActiveValue) SpecializeMethod ’PutWrappedValue]
BlippingActiveValue.PutWrappedValue

34←(← ($ BlippingActiveValue) SpecializeMethod ’GetWrappedValue]
BlippingActiveValue.GetWrappedValue

35←(← ($ BlippingActiveValue) PPMethod ’PutWrappedValue]

(BlippingActiveValue.PutWrappedValue
 (Method ((BlippingActiveValue PutWrappedValue)
 self containingObj varName newValue propName type)

COMMENT **COMMENT**
 (PRINTOUT PPDefault "!")
 (←Super self PutWrappedValue containingObj varName newValue
 propName type)))
(BlippingActiveValue.PutWrappedValue)

36←(← ($ BlippingActiveValue) PPMethod ’GetWrappedValue]

(BlippingActiveValue.GetWrappedValue
 (Method ((BlippingActiveValue GetWrappedValue)
 self containingObj varName propName type)

COMMENT **COMMENT**
 (PRINTOUT PPDefault ".")
 (←Super self GetWrappedValue containingObj varName propName
type)))
(BlippingActiveValue.GetWrappedValue)

37←(← ($ Window) New ’Window1]
#,($ Window1)

38←(←@ ($ Window1) height 9876]

8 - 2 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.3 ACTIVE VALUE METHODS

9876

39←(←New ($ BlippingActiveValue) AddActiveValue ($ Window1) ’height]
#,($& BlippingActiveValue (46 . 45056))

40←(←@ ($ Window1) height 300)
!300

41←(@ ($ Window1) height]
.300

42←(FOR I TO 20 SUM (@ ($ Window1) height]
....................6000

43←(←@ ($ Window1) height 123]
!123

44←(FOR I TO 20 DO SUM (←@ ($ Window1) height I]
!!!!!!!!!!!!!!!!!!!!210

45←

8.4 Annotated Values

AnnotatedValue is a LOOPS pseudoclass, and instances of it, called
pseudoinstances, are Interlisp data type instances.

The structure of the data type is simple. Each annotatedValue contains one
field named annotatedValue. This field contains an ActiveValue object. The
Interlisp record package macros discussed below let you create and work with
instances of the data type annotateValue.

There is also a LOOPS class named AnnotatedValue. It is an abstract class
so it cannot be instantiated, but paradoxically there are objects which consider
it their class. (Actually, it is not paradoxical, but this behavior is implemented
at a low level within the LOOPS system.) These are the Lisp data type
annotatedValue. In normal use this class can be ignored.

AnnotatedValue [Class]

Purpose: LOOPS class equivalent of Lisp data type annotatedValue.

Behavior: This is a LOOPS class, but not a subclass of Object. Its super is the LOOPS
class Tofu. (See Chapter 4, Metaclasses, for a description of Tofu.)
AnnotatedValue is a LOOPS abstract class, and instances are Interlisp data
type instances. LOOPS fields messages sent to the annotatedValue data type
instances by using the class definition AnnotatedValue.

8.4.1 Explicit Control over Annotated Values

This section describes the macros and methods that allow explicit control over
annotated values.

Name Type Description

type? Macro Performs a type check for an instance of the Lisp data type
annotatedValue.

create Macro Creates a new instance of the data type annotatedValue.

8 - 2 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.4 ANNOTATED VALUES

fetch Macro Retrieves the contents of the annotatedValue field of an
annotatedValue instance.

replace Macro Replaces contents of the annotatedValue field of the
annotatedValue instance.

_AV Macro Sends a message to the ActiveValue object wrapped in an
annotatedValue.

MessageNotUnderstood Method Forwards messages intended for the wrapped ActiveValue to
that object.

(type? annotatedValue value) [Macro]

Purpose: Performs a type check for an instance of the Lisp data type annotatedValue.

Arguments: value The value to type check.

Returns: T if value is an instance of the data type annotatedValue, NIL otherwise.

(create annotatedValue annotatedValue ← object) [Macro]

Purpose: Creates a new instance of the data type annotatedValue.

Arguments: object An ActiveValue object to initialize the field annotatedValue of
the new annotatedValue instance. This must be an object that
has a method AVPrintSource (a method of ActiveValue) or this
form breaks on evaluation. No type checking of object will be
performed by the macro.

Returns: An instance of annotatedValue.

(fetch annotatedValue of value) [Macro]

Purpose: Retrieves the contents of the annotatedValue field of an annotatedValue
instance.

Arguments: value An annotatedValue instance.

Returns: Contents of field annotatedValue.

(replace annotatedValue of value with object) [Macro]

Purpose: Replaces contents of the annotatedValue field of annotatedValue instance
with object.

Arguments: value An annotatedValue instance.

object ActiveValue object to be stored in the field. No type checking is
done on object.

Returns: If value is not an annotatedValue, generates an error; otherwise the previous
contents of the field is returned.

(_AV av selector . args) [Macro]

Purpose: Sends a message to the ActiveValue object wrapped in an annotatedValue.

Behavior: Equivalent to

8 - 2 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.4 ANNOTATED VALUES

(_ (fetch annotatedValue of av) selector .args)

Arguments: av Instance of an annotatedValue.

selector Selector for message to send to the ActiveValue object.

args Arguments to be passed when the message is sent.

Returns: Result of message.

(← self MessageNotUnderstood) [Method of AnnotatedValue]

Purpose: Forwards messages intended for the wrapped ActiveValue to that object.

Behavior: Messages sent to an annotatedValue are forwarded to its wrapped
ActiveValue. Users should not explicitly send this message.

8.4.2 Saving and Restoring Annotated Values

The following are methods of the class ActiveValue that handle annotated
values.

(← self AVPrintSource) [Method of ActiveValue]

Purpose: Prints ActiveValues.

Behavior: An annotatedValue determines how it prints out by sending the
AVPrintSource message to its wrapped ActiveValue.

The default method in ActiveValue returns a list of the form:

("#," $AV className avNames(ivName value propName value ...)(ivName ...) ...)

which causes the annotatedValue to print out as

#,($AV className avNames(ivName value propName value ...)(ivName ...) ...)

Arguments: self ActiveValue instance.

className Name of the class of the ActiveValue.

avNames List of names of self; the last element being the unique identifier
(UID) of self

The list (ivName value propName value ...) describes the state of the instance
variables of the ActiveValue. Including the UID of the ActiveValue in the
print form enables recovery of the identity of the ActiveValue. This enables
different annotatedValues to share the same ActiveValue, and maintain this
sharing across saving to a file and reloading into Lisp.

Returns: A form suitable for use by the Interlisp function DEFPRINT. Result should be
a pair of the form (item1 . item2); item1 will be printed using PRIN1, and item2
will be printed using PRIN2 (see Lisp Release Notes and the Interlisp-D
Reference Manual description of DEFPRINT).

Example: #,($AV IndirectVariable (HeightFromWidth (NCV0.0X:.SD7.KR
. 8))
(object #.($ SquareWindow)) (varName width) (propName NIL)
(type IV))

8 - 2 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.4 ANNOTATED VALUES

($AV className avNames . ivForms) [NLambda, NoSpread Function]

Purpose: Reconstructs an annotatedValue that has been saved to a file.

Arguments: className Name of the class of ActiveValue.

avNames A list of the LOOPS names of ActiveValue instances.

ivForms A list describing the state of the instance variables of the
ActiveValue.

Returns: A new annotatedValue whose ActiveValue is reconstructed from the
avNames and ivForms.

8.5 Active Values in Class Structures

It is possible to have an active value as the default value of an instance
variable or the value of a class variable in a class. For example, the following
class has an active value installed in the class variable dontChange and one
installed in the instance variable firstRead.

LocalStateActiveValue active values as default IV values are copied down
into the instance when their localState is smashed, instead of being shared by
all instances; this is different from normal default behavior. It is also possible
to create a LocalStateActiveValue which inherits its localState value by
giving it a localState value of the value of NotSetValue). These copy the
inherited value down from the superclass when the LocalStateActiveValue is
created; if the value in the superclass is changed after the
LocalStateActiveValue is created, that change will not be reflected in the
LocalStateActiveValue. Normally inherited values are always tracked by
instances that inherit them.

There are two ways to enter active values into the structure of a class: with the
editor or programmatically.

It is possible to create active values by typing in a form such as:

($AV activeValueClassName NIL (ivname value propName value ...)(ivname
value propName value ...) ...). None of the arguments are evaluated.

To add an active value through the editor, you can type in the above form,
select it, and mutate it with the function EVAL.

Programmatically, you can use the functions PutClassIV, PutClassValue,
PutClassValueOnly, AddCIV, AddCV, etc. or different methods, such as
Add, to modify or add class variables and instance variables.

For example, given the above class, test:

8 - 2 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.5 ACTIVE VALUES IN CLASS STRUCTURES

(← ($ test) Add ’CV ’randomJustOnce ($AV FirstFetchAV NIL
(localState (RAND 0 1000))))

and

(AddCIV ($ test) ’newIV ($AV LocalStateActiveValue NIL
(localState (1 2 3))))

will result in the following:

An even more general programmatic method that more easily allows
customization of an active value uses the annotatedValue data type explicitly.
First, you must create an instance of an ActiveValue class.

(← ($ MyActiveValue) New ’MyAV1)

Then the contents of the instance MyAV1 are initialized. Finally, it is added as
the value of a variable in a class structure.

(AddCIV ($ test) ’myNewIV (create annotatedValue
annotatedValue ← ($ MyAV1)))

8 - 2 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

8.5 ACTIVE VALUES IN CLASS STRUCTURES

[This page intentionally left blank]

9 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

9. DATA TYPE PREDICATES AND
ITERATIVE OPERATORS

This chapter describes data type predicates and an operator for iterative
statements.

9.1 Data Type Predicates

Data type predicates test the Lisp data type of some datum. For example,
some predicates test whether a datum is an object, instance, or class.

LOOPS defines three Lisp data types: annotatedValue, class, and instance.
LOOPS provides predicates that enable testing aspects of these types.

Name Type Description

Object? Macro Determines if a particular datum is a LOOPS object.

Class? Macro Determines if a particular datum is a class.

Instance? Macro Determines if a particular datum is an instance of a class.

AnnotatedValue? Macro Determines if a particular datum is an instance of the
annotatedValue Lisp data type.

Understands Method Determines if an object will respond to a message.

To determine if a particular datum has an instance variable, class variable, or
a property, use HasIV, HasIV!, or HasCV (see Chapter 2, Instances, and
Chapter 3, Classes). To determine if a particular datum is an instance of a
class or its superclasses, use InstOf or InstOf! (see Chapter 2, Instances).

(Object? X) [Macro]

Purpose/Behavior: Determines if X is a LOOPS object. Object? returns T for both instances and
classes.

Arguments: X Possible object.

Returns: Returns T if a name is a pointer to a LOOPS object, and returns NIL
otherwise.

Example: This example demonstrates the use of Object?.

3←(← ($ Window) New ’Window1)
#,($& Window (|OZW0.1Y:.;h.Qm:| . 495))

4←(Object? ($ Window1))
T

5←(Object? ($ Window))

9 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

9.1 DATA TYPE PREDICATES

T

6←(Object? ($ NotAnObject))
NIL

7←(Object? ’NotAnObject)
NIL

(Class? X) [Macro]

Purpose/Behavior: Determines if X is a class.

Arguments: X Possible class.

Returns: Returns T if X is a class; returns NIL otherwise.

Example: This example demonstrates the use of the predicate Class? Since ($
Window) is a class, the function returns T. Since Window1 and NotClass
are not class names, NIL is returned. (Class? X) is equivalent to (type?
class X).

8←(Class? ($ Window))
T

9←(Class? ($ NotClass))
NIL

10←(Class? ($ Window1))
NIL

(Instance? X) [Macro]

Purpose/Behavior: Determines if X is an instance of some class.

Arguments: X Possible instance.

Returns: Returns T if X is an instance; returns NIL otherwise.

Example: This example shows the use of Instance? (Instance? X) is equivalent to
(type? instance X).

11←(Instance? ($ Window1))
T

12←(Instance? ’Unbound)
NIL

13←(Instance? ($ Window))
NIL

(AnnotatedValue? X) [Macro]

Purpose/Behavior: Determines if X is an instance of the annotatedValue data type. For a
complete explanation of annotated values, see Chapter 8, Active Values.

Arguments: X Possible annotatedValue.

Returns: Returns T if X is an annotated value; returns NIL otherwise.

Example: Instances of class Window are created with an active value in the window
instance variable. AnnotatedValue returns T for the annotatedValue which
"wraps" an active value, not for the active value itself.

100←(← ($ Window) New ’Window3]

9 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

9.1 DATA TYPE PREDICATES

#,($& Window (|OZW0.1Y:.;h.Qm:| . 495))

1←(GetValue ($ Window3) ’window)
{WINDOW}#51,140000

2←(GetValueOnly ($ Window3) ’window)
#,($AV LispWindowAV ((|OZW0.1Y:.;h.Qm:| . 495))
(localState {WINDOW}#51,140000))

3←(AnnotatedValue? (GetValueOnly ($ Window3) ’window))
T

4←(AnnotatedValue? (GetValue ($ Window3) ’window))
NIL

5←(AnnotatedValue? (_ ($ LispWindowAV) New ’LWAV4]
NIL

(← self Understands selector) [Method of Object]

Purpose/Behavior: Determines if the object self will respond to a message with selector.

Arguments: self Instance or class in question.

selector Selector in question.

Returns: T if self is a class or an instance of a class that understands message selector;
NIL otherwise.

Note: If self is not a LOOPS object, you get NIL and not an error.

Categories: Object

Example: Given that Window is a class, MyWindow is an instance, and SpinAround is
a method of MyWindow, Window returns NIL, and MyWindow returns T.
Since Shape is a method of Window, this also returns T.

90←(← ($ Window) Understands ’SpinAround)
NIL

91←(← ($ MyWindow) Understands ’SpinAround)
T

91←(← ($ MyWindow) Understands ’Shape)
T

9.2 Iterative Operators

LOOPS provides an iterative operator to be used with Interlisp-D iterative
statements.

in-supers-of X [Iterative Statement Operator]

Purpose / Behavior: Allows iteration up the supers chain of the object X. Used in an Interlisp-D
iterative statement. (See the Interlisp-D Reference Manual for more
information on iterative statements.)

Arguments: X A LOOPS class or an instance.

Example: This example shows one way to use this operator.

9 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

9.2 ITERATIVE OPERATORS

55←(FOR I in-supers-of ($ ClassBrowser) DO (PRINT (← I ClassName]
ClassBrowser
IndexedObject
LatticeBrowser
Window
Object
Tofu
NIL

9 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

9.2 ITERATIVE OPERATORS

[This page intentionally left blank]

1 0 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10. BROWSERS

As described in Chapter 1, Introduction, one of the key components in the
LOOPS system is inheritance, in which structures have well-defined
relationships to other structures. Class inheritance is a typical example of this
relationship.

Since inheritance can be described by a two-dimensional graph, it is natural
to create a user interface for LOOPS built on the Lisp Library Module,
Grapher. This user interface is called a browser. Browsers are tools to assist
in the development cycle of a product or vehicles for building user interfaces
within a final product.

Much development time is spent building, examining, and modifying the
relationships between classes. These tasks include specifying the contents of
various classes: class variables, instance variables, properties, and methods.
The location of the class within the inheritance structure must also be
determined. After a number of classes have been built, the relationships
between the classes may need to be reviewed. Often, the initial design is
flawed and requires the following changes:

• Moving parts of one class to another class.

• Adding, substracting, or changing data or functionality within classes.

• Adding new classes, or merging different classes.

Browsers are the facility within LOOPS which support these types of
operations. This chapter describes how to use browsers both interactively with
the mouse, and programmatically.

Browsers are most commonly used on the classes defined for an application.
Many of the examples here browse objects which LOOPS uses internally; the
functionality is exactly the same.

10.1 Types of Built-in Browsers

A number of different types of browsers are already built into LOOPS:

• Lattice browsers

• Class browsers

• File browsers

• Supers browsers

• Metaclass browsers

This section describes these browsers in detail.

1 0 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

10.1.1 Lattice Browsers

The most general class is called LatticeBrowser. Figure 10-1 shows a class
inheritance lattice with the subclasses of LatticeBrowser.

Figure 10-1. Sample Lattice Browser

10.1.2 Class Browsers

A class browser shows the linkages between a class or classes and their
subclasses. Super classes are shown on the left (or top) side of the browser
window. Subclasses of these are connected by links moving to the right (or
down). An example of a class browser is shown in the previous section. The
class LatticeBrowser is the root object of this example. Subclasses of
LatticeBrowser are ClassBrowser and InstanceBrowser. Subclasses of
ClassBrowser are FileBrowser, SupersBrowser, and MetaBrowser.

10.1.3 File Browsers

A file browser is a class browser containing all classes defined within a file.
Additionally, file browsers contain a menu interface to common operations on
files.

10.1.4 Supers Browers

A supers browser is an inverted class browser. A class browser is built by
following subclass links from a class. A supers browser is built by following
superclass links from a class. An example of a supers browser is shown in
Figure 10-2.

Figure 10-2. Sample Supers Browser

10.1.5 Metaclass Browsers

A metaclass browser is like a supers browsers, but is built by following
metaclass links. Figure 10-3 shows two root classes: ActiveValue and
ClassBrowser.

1 0 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.1 TYPES OF BUILT-IN BROWSERS

Figure 10-3. Sample Metaclass Browser

10.1.6 Instance Browsers

An instance browser shows the relationships between instances. These
relationships may be more dynamic than the inheritance relationships shown
by the class browsers. Typically, the relationships are not defined until
runtime, and may be changed often. By specializing the instance browser,
you can show several relationships between a fixed set of objects.

10.2 Opening Browsers

A browser can be opened in several ways:

• Selecting a menu option from the Background Menu.

• Selecting a menu option from the LOOPS icon.

• Sending a Browse message to an instance of a browser.

• Calling either of the functions Browse or FileBrowse.

10.2.1 Using Menu Options to Open Browsers

Since browsers are an important part of LOOPS, you can use menus in
several ways to create standard browsers. Once opened, via menu or
program, any browser can be operated from both the appropriate menus and
programmatic commands.

10.2.1.1 Overview of Background Menu and LOOPS Icon

When LOOPS is loaded, the option Loops Icon is added to the background
menu, as shown in this window:

The Loops Icon option has two suboptions:

• Browse Class

• Browse File

These suboptions are shown in the following windows:

1 0 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.2 OPENING BROWSERS

Selecting Loops Icon puts a LOOPS icon on the screen; you are prompted to
place the icon after it is created. The other commands are discussed in
Section 10.2.1.2, "Command Summary."

The LOOPS icon, which appears in Figure 10-4, is a prototype instance of the
class LoopsIcon. It is provided to give you another convenient menu
interface to typical programming operations.

Figure 10-4. LOOPS Icon

Pressing the left button while the mouse is on the icon causes the following
menu to appear with options appropriate for class browsers:

Pressing the middle button while the mouse is on the icon causes the following
menu to appear with choices appropriate for file browsers:

Pressing the right button while the mouse is on the icon causes the following
menu to appear with two options for operations on the icon itself:

Close removes the icon from the screen. It can be restored at any time from
the background menu. Move lets the icon be moved to another location on
the screen, just as any icon is moved in Lisp.

10.2.1.2 Command Summary

The background menu and the LOOPS icon provide the same functionalities.
This section describes the commands available.

Browse Class, Browse Supers

Selecting either of these options causes the following prompt to appear in the
prompt window.

Please tell me the name of the root object >

1 0 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.2 OPENING BROWSERS

Enter the name of a class without using the "$" notation. The system builds
the appropriate type of browser and prompts you to move the window
containing the browser.

Browse File

Selecting this option causes the following menu to appear:

The top option on this menu is *newFile* which has three suboptions; the
remaining options are the names of the files that are on FILELST (Lisp
remembers what files are loaded and how they were loaded; FILELST files
were loaded normally. See the Interlisp-D Reference Manual for a full
explanation). Selecting one of the filenames will open a file browser on that
file.

newFile Prompts you in the prompt window with the following prompt :

Please type in file name: >.

Enter the name of a file to create. The system checks to determine if a
filecoms exists for that file name. If one exists, the system asks for
confirmation before destroying the value of that filecoms and opening up an
empty browser window. If no filecoms exists for that filename, an empty file
browser window is opened.

 loadFile Prompts you with:

Please type in file name to load: >

The system loads that file and opens a browser on it.

hiddenFile Causes a menu to appear with files that have been loaded but not
SYSLOADed and are not on FILELST; that is, the files are on
LOADEDFILELST, but not on FILELST. The LOOPS files, for example, the
.LCOMs that add LOOPS to Lisp, are on this list.

Edit Filecoms

Selecting this option brings up the same menu as the option Browse File.
Instead of opening a browser on the file, a display editor window is opened on
the filecoms of that file. If *newFile* is selected, you are prompted to enter a
file name and an SEdit window is opened with a template containing the File
Manager commands CLASSES, METHODS, FNS, VARS, and INSTANCES.

CleanUp File

Selecting this option first calls FILES? and then builds a menu of files in
FILELST that have changed. From this menu, select a file to be cleaned up;
this calls CLEANUP.

10.2.2 Using Commands to Open Browsers

You can use the following methods and functions for opening browsers
programmatically and from the Lisp Executive window.

Name Type Description

Browse Method Opens a browser showing the relationships between classes.

1 0 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.2 OPENING BROWSERS

BrowseFile Method Opens a browser showing the relationships between classes on
a file.

Browse Function Provides a short way to create a class browser.

FileBrowse Function Provides a short way to create a file browser.

(← self Browse browseList windowOrTitle goodList position) [Method of LatticeBrowser]

Purpose/Behavior: Opens a browser showing inheritance relationships between classes.

Arguments: self An instance of ClassBrowser, MetaBrowser, or
SupersBrowser.

browseList A LOOPS class name, a LOOPS pointer to a class name, or a
list of those.

windowOrTitle
A title to appear on the browser or a window to use (but which
will be reshaped to fit the browser.) Title defaults to "Class
browser."

goodList A goodList other than the browselist. (See Section 10.5.1,
"Instance Variables of Class LatticeBrowser," for more
information on goodList.)

position Lower left corner of browser. If NIL, position the window with the
mouse.

Returns: Pointer to the browser object.

Examples: The following command opens a class browser on Window.

(←New ($ ClassBrowser) Browse ’Window)

The following command opens a supers browser on InstanceBrowser and
ClassBrowser.

(←New ($ SupersBrowser) Browse (LIST ’InstanceBrowser ($ ClassBrowser)))

(← self BrowseFile fileName) [Method of FileBrowser]

Purpose: Opens a browser showing relationships between classes on a file.

Behavior: Classes defined within fileName are displayed within the browser. If fileName
is NIL, a menu of files on FILELST opens. The selected file has a file browser
opened on it.

Arguments: self An instance of the class FileBrowser

fileName File to browse; should not be a list.

Returns: self

Categories: FileBrowser

Example: The following command opens a file browser on the file LoopsWindow.

(←New ($ FileBrowser) BrowseFile ’LoopsWindow)

(Browse classes title goodClasses position) [Function]

1 0 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.2 OPENING BROWSERS

Purpose: Provides a short way to create a class browser.

Behavior: Sends a Browse message to a new instance of a ClassBrowser passing
classes, title, goodClasses, and position as arguments. If goodClasses is T, it
is rebound to the value of classes before the message is sent.

Arguments: classes A LOOPS class name, a LOOPS pointer to a class name, or a
list of those.

title A title to appear on the browser. Title defaults to "Class
browser."

goodClassses
A goodList other than classes. (See Section 10.5.1, "Instance
Variables of Class LatticeBrowser," for more information on
goodList.)

position Lower left corner of browser. If NIL, position the window with the
mouse.

Returns: A new instance of ClassBrowser.

Example: The following command creates a class browser on the class ActiveValue
and all its subclasses.

11←(Browse ’ActiveValue)

(FileBrowse filename) [Function]

Purpose: Provides a short way to create a file browser.

Behavior: Sends a BrowseFile message to a new instance of a FileBrowser passing
filename as the argument.

Arguments: filename File to browse.

Returns: New instance of FileBrowser.

Example: The following command creates a file browser on the file LoopsWindow.

12←(FileBrowse ’LoopsWindow)

10.3 Using Class Browsers, Meta Browsers, and Supers Browsers

Instances of ClassBrowser, SupersBrowser, MetaBrowser all have the
same menu interface. This section shows examples of the various menus
followed by descriptions of the actions performed after selecting particular
options.

Three pop-up menus are associated with browsers:

• One menu appears by positioning the mouse on the title bar of the browser
window and pressing either the left or the middle mouse button. This menu
contains options that control the appearance of the browser.

• A second menu appears by positioning the mouse on one of the nodes in a
browser and pressing the left mouse button. This menu contains
informational options.

• A third menu appears by positioning the mouse on one of the nodes in a
browser and pressing the middle mouse button. This menu contains editing
options.

1 0 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

These menus differ depending on the browser type. The following sections
describe the menus associated with class browsers, supers browsers, and
metaclass (or, more simple, meta) browsers. Sections then describe the
additional functionality associated with file browser menus.

10.3.1 Selecting Options in the Title Bar Menu

The following menu appears when you position the mouse on the title bar of
the browser menu and press either the left or the middle mouse button:

This section describes each menu option.

10.3.1.1 Recompute and its Suboptions

Selecting the Recompute option and dragging the mouse to the right causes
the following submenu to appear:

Most of the Recompute suboptions change the appearance of a browser but
not its contents. For example, SaveValue provides a pointer to the browser
without changing anything in it.

SaveValue The browser instance is stored in the instance variable savedValue of the
prototype instance of LoopsIcon and in the value of IT (see the Interlisp-D
Reference Manual). This value is returned from the function call SavedValue.

Recompute Recomputes the entire browser structure from the starting objects. It does not
recompute the labels for each item if those labels have been cached in the
property objectLabels of the instance variable menus.

RecomputeLabels Recomputes the entire browser structure from the starting objects and
recomputes the labels for each item.

InPlace Recomputes the browser without affecting the scrolled location of the lattice
within the window. This may be necessary for a browser containing a large
lattice structure.

ShapeToHold Makes the window for the browser just large enough to hold all of the nodes in
the browser, up to a maximum size. Browser windows may also be changed
interactively or programmatically with SHAPEW.

ChangeFontSize Causes a menu to appear containing 8, 10, 12, and 16. Selecting one
changes the font size used to display the nodes to that value. The font family
is

(@ self browseFont:,FontFamily)

The font face is

1 0 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

(@ self browseFont:,FontFace)

Note: An alternative way to change the font of a browser is to enter:

[PROGN (←@ ($ InstanceOfBrowser) browseFont
(FONTCREATE))(← ($ InstanceOfBrowser)
RecomputeLabels)]

Lattice/Tree Causes the following menu to appear:

Using the example of a supers browser for the class ClassBrowser, this
browser is drawn for each of the formatting options. A tree does not show
branches recombining; a lattice does. A boxed node in a tree indicates the
node shows up in more than one location in a tree. When a browser is
constructed by the system the default formatting style is
HORIZONTAL/LATTICE.

• HORIZONTAL/LATTICE

• VERTICAL/LATTICE

1 0 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

• HORIZONTAL/TREE

• VERTICAL/TREE

10.3.1.2 AddRoot and its Suboptions

The AddRoot options add items or subtrees to the browser.

Selecting the AddRoot option and dragging the mouse to the right causes the
following submenu to appear:

AddRoot A prompt appears in an attached window to enter the name of a class to be
added to the browser. If the entered item is not an object, a message that
nothing was added to the browser is printed. If the entered item is already in
the browser, nothing occurs. If the entered name does not correspond to a
class, nothing occurs.

RemoveFromBadList Objects within a browser can be put on the instance variable badList. This
can be done by positioning the mouse on the node in a browser, pressing the
left mouse button, and selecting an option from the menu that appears. Items
on the badList are not displayed in the browser. If you select the option
RemoveFromBadList, a menu appears showing any objects on the badList.
Selecting one of those objects removes it from the badList and causes it to be
redisplayed in the browser.

10.3.1.3 Add Category Menu

The system searches all methods in all classes shown in the browser and
computes the categories for these. These categories are made into a sorted
menu with the categories Any and Public included at the top. This menu is
attached to the left side of the browser. Selecting options in this menu acts as
a toggle, either highlighting them or returning them to their normal display.

1 0 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

Selected options are stored on the browser instance variable
viewingCategories. Options on this menu interact with the browser interface
for editing methods as described in Section 10.3.2, "Selecting Options in the
Left Menu."

Note: Very often when using a browser, you ask to see what items a class
inherits from classes above it in the inheritance lattice. To keep this
inherited information more manageable, information inherited from the
classes Tofu, Object, and Class are filtered out from the information
presented to you. As an example, see the description of PP in the
following section.

10.3.2 Selecting Options in the Left Menu

When the mouse is inside a browser and you hold down the left mouse button,
nodes within the browser become inverted when the cursor moves over them,
as shown in the following window:

If you release the left mouse button while the cursor is over a node, the
following menu appears:

The options shown on the menu operate on the node (class) selected. Several
of these options have associated submenus. Common options are in the main
menu, and less common ones are menu suboptions. The actions that occur as
a result of selecting one of these options are described in the following
subsections. An additional subsection describes extended functionality
available with the left mouse button.

1 0 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

10.3.2.1 PrintSummary and its Suboptions

PrintSummary provides a quick way to see object and method definitions.
For all printing that occurs as a result of selecting this option or one of its
suboptions, the output is sent to the value of the variable PPDefault, which is
by default the Common Lisp Executive Window.

Selecting the PrintSummary option and dragging the mouse to the right
causes the following submenu to appear:

PrintCategories Prints the categories and associated methods for the selected class, as shown
in the following window:

PP Produces a standard PrettyPrint of class, as shown in the following window:

PP! Produces a formatted Print of class, as shown in the following window:

Information that is defined locally within the class is printed in the bold font.
Inherited information is printed in the regular font. Inherited information from
the classes Object and Tofu is not printed.

PPV! Same as PP!, but does not include Methods, as shown in the following
window:

1 0 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

PPMethod Brings up a menu of the methods for this class followed by a list of the known
categories. The menu is influenced by the shaded options on the Method
Categories menu (see Section 10.3.1.3, "Add Category Menu"), whether or
not it is opened. Selecting a category will include any methods under that
category in the menu. After selecting one of the methods, the Lisp function
for that method is prettyprinted.

For example, selecting PPMethod from the node ClassBrowser with the
Method Categories menu as shown results in the following menu of methods:

MethodSummary Prints a summary of the methods defined for the class, as shown in the
following window:

PrintSummary Similar to PP, but default values or properties associated with variables and
methods are not printed, as shown in the following window:

10.3.2.2 Doc (ClassDoc) and its Suboptions

Each part of an object’s definition has a doc property containing strings. This
menu option is a quick way to see the string for a specific part of a definition.
For all printing that occurs as a result of selecting this option or one of its

1 0 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

suboptions, the output is sent to the value of the variable PPDefault, which is
by default the Common Lisp Executive Window.

Selecting the Doc (ClassDoc) option and dragging the mouse to the right
causes the following submenu to appear:

ClassDoc Prints documentation for class, that is, the doc property.

MethodDoc Causes a menu to appear in the same manner as PPMethod described in
Section 10.3.2.1, "PrintSummary and its Suboptions." After selecting a
method, information about that method is printed, as shown in the following
window:

The menu of methods reappears until a selection is made from outside the
menu.

IVDoc Causes a menu to appear showing instance variables associated with the
class. After selecting one, its documentation is printed, as shown in the
following window:

The menu of instance variables reappears until a selection is made from
outside the menu.

CVDoc Causes a menu to appear showing class variables associated with the class.
After selecting one, its documentation is printed, as shown in the following
window:

The menu of class variables reappears until no selection is made from the
menu.

10.3.2.3 WhereIs and its Suboptions

WhereIs describes where each part of the object comes from. For all printing
that occurs as a result of selecting this option or one of its suboptions, the
output is sent to the value of the variable PPDefault, which is by default the
Common Lisp Executive Window.

Selecting the WhereIs option and dragging the mouse to the right causes the
following submenu to appear:

1 0 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

WhereIsIV Causes a menu to appear at the current cursor position, showing the local and
inherited instance variables. A sample menu appears here:

When you select an instance variable from this menu, these actions occur, as
shown in the following window:

• A search starts with the selected class and then proceeds upwards through
its supers. The first class that contains the selected instance variable
flashes three times.

• All other classes in the browser that contain, that is, specialize, the instance
variable are shaded.

• The name of the topmost class name is printed across the top of the
window.

WhereIsCV Same as above, but for class variables.

WhereIsMethod Same as above, but for Methods. The menu of methods is not filtered by any
category information.

1 0 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

10.3.2.4 DeleteFromBrowser and its Suboptions

Browsers show all of the lattice or tree from the root to the leaves. The
DeleteFromBrowser option and its suboptions, shown here, allow you to
prune the tree.

DeleteFromBrowser Deleting a class from a browser adds it to that browser’s instance variable
badList. Items listed in a browser’s badList are not displayed by the browser.
If a class on the badList has subclasses, these are made into roots. To
redisplay a class once it has been deleted, refer to the command
RemoveFromBadList in Section 10.3.1.2, "AddRoot and its Suboptions."

DeleteSubtreeFromBrowser Deleting a class with this command places this class on the browser’s
badList. Additionally, any subclasses of the deleted class are also placed on
the badList. If one uses the command RemoveFromBadList to redisplay the
deleted class, only that class is redisplayed. Its subclasses remain on the
badList until they are explicitly removed from it.

10.3.2.5 SubBrowser

The following window shows the selection of this option:

For class and supers browsers, the SubBrowser option opens a new browser
of the same type (for example, a SubBrowser of a supers browser is a
supers browser) with the class selected becoming the root object of the
browser. For file browsers, the SubBrowser becomes a class browser.

10.3.2.6 TypeInName

The following window shows the selection of this option:

This option puts the class name in the type-in buffer.

10.3.2.7 Extending Functionality with the Left Mouse Button

Using various keys in conjunction with the left mouse button extends the
available options.

• SHIFT key

1 0 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

Pressing the SHIFT key while selecting a node with the left button causes
the name of the class to be typed into the current type-in point. If a node is
not selected, but the cursor is in the background of the browser, the entire
graph is copied. This can be used to insert browser images into TEdit
documents, for example. See the Lisp Library documentation on Grapher
for more details.

• Control (CTRL) key

Pressing the key
node with the left button causes the node to track movement by the cursor.
This allows you to temporarily change the layout of the nodes in the graph.
The next update of the browser recomputes the node positions.

• META key

Pressing the META key while selecting a node with the left button is the
same as a PrintSummary selection.

10.3.3 Selecting Options in the Middle Menu

When you position the cursor on a browser node and press the middle mouse
button, the following menu appears:

This section describes the actions that occur when you select an option from
this menu.

Except for BoxNode, all options are followed by a parenthetical suboption.
This suboption appears in the option’s submenu and performs the same
operation as the option itself. For example, selecting Methods (EditMethod)
performs the same operation as selecting EditMethod from its submenu.

The prompt for these options usually appears in a small window at the top of
the browser, unless otherwise stated.

10.3.3.1 Box/UnBoxNode

Draws a box around the node, as shown here:

This also selects the node as a target for Move and Copy options. If a node is
already boxed, Box/UnBoxNode unboxes it. Only one node in a class
browser can be boxed at a time with this menu option.

10.3.3.2 Methods (EditMethod) and its Suboptions

1 0 - 1 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

Selecting the Methods (EditMethod) option and dragging the mouse to the
right causes the following submenu to appear:

EditMethod Edits a method of class, selected from a menu of local methods. The menu
that appears contains some or all of the methods of the class and some
category choices. The menu options that appear depend on the shaded
options on the Method Categories menu (see Section 10.3.1.3, "Add
Category Menu").

For example, assume the following actions occur:

• A class browser is opened on the class LatticeBrowser.

• A category menu is added and the category LatticeBrowser is selected.

• FileBrowser under the class ClassBrowser is selected.

• The EditMethod suboption is selecte.

The following menu appears:

If you select one of the method names, an edit window appears containing the
source code for the method (assuming the source code was loaded). If you
select one of the categories, a similar menu appears showing the changed
methods and categories. The method/category menu continues to appear
until you select a method or press a mouse button outside of the menu. This
operation is provided by the method PickSelector.

EditMethod! Edits a method selected from a menu of all the inherited methods, making the
method local if necessary.

EditMethodObject Edits the object representing the method, as shown in this display editor
window:

1 0 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

This suboption uses the method PickSelector to provide the same menu
interface for choosing a selector that EditMethod uses. Within this edit
window, the only items you should change are the doc and category
properties.

MethodMenu Creates a permanent menu of methods of this class, for example,

After you have placed the menu, pressing the left mouse when the cursor is
over a menu option will cause the method to be printed; pressing the middle
button will cause the method to be edited.

EditCategory This option has three suboptions:

• EditCategory

Opens a menu of available categories, similar to the following menu
example:

After you select a category, another menu appears containing the methods
of that category and a list of categories not chosen (using the method
PickSelector). When a method is selected, it appears in an edit window.

• ChangeMethodCategory

Using the method PickSelector, this prompts you for a method. When one
is selected, another menu appears containing the option *other* with all of
the categories of the selected class.

If one of the categories is chosen, the category for the method is changed
to this value.

If *other* is chosen, this prompts you in the PROMPTWINDOW for a
symbol or a list of symbols that will become the new category or categories
for the method.

See the method Class.ChangeMethodCategory.

• CategorizeMethods

Edits an association list of categories and the local methods they contain
via the editor.

This is an example of the edit window that appears:

1 0 - 2 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

BreakMethod This option has three suboptions:

• BreakMethod

Places a break on a method of class, selected from a menu of local
methods, by sending the message BreakMethod.

• TraceMethod

Places a trace on a method of class, selected from a menu of local
methods, by sending the message TraceMethod.

• UnbreakMethod

Brings up a menu of methods local to class that have been broken, and
removes any breaks or traces on the one selected by sending the message
UnbreakMethod.

10.3.3.3 Add (AddMethod) and its Suboptions

Selecting the Add (AddMethod) option and dragging the mouse to the right
causes the following submenu to appear:

AddIV Prompts you for the name of a new instance variable to be added to a class,
and opens an editor as shown here:

From here, change the default value of the instance variable to the desired
value, and change the documentation to add any other properties and values if
necessary. When you exit from the editor, the instance variable is added to
the class.

AddCV Same as AddIV, except that you add a class variable.

1 0 - 2 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

AddMethod Allows you to create and edit a new method for this class. You are prompted
to type a selector for the new method. Next, an edit window appears with the
following template:

Replace the form (SubclassResponsibility) with the functionality you want.

SubclassResponsibility is a macro that causes a call to HELPCHECK, so if
you forget to remove it, or want to leave it in for debugging, it will break when
the new method is invoked.

SpecializeMethod Causes a menu to appear, containing the selectors of inherited methods, the
option ** Generic Methods **, and available categories.

If one of the selectors is chosen, a display editor window appears with a
template that contains a _Super and the same comment as the specialized
method. An example of this window appears here:

If ** Generic methods ** is chosen this causes a menu to appear, listing the
methods inherited from Object, Class, or Tofu.

AddSuper Prompts you for a class name to be added to the beginning of the Supers list.

SpecializeClass Defines a subclass of this class. This subclass is initialized with no locally
defined instance variables, class variables, or methods. You are prompted to
give a name for the new class. The new class is added to the browser.

NewInstance Creates a new instance of this class, calls PutSavedValue with the new
instance as an argument, and prints the instance.

10.3.3.4 Delete (DeleteMethod) and its Suboptions

Selecting the Delete (DeleteMethod) option and dragging the mouse to the
right causes the following submenu to appear:

DeleteIV Opens a menu containing the local instance variables, that is, those defined in
the class. Selecting one removes it from the class.

DeleteCV Same as DeleteIV, but for class variables.

1 0 - 2 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

DeleteMethod Opens a menu containing the local selectors. Choosing one opens the
following menu for confirmation:

DeleteClass Deletes this class. Opens a menu similar to the following for confirmation:

If the class has no subclasses it will be deleted. If it does have subclasses a
HELPCHECK break occurs; you can then abort or type OK to destroy the
class and all of its subclasses.

10.3.3.5 Move (MoveMethodTo) and its Suboptions

Selecting the Move (MoveMethodTo) option and dragging the mouse to the
right causes the following submenu to appear:

Moving methods and variables requires that you first have used BoxNode
(see Section 10.3.3.1, "BoxNode") on the class which is to receive whatever is
moved.

CAUTION

Moving methods and variables can have profound effects on the classes that
inherit them.

MoveIVTo Opens a menu with the instance variables for the class. Choosing one causes
it to be moved to the class that is boxed in the browser. When this operation
is completed, the menu opens again prompting you for another instance
variable to move, if desired.

MoveCVTo Similar to MoveIVTo, but for class variables.

MoveMethodTo Similar to MoveIVTo, but for methods.

MoveSuperTo Opens a menu of the Supers for the class. Choosing one of these will cause it
to be removed as a super class, and the boxed class to be added to the
Supers list.

MoveToFile Opens a menu of files on FILELST along with *newFile*. (See Section
10.2.1.2, "Command Summary," for more information on *newFile*.) The
class and its methods are moved to the chosen file.

MoveToFile! Same as MoveToFile, but includes subclasses and their methods of the
classes.

1 0 - 2 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

10.3.3.6 Copy (CopyMethodTo) and its Suboptions

Selecting the Copy (CopyMethodTo) option and dragging the mouse to the
right causes the following submenu to appear:

Copy options operates similarly to Move options, but leave the original method
or variable in its place while adding it to the destination. You can then
specialize the original or copy.

CopyIVTo Similar to MoveIVTo, but copies the instance variables instead of moving
them.

CopyCVTo Similar to MoveCVTo, but copies the class variables instead of moving them.

CopyMethodTo Similar to MoveMethodTo, but copies the methods instead of moving them.

10.3.3.7 Rename (RenameMethod) and its Suboptions

Selecting the Rename (RenameMethod) option and dragging the mouse to
the right causes the following submenu to appear:

RenameIV A menu appears, showing the instance variables of the class. After selecting
one of these, you are prompted to give a new name for that instance variable.

RenameCV Similar to RenameIV, but for class variables.

RenameMethod Similar to RenameIV, but for methods. You are prompted to give a new name
for the selector of the method. The method function name is changed to
reflect the change in the name of the selector.

RetireMethod A menu appears, showing the selectors of the class. After selecting one of
these, the selector is changed by adding the prefix "Old" to it. The method
function is also renamed appropriately.

RenameClass You are prompted for a new name for the class. After the new name is
entered, the browser is updated to reflect the change. In addition, the method
functions associated with the class are also renamed. For example, given a
class Foo with selector Fie, when the class is renamed to Fum, the method
function is automatically renamed from Foo.Fie to Fum.Fie.

10.3.3.8 Edit (EditClass) and its Suboptions

1 0 - 2 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.3 USING CLASS BROWSERS, META BROWSERS, AND SUPERS BROWSERS

Selecting the Edit (EditClass) option and dragging the mouse to the right
causes the following submenu to appear:

Editing options allow you to make quick, massive changes to object
descriptions, and are sometimes the only menu-driven way to change certain
items. See Chapter 13, Editing, for more details.

EditClass Edits the class definition of the class showing only the locally defined class
variables, instance variables, and methods.

EditClass! Edits the class definition of the class showing both the locally defined and
inherited class variables, instance variables, and methods. Changes to the
inherited information that are done during the edit have no effect. The
inherited information is included for informational purposes only. For example,
you may want to copy the definition of an instance variable from the list of
inherited instance variables to the list of local instance variables.

InspectClass Opens an inspector window on the class. See Chapter 18, User Input/Output
Modules, for more details.

10.4 Using File Browsers

File browsers are a specialization of class browsers. In addition to the
capabilities of class browsers, file browsers allow you to manipulate files. This
section explains the file browser menu options not available from class
browser menus, or those that have been modified from the class browser
menu options. This section lists all file browser menu options; references are
made to class browser menus where appropriate.

Multiple files can be associated with a file browser. Thus, one of those files
can be designated as the "selected" file. There are various options as to
which classes should be displayed in a file browser. See Section 10.4.1.4,
"Change display mode and its Suboptions," for more information.

When a file browser is opened, the window title displays the selected file:

The icon for a shrunken file browser contains the name of the selected file, as
shown here:

1 0 - 2 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

10.4.1 Selecting Options in the Title Bar Menu

The title bar menu in a FileBrowser, shown here, is like the title bar menu in a
ClassBrowser, but has additional entries for file system and Masterscope
functions.

10.4.1.1 Recompute and its Suboptions

Operates identically to the class browser. See Section 10.3.1.1, "Recompute
and its Suboptions," for more information.

10.4.1.2 AddRoot and its Suboptions

Prompts you for the name of a class to add. If the class already exists, it is
added to the browser and shaded. If the class is not contained on the file, it
will appear shaded in the browser. If the class does not exist, it is created and
added to the selected file.

10.4.1.3 Add Category Menu

Operates identically to the class browser. See Section 10.3.1.3, "Add
Category Menu and its Suboptions," for more information.

10.4.1.4 Change display mode and its Suboptions

Selecting the Change display mode option and dragging the mouse to the
right causes the following submenu to appear:

A FileBrowser logically includes more display options than a ClassBrowser.
A FileBrowser can display a class hierarchy as it is stored in the file, or as it
exists in combination with other files and the system as a whole.

Change display mode Selecting this option causes a sub-submenu to appear showing three options:

• selectedFile

Displays only the classes contained within the selected file or classes that
have been added to the browser by AddRoot or AddSubs (by setting the
browser’s instance variable goodList to the appropriate value). See
Section 10.5.3, "Methods for the Class LatticeBrowser," for an explanation
of AddSubs.

1 0 - 2 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

• associatedFiles

Same as selectedFile, but the browser also includes any classes defined in
files associated with the browser. The instance variable goodList is bound
to this list, slightly differently than the use of goodList in a class browser.

• all

Same as associatedFiles, but any subclasses, even if not defined in the
files, are also displayed because the instance variable goodList is bound to
NIL.

Add file to browser Prompts you with a menu that is similar to the menu that is displayed when
you select Browse File from the LOOPS Icon or the background menu,
except that files already associated with the browser are not displayed on the
menu.

Select file Causes a menu to appear, showing the files associated with the browser.
Selecting one causes that file to become the "selected file" of the browser. It
clears the browser of any classes added to the browser by the AddRoot and
AddSubs menu commands. That is, it resets the starting list of the browser to
be only those classes contained within the selected file. The instance variable
badList of the browser is set to NIL.

10.4.1.5 Uses IV? and its Suboptions

Selecting the Uses IV? option and dragging the mouse to the right causes the
following submenu to appear:

These menu options trigger various Masterscope operations. Most of these
operations prompt you for information that is used in a Masterscope query.
The results of this query are used to build a second menu. If the situation
occurs that the second menu is empty, a message is printed in the prompt
window of the browser similar to "someCV not used as a CV."

CAUTION

Source files being displayed in the file browser must be available or these
functions cannot work. In addition, the LOOPS Library Module LOOPSMS
must also be loaded (see the LOOPS Library Modules Manual for details).

Additionally, the first time one of these options is selected there may be a
pause while Masterscope analyzes the file. A window will open, and fill with
"blips" as the analysis proceeds, until the file is analyzed and the original
question is answered.

1 0 - 2 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

UsesIV This first opens a menu of instance variables defined in classes contained in
the selected file of the browser. Two additional options are placed at the top
of the menu:

• *other*

Selecting *other* causes a prompt to enter the name of an instance
variable.

• *any*

Selecting *any* creates a menu with all methods that reference any
instance variable.

After an instance variable has been chosen, you are prompted to place a
menu that contains the following options:

• A list of methods on the selected file that use that instance variable

• A list of classes on the selected file that contain that instance variable.

• *EditAll*

If one of the methods or classes is selected, it is edited. Suboptions from the
methods or classes include:

• Edit

Edits the method.

• Substitute

Prompts for a new name for the instance variable. Changes the instance
variable name to the new name in the method and then brings up the
display editor for you to edit the method.

• Check

Executes the Masterscope command CHECK <file> on the file associated
with the LOOPS FileBrowser. See the Lisp Library Modules Manual for
details.

EditAll has the following two suboptions:

• *EditAll*

Edits each method and class in succession.

• *SubstituteAll*

Prompts you for a new name for the instance variable. Substitutes this new
name for the old name in all methods and classes listed in the menu.

UsesCV Same as UsesIV, but for class variables.

1 0 - 2 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

UsesObject Opens a menu of classes or instances defined on the selected file that are
used by any of the methods or functions on the selected file. After you choose
one of the objects, a menu similar to the one created for UsesIV is created,
but contains the methods and functions that use the chosen objects.

UsesLispVar Same as UsesIV, but the initial menu displays Lisp variables instead of
objects.

ImplementsMethod This option has three suboptions:

• ImplementsMethod

Opens a menu of all of the selectors in the selected file. When one is
chosen, a menu is created showing the methods that use that selector and
the classes that are associated with those methods.

• OverridesMethod

Generates a menu of methods and classes that override (that is, does not
invoke _Super) the selected method.

• SpecializesMethod

Generates a menu of methods and classes that specialize (that is, invoke
_Super) the selected method.

SendsMessage Opens a menu of all of the selectors in the selected file. When one is chosen,
a menu is created that lists the methods and functions that send messages
using that selector. The following window shows a sample of this menu.

CallsFunction Opens a menu of all of the functions that are called by functions or methods in
the selected file. After one is chosen, a menu is opened that contains the
methods and/or functions that call the chosen function; the last option on the
menu is the chosen function.

AnalyzeFile Begins a separate process analyzing the selected file. When the analysis is
completed, "Done analyzing" is printed in the browser’s prompt window.

CheckFile Begins a separate process checking the selected file. When the checking is
completed, "Done checking" is printed in the browser’s prompt window.

10.4.1.6 Edit FileComs and its Suboptions

Selecting the Edit FileComs option and dragging the mouse to the right
causes the following submenu to appear:

The filecoms are variables that describe the contents of a file, for example,
methods, classes, and Lisp functions and variables. LOOPS extends the File
Manager to handle object oriented code and data, and the FileBrowser gives
users a menu driven interface to deal with this extended file functionality.

1 0 - 2 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

Edit Functions Opens a sub-submenu giving options dealing with filecoms and with some of
the items listed (functions in particular). This sub-submenu contains five
suboptions:

• EditFns

Opens a menu of the functions contained within the selected file (those
listed under FNS in the filecoms) and the option *NewFunction*. Selecting
one of the functions calls the editor on that function.

Selecting *NewFunction* causes a prompt for a name for the new function.
An edit window then opens containing a template for a lambda expression.
This newly defined function is added to the FNS list of the selected file’s
filecoms.

• MakeFunctionMenu

Does an ADDMENU (the Interlisp function which adds a permanent menu
to the screen) of a menu containing functions on the selected file. Selecting
one of the functions opens an editor on it.

• BreakFunction

Opens a menu containing functions on the selected file that are not on
BROKENFNS (see the Lisp Release Notes and the Interlisp-D Reference
Manual). Selecting one of the functions causes it to break next time it is
invoked.

• TraceFunction

Same as BreakFunction, except that the selected function is traced.

• UnbreakFunction

Creates a menu of functions that are members of BROKENFNS and are
contained in the selected file. The selected file is unbroken.

EditComs Edits the filecoms of the selected file.

EditMacros Creates a menu of macros contained in the selected file. Selecting one of
them opens an editor on it.

EditRecords Same as EditMacros, but for records.

EditVars Same as EditMacros, but for variables.

EditInstances Same as EditMacros, but for instances.

1 0 - 3 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

10.4.1.7 CLEANUP file and its Suboptions

This option invokes some or all of CLEANUP, which is the automatic file
maintenance utility of Medley.

Selecting the CLEANUP file option and dragging the mouse to the right
causes the following submenu to appear:

CLEANUP file Calls FILES? and then calls CLEANUP on the selected file.

Hardcopy file Sends the selected file to the DEFAULTPRINTINGHOST.

Load PROP file Loads the selected file with LDFLG set to PROP, making sources available to
Masterscope, but leaving any compiled code in place to execute.

10.4.2 Selecting Options in the Left Menu

When the cursor is inside of a file browser and you press the left mouse
button, nodes within the browser are inverted when the cursor moves over
them. If you release the left mouse button while the cursor is over a node, the
following menu appears:

These options include those in a class browser and add AddSubs, an option
that expands the lattice of a file browser to look more like that of a class
browser by showing related classes not stored in the browsed file.

10.4.2.1 PrintSummary and its Suboptions

Operates identically to the class browser. See Section 10.3.2.1,
"PrintSummary and its Suboptions," for more information.

10.4.2.2 Doc (ClassDoc) and Its Suboptions

Operates identically to the class browser. See Section 10.3.2.2, "Doc
(ClassDoc) and its Suboptions," for more information.

10.4.2.3 WhereIs (WhereIsMethod) and Its Suboptions

Operates identically to the class browser. See Section 10.3.2.3, "WhereIs
(WhereIsMethod) and its Suboptions", for more information.

1 0 - 3 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

10.4.2.4 DeleteFromBrowser and Its Suboptions

Operates identically to the class browser. See Section 10.3.2.4,
"DeleteFromBrowser and its Suboptions," for more information.

10.4.2.5 SubBrowser

Creates an instance of a class browser with the selected class as the root
node, not a file browser. See Section 10.3.2.5, "SubBrowser," for more
information.

10.4.2.6 TypeInName

Operates identically to the class browser. See Section 10.3.2.6,
"TypeInName," for more information.

10.4.2.7 AddSubs and its Suboptions

AddSubs fills out the class lattice in a file browser window. This shows
classes, the file they are from (if any) and the inherited methods and variables
from classes which are in the file.

AddSubs Adds the immediate subclasses of the class to the browser and shades the
new subclasses, as shown here:

AddSubs! Adds all subclasses of the class to the browser and shades the new
subclasses.

10.4.3 Selecting Options in the Middle Menu

When the cursor is over a node and you press the middle mouse button, the
following menu appears:

The middle button commands are the same as those on a ClassBrowser,
with some new functionality for Add (AddMethod), and with Masterscope
options added under the option UsesIV.

1 0 - 3 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

10.4.3.1 BoxNode

Operates identically to the class browser. See Section 10.3.3.1,
"BoxNode/UnBoxNode," for more information.

10.4.3.2 Methods (EditMethod) and its Suboptions

Operates identically to the class browser. See Section 10.3.3.2, "Methods
(EditMethod) and its Suboptions," for more information.

10.4.3.3 Add (AddMethod) and its Suboptions

Operates identically to the class browser, but with additional functionality to
keep the added items associated with the file being browsed in the following
suboptions.

SpecializedClass Prompts you to enter a name for the new subclass for the chosen class. If the
chosen class is on the selected file, the new subclass is added to that file. If
the chosen class is on another file, choose a file from a menu of files to which
the new subclass is added.

NewInstance Creates a new instance of the class and calls PutSavedValue with the new
instance as an argument. You are prompted to give the new instance a name,
and the new instance is added to the selected file.

10.4.3.4 Delete (DeleteMethod) and its Suboptions

Operates identically to the class browser. See Section 10.3.3.4, "Delete
(DeleteMethod) and its Suboptions," for more information.

10.4.3.5 Move (MoveMethodTo) and its Suboptions

Operates identically to the class browser. See Section 10.3.3.5, "Move
(MoveMethodTo) and its Suboptions," for more information.

10.4.3.6 Copy (CopyMethodTo) and its Suboptions

Operates identically to the class browser. See Section 10.3.3.6, "Copy
(CopyMethodTo) and its Suboptions," for more information.

10.4.3.7 Rename (RenameMethod) and its Suboptions

Operates identically to the class browser. See Section 10.3.3.7, "Rename
(RenameMethod) and its Suboptions," for more information.

10.4.3.8 Edit (EditClass) and its Suboptions

Operates identically to the class browser. See Section 10.3.3.8, "Edit
(EditClass) and its Suboptions," for more information.

1 0 - 3 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.4 USING FILE BROWSERS

10.4.3.9 UsesIV and its Suboptions

Selecting the UsesIV option and dragging the mouse to the right causes the
following submenu to appear:

These commands operate similarly to the Uses IV? commands in the title bar
menu. See Section 10.4.1.5, "UsesIV? and its Suboptions," for more
information. Here, however, the Masterscope queries are limited to the class
in question instead of the entire file.

10.5 Programmer’s Interface to Lattice Browsers

LOOPS browsers are standard LOOPS objects, so their functionality can be
exercised programmatically by messages which invoke their methods. Many
browser functions are based on the Lisp Library Module, Grapher, but
browsers apply only to dealing with LOOPS objects. All of the functionality in
the menu-driven interface to the browsers is available programmatically.

Note: Data not a part of LOOPS data can be graphed with LOOPS calls to
the Lisp Library Module, Grapher.

ClassBrowsers show the inheritance structure of object classes, a
relationship defined at application design time. Browsers can also be used to
show dynamic information, not computed until runtime. The LOOPS class
InstanceBrowser does this, showing links between instances defined at
runtime.

InstanceBrowser is derived from LatticeBrowser by specializing just two
methods, GetSubs and NewPath. In general, you can specialize browsers to
your own purposes by specializing these methods and GetLabel. An example
is given in Section 10.7, "Class Instance Browser Example," producing a
class browser which also shows instances, connected with dashed lines.

10.5.1 Instance Variables for the Class LatticeBrowser

Instance variables appear in alphabetical order.

badList A list of objects that are not displayed in the browser window.

boxedNode The last object boxed, if any.

browseFont The font used for labels. This has two properties: FontFamily and FontFace
which are referenced in the method ChangeFontSize.

lastSelectedObject The last object selected.

goodList A list of objects that are displayed in the browser window; if NIL, no objects are
displayed.

graphFormat A list indicating the style of layout for the graph. See the method
ChangeFormat and the Lisp Library Module, Grapher.

1 0 - 3 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

LabelMaxCharsWidth Affects the way labels are generated. This limits the width of a label to
LabelMaxCharsWidth times the width of the character "A". See the method
ChangeMaxLabelSize. Default value is NIL, which puts no restrictions on
label size.

LabelMaxLines Affects the way labels are generated. This limits the number of lines in a label
to LabelMaxLines. Refer to the method ChangeMaxLabelSize. Default
value is NIL which puts no restrictions on label size.

startingList List of objects used to compute this browser.

title Title passed to Grapher module.

topAlign This flag is used to indicate whether the graph should be aligned with the top
or bottom of the window. If topAlign = T (the default), then the Grapher
module aligns the graph to the top of the window.

10.5.2 Class Variables for the Class LatticeBrowser

Except for BoxLineWidth, the following class variables determine the menus
that appear when a mouse is positioned over a node within a browser and the
left or middle button is pressed. The default behavior is to send a message to
the object represented by the node with the selector returned from the menu
selection. The form for the values that these class variables can have is
described in Chapter 20, Windows.

Class variables appear in alphabetical order.

BoxLineWidth The width of line that is drawn around a node when it is boxed. See the
method BoxNode in Section 10.5.3, "Methods for the Class LatticeBrowser."

LeftButtonItems Items for the menu that appears when the mouse is on a node in the browser
and the left button is pressed. When an item is selected from a menu, the
returned value is sent as a message to an object represented by the node.
See LocalCommands, below.

LocalCommands When the cursor is positioned over a node in a browser and you press the left
or middle mouse button, the default behavior is to bring up a menu from which
you select an item. The value returned from that item specifies the selector of
a message that is sent to the object which is represented by the node in the
browser.

The class variable LocalCommands provides a way to override that behavior.
If the value returned from the menu selection is on the list that is the value of
LocalCommands, the message is not sent to the object, but is sent to the
browser instead. The object is passed as an argument in that message.

MiddleButtonItems Options for the menu that appears when the mouse is on one of the nodes in
a browser and the middle button is pressed. When an option is selected from
a menu, the returned value is sent as a message to the object represented by
the node. See LocalCommands, above.

TitleItems Options for the menu that appears when the mouse is on the title bar in a
browser and the left or middle button is pressed. When an option is selected
from the menu, the returned value is sent as message to the browser.

The following selectors are associated with this menu:

• SaveInIT

• Recompute

• RecomputeInPlace

• ShapeToHold

• ChangeFontSize

1 0 - 3 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

• ChangeFormat

• AddRoot

• RemoveFromBadList

Examine the class LatticeBrowser for more information.

10.5.3 Methods for the Class LatticeBrowser

The following table shows the methods and variables for the class
LatticeBrowser.

Name Type Description

AddRoot Method Adds a LOOPS name or an object to the starting list of the
browser.

BoxNode Method Puts a box around the node representing the object.

Browse Method Uses a lattice or tree graph to display the relationship between a
number of objects.

BrowserObjects Method Returns the list of objects currently in the graph.

ChangeFontSize Method Changes the size of the characters in the labels.

ChangeFormat Method Changes between lattice and tree graphs.

ChangeMaxLabelSize Method Changes how labels are printed.

ClearLabelCache Method Recomputes labels.

DeleteFromBrowser Method Prunes branches in a graph.

DeleteSubtreeFromBrowser
Method Prunes branches in a graph.

FlashNode Method Changes the label of a node from black-on-white to white-on-
black several times.

FlipNode Method Changes the label of a node that represents an object from
black-on-white to white-on-black.

GetDisplayLabel Method Finds the label for a node.

GetLabel Method Computes a label for an object.

GetSubs Method Computes a list of subnodes of an object.

GraphFIts Method Determines if the graph in the browser can be contained within
the browser window.

HasObject Method Returns T if an object is in the graph.

HighlightNode Method Changes the way a node is displayed.

IconTitle Method Computes the title to write in the icon.

LeftSelection Method Controls the effect of using the left mouse button.

LeftShiftSelect Method Sends the message PP! to an object.

MiddleSelection Method Controls the effect of using the middle mouse button.

1 0 - 3 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

MiddleShiftSelect Method Invoked by the mouse operations to edit an object in the TTY
process context.

NewItem Method Gets an object.

NodeRegion Method Returns the region occupied in an object in the browser.

ObjectFromLabel Method Returns the object in the graph that has a specified label.

PositionNode Method Places a node at a particular position in the browser window.

Recompute Method Recomputes the browser graph in the same window.

RecomputeInPlace Method Recomputes the browser graph in the same window, trying to
maintain the same scroll position in the window.

RecomputeLabels Method Recomputes the labels in a browser.

RemoveHighlights Method Removes all highlights in any node in the graph.

RemoveShading Method Removes all shading in any node in the graph.

SaveInIt Method Places a pointer in a browser where it can be accessed.

ShadeNode Method Adds shading to a node.

ShapeToHold Method Reshapes the window to all items.

MaxLatticeWidth Variable Restricts the maximum width of a browser window.

MaxLatticeHeight Variable Restricts the maximum height of a browser window.

Show Method Displays items and their subitems in a browser window.

Shrink Method Shrinks a browser window.

SubBrowser Method Creates a browser that is an instance of the same class as self
with a specified object as the root.

TitleSelection Method Invokes an action when the mouse is in the title bar on a browser
window and the left or middle button is pressed.

UnmarkNodes Method Sends the messages RemoveHighlights and RemoveShading
to self.

(← self AddRoot newItem) [Method of LatticeBrowser]

Purpose: Adds newItem, which is a LOOPS name, to the starting list of the browser.

Behavior: First determines if the name newItem points to a LOOPS object. If it does not,
a message is printed that nothing has been added to the browser. If newItem
is NIL, you are prompted to enter a name through the method NewItem. If the
object pointed to by newItem is on the browser’s instance variable badList, it
is removed from badList. If the instance variable goodList has a value,
newItem is added to it.

Arguments: newItem LOOPS name.

Returns: Class object or NIL.

Categories: LatticeBrowser

Example: The following command adds class Datum to a class browser instance named
CB1:

1 0 - 3 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

55←(← ($ CB1) AddRoot ($ Datum))

(← self BoxNode object objName unboxPrevious) [Method of LatticeBrowser]

Purpose: Puts a box around the node in the graph representing the object.

Behavior: First checks to make sure object points to a LOOPS object. If not, nothing
happens. The previous value of the instance variable boxedNode is returned.

• If the instance variable boxedNode is NIL, then a box is drawn around the
node with a line width equal to the value of the class variable
BoxLineWidth. The instance variable boxedNode is assigned the value of
object, and object is returned.

• If object is EQ to the instance variable boxedNode, then the box is erased.
That is, calling BoxNode twice in succession will draw and then erase the
box. The instance variable boxedNode is assigned the value NIL, and NIL
is returned.

• If none of the above conditions hold, the flag unboxPrevious is checked. If
it is non-NIL, the previously boxed node is unboxed, and the node
represented by object is boxed. The instance variable boxedNode is
assigned the value of object, and object is returned.

It is possible that object is not a node in self.

Arguments: object LOOPS name or object.

objName Used internally; can be NIL.

unboxPrevious
Can be NIL or T.

Returns: The object in the browser that is currently boxed, or NIL if nothing is currently
boxed.

Categories: LatticeBrowser

Specializations: ClassBrowser

(← self Browse browseList windowOrTitle goodList position) [Method of LatticeBrowser]

Purpose: Uses a lattice or tree graph to display the relationships between a number of
objects. Browse is the proper message to use for initializing browsers.

Behavior: Sends the message Show to self passing the arguments browseList,
windowOrTitle, and goodList. It next sends ShapeToHold to self. Finally it
sends Move to self with the argument position.

Arguments: browseList A list, elements of which can be a LOOPS name or an object, or
a single item which can be a LOOPS name or an object. Used
as the starting node(s) of a browser. See the Show message
later in this section for details.

windowOrTitle
If a window, the browser is displayed in this window. If not a
window, this becomes the title of the browser window.

goodList A list, elements of which can be a LOOPS name or an object.
See the Show message later in this section for details.

position A position to which the lower left corner of the browser is moved.
Can be NIL.

Returns: Used for side effect only.

1 0 - 3 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

Categories: LatticeBrowser

Example: The following command gets the class browser instance CB1 to browse class
Datum and its subclasses:

57←(← ($ CB1) Browse ’Datum)

(← self BrowserObjects) [Method of LatticeBrowser]

Purpose/Behavior: Returns the list of objects currently in the graph of the browser.

Categories: LatticeBrowser

(← self ChangeFontSize size) [Method of LatticeBrowser]

Purpose: Changes the size of the characters of the labels.

Behavior: Changes the font used to display labels in a browser. The browser is redrawn
and the window shaped to fit. If no size is given, this lets you select the size
from a menu. This menu is bound to the top level binding of the variable
MenuSize (the first time it is called). The font family used is the value of the
FontFamily property of the instance variable browseFont. The font face
used is the value of the FontFace property of the instance variable
browseFont.

This sends the message RecomputeLabels to self.

Arguments: size Integer size of font for node labels.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self ChangeFormat format) [Method of LatticeBrowser]

Purpose: Changes between lattice and tree graphs.

Behavior: If format is NIL, then select a format from a menu that appears. The items in
this menu are determined by the value of the choices property of the instance
variable graphFormat. Changes the value of the instance variable
graphFormat to format or the value selected from the menu.

Arguments: format Describes the format layout. The argument format is an
unordered list of atoms or lists. The following options control the
structure of the graph:

• COMPACT, the default, which lays out the graph as a forest
(that is, a set of disjoint trees) using the minimal amount of
screen space.

• FAST, which lays out the graph as a forest, sacrificing screen
space for speed.

• LATTICE, which lays out the graph as a directed acyclic
graph, that is, a lattice.

In addition, the following options control the direction of the
graph:

• HORIZONTAL, the default, has roots at the left and links that
run left-to-right.

1 0 - 3 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

• VERTICAL has roots at the top and links that run top-to-
bottom.

See the function LAYOUTGRAPH in the Grapher library module
documentation for more information.

Returns: Used for side effect only.

Categories: LatticeBrowser

Example: The commands:

58← (SETQ b1 (←New ($ SupersBrowser) Browse ’ClassBrowser))
#,($& SupersBrowser (NEW0.1Y%:.;h.eN6 . 506))

59←(← b1 ChangeFormat ’(HORIZONTAL REVERSE (MARK BORDER 3 LABELSHADE 1)))
#,($& SupersBrowser (NEW0.1Y%:.;h.eN6 . 506))

results in:

(← self ChangeMaxLabelSize newMaxWidth newMaxLines) [Method of LatticeBrowser]

Purpose: Changes how labels are printed.

Behavior: Sets the maximum width of a node label. An argument value of zero means
no maximum size, and NIL means no change.

By setting both newMaxWidth and newMaxLines, you get an abbreviation
facility. This binds the values of the instance variables LabelMaxCharsWidth
and LabelMaxLines. The default values for LabelMaxCharsWidth and
LabelMaxLines are both 0, so to return a browser b1 to default performance,
send

 (← ($ b1) ChangeMaxLabelSize 0 0).

The resulting labels may be bitmaps or strings. The width of the bitmap is a
product of newMaxWidth and the width of the character "A" in the current
value of the instance variable browsefont.

Sends the message RecomputeLabels to self.

Arguments: newMaxWidth
Maximum number of characters per line; default is 0.

newMaxLines
Maximum number of lines; default is 0.

Returns: Used for side effect only.

Categories: LatticeBrowser

Example: The commands:

60←(SETQ b1 (←New ($ SupersBrowser) Browse ’ClassBrowser))
#,($& SupersBrowser (NEW0.1Y%:.;h.eN6 . 506))

61←(← b1 ChangeMaxLabelSize 3 3)
#,($& SupersBrowser (NEW0.1Y%:.;h.eN6 . 506))

results in:

1 0 - 4 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

(← self ClearLabelCache objects) [Method of LatticeBrowser]

Purpose: Forgets cached labels in the browser.

Behavior: Clears the label cache for item(s) in objects. If objects is the symbol T, then
this clears the entire label cache. The cache for the labels is on the
objectLabels property of the instance variable menus.

Arguments: objects An object or a list of objects.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self DeleteFromBrowser object objname) [Method of LatticeBrowser]

Purpose: Prunes branches in a graph.

Behavior: Removes object from the browser by putting it on the instance variable
badList and then sending the Recompute message to self. The object and
its subtree are deleted from the browser.

Arguments: object An object in the browser.

objname Used internally; can be NIL.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self DeleteSubtreeFromBrowser object) [Method of LatticeBrowser]

Purpose: Prunes branches in a graph.

Behavior: Similar to DeleteFromBrowser, but the subnodes of object are also added to
the instance variable badList.

Arguments: object An object in the browser.

Returns: Used for side effect only.

Categories: LatticeBrowser

1 0 - 4 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

(← self FlashNode node N flashTime leaveFlipped?) [Method of LatticeBrowser]

Purpose/Behavior: Changes the label of a node from black-on-white to white-on-black several
times.

Arguments: node LOOPS name or object.

N Number of times node will be flipped.

flashTime The amount of time in milliseconds that the node is held between
transitions. If flashTime is NIL, this time defaults to 300
milliseconds.

leaveFlipped?
Can be NIL or T. If T, node is left inverted from its original state.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self FlipNode object) [Method of LatticeBrowser]

Purpose: Inverts the label of a node.

Behavior: If the node is black-on-white then it is changed to white-on-black, and
conversely.

Arguments: object LOOPS name or object.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self GetDisplayLabel object) [Method of LatticeBrowser]

Purpose: Finds the label for a node in the graph.

Behavior: If there is a cached label on the objectLabels property of the instance variable
menus, return it.

If not, this takes the result of GetLabel and breaks it into multiple lines to fit in
the maximum label size defined by the instance variables
LabelMaxCharsWidth and LabelMaxLines, if these are non-NIL. This
placement tries to break the label after special characters such as . , : ; / or
space, or at changes from lowercase to uppercase. The resulting bitmap is
put into cache so that recomputing the graph is faster.

When a label is broken up into multiple lines, the label is changed from a string
to a bitmap, thus causing shading not to work as described later in this section
in the method ShadeNode.

Arguments: object An object.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self GetLabel object) [Method of LatticeBrowser]

Purpose: Computes a label for object. A label may be a symbol or a bitmap; bitmap
labels should be freshly created since the method ShadeNode may smash
them. (The method GetDisplayLabel is used internally to fetch labels for
display; it caches label bitmaps to minimize the use of GetLabel.)

1 0 - 4 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

Behavior: Returns (GetObjectName object).

Arguments: object LOOPS name or object, which can be a bitmap.

Returns: (GetObjectName object)

Categories: LatticeBrowser

(← self GetSubs object) [Method of LatticeBrowser]

Purpose: Computes a list of subnodes of object.

Behavior: Determines next level of nodes in lattice. Specializations of LatticeBrowser
typically specialize this method.

Arguments: object A LOOPS object.

Returns: NIL or the value of the instance variable subs of object.

Categories: LatticeBrowser

Specializations: ClassBrowser, InstanceBrowser, MetaBrowser, SupersBrowser

(← self GraphFits snugly) [Method of LatticeBrowser]

Purpose/Behavior: Determines if the graph in the browser can be contained within the window of
the browser.

Arguments: snugly If snugly? is non-NIL the graph must fit in the window leaving
less than twice the FONTHEIGHT of the browser’s browseFont
as empty space around it.

Returns: T if the entire graph can be displayed within the window; else NIL.

Categories: LatticeBrowser

(← self HasObject object) [Method of LatticeBrowser]

Purpose/Behavior: Returns T if object is in the graph of the browser.

Arguments: object LOOPS name or object.

Categories: LatticeBrowser

(← self HighlightNode object width shade) [Method of LatticeBrowser]

Purpose: Changes the way a node is displayed.

Behavior: Draws a box around a node for object using a given width and shade for the
lines of the box. A shade is a 16-bit number representing a 4x4 bitmap. See
EDITSHADE in the Interlisp-D Reference Manual.

Arguments: object LOOPS name or object.

width Integer width of box.

shade 16-bit number representing a 4x4 bitmap.

Returns: Used for side effect only.

Categories: LatticeBrowser

Example: The command

1 0 - 4 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

64←(← b1 HighlightNode ’IndexedObject 10 123)

results in the following window:

(← self IconTitle) [Method of LatticeBrowser]

Purpose/Behavior: Computes the title to write in the icon.

Returns: The label of the first root entry in the lattice, that is, the CAR of the instance
variable startingList. If this is NIL, then use "Browser". If AddRoot is called,
the new root becomes the first entry on startingList.

Categories: LatticeBrowser

Specializations: FileBrowser

(← self LeftSelection) [Method of LatticeBrowser]

Purpose: Controls the effect of using the left mouse button. LatticeBrowser provides
defaults, but allows these methods to be overwritten or specialized.

Behavior: The instance variable lastSelectedObject is bound to the object of the node
that the left button selected.

The remaining behavior varies according to the key pressed.

• If the Move key or the Control key is down, this allows you to move the
node the mouse is over when you press the left mouse button.

• If the left shift key or Copy key is down while the cursor is over a node, the
label of the node is copied to the system buffer. If the cursor is not over a
node, the entire graph is copied. This allows you to copy browsers into
TEdit documents.

• If the Meta key is pressed, the message LeftShiftSelect is sent to self
passing as an argument the object the cursor is over.

• If none of the above keys are down, a menu pops up. This may trigger
additional functionality to be evaluted in the TTY process context.

This method is generally not called directly by the user, but is invoked by
mouse operations.

Returns: Used for side effect only.

Categories: Window

Specializes: Window

(← self LeftShiftSelect object objectName) [Method of LatticeBrowser]

Purpose/Behavior: Sends the message PP! to object. LatticeBrowser provides defaults, but
allows these methods to be overwritten or specialized.

1 0 - 4 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

This is generally not called directly by the user, but is invoked by mouse
operations.

Arguments: object An object.

objectName Used internally; can be NIL.

Returns: Used for side effect only.

Categories: LatticeBrowser

Specializations: ClassBrowser

(← self MiddleSelection) [Method of LatticeBrowser]

Purpose: Controls the effect of using the middle mouse button. LatticeBrowser provides
defaults, but allows these methods to be overwritten or specialized.

Behavior: If no node is selected, then returns NIL.

The instance variable lastSelectedObject is bound to the object of the node
that the middle button selected.

If the Meta key is down, the message MiddleShiftSelect is sent to self.

If the Meta key is not down, a menu pops up. This may trigger additional
functionality to be evaluated in the TTY process context.

This is generally not called directly by the user, but is invoked by mouse
operations.

Returns: Used for side effect only.

Categories: Window

Specializes: Window

(← self MiddleShiftSelect object objname) [Method of LatticeBrowser]

Purpose/Behavior: Edits object in the TTY process context. LatticeBrowser provides defaults, but
allows these methods to be overwritten or specialized.

This is generally not called directly by the user, but is invoked by mouse
operations.

Arguments: object LOOPS object.

objname Used internally; can be NIL.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self NewItem newItem) [Method of LatticeBrowser]

Purpose: Gets an object.

Behavior: If newItem is NIL, a prompt appears in an attached prompt window for the
name of the item to be added.

Arguments: newItem LOOPS name or object.

Returns: An object pointed to by newItem or the name entered by the user at the
prompt.

1 0 - 4 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

Categories: LatticeBrowser

Specializes: None.

Specializations: ClassBrowser, FileBrowser

(← self NodeRegion object) [Method of LatticeBrowser]

Purpose/Behavior: Returns the region occupied by object in the browser.

Arguments: object LOOPS name or object.

Returns: A region defined in terms of the coordinates of the browser’s window.

Categories: LatticeBrowser

(← self ObjectFromLabel label) [Method of LatticeBrowser]

Purpose/Behavior: Returns the object displayed in the browser that has the given label, or NIL if
no object labelled with label is visible in the browser.

Arguments: label Symbol or bitmap as it appears in the objectLabels property of
the instance variable menus.

Returns: The object in the graph that has the given label, or NIL if there is no such
object.

Categories: LatticeBrowser

Example: The following command gets the object which is being displayed in browser
CB1 as Datum:

65←(← ($ CB1) ObjectFromLabel ’Datum)

(← self PositionNode object windowX windowY) [Method of LatticeBrowser]

Purpose: Places a node at a particular position in a scrollable browser window.

Behavior: When the browser is too large for its window and has become scrollable,
PositionNode scrolls the graph so that the node for the given object is at the
position (windowX . windowY) within the restrictions of the window property
SCROLLEXTENTUSE (see the Interlisp-D Reference Manual). As in the
ScrollWindow method of the class Window, if either of the arguments
windowX or windowY is a FLOATP, it is taken to be a proportional position.
For example,

• (0.0, 0.0) is the lower left corner.

• (1.0, 1.0) is the upper right corner.

• (0.5, 0.5) is the center of the window.

If either is a FIXP, it is a position in the displayStream coordinate system. Any
null argument is taken to be 0. PositionNode may only be sent to browsers
which are scrollable.

Arguments: object LOOPS name or object represented by a node.

windowX X-coordinate for new node position. If type FLOATP, then a
relative position; if type FIXP, then absolute position.

windowY Y-coordinate for new node position. If type FLOATP, then a
relative position; if type FIXP, then absolute position.

1 0 - 4 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

Returns: Position of CLIPPINGREGION of window after scrolling.

Categories: LatticeBrowser

(← self Recompute dontReshapeFlg) [Method of LatticeBrowser]

Purpose: Recomputes the browser graph in the same window. Typically used after
adding or deleting from the lattice.

Behavior: Sends the Show message with the value of the instance variable startingList
to self. If dontReshapeFlg is NIL or if the graph does not fit the window(as
determined by GraphFits with snugly flag set to T), then send self the
message ShapeToHold.

Arguments: dontReshapeFlg
If non-NIL, do not reshape browser.

Returns: self

Categories: LatticeBrowser

Specializations: FileBrowser

(← self RecomputeInPlace) [Method of LatticeBrowser]

Purpose/Behavior: Recomputes the graph, trying to maintain the same scroll position in the
window.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self RecomputeLabels) [Method of LatticeBrowser]

Purpose: Recomputes the labels in a browser.

Behavior: Performs the following sequence of expressions:

(← self ClearLabelCache T)
(← self Recompute)

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self RemoveHighlights) [Method of LatticeBrowser]

Purpose/Behavior: Removes all highlights on any node in the graph, including nodes that are
boxed (see the method HighlightNode, which is described earlier in this
section). The method Recompute maintains shading and boxing and does
not do a RemoveHighlights. RemoveHighlights does not do a Recompute
automatically.

Sets the value of the instance variable boxedNode to NIL.

Returns: Used for side effect only. RemoveHighlights does not do a Recompute
automatically.

Categories: LatticeBrowser

1 0 - 4 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

(← self RemoveShading) [Method of LatticeBrowser]

Purpose/Behavior: Removes all shading on any node in the graph (see the method ShadeNode,
which is described later in this section). Does not automatically do a
Recompute.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self SaveInIT) [Method of LatticeBrowser]

Purpose: Places the pointer to self where it can be accessed by (SavedValue).

Behavior: Calls (PutSavedValue self).

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self ShadeNode object shade) [Method of LatticeBrowser]

Purpose: Adds shading to a node.

Behavior: Shades the inside of node with a given shade if the node is defined with a
string nodeLabel, which is the usual case in lattice browsers. Six shades are
available by name and are shown in Figure 10-5.

• WHITESHADE

• GRAYSHADE1

• GRAYSHADE2

• GRAYSHADE3

• GRAYSHADE4

• BLACKSHADE

Figure 10-5. Shading Available for a Node

If the label displayed for object is a bitmap, ShadeNode will destructively
shade that bitmap.

Arguments: object LOOPS name or object.

shade A texture (See the Interlisp-D Reference Manual).

Returns: Used for side effect only.

Categories: LatticeBrowser

Example: The following command shades the node for Gray1 with GRAYSHADE1:

66←(← ($ CB1) ShadeNode ’Gray1 GRAYSHADE1)

1 0 - 4 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

(← self ShapeToHold) [Method of LatticeBrowser]

Purpose/Behavior: Reshapes the window to hold all the items comfortably, unless they would fill
up the screen or more.

The window is not shaped larger than MaxLatticeWidth by MaxLatticeHeight
(see below).

Returns: Used for side effect only.

Categories: LatticeBrowser

MaxLatticeWidth [Variable]

Purpose: Restricts the maximum width of a browser window.

Behavior: Initialized to 900.

MaxLatticeHeight [Variable]

Purpose: Restricts the maximum height of a browser window.

Behavior: Initialized to 750.

(← self Show browseList windowOrTitle goodList) [Method of LatticeBrowser]

Purpose: Displays items and their subitems in a browser window. In general, uses the
method Browse which calls Show.

Behavior: The instance variable startingList is assigned the value of objects referred to
in browseList. If the argument goodList is provided, the instance variable
goodList is assigned the value of objects referred to in it.

Arguments: browseList A list, elements of which can be a LOOPS name or an object, or
a single item which can be a LOOPS name or an object. Used
as the starting node(s) of a browser.

windowOrTitle
If a window, the browser is displayed in this window. If not a
window, this becomes the title of the browser window.

goodList Optional. If provided, it is a list of LOOPS objects or object
names which are the only items the browser will display as
nodes. As opposed to badList, which excludes nodes from
display, goodList gives a population that nodes must be
members of to be displayed.

Returns: Used for side effect only.

Categories: LatticeBrowser

(← self Shrink) [Method of LatticeBrowser]

Purpose: Shrinks a browser window to its icon.

Behavior: If the window already has an icon, this is used. Otherwise, builds an icon (see
example below) that has (_ self IconTitle) as a title. When the icon is
expanded, the browser uses a RecomputeInPlace.

When the mouse is positioned on an icon and the left or middle button is
pressed when the META key is down, this sends the message TitleSelection
to the browser the icon represents.

1 0 - 4 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.5 PROGRAMMER’S INTERFACE TO LATTICE BROWSERS

The browser icon bitmap template is stored on the variable BrowserIconBM.

Returns: The icon for self.

Categories: Window

Specializes: Window

Example: All browser classes use the same icon:

(← self SubBrowser obj objName) [Method of LatticeBrowser]

Purpose/Behavior: Creates a browser that is an instance of the same class as self with object as
the root node.

Arguments: obj LOOPS name or object .

objName Used internally; can be NIL.

Returns: The new browser.

Categories: LatticeBrowser

Specializations: FileBrowser

Example: The following command creates a new browser on just the ClassBrowser
subtree of a browser CB1 showing the entire LatticeBrowser lattice:

67←(← ($ CB1) SubBrowser ’ClassBrowser)

(← self TitleSelection) [Method of LatticeBrowser]

Purpose: This message is sent to a browser when the mouse is positioned on its title
bar and either the left or middle mouse buttons are pressed. It should not be
sent directly by users.

Behavior: Opens a menu, created from the class variable TitleItems, from which you pick
an entry. The resulting action that this causes is evaluated in the context of
the TTY process.

Returns: Used for side effect only.

Categories: Window

Specializes: Window

TitleItems [Class Variable]

Purpose: Holds the menu list used by the TitleSelection method.

(← self UnmarkNodes) [Method of LatticeBrowser]

Purpose/Behavior: Sends the messages RemoveHighlights and RemoveShading to self.

Returns: Used for side effect only.

Categories: LatticeBrowser

1 0 - 5 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.6 INSTANCE BROWSERS

10.6 Instance Browsers

Instance browsers show linkages between instances. That is, each node in an
instance browser represents an instance. The links are determined by the
value of a particular instance variable in each instance; the value should point
to the subitems of an instance.

This section includes the instance variables, methods, and an example of
instance browsers.

10.6.1 Instance Variables for the Class InstanceBrowsers

subIV Nodes within an instance browser have subitems determined by the value of a
particular instance variable within each instance. The value of subIV is the
name of that particular instance variable. Initialized to NIL.

10.6.2 Methods for the Class InstanceBrowsers

The GetSubs and NewPath methods are available for the class
InstanceBrowsers.

(← self GetSubs object) [Method of InstanceBrowser]

Purpose: Computes the subitems for a node in a browser.

Behavior: If self has a value for the instance variable subIV, which should be a symbol,
and object has an instance variable named with that symbol, then return the
value of that instance variable in object.

Arguments: object An object in the browser.

Returns: The subitems of object, which should be a list.

Categories: LatticeBrowser

Specializes: LatticeBrowser

Example: The following commands perform these actions:

• Create an instance of InstanceBrowser and call it IB1.

• Give the value of its instance variable subIV the symbol nextWindow.

• Create a LOOPS window and call it W1.

• Add the instance variable nextWindow to it and give it the value of another
LOOPS window, instance W2.

• Send the Browse message to IB1 with W1 as the root node.

68←(← ($ InstanceBrowser) New ’IB1)
#,($& InstanceBrowser (NEW0.1Y%:.;h.eN6 . 515))

1 0 - 5 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.6 INSTANCE BROWSERS

69←(←@ ($ IB1) subIV ’nextWindow)
nextWindow

70←(← ($ Window) New ’W1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 516))

71←(← ($ W1) AddIV ’nextWindow (LIST (← ($ Window) New ’W2)))
(#,($& Window --))

72←(← ($ IB1) Browse ’W1)
(407 . 623)

(← self NewPath subName) [Method of InstanceBrowser]

Purpose: Specifies which of the instance variables in objects point to subitems.

Behavior: If subName is NIL, display a prompt for a value in an attached window.

If subName or the value entered is non-NIL, change the value of the instance
variable subIV of self to that value.

Changes the instance variable title of the browser window to (CONCAT
subName " instance browser").

If the browser is open, send the Recompute message to it.

Arguments: subName A symbol that should be an instance variable within each object
of the browser.

Returns: Used for side effect only.

Categories: InstanceBrowser

Example: The following command causes an instance browser IB1 to look in W1’s
instance variable nextPointer instead of in nextWindow to get its subnodes:

73_(_ ($ IB1) NewPath ’nextPointer)

10.6.3 Selecting Options in the Title Bar Menu

The title bar menu for instance browsers is a subset of that for class browsers,
as shown here:

See Section 10.3.1, "Selecting Options in the Title Bar Menu," for details.

10.6.4 Selecting Options in the Left Menu

When you position the cursor on a node of an instance browser and press the
left mouse button, the following menu appears:

1 0 - 5 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.6 INSTANCE BROWSERS

BoxNode is the same as in the class browsers (see Section 10.3.3.1,
"BoxNode"). PP prints out the instance class, name, and UID.

10.6.5 Selecting Options in the Middle Menu

When you position the cursor on a node of an instance browser and press the
middle mouse button, the following menu appears:

This menu is a small subset of that for class browsers (see Section 10.3.3,
"Selecting Options in the Middle Menu").

• Inspect opens an inspector window on the instance.

• Edit calls the instance into the editor.

• DeleteFromBrowser removes a node from display via the badList
mechanism.

10.7 Automatic Updates of Class Browsers

LOOPS advises the File Manager LOAD function to guarantee that all class
browsers are updated whenever a file is loaded. The updating is performed by
the function UpdateClassBrowsers and controlled by the setting of the
variable UpdateClassBrowsers?.

(UpdateClassBrowsers newLabels?) [Function]

Purpose: Updates instances of ClassBrowser and its subclasses.

Behavior: Called whenever a new class is defined (including loading from a file) or
destroyed. If the variable UpdateClassBrowsers? is NIL, then do nothing.

For browsers that have been marked as needing updating and having
windows that are opened, this sends the message Recompute or
RecomputeLabels if newLabels? is non-NIL.

Arguments: newLabels?Can be NIL or T.

Returns: Used for side effect only.

UpdateClassBrowsers? [Variable]

Behavior: See the function UpdateClassBrowsers, above. Initialized to T.

Values: NIL Do not update browsers.

T Update browsers with each change.

SHADE Shade browsers that need to change.

1 0 - 5 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

10.7 AUTOMATIC UPDATES OF CLASS BROWSERS

[This page intentionally left blank]

1 1 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11. ERRORS AND BREAKS

LOOPS provides an interface to the Medley error system. This allows
appropriate detection and recovery from errors that are LOOPS errors rather
than Lisp errors. The full power of the Medley error system is available to help
you determine and repair the causes of errors. In addition, under certain
circumstances, LOOPS will attempt to repair an error and continue if you
agree.

This chapter describes the functions and methods LOOPS uses to handle
error conditions. It also describes the error messages generated by LOOPS.

11.1 Error Handling Functions and Methods

LOOPS provides several ways to trap and process many common errors. A
default processing is available for most errors, and this processing can be
specialized for actions you may require.

The following table shows the items in this section.

Name Type Description

HELPCHECK Function Provides an interface to the Common Lisp error system.

LoopsHelp NoSpread Generates an error if LoopsDebugFlg=NIL, else calls HELP.
Function

LoopsDebugFlg Variable Controls the behavior of LoopsHelp.

ErrorOnNameConflict Variable Calls HELPCHECK when you attempt to give an object the
same name as an existing object.

CVMissing Method Sent by access functions when you attempt to access a class
variable that does not exist.

CVValueMissing Method Sent by access functions when you attempt to access a class
variable that has no value.

IVMissing Method Sent by access functions when you attempt to access an
instance variable that does not exist.

IVValueMissing Method Sent by access functions when you attempt to access an
instance variable that has no value.

MessageNotUnderstood Method Sent when a message has no corresponding selector.

(HELPCHECK mess1 ... messN) [Function]

Purpose/Behavior: HELPCHECK is the LOOPS interface with the Common Lisp error system.
When LOOPS detects an error, it generally calls this function with up to four
argument messages describing what is wrong and possibly what to do about
it. HELPCHECK calls BREAK1 to put you into a break window and returns
whatever the call to BREAK1 returns. For example, if you type OK, it returns

1 1 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

T. If you type "RETURN ’someValue", it returns that value. In some
instances, LOOPS uses such returned values to repair errors and continue
execution.

Arguments: mess1 ... messN
Messages to print at the break.

Returns: Value depends on what you type in the break window; see Behavior.

Example: The following code causes a break window with the message "Are you
certain?". If you type "OK" in the break window, the message "He said OK"
will print.

(IF (HELPCHECK "Are you certain?")
 THEN (PRINT "He said OK"))

(LoopsHelp mess1 ... messN) [NoSpread Function]

Purpose/Behavior: Generates an error. Calls HELP if LoopsDebugFlg is T, otherwise calls
ERROR. Use LoopsHelp whenever you want to give the user a way to
recover from errors when LoopsDebugFlg is T. For example, have
LoopsHelp print messages like "FOO is not the name of a class. Type
RETURN ’<classname> to continue using <classname>."

Arguments: mess1 ... messN
Messages to print at the break.

Returns: Value depends on what you type in the break window; see HELPCHECK,
above.

LoopsDebugFlg [Variable]

Purpose/Behavior: Controls the behavior of LoopsHelp. If it is T, all calls to LoopsHelp generate
a break. If it is NIL, such calls that occur near the top of the stack or after a
short computation cause a message to be printed and a return to the next
level. The default value is T. See BREAKCHK in the Interlisp-D Reference
Manual for more information.

ErrorOnNameConflict [Variable]

Purpose/Behavior: If T, an attempt to give an object the same name as an existing object causes
a call to HELPCHECK. If you type "OK" in the resulting break window, the
process continues and the original object is unnamed. The default value is
NIL.

(← self CVMissing object varName propName typeFlg newValue) [Method of Class]

Purpose: Sent by access functions when there is an attempt to access a class variable
that does not exist.

Behavior: Calls LoopsHelp with the message

varName not a CV of self

This method can be specialized to take more sophisticated action by using the
other arguments which are provided.

When, in an instance, an attempt is made to access a class variable that does
not exist, the message CVMissing is sent to the instance’s class with the
instance in question as object.

Note: This method can be invoked if an instance variable is missing.

1 1 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

Arguments: object The object upon which the access was attempted.

typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) which caused this message to be
sent. The function name allows the type of access to be
determined.

varName The name of the variable on which access was attempted.

propName The name of the property on which access was attempted. If
NIL, the value of the class variable varName was accessed.

newValue The value to which the class variable was to be set.

Categories: Class

Example: Specialize this method to automatically add the class variable which is missing
to the class described by self. Assuming the class of self is SomeClass, the
method definition is

(Method ((SomeClass CVMissing)
self object varName propName typeFlg
newValue)

(← self AddCV varName newValue))

(← self CVValueMissing object varName propName typeFlg) [Method of Class]

Purpose: Sent by access functions when there is an attempt to access a class variable
that has no value. This method can also be invoked if an instance variable is
missing and you attempt to access it.

Behavior: If propName is NIL it returns the value of NotSetValue, otherwise it returns the
value of NoValueFound.

The default setting for NoValueFound is NIL. The default setting
NotSetValue is an annotatedValue. See Chapter 8, Active Values, for an
explanation of NotSetValue.

This method can be specialized to take more sophisticated action by using the
other arguments which are provided. See the example for CVMissing, above.

 Arguments: object The object on which the access was attempted.

typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) which caused this message to be
sent. The function name allows the type of access to be
determined.

varName The name of the variable on which access was attempted.

propName The name of the property on which access was attempted. If
NIL, the value of the class variable varName was accessed.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← self IVMissing varName propName typeFlg newValue) [Method of Object]

Purpose: Sent by access functions when there is an attempt to access an instance
variable that cannot be found in self.

Behavior: Tries to remedy the situation, but if it fails, it calls LoopsHelp with the
message

varName not an IV of self

1 1 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

If the instance variable is present in the object’s class, the instance variable
will be copied to self. This can happen when a class is changed after an
instance has been created.

If the instance variable is not present in the class, it attempts to find a class
variable of the same name in the class. If one is found, it is used according to
its :allocation property.

• If the property is dynamicCached, the instance variable is added by
copying the class variable regardless of the type of access.

• If the property is dynamic, the type of access is determined from typeFlg,
which is the name of the access function. The value of the class variable is
returned for a get and the instance variable is created only on a put.

 • If the property is class, the class variable’s value is returned or set and no
instance variable is created.

If all else fails, an attempt is made to fix the spelling of varName and, if a
possible fixed spelling is found, the process starts over.

If an instance variable is not found, the arguments are not used, but could be
in a specialization of this method. See the example in CVMissing above.

Arguments: typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) which caused this message to be
sent. The function name allows the type of access to be
determined.

varName The name of the variable on which access was attempted.

propName The name of the property on which access was attempted. If
NIL, the value of the instance variable varName was accessed.

newValue The value to which the instance variable was to be set.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

(← self IVValueMissing varName propName typeFlg newValue) [Method of Object]

Purpose: Sent by access functions when there is an attempt to access an instance
variable which has no value in self.

Behavior: Looks up the class hierarchy to find a value. If none is found, SHOULDNT
(see the Interlisp-D Reference Manual) is called with the message

 Error in Put or GetValue.

The arguments are not used, but could be in a specialization of this method.
See the example in CVMissing, above.

This method is used internally to handle inheritance of instance variable
values. If this error occurs, the LOOPS system has probably been corrupted.

Arguments: typeFlg The name of the access function (GetValue, GetValueOnly,
PutValue, PutValueOnly) and allows the type of access to be
determined.

The other arguments are passed from the access function.

Categories: Object

1 1 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.1 ERROR HANDLING FUNCTIONS AND METHODS

(← self MessageNotUnderstood selector messageArguments superFlg) [Method of Object]

Purpose: Sent when a message has no corresponding selector in self.

Behavior: Attempts to fix the spelling of selector. If this fails, it generates an error.

Arguments: selector The name of the message that was not understood.

messageArguments
The arguments of the message selector.

superFlg If T, an attempt was made to locate the method selector in the
supers of self.

Categories: Object

Example: Define a class that acts as the class of Lisp numbers, and use the
MessageNotUnderstood message to translate messages into function calls.

37←(DefineClass ’Number)
#.($ Number)

38←(← ($ Number) SpecializeMethod ’MessageNotUnderstood)

The MessageNotUnderstood method is defined in the editor, making the
body of the method as follows:

(if (GETD selector)
 then (APPLY selector messageArguments))
 else (←Super))
Number.MessageNotUnderstood

Use the class Number as the LOOPS class for Lisp numbers.

39←(PUTHASH ’SMALLP ($ Number) LispClassTable)
#.($ Number)

40←(PUTHASH ’FIXP ($ Number) LispClassTable)
#.($ Number)

41←(PUTHASH ’FLOATP ($ Number) LispClassTable)
#.($ Number)

Test it out.

42←(← 4 PLUS 5)
9

11.2 Error Messages

This section contains the LOOPS error messages along with their
explanations. Atoms which are in italics are replaced with specific values
when the messages are generated. Messages generated by calls to
SHOULDNT indicate problems in LOOPS system code. Messages generated
by direct calls to ERROR, that is not via calls to the LOOPS function
LoopsHelp, may indicate problems with the system or with user code.

Errors appear in their respective categories:

• Errors that occur when accessing classes and instances in LOOPS.

• Errors that occur when sending messages to LOOPS objects.

1 1 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.2 ERROR MESSAGES

• Errors dealing with naming objects.

• Errors encountered when using annotated values and active values.

• Other error messages that may be encountered when using LOOPS.

11.2.1 Classes and Instances

This section describes errors that occur when accessing classes and
instances.

type not recognized part of class

Explanation: The type argument to the method ListAttribute does not correspond to one of
the parts of a class.

name not a CV of self

Explanation: A reference has been made to a class value that does not exist.

Error in Put or GetValue

Explanation: An attempt has been made to access an instance variable that has no value in

an object or in any of its supers.

varName not an IV of self

Explanation: An attempt has been made to access an instance variable and it does not
exist in the object or its supers, and a class variable of the same name does
not exist either.

varName is not a local instance variable of class name. Type OK to ignore error and go on.

Explanation: An attempt has been made to delete an instance variable which is not in the
class.

newValue is not a class. Type OK to replace metaclass of classRec with $Class

Explanation: A call has been made to PutClass or PutClassOnly with either propName
erroneously set to NIL or left out, or the new metaclass set to something that is
not a valid class.

varName is not a CV of Class so cannot be moved from there

Explanation: An attempt has been made to move a class variable from a class where it
does not exist. Possible causes include wrong source class or misspelled
class variable name.

class has subclasses. You cannot Destroy classes that have subclasses.
Type OK to use Destroy! if that is what you want.

Explanation: Sending the message Destroy to a class with subclasses will leave the
subclasses referring to nonexistent superclasses. Destroy! destroys all of the
subclasses as well. Be sure this is what you want before you type "OK".

1 1 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.2 ERROR MESSAGES

11.2.2 Methods and Messages

This section describes errors that occur when sending messages to LOOPS
objects.

GetValue, PutValue, GetValueOnly, PutValueOnly or GetIVHere self args not possible

Explanation: An attempt has been made to access a value in an abstract class, which
cannot have any values.

← or ←Super self selector -- not understood

Explanation: Neither the object to which the message was sent nor any of its ancestors has
such a method selector.

(← NIL selector --) not understood

Explanation: An attempt has been made to send a message to NIL. One way to do this is
to execute (_($ foo) ...), where foo does not name a LOOPS object.

class does not contain the selector selector. Type RETURN ’selectorName to try again

Explanation: An attempt has been made to delete a nonexistent method. If the problem is
that the wrong method selector was typed or the selector was misspelled,
typing "RETURN ’correctName" will fix the problem.

selector is not local for self To copy anyway, type OK

Explanation: The object to which CopyMethod was sent does not contain selector, but one
of its supers does. This is not necessarily an error.

selector is not a selector for self

Explanation: Neither the object to which CopyMethod was sent nor any or its supers
contains selector.

newClass is not a class. Type OK to use oldClass

Explanation: Something may be missing from the argument to HELPCHECK, since nothing
is printed after oldClass. Alternatively, the destination class specified in
CopyMethod is neither a class nor a valid class name.

Typing "OK" causes the method to be copied to the class to which the
message was sent. The net result can be to copy a method down from one of
the class’s supers or to make a copy within the class with a new selector.

name is not a defined function

Explanation: The selector named in CopyMethod exists but it does not have a function
defined for it. It is possible the class has been loaded but the method has not
or that the function definition for the method was somehow erroneously
destroyed.

name not a currently defined class. Cannot add method to class.
Type OK to create class and go on.

Explanation: An attempt has been made to add a method to a nonexistent class.

1 1 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.2 ERROR MESSAGES

If the class should exist, but has not been created yet, type "OK" to let
LOOPS create it automatically. If the class has yet to be loaded, abort and
load it first.

Can’t find source for fn

Explanation: The source file containing a method of a class that is being moved via
MoveToFile cannot be found. WHEREIS is used to try to find it. Either add
the necessary file to FILELST or use LOADFNS to load the function(s).

11.2.3 Naming Objects

This section describes errors that occur when naming objects.

name is already used as a name for an object

Explanation: ErrorOnNameConflict has been set to T and an object with the given name
already exists. Typing "OK" will cause the new object to be created anyway.

Can’t name object NIL

Explanation: The name argument to the method SetName has been left out.

name should be a symbol to be a name

Explanation: The method SetName has been given a non-symbolic name.

name cannot be a class name. Type OK to ignore

Explanation: A non-symbolic class name has somehow gotten into the CLASSES of a file.

Typing "OK" will continue writing the file, but will not remove the offending
name.

Can’t rename a class without specifying name.
Type RETURN <newName> to continue and rename class: self

Explanation: The newName argument has been left out of Rename. Classes can not be
named NIL.

Typing "RETURN ’aNewName" renames the class.

name not defined as a class or an instance. Type OK to ignore and go on.

Explanation: A name which refers to a nonexistent class or instance is in the CLASSES or
INSTANCES file command of a file.

Typing "OK" continues writing out the file, but does not remove the offending
name.

1 1 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.2 ERROR MESSAGES

name not the name of an instance! Type OK to proceed.

Explanation: A name that refers to a nonexistent instance is in the THESE-INSTANCES file
command of a file.

Typing "OK" continues writing out the file, but does not do anything to correct
the source of the problem; that is, it does not remove the name from the
filecoms or find out why it does not exist.

name is a defined object, but is not a class.

Explanation: The name of some LOOPS object that is not a class has been used as an
argument where a class name should have been used.

11.2.4 Annotated and Active Values

This section describes errors that occur when using annotated values and
active values.

Active value not found, so can’t replace it.

Explanation: The old active value specified in ReplaceActiveValue does not exist or has
been specifed incorrectly.

Unknown access type type

Explanation: An improper type has been given to the message AddActiveValue or
DeleteActiveValue.

Invalid type type

Explanation: An active value has an incorrect type specifier.

Conflicting active value wrapping precedence self activeValue otherPrecedence

Explanation: An attempt has been made to add an annotated value with wrapping
precedence T or NIL to an existing annotated value with the same wrapping
precedence.

Unknown access type type

Explanation: GetWrappedValue or PutWrappedValue has been given an incorrect type.

Can’t set the local state of #.NotSetValue

Explanation: PutWrappedValueOnly has been erroneously sent to a #.NotSetValue.

11.2.5 Miscellaneous

This section describes other errors that can occur when using LOOPS.

Use one of METHODS IVS CVS for type. RETURN one of these symbols to go on.

Explanation: An incorrect type has been specified to the method WhereIs.

1 1 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.2 ERROR MESSAGES

To continue, enter the type into the break window. For example, enter
"RETURN ’METHODS".

Name not installed because of error in source

Explanation: The source specification of a class has been corrupted in some way. It may
be necessary to manually redefine the class or edit the file.

Time is not set! Call (SETTIME dd-mmm-yy hh:mm:ss) and then type in OK

Explanation: LOOPS uses the date and time to create unique internal names for objects;
thus, the time must be set before any objects are created. Call SETTIME and
then type "OK". For example, (SETTIME "15-APR-87 12:00:00") sets time at
noon on April 15, 1987.

self varName propName not broken. Type OK to go on

Explanation: Either an attempt has been made to unbreak a value which was not broken or
the value was specified incorrectly.

1 1 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

11.2 ERROR MESSAGES

[This page intentionally left blank]

1 2 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12. BREAKING AND TRACING

A number a functions and methods are available in the LOOPS environment
to facilitate the process of finding and correcting bugs in user-written LOOPS
code. These give you the capability to interrupt or trace methods so that you
can examine the state of the computations by using the Interlisp-D Break
package; see the Interlisp-D Reference Manual.

In addition to being able to break and trace methods, you can break and trace
accesses to data within objects. For example, you can determine when a
process is attempting to change a class variable or is trying to read the value
of an instance variable. This feature gives you a powerful tool to assist in the
understanding of the behavior of a piece of code from both a functional view
and a data view.

12.1 Breaking and Tracing Methods

The Interlisp-D environment provides a number of features for breaking and
tracing functions. LOOPS methods are implemented as Lisp functions, so the
breaking and tracing of method invocation is similar to Interlisp-D.

The following table describes the methods in this section.

Name Type Description

BreakMethod Method Breaks a method of a class.

TraceMethod Method Traces a method of a class.

UnbreakMethod Method Unbreaks or untraces a method of a class.

SelectorsWithBreak Method Returns a list of selectors whose implementations have a break.

(← self BreakMethod selector) [Method of Class]

Purpose: Breaks a method of a class.

Behavior: Varies according to the argument.

• If selector is NIL, a menu appears showing the selectors associated with
the class self that have not already been broken. If you do not make a
choice from the menu, this method returns the symbol NothingBroken.

• If selector is non-NIL and is not associated with self, an error occurs stating
that selector was not found in self.

If a method is broken, this fact is printed in the Prompt Window. The broken
method function is added to the list BROKENFNS. (See the Interlisp-D
Reference Manual for more information on BROKENFNS.)

Arguments: self Must be bound to a class.

selector Must be a selector associated with self or NIL.

1 2 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12.1 BREAKING AND TRACING METHODS

Returns: The symbol NothingBroken or NIL.

Categories: Class

Example: The following command causes a break when the message Open is sent to
any window:

12←(← ($ Window) BreakMethod ’Open)

(← self TraceMethod selector) [Method of Class]

Purpose: Traces a method of a class.

Behavior: Varies according to the argument.

• If selector is NIL, a menu appears showing the selectors associated with
the class self that have not already been broken. If you do not make a
choice from the menu, this method returns the symbol NothingTraced.

• If selector is non-NIL and is not associated with self, an error occurs stating
that selector was not found in self.

If a method is traced, this fact is printed in the Prompt Window. The traced
method function is added to the list BROKENFNS. (See the Interlisp-D
Reference Manual for more information on BROKENFNS.) Whenever the
function is called a message will be printed to a trace window, when it is exited
a message will be printed with the returned value.

Arguments: self Must be bound to a class.

selector Must be a selector associated with self or NIL.

Returns: The symbol NothingTraced or NIL.

Categories: Class

(← self UnbreakMethod selector) [Method of Class]

Purpose: Unbreaks or untraces a method of a class.

Behavior: Varies according to the argument.

• If selector is NIL, a menu appears showing the selectors associated with
the class self that have been broken. If you do not make a choice from the
menu, this method returns the symbol NothingUnbroken.

• If selector is non-NIL and is not associated with self, an error occurs stating
that selector was not found in self.

If a method is unbroken, its method function is removed the list BROKENFNS.
(See the Interlisp-D Reference Manual for more information on
BROKENFNS.) The value return is a list containing the name of the unbroken
method function.

 Arguments: self Must be bound to a class.

selector Must be a selector associated with self or NIL.

Returns: The symbol NothingUnbroken or a list containing the name of the unbroken
method function.

Categories: Class

(← self SelectorsWithBreak) [Method of Class]

1 2 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12.1 BREAKING AND TRACING METHODS

Purpose: Return a list of selectors whose implementations have a break.

Behavior: Searches through the list BROKENFNS collecting all selectors of method
functions that begin with the class name of self. (See the Interlisp-D
Reference Manual for more information on BROKENFNS.)

Arguments: self Must be bound to a class.

Returns: A list of selectors of self.

Categories: Class

12.2 Breaking and Tracing Data

Breaking or tracing functions or methods cause interruptions to occur in a
computation when a function or method is entered. Breaks or traces on data
can be made to occur when either the data is to be read or changed. Only
data that is contained within objects can be broken; this feature is not available
to arbitrary Lisp data. Breaks and traces on data are implemented through the
mechanism of active values. The following ActiveValue classes contain this
mechanism:

• BreakOnPut

• BreakOnPutOrGet

• TraceOnPut

• TraceOnPutOrGet

You can use the methods and functions in this section to place or remove
breaks on data. You can also add and remove traces and breaks through the
inspector interface. See Chapter 18, User Input/Output Modules, for more
information on the inspector.

Note: Breaking or tracing a variable effectively breaks or traces any
IndirectVariable that points to it.

The following table describes the items in this section.

Name Type Description

BreakIt Method Puts a break on data within an object.

BreakIt Function Sends the message BreakIt to self.

TraceIt Method Puts a trace on data within an object.

TraceIt Function Sends the message TraceIt to self.

UnBreakIt Function Unbreaks broken data; untraces traced data.

BrokenVariables Global Contains a list of broken or traced variables.
Variable

(← self BreakIt varName propName &OPTIONAL (type ’IV) breakOnGetAlsoFlg) [Method of Object]

Purpose: Puts a break on data within an object.

Behavior: Adds an entry to the list BrokenVariables.

1 2 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12.2 BREAKING AND TRACING DATA

• If breakOnGetAlsoFlg is T, creates an instance of the class
BreakOnPutOrGet and adds the active value to the data specified by self,
varName, propName, and type.

• If breakOnGetAlsoFlg is NIL, the active value instance is of the class
BreakOnPut.

When a break occurs, the break window shows the nature of the break and
which object and what variable is broken. See examples below.

Arguments: self Points to the object that contains the data to be broken.

varName The name of the variable.

propName If a property access is to be broken, this is the name of the
property.

type The type of the data. This can be IV, CV, or METHOD; the
default is IV.

breakOnGetAlsoFlg
If this is non-NIL, breaks will occur when data is read. If this is
NIL, breaks will occur only on attempts to write the data.

Returns: self

Categories: Object

Example: The following commands check if a window’s width and height are going to
change.

(← ($ Window) New ’w)
(← ($ w) BreakIt ’width)
(← ($ w) BreakIt ’height NIL NIL T)

Trying to change the width causes this break:

Trying to read the height causes this break:

(BreakIt self varName propName type breakOnGetAlsoFlg) [Function]

Behavior: Sends the message BreakIt to self passing the remainder of the arguments.
See the method BreakIt, above, for details.

(← self TraceIt varName propName &OPTIONAL (type ’IV) traceGetAlsoFlg) [Method of Object]

1 2 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12.2 BREAKING AND TRACING DATA

Purpose: Puts a trace on data within an object.

Behavior: Adds an entry to the list BrokenVariables.

• If traceGetAlsoFlg is T, creates an instance of the class TraceOnPutOrGet
and adds the active value to the data specified by self, varName,
propName, and type.

• If traceGetAlsoFlg is NIL, the active value instance is of the class
TraceOnPut.

When a trace occurs, a trace window appears if necessary, with the traced
information printed in it. See examples below.

Arguments: self Points to the object that contains the data to be traced.

varName The name of the variable.

propName If a property access is to be traced, this is the name of the
property.

type The type of the data. This can be IV, CV, or METHOD; the
default is IV.

traceOnGetAlsoFlg
If this is non-NIL, trace messages will occur when data is read. If
this is NIL, trace messages will occur only on attempts to write
the data.

Returns: self

Categories: Object

Examples: To monitor if a window’s width and height are going to change, enter

97←(← ($ Window) New ’w)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

98←(← ($ w) TraceIt ’width)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

99←(← ($ w) TraceIt ’height NIL NIL T)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

Trying to change the width or the height causes a trace.

100←(change (@ ($ w) width) 100)

100

101←(@ ($ w) height)

1 2 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12.2 BREAKING AND TRACING DATA

12

(TraceIt self varName propName type breakOnGetAlsoFlg) [Function]

Purpose/Behavior: Sends the message TraceIt to self passing the remainder of the arguments.
See the method TraceIt, above, for details.

(UnBreakIt self varName propName type) [Function]

Purpose: Unbreaks broken data; untraces traced data.

Behavior: Varies according to the argument self.

• If self is NIL, iterates through the list BrokenVariables and removes the
active values from the objects on that list. BrokenVariables is set to NIL.

• If self is not NIL, removes the active value from the data described by self,
varName, propName, and type. The corresponding entry is removed from
BrokenVariables. If there is no active value on the specified data, a break
occurs saying that the specified data is not broken and type OK to continue.

Arguments: self Points to the object that contains the data to be traced.

varName The name of the variable.

propName If a property access is to be traced, this is the name of the
property.

type The type of the data. This can be IV, CV, or METHOD; the
default is IV.

Returns: Value depends on the arguments.

• If self is NIL, the value of BrokenVariables before it was bound to NIL is
returned.

• If self is non-NIL and there were no errors, the list containing self, varName,
and propName is returned.

Example: The following command removes a break from the instance variable id# in the
instance named Datum12:

(UnBreakIt ($ Datum12) ’id#)

BrokenVariables [Global Variable]

Purpose/Behavior: This is initialized to NIL. As data within objects is traced or broken, an entry is
added to this list. Each entry contains the object, the variable name, the active
value created to implement the break, the property name, and the type.

1 2 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

12.2 BREAKING AND TRACING DATA

[This page intentionally left blank]

1 3 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13. EDITING

LOOPS has an interface to the display-based editor, SEdit. This editor is most
often used for modifying classes, functions, and methods, but it can also be
invoked to modify instances. Instances are typically modified through the
inspector interface (see Chapter 18, User Input/Output Modules).

The technique for editing methods is exactly the same as that for editing
functions. LOOPS uses Method, an extension of the lambda form that is
documented in Chapter 6, Methods, which also gives details about the form of
methods and how to invoke the editor upon them.

The process of editing classes and instances is different from editing methods
in that you are not editing structure directly. The data structures representing
the objects are translated into list structures, those list structures are then
edited, and, finally, on exiting from the editor, the list structure is translated
back into LOOPS objects. Because of this process, changes in objects do not
take effect until you have exited from the editor.

13.1 Editing Classes

The Edit and Edit! methods provide a screen-based way to modify class
structure. You can quickly add and delete local class and instance variables,
make inherited variables local, and change initial values. The other methods
listed are used to interface LOOPS to the display editor.

Name Type Description

Edit Method Edits the structure of a class.

Edit! Method Edits a class in a form that includes inherited information.

InstallEditSource Method Makes a class conform to a description.

MakeEditSource Method Makes a list structure for editing a class.

MakeFullEditSource Method Makes a list structure, including inherited information, for editing
a class.

(← self Edit commands) [Method of Class]

Purpose: Edits the structure of a class.

Behavior: Translates self from a data type to a list structure that is then passed to the
editor through EDITE (see the Lisp Release Notes and the Interlisp-D
Reference Manual). If commands is non-NIL, this is passed as the second
argument to EDITE.

The variable LASTCLASS is bound to the class name of self.

Generally, commands is NIL, which causes you to enter the editor
interactively. From this point, you can perform the following actions:

1 3 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13.1 EDITING CLASSES

• Change the metaclass of self

• Add or delete class properties

• Add or delete class variables, instance variables, and their properties.

Also, as a user convenience, the edited form has a list of methods that you
can select and edit, although you cannot delete items from this MethodFns list
and have that action disassociate the methods from the class.

Arguments: commands A list of editing commands to be passed to EDITE.

Returns: The class name of self.

Categories: Object

Specializes: Object

Example: The following editing window is generated as a result of

(← ($ IndirectVariable) Edit)

The following information describes this window:

• The title of the window contains the name of the class being edited and
package it uses for displaying symbols. This package should be
INTERLISP when using LOOPS.

• It has the metaclass Class.

• It has the two class properties doc and Edited%:.

• It has one super class, the class ActiveValue.

• It has no class variables.

• It has four instance variables: object, varName, propName, and type.
Each instance variable has a doc property.

• It has two local methods: GetWrappedValueOnly and
PutWrappedValueOnly.

1 3 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13.1 EDITING CLASSES

(← self Edit! commands) [Method of Class]

Purpose: Edits a class in a form that includes inherited information.

Behavior: This is similar is behavior to the method Class.Edit.

The form you are editing includes not only items local to self but also class
variables and instance variables that are inherited. This allows you to easily
move inherited information into self. Editing operations that modify the
inherited values have no effect.

Arguments: commands A list of editing commands to be passed to EDITE.

Returns: The class name of self.

Categories: Class

Example: The following command puts you into the display editor. Compare this display
with the previous one.

(← ($ IndirectVariable) Edit!)

(← self InstallEditSource editedDescription) [Method of Class]

Purpose: Makes a class conform to a description.

Behavior: Called by the system to change a class data structure to correspond to a list
structure you have edited. If there are errors in the structure, the editor is
activated again. If there are errors in the edited structure, an error message is
printed in the prompt window and you are returned to the editor to fix it.

If there are no errors in the structure, this successfully translates the structure
into the class data type structure. In addition, a class property Edited: is
added to self with the value returned by (EDITDATE NIL INITIALS).

Arguments: editedDescription
A list structure similar to that returned by the message
MakeEditSource.

Returns: Used for side effect only.

Categories: Object

Specializes: Object

1 3 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13.1 EDITING CLASSES

(← self MakeEditSource) [Method of Class]

Purpose: Makes a list structure for editing a class.

Behavior: This builds a list structure containing metaclass, super, class variable and
instance variable information. In addition, the method function names are
included in this list.

Returns: List expression of class structure.

Categories: Object

Specializes: Object

Example: The command

(← ($ BreakOnPutOrGet) MakeEditSource)

returns

((MetaClass Class Edited%: (* nbm " 5-May-87 17:53")
doc "This is the default metaClass for all classes")
 (Supers BreakOnPut)
 (ClassVariables)
 (InstanceVariables)
 (MethodFns BreakOnPutOrGet.GetWrappedValue))

(← self MakeFullEditSource) [Method of Class]

Purpose: Makes a list structure, including inherited information, for editing a class.

Behavior: This is similar to MakeEditSource. The constructed list also includes instance
variables and class variables that are inherited.

The list does not contain the method functions associated with self that
MakeEditSource includes.

Returns: List expression of class structure.

Categories: Class

Example: The command

(← ($ BreakOnPutOrGet) MakeFullEditSource)

returns:

((MetaClass Class Edited%: (* nbm " 5-May-87 17:53")
doc "This is the default metaClass for all classes")
 (Supers BreakOnPut)
 (ClassVariables)
 (CVsInherited)
 (InstanceVariables)
 (IVsInherited
 (localState NIL doc (* The local state of the active value))))

1 3 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13.1 EDITING INSTANCES

13.2 Editing Instances

LOOPS instances can also be edited by the standard Medley code editor.
From this editor, you can change the values of instance variables and
properties, and add new instance variables. Instances follow the same basic
editing protocol that classes do.

The following table shows the methods in this section.

Name Type Description

Edit Method Allows you to change the values contained in an instance.

InstallEditSource Method Makes an instance conform to a description.

MakeEdit Method Makes a list structure for editing an instance.

(← self Edit commands) [Method of Object]

Purpose: Allows you to change the values contained in an instance.

Behavior: Changes the data structure of self to a list and passes that list to EDITE (see
the Lisp Release Notes and the Interlisp-D Reference Manual.) If commands
is non-NIL, this is passed as the second argument to EDITE.

Deleting a variable does not delete it from the instance.

Arguments: commands A list of editing commands to be passed to EDITE.

Returns: self

Categories: Object

Specializations: Class

Example: The following commands create the edit window shown.

71←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

72←(←@ ($ w1) width 123)
123

73←(←($ w1) Edit)

(←self MakeEditSource) [Method of Object]

Purpose: Makes a list structure for editing an instance.

1 3 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13.1 EDITING INSTANCES

Behavior: Returns a list showing all instance variables, values, and properties.

Returns: A list showing all instance variables, values, and properties.

Categories: Object

Specializations: Class

Example: The following shows MakeEditSource results as values are assigned to the
instance variables of ($ w1).

38←(← ($ Window) New ’w1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

39←(← ($ w1) MakeEditSource)
((left) (bottom) (width) (height) (window) (title) (menus))

40←(←@ ($ w1) width 123)
123

41←(← ($ w1) MakeEditSource)
((left) (bottom) (width 123) (height) (window) (title) (menus))

42←(←@ ($ w1) menus Title T)
T

43←(← ($ w1) MakeEditSource)
((left) (bottom) (width 123) (height) (window) (title) (menus
#,NotSetValue Title T))

44←(@ ($ w1) window)
{WINDOW}#74,25554

45←(← ($ w1) MakeEditSource)
((left 31) (bottom 407) (width 123) (height 12) (window #,($AV
LispWindowAV ((NEW0.1Y%:.;h.eN6 . 495)) (localState {WINDOW}#74,25554)))
(title) (menus #,NotSetValue Title T))

(← self InstallEditSource editedDescription) [Method of Object]

Purpose: Makes an instance conform to a description.

Behavior: This is called by the system to change an instance data structure to
correspond to a list structure you have edited.

Arguments: editedDescription
A list structure similar to that returned by the message
MakeEditSource.

Returns: Used for side effect only.

Categories: Object

1 3 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

13.1 EDITING INSTANCES

[This page intentionally left blank]

1 4 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14. FILE MANAGER

LOOPS data structures are fully integrated into Medley. This includes the
definition of new File Manager commands so that any LOOPS object or
method can be saved on files and loaded into the environment in exactly the
same way that normal Medley data types are saved and loaded.

In addition, the LOOPS file browser provides a menu-driven interface to the
File Manager. When using a LOOPS file browser, newly created objects are
associated with files automatically. If you are not familiar with LOOPS file
browsers see Chapter 10, Browsers.

This chapter describes the functions, methods, and variables used to load
and store files containing LOOPS objects. It describes the File Manager
commands related to LOOPS objects. It also describes how to add objects to
files, delete them from files, and move them from file to file. These are
primarily of interest when customizing either the File Manager or LOOPS file
browser.

14.1 Manipulating Files

LOOPS takes advantage of the ability to create user-defined File Manager
commands to fully integrate LOOPS into the Medley environment. As a result,
the same steps used to manipulate files containing Medley data structures are
used to manipulate files containing LOOPS data structures. Furthermore,
both LOOPS and Medley data structures can be saved together in the same
file. This section contains a brief review of the three basic functions used to
manipulate files. For a more detailed description which includes additional
functions, see the Lisp Release Notes and the Interlisp-D Reference Manual.

In addition, there is a LOOPS file browser which provides a convenient way of
loading files and guaranteeing that newly created classes and methods are
associated with files during the development of LOOPS programs. The
LOOPS file browser is different from the Lisp Library Module FILEBROWSER.
Files can be loaded and put into new or existing file browsers by a series of
menu selections.

You can manipulate files with these basic steps:

• Assign data structures to a specific file using FILES?.

• Write data structures to a file using MAKEFILE.

• Enter data structures stored in a file into the environment using LOAD.

The following example shows these steps.

1 4 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.1 MANIPULATING FILES

30←(FILES?)
PIPEANDTANK,LOOPSPRINT,LOOPSUTILITY...to be dumped.
 plus the instances: FFAV1,Datum1,TestW
 plus the class definitions: Datum
 want to say where the above go ? Yes
(instances)
FFAV1 File name: LOOPSFILE
create new file LOOPSFILE ? Yes
Datum1 File name: LOOPSFILE
TestW File name: LOOPSFILE
(class definitions)
Datum File name: LOOPSFILE
NIL

31←(MAKEFILE ’LOOPSFILE)
Copyright owner for file LOOPSFILE: XEROX
{DSK}<LISPFILES>LOOPSFILE.;1

32←(LOAD ’LOOPSFILE)
{DSK}<LISPFILES>LOOPSFILE.;1
FILE CREATED 7-Jan-87 16:25:24
LOOPSFILECOMS
{DSK}<LISPFILES>LOOPSFILE.;1

See the Lisp Release Notes and the Interlisp-D Reference Manual for more
information on FILES? and MAKEFILE. See the following section for details
on LOAD.

14.2 Loading Files

The following table shows the functions and commands described in this
section.

Name Type Description

LOAD Function Loads Medley symbolic files which includes LOOPS objects and
methods.

LOADFNS Function Allows selective loading from Medley symbolic files.

UNDO Prog. Undoes previous entries into the Medley Executive which are
Asst. stored on a history list, including calls to LOAD.

(LOAD FILE LDFLG) [Function]

Purpose/Behavior: Loads Medley symbolic files which includes all LOOPS objects and methods;
see the Lisp Release Notes and the Interlisp-D Reference Manual.

Arguments: FILE File to be loaded.

LDFLG Alters the effect of loading a file.

• If it is set to PROP, the definitions of functions, including
METHOD functions, are stored on the property EXPR of the
function name. Thus, any existing definitions are not
overwritten.

• If it is set to ALLPROP, the values of variables are also saved
on property lists.

1 4 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.2 LOADING FILES

Returns: Full file name.

(LOADFNS FNS FILE) [Function]

Purpose/Behavior: Allows selective loading from Medley symbolic files including LOOPS files .
The most likely use for this facility is to load the source code for method
functions when the compiled versions are already loaded. The methods must
be specified by their explicit function names in the form ClassName.Selector,
for example,

(LOADFNS ’(SomeClass.AMethod OtherClass.AMethod) ’{DSK}<LISPFILES>SOMEFILE ’PROP)

It is not recommended that LOOPS objects be selectively loaded by using
VARS (see the Lisp Release Notes and the Interlisp-D Reference Manual),
because it is not possible to guarantee that all necessary related objects, such
as superclasses or methods of a class, are also loaded.

Arguments: FNS Selected functions to be loaded.

FILE File from which functions specified in FNS are to be loaded.

Returns: List of functions that have been loaded

UNDO [Program Assistant Command]

Purpose/Behavior: LOOPS saves enough information about objects that are created as a result of
loading a file to allow the call to LOAD to be undone. The objects are
destroyed and any preexisting objects that were deleted by the load are
restored. See the Lisp Release Notes and the Interlisp-D Reference Manual.

14.3 LOOPS File Manager Commands

Four File Manager types are defined to allow LOOPS objects to be stored in
Medley files:
• CLASSES
• METHODS
• INSTANCES
• THESE-INSTANCES
These types and the functions and methods used by LOOPS to process these
types are described in this section.

Note: The order of items in the filecoms is important. In particular, class
definitions must appear in the file before any methods on that class or
any instances of that class. Similarly, methods on a class must
appear before any instances of that class.

Name Type Description

CLASSES File Mgr Writes the appropriate DEFCLASSES and DEFCLASS
Command expressions for the named classes.

DEFCLASSES NLambda Creates a series of empty classes in preparation for reading
NoSpread their definitions via DEFCLASS.

DEFCLASS NLambda Takes a source specification of a class from a file and causes
NoSpread the appropriate internal representation to be constructed.

METHODS File Mgr Writes the appropriate METH and DEFINEQ expressions for
Command each method object and its associated function.

1 4 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.3 LOOPS FILE PACKAGE COMMANDS

METH NLambda Creates a method object and attaches it to the appropriate
NoSpread class.

INSTANCES File Mgr Writes the appropriate DEFINST expressions for each instance
Command in the list.

THESE-INSTANCES File Mgr Appears as a sublist in a filecoms.
Command

DEFINSTANCES NLambda Creates empty structures for each instance name in a list.
NoSpread

DEFINST NLambda Creates internal representations for source specifications of
NoSpread an instance.

FileIn Method Creates internal representations for source specifications of an
instance.

(CLASSES ClassName1...ClassNameN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword CLASSES tells the File
Manager to use the appropriate DEFCLASSES and DEFCLASS expressions
for the named classes when writing to a file.

Arguments: ClassName Accepts any symbol, but only gives meaningful result when you
use DEFCLASS to actually create the class.

Example: (CLASSES Myclass)

(DEFCLASSES CLASSES) [NLambda NoSpread Function]

Purpose/Behavior: Used in a file to create a series of empty classes in preparation for reading in
their definitions via DEFCLASS. This allows the classes to be read in any
order. Otherwise, superclasses would have to be read in before their
subclasses.

Arguments: CLASSES Accepts any symbol, but only gives meaningful result when you
use DEFCLASS to actually create the class.

Returns: NIL

Example: The command

(DEFCLASSES MyClass)

returns NIL.

(DEFCLASS FORM) [NLambda NoSpread Function]

Purpose/Behavior: Takes a source specification of a class, such as produced by the method
MakeFileSource, from a file and causes the appropriate internal
representation to be constructed.

Arguments: FORM The source specification of a class.

Returns: NIL

Example: (DEFCLASS MyClass
(MetaClass Class doc (* Something for my project)
 Edited: (* nbm "18-Oct-87 13:20"))
(Supers Object)
(InstanceVariables (Iv1 (22) doc

1 4 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.3 LOOPS FILE PACKAGE COMMANDS

(* Initial value for my instances)]

(METHODS ClassName.Message1...ClassName.MessageN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword METHODS tells the File
Manager to use the appropriate METH and DEFINEQ expressions for each
method object and its associated function.

Arguments: ClassName.Message
The source specification of a class.

Example: (METHODS MyClass.Method1)

(METH methDescr) [NLambda NoSpread Function]

Purpose/Behavior: Creates a method object and attaches it to the appropriate class.

Arguments: methDescr Method object to create.

Returns: NIL

Example: (METH MyClass MyClass.Method1 NIL
(category (Datum)))

(INSTANCES InstName1...InstNameN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword INSTANCES tells the File
Manager to use the appropriate DEFINST expressions for each instance in the
list and also for any other instances that are referenced inside any instances in
the list. This assures that there are no references to nonexistent instances
when read back in. The method SaveInstance? can be specialized to prevent
instances from being saved in more than one file when they are referred to by
instances in different files.

Example: (INSTANCES TestW)

(THESE-INSTANCES InstName1...InstNameN) [File Manager Command]

Purpose/Behavior: Appears as a sublist in a filecoms. The keyword THESE-INSTANCES tells
the File Manager to use the appropriate DEFINST expressions for each
instance in the list. Unlike the INSTANCES File Manager command, THESE-
INSTANCES does not recursively dump instances that are pointed by
InstName1...InstNameN.

1 4 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.3 LOOPS FILE PACKAGE COMMANDS

(DEFINSTANCES Instances) [NLambda NoSpread Function]

Purpose/Behavior: Takes a list of instance names and creates empty structures for them in
preparation for reading in their structures from a file.

Arguments: Instances Accepts any symbol but result is useless unless you use
DEFINST to actually create the Instance.

Returns: NIL

Example: (DEFINSTANCES TestW)

(DEFINST DEFINST% FORM) [NLambda NoSpread Function]

Purpose/Behavior: Takes a source specification of an instance and causes the appropriate
internal representation to be created. It does this by sending the message
FileIn to the instance’s class. It creates the class if it does not exist.

Arguments: DEFINST% FORM
The source specification of an instance.

Returns: NIL

Example: [DEFINST Window
(TestW (JEW0.0X:.H<4.NZ9 . 532))
(left 179)
(bottom 446)
(width 12)
(height 12)]

(← self FileIn fileSource) [Method of Class]

Purpose/Behavior: Takes a source specification for an instance as it appears in a file and causes
the appropriate internal representation to be constructed.

Arguments: self Class of the instance to be created.

fileSource Loadable form of an instance as stored in a file.

Returns: self

Categories: Class

14.4 Saving LOOPS Objects on Files

Adding LOOPS classes, methods and instances to files can be done in the
same way that functions and variables are saved in Medley. In addition, the
LOOPS browser allows newly created objects to be automatically associated
with files. LOOPS also provides the means for moving objects from file to file.

Whenever a class, method, or named instance is created or edited, it is
marked as changed. This allows the File Manager to prompt for a file in which
to store new objects and see to it that changed objects are written out when
MAKEFILE is called.

1 4 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.4 SAVING LOOPS OBJECTS ON FILES

The following table shows the items in this section.

Name Type Description

FILES? Function LOOPS adds a prompt for classes, methods and instances along
with the normal Medley types.

ObjectModified Method Notifies the File Manager that an object has been changed or
created.

OnFile Method Determines if a class is in FILELST.

SaveInstance Method Causes newly created instances to be noticed by the File
Manager.

SaveInstance? Method Determines if an instance needs to be added to the list of
instances to be saved.

DelFromFile Method Deletes an object from any file in FILELST in which it appears.

MoveToFile Method Class.MoveToFile moves a class and its methods from one file
to another. Object.MoveToFile moves an instance from one file
to another.

MoveToFile! Method Moves a class, all of its methods, and all of its subclasses and
their methods from one file to another.

DontSave IVProperty Controls what parts of an instance are saved in a file.

OldInstance Method Sends a message to an object after it is loaded from a file.

(FILES?) [Function]

Purpose/Behavior: The File Manager types have been extended so that, when a call is made to
FILES?, you are prompted to add classes, methods and instances to files
along with the normal Medley. For an example of FILES?, see Section 14.1,
"Manipulating Files."

After a class is associated with a file, any methods that are added to it are
automatically added to that file as well. Thus, it makes sense to put classes in
files as soon as possible. This could be done by repeated calls to FILES?, but
the LOOPS file browser allows classes to be automatically added to files as
they are created. Any class that is created by adding a root to a file browser
or by specializing a class in a file browser is added to that brower’s file. If
more than one file is associated with the browser, a menu appears to prompt
you to specify a file for the new class. The LOOPS browser also can be used
to create a new file and associate it with a file browser. Thus, there is never
any need to wait until the end of a session to put classes and methods in files.

You can also save instances on files. Of course, only those instances which
should be present after a file is first loaded should be saved. Instances which
are constructed "on the fly" as a consequence of running a LOOPS program
should not be saved. Only named instances are marked as changed so many
such temporary instances may never be noticed. However, if named instances
which should not be saved are created, then you are prompted to put them
into files after a call to FILES? and must respond by typing a right square
bracket (]) to each one. Alternatively, it is possible to specialize the method
ObjectModified so that it does not call MARKASCHANGED. Then any
instances of classes which have or inherit the specialized method are not
noticed by the File Manager regardless of whether or not they are named.

(← self ObjectModified name) [Method of Object]

Purpose: Notifies the File Manager that an object has been changed or newly created.

1 4 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.4 SAVING LOOPS OBJECTS ON FILES

Behavior: Uses the File Manager command MARKASCHANGED. It does nothing if
name is not given, thus unnamed objects are never marked.

Arguments: self A LOOPS object.

name Name of object specified in self.

reason Reason is MARKEDASCHANGED (see the Interlisp Reference
Manual for information on MARKEDASCHANGED).

Returns: self

Categories: Object

Specializations: Method

(← self OnFile file) [Method of Class]

Purpose: Determines if an object is in a file in FILELST.

Behavior: Calls WHEREIS (see the Lisp Release Notes and the Interlisp-D Reference
Manual).

• If file is not given, it returns the name of the file in FILELST that the object
is contained in or NIL if self is not in a file.

• If file is given, it must still be a member of FILELST, and T or NIL is
returned.

Arguments: self A LOOPS object.

file The file to be searched.

Returns: Value depends on the arguments; see Behavior.

Categories: Class

(← self SaveInstance name reason) [Method of Object]

Purpose: Causes newly created instances to be noticed by the File Manager.

Behavior: Sends self the message ObjectModified.

Arguments: self A LOOPS object.

name Name of object specified in self.

reason Reason is MARKEDASCHANGED (see the Interlisp Reference
Manual for information on MARKEDASCHANGED).

Returns: self

Categories: Object

(← self SaveInstance? file outInstances) [Method of Object]

Purpose: Determines whether an instance needs to be added to the list of instances to
be saved in file.

Behavior: Checks to see if the current instance is a member of outInstances. It is used
by the LOOPS File Manager command INSTANCES to guarantee that the
same instance does not appear more than once in a given file.

This method must be specialized to be used; it cannot be used directly by the
user.

1 4 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.4 SAVING LOOPS OBJECTS ON FILES

Arguments: self A LOOPS object.

file The file to be searched.

outInstances
A list of LOOPS names. See Behavior.

Returns: T if the instance should be saved on the file; NIL if it should not be saved.

Categories: Object

(← self DelFromFile) [Method of Object]

Purpose: Deletes an object from any file in FILELST in which it appears.

Behavior: Searches through the filecoms of all files in FILELST and deletes the object
everywhere it appears.

Arguments: self A LOOPS object.

Returns: Used for side effect only.

Categories: Object

Specializations: Class, Method

(← self MoveToFile file) [Method of Class]

Purpose: Moves an object from one file to another. If an object is a class, it, and all its
methods, move.

Behavior: Adds the object to the filecoms of file so that the object will be saved on that
file. If file is NIL, it prompts for a file form FILELST via a menu.

Arguments: self A class or method.

file File to which object is moving.

Returns: NIL

Categories: Object

Specializes: Object

(← self MoveToFile! file fromFiles) [Method of Class]

Purpose: Moves a class, all of its methods, and all of its subclasses and their methods
from one file to another.

Behavior: Similar to MoveToFile.

Arguments: self A LOOPS class.
file File to which object is moving.
fromFiles A list of files from which classes may be moved.

Returns: NIL

Categories: Class

DontSave [IV Property Name]

Purpose/Behavior: Controls what parts of an instance are saved in a file. Its value is a list of
property names of the instance variable which should not be written out when

1 4 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.4 SAVING LOOPS OBJECTS ON FILES

the instance is dumped. If Value is in the list, the instance variable’s value is
not saved. If the property is Any, nothing is saved except the instance
variable name. (Must be added by the user.)

(←self OldInstance name arg1 arg2 arg3 arg4 arg5) [Method of Object]

Purpose: Sends a message to an object after it is loaded from a file. This method can
be specialized by applications that need to perform some operation on every
object when it is created.

Behavior: If name is non-NIL, the message SetName is sent to self.

Instance variables with an :initForm property are filled. See the discussion of
:initForm in Chapter 2, Instances.

Sends the message SaveInstance to self with the arguments name, arg1, and
arg2.

Arguments: self Evaluates to a class.
name LOOPS name of the class or instance.
arg1...arg5 Optional arguments referenced by user-written specialization

code.

Categories: Object

Specializations: IndexedObject

14.5 Storing Files

This section describes the functions and methods used by LOOPS and
Medley to store files.

Name Type Description

MAKEFILE Function Writes files that contain Medley data types which include LOOPS
objects and methods.

PrettyPrintClass Function Prints classes in a file in a form that can be read back in.

PrettyPrintInstance Function Prints instances in a file in a form that can be read back in.

MakeFileSource Method Constructs the representation of an object that is appropriate for
printing in a file.

FileOut Method Controls the printing of a LOOPS object in a file.

(MAKEFILE FILE) [Function]

 Purpose/Behavior: When all LOOPS objects are associated with their files, the files are written by
a call to MAKEFILE or MAKEFILES. This is identical to the standard use of
MAKEFILE in Medley. See the Lisp Release Notes and the Interlisp-D
Reference Manual.

Arguments: FILE Name of file to be written out.

Returns: Full file name

1 4 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.5 STORING FILES

(PrettyPrintClass className file) [Function]

Purpose/Behavior: Used by the File Manager command CLASSES to print out classes in a file in
a form that can be read back in. It checks to make sure the class exists and
then sends it the message FileOut. It is also used by the method PP to print
classes to a display stream.

Arguments: className The name of the class to be printed on the file file.

file The file on which the class className is to be printed.

Returns: Pointer to class in the form #,($ className)

(PrettyPrintInstance instanceName file) [Function]

Purpose: Used by the File Manager command INSTANCES to print instances in a file in
a form which can be read back in. Sends the message FileOut to instance.

Arguments: instanceName
Name of a LOOPS instance.

file The file on which the instance instancename is to be printed.

Returns: NIL

(← self MakeFileSource file) [Method of Object]

Purpose: Constructs the representation of an object that is appropriate for printing in a
file.

Behavior: Uses the relevant access functions to obtain the parts of the object and then
stores them into a list structure.

Arguments: self A LOOPS object.

file The file on which self is to be printed.

Returns: Loadable form of a LOOPS object.

Categories: Object

Specializations: Class, Method

Example: 63←(← ($ TestW) MakeFileSource)
(DEFINST Window
(TestW (NEW0.1Y%:.;h.eN6 . 501)))

(← self FileOut file) [Method of Object]

Purpose: Controls the printing of a LOOPS object in a file.

Behavior: Gets the appropriate source representation by sending the object the message
MakeFileSource and prettyprints the result.

Arguments: self A LOOPS object.

file The file on which self is to be printed on if T prints to the Lisp
Executive window.

Returns: self

Categories: Object

Specializations: Class, Method

1 4 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.5 STORING FILES

Example:

62_(_ ($ TestW) FileOut T)
(DEFINST Window (TestW (NEW0.1Y%:.;h.eN6 . 501)))
#,($& TestW (NEW0.1Y%:.;h.eN6 . 501))

14.6 Compiling Files

LOOPS uses the new XAIE compiler and its macrolet facilities. When doing
CLEANUP on LOOPS files your *DEFAULT-CLEANUP-COMPILER* should
be set to ’CL:COMPILE-FILE. More information on this cleanup flag and the
new compiler are available in the Lisp Release Notes.

1 4 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

14.6 COMPILING FILES

[This page intentionally left blank]

1 5 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15. PERFORMANCE ISSUES

Three main areas in LOOPS can affect performance:

• Garbage collection

• Instance variable access

• Method lookup

This chapter describes the impact of these areas on LOOPS. Also included is
a section on cache clearing.

15.1 Garbage Collection

The Interlisp-D garbage collector maintains reference counts of each piece of
data in the system. (Refer to the Lisp Release Notes and the Interlisp-D
Reference Manual for information on reference counts.) There is potential for
noticeable performance degradation if many items have reference counts
greater than one. Object-oriented systems in general, and LOOPS in
particular, can easily create objects that have multiple references.

The LOOPS system uses a number of methods to avoid creating items with
large reference counts. Classes, for example, can easily have large reference
counts since each instance of the class points to the class. Because of this,
LOOPS does not maintain reference counts of classes. Performance is
enhanced, but classes in LOOPS are not garbage collected. This should not
present a problem as classes are not often destroyed.

Unique Identifiers (UIDs) also have multiple references: from the instance
they name and from the table used by the LOOPS system to associate UIDs
with instances. LOOPS avoids this problem by storing copies of the instance
UID in the instance. This complicates testing for equality of UIDs, which is a
rare event, but removes a potential garbage collection problem.

These and other implementation details substantially reduce the impact of
LOOPS on the Interlisp-D garbage collector. In a typical running system,
LOOPS objects accounted for less than 16% of the data items with reference
count greater than one.

15.2 Instance Variable Access

LOOPS uses macros to speed the instance variable access from compiled
code. Instance variable property access is compiled differently from instance
variable value access, and various caching schemes are used to speed up
repeated access to a given slot.

1 5 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15.2 INSTANCE VARIABLE ACCESS

LOOPS uses two layers of caching to speed up instance variable access:

• Local cache.

Instance variable access from compiled code uses a local cache. This
cache remembers the class of self and the instance variable index the last
time this piece of code was executed. If the class of self on the next pass
through the code matches the stored value, then the stored instance
variable index is used. In this case, instance variable access is very fast.

• Global cache.

A global cache is used by the instance variable access functions when the
local cache fails. This global cache is a fixed size table of instance variable
pairs. Looking in this cache for a given class is typically faster than
computing the instance variable index.

You should be aware that instance variable access is optimized to be faster
than accessing the properties of instance variables. Also, be aware that when
instances are first created, the data for an instance variable may need to be
found by performing a lookup through the class hierarchy. If the lookup goes
through several classes, this can be slow. By guaranteeing that the instance
variable data is stored in the instance, this lookup delay can be avoided.

The following macros are used to access instance variables. They are
mentioned here to point out that calls to GetValue and PutValue could result
in the compilation of any one of several different functions.

(GetValue self varName &OPTIONAL propName) [Macro]

Purpose/Behavior: Compiles to a call to one of the functions Cached-GetIVValue, Cached-
GetIVProp, GetIVValue, or GetIVProp. The particular function depends on
details of the arguments to GetValue.

Arguments: self A class or an instance.

varName Instance or class variable name.

propName Property name.

Returns: Used for side effect only.

(PutValue self varName value &OPTIONAL propName) [Macro]

Purpose/Behavior: Compiles to a call to one of the functions Cached-PutIVValue, Cached-
PutIVProp, PutIVValue, or PutIVProp. The particular function depends on
details of the arguments to PutValue.

Arguments: self A class or an instance.

varName Instance or class variable name.

value The new value for varName or propName.

propName Property name.

Returns: Used for side effect only.

1 5 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15.3 METHOD LOOKUP

15.3 Method Lookup

LOOPS uses two layers of caching to speed the method lookup:

• Local cache

Method lookup from compiled code uses a local cache when the selector
can be determined at compile time. This cache remembers the class of self
and the computed method the last time this message was sent. If the class
of self on the next pass through the code matches the stored value, then
the method is used. In this case, method lookup is very fast.

• Global cache

A global cache is used by the method lookup functions when the local
cache fails. This global cache is a fixed size table of class / selector /
method triples. Looking in this cache for a given class and selector is
typically faster than searching the class hierarchy for the appropriate
method.

15.4 Cache Clearing

Code that directly manipulates the structure of LOOPS objects sometimes
needs to invalidate the caches used for instance variable access and message
sending.

The following functions can be used to clear these caches if you suspect that
they might be invalid.

(ClearAllCaches) [Function]

Purpose/Behavior: Clears all LOOPS and Interlisp-D runtime caches. This includes local and
global instance variable access caches, local and global method lookup
caches, and the system CLISP translations hash array.

Returns: NIL

1 5 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

15.4 CACHE CLEARING

[This page intentionally left blank]

1 6 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

16. PROCESSES

LOOPS provides two special versions of message sending that start a
separate process to run LOOPS methods. These are ←Process and
←Process! which are analogous to ← and ←!.

(←Process obj sel arg1 ... argn) [Macro]

Purpose: Starts a new process to run the selected method on the object, obj.

Behavior: The method indicated by sel is run in a separate process for the given
instance or class, obj. See the Interlisp-D Reference Manual for a discussion
of processes.

Arguments: obj A LOOPS object.

sel Name of the method to be executed as a process.

arg1 ... argn
Arguments for the method specified in sel.

Returns: Pointer to a process data type.

Example: Assume the method ClockTime is added to the class LCD, as follows:

[Method ((LCD ClockTime
 self WaitTime DisplaySeconds?)
 (while T

do (←@ self reading
[MKATOM (DATE (if DisplaySeconds?

then (DATEFORMAT NO.DATE)
else (DATEFORMAT NO.DATE NO.SECONDS])

 (← self Update)
 (BLOCK (OR WaitTime 1000])

 (LCD.ClockTime)

ClockTime takes two arguments: WaitTime, the wait time between updates
of the LCD reading, and DisplaySeconds?, a flag used to determine if
seconds are to be displayed on the LCD. ClockTime runs an infinite loop
which sets the LCD reading, updates the LCD display, and blocks the
ClockTime loop to allow other system processes to run. The command

(←Process ($ LCDInstance1) ClockTime 60000)

adds the process ClockTime to the process list and ($ LCDInstance1)
becomes a digital clock which updates itself every minute.

1 6 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

16. PROCESSES

(←Process! obj sel arg1 argn) [Macro]

Purpose: Starts a new process to run the selected method on the object obj. Like
←Process, except the argument sel is evaluated.

Behavior: Evaluates sel returns a selector for a method of obj. This method is run on a
separate process for the given instance or class, obj.

Arguments: obj A LOOPS object.

sel Name of the method to be executed as a process.

arg1 argn
Arguments needed for the method.

Returns: Pointer to the process data type.

Example: Assume the variable LCDClock is set to ClockTime, which is the method
added to the LCD class as described for ←Process. The command

(←Process! ($ LCDInstance1) LCDClock 2000 T)

adds the process LCDClock to the process list and ($ LCDInstance)
becomes a digital clock with a seconds display which updates itself every two
seconds.

1 7 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17. READING AND PRINTING

This chapter describes the macros, functions, and methods used to read
LOOPS objects from and print LOOPS objects to file storage, hash array
storage, and the user display.

17.1 Reading Objects

This section describes the functions to read LOOPS objects.

Name Type Description

$ NLambda Returns a pointer to the object; does not evaluate its
Function argument.

$! Function Returns a pointer to the object; evaluates its argument.

$C NLambda Gets the class record.
Function

These functions use the Common Lisp form #, in the return display. This form
signals a read-time evaluation and is briefly described here.

Form Description

#,<form> Reads <form>, evaluates it, and returns that value.

#,($& <form>) Form in which instances appear if they are not prettyprinted.

#,($C className) Similar to #,($ className), except that it creates the class if it does not
already exist.

($ name) [NLambda Function]

Purpose/Behavior: Returns a pointer to the LOOPS object specified by name and does not
evaluate name. If no object exists for name, NIL is returned. If *PRINT-
PRETTY* is set to T, the object will be prettyprinted in the Executive window.

Arguments: name A LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

Example: In line 18, name is an instance. The value is returned and the DEFINST form
is printed.

In line 19, name is a class whose class name is returned and printed.

In line 20, NotAnObject has not been declared as a LOOPS object and
therefore returns NIL.

18←($ Window1)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

1 7 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.1 READING OBJECTS

19←($ Window)
#,($C Window)

20←($ NotAnObject)
NIL

($! name) [Lambda Function]

Purpose/Behavior: Returns a pointer to the LOOPS object specified by name where name is
evaluated. If no object exists for name, NIL is returned. If *PRINT-PRETTY*
is set to T, the object will be prettyprinted in the Executive window.

Arguments: name Evaluates to a valid LOOPS name.

Returns: Pointer to a LOOPS object or NIL; see Behavior.

($C name) [NLambda Function]

Purpose: Allows forward references to classes.

Use ($ name) instead of ($C name).

Behavior: Varies according to the arguments.

• If there is a class record for name, the function returns the class name.

• If there is no class record for name, the function attempts to create the
class. This differs from the behavior of ($ name) which does not attempt
any initialization if no LOOPS object is found.

Arguments: name A LOOPS name.

Returns: Value depends on the arguments; see Behavior.

Example: If name is not a LOOPS object, as shown in line 21, $C defines and returns a
class for name, as shown in line 22. Line 23 shows the default class which is
created in the Common Lisp Executive by $C when no class is found for
name.

21←($ aCompletelyNewClass)
NIL

22←($C aCompletelyNewClass)
#,($C aCompletelyNewClass)

23←(← ($C aCompletelyNewClass) PP)
aCompletelyNewClass

17.2 Print Flags

This section describes three variables that affect the way that objects are
printed in LOOPS:

• ObjectDontPPFlag

1 7 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.2 PRINT FLAGS

• ObjectAlwaysPPFlag

• *PRINT-PRETTY*

All these variables have a default value of NIL.

The ObjectDontPPFlag and ObjectDontPPFlag variables affect how
contained objects are printed and are used to override the *PRINT-PRETTY*,
which affects how the top-level objects are printed. (See the Interlisp-D
Reference Manual for more information on the *PRINT-PRETTY*.) These
variables interact as follows:

• If ObjectDontPPFlag is NIL and *PRINT-PRETTY* is T, objects are
prettyprinted.

• ObjectDontPPFlag is T overrides *PRINT-PRETTY* is T.

• ObjectAlwaysPPFlag is T overrides *PRINT-PRETTY* is NIL.

ObjectDontPPFlag [Variable]

Purpose/Behavior: Used internally to prevent recursive printing of objects. If ObjectDontPPFlag
is set to a non-NIL value, and ObjectAlwaysPPFlag is set to NIL, only the
object name is printed. If this flag is NIL, all of the information contained within
an instance is printed. The setting of this flag interacts with *PRINT-PRETTY*
as shown in the examples below.

ObjectAlwaysPPFlag [Variable]

Purpose/Behavior: Controls printing the long form of all instances. When this variable is set to a
non-NIL value, the long form of all instances are printed. This is the same
form generated by (←obj PP). The ObjectAlwaysPPFlag overrides the effect
of the ObjectDontPPFlag. Printing the long form of instances can lead to
infinite loops or very long printouts. For example, if you have an object
referencing another object which in turn references the first object, printing
causes an infinite loop. If you have references to other LOOPS objects in the
object you are printing, the long form of every object that can be reached from
the top object is printed.

Example: This example shows the interaction of all print flags.

23←(SETQ *PRINT-PRETTY* NIL)
NIL

24←(SETQ ObjectDontPPFlag NIL)
NIL

25←(← ($ Window) New ’Window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 502))

26←(← ($ Window2) Shape)
(47 145 99 89)

27←($ Window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 502))

• Change the value of *PRINT-PRETTY* to T.

28←(SETQ *PRINT-PRETTY* T)
T

29←($ Window2)
(DEFINST (Window2 (NEW0.1Y%:.;h.eN6 . 502))
 (left 47)
 (bottom 145)

1 7 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.2 PRINT FLAGS

 (width 99)
 (height 89))

• Change the value of ObjectDontPPFlag to T.

30←(SETQ ObjectDontPPFlag T)
T

31←($ Window2)
#,($& Window (NEW0.1Y%:.;h.eN6 . 502))

• Assume the following commands have been entered:

(DefineClass ’PPTest)
(← ($ PPTest) AddIV ’testIV)
(← ($ PPTest) New ’PPTest1)
(← ($ PPTest) New ’PPTest2)
(←@ ($ PPTest1) testIV ($ PPTest2))
(←@ ($ PPTest2) testIV ($ PPTest1))

(SETQ *PRINT-PRETTY* T)
(SETQ ObjectDontPPFlag T)
(SETQ ObjectAlwaysPPFlag T)

• Print the instances.

53←($ PPTest1)
(DEFINST PPTest (PPTest1 (NEW0.1Y%:.;h.eN6 . 502)))

• Reset the *PRINT-PRETTY* and print the instances again.

54←(SETQ *PRINT-PRETTY* NIL)
NIL

55←($ PPTest1)
#,($& PPTest (NEW0.1Y%:.;h.eN6 . 513))

17.3 Printing Classes

This section describes the methods used to print classes and information
about classes.

Name Type Description

FileOut Method Prints long pretty form of the class to a file or a display stream.

PP Method Prettyprints the class definition to a file or a display stream.

PP! Method Prints the information about the class from all levels of
inheritance.

PPV! Method Prints the variable information about the class from all levels of
inheritance.

(← self FileOut file) [Method of Class]

Purpose: Prints the long pretty form of the class to a file or to display stream.

1 7 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.3 PRINTING CLASSES

Behavior: Prints a DEFCLASS form for the class self. The DEFCLASS form, which is
the way classes are defined, always includes the name of the class, the
MetaClass, and the Supers. If there are ClassVariables and
InstanceVariables defined for the class, these along with their values are also
included in the DEFCLASS form. FileOut formats the output with special fonts
and tab positions.

Arguments: self A class.

file The stream on which self is to be printed. If NIL, or not given,
prints to the TTYDisplayStream.

Returns: self

Categories: Classes

Specializations: Class, Method

Example: This example shows the DEFCLASS form for TestClass. If a DEFCLASS
form cannot be generated for self, a Break occurs with the message "var is
not defined as a class. Type OK to ignore this class and go on."

24←(← ($ TestClass) FileOut)
(DEFCLASS TestClass
 (MetaClass Class Edited%: (* --))
 (Supers Object)
 (InstanceVariables (testIV 1234 testProp1 1
 testProp2 2 doc
 (* --))))

#,($C TestClass)

(← self PP file) [Method of Class]

Purpose: Prettyprints LOOPS OBJECT.CLASS.PP to a file or to display stream.

Behavior: Prettyprints the class on file, if provided. If file is not given, look first to the
PPDefault, which is by default the Common Lisp Executive Window, and then
to the TTYDisplayStream. The output is printed and formatted by the method
Class.FileOut.

Arguments: self A pointer to a class.

file Stream to prettyprint to.

Returns: Name of class.

Categories: Class

Specializes: Object

Example: This example shows a call to PP on the class SupersBrowser, which uses
the TTYDISPLAYSTREAM as the default output stream.

26←(← ($ SupersBrowser) PP)
(DEFCLASS SupersBrowser
 (MetaClass Class Edited%: **COMMENT**
 doc "Browses upwards from a class
to all of its supter.")
 (Supers ClassBrowser)
 (InstanceVariables (title "Supers browser")))

SupersBrowser

1 7 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.3 PRINTING CLASSES

(← self PP! file) [Method of Class]

Purpose: Prints the information about LOOPS OBJECT.CLASS.PP from all levels of
inheritance.

Behavior: Prints a listing of the following items along with any applicable documentation,
values and arguments for each item: MetaClass, Supers, Instance
Variables, Class Variables, Prototypes, and Methods.

Prints the information on file, if provided. If file is not given, look first to the
PPDefault, which is by default the Common Lisp Executive Window, and then
to the TTYDisplayStream.

Arguments: self A pointer to a class.

file Stream to print to.

Returns: self

Categories: Classes

Specializes: Object

Example: This example shows a partial output of the call to PP! on the class
SupersBrowser which uses the TTYDISPLAYSTREAM as the default output
stream. The dots indicate additional information.

27←(← ($ SupersBrowser) PP!)
#,($ SupersBrowser)
MetaClass and its Properties
 Class Edited: (* smL 11-Jun-86 13:18) doc
Browses upwards from a class to all of its
supers.
Supers
 (ClassBrowser IndexedObject LatticeBrowser --)
Instance Variable Descriptions
 left NIL doc left position of window
 bottom NIL doc
bottom position of window
 width 64 doc
outer width of window, including border
 height 32 doc
outer height of window, including border
.
.
.
Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.
Methods
 AddCategoryMenu ClassBrowser.AddCategoryMenu
doc NIL args NIL
 AddNewCV ClassBrowser.AddNewCV
doc NIL args NIL
 AddNewIV ClassBrowser.AddNewIV
doc NIL args NIL
 AddNewMethod ClassBrowser.AddNewMethod
doc NIL args NIL
.

1 7 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.3 PRINTING CLASSES

.

.

#,($C SupersBrowser)

(← self PPV! file) [Method of Class]

Purpose: Prints the variable information about the class from all levels of inheritance.

Behavior: Similar to (← self PP! file), except that only the MetaClass, Supers list and
information about Class Variables and Instance Variables is printed.

Arguments: self A pointer to a class.

file Stream to print to.

Returns: self

Categories: Classes

Specializes: Object

Example: This example shows a partial output of the call to PPV! on the class
SupersBrowser which used the TTYDISPLAYSTREAM as the default output
stream. The dots indicate additional information.

28←(← ($ SupersBrowser) PP!)
#,($ SupersBrowser)
MetaClass and its Properties
 Class Edited: (* smL 11-Jun-86 13:18) doc
Browses upwards from a class to all of its
supers.
Supers
 (ClassBrowser IndexedObject LatticeBrowser --)
Instance Variable Descriptions
 left NIL doc left position of window
 bottom NIL doc
bottom position of window
 width 64 doc
outer width of window, including border
 height 32 doc
outer height of window, including border
.
.
.
Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.
#,($C SupersBrowser)

17.4 Printing Objects

This section describes the methods for printing LOOPS objects.

1 7 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.4 PRINTING OBJECTS

Name Type Description

PrintOn Method Provides the default print function for LOOPS objects.

FileOut Method Prettyprints a LOOPS instance.

PP Method Prettyprints an object to a file or display stream.

PP! Method Prints all the information about the instance from all levels of
inheritance.

PPV! Method Prints the variable information about the instance from all levels
of inheritance.

(← self PrintOn file) [Method of Object]

Purpose: Provides the default print function for LOOPS objects.

Behavior: Returns a form suitable for the Lisp function DEFPRINT, which produces the
standard LOOPS object print form #,($ objname). (See the Lisp Release
Notes and the Interlisp-D Reference Manual for more information on
DEFPRINT.)

Arguments: self A LOOPS object.

file A stream to print to.

Returns: ("#," $ ObjectName)

Categories: Object

Example: This example shows the results of calling PrintOn with the instance,
Window1.

28←(← ($ Window1) PrintOn)
("#," $ Window1)

(←self FileOut file) [Method of Object]

Purpose: Prettyprints a LOOPS instance.

Behavior: If an object is found for self, this method prints the DEFINST form for the
object to the file. For a description of FileOut where self is a class, see
Section 17.3 "Printing Classes."

The DEFINST form always includes the name of the class to which the object
belongs and the UID for the object. Names attached to the object and
InstanceVariables bindings for the object are also included in the DEFINST
form. FileOut formats the output with special fonts and tab positions.

Arguments: self A LOOPS object.

file Stream to print to.

Returns: self

Categories: Instances

Example: This example shows the DEFINST forms for the object Window1.

29←(← ($ Window1) FileOut)
(DEFINST Window (Window1 (
NEW0.1Y%:.;h.eN6 . 495))

(left 288)
(bottom 242)

1 7 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.4 PRINTING OBJECTS

(width 331)
(height 149))

#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

(← self PP file) [Method of Object]

Purpose: Prettyprints an object to a file or display stream.

Behavior: Temporarily sets the ObjectDontPPFlag to prevent infinite loops in the print.
Prettyprints the output with special fonts and tab positions and prints the
DEFINST form of the object. If file is not given, look first to the PPDefault,
which is by default the Common Lisp Executive Window, and then to the
TTYDisplayStream.

Arguments: self A LOOPS object.

file Stream to print to.

Returns: Name of object.

Categories: Object

Specializations: Class

Example: This example shows the results of sending the instance Window1 the
message PP.

30←(← ($ Window1) PP)
(DEFINST Window (Window1 (
NEW0.1Y%:.;h.eN6 . 495))

(left 288)
(bottom 242)
(width 331)
(height 149))

#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

(← self PP! file) [Method of Object]

Purpose: Prints the information about the instance from all levels of inheritance.

Behavior: Prints a listing of the following items along with any applicable documentation,
values and arguments for the each item: Instance Variables, Class
Variables, and Methods.

If file is not given, look first to the PPDefault, which is by default the Common
Lisp Executive Window, and then to the TTYDisplayStream

Arguments: self A LOOPS object.

file Stream to print to.

Returns: self

Categories: Object

Specializations: Class

Example: This example shows a partial output of a call to PP! on the instance Window1.
Dots indicate additional information.

31←(← ($ Window1) PP!)

#,($ Window1)

1 7 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.4 PRINTING OBJECTS

Instance Variables
 left NIL doc left position of window
 bottom NIL doc
bottom position of window
 width 12 doc
outer width of window, including border
 height 12 doc
outer height of window, including border
.
.
.
Class Variables
 RightButtonItems ((Close (Close (Close --)
)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.
Methods
 AfterMove Window.AfterMove doc NIL
args NIL
.
.
.
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

(← self PPV! file) [Method of Object]

Purpose: Prints the variable information about the instance from all levels of inheritance.

Behavior: Similar to (← self PP! file) except that only the information about the Class
Variables and Instance Variables is printed.

Arguments: self A LOOPS object.

file Stream to print to.

Returns: self

Categories: Object

Specializations: Class

Example: This example shows a partial output of a call to PPV! on the instance
LCDInstance. Dots indicate additional information.

31←(← ($ Window1) PPV!)
#,($ Window1)
Instance Variables
 left NIL doc left position of window
 bottom NIL doc
bottom position of window
 width 12 doc
outer width of window, including border
 height 12 doc
outer height of window, including border
.
.
.
Class Variables
 RightButtonItems ((Close (Close (Close --)

1 7 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.4 PRINTING OBJECTS

)) Snap Paint --) doc
Items to be done if Right button is selected
.
.
.
#,($& Window (NEW0.1Y%:.;h.eN6 . 495))

17.5 Printing Active Values

This section describes methods and variables used for printing active values.
For more information on active values, see Chapter 8, Active Values.

(← self AVPrintSource) [Method of ActiveValue]

Purpose: Constructs a form used by DEFPRINT to write active values to files.

Behavior: An annotatedValue determines how it prints out by sending the
AVPrintSource message to its wrapped ActiveValue.

The default method in ActiveValue returns a list of the form:

("#,"$AV className avNames(ivName value propName value ...)(ivName ...) ...)

which causes the annotatedValue to print out as

#,($AV className avNames(ivName value propName value ...)(ivName ...) ...)

Arguments: self An ActiveValue

Returns: A form suitable for use by the Interlisp-D function DEFPRINT. Result should
be a pair of the form (item1 . item2); item1 will be printed using PRIN1, and
item2 will be printed using PRIN2 (see the Lisp Release Notes and the
Interlisp-D Reference Manual description of DEFPRINT).

In the return list,

className Name of the class of the ActiveValue.

avNames List of names of self; the last element being the unique identifier
(UID) of self

(ivName value propName value ...)
List that describes the state of the instance variables of the
ActiveValue.

Categories: Instances of the ActiveValue class

Example: The following command gets a pointer to an active value:

32←(GetValueOnly ($ Window1) ’window)
#,($AV LispWindowAV ((N^W0.1Y%:.;h.Lh9 . 503)) (localState
{WINDOW}#374,55554))

The following shows the result of an AVPrintSource message. (This is
typically passed on to DEFPRINT within the internals of the system.)

33←(←(GetValueOnly ($ Window1) ’window) AVPrintSource)
("#," $AV LispWindowAV ((N^W0.1Y%:.;h.Lh9 . 503))
(localState {WINDOW}#374,55554))

1 7 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.5 PRINTING ACTIVE VALUES

DefaultActiveValueClassName (Variable)

Purpose: The class ExplicitFnActiveValue is the default class for active values. This
class mimics the previous style of LOOPS active values (see Appendix A,
Previous Active Values). For specialized applications, you may want a
different class of active value to use for this purpose.

17.6 Printing Methods

This section describes the following methods used to print methods:

Name Type Description

PPDefault Variable Identifies where the output for prettyprinting is sent.

PPMethod Method Prettyprints the method for a class.

MethodDoc Method Prints the documentation for the method for a class.

MethodSummary Method Prints a summary of the methods attached to a class.

PPDefault [Variable]

Purpose: Bound to a window used as the default output stream for the methods
PPMethod, MethodDoc, and MethodSummary. Initially set to the Common
Lisp Executive Window.

(← self PPMethod selector) [Method of Class]

Purpose: Prettyprints the method specified by selector for the class self.

Behavior: If selector is not specified, this opens a menu of the methods attached to the
class self. The method, as chosen either from the menu or passed to the
method in selector, is prettyprinted to the primary output stream. If self is not a
class, a break occurs with the error,"(← ($ self) PPMethod selector) not
understood."

The output is sent to the value of the variable PPDefault, which is by default
the Common Lisp Executive Window.

Arguments: self A LOOPS object.

selector Method to print.

Returns: Class.Selector

Categories: Classes

Example: This example shows the results of prettyprinting the method Shape on the
class Window using PPMethod.

35←(← ($ Window) PPMethod ’Shape)

(Method ((Window Shape) self newRegion noUpdateFlg) (*
...)
 "Shapes outside of region to specified shape."
 (_ self Shape1 [OR newRegion (GETREGION NIL NIL

1 7 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.6 PRINTING METHODS

(WINDOWPROP (@ window) ’REGION]
 noUpdateFlg))

with (Window Shape) bold.

(← self MethodDoc selector) [Method of Class]

Purpose: Prints the documentation for the method specified by selector for the class
self.

Behavior: If selector is not specified, this opens a menu of all methods attached to the
class from all levels of inheritance. When you choose an item, the
documentation for that method, the arguments needed, and the class defining
the method are prettyprinted to the PPDefault window, which is by default the
Common Lisp Executive Window. You can continue to make selections from
the menu or press a mouse button outside the menu to stop.

Arguments: self A pointer to a class.

selector Method to be printed.

Returns: NIL

Categories: Class

Example: This example shows the output from calling MethodDoc for the class
LoopsIcon. Three methods were chosen from the menu in succession:
AfterMove, BrowseObject, and Clear. BrowseObject is attached to
Window so the class where it is defined is not explicitly listed. AfterMove and
Clear are defined, respectively, on the classes NonRectangularWindow and
Window.

36←(← ($ LoopsIcon) MethodDoc)

class: LoopsIcon (from NonRectangularWindow)
 selector: AfterMove
args: NIL
doc: The window has been moved. Update the
left and bottom.

class: LoopsIcon selector:
BrowseObject
args: NIL
doc: Put up a browser starting on selected
object.

class: LoopsIcon (from Window) selector:
Clear
args: NIL
doc: Calls CLEARW on window.

(← self MethodSummary dontPrintFlg printFile) [Method of Class]

Purpose: Prints a summary of the methods attached to the class self.

Behavior: Prettyprints the documentation from the classes directly attached to the class
self. Printing is done to the file printFile. If printFile is not specified,
MethodSummary prints to the PPDefault window, which is by default the
Common Lisp Executive Window. If the ObjectDontPPFlg is T, the output is
not displayed in pretty format.

Arguments: self A pointer to a class.

1 7 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.6 PRINTING METHODS

dontPrintFlg
If non-NIL, does not prettyprint.

printFile File to print to.

Returns: NIL

Categories: Class

Example: This example shows the results of sending the message MethodSummary to
the class IconWindow. Only information about the methods defined at the
class IconWindow are printed.

37←(← ($ IconWindow) MethodSummary)
((GetMenuItems IconWindow.GetMenuItems args
 (itemType)
 doc
 NIL))

17.7 Unique Identifiers (UIDs)

Unique Identifiers (UIDs) are used to store and retrieve objects. In general,
objects do not have UIDs, with the following exceptions:

• When an object is named.

• When an instance of an indexed object is created, it gets a UID.

• When an object is printed.

The following table shows the functions in this section.

Name Type Description

HasUID? Function Returns the UID for a specified object.

UID Function Returns the UID for a specified object and creates a UID for the
object if one does not already exist.

GetObjFromUID Function Retrieves the LOOPS object records.

MapObjectUID Function Applies a function to every LOOPS object that has a UID.

(HasUID? obj) [Function]

Purpose: Returns the UID for obj.

Behavior: If the obj has a UID, the function returns the UID. If obj is an object but has no
UID, it returns NIL. If obj is not an object, it generates an error with the
message, "ARG NOT OBJECT."

Arguments: obj A LOOPS object.

Returns: The UID for obj.

Example: Line 39 shows the results of calling HasUID? for an instance Window1, line
40 for a class Window, and line 41 for a new instance of Window.

39←(HasUID? ($ Window1))
(NEW0.1Y%:.;h.eN6 . 495)

1 7 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.7 UNIQUE IDENTIFIERS (UIDS)

40←(HasUID? ($ Window))
(NEW0.1Y%:.;h.eN6 . 255)

41←(HasUID? (← ($ Window) New))
NIL

(UID obj) [Function]

Purpose: Returns UID for obj. If object does not have UID, this function creates a UID
for the obj.

Behavior: If the object has a UID, this function returns the UID; otherwise it creates a
UID for the object.

Arguments: obj A LOOPS object.

Returns: The UID for obj.

Example: Line 45 shows the results of calling UID with the class Object. Line 46 shows
the results of calling UID with an instance which does not have a UID.

45←(UID ($ Object))
(NEW0.1Y%:.;h.eN6 . 7)

46←(UID (← ($ Window) New))
(NEW0.1Y%:.;h.eN6 . 519)

(GetObjFromUID uid) [Function]

Purpose: Retrieves the LOOPS object records of object whose UID is uid.

Behavior: Returns the object associated with a UID, or returns NIL if uid is not a valid
UID.

Arguments: uid The internal identifier.

Returns: Pointer to the object.

Example: In this example, Window1UID was previously set to the UID for the instance
Window1. GetObjFromUID retrieves the record for Window1 using
Window1UID and prettyprints the DEFINST form for Window1 to the
TTYDisplayStream.

42←(SETQ Window1UID (UID ($ Window1]
(NEW0.1Y%:.;h.eN6 . 495)

43←GetObjFromUID Window1UID)
#,($& Window (NEW0.1Y%:.;h.eN6 . 495)

(MapObjectUID fn) [Function]

Purpose: Applies the function fn to every LOOPS object.

Behavior: Maps the function fn to every UID object that has a UID.

Arguments: fn Function to be applied.

Returns: Used as a side effect only.

Example: This example shows a partial listing of the results of applying the user-defined
function PPUID (see line 47) to every LOOPS object using MapObjectUID.
PPUID prints the UID of obj to the TTY display stream. A complete output of
this call to MapObjectUID lists the UID for every LOOPS object currently
defined in the system.

1 7 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.7 UNIQUE IDENTIFIERS (UIDS)

45←(DEFINEQ (PPUID (LAMBDA (OBJ) (PRIN2
(UID OBJ)))))
(PPUID)

46←PP PPUID
FNS definition for PPUID:
(PPUID
 [LAMBDA (OBJ) **COMMENT**
 (PRIN2 (UID OBJ])

47←(MapObjectUID ’PPUID)
(NEW0.1Y%:.;h.Lh9 . 526)(NEW0.1Y%:.;h.Lh9 . 527)
(NEW0.1Y%:.;h.Lh9 . 524)(NEW0.1Y%:.;h.Lh9 . 525)
(NEW0.1Y%:.;h.Lh9 . 522)(NEW0.1Y%:.;h.Lh9 . 523)
.
.
.
#<Hash-Table @ 66,72106>

1 7 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

17.7 UNIQUE IDENTIFIERS (UIDS)

[This page intentionally left blank]

1 8 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18. USER INPUT/OUTPUT MODULES

This chapter presents two modules that have been developed for displaying
and allowing you to enter information. The Interlisp-D Inspector module and ?=
handler have been enhanced to support LOOPS data types and message
sending.

18.1 Inspector

The LOOPS interface uses and extends the capabilities of the Medley
Inspector module. Instances and classes can be easily examined and
modified through the interface that the Inspector module provides. This
section describes the operations available with the LOOPS interface. For
information on the Inspector module, see the Interlisp-D Reference Manual.

An inspector is a window opened on a specific piece of data, which for
LOOPS means a class or an instance. Figure 18-1 shows an inspector on an
instance of a window.

Figure 18-1. Sample Inspector

Inspector windows contain two columns of information; the left column is
called the property column, and the right column is called the value column.

You can scroll inspector windows, but these windows are not reshaped by
actions such as switching from instance variables inspection to property
inspection or adding new instance variables. This may cause some confusion,
for example, if you create an inspector to be the correct size and add an
instance variable, and that instance variable fails to appear.

An inspector is primarily an interactive facility. A programmatic interface is
also available, which uses the LOOPS methods to customize the generic
Interlisp-D functionality.

18.1.1 Overview of the User Interface

LOOPS provides two ways to create an inspector:

• Call the Lisp function INSPECT with the object to be inspected as the first
argument.

• Use the LOOPS method Inspect, which is described below.

1 8 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

The user interface to the inspector is the same as that for the Medley
environment; that is, you select an option from the left or right column with the
left mouse button, and then trigger an action with the middle mouse button.
The action opens a menu from which you can choose further options, like
assigning a new value or adding an active value for breaking.

Another menu appears when you position the cursor on the title bar of an
inspect window and press the middle mouse button. This menu allows you to
change the inspector’s contents, for instance to show all values or local ones
for instance variables.

Three types of inspectors are available in LOOPS:

• Instance inspector

• Class inspector

• Class instance variable inspector

The following sections describe the user interface for each inspector.

(← self Inspect INSPECTLOC) [Method of Object]

Purpose: This provides a message form of the function to inspect the item self.

Behavior: Calls (INSPECT self NIL INSPECTLOC).

Arguments: INSPECTLOC
A region where the inspector window should appear. If it is NIL,
you are prompted to place a ghost image.

Categories: Object

Example: The following command inspects an instance ($ W1).

17←(← ($ W1) Inspect)

18.1.2 Using Instance Inspectors

Using an inspector window on an instance provides a clear, direct interface to
all of the instance’s variables and values. This interface also provides the
mouse and keyboard options to change the contents of the inspector to show
various aspects of the instance.

18.1.2.1 Titles of Instance Inspector Windows

When you inspect an object, the title of the inspector window reflects the
contents of the inspector. If the object is an instance, the title contains the
name of the class of the instance and the LOOPS name of the instance, if it
has one, or the UID of the instance. Other types of inspectors have different
title bars, as described in Section 18.1.3, "Using Class Inspectors," and
Section 18.1.4, "Using ClassIV Inspectors."

Contrast the title bar of the following two examples.

(INSPECT (← ($ Window) New)) generates

1 8 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

(INSPECT (← ($ Window) New ’w1)) generates

18.1.2.2 Menu for the Title Bar

The following menu appears when you position the cursor on the title bar of
the inspector window and press the middle mouse button.

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

Class Opens a second inspector, a Class Inspector as described in Section 18.1.3,
"Using Class Inspectors," which inspects the class of the instance within this
inspector.

AllValues The default mode for instance inspectors. The values displayed in the right
column of the inspector are determined by the function GetValueOnly, so
active values (except #,NotSetValue) can be seen. The title of the inspector
states that all values are being displayed.

1 8 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

LocalValues The values displayed in the right column of the inspector are determined by
the function GetIVHere. The title of the inspector states that only local values
are being displayed. As with AllValues, active values are seen, and values
that are not yet stored locally in the instance show a value of #,NotSetValue.

Add/Delete Allows you to add or delete instance variables. Selecting this option pops up a
new menu with two options:

• Add

If you select Add, you are prompted to enter a name for the new instance
variable. That instance variable is added locally to the instance and given
the value of the variable NotSetValue. If you enter a name for an instance
variable that currently exists, its value is reset to the value defined in the
class.

• Delete

If you select Delete, a menu appears with options that are the instance
variables of the instance. If you select one that is not defined within the
class, it is deleted. If the selected instance variable is defined by the class,
a break occurs.

If the inspector is viewing the properties of an instance variable as opposed to
all of the instance variables (see IVs below), the name entered under Add will
be added as a property to that instance variable and given the value of the
variable NotSetValue. If you try to delete an existing property, the menu that
appears is a menu of property names.

IVs Changes the view to be one that shows all of the instance variables and their
values, not the properties. It is possible to change the view an inspector has
on an instance to show only the properties of a given instance variable. This
is described in Section 18.1.2.3, "Using Commands in the Left Column," in the
description of the Properties option.

 Save Value Calls PutSavedValue with its value argument bound to the instance being
inspected.

Refetch Refreshes the inspector. Inspectors do not automatically update when a
change is made to an instance, unless made with the Edit command.

Edit Opens a display editor window in which you can modify the value of instance
variables and properties, and add or delete instance variables local to the
instance.

18.1.2.3 Menu for the Left Column

The following menu appears when the view of the inspector is all of the
instance variables of the instance, and you select an item in the left column
and press the middle mouse button.

1 8 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

If the view of the inspector is only of properties, this menu contains only one
option: PutValue.

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

PutValue Allows you to assign a new value to the variable selected. Selecting this option
and dragging the mouse to the right causes a submenu with the following
options to appear:

• PutValue

Prompts you to enter a new value for this instance variable. The new value
is stored using PutValue.

• PutValueOnly

Prompts you to enter a new value for this instance variable. The new value
is stored using PutValueOnly.

• Use saved value

The new value to be stored using PutValueOnly is the value of
(SavedValue).

Properties Changes the view of the inspector to include only the value and properties of
the selected instance variable as shown here:

The title bar changes to indicate that the properties of an instance variable are
being displayed, which instance is being displayed, and which instance
variable of that instance is being displayed.

The Value item is provided purely as a convenience in this view and its menu
options will only allow Putting a new value in it.

The following menu appears when the view of the inspector is an instance
variable’s properties, and you select an item in the left column and press the
middle mouse button.

When the inspector’s view is limited to IV properties the menu options act in a
manner similar to that of IVs. This allows Putting, Breaking, Tracing and
unBreaking of the properties instead of the IVs themselves.

1 8 - 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

If you now select the option LocalValues from the title bar menu, the title of
the inspector changes to indicate that fact, and only properties that are stored
locally in the instance appear, as shown here:

To return to a view that shows all instance variables, choose the IVs option
from the title bar menu.

BreakIt Wraps a BreakOnPutOrGet active value around the value of an instance
variable. Any read or write accesses to this instance variable will cause a
break (see Chapter 12, Breaking and Tracing).

Note: Breaking a variable effectively breaks any IndirectVariable that points
to it.

Selecting this option and dragging the mouse to the right causes a submenu
with the following options to appear:

• Break on Access

Performs the same action as BreakIt.

• Break on Put

Installs a BreakOnPut active value. Trying to store a new value into this
instance variable will cause a break, but reading the variable will not.

TraceIt Wraps a TraceOnPutOrGet active value around the value of this field. Any
read or write accesses to this instance variable will be traced (see Chapter
12, Breaking and Tracing).

Note: Tracing a variable effectively traces any IndirectVariable that points to
it.

Selecting this option and dragging the mouse to the right causes a submenu
with the following options to appear:

• Trace on Access

Performs the same action as TraceIt.

• Trace on Put

Installs a TraceOnPut active value. All writes into this instance variable will
be traced, but reads will not.

UnBreakIt Removes any of the breaks or traces that have been installed on an instance
variable. If there are multiple traces or breaks, this will remove the outermost
one.

18.1.2.4 Menu for the Right Column

The following menu appears when the view of the inspector is all of the
instance variables of the instance, and you select an item in the right column
and press the middle mouse button.

1 8 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

If the view of the inspector is only of properties of an instance variable, this
menu contains only three options: PutValue, Save Value, and Inspect.

The only differences between these menus and the ones associated with the
left column is the addition of two more options: Save Value and Inspect. The
remaining options trigger identical behaviors as those of the menu associated
with the left column.

Save Value Calls PutSavedValue with the selected value as its argument.

Inspect Calls the Lisp function INSPECT with the selected value as its argument,
opening an additional inspector window.

In an inspector viewing the properties of an IV the right hand column middle
button menu allows only the Put Value, SaveValue and Inspect options.

18.1.3 Using Class Inspectors

Classes can be inspected by using the Lisp INSPECT function or the LOOPS
Inspect method (see Section 18.1.1, "Overview of the User Interface"). For
example, to inspect the class Window, enter either of the following
commands:

(INSPECT ($ Window))
(← ($ Window) Inspect)

The contents of a class cannot be changed from within an inspector window,
so it is generally used for display as opposed to editing. However, the menu
interface does provide ways to edit the contents of a class.

18.1.3.1 Titles of Class Inspector Windows

When you inspect a class, the title states that you are inspecting only local
properties, and contains the name of the class.

The title contains the name of the class. The following example shows an
inspector on the class Window. Since the value column is quite long, it has
been truncated here.

18.1.3.2 Menu for the Title Bar

The title bar menu is associated with each inspector of a class. This menu
appears when you position the cursor inside the title bar of the class inspector
window and press the middle mouse button.

1 8 - 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

Browse Provides a quick way to open a class browser on the class being inspected.
Selecting this option and dragging the mouse to the right pops up a submenu
with the following options:

• Browse

Opens a class browser with the class being inspected as the root class.

• BrowseSupers

 Open a supers browser on the inspected class.

Edit Opens an editing window on the class.

All Causes the values shown in the right column to contain inherited as well as
locally defined information. The title bar of the inspector changes to indicate
this, as shown here:

Local The default mode for class inspectors. This causes the values shown in the
right column to contain only locally defined information, which is indicated in
the title bar of the inspector.

Refetch Refreshes the inspector. Inspectors do not automatically update when a
change is made to an instance, unless made with the Edit command.

18.1.3.3 Menu for the Left Column

No actions occur when you select an item in the left column of a class
inspector and press the middle mouse button.

18.1.3.4 Menu for the Right Column

Only one option, Inspect, is in the menu that appears when you select an
item in the right column of a class inspector and press the middle mouse
button.

For the fields MetaClass, Supers, CVs, and Methods, selecting Inspect from
the menu allows a choice of Interlisp-D inspectors. If the selected item in the
class inspector is the values of the IVs field, then a ClassIVs inspector,
described below, is created.

1 8 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

18.1.4 Using ClassIVs Inspectors

ClassIV inspectors provide an interface to the default values for all of the
instance variables defined in a class. To create a ClassIV inspector,

• Open a class inspector.

• Select the values of the IVs field.

• Press the middle mouse button. This pops up and selects and Inspect
menu, and automatically opens a ClassIVs inspector.

18.1.4.1 Titles of ClassIVs Inspector Windows

The title for a ClassIVs inspector indicates that the instance variables of a
particular class are being inspected. This example shows how a ClassIVs
inspector looks for the class ClassBrowser.

18.1.4.2 Menu for the Title Bar

The following title bar menu is associated with each inspector of an instance.
This menu appears when you position the cursor inside the title bar of the
inspector window and press the middle mouse button.

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

AllValues The default mode for ClassIV inspectors. Causes the inspector to show all
instance variables, whether inherited or locally defined for the class, and
states "AllIVs" in the title.

1 8 - 1 0 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

LocalValues Causes the inspector to show only locally defined instance variables. The
following window shows how the title changes to indicate this:

Add/Delete Allows you to add or delete a ClassIV.

Selecting this option and dragging the mouse to the right causes a submenu
with the following options to appear:

• Add

If you select Add, you are prompted to enter a name for the new instance
variable. That instance variable is added to the class and given the default
value NIL and a doc property with the value (* IV added by (USERNAME)). If
you enter a name for an instance variable that currently exists, its default value
is reset to NIL.

• Delete

If you select Delete, a menu appears with the locally defined instance
variables of the class. Selecting one deletes it from the class.

If the inspector is viewing the properties of an instance variable as opposed to
all of the instance variables (see IVs below), the name entered under Add is
added as a property to that instance variable and given the value NIL. If you
try to delete an existing property, the menu that appears is a menu of property
names.

IVs Returns the view to show the instance variables and their values, not the
properties.

It is possible to change the view a ClassIVs inspector has on the instance
variables of a class to show only the properties of a given instance variable.
This is described in Section 18.1.4.4, "Menu for the Right Column."

Refetch Refreshes the inspector.

18.1.4.3 Menu for the Left Column

No actions occur if you select an item in the left column of a ClassIVs
inspector with the middle mouse button.

18.1.4.4 Menu for the Right Column

The following menu appears when you select an item in the right column and
press the middle mouse button:

The rest of this section describes the actions that occur as a result of selecting
one of the menu options.

Inspect Calls the Lisp function INSPECT with the selected value as its argument.

Save Value Calls PutSavedValue with the selected value as its argument.

Properties Changes the view of the inspector to display the value and properties of the
selected instance variable, as shown in this example:

1 8 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

The title changes to include the following information:

• The properties of an instance variable.

• The name of the instance variable.

• The name of the class.

If you now select either AllValues or LocalValues from the title menu, the title
of the inspector changes to indicate that fact, and the appropriate information
is displayed.

18.1.5 Functional Interface for Instance Inspectors

The methods described in this section belong mostly to the classes Class or
Object. Inspectors are not LOOPS objects, so these methods are invoked
indirectly within the system functionality of the inspector as a customization of
the Interlisp-D inspectors. These methods are meant to be called only from
within the context that you create interactively by pressing a mouse button
when the cursor is on some portion of an inspector window; you do not invoke
them directly. Many of the parameters are simply passed along in case the
method creates a menu, and the option selected from the menu needs
additional arguments.

In these methods, the arguments self and datum may the same; that is, the
item being inspected. The message is sent to the item being inspected, so its
position in the inheritance lattice determines which method from the classes
Class or Object is invoked.

The following table shows the items in this section.

Name Type Description

InspectFetch Method Returns the value of a left column inspector property that is
displayed in the right column of an inspector window.

InspectStore Method Stores the value for an instance variable or its property.

InspectPropCommand Method After an item is selected in the left column of an inspector
window, this triggers an action when the middle mouse button is
pressed.

InspectProperties Method Determines what is displayed in the left column of an inspector
window.

InspectTitle Method Creates a string to be used for an inspector window’s title.

InspectValueCommand Method After an item is selected in the right column of an inspector
window, this triggers an action when the middle button is
pressed.

TitleCommand Method Triggers an action when the cursor is inside the title bar of the
inspector window and the middle mouse button is held down.

(← self InspectFetch datum property window) [Method of Object]

1 8 - 1 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

Purpose/Behavior: Message sent by inspector to get the value of a left column inspector property
that is displayed in the right column of an inspector window. Either
GetValueOnly or GetIVHere is used to determine the value.

Arguments: self The object being inspected.

datum This may or may not be a list. If it is not a list, it is bound to the
object being inspected; that is, self. It is set to a list within
various methods associated with the inspectors. The contents of
this list are interpreted by a number of the methods to control
what data is displayed within the inspector window.

• The first element of the list is the object being inspected.

• The second element of the list, if not NIL, is typically the name
of an instance variable. In the terminology of the inspector, it
is an inspector property. For inspectors of instances, the
inspector properties (the items in the left column) are the
instance variables of the object being inspected. (There can
be some confusion here caused by using the word properties
either when referring to the left column data of an inspector or
when referring to the properties associated with an instance
variable).

• The third element of the list, if NIL, indicates that inherited
values are to be displayed in the inspector window; if its value
is LocalValues, then only locally stored information is
displayed.

The value of datum is stored on the inspector window property
DATUM.

property Used if datum is not a list. Refers to an element (instance
variable or property name) contained within the left column of an
inspector. For an instance inspector, this could be either the
name of an instance variable or the name of a property,
depending upon the state of the inspector; that is, whether you
are viewing instances variable or the properties of a particular
variable.

window Lisp window of the inspector.

Returns: The value of a left column property that is displayed in the right column.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: The following command fetches the value of instance W1’s instance variable
bottom:

15←(← ($ W1) InspectFetch (LIST ($ W1) ’window))
#,($AV LispWindowAV ((YIV0.C=N5.W←7 . 10)))

The following command fetches the value of class Window’s supers:

16←(← ($ Window) InspectFetch ($ Window) ’Supers)
(Object)

1 8 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

(← self InspectStore datum property newValue window) [Method of Object]

Purpose/Behavior: Stores newValue as the value for an instance variable or its property using
PutValueOnly. Where the value is stored, whether in the instance variable or
one of its properties, depends upon the values for datum and property.

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

property Instance variable or property where value is to be stored. See
InspectFetch, above, for details.

newValue New value for property.

window Lisp window of the inspector.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: The following command changes the value of instance W1’s instance variable
height:

17←(← ($ W1) InspectStore ($ W1) ’height 400)
400

or

18←(← ($ W1) InspectStore ’W1 ’height 400)
400

(← self InspectPropCommand datum property window) [Method of Object]

Purpose: This method is an interface between LOOPS and the mouse functions of the
inspector, and should only be called through the inspector. It is invoked when
an item is selected in the left column of an inspector window and the middle
mouse button is pressed.

Behavior: Opens a menu with a number of options. See Section 18.1.2.3, "Menu for the
Left Column."

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

property Instance variable or property where value is to be stored. See
InspectFetch, above, for details.

window Lisp window of the inspector. A prompt window will be attached
to this window if you ask to PutValue, and the window’s
INSPECTW.FETCH function will be called, so the window must
be an inspector window.

Categories: Object

Specializations: Class

(← self InspectProperties datum) [Method of Object]

Purpose: Determines what should be displayed in the left column of an inspector.

Behavior: Depending on the value of datum as described above, this will return either the
instance variables of the object being inspected, or the properties of a
particular instance variable.

1 8 - 1 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

Arguments: datum Instance or class being inspected. See InspectFetch, above, for
details.

Returns: Value depends on the arguments; see Behavior.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: The following command first shows the instance variables of instance W1,
then the properties of the instance variable height:

27←(← ($ W1) InspectProperties ’W1)
(left bottom width height window title menus)

28←(← ($ W1) InspectProperties (LIST ’W1 ’height))
(Value doc)

(← self InspectTitle datum) [Method of Object]

Purpose: Creates a string to be used as a title for an inspector window.

Behavior: If datum is not a list, this sets datum to (datum NIL NIL).

Depending on the values within the list datum, this creates a title showing
whether all values or local values are shown and whether all instance
variables or the properties of an instance variable are shown. The title also
contains the LOOPS name or UID of self.

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: Some examples of the behavior of InspectTitle:

35←(← ($ Window) InspectTitle)
"Local properties of Class Window"

36←(← ($ W1) InspectTitle)
"All Values of Window ($ W1)."

37←(← ($ Window) InspectTitle (LIST ’Window T))
"All properties of Class Window"

38←(← ($ W1) InspectTitle (LIST ’W1 ’height))
"All IVProps of Window ($ W1).height"

(← self InspectValueCommand datum property value window) [Method of Object]

Purpose: This method is an interface between LOOPS and the mouse functions of the
inspector, and should only be called through the Inspector. It is invoked when
an item is selected in the right column of an inspector window and the middle
mouse button is pressed.

Behavior: Opens a menu with several options. See Section 18.1.2.4, "Menu for the Right
Column."

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

property Instance variable or property being inspected. See
InspectFetch, above, for details.

1 8 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

value This is inspected only if you select Inspect from menu.

window Lisp window of the inspector.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: When the value of the instance variable height in instance W1 is selected in
an inspector window, and the middle mouse button is pressed, a message like
the following is sent:

(← ($ W1) InspectValueCommand ($ W1) ’height 200 (WHICHW))

(← self TitleCommand datum window) [Method of Object]

Purpose: This method is an interface between LOOPS and the mouse functions of the
inspector, and should only be called through the Inspector. It is invoked when
the cursor is in the title bar of an inspector window and the middle mouse
button is pressed.

Behavior: Brings up a menu with several options. See Section 18.1.2.2, "Menu for the
Title Bar."

Arguments: datum Instance or class being inspected. See InspectFetch, above,
for details.

window Lisp window of the inspector.

Categories: Object

Specializations: Class, InspectorClassIVs

Example: If you position the cursor inside the title bar of the inspector window for
instance W1 and press the middle mouse button, you send a message like the
following:

(← ($ W1) TitleCommand NIL (WHICHW))

18.1.6 Customizing the Inspector

The methods in Section 18.1.5, "Functional Interface for Instance Inspectors,"
have been specialized in the classes Class and InspectorClassIVs to create
the behavior of the inspectors described in Section 18.1.1, "Overview of the
User Interface."

If you want to create a specialized inspector, you need to create a subclass of
Object or perhaps Class and specialize the methods within that new class.
The class InspectorClassIVs has an instance variable named class that
contains the name of the class being inspected within a particular instance of
InspectorClassIVs. Similarly, the user-created inspector class may need an
instance variable which contains the object being inspected so that the
methods of this class can easily access it.

The methods that you need to specialize will depend upon how the behavior of
the newly created inspector class should differ from those of an instance or
class inspector.

As an example, assume that you want an inspector to show a subset of the
instance variables of an instance. You could specialize the method
InspectProperties to return that subset. To make Window show only the
dimensions of a window, define the following method:

1 8 - 1 6 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.1 INSPECTOR

(←New ($ Window) Inspect) creates the following:

18.2 Extensions to ?=

The Interlisp-D environment allows you to begin typing a function to be
evaluated in the Executive and pause in the midst of typing the arguments. At
this point, if you type a "?=" followed by a carriage return, Interlisp-D prints the
arguments to the pending function call and shows the bindings. LOOPS has
extended this facility to include similar functionality for message sending and
for record creation.

18.2.1 Message Sending

The ?= interface works with the following message-sending forms:

• ←

• ←Super

• ←New

• ←Proto

• ←Process

• SEND

LOOPS first tries to determine the class of the object receiving the message
by examining the form following one of the above. If the message form begins
with one of ←New or ←Proto, the object receiving the message is the class
desired.

• If the system cannot determine the class of the object, you are prompted in
the Prompt Window to enter in the name of the class or to type a right
square bracket (]) to evaluate the form and determine that class from that.
This handles cases such as

(← (← ($ Window) New) ?=<CR>

• If the class can be determined and if you have not typed in a selector, a
menu appears containing the options *generics* and *inherited* and any
selectors local to the class. A submenu is associated with *generics* that
contains selectors from the classes Tofu, Object, or Class, depending
upon the class previously determined. The submenu associated with

1 8 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.2 EXTENSIONS TO ?=

inherited are those selectors that are neither generic nor local to the
class.

This is the menu that appears when you type

(←New ($ NonRectangularWindow) ?= <CR>

If you choose one of these options, it is placed into the input buffer and the
system prints the binding for self, what method will be executed, and the
arguments expected. In the prompt window, the system prints the
documentation of the method to be executed.

As an example, if you create an instance of a class browser cb1, type

22←(← ($ cb1) ?= <CR>

and then choose Shape from the *inherited* drag-through menu, the
Executive changes as shown here.

22←(←($ cb1) Shape
(←
self = ($ cb1)
Method = Window.Shape
 newRegion noUpdateFlg)

A similar output occurs if you type in a selector and "?=" instead of choosing a
selector from the menu.

If you type "?=" after entering one or more of the arguments, the arguments
are printed with the bindings, as shown here.

23← (←($ cb1) Shape ’(100 150 200 250) ?= <CR>
(←
self = ($ cb1)
Method = Window.Shape
newRegion (QUOTE (100 150 ...))
noUpdateFlg)

This interface also works when you are typing to the edit buffer window when
using the display editor. It does not work to pick a selector within a display
editor window and choose the ?= item from the EditCom submenu.

18.2.2 Record Creation

The same mechanism the LOOPS uses to handle ?= for LOOPS objects is
also used to extend it for the Interlisp Record module.

If you begin an input to the Executive with one of CREATE, Create, or create,
type the record name or data type to be created next, and then type

?=<CR>

the system prints the names but not the bindings of the fields within the record
being created.

1 8 - 1 8 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.2 EXTENSIONS TO ?=

For example, when you type

48←(CREATE POSITION XCOORD ← 123 ?=<CR>

the response is

(XCOORD YCOORD)

on the next line. The caret moves to the position of the ?= in the original line,
and waits for you to enter a value.

1 8 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

18.2 EXTENSIONS TO ?=

[This page intentionally left blank]

1 9 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19. LOOPS WINDOWS

This chapter describes the ways to manipulate LOOPS windows.

19.1 The Class Window

The class Window is the LOOPS interface to the Medley environment window
system, which is used by LOOPS browsers and inspectors.

Window [Class]

Description: This class provides a mechanism for manipulating Lisp windows through an
object-oriented interface. See Section 19.4, "Mouse and Menu Functionality,"
for a discussion of how menus work with LOOPS Windows.

When an instance of a LOOPS window is created, it has an instance variable
that points to a Lisp window. This Lisp window is initialized with various
window properties:

• The property LoopsWindow points to the window object.

• The property RIGHTBUTTONFN is set to WindowRightButtonFn.

• The property BUTTONEVENTFN is set to WindowButtonEventFn.

• The property AFTERMOVEFN is set to WindowAfterMoveFn.

• The property RESHAPEFN is set to WindowReshapeFn.

MetaClass: Class

Supers: Object

Class Variables: TitleItems A list that defines the menu that will appear when the left or
middle mouse button is pressed and the cursor is in the title bar
of the window. The default value is NIL.

LeftButtonItems
A list that defines the menu for the left button in the main
window. The default value is ((Update ...)).

ShiftLeftButtonItems
A list that defines the menu for the left button in the main window
when the Meta key is down. The default value is NIL.

MiddleButtonItems
A list that defines the menu for the middle button in the main
window. The default value is NIL.

ShiftMiddleButtonItems
A list that defines the menu for the middle button in the main
window when the Meta key is down. The default value is NIL.

1 9 - 2 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.1 THE CLASS WINDOWS

RightButtonItems
A list that defines the menu for the right button in the main
window. The default value is ((Close ...)).

Instance Variables: left The location of the left side of the outside of the window in
screen coordinates. The default value is NIL.

bottom The location of the bottom side of the outside of the window in
screen coordinates. The default value is NIL.

width The outside width of the window. The default value is 12.

height The outside height of the window. The default value is 12.

window An active value that contains the Lisp window. The default value
is #,($AV LispWindowAV ...).

title The title of the window. Default Value: NIL.

menus Also has the properties Title, LeftButtonItems,
MiddleButtonItems, and TitleItems. These properties are
caches for menus only if the value of the instance variable is T.
Default Value: T.

19.2 Basic Window Methods

This section describes the basic methods to operate on windows.

Name Type Description

AfterMove Method Updates the instance variables left and bottom.

AfterReshape Method Updates the instance variables left, bottom, width, and height.

Blink Method Causes the window to blink.

Bury Method Buries the window.

Clear Method Clears the window.

Close Method Closes the window.

CursorInside? Method Determines if the cursor is inside a window.

Destroy Method Destroys the window instance.

GetProp Method Gets a property from a specified window.

Hardcopy Method Makes a hardcopy on the default device.

HardcopyToFile Method Makes a hardcopy on a file.

HardcopyToPrinter Method Makes a hardcopy to a printer.

Invert Method Inverts the window; that is, reverses its black-white pattern.

Move Method Moves the window.

MousePackage Method Returns a package (defined to return the INTERLISP package).

MouseReadtable Method Returns a readtable (defined to return the INTERLISP
readtable).

1 9 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

Open Method Opens the window.

Paint Method Calls PAINTW on the window.

ScrollWindow Method Scrolls the window.

SetProp Method Sets the property in the specified window.

Shape Method Reshapes the window.

Shape? Method Returns the current region for the window.

Shrink Method Shrinks the window to an icon.

Snap Method Takes a snapshot of the screen.

ToTop Method Opens the window and brings it to the top.

Update Method Makes the window consistent with the instance variables.

WindowAfterMoveFn Function Sends the message AfterMove.

WindowReshapeFn Function Sends the message AfterReshape.

(← self AfterMove) [Method of Window]

Purpose/Behavior: Updates the instance variables left and bottom of self.

Arguments: self An instance of a window.

Returns: Used for side effect only.

Categories: Window

(← self AfterReshape oldBitmapImage oldRegion oldScreenRegion) [Method of Window]

Purpose/Behavior: Updates the instance variables left, bottom, width, and height of self. Calls
RESHAPEBYREPAINTFN; see the Interlisp-D Reference Manual.

Arguments: self An instance of a window.

Returns: Used for side effect only.

Categories: Window

(← self Blink numBlinks) [Method of Window]

Purpose/Behavior: Inverts the window; that is, reverses its black-white pattern, and then returns to
normal numBlinks times.

Arguments: self Pointer to a window instance.

numBlinks Number of times for window to blink.

Returns: NIL

Categories: Window

Example: The command

1 9 - 4 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

(← self Blink 5)

sends a message to self to blink five times.

(← self Bury) [Method of Window]

Purpose/Behavior: Calls BURYW to bury the specified window.

Arguments: self Pointer to a window instance.

Returns: The LOOPS window.

Categories: Window

(← self Clear) [Method of Window]

Purpose/Behavior: Calls CLEARW to clear the specified window.

Arguments: self Pointer to a window instance.

Returns: NIL

Categories: Window

Specializations: LatticeBrowser

(← self Close) [Method of Window]

Purpose/Behavior: Closes the specified window and prompt window, if there is one.

Arguments: self Pointer to a window instance.

Returns: NIL

Categories: Window

(← self CursorInside?) [Method of Window]

Purpose/Behavior: Determines if the cursor is inside the window.

 Arguments: self Pointer to a LOOPS window.

Returns: Returns T if the cursor is inside the window, otherwise returns NIL.

Categories: Window

(← self Destroy) [Method of Window]

Purpose/Behavior: Destroys the calling instance, removes all ButtonFns, and closes the window.

Arguments: self Pointer to a window instance.

Returns: NIL

Categories: Object

Specializes: Object

(← self GetProp prop) [Method of Window]

1 9 - 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

Purpose/Behavior: Gets a property from a window.

Arguments: self Pointer to a window instance.

prop Property to get.

Returns: The value of the specified property, if it exists; else NIL.

Categories: Window

Example: To determine the value of the window property BUTTONEVENTFN, enter

(← ($ window) GetProp ’BUTTONEVENTFN)

(← self Hardcopy) [Method of Window]

Purpose/Behavior: Makes a hardcopy of the window on the default printer.

Arguments: self Pointer to a window instance.

Categories: Window

(← self HardcopyToFile) [Method of Window]

Purpose/Behavior: Makes a hardcopy of the window to a file. You are prompted for the file name.

Arguments: self Pointer to a window instance.

Categories: Window

(← self HardcopyToPrinter) [Method of Window]

Purpose/Behavior: Makes a hardcopy of the window on a printer. You are prompted for the name
of the printer.

Arguments: self Pointer to a window instance.

Categories: Window

(← self Invert) [Method of Window]

Purpose/Behavior: Inverts the window; that is, reverses its black-white pattern.

Arguments: self Pointer to a window instance.

Returns: T if successful.

Categories: Window

Specializations: NonRectangularWindow

(← self Move xOrPos y) [Method of Window]

Purpose/Behavior: Moves the specified window. If no arguments are supplied, you will be
prompted to position the window.

Arguments: self Pointer to a window instance.

x New left in screen coordinates or a new position for left and
bottom. If x is a position, y is ignored.

y New bottom in screen coordinates.

1 9 - 6 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

Returns: (x . y)

Categories: Window

Example: The command
(← ($ window) Move)

causes window to become attached to the cursor, prompting for new location.

The command
(← self Move 200 100)

moves the lower left corner of the window to (200 . 100).

(←self MousePackage) [Method of Window]

Purpose/Behavior: Returns the package used during mouse interactions with the window self.
(LOOPS now uses the INTERLISP package exclusively.) The
MousePackage method protects LOOPS windows from the new packages.
To remove this protection, specialize this method to return *PACKAGE*.

Arguments: self An instance of a window.

Returns: The INTERLISP package.

(←self MouseReadtable) [Method of Window]

Purpose/Behavior: Returns the readtable used during mouse interactions with the window self.
Medley now has many different readtables; some readtables do not work well
with LOOPS. (The Common Lisp readtables are not case-sensitive.) This
method protects LOOPS windows from the new readtables. To remove this
protection, specialize this method to return *READTABLE*.

Arguments: self An instance of a window.

Returns: The INTERLISP readtable.

(← self Open) [Method of Window]

Purpose/Behavior: Opens the specified window instance.

Arguments: self Pointer to a window instance.

Returns: NIL

Categories: Window

(← self Paint) [Method of Window]

Purpose/Behavior: Calls PAINTW on the specified window. You are prompted for instructions in
the prompt window.

Arguments: self Pointer to a window instance.

Returns: NIL

Categories: Window

(← self ScrollWindow dspX dspY windowX windowY) [Method of Window]

Purpose/Behavior: Scrolls the window to move the point dspX, dspY to windowX, windowY. If
windowX and windowY are NIL, the default is to scroll so that the point dspx,
dspy appears in the lower left corner of the window. Any of the arguments can

1 9 - 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

be FIXP or FLOATP. If the value is FIXP, then it is treated as an absolute
coordinate. If the value is FLOATP, then it is treated as a relative position.

Arguments: self Pointer to a window instance.

dspX The x point in the given window to move; x is in window
coordinates if FIXP. If FLOATP, the value to move is based
upon the width of the EXTENT property of the window; see the
Interlisp-D Reference Manual.

dspY The y point in the given window to move; y is in window
coordinates if FIXP. If FLOATP, the value to move is based
upon the height of the EXTENT property of the window; see the
Interlisp-D Reference Manual.

windowX The x point to scroll to in window coordinates if FIXP. If
FLOATP, the value to move is based upon the width of the
window.

windowY The x point to scroll to in window coordinates if FIXP. If
FLOATP, the value to move is based upon the height of the
window.

Returns: The lower left corner of the new DSPCLIPPINGREGION; see the Interlisp-D
Reference Manual.

Categories: Window

(← self SetProp prop value) [Method of Window]

Purpose/Behavior: Sets the Interlisp window property of the specified LOOPS window, passing
its prop and value arguments through Interlisp function WINDOWPROP.

Arguments: self Pointer to a window instance.

prop Property to set.

value New value for property.

Returns: Previous value of prop if it existed; else NIL.

Categories: Window

(← self Shape newRegion noUpdateFlg) [Method of Window]

Purpose/Behavior: Reshapes the specified window. If newRegion is not specified, you are
prompted to reshape the window with the cursor.

Arguments: self Pointer to a window instance.

newRegion A list specifying the new outer dimensions; the format for the list
is (left bottom height width).

noUpdateFlg
If NIL, reshapes the window.

Returns: A list specifying the new region.

Categories: Window

Specializations: NonRectangularWindow

Example: The command

(← ($ window1) Shape ’(100 200 300 400))

1 9 - 8 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

returns

(100 200 300 400)

(← self Shape?) [Method of Window]

Purpose/Behavior: Returns the current region for the window.

Arguments: self Pointer to a window instance.

Returns: A list specifying outer dimensions of the window.

Categories: Window

Example: The command

(← ($ window1) Shape?)

returns

(100 200 300 400)

(← self Shrink toWhat iconPos expandFn) [Method of Window]

Purpose/Behavior: Shrinks the window to a given icon.

Arguments: self Pointer to a window instance.

toWhat The icon to shrink to; if NIL, an icon is created.

iconPos Position of icon on screen.

expandFn Function to be called on expansion.

Returns: The icon.

Categories: Window

Specializations: LatticeBrowser

(← self Snap) [Method of Window]

Purpose/Behavior: Calls SnapW to take a snapshot of the window.

Arguments: self Pointer to a window instance.

 Returns: The window.

Categories: Window

(← self ToTop) [Method of Window]

Purpose/Behavior: Opens the window and brings it to the top of the screen.

Arguments: self Pointer to a window instance.

 Returns: The window.

Categories: Window

(← self Update) [Method of Window]

1 9 - 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.2 BASIC WINDOW METHODS

Purpose/Behavior: Makes the window consistent with the instance variables.

Arguments: self Pointer to a window instance.

Returns: NIL

Categories: Window

Specializations: NonRectangularWindow

(WindowAfterMoveFn window) [Function]

Purpose/Behavior: This function is installed as the AFTERMOVEFN property of the Lisp window
pointed to by a window object. This function extracts the window object from
the property LoopsWindow and sends it the message AfterMove.

This AFTERMOVEFN is installed automatically by the system.

Arguments: window The window just moved.

Returns: Used for side effect only.

(WindowShapeFn window oldBitmapImage oldRegion) [Function]

Purpose/Behavior: This function is installed as the RESHAPEFN property of the Lisp window
pointed to by a window. This function extracts the window object from the
property LoopsWindow and sends it the message AfterReshape with the
arguments oldBitmapImage oldRegion.

This RESHAPEFN is installed automatically by the system.

Arguments: window The window just reshaped.

oldBitmapImage
See the Lisp Release Notes and the Interlisp-D Reference
Manual for a discussion of window ReShapeFns.

oldRegion See the Lisp Release Notes and the Interlisp-D Reference
Manual for a discussion of window ReShapeFns.

Returns: Used for side effect only.

19.3 Prompt Windows

Prompt windows are windows attached to other windows and are used for
displaying messages and for getting input. In LOOPS, these operate similarly
to prompt windows in Lisp. Prompt windows are not instances of the class
Window; they are only instances of the Interlisp data type Window.

The following table lists the methods and functions described in this section.

1 9 - 1 0 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.3 PROMPT WINDOWS

Name Type Description

Clear PromptWindow Method Clears the prompt window.

ClosePromptWindow Method Closes the prompt window.

GetPromptWindow Method Associates a prompt window with a LOOPS window.

PromptEval Function Prompts for, reads, and evaluates an expression.

PromptForList Method Prompts for a list of items.

PromptForString Method Prompts for a string.

PromptForWord Method Prompts for a word.

PromptPrint Method Prints a message in the prompt window.

PromptRead Function Prompts for and reads data.

NiceMenu Function Creates a menu.

SelectFile Lambda Prompts for a file name.
NoSpread

Note: The methods PromptForList, PromptForString, and
PromptForWord, as well as the functions PromptRead and
PromptEval when called with a prompt window for a LOOPS window,
all disable normal mouse button events in the prompting browser and
will not allow it to close until the prompt is completed.

(← self ClearPromptWindow) [Method of Window]

Purpose/Behavior: Clears the prompt window associated with the window self.

Arguments: self Evaluates to a window instance.

Returns: NIL

Categories: Window

(← self ClosePromptWindow) [Method of Window]

Purpose/Behavior: Closes the prompt window associated with the window self.

Arguments: self Evaluates to a window instance.

Returns: The symbol CLOSED if a prompt window existed; else NIL.

Categories: Window

(← self GetPromptWindow lines fontDef) [Method of Window]

Purpose/Behavior: Gets a prompt window for window self. If one exists, it is returned; else a
prompt window is created.

Arguments: self Pointer to a window instance.

lines Number of lines in window; default is 2.

fontDef Font used in the window; if NIL, this defaults to DEFAULTFONT.

1 9 - 1 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.3 PROMPT WINDOWS

Returns: Pointer to a prompt window.

Categories: Window

(PromptEval promptString window sameLine?) [Function]

Purpose: Prompts for, reads, and evaluates an expression.

Behavior: Temporarily moves the TTYDISPLAYSTREAM to window, if window is non-
NIL, else to the system prompt window.

The promptString is printed followed by a carriage return and the string "The
expression read will be EVALuated."

The prompt "> " is printed on the same line as the above if sameLine? is non-
NIL, else it is printed on a new line. Data entered by the user is evaluated and
returned. LISPX and LISPXREAD are used so that the entered data is placed
on the LISPX history list. (See the Lisp Release Notes and the Interlisp-D
Reference Manual).

Note: When called with a prompt window for a LOOPS window, PromptEval
disables normal mouse button events in the prompting browser and
will not allow it to close until the prompt is completed.

Arguments: promptString
A string to be printed.

window A window where the prompting and reading should occur.
Defaults to the system prompt window.

sameLine? If non-NIL, the data is read from the same line as the string "The
expression read will be EVALuated."

Returns: The data entered by the user after it has been evaluated.

Example: The command

26←(← ($ Window) New (PromptEval "Specify new window for object name."))

causes the following to appear in the Prompt Window:

Specify new window for object name.
The expression read will be EVALuated.

>

Entering

‘NewWindow

after the > causes the following return in the Executive Window.

#,($& Window (NEW0.1Y%:.;h.eN6 . 501))

(← self PromptForList promptStr initialString) [Method of Window]

Purpose/Behavior: Prompts you in prompt window for a list of symbols. If prompt window does
not exist, one is created. Input is terminated by a carriage return.

TTYIN is used for editing the user’s input; see the Interlisp-D Reference
Manual.

Note: PromptForList disables normal mouse button events in the prompting
browser and will not allow it to close until the prompt is completed.

1 9 - 1 2 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.3 PROMPT WINDOWS

Arguments: self Pointer to a window instance.

promptStr Displayed in prompt window.

initialString Can be used as the default or the first item of the list.

Returns: The list of words entered in prompt window.

Categories: Window

Example: If ($ Window1) is a window, then the command

27←(← ($ Window1) PromptForList "ENTER THE CODES ")

causes the prompt ENTER THE CODES to be displayed in an attached
prompt window. The system waits for user input.

(← self PromptForString promptStr initialStr) [Method of Window]

Purpose/Behavior: Prompts you in prompt window for a string. If a prompt window does not exist,
one is created. Input is terminated by a carriage return.

TTYIN is used for editing the user’s input; see the Interlisp-D Reference
Manual.

Note: PromptForString disables normal mouse button events in the
prompting browser and will not allow it to close until the prompt is
completed.

Arguments: self Pointer to a window instance.

promptStr Displayed in prompt window.

initialStr Can be used as the default or the prefix to the string.

Returns: The string entered in prompt window.

Categories: Window

Example: If ($ Window1) is a window, then the command

28←(← ($ Window1) PromptForString "ENTER THE CODES ")

causes the prompt ENTER THE CODES to be displayed in an attached
prompt window . The system waits for user input.

(← self PromptForWord promptStr initialWord) [Method of Window]

Purpose/Behavior: Returns (CAR (← self PromptForList promptStr initialWord))

Arguments: self Evaluates to a window instance.

promptStr Displayed in prompt window.

initialWord Can be used as the default.

Returns: See Behavior.

Categories: Window

Example: If ($ Window1) is a window, then the command

29←(← ($ Window1) PromptForWord "NEW WORD ")

prompts you with NEW WORD in an attached prompt window.

1 9 - 1 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.3 PROMPT WINDOWS

(← self PromptPrint msg) [Method of Window]

Purpose/Behavior: Displays a message in the prompt window associated with the specified
window instance. Creates the prompt window if it does not exist.

Arguments: self Evaluates to a window instance.

msg Message displayed.

Returns: The message printed.

Categories: Window

(PromptRead promptString window sameLine?) [Function]

Purpose: Prompts for and reads data.

Behavior: Temporarily moves the TTYDISPLAYSTREAM to window, if window is non-
NIL, else to the system prompt window.

The promptString is printed. The prompt "> " is printed on the same line as
the above if sameLine? is non-NIL, else it is printed on a new line. Data that
you entered is read and returned.

This contrasts with PromptEval in that the entered data is not placed on the
LISPX history list (see the Lisp Release Notes and the Interlisp-D Reference
Manual).

Note: When called with a prompt window for a LOOPS window
PromptRead disables normal mouse button events in the prompting
browser and will not allow it to close until the prompt is completed.

Arguments: promptString
A string to be printed.

window A window where the prompting and reading should occur.
Defaults to the system prompt window.

sameLine? If non-NIL, the data is read from the same line as the
promptString.

Returns: The data entered by the user.

(NiceMenu items title) [Function]

Purpose: Provides an interface to create a menu and displays the menu.

Behavior: Varies according to the arguments.

• If items is NIL, prints "No items for title" in the system prompt window and
returns NIL.

• If items is non-NIL, this builds a menu with the TITLE title, with the ITEMS
items, and with CHANGEOFFSETFLG set to T (see the Interlisp-D
Reference Manual). If the length of items is more than 35, the menu has
multiple columns.

Arguments: items A form that can be placed in the ITEMS field of a menu.

title A value that will be placed in the TITLE field of a menu.

Returns: Value depends on the arguments; see Behavior.

1 9 - 1 4 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.3 PROMPT WINDOWS

(SelectFile prompts) [Lambda NoSpread Function]

Purpose: Prompts you for a file name.

Behavior: Takes on unlimited number of arguments and will PROMPTPRINT all the
arguments.

Builds a menu with the items *newFile* and the files found on the variable
FILELST.

If you select one of the files, that is returned.

If you select *newFile*, you are prompted to enter a file name. An empty
filecoms is built for that file name, and the file name is returned.

newFile has three subitems:

• *newFile*

See Behavior.

• *loadFile*

You are prompted to enter a file name. A search is performed to try to find
and load the compiled file. If that is not found, an attempt is made to load
the source file. Returns NIL if the file is not found.

• *hiddenFile*

A menu is displayed containing files that are on the variable
LOADEDFILELST but not on FILELST.

Arguments: prompts A number of expressions to be printed in the system prompt
window.

Returns: Value depends on the arguments; see Behavior.

19.4 Mouse and Menu Functionality

When a LOOPS window is instantiated, its instance variable window points to
an instance of a Lisp window. This window has several properties set, among
which are the following that are described in this section:

• The property RIGHTBUTTONFN that is set to WindowRightButtonFn.

• The property BUTTONEVENTFN that is set to WindowButtonEventFn.

This section will also explain the functionality of the above and how menus
associated with LOOPS windows operate. For more information on Medley
windows, see the Lisp Release Notes and the Interlisp-D Reference Manual.

Name Type Description

ButtonEventFn Method Sends either the message TitleSelection, LeftSelection, or
MiddleSelection.

ClearMenuCache Method Deletes menus saved on the menus field of a browser.

ItemMenu Method Creates a simple one-level menu.

LeftSelection Method Triggers functionality when the cursor is in a window and the left
button is pressed.

1 9 - 1 5LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.4 MOUSE AND MENU FUNCTIONALITY

MiddleSelection Method Triggers functionality when the cursor is in a window and the
middle button is pressed.

RightButtonFn Method Sends the message RightSelection.

RightSelection Method Triggers functionality when the cursor is in a window and the
right button is pressed.

TitleSelection Method Triggers functionality when the cursor is in a window’s title bar
and the left or middle button is pressed.

WhenMenuItemHeld Method Displays in the prompt window what happens when option is
selected.

WindowButtonEventFn Function Invokes the method ButtonEventFn.

WindowRightButtonFn Function Invokes the method RightButtonFn.

(← self ButtonEventFn) [Method of Window]

Purpose/Behavior: If the cursor is not inside of the window pointed to by self, this sends the
message TitleSelection to self.

If the left mouse button is pressed, this sends the message LeftSelection to
self.

If the left middle button is pressed, this sends the message MiddleSelection
to self.

Arguments: self An instance of a window.

Returns: Used for side effect only.

Categories: Window

(← self ClearMenuCache) [Method of Window]

Purpose/Behavior: Deletes menus saved in any properties of the instance variable menus of a
window. Use this method if you ever change the class variables describing a
menu, and you want the new menu to take effect.

Arguments: self Pointer to a window instance.

Returns: self

Categories: Window

(← self ItemMenu items title) [Method of Window]

Purpose/Behavior: Creates a simple one-level menu guaranteed not to be more than 750 bits
high. A large number of menu options will cause a multiple column menu to
be formed.

Arguments: self Pointer to a window instance.

items The value of this is passed to the ITEMS field when the menu is
created.

title The title for the menu’s window.

Returns: A menu.

1 9 - 1 6 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.4 MOUSE AND MENU FUNCTIONALITY

Categories: Window

Example: The command

32←(← (←New ($ Window)) ItemMenu ’(a b c))

will create a menu with the three options.

(← self LeftSelection) [Method of Window]

Purpose/Behavior: Invokes a number of internal methods of Window. A menu will pop up. The
options in the menu will be defined by the class variable LeftButtonItems (or
ShiftLeftButtonItems if the Meta key is also pressed). If an option is selected
from the menu, a message will be sent to self with a selector as specified by
the chosen menu option.

 Arguments: self Pointer to a window instance.

 Returns: Used for side effect only.

Categories: Window

Specializations: LatticeBrowser

(← self MiddleSelection) [Method of Window]

Purpose/Behavior: Invokes a number of internal methods of Window. A menu will pop up. The
options in the menu will be defined by the class variable MiddleButtonItems
(or ShiftMiddleButtonItems if the Meta key is also pressed). If an option is
selected from the menu, a message will be sent to self with a selector as
specified by the chosen menu option.

 Arguments: self Pointer to a window instance.

Categories: Window

Specializations: LatticeBrowser

(← self RightSelection) [Method of Window]

Purpose/Behavior: Invokes a number of internal methods of Window. A menu will pop up. The
options in the menu will be defined by the class variable RightButtonItems. If
an option is selected from the menu, a message will be sent to self with a
selector as specified by the chosen menu option.

 Arguments: self Pointer to a window instance.

 Returns: The menu.

Categories: Window

(← self TitleSelection) [Method of Window]

Purpose/Behavior: Invokes a number of internal methods of Window. A menu will pop up. The
options in the menu will be defined by the class variable TitleItems. If an
option is selected from the menu, a message will be sent to self with a selector
as specified by the chosen menu option .

Arguments: self Pointer to a window instance.

 Returns: The choice if selected; else NIL.

1 9 - 1 7LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.4 MOUSE AND MENU FUNCTIONALITY

Categories: Window

Specializations: LatticeBrowser

(← self WhenMenuItemHeld item - -) [Method of Window]

Purpose/Behavior: Displays in the system prompt window what will happen when the menu item
is chosen. The information displayed will either be the help string for the item
or the documentation for the method pointed to by the item.

Arguments: self Pointer to a window instance.

item The menu item selector.

Returns: NIL

Categories: Window

WindowButtonEventFn [Function]

Purpose/Behavior: Invokes the method ButtonEventFn.

WindowRightButtonFn [Function]

Purpose/Behavior: Invokes the method RightButtonFn.

(WindowButtonEventFn window) [Function]

Purpose/Behavior: This retrieves the value of the Lisp window property LoopsWindow. It sends
the message ButtonEventFn to that window object. If the window object is an
instance of NonRectangularWindow or one of its subclasses and if the
cursor is not within the icon bitmap, nothing occurs.

This is invoked automatically by the system when the cursor is inside of a
window object and the left or middle mouse button is pressed.

Arguments: window The window that contained the cursor when the mouse button
was pressed.

Returns: Used for side effect only.

(WindowRightButtonFn window) [Function]

Purpose/Behavior: This retrieves the value of the Lisp window property LoopsWindow. It sends
the message RightButtonFn to that window object. If the window object is an
instance of NonRectangularWindow or one of its subclasses and if the
cursor is not within the icon bitmap, nothing occurs.

This is invoked automatically by the system when the cursor is inside of a
window object and the left or middle mouse button is pressed.

Arguments: window The window that contained the cursor when the mouse button
was pressed.

Returns: Used for side effect only.

19.4.1 Menu Item Structure

The default behavior for the methods LeftSelection, MiddleSelection, and
RightSelection causes a menu to pop up. The options that will appear in a

1 9 - 1 8 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.4 MOUSE AND MENU FUNCTIONALITY

menu are defined in various class variables of the window object being
selected. (IconWindows are an exception). When an option is selected from
a menu, a message is sent to the window with no arguments.

The value of the various class variables can be an item list, such as
(item1....itemn) where each item can be one of:

• selector

In this case, the selector appears in the menu, and it is the selector of the
message sent to the window.

• (prompt selector help-string)

In this case, the prompt appears in the menu, and selector is the selector of
the message sent to the window. help-string is printed when the cursor is
over the item and the mouse is pressed.

• (prompt subitemStructure help-string) where subitemStructure =
(defaultSelector itemlist)

This form allows a menu to contain submenus. In this case, the prompt
appears in the main menu, and defaultSelector is the selector of the
message sent to the window if the main menu item is selected. itemlist
defines the submenu behavior.

For example, in the class Window, the class variable LeftButtonItems has
the following value:

((Update (QUOTE Update) "Update window to agree with object IVs"))

The class variable RightButtonItems has the value:

((Close (Close (Close Destroy))) Snap Paint Clear Bury Repaint
(Hardcopy (Hardcopy (HardcopyToFile HardcopyToPrinter))) Move Shape
Shrink)

19.4.2 Caching Menus

When a menu is created by pressing a mouse button on a LOOPS window,
the menu is cached on a property of the instance variable menus if menus
has the value T. The name of the property where it is stored has the same
name as the class variable that describes the menu. The method
ClearMenuCache will set these properties to NIL, causing the menus to be
deleted from the window instance.

19.5 Subclasses of Window

This section describes the classes NonRectangularWindow, IconWindow,
and LoopsIcon and functionality associated with them.

Name Type Description

NonRectangularWindow Class Provides the capability for windows to act as icons.

CreateWindow Method Creates a window that acts like an icon.

EditIcon Method Edits an icon bitmap.

EditMask Method Edits a mask bitmap.

1 9 - 1 9LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.5 SUBCLASSES OF WINDOW

Invert Method Inverts the image of an icon; that is, reverses its black-white
pattern.

Shape Method Prevents the window from being shaped by calling LoopsHelp.

IconWindow Class Provides some menu options for icon windows.

LoopsIcon Class Provides an icon that is part of the LOOPS user interface.

PutSavedValue Function Stores a value. This is called from within browser and inspector
menu events.

SavedValue Function Retrieves a saved value.

NonRectangularWindow [Class]

Description: Provides the capability for windows to act as icons.

MetaClass: Class

Supers: Window

Instance Variables: icon Allows a bitmap to be used as an icon to be stored in the
instance. If the bitMap property is set to a symbol whose value
is a bitmap, then that bitmap will be used. The default value is
NIL.

mask Allows a bitmap to be used as an icon mask to be stored in the
instance. If the bitMap property is set to a symbol whose value
is a bitmap, then that bitmap will be used. The default value is
NIL.

(← self CreateWindow) [Method of NonRectangularWindow]

Purpose: Creates a window that acts like an icon.

Behavior: Determines if icon and mask or the property bitMap have values. If so, it
uses those within a call to ICONW. If not, it sends the messages EditIcon
and EditMask.

This method is invoked by the system if the instance variable window is not
yet bound to a value and it is accessed.

Arguments: self A window instance.

Returns: Value returned from ICONW.

Categories: Window

Specializes: Window

(← self EditIcon) [Method of NonRectangularWindow]

Purpose: Edits an icon bitmap.

Behavior: Calls EDITBM with the value of the instance variable icon and assigns icon to
the returned value.

Arguments: self A window instance.

Returns: Value returned from EDITBM.

Categories: NonRectangularWindow

1 9 - 2 0 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.5 SUBCLASSES OF WINDOW

(← self EditMask) [Method of NonRectangularWindow]

Purpose: Edits a mask bitmap.

Behavior: Calls EDITBM withthe value of the instance variable mask if it is non-NIL, or a
copy of icon, and assigns mask to the returned value.

Arguments: self A window instance.

Returns: Value returned from EDITBM.

Categories: NonRectangularWindow

(← self Invert) [Method of NonRectangularWindow]

Purpose: Inverts the image of an icon; that is, reverses its black-white pattern.

Behavior: Modifies the bitmap of the ICONIMAGE window property of the Lisp window
pointed to by self.

Arguments: self A window instance.

Returns: Used for side effect only.

Categories: Window

Specializes: Window

(← self Shape) [Method of NonRectangularWindow]

Purpose/Behavior: Prevents the window from being shaped by calling LoopsHelp.

This method is provided to restrict the shaping of this class of window, not to
provide additional functionality.

Arguments: self A window instance.

Returns: Used for side effect only.

Categories: Window

Specializes: Window

IconWindow [Class]

Description: Provides some menu options for icon windows.

The menu behavior of this class is different from the class Window in that the
item lists are stored on instance variables and not class variables.

MetaClass: Class

Supers: NonRectangularWindow

Instance Variables: RightButtonItems
A list that defines the menu that will appear when the right
mouse button is pressed when the cursor is in the window. The
default value is (Move).

MiddleButtonItems
A list that defines the menu that will appear when the middle
mouse button is pressed when the cursor is in the window. The
default value is NIL.

1 9 - 2 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.5 SUBCLASSES OF WINDOW

LeftButtonItems
A list that defines the menu that will appear when the left mouse
button is pressed when the cursor is in the window. The default
value is (Move).

ShiftMiddleButtonItems
A list that defines the menu that will appear when the middle
mouse button is pressed when the cursor is in the window and
the Meta key is pressed. The default value is NIL.

ShiftLeftButtonItems
A list that defines the menu that will appear when the left mouse
button is pressed when the cursor is in the window and the Meta
key is pressed. The default value is (Move).

LoopsIcon [Class]

Description: Implements the LOOPS icon which is part of the LOOPS user interface to
LatticeBrowsers (see Chapter 10, Browsers).

MetaClass: Class

Supers: NonRectangularWindow

Class Variables: RightButtonItems
A list that defines the menu that will appear when the right
mouse button is pressed when the cursor is in the window. The
default value is (Close Move).

MiddleButtonItems
A list that defines the menu that will appear when the middle
mouse button is pressed when the cursor is in the window. The
default value is (("Browse File" (...))).

LeftButtonItems
A list that defines the menu that will appear when the left mouse
button is pressed when the cursor is in the window. The default
value is (("Browse Class" (...))).

Instance Variables: savedValue Used by the functions PutSavedValue and SavedValue. The
default value is NIL.

icon The property bitMap has the value BlackLoopsIconBM. The
default value is NIL.

mask The property bitMap has the value LoopsIconShadow. The
default value is NIL.

 (PutSavedValue value) [Function]

Purpose: Stores a value. This is called from within browser and inspector menu events.

Behavior: Sets the instance variable savedValue of the prototype instance of the class
LoopsIcon to value. Also sets the top level binding of IT to value; see the
Interlisp-D Reference Manual for information on IT.

Arguments: value Any arbitrary data.

Returns: value

(SavedValue) [Function]

Purpose: Retrieves a saved value.

1 9 - 2 2 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.5 SUBCLASSES OF WINDOW

Behavior/Returns: Gets the value of the instance variable savedValue of the prototype instance
of the class LoopsIcon.

19.6 Lisp Windows

The methods in this section define the interface between LOOPS windows
and Lisp windows. These methods are used internally by the system, and will
rarely be used or specialized by users.

Name Type Description

AttachLispWindow Method Gives a LOOPS window a Lisp window.

CreateWindow Method Creates a Lisp window.

DetachLispWindow Method Forgets about the current Lisp window.

GetWrappedValue Method Gets the value wrapped in the active value.

HasLispWindow Method Checks if a Lisp window has ever been created for the LOOPS
window.

PutWrappedValue Method Replaced the value wrapped in the active value.

(← self AttachLispWindow window) [Method of Window]

Purpose/Behavior: Used to associate a LOOPS window with a Medley window. This detaches
any currently attached window before attaching a new one, and fills in the
instance variables left, bottom, width, height, and title from the Lisp window.

Arguments: self An instance of a LOOPS window.

window Must be a window pointer.

Returns: Used for side effect only.

Categories: Window

(← self CreateWindow) [Method of Window]

Purpose/Behavior: Creates a Lisp window for a LOOPS window but does not open it.

Arguments: self Pointer to a LOOPS window.

Returns: The window.

Categories: Window

Specializations: NonRectangularWindow

(← self DetachLispWindow) [Method of Window]

Purpose/Behavior: Removes the pointer from the LOOPS window to the Lisp window.

 Arguments: self Pointer to a LOOPS window.

 Returns: Used for side effect only.

1 9 - 2 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

19.6 LISP WINDOWS

Categories: Window

(← self GetWrappedValue containingObj varName propName type) [Method of LispWindowAV]

Purpose/Behavior: Used by the system to fetch the Medley window from a LOOPS window. If the
local state of this active value is not a window, it is made a window.

 Arguments: self An instance of LispWindowAV.

containingObj
A LOOPS window.

varName Variable associated with the wrapped value.

propName Used internally.

type Used internally.

 Returns: A Lisp window.

Categories: LispWindowAv

Specializes: LocalStateActiveValue

(← self HasLispWindow) [Method of Window]

Purpose/Behavior: Checks if Lisp window has ever been created for this LOOPS window.

 Arguments: self A LOOPS window.

Returns: The window pointer, if one exists; else NIL.

Categories: Window

(← self PutWrappedValue containingObj varName newvalue propName) [Method of LispWindowAV]

Purpose/Behavior: Places the window newvalue as local state of the active value.

 Arguments: self An instance of LispWindowAV.

containingObj
A LOOPS window.

varName Variable associated with the wrapped value.

propName Used internally.

type Used internally.

Returns: The window pointer, if one exists.

Categories: LispWindowAV

Specializes: LocalStateActiveValue

1 9 - 2 4 LOOPS RFEFERENCE MANUAL, MEDLEY RELEASE

19.6 LISP WINDOWS

[This page intentionally left blank]

2 0 - 1LOOPS REFERENCE MANUAL, MEDLEY RELEASE

20. SYSTEM VARIABLES AND
FUNCTIONS

This section describes the following system variables and functions. These
variables are set within the file LOADLOOPS or when the function
LOADLOOPS is executed.

Name Type Description

LoopsVersion Variable Identifies a release of LOOPS.

LoopsDate Variable Identifies the date when the function LOADLOOPS is executed.

FEATURES Variable Has the symbol LOOPS added to it when the function
LOADLOOPS is evaluated.

LoadLoopsForms Variable Contains a list of forms that are evaluated when LOOPS is
loaded.

LispUserFilesForLoops Variable Contains a list of files required by LOOPS.

OptionalLispuserFIles Variable Contains a list of files that is loaded when LOOPS is loaded.

LOOPSDIRECTORY Variable Contains the connected directory when LOADLOOPS is loaded.

LOOPSLIBRARYDIRECTORY
Variable Contains the directory where the LOOPS library files reside.

LOOPSUSERSDIRECTORY
Variable Contains the directory where the LOOPS Users’ Modules files

reside.

LOOPSUSERSRULESDIRECTORY
Variable Contains the directory where the LOOPS Rules User Module file

resides.

LoopsPatchFiles Variable Contains a list of LOOPS files that are loaded when LOOPS is
loaded.

LOOPSFILES Variable Contains a list of LOOPS files that are loaded by the function
LOADLOOPS.

ClearAllCaches Function Clears all caches used by LOOPS.

ClearAllCaches Variable Contains a list of forms that are evaluated within a call to the
function ClearAllCaches.

LoopsVersion [Variable]

Set to uniquely identify a release of LOOPS.

LoopsDate [Variable]

2 0 - 2 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

20. SYSTEM VARIABLES AND FUNCTIONS

Set to the value of (DATE) when the function LOADLOOPS is evaluated.

FEATURES [Variable]

Has the symbol LOOPS added to it when the function LOADLOOPS is
evaluated. See the Common Lisp: the Language for more information on
FEATURES.

LoadLoopsForms [Variable]

Contains a list of forms that are evaluated when LOOPS is loaded. Initialized
to NIL using the File Manager command INITVARS (see the Lisp Release
Notes and the Interlisp-D Reference Manual).

LispUserFilesForLoops [Variable]

Contains a list of files required by LOOPS. Initialized to (GRAPHER).

OptionalLispuserFiles [Variable]

Contains a list of files that is loaded when LOOPS is loaded. Initialized to NIL
using the File Manager command INITVARS.

LOOPSDIRECTORY [Variable]

Initialized to the directory from which the file LOADLOOPS is loaded using the
File Manager command INITVARS.

LOOPSLIBRARYDIRECTORY [Variable]

Contains the directory where the LOOPS library files reside.

LOOPSUSERSDIRECTORY [Variable]

Contains the directory where the LOOPS Users’ Modules files reside.

LOOPSUSERSRULESDIRECTORY [Variable]

Contains the directory where the LOOPS Rules User Module file resides.

LoopsPatchFiles [Variable]

Contains a list that can be passed to FILESLOAD (see the Lisp Release
Notes and the Interlisp-D Reference Manual) and is used during the loading of
LOOPS. Initialized to ((LOAD FROM VALUEOF LOOPSDIRECTORY)
MASTERSCOPE MSPARSE).

LOOPSFILES [Variable]

Contains the list of LOOPS files loaded by LOADLOOPS when building a
LOOPS sysout.

(ClearAllCaches) [Function]

Purpose: Clears all caches used by LOOPS

2 0 - 3LOOPS REFERENCE MANUAL, MEDLEY RELEASE

20. SYSTEM VARIABLES AND FUNCTIONS

Behavior: In addition to clearing some caches used to speed up method and instance
variable lookup, this clears the hash array CLISPARRAY (see the Lisp
Release Notes and the Interlisp-D Reference Manual) and sends the
ClearMenuCache message to any open LOOPS windows or their icons.

Returns: NIL

ClearAllCaches [Variable]

Contains a list of forms, each of which is evaluated within a call to the function
ClearAllCaches. Initially set to NIL.

2 0 - 4 LOOPS REFERENCE MANUAL, MEDLEY RELEASE

20. SYSTEM VARIABLES AND FUNCTIONS

[This page intentionally left blank]

Lyric/Medley Release
July 1988

XEROX LOOPS
REFERENCE MANUAL

XEROX

XEROX LOOPS REFERENCE MANUAL

Lyric/Medley Release

July 1988

Copyright © 1988 by Xerox Corporation.

Xerox LOOPS is a trademark.

All rights reserved.

i i iXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE xv

1. INTRODUCTION

1.1 Introduction to Objects 1-1

1.1.1 Object 1-2

1.1.2 Message 1-3

1.1.3 Method 1-3

1.1.4 Selector 1-3

1.1.5 Class 1-3

1.1.6 Instance 1-4

1.2 Storage of Data in Objects 1-4

1.2.1 Class Variables and Instance Variables 1-4

1.2.2 Properties 1-5

1.3 Metaclasses 1-6

1.4 Introduction to Inheritance 1-6

1.4.1 Single Superclasses 1-7

1.4.2 Multiple Superclasses 1-8

1.5 Introduction to Access-Oriented Programming: Using Active Values 1-9

1.6 Introduction to the Xerox LOOPS User Interface 1-10

1.6.1 SEdit 1-10

1.6.2 Inspector 1-10

1.6.3 Masterscope 1-10

1.6.4 File Manager 1-11

1.6.5 Grapher Module 1-11

i v XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

2. INSTANCES

2.1 Instance Naming Conventions 2-1

2.2 Creating Instances 2-4

2.3 Data Storage in Instances at Creation Time 2-8

2.4 Changing the Number of Instance Variables in an Instance 2-10

2.5 Moving Variables 2-13

2.6 Destroying Instances 2-15

2.7 Methods Concerning the Class of an Object 2-16

2.8 Copying Instances 2-19

2.9 Querying Structure of Instances 2-21

2.10 Other Instance Items 2-24

3. CLASSES

3.1 Creating Classes 3-1

3.1.1 Function Calling and Message Sending 3-2

3.1.2 Dynamic Mixins 3-4

3.2 Destroying Classes 3-5

3.3 Inheritance 3-7

3.4 Editing Classes 3-10

3.5 Modifying Classes 3-11

3.6 Methods for Manipulating Class Names 3-16

3.7 Querying the Structure of a Class 3-17

3.8 Copying Classes and Their Contents 3-23

3.9 Enumerating Instances of Classes 3-24

3.10 Dealing with Inheritance 3-27

4. METACLASSES

4.1 Specific Metaclasses 4-1

vXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

4.1.1 The Metaclass Class 4-1

4.1.2 The Metaclass Metaclass 4-2

4.1.3 The Metaclass AbstractClass 4-2

4.1.4 The Metaclass DestroyedClass 4-2

4.2 Pseudoclasses 4-2

4.3 Defining New Metaclasses 4-5

4.4 Tofu 4-6

5. ACCESSING DATA

5.1 Generalized Get and Put Functions 5-1

5.2 Accessing Data in Instances 5-4

5.2.1 Compact Accessing Forms 5-10

5.2.2 Support for Changetran 5-13

5.3 Accessing Data in Classes 5-13

5.3.1 Metaclasses and Property Access 5-13

5.3.2 Class Variable Access 5-16

5.3.3 Instance Variable Access 5-19

6. METHODS

6.1 Categories 6-1

6.2 Structure of Method Functions 6-3

6.3 Creating, Editing, and Destroying Methods 6-4

6.4 Escaping from Message Syntax 6-6

6.5 Movement between Classes 6-8

6.5.1 Movement of Methods 6-8

6.5.2 Stack Method Macros 6-10

7. MESSAGE SENDING FORMS

v i XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

8. ACTIVE VALUES

8.1 Using Active Values 8-2

8.2 Specializations of the Class ActiveValue 8-2

8.2.1 IndirectVariable 8-3

8.2.2 LocalStateActiveValue 8-6

8.2.2.1 ExplicitFnActiveValue 8-8

8.2.2.2 NoUpdatePermittedAV 8-9

8.2.2.3 LispWindowAV 8-10

8.2.2.4 Breaking and Tracing Active Values 8-10

8.2.2.5 AppendSuperValue 8-11

8.2.2.6 FirstFetchAV 8-12

8.2.3 InheritingAV 8-14

8.2.4 ReplaceMeAV 8-15

8.2.5 NotSetValue 8-15

8.2.5.1 NestedNotSetValue 8-16

8.2.6 User Specializations of Active Values 8-16

8.3 Active Value Methods 8-16

8.3.1 Adding and Deleting Active Values 8-17

8.3.2 Fetching and Replacing Wrapped Values 8-19

8.3.3 Get and Put Functions Bypassing the ActiveValue Mechanism 8-22

8.3.4 Shared Active Values in Variable Inheritance 8-22

8.3.5 Creating Your Own Active Values 8-23

8.4 Annotated Values 8-24

8.4.1 Explicit Control over Annotated Values 8-25

8.4.2 Saving and Restoring Annotated Values 8-26

8.5 Active Values in Class Structures 8-27

v i iXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

9. DATA TYPE PREDICATES AND ITERATIVE OPERATORS

9.1 Data Type Predicates 9-1

9.2 Iterative Operators 9-3

10. BROWSERS

10.1 Types of Built-in Browsers 10-1

10.1.1 Lattice Browsers 10-2

10.1.2 Class Browsers 10-2

10.1.3 File Browsers 10-2

10.1.4 Supers Browsers 10-2

10.1.5 Metaclass Browsers 10-2

10.1.6 Instance Browsers 10-3

10.2 Opening Browsers 10-3

10.2.1 Using Menu Options to Open Browsers 10-3

10.2.1.1 Overview of Background Menu and LOOPS Icon 10-3

10.2.1.2 Command Summary 10-4

10.2.2 Using Commands to Open Browsers 10-5

10.3 Using Class Browsers, Meta Browsers, and Supers Browsers 10-7

10.3.1 Selecting Options in the Title Bar Menu 10-8

10.3.1.1 Recompute and its Suboptions 10-8

10.3.1.2 AddRoot and its Suboptions 10-10

10.3.1.3 Add Category Menu 10-10

10.3.2 Selecting Options in the Left Menu 10-11

10.3.2.1 PrintSummary and its Suboptions 10-12

10.3.2.2 Doc (ClassDoc) and its Suboptions 10-13

10.3.2.3 WhereIs and its Suboptions 10-14

10.3.2.4 DeleteFromBrowser and its Suboptions 10-16

10.3.2.5 SubBrowser 10-16

10.3.2.6 TypeInName 10-16

10.3.2.7 Extending Functionality with the Left Mouse Button 10-16

v i i i XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

10.3.3 Selecting Options in the Middle Menu 10-17

10.3.3.1 Box/UnBoxNode 10-17

10.3.3.2 Methods (EditMethod) and its Suboptions 10-18

10.3.3.3 Add (AddMethod) and its Suboptions 10-20

10.3.3.4 Delete (DeleteMethod) and its Suboptions 10-21

10.3.3.5 Move (MoveMethodTo) and its Suboptions 10-22

10.3.3.6 Copy (CopyMethodTo) and its Suboptions 10-23

10.3.3.7 Rename (RenameMethod) and its Suboptions 10-23

10.3.3.8 Edit (EditClass) and its Suboptions 10-24

10.4 Using File Browsers 10-24

10.4.1 Selecting Options in the Title Bar Menu 10-25

10.4.1.1 Recompute and its Suboptions 10-25

10.4.1.2 AddRoot and its Suboptions 10-25

10.4.1.3 Add Category Menu 10-25

10.4.1.4 Change display mode and its Suboptions 10-25

10.4.1.5 Uses IV? and its Suboptions 10-26

10.4.1.6 Edit FileComs and its Suboptions 10-28

10.4.1.7 CLEANUP file and its Suboptions 10-30

10.4.2 Selecting Options in the Left Menu 10-30

10.4.2.1 PrintSummary and its Suboptions 10-30

10.4.2.2 Doc (ClassDoc) and its Suboptions 10-30

10.4.2.3 WhereIs (WhereIsMethod) and its Suboptions 10-30

10.4.2.4 DeleteFromBrowser and its Suboptions 10-31

10.4.2.5 SubBrowser 10-31

10.4.2.6 TypeInName 10-31

10.4.2.7 AddSubs and its Suboptions 10-31

10.4.3 Selecting Options in the Middle Menu 10-31

10.4.3.1 BoxNode 10-32

10.4.3.2 Methods (EditMethod) and its Suboptions 10-32

10.4.3.3 Add (AddMethod) and its Suboptions 10-32

10.4.3.4 Delete (DeleteMethod) and its Suboptions 10-32

10.4.3.5 Move (MoveMethodTo) and its Suboptions 10-32

10.4.3.6 Copy (CopyMethodTo) and its Suboptions 10-32

i xXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

10.4.3.7 Rename (RenameMethod) and its Suboptions 10-32

10.4.3.8 Edit (EditClass) and its Suboptions 10-32

10.4.3.9 UsesIV and its Suboptions 10-33

10.5 Programmer’s Interface to Lattice Browsers 10-33

10.5.1 Instance Variables for the Class LatticeBrowser 10-33

10.5.2 Class Variables for the Class LatticeBrowser 10-34

10.5.3 Methods for the Class LatticeBrowser 10-35

10.6 Instance Browsers 10-50

10.6.1 Instance Variables for the Class InstanceBrowser 10-50

10.6.2 Methods for the Class InstanceBrowser 10-50

10.6.3 Selecting Options in the Title Bar Menu 10-51

10.6.4 Selecting Options in the Left Menu 10-51

10.6.5 Selecting Options in the Middle Menu 10-52

10.7 Automatic Updates of Class Browsers 10-52

11. ERRORS AND BREAKS

11.1 Error Handling Functions and Methods 11-1

11.2 Error Messages 11-5

11.1.1 Classes and Instances 11-6

11.1.2 Methods and Messages 11-7

11.1.3 Naming Objects 11-8

11.1.4 Annotated and Active Values 11-9

11.1.5 Miscellaneous 11-9

12. BREAKING AND TRACING

12.1 Breaking and Tracing Methods 12-1

12.2 Breaking and Tracing Data 12-3

x XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

13. EDITING

13.1 Editing Classes 13-1

13.2 Editing Instances 13-5

14. FILE MANAGER

14.1 Manipulating Files 14-1

14.2 Loading Files 14-2

14.3 Xerox LOOPS File Manager Commands 14-3

14.4 Saving Xerox LOOPS Objects on Files 14-6

14.5 Storing Files 14-10

14.6 Compiling Files 14-12

15. PERFORMANCE ISSUES

15.1 Garbage Collection 15-1

15.2 Instance Variable Access 15-1

15.3 Method Lookup 15-3

15.4 Cache Clearing 15-3

16. PROCESSES

17. READING AND PRINTING

17.1 Reading Objects 17-1

17.2 Print Flags 17-2

17.3 Printing Classes 17-4

17.4 Printing Objects 17-8

17.5 Printing Active Values 17-11

x iXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

17.6 Printing Methods 17-12

17.7 Unique Identifiers (UIDs) 17-14

18. USER INPUT/OUTPUT MODULES

18.1 Inspector 18-1

18.1.1 Overview of the User Interface 18-1

18.1.2 Using Instance Inspectors 18-2

18.1.2.1 Titles of Instance Inspector Windows 18-2

18.1.2.2 Menu for the Title Bar 18-3

18.1.2.3 Menu for the Left Column 18-4

18.1.2.4 Menu for the Right Column 18-6

18.1.3 Using Class Inspectors 18-7

18.1.3.1 Titles of Class Inspector Windows 18-7

18.1.3.2 Menu for the Title Bar 18-8

18.1.3.3 Menu for the Left Column 18-8

18.1.3.4 Menu for the Right Column 18-8

18.1.4 Using Class IVs Inspectors 18-9

18.1.4.1 Titles of Class IVs Inspector Windows 18-9

18.1.4.2 Menu for the Title Bar 18-9

18.1.4.3 Menu for the Left Column 18-10

18.1.4.4 Menu for the Right Column 18-10

18.1.5 Functional Interface for Instance Inspectors 18-11

18.1.6 Customizing the Inspector 18-15

18.2 Extensions to ?= 18-16

18.2.1 Message Sending 18-16

18.2.2 Record Creation 18-17

19. WINDOWS

19.1 The Class Window 19-1

x i i XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

19.2 Basic Window Methods 19-2

19.3 Prompt Windows 19-9

19.4 Mouse and Menu Functionality 19-14

19.4.1 Menu Item Structure 19-17

19.4.2 Caching Menus 19-18

19.5 Subclasses of a Window 19-18

19.6 Lisp Windows 19-22

20. SYSTEM VARIABLES AND FUNCTIONS

INDEX INDEX-1

GLOSSARY GLOSSARY-1

x i i iXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

LIST OF FIGURES

1-1. Xerox LOOPS Lattice 1-2

1-2. An Object 1-2

1-3. An Object Responding to a Message 1-3

1-4. A Message Containing a Selector 1-3

1-5. Class with Several Objects 1-4

1-6. Class Variables and Instance Variables 1-5

1-7. A Metaclass and its Instances 1-6

1-8. A Sample Inheritance Network 1-7

1-9. A Class with a Single Superclass 1-8

1-10. A Class with Multiple Superclasses 1-9

3-1. Simple Inheritance Lattice 3-8

3-2. Multiple Inheritance Lattice 3-9

3-3. Sample Display Editor Window 3-11

4-1. Class Browser Showing Metaclasses 4-1

4-2. Specializations of Tofu 4-6

8-1. The Class ActiveValue and its Specializations 8-3

10-1. Sample Lattice Browser 10-2

10-2. Sample Supers Browser 10-2

10-3. Sample Metaclass Browser 10-3

10-4. Xerox LOOPS Icon 10-4

10-5. Shading Available for a Node 10-47

18-1. Sample Inspector 18-1

x i v XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

LIST OF FIGURES

[This page intentionally left blank]

x vXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

Overview of the Manual

The Xerox LOOPS Reference Manual provides a detailed description of all the
methods, functions, classes, and other items available in Xerox’s Lisp Object-
Oriented Programming System, Xerox LOOPS (TM). This manual describes
the Lyric/Medley Release of Xerox LOOPS, which runs under the Lyric and
Medley (with a small patch) releases of Xerox Lisp.

This manual is for people who are familiar with Xerox LOOPS programming
principles, and is not intended to teach you Xerox LOOPS or how to use it.
Please contact your LOOPS distributor for information about classes and
training material.

Organization of the Manual and How to Use It

This manual is divided into chapters, with most chapters focusing on a
particular aspect of Xerox LOOPS. The organization of this manual is similar
to the Interlisp-D Reference Manual.

A Table of Contents is included at the beginning of the manual to help you find
specific material. Chapters that have four levels of headings also have
internal Tables of Contents. At the end of the manual, a Glossary is included
to define terms within the context of Xerox LOOPS.

All readers should review Chapter 1, Introduction, before referring to specific
material.

Conventions

This manual uses the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods,
arguments, etc., must be typed as shown. Typically, this means that
method names are capitalized and variables are not.

• Arguments appear in italic type. Optional arguments are indicated by a
dash (-).

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a message sending form appears as follows:

(_ self Selector Arg1 Arg2 -)

• Examples appear in the following typeface:

89_(_LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all Xerox LOOPS expressions.

x v i XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

• Methods with an exclamation mark (!) suffix usually perform operations
deeply into class structure instead of only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth
functions.

• Method names often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

This manual describes the Xerox LOOPS items (functions, methods, etc.) by
using the following template:

Purpose: Gives a short statement of what the item does.

Behavior: Provides the details of how the item operates.

Arguments: Describes each argument in the following format:

argument Description

Returns: States what the item returns, and does not appear if the item does not return a
value. The phrase "Used as a side effect only." means that the purpose of
the item is to perform a computation or action that is independent of any
returned value, not to return a particular value.

Categories: A way to group related methods. For example, all the methods releated to
Masterscope on the class FileBrowser have the category Masterscope, not
FileBrowser. This item appears only for methods.

Specializes: The next higher class in the class hierarchy that contains a method with the
same selector; only appear for methods. For example, the manual entry for
RectangularWindow.Open would say that it specializes Window.Open,
since Window is the first superclass of RectangularWindow that implements
a method for Open.

Specializations: The next lower class(es) in the class hierarchy that contains method(s) with
the same selector; only appears for methods. For example, the manual entry
for Window.Open would say that it has a specialization of
RectangularWindow.Open since RectangularWindow is a subclass of
Window and has its own version of Open method.

Example: An example is often included to show how to use the item and what result it
produces. Some examples may appear differently on your system, depending
on the settings of various print flags. See Chapter 18, Reading and Printing,
for details.

x v i iXEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

References

The following books and manuals augment this manual.

Xerox LOOPS Release Notes

Xerox LOOPS Library Modules Manual

Xerox LOOPS Users’ Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Xerox Common Lisp Implementation Notes, Lyric and Medley Releases

Xerox Lisp Release Notes, Lyric and Medley Releases

Xerox Lisp Library Modules Manual, Lyric and Medley Releases

x v i i i XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

[This page intentionally left blank]

1XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

Writer’s Notes -- Conventions

This file includes notes on conventions for Xerox LOOPS Reference Manual, Koto Release. This manual is
packaged with the Xerox LOOPS Release Notes and Xerox LOOPS Library Packages Manual to form one binder,
part number 3103310.

Writer: Rosie (Raven) Kontur

Printing Date: <DD> <MM> 1987

Directories and Files

The directory {ERIS}<Doc>LoopsKoto>Ref> contains the files for the manual. This directory has the following
subdirectories:

• {ERIS}<Doc>LoopsKoto>Ref>X-Index> contains IMPTR files needed to produce the index as well as the index
itself.

• {ERIS}<Doc>LoopsKoto>Ref>Z-ReleaseInfo> contains this file on writing conventions and a file on production
details.

Filenames describe the contents of the file. For example, the filename

{ERIS}<Doc>LoopsKoto>Ref>Ch01-Intro.tedit

contains Chapter 1, Introduction.

Some chapters (for example, 5, 10, and 19) have internal tables of contents. Chapter 10, which is the largest
chapter and has the most bitmaps, is divided among three files.

Assemble the files in the following order for the manual:

{ERIS}<Doc>LoopsKoto>Ref>A1-TitlePage.tedit
{ERIS}<Doc>LoopsKoto>Ref>A2-TOC.tedit
{ERIS}<Doc>LoopsKoto>Ref>A3-LOF.tedit
{ERIS}<Doc>LoopsKoto>Ref>A4-Preface.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch01-Intro.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch02-Instances.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch03-Classes.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch04-Metaclasses.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch05-TOC.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch05-ActiveValue.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch06-Methods.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch07-MsgForms.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch08-IterStmts.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch09-Misc.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch10-TOC.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch10a-Browsers1.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch10b-Browsers2.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch10c-Browsers3.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch11-Errors.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch12-Breaking.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch13-Editing.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch14-FilePkg.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch15-Masterscope.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch16-Performance.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch17-Processes.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch18-ReadPrint.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch19-TOC.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch19-UserIOPkgs.tedit
{ERIS}<Doc>LoopsKoto>Ref>Ch20-Windows.tedit

2 XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

{ERIS}<Doc>LoopsKoto>Ref>PndxA-Previous.tedit
{ERIS}<Doc>LoopsKoto>Ref>ZZ-Glossary.tedit
{ERIS}<Doc>LoopsKoto>Ref>X-Index>Index-Final.tedit

About the Index

Creating a properly formatted index takes a certain amount of work (about 2 hours).

- Type in your Executive (TEDIT (MAKE.IM.INDEX T NIL ’(filenames) NIL))

- Save the resulting file in {ERIS}<Doc>LoopsKoto>Ref>RefIndex-Raw.tedit.

- Now start dithering. The task is the change all the separators in the file. For example, the index program
returns pages in the form 1.2; 10.5,38; 18.3-4. The Index format we use is in the form 1-2; 10-5; 10-38; 18-3.
Unfortunately, you can’t make all the necessary changes in a global substitute, since many of the separators
are also in the text and the comma requires that you repeat the chapter number. Here goes:

-- Fix the commas. Do a Find on a comma (,). Everyhwere a comma occurs in a page number, change it to a
semicolon (;) and repeat the chapter number and a dot before the page number. For example, 10.5,38
becomes 10-5; 10-38.

-- Fix the dashes. Do a Find on a dash (-). Everyhwere a dash occurs in a page number, delete it and the
following page number.

-- Fix the period. Except for he form #., you can use a global substitute from a period to a dash (. to -). This
takes about 20-30 minutes, as there about 700 substitutions.

I really recommend saving the file at this point.

- Hardcopy the index. Make whatever page breaks and other changes you feel are necessary. Make a final
hardcopy and save the file.

Conventions

This manual uses the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods, arguments, etc., must be typed as
shown. Typically, this means that method names are capitalized and variables are not.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89_(_LOGIN)

• Methods with an exclamation mark (!) suffix usually perform operations deeply into class structure instead of
only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth functions.

• Methods often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

3XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

This manual describes the Xerox LOOPS items (functions, methods, etc.) by using the following template:

Purpose: Gives a short statement of what the item does.

Behavior: Provides the details of how the item operates.

Arguments: Describes each argument in the following format:

argument Description

Returns: States what the item returns, and does not appear if the item does not return a
value. The phrase "Used as a side effect only." means that the purpose of
the item is to perform a computation or action that is independent of any
returned value, not to return a particular value.

Categories: A way to group related methods. For example, all the methods releated to
Masterscope on the class FileBrowser have the category Masterscope, not
FileBrowser. This item appears only for methods.

Specializes: The next higher class in the class hierarchy that contains a method with the
same selector. For example, RectangularWindow.Open can specialize
Window.Open. This appears only for methods.

Specializations: The next lower class in the class hierarchy that contains a method with the
same selector. For example, Window.Open is a specialization of
RectangularWindow.Open. This appears only for methods.

Example: An example is often included to show how to use the item and what result it
produces. Some examples may appear differently on your system, depending
on the settings of various print flags. See Chapter 18, Reading and Printing,
for details.

Style Sheet Addenda

Here are some guidelines I used when writing the LOOPS manuals. Items
appear in rather random order.

• Avoid contractions.

• Avoid subscripts. Use WORD1 rather than WORD1 to avoid inconsistent
line leading.

• Avoid wording that starts "Note that..." or "Notice that...". Either make it a
note with correct format or eliminate the "Note that".

• Use semicolons rather than m-dashes.

• Each item in the template starts with an initial capital letter; e.g.,
"Describes..."

• The arguments are identical in the call and in the argument description.

• Parenthesies appear around expressions and square brackets appear
around the name of the functionality.

• The arrow in the expression is the NS character ←, not _. These
characters appear similarly when printed, but differently on the screen. See
the section, "Special Notes and Cautions," for details.

• A period appears after the word None, after argument descriptions, and
Returns: item.

• Items are set to or return T (instead of true).

• Menus contain options, not items or selections.

4 XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

• You drag (not roll) the mouse to the right of a menu option to see its
submenu.

• Use "above" and "below" when referrering to things in the same section,
section numbers and names when referrering to things in the same chapter,
and chapter numbers and names when referrering to things in another
chapter.

• Please study the following style sheet carefully before you start to edit. The
various appearances of active value and annotated values are especially
crazy making.

These things appear in bold:
class variables
functions
instance variables
messages
methods
variables

ActiveValue - specific class/instance
active value - general information
activeValue - previous implementation of ActiveValue

annotatedValue - data type
AnnotatedValue - specific class
annotated values - general information

bitmap

data type

file package
filecoms

inspector

Lisp Library package
localState - instance variable

non-NIL

prettyprints

supers list

Paragraph Formatting

The text has the following format:

5XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

Bulleted lists have the following format:

The template has the following format:

The Arguments section of the template has the second line start at 18 instead of 13.

6 XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

Page Layout

Page numbering, especially "text before", varies with the chapter.

Bitmaps, Graphs, and Sketches

Scale for bitmaps is 0.8.

Special Notes and Cautions

7XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

Make sure you have changed the underscore to be a left arrow before loading any files. To do this,

- Enter the following commands into your Executive:

(GETCHARBITMAP (CHARCODE _) ’(MODERN 10 MRR))
(EDITBM IT)

- When the bitmap editor apears, delete the underscore and insert the following left arrow:
..........
..........
..........
..........
..........
....X.....
...XX.....
..XXXXXX..
...XX.....
....X.....
..........
..........
..........
..........

- Finally, enter the following commands into your Executive to store the pattern:

(PUTCHARBITMAP (CHARCODE _) ’(MODERN 10 MRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(MODERN 10 BRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 10 MRR) IT)

(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 10 BRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 12 BRR) IT)

I N D E X - 1LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

A
access-oriented programming 1-1,9
accessing

a class, errors 11-6
an instance, errors 11-6
class variable 5-16
data in classes 5-13
instance variable 5-19

active value 1-9; 5-5; 8-1
adding 8-17
breaking and tracing 8-10
bypassing 8-22
creating 8-23
deleting 8-17
errors 11-9
in class structures 8-27
printing 17-11
replacing 8-17

ActiveValue 8-1
methods 8-16
shared 8-22
specializations 8-2

Add (Inspector Submenu Option) 18-4,10
Add (Method of Class) 3-12
Add (AddMethod) (Browser Menu Option) 10-

20,32
Add Category Menu (Browser Menu Option) 10-

10,25
Add file to browser (Browser Submenu Option)

10-26
Add/Delete (Inspector Menu Option) 18-4,10
AddActiveValue (Method of ActiveValue) 8-17
AddCIV (Function) 3-14
AddCV (Browser Submenu Option) 10-20
AddCV (Function) 3-13
AddCV (Method of Class) 3-13
AddIV (Browser Submenu Option) 10-20
AddIV (Function) 2-10
AddIV (Method of Class) 3-14
AddIV (Method of Object) 2-11
AddMethod (Browser Submenu Option) 10-21
adding an active value 8-17
AddRoot (Browser Menu Option) 10-10,25
AddRoot (Method of LatticeBrowser) 10-36
AddSubs (Browser Menu Option) 10-31
AddSubs! (Browser Submenu Option) 10-31
AddSuper (Browser Submenu Option) 10-21
AfterMove (Method of Window) 19-3
AfterReshape (Method of Window) 19-3
all (Browser Submenu Option) 10-26
All (Inspector Menu Option) 18-8
AllInstances (Method of Class) 3-24
AllInstances! (Method of Class) 3-25
AllMethodCategories (Method of Class) 6-2
AllSubClasses (Function) 3-28
AllValues (Inspector Menu Option) 18-3,10
AnalyzeFile (Browser Submenu Option) 10-28
annotated value 8-24

errors 11-9
explicit control over 8-25
restoring 8-26
saving 8-26

AnnotatedValue (Class) 8-24
AnnotatedValue? (Macro) 9-2
Any (Category) 6-1
AppendSuperValue (Class) 8-11

ApplyMethod (Function) 6-7
ArgsOfMethodBeingCompiled (Macro) 6-10
associatedFiles (Browser Submenu Option) 10-26
AttachLispWindow (Method of Window) 19-22
AVPrintSource (Method of ActiveValue) 8-26; 17-

11
AVPrintSource (Specialization of ActiveValue) 8-16

B
background menu 10-3
Blink (Method of Window) 19-3
Box/UnBoxNode (Browser Menu Option) 10-17
BoxNode (Browser Menu Option) 10-32
BoxNode (Method of LatticeBrowser) 10-37
Break on Access (Inspector Submenu Option) 18-

6
Break on Put (Inspector Submenu Option) 18-6
BreakFunction (Browser Submenu Option) 10-29
breaking 12-1
BreakIt (Function) 12-4
BreakIt (Inspector Menu Option) 18-6
BreakIt (Method of Object) 12-3
BreakMethod (Browser Menu Option) 10-20
BreakMethod (Method of Class) 12-1
BreakOnPut (Class) 8-10
BreakOnPutOrGet (Class) 8-10
BrokenVariables (Global Variable) 12-6
Browse (Function) 10-7
Browse (Inspector Menu Option) 18-8
Browse (Method of LatticeBrowser) 10-6,37
Browse Class (Submenu Option) 10-3,4
Browse File (Submenu Option) 10-3,5
Browse Supers (Submenu Option) 10-4
BrowseFile (Method of FileBrowser) 10-6
browser 10-1
BrowserObjects (Method of LatticeBrowser) 10-38
BrowseSupers (Inspector Submenu Option) 18-8
Bury (Method of Window) 20-4
ButtonEventFn (Method of Window) 19-15

C
cache 15-2,3
CalledFns (Function) 6-9
CallsFunction (Browser Submenu Option) 10-28
categories of a method 6-1
CategorizeMethods (Browser Submenu Option)

10-19
CategorizeMethods (Method of Class) 6-2
Change display mode (Browser Menu Option) 10-

25
ChangeClass (Method of Object) 2-16
ChangeFontSize (Browser Submenu Option) 10-8
ChangeFontSize (Method of LatticeBrowser) 10-38
ChangeFormat (Method of LatticeBrowser) 10-38
ChangeMaxLabelSize (Method of LatticeBrowser)

10-39
ChangeMethodCategory (Browser Submenu

Option) 10-19
ChangeMethodCategory (Method of Class) 6-3
Changetran 5-13
Check (Browser Submenu Option) 10-27
CheckFile (Browser Submenu Option) 10-28
class 1-3,6; 3-1

contents 3-1
copying 3-23
creating 3-1

I N D E X - 2 LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

destroying 3-5
editing 3-10; 13-1
enumerating instances 3-24
manipulating 2-16; 3-16
modifying 3-11
printing 17-4
querying the structure 3-17
reading data in 5-13
renaming 3-16
storing data in 5-13

Class (Category) 6-1
Class (Inspector Menu Option) 18-3
Class (Macro) 2-17
Class (Method of Object) 2-17
class browser 10-2

automatic update 10-52
menu interface 10-8

class inspector 18-7
class variable 1-4; 5-5

accessing 5-16
for class LatticeBrowser 10-34

Class? (Macro) 9-2
ClassDoc (Browser Submenu Option) 10-14
CLASSES (File Package Command) 14-4
ClassIV inspector 18-9
ClassName (Function) 2-18; 3-17
ClassName (Method of Object) 2-18
ClassNameOfMethodOwner (Macro) 6-10
CLEANUP file (Browser Menu Option) 10-30
CleanUp File (Submenu Option) 10-5
Clear (Method of Window) 19-4
ClearAllCaches (Function) 15-3; 20-3
ClearAllCaches (Variable) 20-3
ClearLabelCache (Method of LatticeBrowser) 10-

40
ClearMenuCache (Method of Window) 19-15
ClearPromptWindow (Method of Window) 19-10
Close (Method of Window) 19-4
ClosePromptWindow (Method of Window) 19-10
compact accessing forms 5-10
ConformToClass (Method of Object) 2-12
Copy (Method of Class) 3-23
Copy (CopyMethodTo) (Browser Menu Option) 10-

23,32
CopyActiveValue (Method of ActiveValue) 8-22
CopyActiveValue (Specialization of ActiveValue) 8-

16
CopyCV (Method of Class) 3-23
CopyCVTo (Browser Submenu Option) 10-23
CopyDeep (Method of Object) 2-19
copying

class 3-23
instance 2-19

CopyIV (Method of Class) 3-24
CopyIVTo (Browser Submenu Option) 10-23
CopyMethodTo (Browser Submenu Option) 10-23
CopyShallow (Method of Object) 2-20
create annotatedValue (Macro) 8-25
CreateClass (Method of Metaclass) 3-3
CreateWindow (Method of NonRectangular Window)

19-19
CreateWindow (Method of Window) 19-22
creating

active value 8-23
class 3-1
instance 2-4
method 6-4
record 18-17

CursorInside? (Method of Window) 19-4
CV, see class variable
CVDoc (Browser Submenu Option) 10-14
CVMissing (Method of Class) 11-2
CVValueMissing (Method of Class) 11-3

D
data type predicate 9-1
DefaultActiveValueClassName (Variable) 17-12
DEFCLASS (NLambda NoSpread Function) 14-4
DEFCLASSES (NLambda NoSpread Function) 14-

4
DefineClass (Function) 3-2
DefineMethod (Function) 6-5
defining a metaclass 4-5
DEFINST (NLambda NoSpread Function) 14-6
DEFINSTANCES (NLambda NoSpread Function)

14-6
Delete (Inspector Submenu Option) 18-4,10
Delete (Method of Class) 3-12
Delete (DeleteMethod) (Browser Menu Option) 10-

21,32
DeleteActiveValue (Method of ActiveValue) 8-18
DeleteCIV (Function) 3-15
DeleteClass (Browser Submenu Option) 10-22
DeleteClassProp (Function) 3-13
DeleteCV (Browser Submenu Option) 10-21
DeleteCV (Function) 3-14
DeleteFromBrowser (Browser Menu Option) 10-

16,31
DeleteFromBrowser (Browser Submenu Option)

10-16
DeleteFromBrowser (Method of LatticeBrowser)

10-40
DeleteIV (Browser Submenu Option) 10-21
DeleteIV (Function) 2-11
DeleteIV (Method of Object) 2-12
DeleteMethod (Browser Submenu Option) 10-22
DeleteMethod (Function) 6-5
DeleteSubtreeFromBrowser (Browser Submenu

Option) 10-16
DeleteSubtreeFromBrowser (Method of

LatticeBrowser) 10-40
deleting an active value 8-17
DelFromFile (Method of Object) 14-9
Destroy (Method of Class) 3-5
Destroy (Method of Object) 2-15
Destroy (Method of Window) 19-4
Destroy! (Method of Class) 3-6
Destroy! (Method of Object) 2-15
DestroyClass (Method of Class) 3-6
destroying

class 3-5
instance 2-15
method 6-4

DestroyInstance (Method of Class) 2-15
DetachLispWindow (Method of Window) 19-22
Doc (ClassDoc) (Browser Menu Option) 10-13,30
DoFringeMethods (Function) 6-7
DoMethod (Function) 6-7
DontSave (Instance Variable Property Name) 14-10
dynamic mixin 3-4

E
Edit (Browser Submenu Option) 10-27
Edit (Inspector Menu Option) 18-4,8
Edit (Method of Class) 3-10; 13-1

I N D E X - 3LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

Edit (Method of Object) 13-5
Edit (EditClass) (Browser Menu Option) 10-24,32
Edit FileComs (Browser Menu Option) 10-28
Edit Filecoms (Submenu Option) 10-5
Edit Functions (Browser Submenu Option) 10-29
Edit! (Method of Class) 13-3
EditCategory (Browser Submenu Option) 10-19
EditClass (Browser Submenu Option) 10-24
EditClass! (Browser Submenu Option) 10-24
EditComs (Browser Submenu Option) 10-29
EditFns (Browser Submenu Option) 10-29
EditIcon (Method of NonRectangular Window) 19-

19
editing 13-1

a class 13-1
class 3-10
description of window 13-2
method 6-4

EditInstances (Browser Submenu Option) 10-29
EditMacros (Browser Submenu Option) 10-29
EditMask (Method of NonRectangular Window) 19-

20
EditMethod (Browser Submenu Option) 10-18
EditMethod (Method of Class) 6-5
EditMethod! (Browser Submenu Option) 10-18
EditMethodObject (Browser Submenu Option) 10-

18
EditRecords (Browser Submenu Option) 10-29
EditVars (Browser Submenu Option) 10-29
enumerating instances of a class 3-24
error handling 11-1
error message 11-5
ErrorOnNameConflict (Variable) 2-4; 11-2
escaping from message syntax 6-6
ExplicitFnActiveValue (Class) 8-8

F
fetch annotatedValue of (Macro) 8-25
FetchMethod (Method of Class) 7-5
file

storing 14-10
file browser 10-2

menu interface 10-24
file manager 1-11; 14-1

commands 14-3
FileBrowse (Function) 10-7
FileIn (Method of Class) 14-6
FileOut (Method of Class) 17-4
FileOut (Method of Object) 14-11; 17-8
FILES? (Function) 14-7
FirstFetchAV (Class) 8-12
FlashNode (Method of LatticeBrowser) 10-41
FlipNode (Method of LatticeBrowser) 10-41
Fringe (Method of Class) 3-27
function calling 3-2

G
garbage collection 15-1
Get (Method of Object) 5-6
GetClass (Function) 5-14
GetClassHere (Function) 5-16
GetClassIV (Function) 5-20
GetClassIVHere (Function) 5-20
GetClassOnly (Function) 5-15
GetClassProp (Method of Class) 3-18
GetClassValue (Function) 5-8,16
GetClassValueOnly (Function) 5-9,18; 8-22

GetCVHere (Function) 5-18
GetDisplayLabel (Method of LatticeBrowser) 10-41
GetIt (Function) 5-1
GetItHere (Function) 5-3
GetItOnly (Function) 5-2
GetIVHere (Function) 5-10
GetLabel (Method of LatticeBrowser) 10-41
GetLispClass (Function) 4-3
GetObjectNames (Function) 2-4
GetObjFromUID (Function) 17-15
GetPromptWindow (Method of Window) 19-10
GetProp (Method of Window) 19-5
GetSubs (Method of InstanceBrowser) 10-50
GetSubs (Method of LatticeBrowser) 10-42
GettingWrappedValue (Message) 1-9
GetValue (Function) 4-3; 5-6
GetValue (Macro) 15-2
GetValueOnly (Function) 5-7; 8-22
GetWrappedValue (Method of ActiveValue) 8-20
GetWrappedValue (Method of LispWindowAV) 19-

23
GetWrappedValue (Specialization of ActiveValue)

8-16
GetWrappedValueOnly (Method of ActiveValue) 8-

20
global cache 15-2,3
Grapher 1-11; 10-1,33
GraphFits (Method of LatticeBrowser) 10-42

H
Hardcopy (Method of Window) 19-5
Hardcopy file (Browser Submenu Option) 10-30
HardcopyToFile (Method of Window) 19-5
HardcopyToPrinter (Method of Window) 19-5
HasAttribute (Method of Class) 3-18
HasAttribute! (Method of Class) 3-19
HasCV (Method of Class) 3-19
HasCV (Method of Object) 2-21
HasItem (Method of Class) 3-20
HasIV (Method of Class) 3-21
HasIV (Method of Object) 2-21
HasIV! (Method of Class) 3-21
HasLispWindow (Method of Window) 19-23
HasObject (Method of LatticeBrowser) 10-42
HasUID? (Function) 17-14
HELPCHECK (Function) 11-1
HighlightNode (Method of LatticeBrowser) 10-42

I
IconTitle (Method of LatticeBrowser) 10-43
IconWindow (Class) 19-20
ImplementsMethod (Browser Submenu Option)

10-28
in-supers-of (Iterative Statement Operator) 9-3
IndexedObject (Class) 3-25
IndirectVariable (Class) 8-3
inheritance 1-6; 3-7,27
InheritedValue (Method of InheritingAV) 8-14
InheritingAV (Class) 8-14
InPlace (Browser Submenu Option) 10-8
Inspect (Inspector Menu Option) 18-7,10
Inspect (Method of Object) 2-22; 18-2
InspectClass (Browser Submenu Option) 10-24
InspectFetch (Method of Object) 18-12
inspector 1-10; 18-1

customizing 18-15
InspectPropCommand (Method of Object) 18-13

I N D E X - 4 LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

InspectProperties (Method of Object) 18-13
InspectStore (Method of Object) 18-13
InspectTitle (Method of Object) 18-14
InspectValueCommand (Method of Object) 18-14
InstallEditSource (Method of Class) 13-3
InstallEditSource (Method of Object) 13-6
instance 1-4

accessing data in 5-4
copying 2-19
creating 2-4
data storage at creation time 2-8
destroying 2-15
editing 13-5
naming 2-1
querying structure 2-21

instance browser 10-3,50
instance inspector 18-2
instance variable 1-4; 5-5

access 15-1
accessing 5-19
changing number of 2-10
delimiters 2-11
for class InstanceBrowser 10-50
for class LatticeBrowser 10-33

Instance? (Macro) 9-2
INSTANCES (File Package Command) 14-5
InstOf (Method of Object) 2-18
InstOf! (Method of Object) 2-19
Internal (Category) 6-1
Invert (Method of NonRectangular Window) 19-20
Invert (Method of Window) 19-5
ItemMenu (Method of Window) 19-15
iterative operator 9-3
IV, see instance variable
IVDoc (Browser Submenu Option) 10-14
IVMissing (Method of Object) 2-12; 11-3
IVs (Inspector Menu Option) 18-4,10
IVValueMissing (Method of Object) 2-8; 11-4

L
lattice 1-1
lattice browser 10-2
Lattice/Tree (Browser Submenu Option) 10-9
left column menu

class inspector 18-8
ClassIV inspector 18-10
instance inspector 18-4

left menu
class, meta, and supers browsers 10-11
file browser 10-30
instance browser 10-51

LeftSelection (Method of LatticeBrowser) 10-43
LeftSelection (Method of Window) 19-16
LeftShiftSelect (Method of LatticeBrowser) 10-43
Lisp window 19-22
LispClassTable (Global Variable) 4-4
LispUserFilesForLoops (Variable) 20-2
LispWindowAV (Class) 8-10
ListAttribute (Method of Class) 3-21
ListAttribute (Method of Object) 2-22
ListAttribute! (Method of Class) 3-22
ListAttribute! (Method of Object) 2-23
LOAD (Function) 14-2
Load PROP file (Browser Submenu Option) 10-30
LOADFNS (Function) 14-3
loading a file 14-2
LoadLoopsForms (Variable) 20-2
Local (Inspector Menu Option) 18-8

local cache 15-2,3
LocalStateActiveValue (Class) 8-6
LocalValues (Inspector Menu Option) 18-4,10
LOOPS icon 10-4
Loops Icon (Menu Option) 10-3
LoopsDate (Variable) 20-2
LoopsDebugFlg (Variable) 11-2
LOOPSDIRECTORY (Variable) 20-2
LOOPSFILES (Variable) 20-2
LoopsHelp (NoSpread Function) 11-2
LoopsIcon (Class) 19-21
LOOPSLIBRARYDIRECTORY (Variable) 20-2
LoopsPatchFiles (Variable) 20-2
LOOPSUSERSDIRECTORY (Variable) 20-2
LOOPSUSERSRULESDIRECTORY (Variable) 20-2
LoopsVersion (Variable) 20-1

M
MakeEditSource (Method of Class) 13-4
MakeEditSource (Method of Object) 13-5
MAKEFILE (Function) 14-11
MakeFileSource (Method of Object) 14-11
MakeFullEditSource (Method of Class) 13-4
MakeFunctionMenu (Browser Submenu Option)

10-29
manipulating

a file 14-1
a class 2-16; 3-16

MapObjectUID (Function) 17-15
Masterscope 1-10
Masterscope (Category) 6-2
MaxLatticeHeight (Variable) 10-48
MaxLatticeWidth (Variable) 10-48
menu 19-14

caching 19-18
item structure 19-17

message 1-3
message sending 3-2
message sending form 7-1; 18-16
message syntax, escaping from 6-6
MessageNotUnderstood (Method of

AnnotatedValue) 8-26
MessageNotUnderstood (Method of Object) 11-5
MessageNotUnderstood (Method of Tofu) 4-7
metaclass 1-6; 5-13

AbstractClass 4-2
Class 4-1
defining 4-5
DestroyedClass 4-2
MetaClass 4-2

metaclass browser 10-2
menu interface 10-8

METH (NLambda NoSpread Function) 14-5
method 1-3; 6-1

creating 6-4
destroying 6-4
editing 6-4
for class InstanceBrowser 10-50
for window 19-2
printing 17-12

method (Definer)
structure 6-3

method lookup 15-3
MethodDoc (Browser Submenu Option) 10-14
MethodDoc (Method of Class) 17-13
MethodMenu (Browser Submenu Option) 10-19
MethodNotFound (Method of Tofu) 4-7
METHODS (File Package Command) 14-5

I N D E X - 5LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

Methods (EditMethod) (Browser Menu Option) 10-
18,32

MethodSummary (Browser Submenu Option) 10-
13

MethodSummary (Method of Class) 17-13
middle menu

class, meta, and supers browsers 10-17
file browser 10-31
instance browser 10-52

MiddleSelection (Method of Window) 19-16
MiddleShiftSelect (Method of LatticeBrowser) 10-

44
modifying a class 3-11
MousePackage (Method) 19-6
MouseReadtable (Method) 19-6
Move (Method of Window) 19-5
Move (MoveMethodTo) (Browser Menu Option)

10-22,32
MoveClassVariable (Function) 2-14
MoveCVTo (Browser Submenu Option) 10-22
MoveIVTo (Browser Submenu Option) 10-22
MoveMethod (Function) 6-8
MoveMethod (Method of Class) 6-9
MoveMethodsToFile (Function) 6-9
MoveMethodTo (Browser Submenu Option) 10-22
MoveSuperTo (Browser Submenu Option) 10-22
MoveToFile (Browser Submenu Option) 10-22
MoveToFile (Method of Class) 14-9
MoveToFile! (Browser Submenu Option) 10-22
MoveToFile! (Method of Class) 14-9
MoveVariable (Function) 2-14
moving a variable 2-13
multiple references of objects 15-1

N
naming an instance 2-1
naming an object, errors 11-8
NestedNotSetValue (Class) 8-16
New (Method of Class) 2-5
New (Method of Metaclass) 3-3; 4-5
NewClass (Method of Class) 3-3
NewInstance (Browser Submenu Option) 10-21,32
NewInstance (Method of Object) 2-6
NewItem (Method of LatticeBrowser) 10-44
NewPath (Method of InstanceBrowser) 10-51
NewWithValues (Method of Class) 2-7
NiceMenu (Function) 19-13
NodeRegion (Method of LatticeBrowser) 10-45
NonRectangularWindow (Class) 19-19
NotSetValue (Class) 8-15
NotSetValue (Macro) 2-9
NoUpdatePermittedAV (Class) 8-9
NoValueFound (Macro) 2-24
NoValueFound (Variable) 2-24

O
object 1-2

multiple references 15-1
printing 17-8
saving on a file 14-6
storing data in 1-4

Object (Category) 6-1
object-oriented programming 1-1,3
Object? (Macro) 9-1
ObjectAlwaysPPFlag (Variable) 17-3
ObjectDontPPFlag (Variable) 17-3

ObjectFromLabel (Method of LatticeBrowser) 10-
45

ObjectModified (Method of Object) 14-8
OldInstance (Method of Object) 14-10
OnFile (Method of Class) 14-8
Open (Method of Window) 19-6
opening a browser 10-3
OptionalLispuserFiles (Variable) 9-2
OverridesMethod (Browser Submenu Option) 10-

28

P
Paint (Method of Window) 19-6
PositionNode (Method of LatticeBrowser) 10-45
PP (Browser Submenu Option) 10-12
PP (Method of Class) 17-5
PP (Method of Object) 17-9
PP! (Browser Submenu Option) 10-12
PP! (Method of Class) 17-6
PP! (Method of Object) 17-9
PPDefault (Variable) 17-12
PPMethod (Browser Submenu Option) 10-13
PPMethod (Method of Class) 17-12
PPV! (Browser Submenu Option) 10-12
PPV! (Method of Class) 17-7
PPV! (Method of Object) 17-10
PrettyPrintClass (Function) 14-11
PrettyPrintInstance (Function) 14-11
PrintCategories (Browser Submenu Option) 10-12
printing 17-1

variables affecting 17-2
PrintOn (Method of IndexedObject) 3-25
PrintOn (Method of Object) 17-8
PrintSummary (Browser Menu Option) 10-12,30
PrintSummary (Browser Submenu Option) 10-13
procedure-oriented programming 1-1,2,3
programming paradigms 1-1
prompt window 19-9
PromptEval (Function) 19-11
PromptForList (Method of Window) 19-11
PromptForString (Method of Window) 19-12
PromptForWord (Method of Window) 19-12
PromptPrint (Method of Window) 19-13
PromptRead (Function) 19-13
Properties (Inspector Menu Option) 18-5,11
Prototype (Method of Class) 3-26
pseudoclass 8-24
pseudoclasses 4-2
pseudoinstances 4-2; 8-24
Public (Category) 6-1
Put (Method of Object) 5-7
PutClass (Function) 5-14
PutClassIV (Function) 5-21
PutClassOnly (Function) 5-15
PutClassValue (Function) 5-8,17
PutClassValueOnly (Function) 5-9,18; 8-22
PutCVHere (Function) 5-19
PutIt (Function) 5-3
PutItOnly (Function) 5-4
PutSavedValue (Function) 19-21
PuttingWrappedValue (Message) 1-9
PutValue (Function) 4-3; 5-6
PutValue (Inspector Menu Option) 18-5
PutValue (Macro) 15-2
PutValueOnly (Function) 5-7; 8-22
PutValueOnly (Inspector Submenu Option) 18-5
PutWrappedValue (Method of ActiveValue) 8-21

I N D E X - 6 LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

PutWrappedValue (Method of LispWindowAV) 19-
23

PutWrappedValue (Specialization of ActiveValue)
8-16

PutWrappedValueOnly (Method of ActiveValue) 8-
21

Q
querying

structure of a class 3-17
structure of an instance 2-21

R
reading 17-1
Recompute (Browser Menu Option) 10-8,25
Recompute (Browser Submenu Option) 10-8
Recompute (Method of LatticeBrowser) 10-46
RecomputeInPlace (Method of LatticeBrowser) 10-

46
RecomputeLabels (Browser Submenu Option) 10-

8
RecomputeLabels (Method of LatticeBrowser) 10-

46
record

creating 18-17
Refetch (Inspector Menu Option) 18-4,8,10
RemoveFromBadList (Browser Submenu Option)

10-10
RemoveHighlights (Method of LatticeBrowser) 10-

46
RemoveShading (Method of LatticeBrowser) 10-47
Rename (Method of Class) 3-16
Rename (Method of Object) 2-3
Rename (RenameMethod) (Browser Menu Option)

10-23,32
RenameClass (Browser Submenu Option) 10-23
RenameCV (Browser Submenu Option) 10-23
RenameIV (Browser Submenu Option) 10-23
RenameMethod (Browser Submenu Option) 10-23
RenameMethod (Function) 6-8
RenameVariable (Function) 2-14
replace annotatedValue of (Macro) 8-25
ReplaceActiveValue (Method of ActiveValue) 8-19
ReplaceMeAV (Class) 8-15
ReplaceSupers (Method of Class) 3-15
replacing an active value 5-17
RetireMethod (Browser Submenu Option) 10-23
right column menu

class inspector 18-8
ClassIV inspector 18-10
instance inspector 18-6

RightSelection (Method of Window) 19-16
rule-oriented programming 1-1

S
Save Value (Inspector Menu Option) 18-4,7,11
SavedValue (Function) 19-21
SaveInIT (Method of LatticeBrowser) 10-47
SaveInstance (Method of Object) 14-8
SaveInstance? (Method of Object) 14-9
SaveValue (Browser Submenu Option) 10-8
saving

an object on a file 14-6
ScrollWindow (Method of Window) 19-7
SEdit 1-10
Select file (Browser Submenu Option) 10-26
selectedFile (Browser Submenu Option) 10-25

SelectFile (Lambda NoSpread Function) 19-14
selector 1-3
SelectorOfMethodBeingCompiled (Macro) 6-10
SelectorsWithBreak (Method of Class) 12-3
SEND (Function) 7-2
SEND (Macro) 7-2
sending

a message, errors 11-7
SendsMessage (Browser Submenu Option) 10-28
SetName (Method of Class) 3-16
SetName (Method of Object) 2-2
SetProp (Method of Window) 19-7
ShadeNode (Method of LatticeBrowser) 10-47
Shape (Method of NonRectangular Window) 19-20
Shape (Method of Window) 19-7
Shape? (Method of Window) 19-8
ShapeToHold (Browser Submenu Option) 10-8
ShapeToHold (Method of LatticeBrowser) 10-48
Show (Method of LatticeBrowser) 10-48
Shrink (Method of LatticeBrowser) 10-48
Shrink (Method of Window) 19-8
Snap (Method of Window) 19-8
Specialize (Method of Class) 3-27
SpecializeClass (Browser Submenu Option) 10-21
SpecializedClass (Browser Submenu Option) 10-

32
SpecializeMethod (Browser Submenu Option) 10-

21
SpecializesMethod (Browser Submenu Option) 10-

28
stack method macros 6-10
storing

a file 14-10
data in objects 1-4

SubBrowser (Browser Menu Option) 10-16,31
SubBrowser (Method of LatticeBrowser) 10-49
subclass 1-6
Subclass (Method of Class) 3-28
SubClasses (Method of Class) 3-28
SubclassResponsibility (Macro) 6-6
Substitute (Browser Submenu Option) 10-27
SubsTree (Function) 3-29
superclass 1-7,8
SuperMethodNotFound (Method of Tofu) 4-7
supers browser 10-2

menu interface 10-8
system function 20-1
system variable 20-1

T
THESE-INSTANCES (File Package Command) 14-

5
title

class inspector 18-7
ClassIV inspector 18-9
instance inspector 18-2

title bar menu
class inspector 18-8
class, meta, and supers browsers 10-8
ClassIV inspector 18-9
file browser 10-25
instance browser 10-51
instance inspector 18-3

TitleCommand (Method of Object) 18-15
TitleSelection (Method of LatticeBrowser) 10-49
TitleSelection (Method of Window) 19-16
Tofu 4-6
tools 1-10

I N D E X - 7LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

ToTop (Method of Window) 19-8
Trace on Access (Inspector Submenu Option) 18-6
Trace on Put (Inspector Submenu Option) 18-6
TraceFunction (Browser Submenu Option) 10-29
TraceIt (Function) 12-6
TraceIt (Inspector Menu Option) 18-6
TraceIt (Method of Object) 12-5
TraceMethod (Browser Submenu Option) 10-20
TraceMethod (Method of Class) 12-2
TraceOnPut (Class) 8-10
TraceOnPutOrGet (Class) 8-10
tracing 12-1
type? annotatedValue (Macro) 8-25
TypeInName (Browser Menu Option) 10-16,31

U
UID, see Unique Identifier
UID (Function) 17-15
UnbreakFunction (Browser Submenu Option) 10-

29
UnBreakIt (Function) 12-6
UnBreakIt (Inspector Menu Option) 18-6
UnbreakMethod (Browser Submenu Option) 10-20
UnbreakMethod (Method of Class) 12-2
Understands (Method of Object) 9-3
UNDO (Program Assistant Command) 14-3
Unique Identifier 15-1; 17-14
UnmarkNodes (Method of LatticeBrowser) 10-49
UnSetName (Method of Class) 3-17
UnSetName (Method of Object) 2-3
Update (Method of Window) 19-9
UpdateClassBrowsers (Function) 10-52
UpdateClassBrowsers? (Variable) 10-52
Use saved value (Inspector Submenu Option) 18-5
user interface to inspector 18-2
Uses IV? (Browser Menu Option) 10-26
UsesCV (Browser Submenu Option) 10-28
UsesIV (Browser Menu Option) 10-33
UsesIV (Browser Submenu Option) 10-27
UsesLispVar (Browser Submenu Option) 10-28
UsesObject (Browser Submenu Option) 10-28

V
ValueFound (Macro) 2-25
variable 1-4

W
WhenMenuItemHeld (Method of Window) 19-17
WhereIs (Browser Menu Option) 10-14
WhereIs (Method of Object) 2-24
WhereIs (WhereIsMethod) (Browser Menu Option)

10-30
WhereIsCV (Browser Submenu Option) 10-15
WhereIsIV (Browser Submenu Option) 10-15
WhereIsMethod (Browser Submenu Option) 10-15
WhoHas (Function) 3-22
Window (Class) 19-1
WindowAfterMoveFn (Function) 19-9
WindowButtonEventFn (Function) 19-17
WindowRightButtonFn (Function) 19-17
WindowShapeFn (Function) 19-9
wrapped value 8-19
WrappingPrecedence (Method of ActiveValue) 8-

18
WrappingPrecedence (Specialization of

ActiveValue) 8-16

←
← (Function) 7-1
← (Macro) 7-1
←! (Function) 7-2
←! (Macro) 7-2
←@ (Macro) 5-12
←AV (Macro) 8-26
←IV (Macro) 7-2
←New (Macro) 2-6
←New (NLambda NoSpread Macro) 7-5
←Process (Macro) 16-1
←Process! (Macro) 16-2
←Proto (Macro) 7-3
←Super (Macro) 7-3
←Super (Function) 7-3
←Super? (Macro) 7-5
←SuperFringe (Macro) 7-5
←SuperFringe (Function) 7-5
←Try (Macro) 7-3

#
#, 18-1

$
$ (Macro) 2-2
$ (NLambda Function) 2-2; 17-1
$! (Function) 2-2
$! (Lambda Function) 17-2
$AV (NLambda NoSpread Function) 8-27
$C (NLambda Function) 17-2

*
any (Browser Submenu Option) 10-27
EditAll (Browser Submenu Option) 10-27; 27
FEATURES (Variable) 20-2
hiddenFile (Submenu Option) 10-5
loadFile (Submenu Option) 10-5
newFile (Submenu Option) 10-5
NewFunction (Browser Submenu Option) 10-29
other (Browser Submenu Option) 10-27
SubstituteAll (Browser Submenu Option) 10-27

:
:initForm (Property) 2-9

?
?= 18-16

@
@ (Macro) 5-10
@* (Macro) 5-12

I N D E X - 8 LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

INDEX

[This page intentionally left blank]

1XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

Writer’s Notes -- Production Details

This file includes notes on the production of Xerox LOOPS Reference Manual, Koto Release. This manual is
packaged with the Xerox LOOPS Release Notes and Xerox LOOPS Library Packages Manual to form one binder,
part number 3103310.

Writer: Rosie (Raven) Kontur

Printing Date: <DD> <MM> 1987

Files Needed

To edit or print the manual, make sure you have the following files loaded:

IMTOOLS
SKETCH
GRAPHER

Fonts Used

{ERIS}<LISP>FONTS>

Modern font
18-point bold
14-point bold
12-point bold
10-point regular
10-point italic
10-point bold

Terminal font
12-point bold
10-point regular
10-point bold

Printing Information

The manual was printed under a Lyric sysout on the Tsunami printer.

Artwork

• The art for the Beta Release was created in Pasadena, and is not in any files here.

• The file {ERIS}<Doc>LoopsBeta>BinderCover.tedit contains the cover page for the binder.

• The file {ERIS}<Doc>LoopsBeta>CommentForm.tedit contains the comment form for the entire documentation
set. The prepaid mailer (see department file) must be added to complete this form.

2 XEROX LOOPS REFERENCE MANUAL, KOTO RELEASE

WRITER’S NOTES

• The details for packaging are in the following files:
{ERIS}<Doc>loops>ProductionSpecs>configuration-request.tedit
{ERIS}<Doc>loops>ProductionSpecs>Packaging.tedit

CVs

IVs

LeftButtomItems

..

.
((Update &)&)

.

.

Window

width
height
menus

.

.

12
12
T
.
.

CVs

IVs

LeftButtomItems

..

.
((Boxnode &)&)

.

.

width
height

title

.

.

64
32

"Lattice Browser"
.
.

CVs

IVs

LeftButtomItems

..

. .
.

CVs

IVs

LeftButtomItems

..

.
((Recompute &)&)

.

.

InstanceBrowser

LatticeBrowser

ClassBrowser

((PrintSummary &)&)

title "Class Browser"
.
.

.

.

title "Instance Browser"
subIV NIL

. .

Replace this page with
Table of Contents

tab

Replace this page with
1. Introduction

tab

Replace this page with
2. Instances

tab

Replace this page with
3. Classes

tab

Replace this page with
4. Metaclasses

tab

Replace this page with
5. Accessing Data

tab

Replace this page with
6. Methods

tab

Replace this page with
7. Message Sending Forms

tab

Replace this page with
8. Active Values

tab

Replace this page with
9. Data Type Predicates

tab

Replace this page with
10. Browsers

tab

Replace this page with
11. Errors and Breaks

tab

Replace this page with
12. Breaking and Tracing

tab

Replace this page with
13. Editing

tab

Replace this page with
14. File Package

tab

Replace this page with
15. Performance Issues

tab

Replace this page with
16. Processes

tab

Replace this page with
17. Reading and Printing

tab

Replace this page with
18. User Input/Output Modules

tab

Replace this page with
19. Windows

tab

Replace this page with
20. System Variables and

Functions
tab

Replace this page with
A. Active Values in Buttress

LOOPS
tab

Replace this page with
Glossary

tab

Replace this page with
Index

tab

G L O S S A R Y - 1XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

GLOSSARY

abstract class A class which cannot be instantiated, for example, ActiveValue.

active value The mechanism that carries out access-oriented programming for variables in
Xerox LOOPS. Active values send messages as a side effect of having an
object’s variable referenced.

activeValue The previous implementation of the active value concept.

ActiveValue An abstract class that defines the general protocol followed by all active value
objects.

annotatedValue A special Interlisp-D data type that wraps each ActiveValue instance.

AnnotatedValue An abstract class that allows an annotatedValue to be treated as an object.

browser A window that allows you to examine and change items in a data structure.

class A description of one or more similar objects; that is, objects containing the
sames types of data fields and responding to the same messages.

class inheritance The means by which a class inherits variables, values, and methods from its
super class(es).

class lattice A network showing the inheritance relationship among classes.

class variable (CV) A variable that contains information shared by all instances of the class. A
class variable is typically used for information about a class taken as a whole.

inheritance The means by which you can organize information in objects, create objects
that are similar to other objects, and update objects in a simplified way.

Inspector A Xerox Lisp display program that has been modified to allow you to view
classes, objects, and active values.

instance An object described by a particular class. Every object within Xerox LOOPS is
an instance of exactly one class.

instance variable (IV) A variable that contains information specific to an instance.

instantiate To make a new instance of a class.

lattice An arrangement of nodes in a hierarchical network, which allows for multiple
parents of each node.

Masterscope A Xerox Lisp Library Module program analysis tool that has been modified to
allow analysis of Xerox LOOPS files.

message A command sent to an object that activates a method defined in the object’s
class. The object responds by computing a value that is returned to the
sender of the message.

metaclass Classes whose instances are classes or abstract classes.

method What an object applies to the arguments of a message it receives. This is
similar to a procedure in procedure-oriented programming, except that here,
you determine the message to send and the object receiving the message
determines the method to apply, instead of the calling routine determining
which procedure to apply.

G L O S S A R Y - 2 XEROX LOOPS REFERENCE MANUAL, LYRIC/MEDLEY RELEASE

GLOSSARY

mixin A class that is used in conjunction with another class to create a subclass.
Mixins never have instances, and hence have AbstractClass as their
metaclass.

object A data structure that contains data and a pointer to functionality that can
manipulate the data.

property list A place for storing additional information on classes, their variables, and their
methods.

selector Part of a message that is sent to an object. The object uses the selector to
determine which method is appropriate to apply to the message arguments.

self A method argument that represents the receiver of the message.

specialization The process of creating a subclass from a class, or the result of that process.

subclass A class that is a specialization of another class.

super class A class from which a given class inherits variables, values, and methods.

Tofu An acronym for Top of the universe, which is the highest class in the Xerox
LOOPS hierarchy.

Unique Identifier (UID) An alphanumeric identifier that Xerox LOOPS uses to store and retrieve
objects. Objects do not have UIDs unless they are named, are instances of
indexed objects, or are instances printed to a file.

wrap Objects have fields that can contain data. Some ActiveValue can be added
so this data is stored within it. When this occurs, the ActiveValue wraps the
data.

November, 1991

Venue LOOPS Release Notes

Address comments to:
Venue
User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

LOOPS RELEASE NOTES

November 1991

Copyright © 1988, 1991 by Venue.

All rights reserved.

LOOPS is a trademark of Venue.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Venue.
While every effort has been made to ensure the accuracy of this
document, Venue assumes no responsibility for any errors that
may appear.

Text was written and produced with Venue text formatting tools;
Xerox printers were used to produce text masters.

1LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

1. RELEASE OVERVIEW

LOOPS is a multiple-paradigm programming system designed to be used in a
variety of artificial intelligence applications. LOOPS requires the Medley
Release of Lisp.

1.1 System Configuration

You need the following minimum configuration to run Xerox LOOPS:

1186 Workstation 1108 Workstation

40 megabyte disk drive 40-42 megabyte disk drive

2 megabyte memory 2 megabyte memory

1.2 What’s Included in This Release

Xerox LOOPS includes the following items:

• Software on floppy disks.

See Chapter 2, Changes from Koto LOOPS, for how the Lyric/Medley
Release of LOOPS is different from the Koto Release.

• Documentation in binders.

See Chapter 3, Release Documentation, for details of release
documentation.

2 LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

1. RELEASE OVERVIEW

[This page intentionally left blank]

3LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

2. CHANGES FROM KOTO LOOPS

This chapter describes how the current release of LOOPS, Lyric/Medley
LOOPS, differs from the Koto Release. With the addition of a patch file, the
current Loops release will also run under the Medley release. The inclusion of
the patch file is automatically handled by the LOOPS installation process. To
convert Koto LOOPS files into Lyric/Medley LOOPS files, see the LOOPS
Users’ Modules CONVERT-LOOPS-FILES.

A number of significant fixes to both the documentation and software have
been made. In addition, LOOPS behaves differently due to new features of
Lisp found beginning with the Lyric release:

• LOOPS vs. Packages

Lyric has Common Lisp functionality, including packages and new case-
insensitive readtables. All LOOPS symbols are in the INTERLISP: or IL:
package, and LOOPS is case-sensitive, so it is much easier to type LOOPS
expressions into an Interlisp Exec (see the Lisp Release Notes, Lyric
Release, for more on different Exec types).

• Editing

Lyric has a new default structure editor, SEdit. DEdit is still available as a
Lyric Library Module, but most people find SEdit to be much faster and
easier to use. SEdit has no specific LOOPS support features yet, but the
features it has support LOOPS rather well. As an example, all Lyric
LOOPS development was done using SEdit. See the Lisp Release Notes,
Lyric and Medley Releases, for more information on SEdit.

• Source File Management

LOOPS source forms are no longer LAMBDATRAN forms; instead they use
the definer system which also handles Common Lisp forms in Lyric and
Medley (see the Common Lisp Implementation Notes for more on definers).
This has several consequences:

- The source file format for Lyric/Medley LOOPS is different. A conversion
utility is provided which takes Koto LOOPS source files and converts
them to Lyric/Medley LOOPS format. The converter will not work
correctly on source files from the prototype Buttress version of LOOPS.
These files must first be converted using Koto LOOPS.

- LOOPS source forms are no longer of filetype FNS; they are instead
METHOD-FNS.

- Comments may appear anywhere in a definer form, since the definer
system removes them before making the form executable. This also
means that various comments that the LOOPS system uses as help
information (doc properties and first comments in method code) now
need to be strings rather than comments, so the definer system will not
remove them. The conversion utility handles this for most important
comments; new code should use strings in these places.

- Method bodies can now be CL:LAMBDAs or IL:LAMBDAs, by using the
Method function and specifying a keyword when creating the method. A
LOOPS CL:LAMBDA method can have Common Lisp features like &rest
and :keywords.

4 LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

2. CHANGES FROM KOTO LOOPS

• Masterscope

Masterscope is now a LOOPS Library Module, to match Masterscope
becoming a Lisp Library Module in the Lyric release of XAIE, primarily
because Masterscope does not support Common Lisp yet. Masterscope
still supports LOOPS, however, and many bugs in that support from
Buttress and Koto LOOPS have been fixed.

When using LOOPS Masterscope, quote all Method Names that you use.
The Masterscope parser currently will not recognize Method Names unless
they are quoted.

• ICONW

ICONW is now a part of Lisp and no longer needs to be loaded to run
LOOPS.

• New Compiler

Lyric/Medley LOOPS uses the new Lyric compiler, which handles Common
Lisp. This has several consequences:

- _Super and the other similar functions are now lexically scoped; that is,
it is now illegal to call _Super anywhere but within a method body, and
any selector given must be the same as the selector for that method.

- Files compiled by the new compiler have no FILECOMS. Use

(LOADFROM <FILE> NIL ’ALLPROP)

to load Source files so that LOOPS browsers can find them.

- The .DFASL output of the new compiler loads much faster than .DCOMs
or the .LCOMs of Lyric.

The ByteCompiler is no longer supported for compilation of LOOPS files.
With the new compiler and its macrolet facilities, a cleanup of LOOPS files
requires that *DEFAULT-CLEANUP-COMPILER* be set to ’CL:COMPILE-
FILE. The Lisp Release Notes, Lyric Release, contain more information on
the new compiler and the cleanup flag. The ByteCompiler is no longer
supported for compilation of LOOPS files.

• LOOPS Library Modules

SSDigimeter will be removed from Gauges in the next release of LOOPS.
DigiMeters are inherently self scaling because Meters are. Therefore,
SSDigiMeter is redundant . Note that SSDigiMeters are also generally
slower than DigiMeters.

5LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

2. CHANGES FROM KOTO LOOPS

[This page intentionally left blank]

vLOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

PREFACE

Overview of the Manual

These Release Notes describe the Lyric/Medley Release of software for
Xerox’s Lisp Object-Oriented Programming System, LOOPS (TM). This
document is directed to the people responsible for installing and testing
LOOPS.

This manual describes the Lyric/Medley Release of LOOPS, which runs under
the Lyric and Medley (with a small patch) Releases of Lisp.

Organization of the Manual and How to Use It

These Release Notes contain important information about the Lyric/Medley
Release of LOOPS. The following chapters outline the major features of
LOOPS, and highlight the principal differences between this and previous
versions of LOOPS.

All readers should carefully read Chapter 1, Release Overview, Chapter 5,
Reporting Procedure, and Chapter 6, Known Problems. Reading Chapter 2,
Changes from Koto LOOPS, and Chapter 3, Release Documentation, is
recommended for all readers. People responsible for installing LOOPS should
read Chapter 4, Installation Procedures.

Conventions

These Release Notes use the following conventions:

• Case is significant in LOOPS and Lisp. All selectors, methods, arguments,
etc., must be typed as shown.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a method appears as follows:

(← self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89←(←LOGIN)

v i LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

PREFACE

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all LOOPS expressions.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

References

The following books and manuals augment this manual.

LOOPS Reference Manual

LOOPS Library Modules Manual

LOOPS Users’ Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Common Lisp Implementation Notes, Lyric Release

Lisp Release Notes, Lyric and Medley Releases

Lisp Library Modules Manual, Lyric and Medley Release s

Lyric/Medley Release
July 1988

XEROX LOOPS
RELEASE NOTES

XEROX

XEROX LOOPS RELEASE NOTES

Lyric/Medley Release

July 1988

Copyright © 1988 by Xerox Corporation.

Xerox LOOPS is a trademark.

All rights reserved.

i i iXEROX LOOPS RELEASE NOTES, LYRIC /MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE v

1. RELEASE OVERVIEW 1

1.1 System Configuration 1

1.2 What’s Included in This Release 1

2. CHANGES FROM KOTO LOOPS 3

3. RELEASE DOCUMENTATION 5

3.1 Xerox LOOPS Reference Manual 5

3.2 Xerox LOOPS Library Modules Manual 5

3.3 Xerox LOOPS Users’ Modules Manual 5

4. INSTALLATION PROCEDURES 7

4.1 Overview of the Distribution Kits 7

4.1.1 1186 Distribution Kit 7

4.1.2 1108 Distribution Kit 7

4.2 Preparation 8

4.3 Installation 8

5. REPORTING PROCEDURE 11

i v XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

6. KNOWN PROBLEMS 13

6.1 Installation 13

6.2 Instances 14

6.3 Classes 14

6.4 MetaClasses 14

6.5 Active Values 14

6.6 Browsers 15

6.7 Breaking and Tracing 15

6.8 File Manager 16

6.9 Masterscope 16

6.10 Extensions to ?= 16

6.11 Windows 16

6.12 System Variables and Functions 17

6.13 Xerox LOOPS Library Modules 17

6.14 Conversion to Newer Releases 17

vXEROX LOOPS RELEASE NOTES, LYRIC /MEDLEY RELEASE

TABLE OF CONTENTS

[This page intentionally left blank]

vXEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

PREFACE

Overview of the Manual

These Release Notes describe the Lyric/Medley Release of software for
Xerox’s Lisp Object-Oriented Programming System, Xerox LOOPS (TM). This
document is directed to the people responsible for installing and testing Xerox
LOOPS.

This manual describes the Lyric/Medley Release of Xerox LOOPS, which
runs under the Lyric and Medley (with a small patch) Releases of Xerox Lisp.

Organization of the Manual and How to Use It

These Release Notes contain important information about the Lyric/Medley
Release of Xerox LOOPS. The following chapters outline the major features
of Xerox LOOPS, and highlight the principal differences between this and
previous versions of LOOPS.

All readers should carefully read Chapter 1, Release Overview, Chapter 5,
Reporting Procedure, and Chapter 6, Known Problems. Reading Chapter 2,
Changes form Koto LOOPS, and Chapter 3, Release Documentation, is
recommended for all readers. People responsible for installing Xerox LOOPS
should read Chapter 4, Installation Procedures.

Conventions

These Release Notes use the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods,
arguments, etc., must be typed as shown.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89_(_LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all Xerox LOOPS expressions.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

v i XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

PREFACE

References

The following books and manuals augment this manual.

Xerox LOOPS Reference Manual

Xerox LOOPS Library Modules Manual

Xerox LOOPS Users’ Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Xerox Common Lisp Implementation Notes, Lyric Release

Xerox Lisp Release Notes, Lyric and Medley Releases

Xerox Lisp Library Modules Manual, Lyric and Medley Release s

1XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

1. RELEASE OVERVIEW

Xerox LOOPS is a multiple-paradigm programming system designed to be
used in a variety of artificial intelligence applications. Xerox LOOPS runs on
the Xerox 1100 series of Artificial Intelligence Workstations and requires the
Lyric or Medley Release of Lisp running on the Xerox Artificial Intelligence
Environment (XAIE).

1.1 System Configuration

You need the following minimum configuration to run Xerox LOOPS:

1186 Workstation 1108 Workstation

40 megabyte disk drive 40-42 megabyte disk drive

2 megabyte memory 2 megabyte memory

1.2 What’s Included in This Release

Xerox LOOPS includes the following items:

• Software on floppy disks.

See Chapter 2, Changes from Koto LOOPS, for how the Lyric/Medley
Release of Xerox LOOPS is different from the Koto Release.

• Documentation in binders.

See Chapter 3, Release Documentation, for details of release
documentation.

2 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

1. RELEASE OVERVIEW

[This page intentionally left blank]

3XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

2. CHANGES FROM KOTO LOOPS

This chapter describes how the current release of Xerox LOOPS, Lyric/Medley
LOOPS, differs from the Koto Release. The current Xerox LOOPS release
runs under the Lyric release of Xerox Lisp. With the addition of a patch file,
the current Xerox Loops release will also run under the Xerox Lisp Medley
release. The inclusion of the patch file is automatically handled by the LOOPS
installation process. To convert Koto LOOPS files into Lyric/Medley LOOPS
files, see the Xerox LOOPS Users’ Modules CONVERT-LOOPS-FILES.

A number of significant fixes to both the documentation and software have
been made. In addition, Xerox LOOPS behaves differently due to new
features of Xerox Lisp found beginning with the Lyric release:

• Xerox LOOPS vs. Packages

Lyric has Common Lisp functionality, including packages and new case-
insensitive readtables. All Xerox LOOPS symbols are in the INTERLISP:
or IL: package, and Xerox LOOPS is case-sensitive, so it is much easier to
type Xerox LOOPS expressions into an Interlisp Exec (see the Xerox Lisp
Release Notes, Lyric Release, for more on different Exec types).

• Editing

Lyric has a new default structure editor, SEdit. DEdit is still available as a
Lyric Library Module, but most people find SEdit to be much faster and
easier to use. SEdit has no specific Xerox LOOPS support features yet, but
the features it has support Xerox LOOPS rather well. As an example, all
Lyric LOOPS development was done using SEdit. See the Xerox Lisp
Release Notes, Lyric and Medley Releases, for more information on SEdit.

• Source File Management

Xerox LOOPS source forms are no longer LAMBDATRAN forms; instead
they use the definer system which also handles Common Lisp forms in
Lyric and Medley (see the Xerox Common Lisp Implementation Notes for
more on definers). This has several consequences:

- The source file format for Lyric/Medley LOOPS is different. A conversion
utility is provided which takes Koto LOOPS source files and converts
them to Lyric/Medley LOOPS format. The converter will not work
correctly on source files from the prototype Buttress version of LOOPS.
These files must first be converted using Koto LOOPS.

- Xerox LOOPS source forms are no longer of filetype FNS; they are
instead METHOD-FNS.

- Comments may appear anywhere in a definer form, since the definer
system removes them before making the form executable. This also
means that various comments that the Xerox LOOPS system uses as
help information (doc properties and first comments in method code) now
need to be strings rather than comments, so the definer system will not
remove them. The conversion utility handles this for most important
comments; new code should use strings in these places.

- Method bodies can now be CL:LAMBDAs or IL:LAMBDAs, by using the
Method function and specifying a keyword when creating the method. A

4 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

2. CHANGES FROM KOTO LOOPS

Xerox LOOPS CL:LAMBDA method can have Common Lisp features like
&rest and :keywords.

• Masterscope

Masterscope is now a Xerox LOOPS Library Module, to match Masterscope
becoming a Xerox Lisp Library Module in the Lyric release of XAIE,
primarily because Masterscope does not support Common Lisp yet.
Masterscope still supports Xerox LOOPS, however, and many bugs in that
support from Buttress and Koto LOOPS have been fixed.

When using LOOPS Masterscope, quote all Method Names that you use.
The Masterscope parser currently will not recognize Method Names unless
they are quoted.

• ICONW

ICONW is now a part of Xerox Lisp and no longer needs to be loaded to run
LOOPS.

• New Compiler

Lyric/Medley LOOPS uses the new Lyric compiler, which handles Common
Lisp. This has several consequences:

- _Super and the other similar functions are now lexically scoped; that is,
it is now illegal to call _Super anywhere but within a method body, and
any selector given must be the same as the selector for that method.

- Files compiled by the new compiler have no FILECOMS. Use

(LOADFROM <FILE> NIL ’ALLPROP)

to load Source files so that Xerox LOOPS browsers can find them.

- The .DFASL output of the new compiler loads much faster than .DCOMs
or the .LCOMs of Lyric.

The ByteCompiler is no longer supported for compilation of LOOPS files.
With the new compiler and its macrolet facilities, a cleanup of LOOPS files
requires that *DEFAULT-CLEANUP-COMPILER* be set to ’CL:COMPILE-
FILE. The Xerox Lisp Release Notes, Lyric Release, contain more
information on the new compiler and the cleanup flag. The ByteCompiler is
no longer supported for compilation of LOOPS files.

• LOOPS Library Modules

SSDigimeter will be removed from Gauges in the next release of LOOPS.
DigiMeters are inherently self scaling because Meters are. Therefore,
SSDigiMeter is redundant . Note that SSDigiMeters are also generally
slower than DigiMeters.

5XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

2. CHANGES FROM KOTO LOOPS

[This page intentionally left blank]

5XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

3. RELEASE DOCUMENTATION

This chapter describes the documentation that is part of Xerox LOOPS.

3.1 Xerox LOOPS Reference Manual

This manual provides a detailed description of all the methods, functions,
classes, and other items available in Xerox LOOPS. This manual is for people
who are already familiar with Xerox LOOPS programming principles.

3.2 Xerox LOOPS Library Modules Manual

This manual describes the Xerox LOOPS Library Modules: Gauges,
Masterscope, and Virtual Copies. This manual is for people who want to use
the additional features that these Library Modules provide.

3.3 Xerox LOOPS Users’ Modules Manual

This manual describes the various Xerox LOOPS Users’ Modules. This
manual is for people who want to use the additional features that these Users’
Modules provide.

6 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

3. RELEASE DOCUMENTATION

[This page intentionally left blank]

7XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

4. INSTALLATION PROCEDURES

This chapter describes how to install the Xerox LOOPS program files, Library
Modules program files, and Users’ Modules program files on both the 1186
and 1108 workstations. The installation procedure for Xerox LOOPS is the
same for both the Lyric and Medley releases.

4.1 Overview of the Distribution Kits

The distribution kits for Xerox LOOPS are different for the 1186 and the 1108.

4.1.1 1186 Distribution Kit

The distribution kit for Xerox LOOPS on the 1186 consists of four 5-1/4"
diskettes:

• Lyric/Medley LOOPS System #1, which contains Xerox LOOPS program
files.

• Lyric/Medley LOOPS System #2, which contains Xerox LOOPS program
files.

• Lyric/Medley LOOPS Library, which contains the program files for the Xerox
LOOPS Library Modules.

• Lyric/Medley LOOPS Users, which contains the program files for Xerox
LOOPS Users’ Modules.

 4.1.2 1108 Distribution Kit

The distribution kit for Xerox LOOPS on the 1108 consists of three 8"
diskettes:

• Lyric/Medley LOOPS System, which contains Xerox LOOPS program files.

• Lyric/Medley LOOPS Library, which contains the program files for the Xerox
LOOPS Library Modules.

• Lyric/Medley LOOPS Users, which contains the program files for Xerox
LOOPS Users’ Modules.

8 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

4. INSTALLATION PROCEDURES

4.2 Preparation

Before installing Xerox LOOPS, make sure that you have performed the
following steps:

• Load the Lyric or Medley version of Xerox Lisp. Have your Lyric or Medley
Release Kit handy if you are not on a network, as you may need to load
parts of Lyric or Medley Xerox Lisp not previously loaded.

A standard partition of 8 MB is acceptable. A LOOPS sysout with an
average number of LISP Library and LOOPS Users’ Modules will require
about 11,000 pages or 5 MB.

• Boot Xerox Lisp

• Open an Interlisp Executive Window.

• Make certain the time is set.

Machines on a Xerox network automatically get the current time of day from
the net when they boot. If you are not on a network, make certain that the
function (DATE) returns the current date and time. If it does not, then use
the function (SETTIME) to correct it.

CAUTION

Rebooting a VMEM.PURE.STATE sysout without an Ethernet connection and
without the time being set will erroneously allow you to create objects without
informing you that the time is not set.

4.3 Installation

The Lyric/Medley LOOPS installation tool makes the installation of Xerox
LOOPS, its Library Modules, and Users’ Modules almost identical for 1186
and 1108 workstations. The differences are in the names of floppies. 1186
floppies are smaller, so there are more of them to hold the same data. The
installation tool will determine what workstation you are using and prompt you
with the appropriate floppy names.

1. Have your Lyric/Medley Release Kit handy, or, if you are connected to a
network, set the DIRECTORIES and DISPLAYFONTDIRECTORIES
variables appropriately so the sysout can find your Lyric library and font
files.

2. Make the floppy drive your connected directory:

CONN {FLOPPY}

DIR {FLOPPY}

3. If you are using an 1108 workstation, insert the floppy labeled Lyric LOOPS
System. If you are using an 1186 workstation, insert the floppy labeled
Lyric LOOPS System #1. Enter the following into your Exec:

LOAD(LOOPS)

9XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

4. INSTALLATION PROCEDURES

 A menu will appear that looks like this:

4. Select the menu option Install from floppies.

The following menu will appear:

This menu shows the current (or default, if unset) values of the variables
LOOPS examines when it loads things.

• If you want LOOPS installed on your local disk under
{DSK}<LISPFILES>LOOPS>, just select Click here when done.
LOOPS requires approximately 2200 pages on the local disk.

• If you want LOOPS installed somewhere else, select the directory names
using the left mouse button. Change the directory names by
backspacing over them and typing new locations; select Click here
when done when you are finished.

5. The installation tool prompts you for floppies with this menu:

 It copies the LOOPS files from the floppies to the directories you just
specified in the menu.

 When the installation tool asks you for a floppy, insert the floppy in the
drive, then select Click here when done.

 As the last installation step, the installation tool modifies the file LOOPS,
writes it out to LOOPSDIRECTORY, and compiles it.

When installation is finished, the first menu reappears:

6. Select the menu option Load into sysout to load LOOPS into your system.
The following menu appears:

7. Select LOOPS from the menu to load LOOPS from the location where you
installed it.

Once LOOPS is loaded the LOOPS System menu reappears. To load one
of the other LOOPS library or User modules, select the appropriate name in
the Load Which? menu.

1 0 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

4. INSTALLATION PROCEDURES

8. Position your mouse cursor anywhere on the screen except for the Load
Which? menu, then press the left mouse button to exit the installation
procedure.

To load LOOPS in the future, after the installation procedure is finished, load
the LOOPS.DFASL file which the installation procedure created:

(CNDIR LOOPS DIRECTORY)

(LOAD ’LOOPS.DFASL)

This will load the rest of LOOPS.

When you perform a CNDIR, LOOPS DIRECTORY in the example above is the
directory you defined in Step 4; e.g.,

(CNDIR ’{DSK}<LISPFILES>LOOPS>)

LISPUSERSDIRECTORIES should point to a directory containing
GRAPHER.LCOM, and DISPLAYFONTDIRECTORIES should point to a
directory containing the Helvetica display font files from your Lyric or Medley
XAIE distribution floppies.

CAUTION

LOOPS uses the new XAIE compiler and its macrolet facilities. When LOOPS
is loaded, it sets your *DEFAULT-CLEANUP-COMPILER* to ’CL:COMPILE-
FILE. More information on this cleanup flag and the new compiler is available
in the Xerox Lisp Release Notes, Lyric Release.

1 1XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

4. INSTALLATION PROCEDURES

[This page intentionally left blank]

1 1XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

5. REPORTING PROCEDURE

If you have problems with this release, file an Action Request (AR) Bug
Report.

1 2 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

5. REPORTING PROCEDURE

[This page intentionally left blank]

1 3XEROX LOOPS RELEASE NOTES, LYRIC / MEDLEY RELEASE

6. KNOWN PROBLEMS

This chapter is a compilation of known problems in the Lyric/Medley Release
of Xerox LOOPS. These problems are in the form of Action Requests (ARs)
from the Xerox AR data base, followed by a brief description.

The ARs are divided into the following categories:

• Installation

• Instances

• Classes

• MetaClasses

• Active values

• Browsers

• Breaking and tracing

• File Manager

• Masterscope

• Extensions to ?=

• Windows

• System Variables and Functions

• Xerox LOOPS Library Packages

• Conversion to newer releases

6.1 Installation

AR Description

10169 During the installation process, if fonts need to be loaded the
LOOPS installer will try to write them to the directory on the front
(CAR) of the list DISPLAYFONTDIRECTORIES.

Workaround: Be sure that this is a directory you can write to, e.g.
by pushing the name of a local directory onto the list like
"{dsk}<lispfiles>fonts>." Grapher is loaded into the current sysout
without being copied to a local directory; you may wish to do this
and put that directory on your DIRECTORIES list.

1 4 XEROX LOOPS RELEASE NOTES, LYRIC / MEDLEY RELEASE

6. KNOWN PROBLEMS

6.2 Instances

AR Description

9225 The implementation of multiple names for instances has NOT been
changed in the Lyric/Medley release of LOOPS. However, some
conditions which previously caused instances to appear twice on a
file have been fixed.

6.3 Classes

AR Description

8881 The Supers MACRO is not documented. It retrieves the supers of
the given class. It accepts a class object as an argument and
returns a list of class objects.

9134 Caution: ListAttribute (page 3-27) finds non-local IVPROPS on
classes.

9881 To use the method CVMissing, it is necessary to define a class
called MyClass which is a specialization of the class Class. Then
the CVMissing method is specialized at this level (in MyClass).
Finally, a class Foo is defined whose metaclass is MyClass. At
this point the expression

(GetClassValue (_ ($ Foo) New) ’NewCV)

can be evaluated and a new class variable will be created.

9884 To create a class / instance variable without a value the variable
should be set to the value of NotSetValue.

6.4 MetaClasses

AR Description

10049 A new low level accessor function has been defined for
programmers who wish to implement their own inheritance
schemes.

(FetchMethodLocally classobj selector)

If classobj has a method for selector returns its name, otherwise
NIL.

6.5 Active Values

AR Description

9158 If an IndirectVariable points at an ActiveValue in a remote object
then the remote active value’s Get or PutWrappedValue method is

1 5XEROX LOOPS RELEASE NOTES, LYRIC / MEDLEY RELEASE

6. KNOWN PROBLEMS

triggered with the containingObj argument holding the object
containing the IndirectVariable.

6.6 Browsers

AR Description

9244 The behavior of LatticeBrowser and ClassBrowser are different
for AddRoot.

Workaround: The example for AddRoot in section 10.5.3 should
be changed to:

The following creates an instance of LatticeBrowser and adds
Tofu as a root:

54_ (_ ($ LatticeBrowser) New ’LB1)
55_ (_ ($ LB1) AddRoot ’Tofu)

9851 Section 10.3.2.7 "Extending Functionality with the Left Mouse
Button:" should be modified as follows.

On the 1186 the COPY key is similar to SHIFT, the MOVE and
CTRL keys behave similarly, and META and SAME are similar as
well.

9859 The specialization of LatticeBrowser methods into ClassBrowser
methods is not enumerated. In section 10.5 "Programmer’s
Interface to Lattice Browsers," some methods are described which
take different arguments when invoked on Class Browsers, e.g.,
BoxNode sent to a ClassBrowser does not allow the
unboxPrevious flag.

10010 The documentation for NewItem in section 10.5.3 has the following
additional information:

Purpose: Gets an object, prompting the user if necessary.

Behavior: ...to be added. NewItem accepts only names and maps
them to objects using $!. If no name is entered at the prompt (by
pressing return), NewItem returns NIL.

10367 When specializing a method from the class browser, if there are no
methods to inherit, other than generic methods from Object, the
menu lists methods already defined in the current class. Be careful
about specializing methods defined directly under Object.

6.7 Breaking and Tracing

AR Description

10356 BT will not show the send frames for broken methods.

Workaround: You can do BT! and grab the method name from
the *APPLY* frame. Inspect the METHOD-FNS definition of it.

1 6 XEROX LOOPS RELEASE NOTES, LYRIC / MEDLEY RELEASE

6. KNOWN PROBLEMS

6.8 File Manager

AR Description

9159 Renaming a method does not smash the associated old symbol’s
function definition.

9166 Renaming a method does not remove the associated old method-
fns definition from the file manager’s change list.

10484 CLASS coms compiled by Lyric/Medley LOOPS are combined into
a single large form that is read all at once. This causes occasional
"Class x not defined, defining one now." messages to appear.
Aside from the inconvenience of not seeing the names of classes
during compilation, this should not cause problems.

6.9 MasterScope

AR Description

9911 When LOOPS MasterScope analyzes forms like

(LET* ((A B)
 (C (F A)))
--)

dwim asks about what it thinks is an unbound use of A. The
analysis is correct, however.

6.10 Extensions to ?=

AR Description

9828 ?= documentation for the ClassBrowser methods is not available.

6.11 Windows

AR Description

9243 PutSavedValue and SavedValue have not been removed from
this release of Xerox LOOPS. We no longer plan to remove them.

10040 There are two new methods on the Window class:

(_ window Open?)

returns non-NIL if window is a LOOPS Window and is open.

(_ window Shade shade)

shades a LOOPS Window if it’s open. The shade argument
defaults to the value of GRAYSHADE1.

1 7XEROX LOOPS RELEASE NOTES, LYRIC / MEDLEY RELEASE

6. KNOWN PROBLEMS

6.12 System Variables and Functions

AR Description

9222 The variable LispUserFilesForLoops actually names Lisp Library
modules.

6.13 Xerox LOOPS Library Modules

AR Description

9797 After VirtualCopyMixin classes are "destroyed," instances of them
can still be created without an error occurring.

9868 If a gauge is Attach’ed to one value, and then Attach’ed to another
value the title of the gauge will not change even though the gauge
will display the new value.

9871 Sending a Shape message to a Meter with the ExtraSpaceFlag
set to T has no effect.

6.14 Conversion to Newer Releases

AR Description

10404 There is currently no really convenient way of converting instance
files from Buttress into Koto and Lyric/Medley. However, one can
load LOOPSBACKWARDS, which modifies the OLD-INTERLISP-
FILE readtable to handle the older style instances. Then one can
read instances individually from the file and write them into a new
file. In the new file they will be correctly formatted in the new
manner.

1 8 XEROX LOOPS RELEASE NOTES, LYRIC / MEDLEY RELEASE

6. KNOWN PROBLEMS

[This page intentionally left blank]

I N D E X - 1XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

INDEX

A
Action Requests 13
active values, known problems with 14

B
breaking and tracing, known problems with 15
browsers, known problems with 15

C
classes, known problems with 14
conversion to newer releases, known problems with

17

D
distribution kits 7
documentation 5

E
Extensions to ?=, known problems with 16

F
file manager, known problems with 16

I
ICONW 4
installation

preparation 8
installation, known problems with 13
instances, known problems with 14
items in release 1

K
known problems 13

L
LOOPS Library Modules 4
Lyric compiler, new 4

M
Masterscope 4
 known problems with 16
Medley patch file 3
metaclasses, known problems with 14

P
Packages 3
problem reporting procedure 11

R
release documentation 5
reporting procedure 11

S
SEdit 3
source file management 3
system configuration 1
system variables and functions, known problems with

17

W
Windows, known problems with 16

X
Xerox LOOPS Library Modules, known problems with

17
Xerox LOOPS Reference Manual 5

1
1108 distribution kit 7
1186 distribution kit 7

I N D E X - 2 XEROX LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

INDEX

[This page intentionally left blank]

A - 1LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION
PROCEDURE

This appendix describes how to install the LOOPS System files, Library
Modules files, and Users’ Modules files on the Sun Workstation.

Overview of the Distribution Kit

The distribution kit for LOOPS on the Sun consists of a single 1⁄4-inch tape
cartridge. It contains the complete release in "tar" format and creates
appropriate directories when its contents are extracted.

Preparation

Preparing to install LOOPS requires that the Medley release of Lisp is already
installed and that adequate file space is available.

Before installing LOOPS, remember that

• the Medley 1.0-S release of Lisp must already be installed on your Sun
Workstation;

• the complete LOOPS distribution requires about 1.2 MBytes of file space.

Installation

The software installation procedure shows the steps required for installing the
Lyric/Medley LOOPS software on a Sun Workstation with Medley 1.0-S
already installed. Examples are given where appropriate. Only those users
who are system administrators and have root privileges can install the
LOOPS, Lyric/Medley release.

Before starting software installation, remember that the LOOPS software
requires about 1.2 MBytes of file space.

 1. Log in under your username.

login yourname

prompt%

where yourname is replaced by your username.

 2. Check for available space with the df command:

A - 2 LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

prompt% df

Filesystem kbytes used avail capacity Mounted on

/dev/xy0a 7437 5470 1223 82% /

/dev/xy0h 148455 4900 128709 96% /usr/misc

 3. Determine if you need to run su to make a directory for the distribution. If
so, type in su:

prompt% su

 4. Make a directory for the distribution. This directory should be named
/usr/local/lde/loops. If you have enough space on the file system
containing /usr/local/lde, then

prompt# mkdir /usr/local/lde/loops/

If you don’t have enough space on /usr/local/lde, go to step 6.

 5. Make yourself owner of this directory:

prompt# /etc/chown yourname /usr/local/lde/loops/

where yourname is your username.

 6. If you don’t have space on the file system which contains /usr/local/lde,
but do have space somewhere else, for instance on /usr1, then make the
directory there and link /usr/local/lde/loops to it:

prompt# mkdir /usr1/loops

prompt# /etc/chown yourname /usr/usr1/loops

prompt# ln -s /usr1/loops /usr/local/lde/loops

 7. If you ran su, leave the privileged shell by typing:

prompt% exit

 8. Insert the 1⁄4-inch cartridge tape, containing the LOOPS software, in the
drive.

 9. Connect to /usr/local/lde/loops:

prompt# cd /usr/local/lde/loops

10. Load the Medley software from tape. Indicate the appropriate device
abbreviation for your tape by replacing xx in the example below with

ar for the Archive drive,

st for a SCSI tape drive.

 This example shows the command entry sequence:

prompt# tar xvpf /dev/rxx0

As the software is loaded (a process that takes some time) the system
prints a series of lines in the following form:

x ./system/LOOPS., 28552 bytes, 56 tape blocks

The x at the beginning of the line indicates that the file is being extracted
from the tape.

A - 3LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

This creates directories named:

/usr/local/lde/loops/system/

/usr/local/lde/loops/library/

/usr/local/lde/loops/users/

This is a good time to set the protection of the extracted directories and
files so that the work group using LOOPS has at least read access to
them.

11. Boot Medley Lisp.

12. Open an Interlisp Executive Window.

13. Make certain the time is set correctly.

14. Set the DIRECTORIES and DISPLAYFONTDIRECTORIES variables
appropriately so the sysout can find your Lyric/Medley library and font
files.

15. Make the LOOPS System directory your connected directory:

CONN {DSK}/usr/local/lde/loops/system/

16. Enter the following into your Exec:

LOAD(LOOPS)

 A menu appears that looks like this:

17. Select the menu option Install from distribution.

The following menu appears:

This menu shows the current (or default, if unset) values of the variables
LOOPS examines when it loads things.

If you have installed LOOPS under /usr/local/lde/loops/ click the mouse on
the menu items to set these directories to point where the tape was
unloaded:

LOOPSDIRECTORY {dsk}/usr/local/lde/loops/system/
LOOPSLIBRARYDIRECTORY {dsk}/usr/local/lde/loops/library/
LOOPSUSERSDIRECTORY {dsk}/usr/local/lde/loops/users/
LOOPSUSERSRULESDIRECTORY {dsk}/usr/local/lde/loops/users/

As the last installation step, the installation tool automatically modifies the
file LOOPSSITE, writes it out to LOOPSDIRECTORY, and compiles it.

When this setp is finished, the first menu reappears:

A - 4 LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

18. Select the menu option Load into sysout to load LOOPS into your
system. The following menu appears:

19. Select LOOPS from the menu to load LOOPS from the location where
you installed it.

Once LOOPS is loaded the LOOPS System menu reappears. To load
one of the other LOOPS library or Users’ modules, select the appropriate
name in the Load Which? menu.

20. Position your mouse cursor anywhere on the screen except for the Load
Which? menu, then press the left mouse button to exit the installation
procedure.

Lyric/Medley LOOPS is now installed on your Sun Workstation.

Loading After Installation

This section describes how to reload LOOPS into a newly started Lisp sysout
after LOOPS has been previously installed.

 1. Start up Medley on your Sun Workstation.

 2. Open an INTERLISP Exec window.

 3. Make sure DIRECTORIES points to a directory containing
GRAPHER.LCOM, and DISPLAYFONTDIRECTORIES points to a
directory containing the Helvetica display font files from your Lisp
distribution kit.

 4. Connect to the directory containing the LOOPS system files:

(CNDIR ’{DSK}/USR/LOCAL/LDE/LOOPS/SYSTEM/)

 5. Load LOOPS loader program:

(FILESLOAD LOADLOOPS)

 6. Run the LOOPS loader program:

(LOADLOOPS)

This procedure loads only the LOOPS system files. Please see the manuals
describing the LOOPS Library and Users’ Modules for their loading
procedures.

CAUTION
LOOPS uses the new compiler and its macrolet facilities. When LOOPS is
loaded, it sets your *DEFAULT-CLEANUP-COMPILER* to ’CL:COMPILE-

A - 5LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

FILE. More information on this cleanup flag and the new compiler is available
in the Lisp Release Notes, in your Lyric or Medley Lisp kit.

A - 6 LOOPS RELEASE NOTES, LYRIC/MEDLEY RELEASE

APPENDIX A. SUN INSTALLATION PROCEDURE

[This page intentionally left blank]

DOCUMENT UPDATE SHEET

Document Name: LOOPS Manual

Document Number: 310000

DOC. RELEASE REPLACE INSERT INSTRUCTIONS/
VERSION DATE PAGES PAGES NOTES

Lyric/Medley Oct., 1988 NA NA Please read the Errata Sheet,
accompanying this release
material, for last minute
release notes.

Lyric/Medley Oct., 1988 NA NA The Lyric/Medley LOOPS
documentation contains
numerous references to
Xerox LOOPS. Xerox LOOPS
is now known as Envos

LOOPS.

Lyric/Medley Oct., 1988 NA A-1-A-4 Add Appendix A, Sun
Installation Procedure, to your
LOOPS Release Notes.

November, 1991

Venue LOOPS

Reference Manual
Library Modules Manual
Users’ Modules Manual

Address comments to:
Venue
User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

LOOPS

REFERENCE MANUAL
LIBRARY MODULES MANUAL
USERS’ MODULES MANUAL

November, 1991

Copyright © 1988, 1991 by Venue.

All rights reserved.

LOOPS and Medley are trademarks of Venue.

UNIX® is a registered trademark of UNIX System Laboratories.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Venue.
While every effort has been made to ensure the accuracy of this
document, Venue assumes no responsibility for any errors that
may appear.

Text was written and produced with Venue text formatting tools;
Xerox printers were used to produce text masters. The typeface is
Classic.

November 1991

Venue LOOPS Users’ Modules Manual

Address comments to:
Venue
User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

LOOPS USERS’ MODULES MANUAL

November, 1991

Copyright © 1988, 1991 by Venue.

All rights reserved.

LOOPS is a trademark of Venue.

Copyright protection includes material generated from the
software programs displayed on the screen, such as icons, screen
display looks, and the like.

The information in this document is subject to change without
notice and should not be construed as a commitment by Venue.
While every effort has been made to ensure the accuracy of this
document, Venue assumes no responsibility for any errors that
may appear.

Text was written and produced with Venue text formatting tools;
Xerox printers were used to produce text masters. The typeface is
Classic.

1 5

 RULES

1. INTRODUCTION TO RULE-ORIENTED
PROGRAMMING IN LOOPS

The core of decision-making expertise in many kinds of problem solving can be expressed succinctly in
terms of rules. The following sections describe facilities in LOOPS for representing rules, and for
organizing knowledge-based systems with rule-oriented programming. The LOOPS rule language
provides an experimental framework for developing knowledge-based systems. The rule language and
programming environment are integrated with the object-oriented, data-oriented, and procedure-
oriented parts of LOOPS.

Rules in LOOPS are organized into production systems (called RuleSets) with specified control
structures for selecting and executing the rules. The work space for RuleSets is an arbitrary LOOPS
object.

Decision knowledge can be factored from control knowledge to enhance the perspicuity of rules. The
rule language separates decision knowledge from meta-knowledge such as control information, rule
descriptions, debugging instructions, and audit trail descriptions. An audit trail records inferential
support in terms of the rules and data that were used. Such trails are important for knowledge-based
systems that must be able to account for their results. They are also essential for guiding belief
revision in programs that need to reason with incomplete information.

1.1 Introduction

Production rules have been used in expert systems to represent decision-making knowledge for many
kinds of problem-solving. Such rules (also called if-then rules) specify actions to be taken when certain
conditions are satisfied. Several rule languages have been developed in the past few years and used
for building expert systems. The following sections describe the concepts and facilities for rule-
oriented programming in LOOPS.

LOOPS has the following major features for rule-oriented programming:

(1) Rules in LOOPS are organized into ordered sets of rules (called RuleSets) with specified control
structures for selecting and executing the rules. Like subroutines, RuleSets are building blocks
for organizing programs hierarchically.

(2) The work space for rules in LOOPS is an arbitrary LOOPS object. The names of the instance
variables provide a name space for variables in the rules.

(3) Rule-oriented programming is integrated with object-oriented, data-oriented, and procedure-
oriented programming in LOOPS.

(4) RuleSets can be invoked in several ways: In the object-oriented paradigm, they can be invoked
as methods by sending messages to objects. In the data-oriented paradigm, they can be invoked

1 6

 RULES

as a side-effect of fetching or storing data in active values. They can also be invoked directly
from Lisp programs. This integration makes it convenient to use the other paradigms to organize
the interactions between RuleSets.

(5) RuleSets can also be invoked from rules either as predicates on the LHS of rules, or as actions
on the RHS of rules. This provides a way for RuleSets to control the execution of other RuleSets.

(6) Rules can automatically leave an audit trail. An audit trail is a record of inferential support in
terms of rules and data that were used. Such trails are important for programs that must be able
to account for their results. They can also be used to guide belief revision in programs that must
reason with incomplete information.

(7) Decision knowledge can be separated from control knowledge to enhance the perspicuity of
rules. The rule language separates decision knowledge from meta-knowledge such as control
information, rule descriptions, debugging instructions, and audit trail descriptions.

(8) The rule language provides a concise syntax for the most common operations.

(9) There is a fast and efficient compiler for translating RuleSets into Interlisp functions.

(10) LOOPS provides facilities for debugging rule-oriented programs.

The following sections are organized as follows: Section 1.2, "Basic Concepts," outlines the basic
concepts of rule-oriented programming in LOOPS. It contains many examples that illustrate
techniques of rule-oriented programming. Section 1.3, "Organizing a Rule-Oriented Program,"
describes the rule syntax, and the remaining sections in this chapter discuss the facilities for creating,
editing, and debugging RuleSets in LOOPS.

1.2 Basic Concepts

Rules express the conditional execution of actions. They are important in programming because they
can capture the core of decision-making for many kinds of problem-solving. Rule-oriented
programming in LOOPS is intended for applications to expert and knowledge-based systems.

The following sections outline some of the main concepts of rule-oriented programming. LOOPS
provides a special language for rules because of their central role, and because special facilities can
be associated with rules that are impractical for procedural programming languages. For example,
LOOPS can save specialized audit trails of rule execution. Audit trails are important in knowledge
systems that need to explain their conclusions in terms of the knowledge used in solving a problem.
This capability is essential in the development of large knowledge-intensive systems, where a long and
sustained effort is required to create and validate knowledge bases. Audit trails are also important for
programs that do non-monotonic reasoning. Such programs must work with incomplete information,
and must be able to revise their conclusions in response to new information.

1 7

 RULES

1.3 Organizing a Rule-Oriented Program

In any programming paradigm, it is important to have an organizational scheme for composing large
systems from smaller ones. Stated differently, it is important to have a method for partitioning large
programs into nearly-independent and manageably-sized pieces. In the procedure-oriented paradigm,
programs are decomposed into procedures. In the object-oriented paradigm, programs are
decomposed into objects. In the rule-oriented paradigm, programs are decomposed into RuleSets. A
LOOPS program that uses more than one programming paradigm is factored across several of these
dimensions.

There are three approaches to organizing the invocation of RuleSets in LOOPS:

Procedure-oriented Approach. This approach is analogous to the use of subroutines in procedure-
oriented programming. Programs are decomposed into RuleSets that call each other and return
values when they are finished. SubRuleSets can be invoked from multiple places. They are used to
simplify the expression in rules of complex predicates, generators, and actions.

Object-oriented Approach. In this approach, RuleSets are installed as methods for objects. They are
invoked as methods when messages are sent to the objects. The method RuleSets are viewed
analogously to other procedures that implement object message protocols. The value computed by
the RuleSet is returned as the value of the message sending operation.

Data-oriented Approach. In this approach, RuleSets are installed as access functions in active values.
A RuleSet in an active value is invoked when a program gets or puts a value in the LOOPS object. As
with active values with Lisp functions for the getFn or putFn, these RuleSet active values can be
triggered by any LOOPS program, whether rule-oriented or not.

These approaches for organizing RuleSets can be combined to control the interactions between bodies
of decision-making knowledge expressed in rules. For example, Figure 1 shows the RuleSet of
consumer instructions for testing a washing machine. The work space for the ruleSet is a LOOPS
object of the class WashingMachine. The control structure While1 loops through the rules trying an
escalating sequence of actions, starting again at the beginning of some rule is applied. Some rules,
called one-shot rules, are executed at most once. These rules are indicated by preceding them with a
one in braces ({1}).

1 8

 RULES

RuleSet Name: CheckWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: while1 ;
While Condition: ruleApplied;

(* What a consumer should do when a washing machine failes.)

 IF .Operational THEN (STOP T);

 IF load>1.0 THEN .ReduceLoad;

 If ~pluggedInTo THEN .PlugIn;

{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;

{1} IF pluggedInTo:voltage<110 THEN SPGE.Call;

{1} THEN dealer.RequestService;

{1} THEN manufacturer.Complain;

{1} THEN $ConsumerBoard.Complain;

{1} THEN (STOP T);

 Figure 1. Basic RuleSet

1.4 Control Structures for Selecting Rules

RuleSets in LOOPS consist of an ordered list of rules and a control structure. Together with the
contents of the rules and the data, a RuleSet control structure determines which rules are executed.
Execution is determined by the contents of rules in that the conditions of a rule must be satisfied for it
to be executed. Execution is also controlled by data in that different values in the data allow different
rules to be satisfied. Criteria for iteration and rule selection are specified by a RuleSet control
structure. There are two primitive control structures for RuleSets in LOOPS which operate as follows:

Do1 [RuleSet Control Structure]

The first rule in the RuleSet whose conditions are satisfied is
executed. The value of the RuleSet is the value of the rule. If no
rule is executed, the RuleSet returns NIL.

The Do1 control structure is useful for specifying a set of mutually
exclusive actions, since at most one rule in the RuleSet will be
executed for a given invocation. When a RuleSet contains rules for
specific and general situations, the specific rules should be placed
before the general rules.

1 9

 RULES

DoAll [RuleSet Control Structure]

Starting at the beginning of the RuleSet, every rule is executed
whose conditions are satisfied. The value of the RuleSet is the
value of the last rule executed. If no rule is executed, the RuleSet
returns NIL.

The DoAll control structure is useful when a variable number of
additive actions are to be carried out, depending on which
conditions are satisfied. In a single invocation of the RuleSet, all of
the applicable rules are invoked.

Figure 2 illustrates the use of a Do1 control structure to select one of three mutually exclusive actions.

RuleSet Name: SimulateWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: Do1 ;

(* Rules for controlling the wash cycle of a washing machine.)

 IF controlSetting = ’RegularFabric
 THEN .Fill .Wash .Pause .SpinAndDrain
 .SprayAndRinse .SpinAndDrain
 .Fill. DeepRinse .Pause .DampDry;

 IF controlSetting = ’PermanentPress
 THEN .Fill .Wash .Pause .SpinAndPartialDrain
 .FillCold .SpinAndPartialDrain
 .FillCold .Pause .SpinAndDrain
 .FillCold. DeepRinse .Pause .DampDry;

 IF controlSetting = ’DelicateFabric
 THEN .FillSoak1 .Agitate .Soak4 .Agitate
 .Soak1 .SpinAndDrain .SprayAndRinse
 .SpinAndDrain .Fill .DeepRinse .Pause .DampDry;

Figure 2. RuleSet showing Do1

There are two control structures in LOOPS that specify iteration in the execution of a RuleSet. These
control structures use an explicit while-condition associated with the RuleSet. They are direct
extensions of the two primitive control structures above.

While1 [RuleSet Control Structure]

This is a cyclic version of Do1. If the while-condition is satisfied,
the first rule is executed whose conditions are satisfied. This is
repeated as long as the while condition is satisfied or until a Stop
statement or transfer call is executed (see Section 2.14, "Stop
Statements"). The value of the RuleSet is the value of the last rule
that was executed, or NIL if no rule was executed.

2 0

 RULES

WhileAll [RuleSet Control Structure]

This is a cyclic version of DoAll. If the while-condition is satisfied,
every rule is executed whose conditions are satisfied. This is
repeated as long as the while condition is satisfied or until a Stop
statement is executed. The value of the RuleSet is the value of the
last rule that was executed, or NIL if no rule was executed.

The "while-condition" is specified in terms of the variables and constants accessible from the RuleSet.
The constant T can be used to specify a RuleSet that iterates forever (or until a Stop statement or
transfer is executed). The special variable ruleApplied is used to specify a RuleSet that continues as
long as some rule was executed in the last iteration. Figure 3 illustrates a simple use of the WhileAll
control structure to specify a sensing/acting feedback loop for controlling the filling of a washing
machine tub with water.

RuleSet Name: FillTub;
WorkSpace Class: WashingMachine;
Control Structure: WhileAll ;
Temp Vars: waterLimit;
WhileCond: T;

(* Rules for controlling the filling of a washing tub with
water.)

{1!} IF loadSetting = ’Small THEN waterLimit_10;
{1!} IF loadSetting = ’Meduim THEN waterLimit_13.5;
{1!} IF loadSetting = ’Large THEN waterLimit_17;
{1!} IF loadSetting = ’ExtraLarge THEN waterLimit_20;

(* Respond to a change of temperature setting at any time.)

 IF termperatureSetting = ’Hot
 THEN HotWaterValve.Open ColdWaterValve.Close;

 IF termperatureSetting = ’Warm
 THEN HotWaterValve.Open ColdWaterValve.Open;

 IF termperatureSetting = ’Cold
 THEN HotWaterValve.Close ColdWaterValve.Open;

(* Stop when the water reaches its limit.)

 IF waterLevelSensor.Test >= waterLimit
 THEN HotWaterValve.Close ColdWaterValve.Close
 (Stop T);

Figure 3. RuleSet with WhileAll

There are two control structures in LOOPS that specify iteration over a set of elements in the execution
of a RuleSet. These control structures use an explicit while-condition associated with the RuleSet.
They are direct extensions of the two primitive control structures above.

2 1

 RULES

FOR1 [RuleSet Control Structure]

This is a cyclic version of Do1. If the iteration-condition (or while-
condition) is satisfied, the first rule is executed whose conditions
are satisfied or until a Stop statement is executed. This is repeated
as long as the iteration condition is satisfied. The value of the
RuleSet is the value of the last rule that was executed, or NIL if no
rule was executed.

FORALL [RuleSet Control Structure]

This is a cyclic version of DoAll. If the iteration-condition is
satisfied, every rule is executed whose conditions are satisfied.
This is repeated as long as the iteration condition is satisfied or until
a Stop statement is executed. The value of the RuleSet is the
value of the last rule that was executed, or NIL if no rule was
executed.

The "iteration-condition" is specified in terms of the variables and constants accessible from the
RuleSet. The simplest condition is

(FOR <iterVar> IN <setExpr> DO ruleSet) ;

The setExpr will be parsed with the RuleSet parser. The symbol ruleSet is a reserved word, and must
be spelled as shown (no changes in capitalization).

Here is an example of iteration:

Control Structure: FORALL;
Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)) DO ruleSet) ;

For each buyer in the list produced by RoadStops, the ruleSet will be run. In a FOR1, the iteration will
go on to the next buyer as soon as one rule executes. In a FORALL, all rules in the RuleSet will be
tried.

For nested iteration one can use a slightly more complicated form, as illustrated by the following
example:

Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)) DO
(FOR seller in (RoadStops ($ Producer)) DO ruleSet)) ;

An experienced Lisp user can see that this resembles the CLISP iteration construct. In fact, except
that you can (must) use the RuleSet syntax in the construct, it is the CLISP construct, and any such
construct can be used. A DO1 or DOALL ruleSet will be substituted for the occurrence of the atom
ruleSet, depending on whether the Control Structure is a FOR1 or FORALL.

2 2

 RULES

As an abbreviation, if the construct does not contain the atom ruleSet, then (DO ruleSet) is appended
to the Iteration Condition for a FOR1 or FORALL. Thus one could write the first example as:

Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)))

1.5 One-Shot Rules

One of the design objectives of LOOPS is to clarify the rules by factoring out control information
whenever possible. This objective is met in part by the declaration of a control structure for RuleSets.

Another important case arises in cyclic control structures in which some of the rules should be
executed only once. This was illustrated in the Washing Machine example in Figure 1 where we
wanted to prevent the RuleSet from going into an infinite loop of resetting the breaker, when there was
a short circuit in the Washing Machine. Such rules are also useful for initializing data for RuleSets as
in the example in Figure 3.

In the absence of special syntax, it would be possible to encode the information that a rule is to be
executed only once as follows:

Control Structure: While1
Temporary Vars: triedRule3;

...

IF ~triedRule3 condition1 condition2 THEN triedRule3_T action1;

In this example, the variable triedRule3 is used to control the rule so that it will be executed at most
once in an invocation of a RuleSet. However, the prolific use of rules with such control clauses in large
systems has led to the common complaint that control clauses in rule languages defeat the
expressiveness and conciseness of the rules. For the case above, LOOPS provides a shorthand
notation as follows:

{1} IF condition1 condition2 THEN action1;

The brace notation means exactly the same thing in the example above, but it more concisely and
clearly indicates that the rule executes only once. These rules are called "one shot" or "execute-once"
rules.

In some cases, it is desired not only that a rule be executed at most once, but that it be tested at most
once. This corresponds to the following:

Control Structure: While1
Temporary Vars: triedRule3;

...

IF ~triedRule3 triedRule3_T condition1 condition2 THEN action1;

2 3

 RULES

In this case, the rule will not be tried more than once even if some of the conditions fail the first time
that it is tested. The LOOPS shorthand for these rules (pronounced "one shot bang") is

{1!} IF condition1 condition2 THEN action1;

These rules are called "try-once" rules.

The two kinds of one-shot rules are our first examples of the use of meta-descriptions preceding the
rule body in braces. See Section 1.7, "Saving an Audit Trail of Rule Invocation," for information on
using meta-descriptions for describing the creation of audit trails.

1.6 First/Last Rules

It is sometimes useful to have rules which fire before or after the ordinary part of the RuleSet is
invoked, independent of the form of the control structure. For example, in a DO1, such "FIRST " rules
could be used for initialization. These now exist, and are notated by putting a {F} for a first rule in the
MetaDescription field, and a {L} for a last rule. If a RuleSet has L rules which execute, the value of the
RuleSet is the value of the last rule which executed.

1.7 Saving an Audit Trail of Rule Invocation

A basic property of knowledge-based systems is that they use knowledge to infer new facts from older
ones. (Here we use the word "facts" as a neutral term, meaning any information derived or given, that
is used by a reasoning system.) Over the past few years, it has become evident that reasoning
systems need to keep track not only of their conclusions, but also of their reasoning steps.
Consequently, the design of such systems has become an active research area in AI. The audit trail
facilities of LOOPS support experimentation with systems that can not only use rules to make
inferences, but also keep records of the inferential process itself.

1.7.1 Motivations and Applications

Debugging. In most expert systems, knowledge bases are developed over time and are the major
investment. This places a premium on the use of tools and methods for identifying and correcting bugs
in knowledge bases. By connecting a system’s conclusions with the knowledge that it uses to derive
them, audit trails can provide a substantial debugging aid. Audit trails provide a focused means of
identifying potentially errorful knowledge in a problem solving context.

Explanation Facilities. Expert systems are often intended for use by people other than their creators,
or by a group of people pooling their knowledge. An important consideration in validating expert
systems is that reasoning should be transparent, that is, that a system should be able to give an
account of its reasoning process. Facilities for doing this are sometimes called explanation systems

2 4

 RULES

and the creation of powerful explanation systems is an active research area in AI and cognitive
science. The audit trail mechanism provides an essential computational prerequisite for building such
systems.

Belief Revision. Another active research area is the development of systems that can "change their
minds". This characteristic is critical for systems that must reason from incomplete or errorful
information. Such systems get leverage from their ability to make assumptions, and then to recover
from bad assumptions by efficiently reorganizing their beliefs as new information is obtained.
Research in this area ranges from work on non-monotonic logics, to a variety of approaches to belief
revision. The facilities in the rule language make it convenient to use a user-defined calculus of belief
revision, at whatever level of abstraction is appropriate for an application.

1.7.2 Overview of Audit Trail Implementation

When audit mode is specified for a RuleSet, the compilation of assignment statements on the right-
hand sides of rules is altered so that audit records are created as a side-effect of the assignment of
values to instance variables. Audit records are LOOPS objects, whose class is specified in RuleSet
declarations. The audit records are connected with associated instance variables through the value of
the reason properties of the variables.

Audit descriptions can be associated with a RuleSet as a whole, or with specific rules. Rule-specific
audit information is specified in a property-list format in the meta-description associated with a rule.
For example, this can include certainty factor information, categories of inference, or categories of
support. Rule-specific information overrides RuleSet information.

During rule execution in audit mode, the audit information is evaluated after the rule’s LHS has been
satisfied and before the rule’s RHS is applied. For each rule applied, a single audit record is created
and then the audit information from the property list in the rule’s meta-description is put into the
corresponding instance variables of the audit record. The audit record is then linked to each of the
instance variables that have been set on the RHS of the rule by way of the reason property of the
instance variable.

Additional computations can be triggered by associating active values with either the audit record class
or with the instance variables. For example, active values can be specified in the audit record classes
in order to define a uniform set of side-effects for rules of the same category. In the following example,
such an active value is used to carry out a "certainty factor" calculation.

1.7.3 An Example of Using Audit Trails

The following example illustrates one way to use the audit trail facilities. Figure 4 illustrates a RuleSet
which is intended to capture the decisions for evaluating the potential purchase of a washing machine.
As with any purchasing situation, this one includes the difficulty of incomplete information about the
product. For example in this RuleSet, the reliability of the washing machine is estimated to be 0.5 in
the absence of specific information from Consumer Reports. The meta-descriptions for the rules,
which appear in braces, categorize them in terms of the basis of belief (the category basis is either a
fact or estimate) and a certainty factor (cf) that is supposed to measure the "implication power" of the

2 5

 RULES

rule. Within the braces, the variable on the left of the assignment statement is always interpreted as
meaning a variable in the audit record, and the variables on the right are always interpreted as
variables accessible within the RuleSet. This makes it straightforward to experiment with user-defined
audit trails and experimental methods of belief revision. (Realistic belief revision systems are usually
more sophisticated than this example.)

The result of running the RuleSet is an evaluation report for each candidate machine. Since the
RuleSet was run in audit mode, each entry in the evaluation report is tagged with a reason that points
to an audit record. Figure 5 illustrates the evaluation report for one machine and one of its audit
records. In this example, each of the entries in the report has a reason and a cumulative certainty (cc)
property in addition to the value. The value of the reason properties are audit records created as a
side effect of running the RuleSet. The auditing process records the meta-description information of
each rule in its audit record. This information can be used later for generating explanations or as a
basis for belief revision. The auditing process can have side effects. For example, the active in the cf
variable or the audit record performs a computation to maintain a calculated cumulative certainty in the
reliability variable of the evaluation report.

The meta-descriptions for basis and cf are saved directly in the audit record. The certainty factor
calculation in this combines information from the audit description with other information already
associated with the object. To do this, the cf description triggers an active value inherited by the audit
record from its class. This active value computes a cumulative certainty in the evaluation report.
(Other variations on this idea would include certainty information descriptive of the premises of the
rule.)

RuleSet Name: EvaluateWashingMachine;
WorkSpace Class: EvaluationReport;
Control Structure: doAll ;
Audit Class: CFAuditRecord ;
Compiler Options: A;

(* Rules for evaluating a potential washing machine for a
purchase.)

 .
 .
 .
 {(basics_Fact cf_1)}
 IF buyer:familySize>2 machine:capacity<20
 THEN suitability_’Poor;

 {(basics_Fact cf_.8)}
 reliability_(_($ ConsumerReports) GetFacts machine);

 {(basics_Estimate cf_.4)}
 IF ’reliability THEN reliability_.5;
 .
 .
 .

Figure 4. RuleSet Showing Evaluation

EvaluationReport "uid1"
expense: 510

2 6

 RULES

suitability: Poor cc 1 reason ...
reliability: .5 cc .6 reason "uid2"
.
.
.
AuditRec "uid2"
rule: "uid3"
basis: Estimate;
cf: #(.4 NIL PutCumulativeCertainity)

Figure 5. Example of an Audit Trail

1.8 Comparison with Other Rule Languages

This section considers the rationale behind the design of the LOOPS rule language, focusing on ways
that it diverges from other rule languages. In general, this divergence was driven by the following
observation:

When a rule is heavy with control information, it obscures the domain knowledge that the rule is
intended to convey.

Rules are harder to create, understand, and modify when they contain too much control information.
This observation led us to find ways to factor control information out of the rules.

1.8.1 The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the LOOPS rule language is the factored syntax for
meta-descriptions, which provides information about the rules themselves. Traditional rule languages
only factor rules into conditions on the left hand side (LHS) and actions on the right hand side (RHS),
without general provisions for meta-descriptions.

Decision knowledge expressed in rules is most perspicuous when it is not mixed with other kinds
knowledge, such as control knowledge. For example, the following rule:

IF ~triedRule4 pluggedInTo:voltage=0
THEN triedRule4_T breaker.Reset;

is more obscure than the corresponding one-shot rule from Figure 1:

{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;

which factors the control information (that the rule is to be applied at most once) from the domain
knowledge (about voltages and breakers). In the LOOPS rule language, a meta-description (MD) is
specified in braces in front of the LHS of a rule. For another example, the following rule from Figure 4:

{(basis_Fact cf_.8)}

2 7

 RULES

IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

uses an MD to indicate that the rule has a particular cf ("certainty factor") and basis category for belief
support. The MD in this example factors the description of the inference category of the rule from the
action knowledge in the rule.

In a large knowledge-based system, a substantial amount of control information must be specified in
order to preclude combinatorial explosions. Since earlier rule languages fail to provide a means for
factoring meta-information, they must either mix it with the domain knowledge or express it outside the
rule language. In the first option, intelligibility is degraded. In the second option, the transparency of
the system is degraded because the knowledge is hidden.

1.8.2 The Rationale for RuleSet Hierarchy

Some advocates of production systems have praised the flatness of traditional production systems,
and have resisted the imposition of any organization to the rules. The flat organization is sometimes
touted as making it easy to add rules. The argument is that other organizations diminish the power of
pattern-directed invocation and make it more complicated to add a rule.

In designing LOOPS, we have tended to discount these arguments. We observe that there is no
inherent property of production systems that can make rules additive. Rather, additivity is a
consequence of the independence of particular sets of rules. Such independence is seldom achieved
in large sets of rules. When rules are dependent, rule invocation needs to be carefully ordered.

Advocates of a flat organization tend to organize large programs as a single very large production
system. In practice, most builders of production systems have found it essential to create groups of
rules.

Grouping of rules in flat systems can be achieved in part by using context clauses in the rules. Context
clauses are clauses inserted into the rules which are used to alter the flow of control by naming the
context explicitly. Rules in the same "context" all contain an extra clause in their conditions that
compares the context of the rules with a current context. Other rules redirect control by switching the
current context. Unfortunately, this approach does not conveniently lend itself to the reuse of groups of
rules by different parts of a program. Although context clauses admit the creation of "subroutine
contexts", they require you to explicitly program a stack of return locations in cases where contexts are
invoked from more than one place. The decision to use an implicit calling stack for RuleSet invocation
in LOOPS is another example of the our desire to simplify the rules by factoring out control information.

1.8.3 The Rationale for RuleSet Control Structures

Production languages are sometimes described as having a recognize-act cycle, which specifies how
rules are selected for execution. An important part of this cycle is the conflict resolution strategy, which
specifies how to choose a production rule when several rules have conditions that are satisfied. For
example, the OPS5 production language has a conflict resolution strategy (MEA) which prevents rules

2 8

 RULES

from being invoked more than once, prioritizes rules according to the recency of a change to the data,
and gives preference to production rules with the most specific conditions.

In designing the rule language for LOOPS, we have favored the use of a small number of specialized
control structures to the use of a single complex conflict resolution strategy. In so doing, we have
drawn on some control structures in common use in familiar programming languages. For example,
Do1 is like Lisp’s COND, DoAll is like Lisp’s PROG, WhileAll is similar to WHILE statements in many
programming languages.

The specialized control structures are intended for concisely representing programs with different
control relationships among the rules. For example, the DoAll control structure is useful for rules
whose effects are intended to be additive and the Do1 control structure is appropriate for specifying
mutually exclusive actions. Without some kind of iterative control structure that allows rules to be
executed more than once, it would be impossible to write a simulation program such as the washing
machine simulation in Figure 1.

We have resisted a reductionist argument for having only one control structure for all programming.
For example, it could be argued that the control structure Do1 is not strictly necessary because any
RuleSet that uses Do1 could be rewritten using DoAll. For example, the rules

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF a2 b2 c2 THEN d2 e2;

IF a3 b3 c3 THEN d3 e3;

could be written alternatively as

Control Structure: DoAll;
Task Vars: firedSomeRule;

IF a1 b1 c1 THEN firedSomeRule_T d1 e1;

IF ~firedSomeRule a2 b2 c2 THEN firedSomeRule_T d2 e2;

IF ~firedSomeRule a3 b3 c3 THEN firedSomeRule_T d3 e3;

However, the Do1 control structure admits a much more concise expression of mutually exclusive
actions. In the example above, the Do1 control structure makes it possible to abbreviate the rule
conditions to reflect the assumption that earlier rules in the RuleSet were not satisfied.

For some particular sets of rules the conditions are naturally mutually exclusive. Even for these rules
Do1 can yield additional conciseness. For example, the rules:

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF ~a1 b1 c1 THEN d2 e2;

IF ~a1 ~b1 c1 THEN d3 e3;

can be written as

2 9

 RULES

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF b1 c1 THEN d2 e2;

IF c1 THEN d3 e3;

Similarly it could be argued that the Do1 and DoAll control structures are not strictly necessary
because such RuleSets can always be written in terms of While1 and WhileAll. Following this
reductionism to its end, we can observe that every RuleSet could be re-written in terms of WhileAll.

1.8.4 The Rationale for an Integrated Programming Environment

RuleSets in LOOPS are integrated with procedure-oriented, object-oriented, and data-oriented
programming paradigms. In contrast to single-paradigm rule systems, this integration has two major
benefits. It facilitates the construction of programs which don’t entirely fit the rule-oriented paradigm.
Rule-oriented programming can be used selectively for representing just the appropriate decision-
making knowledge in a large program. Integration also makes it convenient to use the other
paradigms to help organize the interactions between RuleSets.

Using the object-oriented paradigm, RuleSets can be invoked as methods for LOOPS objects. Figure
6 illustrates the installation of the RuleSet SimulateWashingMachineRules to carry out the Simulate
method for instances of the class WashingMachine. This definition of the class WashingMachine
specifies that Lisp functions are to be invoked for Fill and Wash messages. For example, the Lisp
function WashingMachine.Fill is to be applied when a Fill message is received. When a Simulate
message is received, the RuleSet SimulateWashingMachineRules is to be invoked with the washing
machine as its work space. Simulate message to invoke the RuleSet may be sent by any LOOPS
program, including other RuleSets.

The use of object-oriented paradigm is facilitated by special RuleSet syntax for sending messages to
objects, and for manipulating the data in LOOPS objects. In addition, RuleSets, work spaces, and
tasks are implemented as LOOPS objects.

3 0

 RULES

[DEFCLASS WashingMachine
 (MetaClass Class Edited (* "rtk: 12-Jun-87 07:57")
 doc (* Home appliance for wachine cloothes.))
 (Supers ElectricalDevice PlumbedDevice CleaningDevice)
 (ClassVariables)
 (InstanceVariables
 (controlSetting Meduim
 doc (* One of Small, Medium, Large, ExtraLarge))...)
 (Methods
 (Fill WashingMachine.Fill doc (* Fill the tub with water.))
 (Wash WashingMachine.Wash doc (* Perofrm the wash cycle.))
 (Simulate UseRuleSet RuleSet SimulateWashingMachineRules)
 .
 .
 .
]

Figure 6. RuleSet Invoked as a Method

Using the data-oriented paradigm, RuleSets can be installed in active values so that they are triggered
by side-effect when LOOPS programs get or put data in objects. For example:

[DEFINST WashingMachine (StefiksMaytagWasher "uid2")
 (controlSetting RegularFabric)
 (loadSetting #(Medium NIL RSPut) RSPutFn CheckOverLoadRules)
 (waterLevelSensor "uid3")
]

The above code illustrates a RuleSet named CheckOverLoadRules which is triggered whenever a
program changes the loadSetting variable in the WashingMachine instance in the figure. This data-
oriented triggering can be caused by any LOOPS program when it changes the variable, whether or
not that program is written in the rules language.

i i iLOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE v

CONVERT-LOOPS-FILES 1

LOOPSBACKWARDS 3

LOOPSMIXIN 7

RULES 9

INDEX INDEX-1

i v LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

[This page intentionally left blank]

3 1

 RULES

2. THE RULE LANGUAGE

This chapter describes the syntax and semantics of the rule language.

2.1 Language Introduction

A rule in LOOPS describes actions to be taken when specified conditions are satisfied. A rule has
three major parts called the left hand side (LHS) for describing the conditions, the right hand side
(RHS) for describing the actions, and the meta-description (MD) for describing the rule itself. In the
simplest case without a meta-description, there are two equivalent syntactic forms:

LHS -> RHS;

IF LHS THEN RHS;

The If and Then tokens are recognized in several combinations of upper and lower case letters. The
syntax for LHSs and RHSs is given below. In addition, a rule can have no conditions (meaning always
perform the actions) as follows:

-> RHS;

if T then RHS;

Rules can be preceded by a meta-description in braces as in:

{MD} LHS -> RHS;

{MD} If LHS Then RHS;

{MD} RHS;

Examples of meta-information include rule-specific control information, rule descriptions, audit
instructions, and debugging instructions. For example, the syntax for one-shot rules shown in Section
1.5, "One-Shot Rules:"

{1} IF condition1 condition2 THEN action1;

is an example of a meta-description. Another example is the use of meta-assignment statements for
describing audit trails and rules. These statements are discussed in Section 1.7, "Saving an Audit Trail
of Rule Invocation."

LHS Syntax: The clauses on the LHS of a rule are evaluated in order from left to right to determine
whether the LHS is satisfied. If they are all satisfied, then the rule is satisfied. For example:

3 2

 RULES

A B C+D (Prime D) -> RHS;

In this rule, there are four clauses on the LHS. If the values of some of the clauses are NIL during
evaluation, the remaining clauses are not evaluated. For example, if A is non-NIL but B is NIL, then
the LHS is not satisfied and C+D will not be evaluated.

RHS Syntax: The RHS of a rule consists of actions to be performed if the LHS of the rule is satisfied.
These actions are evaluated in order from left to right. Actions can be the invocation of RuleSets, the
sending of LOOPS messages, Interlisp function calls, variables, or special termination actions.

RuleSets always return a value. The value returned by a RuleSet is the value of the last rule that was
executed. Rules can have multiple actions on the right hand side. Unless there is a Stop statement or
transfer call as described later, the value of a rule is the value of the last action. When a rule has no
actions on its RHS, it returns NIL as its value.

Comments: Comments can be inserted between rules in the RuleSet. They are enclosed in
parentheses with an asterisk for the first character as follows:

(* This is a comment)

2.2 Kinds of Variables

LOOPS distinguishes the following kinds of variables:

RuleSet arguments: All RuleSets have the variable self as their workspace. References to self can
often be elided in the RuleSet syntax. For example, the expression self.Print means to send a Print
message to self. This expression can be shortened to .Print . Other arguments can be defined for
RuleSets. These are declared in an Args: declaration.

Instance variables: All RuleSets use a LOOPS object for their workSpace. In the LHS and RHS of a
rule, the first interpretation tried for an undeclared literal is as an instance variable in the work space.
Instance variables can be indicated unambiguously by preceding them with a colon, (e.g., :varName or
obj:varName).

Class variables: Literals can be used to refer to class variables of LOOPS objects. These variables
must be preceded by a double colon in the rule language, (e.g., ::classVarName or
obj::classVarName).

Temporary variables: Literals can also be used to refer to temporary variables allocated for a specific
invocation of a RuleSet. These variables are initialized to NIL when a RuleSet is invoked. Temporary
variables are declared in the Temporary Vars declaration in a RuleSet.

Audit record variables: Literals can also be used to refer to instance variables of audit records created
by rules. These literals are used only in meta-assignment statements in the MD part of a rule. They
are used to describe the information saved in audit records, which can be created as a side-effect of
rule execution. These variables are ignored if a RuleSet is not compiled in audit mode. Undeclared
variables appearing on the left side of assignment statements in the MD part of a rule are treated as

3 3

 RULES

audit record variables by default. These variables are declared indirectly -- they are the instance
variables of the class declared as the Audit Class of the RuleSet.

Interlisp variables: Literals can also be used to refer to Interlisp variables during the invocation of a
RuleSet. These variables can be global to the Interlisp environment, or are bound in some calling
function. Interlisp variables can be used when procedure-oriented and rule-oriented programs are
intermixed. Interlisp variables must be preceded by a backSlash in the syntax of the rule language
(e.g., \lispVarName).

Reserved Words: The following literals are treated as read-only variables with special interpretations:

self [Variable]

The current work space.

rs [Variable]

The current RuleSet.

caller [Variable]

The RuleSet that invoked the current RuleSet, or NIL if invoked
otherwise.

ruleApplied [Variable]

Set to T if some rule was applied in this cycle. (For use only in
while-conditions).

The following reserved words are intended mainly for use in creating audit trails:

ruleObject [Variable]

Variable bound to the object representing the rule itself.

ruleNumber [Variable]

Variable bound to the sequence number of the rule in a RuleSet.

ruleLabel [Variable]

Variable bound to the label of a rule or NIL.

reasons [Variable]

Variable bound a list of audit records supporting the instance
variables mentioned on the LHS of the rule. (Computed at run
time.)

3 4

 RULES

auditObject [Variable]

Variable bound to the object to which the reason record will be
attached. (Computed at run time.)

auditVarName [Variable]

Variable bound to the name of the variable on which the reason will
be attached as a property.

Other Literals: As described later, literals can also refer to Interlisp functions, LOOPS objects, and
message selectors. They can also be used in strings and quoted constants.

The determination of the meaning of a literal is done at compile time using the declarations and syntax
of RuleSets. The characters used in literals are limited to alphabetic characters and numbers. The
first character of a literal must be alphabetic.

The syntax of literals also includes a compact notation for sending unary messages and for accessing
instance variables of LOOPS objects. This notation uses compound literals. A compound literal is a
literal composed of multiple parts separated by a periods, colons, and commas.

2.3 Rule Forms

Quoted Constants: The quote sign is used to indicate constant literals:

a b=3 c=’open d=f e=’(This is a quoted expression) -> ...

In this example, the LHS is satisfied if a is non-NIL, and the value of b is 3, and the value of c is
exactly the atom open, the value of d is the same as the value of f, and the value of e is the list (This
is a quoted expression).

Strings: The double quote sign is used to indicate string constants:

IF a b=3 c=’open d=f e=="This is a string"
THEN (WRITE "Begin configuration task") ... ;

In this example, the LHS is satisfied if a is non-NIL, and the value of b is 3, and the value of c is
exactly the atom open, the value of d is the same as the value of f, and the value of e equal to the
string "This is a string".

Interlisp Constants: The literals T and NIL are interpreted as the Interlisp constants of the same name.

a (Foo x NIL b) -> x_T ...;

In this example, the function Foo is called with the arguments x, NIL, and b. Then the variable x is set
to T.

3 5

 RULES

2.4 Infix Operators and Brackets

To enhance the readability of rules, a few infix operators are provided. The following are infix binary
operators in the rule syntax:

+ [Rule Infix Operator]

Addition.

++ [Rule Infix Operator]

Addition modulo 4.

- [Rule Infix Operator]

Subtraction.

-- [Rule Infix Operator]

Subtraction modulo 4.

* [Rule Infix Operator]

Multiplication.

/ [Rule Infix Operator]

Division.

> [Rule Infix Operator]

Greater than.

< [Rule Infix Operator]

Less than.

>= [Rule Infix Operator]

Greater than or equal.

<= [Rule Infix Operator]

Less than or equal.

= [Rule Infix Operator]

EQ -- simple form of equals. Works for atoms, objects, and small
integers.

~= [Rule Infix Operator]

NEQ. (Not EQ.)

3 6

 RULES

== [Rule Infix Operator]

EQUAL -- long form of equals.

<< [Rule Infix Operator]

Member of a list. (FMEMB)

In addition, the rule syntax provides two unary operators as follows:

- [Rule Unary Operator]

Minus.

~ [Rule Unary Operator]

Not.

The precedence of operators in rule syntax follows the usual convention of programming languages.
For example

1+5*3 = 16

and

[3 < 2 + 4] = T

Brackets can be used to control the order of evaluation:

[1+5]*3 = 18

Ambiguity of the minus sign: Whenever there is an ambiguity about the interpretation of a minus sign
as a unary or binary operator, the rule syntax interprets it as a binary minus. For example

a-b c d -e [-f] (g -h) (_ ($ Foo) Move -j) -> ...

In this example, the first and second minus signs are both treated as binary subtraction statements.
That is, the first three clauses are (1) a-b, (2) c and (3) d-e. Because the rule syntax allows arbitary
spacing between symbols and there is no syntax to separate clauses on the LHS of a rule, the
interpretation of "d -e" is as a single clause (with the subtraction) instead of two clauses. To force the
interpretation as a unary minus operator, one must use brackets as illustrated in the next clause. In
this clause, the minus sign in the clause [-f] is treated as a unary minus because of the brackets. The
minus sign in the function call (g -h) is treated as unary because there is no preceding argument.
Similarly, the -j in the message expression is treated as unary because there is no preceding
argument.

3 7

 RULES

2.5 Interlisp Functions and Message Sending

Calls to Interlisp functions are parenthesized with the function name as the first literal after the left
parenthesis. Each expression after the function name is treated as an argument to the function. For
example:

a (Prime b) [a -b] -> c (Display b c+4 (Cursor x y) 2) ;

In this example, Prime, Display, and Cursor are interpreted as the names of Interlisp functions. Since
the expression [a -b] is surrounded by brackets instead of parentheses, it is recognized as meaning a
minus b as opposed to a call to the function a with the argument minus b. In the example above, the
call to the Interlisp function Display has four arguments: b, c+4, the value of the function call (Cursor
x y), and 2.

The use of Interlisp functions is usually outside the spirit of the rule language. However, it enables the
use of Boolean expressions on the LHS beyond simple conjunctions. For example:

a (OR (NOT b) x y) z -> ... ;

LOOPS Objects and Message Sending: LOOPS classes and other named objects can be referenced
by using the dollar notation. The sending of LOOPS messages is indicated by using a left arrow. For
example:

IF cell_(_ ($ LowCell) Occupied? ’Heavy)
THEN (_ cell Move 3 ’North);

In the LHS, an Occupied? message is sent to the object named LowCell. In the message expression
on the RHS, there is no dollar sign preceding cell. Hence, the message is sent to the object that is the
value of the variable cell.

For unary messages (i.e., messages with only the selector specified and the implicit argument self), a
more compact notation is available as described selow.

Unary Message Sending: When a period is used as the separator in a compound literal, it indicates
that a unary message is to be sent to an object. (We will alternatively refer to a period as a dot.) For
example:

tile.Type=’BlueGreenCross command.Type=’Slide4 -> ... ;

In this example, the object to receive the unary message Type is referenced indirectly through the tile
instance variable in the work space. The left literal is the variable tile and its value must be a LOOPS
object at execution time. The right literal must be a method selector for that object.

The dot notation can be combined with the dollar notation to send unary messages to named LOOPS
objects. For example,

$Tile.Type=’BlueGreenCross ...

In this example, a unary Type message is sent to the LOOPS object whose name is Tile.

The dot notation can also be used to send a message to the work space of the RuleSet, that is, self.
For example, the rule

3 8

 RULES

IF scale>7 THEN .DisplayLarge;

would cause a DisplayLarge message to be sent to self. This is an abbreviation for

IF scale>7 THEN self.DisplayLarge;

2.6 Variables and Properties

When a single colon (:) is used in a literal, it indicates access to an instance variable of an object. For
example:

tile:type=’BlueGreenCross command:type=Slide4 -> ... ;

In this example, access to the LOOPS object is indirect in that it is referenced through an instance
variable of the work space. The left literal is the variable tile, and its value must be a LOOPS object
when the rule is executed. The right literal type must be the name of an instance variable of that
object. The compound literal tile:type refers to the value of the type instance variable of the object in
the instance variable tile.

The colon notation can be combined with the dollar notation to access a variable in a named LOOPS
object. For example,

$TopTile:type=’BlueGreenCross ...

refers to the type variable of the object whose LOOPS name is TopTile.

A double colon notation (::) is provided for accessing class variables. For example

truck::MaxGas<45 ::ValueAdded>600 -> ... ;

In this example, MaxGas is a class variable of the object bound to truck. ValueAdded is a class
variable of self.

A colon-comma notation (:,) is provided for accessing property values of class and instance variables.
For example

wire:,capacitance>5 wire:voltage:,support=’simulation -> ...

In the first clause, wire is an instance variable of the work space and capacitance is a property of that
variable. The interpretation of the second clause is left to right as usual: (1) the object that is the value
of the variable wire is retrieved, and (2) the support property of the voltage variable of that object is
retrieved. For properties of class variables

::Wire:,capacitance>5 node::Voltage:,support=’simulation -> ...

In the first clause, wire is a class variable of the work space and capacitance is a property of that
variable. In the second clause, node is an instance variable bound to some object. Voltage is a class
variable of that object, and Support is a property of that class variable.

3 9

 RULES

The property notation is illegal for ruleVars and lispVars since those variables cannot have properties.

2.7 Computing Selectors and Variable Names

The short notations for instance variables, properties, and unary messages all show the selector and
variable names as they actually appear in the object.

object.selector
object:ivName
object::cvName
object:varname:,propName

(_ object selector arg1 arg2)

For example,

apple:flavor

refers to the flavor instance variable of the object bound to the variable apple. In Interlisp terminology,
this implies implicit quoting of the name of the instance variable (flavor).

In some applications it is desired to be able to compute the names. For this, the LOOPS rule language
provides analogous notations with an added exclamation sign (!). After the exclamation sign, the
interpretation of the variable being evaluated starts over again. For example

apple:!\x

refers to the same thing as apple:flavor if the Interlisp variable x is bound to flavor. The fact that x is
a Lisp variable is indicated by the backslash. If x is an instance variable of self or a temporary
variable, we could use the notation:

apple:!x

If x is a class variable of self, we could use the notation:

apple:!::x

All combinations are possible, including:

object.!selector
object.!\selector
object.!::selector
object:!ivName
object::!cvName
object:!varname:,propName

(_! object selector arg1 arg2)

4 0

 RULES

2.8 Recursive Compound Literals

Multiple colons or periods can be used in a literal, For example:

a:b:c

means to (1) get the object that is the value of a, (2) get the object that is the value of the b instance
variable of a, and finally (3) get the value of the c instance variable of that object.

Similarly, the notation

a.b:c

means to get the c variable of the object returned after sending a b message to the object that is the
value of the variable a. Again, the operations are carried out left to right: (1) the object that is the value
of the variable a is retrieved, (2) it is sent a b message which must return an object, and then (3) the
value of the c variable of that object is retrieved.

Compound literal notation can be nested arbitrarily deeply.

2.9 Assignment Statements

An assignment statement using a left arrow can be used for setting all kinds of variables. For example,

x_a;

sets the value of the variable x to the value of a. The same notation works if x is a task variable, rule
variable, class variable, temporary variable, or work space variable. The right side of an assignment
statement can be an expression as in:

x_a*b + 17*(LOG d);

The assignment statement can also be used with the colon notation to set values of instance variables
of objects. For example:

y:b_0 ;

In this example, first the object that is the value of y is computed, then the value of its instance variable
b is set to 0.

Properties: Assignment statements can also be used to set property values as in:

box:x:,origin_47 fact:,reason_currentSupport;

Nesting: Assignment statements can be nested as in

a_b_c:d_3;

4 1

 RULES

This statement sets the values of a, b, and the d instance variable of c to 3. The value of an
assignment statement itself is the new assigned value.

2.10 Meta-Assignment Statements

Meta-assignment statements are assignment statements used for specifying rule descriptions and
audit trails. These statements appear in the MD part of rules.

Audit Trails: The default interpretation of meta-assignment statements for undeclared variables is as
audit trail specifications. Each meta-assignment statement specifies information to be saved in audit
records when a rule is applied. In the following example from Figure 4, the audit record must have
variables named basis and cf:

{(basis_Fact cf_1.)}
IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

In this example, the RHS of the rule assigns the value of the work space instance variable suitability
to ’Poor if the conditions of the rule are satisfied. In addition, if the RuleSet was compiled in audit
mode, then during RuleSet execution an audit record is created as a side-effect of the assignment.
The audit record is attached to the reason property of the suitability variable. It has instance variables
basis and cf.

In general, an audit description consists of a sequence of meta-assignment statements. The
assignment variable on the left must be an instance variable of the audit record. The class of the audit
record is declared in the Audit Class declaration of the RuleSet. The expression on the right is in terms
of the variables accessible by the RuleSet. If the conditions of a rule are satisfied, an audit record is
instantiated. Then the meta-assignment statements are evaluated in the execution context of the
RuleSet and their values are put into the audit record. A separate audit record is created for each of
the object variables that are set by the rule.

2.11 Push and Pop Statements

A compact notation is provided for pushing and popping values from lists. To push a new value onto a
list, the notation _+ is used:

myList_+newItem;

focus:goals_+newGoal;

To pop an item from a list, the _- notation is used:

item_-myList;

4 2

 RULES

nextGoal_-focus:goals;

As with the assignment operator, the push and pop notation works for all kinds of variables and
properties. They can be used in conjunction with infix operator << for membership testing.

2.12 Invoking RuleSets

One of the ways to cause RuleSets to be executed is to invoke them from rules. This is used on the
LHS of rules to express predicates in terms of RuleSets, and on the RHS of rules to express actions in
terms of RuleSets. A short double-dot syntax(..) for this is provided that invokes a RuleSet on a work
space:

Rs1..ws1

In this example, the RuleSet bound to the variable Rs1 is invoked with the value of the variable ws1 as
its work space. The value of the invocation expression is the value returned by the RuleSet. The
double-dot syntax can be combined with the dollar notation ($) to invoke a RuleSet by its LOOPS
name, as in

$MyRules..ws1

which invokes the RuleSet object that has the LOOPS name MyRules.

This form of RuleSet invocation is like subroutine calling, in that it creates an implicit stack of
arguments and return addresses. This feature can be used as a mechanism for meta-control of
RuleSets as in:

IF breaker:status=’Open
THEN source_$OverLoadRules..washingMachine;

IF source=’NotFound
THEN $ShortCircuitRules..washingMachine;

In this example, two "meta-rules" are used to control the invocation of specialized RuleSets for
diagnosing overloads or short circuits.

2.13 Transfer Calls

An important optimization in many recursive programs is the elimination of tail recursion. For example,
suppose that the RuleSet A calls B, B calls C, and C calls A recursively. If the first invocation of A
must do some more work after returning from B, then it is useful to save the intermediate states of
each of the procedures in frames on the calling stack. For such programs, the space allocation for the
stack must be enough to accommodate the maximum depth of the calls.

4 3

 RULES

There is a common and special case, however, in which it is unnecessary to save more than one frame
on the stack. In this case each RuleSet has no more work to do after invoking the other RuleSets, and
the value of each RuleSet is the value returned by the RuleSet that it invokes. RuleSet invocation in
this case amounts to the evaluation of arguments followed by a direct transfer of control. We call such
invocations transfer calls.

The LOOPS rule language extends the syntax for RuleSet invocation and message sending to provide
this as follows:

RS..*ws

The RuleSet RS is invoked on the work space ws. With transfer calls, RuleSet invocations can be
arbitrarily deep without using proportional stack space.

2.14 Stop Statements

To provide premature terminations in the execution of a RuleSet, the Stop statement is provided.

(Stop value) [RuleSet Statement]

value is the value to be returned by the RuleSet.

4 4

 RULES

[This page intentionally left blank]

vLOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

Overview of the Manual

This manual describes the Users’ Modules for Xerox’s Lisp Object-Oriented
Programming System, LOOPS (TM), to developers.

Note: Venue does not support LOOPS Users’ Modules. However, each
Users’ Module contains the name and network mailing address of the
person who wrote or last modified that module, and the date it was
written or last modified.

This manual describes the Lyric/Medley Release of the LOOPS Users’
Modules, which run under the Lyric and Medley Releases of Lisp.

Organization of the Manual and How to Use It

This manual is divided into chapters, with each chapter describing a separate
Users’ Module.

To use the manual, read the chapter that corresponds to the Users’ Module
you want to use. A general Table of Contents is provided to help you locate
specific information.

Conventions

This manual uses the following conventions:

• Case is significant in LOOPS and Lisp. All selectors, methods, arguments,
etc., must be typed as shown. Typically, this means that method names
are capitalized and variables are not.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a method appears as follows:

(← self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89←(←LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all LOOPS expressions.

• Methods with an exclamation mark (!) suffix usually perform operations
deeply into class structure instead of only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth
functions.

v i LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

• Methods often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

References

The following books and manuals augment this manual.

LOOPS Reference Manual

LOOPS Release Notes

LOOPS Library Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Common Lisp Implementation Notes, Lyric Release

Lisp Release Notes, Lyric Release and Medley Release

Lisp Library Modules Manual, Lyric Release and Medley Release

4 5

 RULES

3. USING RULES IN LOOPS

The LOOPS rules language is supported by an integrated programming environment for creating,
editing, compiling, and debugging RuleSets. This section describes how to use that environment.

3.1 Creating RuleSets

RuleSets are named LOOPS objects and are created by sending the class RuleSet a New message
as follows:

(_ ($ RuleSet) New)

After entering this form, the user will be prompted for a LOOPS name as

RuleSet name: RuleSetName

Afterwards, the RuleSet can be referenced using LOOPS dollar sign notation as usual. It is also
possible to include the RuleSet name in the New message as follows:

(_ ($ RuleSet) New NIL RuleSetName)

3.2 Editing RuleSets

A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. The editor
can be invoked with an EditRules message (or ER shorthand message) as follows:

(_ RuleSet EditRules)
(_ RuleSet ER)

If a RuleSet is installed as a method of a class, it can be edited conveniently by selecting the
EditMethod option from a browser containing the class. Alternatively, the EditMethod message can
be used:

(_ ClassName EditMethod selector) [Message]

Both approaches to editing retrieve the source of the RuleSet and put the user into the TTYIN or TEdit
editor, treating the rule source as text.

Initially, the source is a template for RuleSets as shown in Figure 7. The rules are entered after the
comment at the bottom. The declarations at the beginning are filled in as needed and superfluous
declarations can be discarded.

4 6

 RULES

RuleSet Name: RuleSetName;
WorkSpace Class: ClassName;
Control Structure: doAll;
While Condition: ;
Audit Class: StandardAuditRecord;
Rule Class: Rule;
Task Class: ;
Meta Assignments: ;
Temporary Vars: ;
Lisp Vars: ;
Debug Vars: ;
Compiler Options: ;

 (* Rules for whatever. Comment goes here.)

Figure 7. Initial Template for a RuleSet

You can then edit this template to enter rules and set the declarations at the beginning. In the current
version of the rule editor, most of these declarations are left out. If you choose the EditAllDecls option
in the RuleSet editor menu, the declarations and default values will be printed in full.

The template is only a guide. Declarations that are not needed can be deleted. For example, if there
are no temporary variables for this RuleSet, the Temporary Vars declaration can be deleted. If the
control structure is not one of the while control structures, then the While Condition declaration can
be deleted. If the compiler option A is not chosen, then the Audit Class declaration can be deleted.

When you leave the editor, the RuleSet is compiled automatically into a Lisp function.

If a syntax error is detected during compilation, an error message is printed and you are given another
opportunity to edit the RuleSet.

3.3 Copying RuleSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this
purpose, the method CopyRules is provided as follows:

(_ oldRuleSet CopyRules newRuleSetName) [Message]

This creates a new RuleSet by some of the information from the pespectives of the old RuleSet. It
also updates the source text of the new RuleSet to contain the new name.

4 7

 RULES

3.4 Saving RuleSets on Lisp Files

RuleSets can be saved on Lisp files just like other LOOPS objects. In addition, it is usually useful to
save the Lisp functions that result from RuleSet compilation. In the current implementation, these
functions have the same names as the RuleSets themselves. To save RuleSets on a file, it is
necessary to add two statements to the file commands for the file as follows:

(FNS * MyRuleSetNames)
(INSTANCES * MyRuleSetNames)

where MyRuleSetNames is a Lisp variable whose value is a list of the names of the RuleSets to be
saved.

If RuleSets are methods associated with a class, and they are saved by using (FILES?), then the file
package saves the appropriate entries. The user does not have to be concerned with editing the
filecoms of the file being made.

3.5 Printing RuleSets

To print a RuleSet without editing it, one can send a PPRules or PPR message as follows:

(_ RuleSet PPRules) [Message]

(_ RuleSet PPR) [Message]

A convenient way to make hardcopy listings of RuleSets is to use the function ListRuleSets. The files
will be printed on the DEFAULTPRINTINGHOST as is standard in Interlisp-D. ListRuleSets can be
given four kinds of arguments as follows:

(ListRuleSets RuleSetName)
(ListRuleSets ListOfRuleSetNames)
(ListRuleSets ClassName)
(ListRuleSets FileName)

In the ClassName case, all of the RuleSets that have been installed as methods of the class will be
printed. In the last case, all of the RuleSets stored in the file will be printed.

3.6 Running RuleSets from LOOPS

RuleSets can be invoked from LOOPS using any of the usual protocols.

Procedure-oriented Protocol: The way to invoke a RuleSet from LOOPS is to use the RunRS function:

4 8

 RULES

(RunRS RuleSet workSpace arg2 ... argN) [Function]

workSpace is the LOOPS object to be used as the work space.
This is "procedural" in the sense that the RuleSet is invoked by its
name. RuleSet can be either a RuleSet object or its name.

Object-oriented Protocol: When RuleSets are installed as methods in LOOPS classes, they can be
invoked in the usual way by sending a message to an instance of the class. For example, if
WashingMachine is a class with a RuleSet installed for its Simulate method, the RuleSet is invoked
as follows:

(_ washingMachineInstance Simulate)

Data-oriented Protocol: When RuleSets are installed in active values, they are invoked by side-effect
as a result of accessing the variable on which they are installed.

3.7 Installing RuleSets as Methods

RuleSets can also be used as methods for classes. This is done by installing automatically-generated
invocation functions that invoke the RuleSets. For example:

[DEFCLASS WashingMachine
 (MetaClass Class doc (* comment) ...)
 ...
 (InstanceVariables (owner ...))
 (Methods
 (Simulate RunSimulateWMRules)
 (Check RunCheckWMRules
 doc (* Rules to Check a washing machine.))
...]

When an instance of the class WashingMachine receives a Simulate message, the RuleSet
SimulateWMRules will be invoked with the instance as its work space.

To simplify the definition of RuleSets intended to be used as Methods, the function DefRSM (for
"Define Rule Set as a Method") is provided:

(DefRSM ClassName Selector RuleSetName) [Function]

If the optional argument RuleSetName is given, DefRSM installs
that RuleSet as a method using the ClassName and Selector. It
does this by automatically generating an installation function as a
method to invoke the RuleSet. DefRSM automatically documents
the installation function and the method.
If the argument RuleSetName is NIL, then DefRSM creates the
RuleSet object, puts the user into an Editor to enter the rules,

4 9

 RULES

compiles the rules into a Lisp function, and installs the RuleSet as
before.

DefRSM can be invoked with the browser as follows:

• Position the cursor over a class in a browser.

• Press the middle mouse button. A menu pops up.

• Select the Add option in this menu, and drag the mouse to the right to display the submenu that
includes the "DefRSM" option. You are prompted to enter a selector name.

 After a RuleSet has been installed as a method by using DefRSM, you can then edit that RuleSet by
selecting the "EditMethod" option from the browser editing menu.

3.8 Installing RuleSets in Active Values

Note: The following section and any other references to active values within the rule documentation
refer to active values as they were implemented in the Buttress release. The functionality of
triggering rules from active values has not been tested using the current implementation of
active values. It should work to use the ExplicitFnActiveValue class to implement this
behavior.

RuleSets can also be used in data-oriented programming so that they are invoked when data is
accessed. To use a RuleSet as a getFn, the function RSGetFn is used with the property RSGet as
follows:

...
(InstanceVariables
 (myVar #(myVal RSGetFn NIL) RSGet RuleSetName))
...

RSGetFn is a LOOPS system function that can be used in an active value to invoke a RuleSet in
response to a LOOPS get operation (e.g., GetValue) is performed. It requires that the name of the
RuleSet be found on the RSGet property of the item. RSGetFn activates the RuleSet using the local
state as the work space. The value returned by the RuleSet is returned as the value of the get
operation.

To use a RuleSet as a putFn, the function RSPutFn is used with the property RSPut as follows:

...
(InstanceVariables
 (myVar #(myVal NIL RSPutFn) RSPut RuleSetName))
...

RSPutFn is a function that can be used in an active value to invoke a RuleSet in response to a
LOOPS put operation (e.g., PutValue). It requires that the name of the RuleSet be found on the
RSPut property of the item. RSGetFn activates the RuleSet using the newValue from the put

5 0

 RULES

operation as the work space. The value returned by the RuleSet is put into the local state of the active
value.

3.9 Tracing and Breaking RuleSets

LOOPS provides breaking and tracing facilities to aid in debugging RuleSets. These can be used in
conjunction with the auditing facilities and the rule executive for debugging RuleSets. The following
summarizes the compiler options for breaking and tracing:

T Trace if rule is satisfied. Useful for creating a running display of
executed rules.

TT Trace if rule is tested.

B Break if rule is satisfied.

BT Break if rule is tested. Useful for stepping through the execution
of a RuleSet.

Specifying the declaration Compiler Options: T; in a RuleSet indicates that tracing information should
be displayed when a rule is satisfied. To specify the tracing of just an individual rule in the RuleSet, the
T meta-descriptions should be used as follows:

{T} IF cond THEN action;

This tracing specification causes LOOPS to print a message whenever the LHS of the rule is tested, or
the RHS of the rule is executed. It is also possible to specify that the values of some variables (and
compound literals) are to be printed when a rule is traced. This is done by listing the variables in the
Debug Vars declaration in the RuleSet:

Debug Vars: a a:b a:b.c;

This will print the values of a, a:b, and a:b.c when any rule is traced or broken.

Analogous specifications are provided for breaking rules. For example, the declaration Compiler
Options: B; indicates that LOOPS is to enter the rule executive (see Section 3.10, "The Rule Exec")
after the LHS is satisfied and before the RHS is executed. The rule-specific form:

{B} IF cond THEN action;

indicates that LOOPS is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it is traced or
broken. This can be effected by using the PR compiler option as in

Compiler Options: T PR;

which prints out the source of a rule when the LHS of the rule is tested and

5 1

 RULES

Compiler Options: B PR;

which prints out the source of a rule when the LHS of a rule is satisfied, and before entering the break.

3.10 The Rule Exec

A Read-Compile-Evaluate-Print loop, called the rule Executive, is provided for the rule language. The
rule Executive can be entered during a break by invoking the Lisp function RE. During RuleSet
execution, the rule executive can be entered by typing ^f (<control>-f) on the keyboard.

On the first invocation, RE prompts the user for a window. It then displays a stack of RuleSet
invocations in a menu to the left of this window in a manner similar to the Interlisp-D Break Package.
Using the left mouse button in this window creates an Inspector window for the work space for the
RuleSet. Using the middle mouse button pretty prints the RuleSet in the default prettyprint window.

In the main rule Executive window, RE prompts the user with "re:". Anything in the rule language
(other than declarations) that is typed to this Executive will be compiled and executed immediately and
its value printed out. For example, you may type rules to see whether they execute or variable names
to determine their values. For example:

re: trafficLight:color
Red
re:

this example shows how to get the value of the color variable of the trafficLight object. If the value of
a variable was set by a RuleSet running with auditing, then a why question can be typed to the rule
executive as follows:

re: why trafficLight:color

IF highLight:color = ’Green farmRoadSensor:cars timer.TL
THEN highLight:color _ ’Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edited: Conway "13-Oct-82"

re:

The rule executive may be exited by typing OK.

3.11 Auditing RuleSets

Two declarations at the beginning of a RuleSet affect the auditing. Auditing is turned on by the
compiler option A. The simplest form of this is

5 2

 RULES

Compiler Options: A;

The Audit Class declaration indicates the class of the audit record to be used with this RuleSet if it is
compiled in audit mode.

Audit Class: StandardAuditRecord;

A Meta Assignments declaration can be used to indicate the audit description to be used for the rules
unless overridden by a rule-specific meta-assignment statement in a meta-descriptor.

Meta Assignments: cf_.5 support_’GroundWff;

3.12 Loading Rules

Set the variable LOOPSUSERSDIRECTORIES to include the directory where the Rules files are
stored.

Load the file LOOPSRULES-ROOT.LCOM, which will load the following files from
LOOPSUSERSDIRECTORIES:

• LOOPSBACKWARDS.LCOM

• LOOPSMIXIN

• LOOPSRULES.LCOM

• LOOPSRULESP.LCOM

• LOOPSRULESC.LCOM

• LOOPSRULESD.LCOM, which will load the file TTY.LCOM from LISPUSERSDIRECTORIES.

Editing rules will be easier if TEdit is loaded. Loading the Rules does not automatically load TEdit.

3.13 Known Problems

In a rule, the expression $pipe.ri..$p compiles to (RunRS (QUOTE ($ pipe)) ($ p)), which fails.

Meta-assignment statements cannot handle expressions. This means that statements like {cf _ .5}
work fine, but {validity _ ’fact} fails.

A value of 1 in a meta-descriptor statement is always taken to be a one-shot designator. You cannot
have a meta-descriptor statement like {cf_1}. However, the number 1.0 can be used; the meta-
descriptor statement, {cf_1.0}, works.

5 3

 RULES

Rules have not been tested without loading TEdit in order to edit RuleSets.

5 4

 RULES

[This page intentionally left blank.]

1

 CONVERT-LOOPS-FILES

CONVERT-LOOPS-FILES

 By: Bob Bane (Bane.pa@Xerox.com)

 5-Feb-88

INTRODUCTION

CONVERT-LOOPS-FILES allows you to convert files from the Koto release of LOOPS to the Medley
release. The changes from the Koto release are described in detail in the LOOPS Release Notes.

PROCEDURE

To convert Koto LOOPS Files to Lyric/Medley Loops:

1. Your files must be from Koto LOOPS. Pre-Koto LOOPS files must first be run through the
Buttress->Koto converter in a Koto LOOPS sysout.

2. Install and load your Lyric LOOPS sysout. You need to have TEdit loaded, as the converter uses
it.

3. Load the file CONVERSION-AIDS.DFASL, which defines the function

(CONVERT-LOOPS-FILES <list-of-files> <dump-files-p>)

where:

<list-of-files> A filename or a list of filenames to be converted.

<dump-files-p> Determines disposition of files.

- If non-NIL, converted files will be dumped back out immediately.

- If :COMPILE, they will be compiled.

- If :COMPILE/LOAD, they will be compiled and the compiled code loaded.

4. Call CONVERT-LOOPS-FILES with the names of the files you want converted and an appropriate
option.

Note the following:

2

 CONVERT-LOOPS-FILES

• CONVERT-LOOPS-FILES makes more than one pass over the files being converted; the first pass
is a TEdit textual change to make the files loadable into Medley LOOPS. If you specify version
numbers in your <list-of-files>, these changes will be made in place on your original files.

• The converter doesn’t work completely automatically on systems consisting of several files that
automatically load themselves with FILES coms; the converter may try to load subfiles before they
are converted. It may be necessary to RETURN NIL from the LOAD calls in the break windows that
will occur when this problem comes up. Aside from that, the converter works reasonably well, and
has been used to convert large LOOPS systems with almost no source code changes from Koto
Loops.

3

 CONVERT-LOOPS-FILES

[This page intentionally left blank.]

I N D E X - 1LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

INDEX

A
assignment statements 40
audit trail of rule invocation 23
auditing RuleSets 52
auditObject (Variable) 34
auditVarName (Variable) 34

B
breaking and tracing RuleSets 50

C
caller (Variable) 33
colon-comma in a literal 38
comments 32
comparison with other rule languages 26
compiler options for breaking and tracing 50
computing selectors 39
control structures for selecting rules 18
converting from Buttress Rules 55
copying RuleSets 46
CopyRules (Message) 46
creating RuleSets 45

D
DefAVP (Function) 5.5
DefRSM (Function) 48
Do1 (RuleSet Control Structure) 18
DoAll (RuleSet Control Structure) 19
dollar notation to invoke RuleSets 42
double colon in a literal 38
double-dot syntax to invoke RuleSets 42
double-dot-star syntax to invoke RuleSets 43

E
EditAllDecls 46
editing RuleSets 45
EditMethod (Message) 45
EditRules (Message) 45
ER (Message) 45
exclamation sign to compute names 39
ExplicitFnActiveValue 4

F
factoring meta-level syntax 26
first/last rules 23
FOR1 (RuleSet Control Structure) 21
FORALL (RuleSet Control Structure) 21

I
if-then rules 15
infix operators 35
installing RuleSets

as methods 48
in active values 49

integrated programming environment 29
Interlisp

constants 34
functions 37

invoking RuleSets 42
items in release 1
iteration-condition in RuleSets 21

L
LHS syntax 31
ListRuleSets (Function) 47

literal 38
loading rules 52

M
message sending 37
meta-assignment statements 41
meta-control of RuleSets 42
multiple colons in a literal 40

O
one-shot rules 22

P
pop statement 42
PPR (Message) 47
PPRules (Message) 47
printing RuleSets 47
production rules 15
properties 38
push statement 42

Q
quoted constants 34

R
RE 51
reasons (Variable) 33
recursive compound literals 40
RHS syntax 32
rs (Variable) 33
RSGet (Property) 49
RSGetFn (Function) 49
RSPut (Property) 49
RSPutFn (Function) 49
rule Exec 51
rule-oriented programming 15
ruleApplied (Variable) 33
ruleLabel (Variable) 33
ruleNumber (Variable) 33
ruleObject (Variable) 33
rules 15

basic concepts 16
forms 34
language 31
loading 52
major features 15
using 45
work space 15

RuleSets 15
approaches to organizing 17
auditing 52
breaking and tracing 50
control structures 28
copying 46
creating 45
editing 45
hierarchy 27
installing as methods 48
installing in active values 49
invoking 15,42
iteration condition 21
meta-control 42
printing 47
protocols 47
running from LOOPS 47

I N D E X - 2 LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

INDEX

saving on Lisp files 47
running RuleSets from LOOPS 47
RunRS (Function) 48

S
saving RuleSets on Lisp files 47
self (Variable) 33
single colon in a literal 38
Stop (RuleSet Statement) 43
strings 34
system configuration 1

T
transfer calls 43

U
unary message sending 37
using rules 45

V
variable names 39
variables 32,38

W
While1 (RuleSet Control Structure) 19
WhileAll (RuleSet Control Structure) 20
work space for rules 15

←
←+ push statement 42
←- pop statement 42

~
~ (Rule Unary Operator) 36
~= (Rule Infix Operator) 36

!
! to compute names 39

$
$ to invoke RuleSets 42

*
* (Rule Infix Operator) 35

+
+ (Rule Infix Operator) 35
++ (Rule Infix Operator) 35

-
- (Rule Infix Operator) 35
- (Rule Unary Operator) 36
-- (Rule Infix Operator) 35

.

.. to invoke RuleSets 42

..* to invoke RuleSets 43

/
/ (Rule Infix Operator) 35

:
: in a literal 38
:, in a literal 38
:: in a literal 38

<
< (Rule Infix Operator) 35
<< (Rule Infix Operator) 36
<= (Rule Infix Operator) 35

=
= (Rule Infix Operator) 36
== (Rule Infix Operator) 36

>
> (Rule Infix Operator) 35
>= (Rule Infix Operator) 35

I N D E X - 3LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

INDEX

[This page intentionally left blank]

3

 LOOPSBACKWARDS

LOOPSBACKWARDS

 By: Bob Bane (Bane.pa@Xerox.com)

 15-Dec-87

INTRODUCTION

LOOPSBACKWARDS allows you to run files which were previously converted from the Buttress
release of LOOPS to the Koto release. Unlike the Koto version of LOOPSBACKWARDS conversion
methods for moving files from Buttress LOOPS to Koto LOOPS are included but not supported. We
strong recommend that you convert LOOPS source code from Buttress to Koto using the Koto release
of LOOPS. Conversion of Koto LOOPS source code to Lyric LOOPS is done using the
CONVERSION-AIDS users’ module.

The changes between the Buttress and Koto releases are described in detail in the LOOPS Release
Notes for the Koto release. Old features that are included in LOOPSBACKWARDS are summarized
here:

• Many functions that were removed from the Buttress release are defined.

• The messages List and List! are available.

• The operation of old style active values, from the Buttress release, are provided.

• Support for reading old style macros, such as #(localState getFn putFn) or #$Mumble, is available.

LOOPSBACKWARDS is an unsupported LOOPS users module. It is strongly recommended that it
only be used as part of an effort to upgrade very old LOOPS code to newer releases. It will allow very
old LOOPS code to run well enough that it can be rewritten for a newer relese.

INSTALLATION

LOOPSVCOPY will be automatically loaded by LOOPSBACKWARDS.

4

 LOOPSBACKWARDS

FUNCTIONS

LOOPSBACKWARDS includes ExplicitFnActiveValue and DefAVP. ExplicitFnActiveValue allows
the user code triggered by Get- or Put- accesses to be stored within functions which are pointed to by
instance variables rather than requiring the redefinition of GetWrappedValue or PutWrappedValue.
These functions must have the form specified in the DefAVP function.

ExplicitFnActiveValue [Class]

Purpose: Mimics the behavior of the Buttress style of active values.

Behavior: Get- accesses to the wrapped variable cause the getFn to be
called, Put- accesses cause putFn to be called. Enables the old
style activeValue to look like the new style without changing any
functionality.

The getFn is called by the ExplicitFnActiveValue
GetWrappedValue method. This method passes to the getFn the
arguments defined by DefAVP as described in the LOOPS Users’
Modules.

The putFn is called by the ExplicitFnActiveValue
PutWrappedValue method. This method passes to the putFn the
arguments defined by DefAVP as described in the LOOPS Users’
Modules.

Instance Variables: localState A place for data storage.

getFn The name of a function applied when the active
variable is read.

putFn The name of a function applied when the active
variable is changed.

Example:

32← (← ($ Bin) New ’bin4)
#,($& Bin (|DAW0.1Y:.H53.]99| . 521))

33← (← ($ ExplicitFnActiveValue) New ’EFAV1)
#,($& ExplicitFnActiveValue (|DAW0.1Y:.H53.]99| . 522))

34←(DEFINEQ (PrintOnGet
(self varName localSt propName activeVal type)
(PRINTOUT T "I am:" , activeVal T) localSt))

(PrintOnGet)

35←(←@ ($ EFAV1) getFn ’PrintOnGet)
PrintOnGet

36←(← ($ EFAV1) AddActiveValue ($ bin4) ’height)
#,($A #,NestedNotSetValue PrintOnGet NIL)

37←(←@ ($ bin4) height 123)
123

38←(@ ($ bin4) height)

5

 LOOPSBACKWARDS

I am: #,($ EFAV1)
123

(DefAVP fnName putFlg) [Function]

Purpose: Creates a template for defining an active value function.

Behavior: Creates a template and leaves you in the Interlisp function display
editor.

Arguments: fnName Name of the function.

putFlg T indicates function is a putFn, NIL indicates a
getFn.

Returns: The function name on exit from the editor .

Example: In each of the following cases the template only is shown. User
code is to be added immediately after the comment by using the
display editor.

66←(DefAVP ’AGetFn)
AGetFn

67←PP* AGetFn
(AGetFn
 [LAMBDA (self varName localSt propName activeVal type)
 (* This is a getFn. The value of this getFn is
returned as the value of the enclosing GetValue.)
 localSt])
(AGetFn)

68←(DefAVP ’APutFn T)
APutFn

69←PP* APutFn
(APutFn
 [LAMBDA (self varName newValue propName activeVal type)
 (* This is a putFn. ***NOTE*** The value of this
function will be returned as the value of any enclosing
PutValue. This usually means that you want to return the value
returned by PutLocalState.)
 (PutLocalState activeVal newValue self varName propName
type])
(APutFn)

6

 LOOPSBACKWARDS

[This page intentionally left blank.]

7

 LOOPSMIXIN

LOOPSMIXIN

 By: Bob Bane (Bane.pa@Xerox.com)

 15-Dec-87

INTRODUCTION

LOOPSMIXIN defines several small classes that can be mixed into your application classes. It also
defines the class Perspective and its support classes, which are used in the implementation of
LOOPS Rules. Perspectives allow you to view one object as having more than one class at a time;
they have not been tested extensively outside of Rules and are known to have major bugs which don’t
affect Rules, so they are not documented here.

LOOPSMIXIN Classes

DatedObject - Defines the instance variables created and creator which are set at object creation
time to the values of (DATE) and (USERNAME).

NamedObject - Defines the instance variable name and initializes it to an ActiveValue that insures that
the LOOPS system name for the containing object is uniquely name; i.e. storing a name for the object
in name causes the previous name for the object to be removed with DeleteObjectName and the new
name for the object to be asserted with NameEntity.

GlobalNamedObject - A subclass of NamedObject that works the same way as NamedObject.

ListMetaClass - Specializes the New and DestroyInstance methods to keep a list of all instances of
that class in the class property AllInstances for that class.

StrucMeta - A MetaClass useful for creating new classes. Specializes the New method to create a
Class object by copying the instance variable and class variable descriptions of the current class.
Class variables with a non-NIL Local property will not be copied.

TempClass - Specializes the New method to always create objects of this class using the NewTemp
method, insuring that the objects will be temporary objects.

Perspective, Node, Template, TextItem - These classes are used in LOOPS Rules.

8

 LOOPSMIXIN

[This page intentionally left blank.]

9

 LOOPSMIXIN

[This page intentionally left blank.]

1 0

 LOOPSMIXIN

[This page intentionally left blank.]

9

 RULES

RULES

 Modified by: Rick Martin (Martin.pasa@Xerox.com)

 14-Apr-86

1 0

 RULES

[This page intentionally left blank.]

1 1

 RULES

TABLE OF CONTENTS

1. INTRODUCTION TO RULE-ORIENTED PROGRAMMING IN LOOPS ...15

1.1 Introduction...15

1.2 Basic Concepts ..16

1.3 Organizing a Rule-Oriented Program...17

1.4 Control Structures for Selecting Rules ...18

1.5 One-Shot Rules..22

1.6 First-Last Rules ..23

1.7 Saving an Audit Trail of Rule Invocation ..23

1.7.1 Motivations and Applications..23

1.7.2 Overview of Audit Trail Implementation..24

1.7.3 An Example of Using Audit Trails...24

1.8 Comparison with Other Rule Languages ...26

1.8.1 The Rationale for Factoring Meta-Level Syntax ...26

1.8.2 The Rationale for RuleSet Hierarchy..27

1.8.3 The Rationale for RuleSet Control Structures ..28

1.8.4 The Rationale for an Integrated Programming Environment............................29

2. THE RULE LANGUAGE ...31

2.1 Language Introduction..31

2.2 Kinds of Variables ..32

2.3 Rule Forms...34

2.4 Infix Operators and Brackets..35

2.5 Interlisp Functions and Message Sending ...37

1 2

 RULES

2.6 Variables and Properties ..38

2.7 Computing Selectors and Variable Names ..39

2.8 Recursive Compound Literals ..40

2.9 Assignment Statements ...41

2.10 Meta-Assignment Statements ..41

2.11 Push and Pop Statements..42

2.12 Invoking RuleSets ..42

2.13 Transfer Calls ...43

2.14 Stop Statements...43

3. USING RULES IN LOOPS..45

3.1 Creating RuleSets ..45

3.2 Editing RuleSets...45

3.3 Copying RuleSets...46

3.4 Saving RuleSets on Lisp Files..47

3.5 Printing RuleSets..47

3.6 Running RuleSets from LOOPS...47

3.7 Installing RuleSets as Methods ..48

3.8 Installing RuleSets in ActiveValues ..49

3.9 Tracing and Breaking RuleSets..50

3.10 The Rule Exec..51

3.11 Auditing RuleSets...52

3.12 Loading Rules ..52

3.13 Known Problems ..52

1 3

 RULES

LIST OF FIGURES

1. Basic RuleSet..18

2. RuleSet Showing Do1 ...19

3. RuleSet with WhileAll ...20

4. RuleSet Showing Evaluation...25

5. Example of an Audit Trail ..26

6. RuleSet Invoked as a Method ...30

7. Initial Template for a RuleSet ..46

1 4

 RULES

[This page intentionally left blank.]

i i iXEROX LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

PREFACE v

CONVERT-LOOPS-FILES 1

LOOPSBACKWARDS 3

LOOPSMIXIN 7

RULES 9

INDEX INDEX-1

i v XEROX LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

TABLE OF CONTENTS

[This page intentionally left blank]

vXEROX LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

Overview of the Manual

This manual describes the Users’ Modules for Xerox’s Lisp Object-Oriented
Programming System, Xerox LOOPS (TM), to developers.

Note: Xerox does not support Xerox LOOPS Users’ Modules. However,
each Users’ Module contains the name and network mailing address
of the person who wrote or last modified that module, and the date it
was written or last modified.

This manual describes the Lyric/Medley Release of the Xerox LOOPS Users’
Modules, which run under the Lyric and Medley Releases of Xerox Lisp.

Organization of the Manual and How to Use It

This manual is divided into chapters, with each chapter describing a separate
Users’ Module.

To use the manual, read the chapter that corresponds to the Users’ Module
you want to use. A general Table of Contents is provided to help you locate
specific information.

Conventions

This manual uses the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods,
arguments, etc., must be typed as shown. Typically, this means that
method names are capitalized and variables are not.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in
bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89_(_LOGIN)

• All examples are typed into an Interlisp Exec. This is the recommended
Exec for all Xerox LOOPS expressions.

• Methods with an exclamation mark (!) suffix usually perform operations
deeply into class structure instead of only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth
functions.

v i XEROX LOOPS USERS’ MODULES MANUAL, LYRIC/MEDLEY RELEASE

PREFACE

• Methods often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

References

The following books and manuals augment this manual.

Xerox LOOPS Reference Manual

Xerox LOOPS Release Notes

Xerox LOOPS Library Modules Manual

Interlisp-D Reference Manual

Common Lisp: the Language by Guy Steele

Xerox Common Lisp Implementation Notes, Lyric Release

Xerox Lisp Release Notes, Lyric Release and Medley Release

Xerox Lisp Library Modules Manual, Lyric Release and Medley Release

1XEROX LOOPS USERS’ MODULES MANUAL, LYRIC BETA RELEASE

Writer’s Notes -- Conventions

This file includes notes on conventions for Xerox LOOPS Users’ Modules Manual, Lyric Beta Release. This
manual is packaged in one binder.

Writer: Raven Kontur Brewster

Printing Date: 22 February 1988

Directories and Files

The directory {ERIS}<Doc>Loops>Lyric>Beta>UserMods> contains the files for the manual. This directory has
the following subdirectories:

• {ERIS}<Doc>Loops>Lyric>Beta>UserMods>Z-ReleaseInfo> contains this file on writing conventions and a file
on production details.

Filenames describe the contents of the file. For example, the filename

{ERIS}<Doc>Loops>Lyric>Beta>UserMods>LoopsMixin.tedit

contains the chapter on LoopsMixin.

Assemble the files in the following order for the manual:

{ERIS}<Doc>Loops>Lyric>Beta>UserMods>A1-TitlePage.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>A2-TOC.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>A3-Preface.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Converter.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>LoopsBackwards.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>LoopsMixin.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Rules-A1-TitlePage.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Rules-A2-TOC.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Rules-A3-LOF.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Rules1-Intro.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Rules2-Language.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>Rules3-Use.tedit
{ERIS}<Doc>Loops>Lyric>Beta>UserMods>RulesA-Convert.tedit

Conventions

This manual uses the following conventions:

• Case is significant in Xerox LOOPS and Lisp. All selectors, methods, arguments, etc., must be typed as
shown. Typically, this means that method names are capitalized and variables are not.

• Arguments appear in italic type.

• Selectors, methods, functions, objects, classes, and instances appear in bold type.

For example, a method appears as follows:

(_ self Selector Arg1 Arg2)

• Examples appear in the following typeface:

89_(_LOGIN)

2 XEROX LOOPS USERS’ MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

• Methods with an exclamation mark (!) suffix usually perform operations deeply into class structure instead of
only on a given object.

• Methods with a question mark (?) suffix usually are predicates; that is, truth functions.

• Methods often appear in the form ClassName.SelectorName.

• Cautions describe possible dangers to hardware or software.

• Notes describe related text.

Style Sheet Addenda

Here are some guidelines I used when writing the LOOPS manuals. Items
appear in rather random order.

• Avoid contractions.

• Avoid subscripts. Use WORD1 rather than WORD1 to avoid inconsistent
line leading.

• Avoid wording that starts "Note that..." or "Notice that...". Either make it a
note with correct format or eliminate the "Note that".

• Use semicolons rather than m-dashes.

• Each item in the template starts with an initial capital letter; e.g.,
"Describes..."

• The arguments are identical in the call and in the argument description.

• Parenthesies appear around expressions and square brackets appear
around the name of the functionality.

• The arrow in the expression is the NS character ←, not _. These
characters appear similarly when printed, but differently on the screen. See
the section, "Special Notes and Cautions," for details.

• A period appears after the word None, after argument descriptions, and
Returns: item.

• Items are set to or return T (instead of true).

• Menus contain options, not items or selections.

• You drag (not roll) the mouse to the right of a menu option to see its
submenu.

• Use "above" and "below" when referrering to things in the same section,
section numbers and names when referrering to things in the same chapter,
and chapter numbers and names when referrering to things in another
chapter.

• Please study the following style sheet carefully before you start to edit. The
various appearances of active value and annotated values are especially
crazy making.

These things appear in bold:
class variables
functions
instance variables
messages
methods
variables

3XEROX LOOPS USERS’ MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

ActiveValue - specific class/instance
active value - general information
activeValue - previous implementation of ActiveValue

annotatedValue - data type
AnnotatedValue - specific class
annotated values - general information

bitmap

data type

file package
filecoms

inspector

Lisp Library package
localState - instance variable

non-NIL

prettyprints

supers list

Paragraph Formatting

The heading has the following format:

The text the following format:

4 XEROX LOOPS USERS’ MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

Page Layout

The starting page number varies with the package.

5XEROX LOOPS USERS’ MODULES MANUAL, LYRIC BETA RELEASE

WRITER’S NOTES

Bitmaps, Graphs, and Sketches

Scale for bitmaps is 0.75.

Special Notes and Cautions

Make sure you have changed the underscore to be a left arrow before loading and printing any files. To do this,

- Enter the following commands into your Executive:

(GETCHARBITMAP (CHARCODE _) ’(MODERN 10 MRR))
(EDITBM IT)

- When the bitmap editor apears, delete the underscore and insert the following left arrow:
..........
..........
..........
..........
..........
....X.....
...XX.....
..XXXXXX..
...XX.....
....X.....
..........
..........
..........
..........

- Finally, enter the following commands into your Executive to store the pattern:

(PUTCHARBITMAP (CHARCODE _) ’(MODERN 10 MRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(MODERN 10 BRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 10 MRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 10 BRR) IT)
(PUTCHARBITMAP (CHARCODE _) ’(TERMINAL 12 BRR) IT)

1

XEROX CONVERT-LOOPS-FILES

CONVERT-LOOPS-FILES

 By: Bob Bane (Bane.pa@Xerox.com)

 5-Feb-88

INTRODUCTION

CONVERT-LOOPS-FILES allows you to convert files from the Koto release of Xerox LOOPS to the
Lyric/Medley release. The changes from the Koto release are described in detail in the Xerox LOOPS
Release Notes.

PROCEDURE

To Convert Koto LOOPS Files to Lyric/Medley Loops:

1. Your files must be from Koto LOOPS. Pre-Koto LOOPS files must first be run through the
Buttress->Koto converter in a Koto LOOPS sysout.

2. Install and load your Lyric LOOPS sysout. You need to have TEdit loaded, as the converter uses
it.

3. Load the file CONVERSION-AIDS.DFASL, which defines the function

(CONVERT-LOOPS-FILES <list-of-files> <dump-files-p>)

where:

<list-of-files> A filename or a list of filenames to be converted.

<dump-files-p> Determines disposition of files.

- If non-NIL, converted files will be dumped back out immediately.

- If :COMPILE, they will be compiled.

- If :COMPILE/LOAD, they will be compiled and the compiled code loaded.

4. Call CONVERT-LOOPS-FILES with the names of the files you want converted and an appropriate
option.

Note the following:

2

XEROX CONVERT-LOOPS-FILES

• CONVERT-LOOPS-FILES makes more than one pass over the files being converted; the first pass
is a TEdit textual change to make the files loadable into Lyric/Medley LOOPS. If you specify version
numbers in your <list-of-files>, these changes will be made in place on your original files.

• The converter doesn’t work completely automatically on systems consisting of several files that
automatically load themselves with FILES coms; the converter may try to load subfiles before they
are converted. It may be necessary to RETURN NIL from the LOAD calls in the break windows that
will occur when this problem comes up. Aside from that, the converter works reasonably well, and
has been used to convert large LOOPS systems with almost no source code changes from Koto
Loops.

3

XEROX CONVERT-LOOPS-FILES

[This page intentionally left blank.]

3

XEROX LOOPSBACKWARDS

LOOPSBACKWARDS

 By: Bob Bane (Bane.pa@Xerox.com)

 15-Dec-87

INTRODUCTION

LOOPSBACKWARDS allows you to run files which were previously converted from the Buttress
release of Xerox LOOPS to the Koto release. Unlike the Koto version of LOOPSBACKWARDS
conversion methods for moving files from Buttress LOOPS to Koto LOOPS are included but not
supported. We strong recommend that you convert LOOPS source code from Buttress to Koto using
the Koto release of LOOPS. Conversion of Koto LOOPS source code to Lyric LOOPS is done using
the CONVERSION-AIDS users’ module.

The changes between the Buttress and Koto releases are described in detail in the Xerox LOOPS
Release Notes for the Koto release. Old features that are included in LOOPSBACKWARDS are
summarized here:

• Many functions that were removed from the Buttress release are defined.

• The messages List and List! are available.

• The operation of old style active values, from the Buttress release, are provided.

• Support for reading old style macros, such as #(localState getFn putFn) or #$Mumble, is available.

LOOPSBACKWARDS is an unsupported LOOPS users module. It is strongly recommended that it
only be used as part of an effort to upgrade very old LOOPS code to newer releases. It will allow very
old LOOPS code to run well enough that it can be rewritten for a newer relese.

INSTALLATION

LOOPSVCOPY will be automatically loaded by LOOPSBACKWARDS.

4

XEROX LOOPSBACKWARDS

FUNCTIONS

LOOPSBACKWARDS includes ExplicitFnActiveValue and DefAVP. ExplicitFnActiveValue allows
the user code triggered by Get- or Put- accesses to be stored within functions which are pointed to by
instance variables rather than requiring the redefinition of GetWrappedValue or PutWrappedValue.
These functions must have the form specified in the DefAVP function.

ExplicitFnActiveValue [Class]

Purpose: Mimics the behavior of the Buttress style of active values.

Behavior: Get- accesses to the wrapped variable cause the getFn to be
called, Put- accesses cause putFn to be called. Enables the old
style activeValue to look like the new style without changing any
functionality.

The getFn is called by the ExplicitFnActiveValue
GetWrappedValue method. This method passes to the getFn the
arguments defined by DefAVP as described in the Xerox LOOPS
Users’ Modules.

The putFn is called by the ExplicitFnActiveValue
PutWrappedValue method. This method passes to the putFn the
arguments defined by DefAVP as described in the Xerox LOOPS
Users’ Modules.

Instance Variables: localState A place for data storage.

getFn The name of a function applied when the active
variable is read.

putFn The name of a function applied when the active
variable is changed.

Example:

32_ (_ ($ Bin) New ’bin4)
#,($& Bin (|DAW0.1Y:.H53.]99| . 521))

33_ (_ ($ ExplicitFnActiveValue) New ’EFAV1)
#,($& ExplicitFnActiveValue (|DAW0.1Y:.H53.]99| . 522))

34_(DEFINEQ (PrintOnGet
(self varName localSt propName activeVal type)
(PRINTOUT T "I am:" , activeVal T) localSt))

(PrintOnGet)

35_(_@ ($ EFAV1) getFn ’PrintOnGet)
PrintOnGet

36_(_ ($ EFAV1) AddActiveValue ($ bin4) ’height)
#,($A #,NestedNotSetValue PrintOnGet NIL)

37_(_@ ($ bin4) height 123)
123

38_(@ ($ bin4) height)

5

XEROX LOOPSBACKWARDS

I am: #,($ EFAV1)
123

(DefAVP fnName putFlg) [Function]

Purpose: Creates a template for defining an active value function.

Behavior: Creates a template and leaves you in the Interlisp function display
editor.

Arguments: fnName Name of the function.

putFlg T indicates function is a putFn, NIL indicates a
getFn.

Returns: The function name on exit from the editor .

Example: In each of the following cases the template only is shown. User
code is to be added immediately after the comment by using the
display editor.

66_(DefAVP ’AGetFn)
AGetFn

67_PP* AGetFn
(AGetFn
 [LAMBDA (self varName localSt propName activeVal type)
 (* This is a getFn. The value of this getFn is
returned as the value of the enclosing GetValue.)
 localSt])
(AGetFn)

68_(DefAVP ’APutFn T)
APutFn

69_PP* APutFn
(APutFn
 [LAMBDA (self varName newValue propName activeVal type)
 (* This is a putFn. ***NOTE*** The value of this
function will be returned as the value of any enclosing
PutValue. This usually means that you want to return the value
returned by PutLocalState.)
 (PutLocalState activeVal newValue self varName propName
type])
(APutFn)

6

XEROX LOOPSBACKWARDS

[This page intentionally left blank.]

7

XEROX LOOPSMIXIN

LOOPSMIXIN

 By: Bob Bane (Bane.pa@Xerox.com)

 15-Dec-87

INTRODUCTION

LOOPSMIXIN defines several small classes that can be mixed into your application classes. It also
defines the class Perspective and its support classes, which are used in the implementation of Xerox
LOOPS Rules. Perspectives allow you to view one object as having more than one class at a time;
they have not been tested extensively outside of Rules and are known to have major bugs which don’t
affect Rules, so they are not documented here.

LOOPSMIXIN Classes

DatedObject - Defines the instance variables created and creator which are set at object creation
time to the values of (DATE) and (USERNAME).

NamedObject - Defines the instance variable name and initializes it to an ActiveValue that insures that
the Xerox LOOPS system name for the containing object is uniquely name; i.e. storing a name for the
object in name causes the previous name for the object to be removed with DeleteObjectName and
the new name for the object to be asserted with NameEntity.

GlobalNamedObject - A subclass of NamedObject that works the same way as NamedObject.

ListMetaClass - Specializes the New and DestroyInstance methods to keep a list of all instances of
that class in the class property AllInstances for that class.

StrucMeta - A MetaClass useful for creating new classes. Specializes the New method to create a
Class object by copying the instance variable and class variable descriptions of the current class.
Class variables with a non-NIL Local property will not be copied.

TempClass - Specializes the New method to always create objects of this class using the NewTemp
method, insuring that the objects will be temporary objects.

Perspective, Node, Template, TextItem - These classes are used in Xerox LOOPS Rules.

8

XEROX LOOPSMIXIN

[This page intentionally left blank.]

9

XEROX LOOPSMIXIN

[This page intentionally left blank.]

1 0

XEROX LOOPSMIXIN

[This page intentionally left blank.]

i i iXEROX LOOPS USERS’ MODULES MANUAL, LYRIC BETA RELEASE

Writer’s Notes -- Production Details

This file includes notes on the production of Xerox LOOPS Users’ Modules Manual, Lyric Beta Release. This
manual is packaged in one binder.

Writer: Raven Kontur Brewster

Printing Date: 22 February 1988

Files Needed

To edit or print the manual, make sure you have the following files loaded:

IMTOOLS
SKETCH
GRAPHER

Fonts Used

{ERIS}<LISP>FONTS>

Modern font
18-point bold
14-point bold
12-point bold
10-point regular
10-point italic
10-point bold

Terminal font
10-point regular
10-point italic
10-point bold

Printing Information

The manual was printed under a Lyric sysout on the Tsunami printer.

1 5

XEROX RULES

1. INTRODUCTION TO RULE-ORIENTED
PROGRAMMING IN XEROX LOOPS

The core of decision-making expertise in many kinds of problem solving can be expressed succinctly in
terms of rules. The following sections describe facilities in Xerox LOOPS for representing rules, and
for organizing knowledge-based systems with rule-oriented programming. The Xerox LOOPS rule
language provides an experimental framework for developing knowledge-based systems. The rule
language and programming environment are integrated with the object-oriented, data-oriented, and
procedure-oriented parts of Xerox LOOPS.

Rules in Xerox LOOPS are organized into production systems (called RuleSets) with specified control
structures for selecting and executing the rules. The work space for RuleSets is an arbitrary Xerox
LOOPS object.

Decision knowledge can be factored from control knowledge to enhance the perspicuity of rules. The
rule language separates decision knowledge from meta-knowledge such as control information, rule
descriptions, debugging instructions, and audit trail descriptions. An audit trail records inferential
support in terms of the rules and data that were used. Such trails are important for knowledge-based
systems that must be able to account for their results. They are also essential for guiding belief
revision in programs that need to reason with incomplete information.

1.1 Introduction

Production rules have been used in expert systems to represent decision-making knowledge for many
kinds of problem-solving. Such rules (also called if-then rules) specify actions to be taken when certain
conditions are satisfied. Several rule languages have been developed in the past few years and used
for building expert systems. The following sections describe the concepts and facilities for rule-
oriented programming in Xerox LOOPS.

Xerox LOOPS has the following major features for rule-oriented programming:

(1) Rules in Xerox LOOPS are organized into ordered sets of rules (called RuleSets) with specified
control structures for selecting and executing the rules. Like subroutines, RuleSets are building
blocks for organizing programs hierarchically.

(2) The work space for rules in Xerox LOOPS is an arbitrary Xerox LOOPS object. The names of the
instance variables provide a name space for variables in the rules.

(3) Rule-oriented programming is integrated with object-oriented, data-oriented, and procedure-
oriented programming in Xerox LOOPS.

(4) RuleSets can be invoked in several ways: In the object-oriented paradigm, they can be invoked
as methods by sending messages to objects. In the data-oriented paradigm, they can be invoked

1 6

XEROX RULES

as a side-effect of fetching or storing data in active values. They can also be invoked directly
from Lisp programs. This integration makes it convenient to use the other paradigms to organize
the interactions between RuleSets.

(5) RuleSets can also be invoked from rules either as predicates on the LHS of rules, or as actions
on the RHS of rules. This provides a way for RuleSets to control the execution of other RuleSets.

(6) Rules can automatically leave an audit trail. An audit trail is a record of inferential support in
terms of rules and data that were used. Such trails are important for programs that must be able
to account for their results. They can also be used to guide belief revision in programs that must
reason with incomplete information.

(7) Decision knowledge can be separated from control knowledge to enhance the perspicuity of
rules. The rule language separates decision knowledge from meta-knowledge such as control
information, rule descriptions, debugging instructions, and audit trail descriptions.

(8) The rule language provides a concise syntax for the most common operations.

(9) There is a fast and efficient compiler for translating RuleSets into Interlisp functions.

(10) Xerox LOOPS provides facilities for debugging rule-oriented programs.

The following sections are organized as follows: Section 1.2, "Basic Concepts," outlines the basic
concepts of rule-oriented programming in Xerox LOOPS. It contains many examples that illustrate
techniques of rule-oriented programming. Section 1.3, "Organizing a Rule-Oriented Program,"
describes the rule syntax, and the remaining sections in this chapter discuss the facilities for creating,
editing, and debugging RuleSets in Xerox LOOPS.

1.2 Basic Concepts

Rules express the conditional execution of actions. They are important in programming because they
can capture the core of decision-making for many kinds of problem-solving. Rule-oriented
programming in Xerox LOOPS is intended for applications to expert and knowledge-based systems.

The following sections outline some of the main concepts of rule-oriented programming. Xerox
LOOPS provides a special language for rules because of their central role, and because special
facilities can be associated with rules that are impractical for procedural programming languages. For
example, Xerox LOOPS can save specialized audit trails of rule execution. Audit trails are important in
knowledge systems that need to explain their conclusions in terms of the knowledge used in solving a
problem. This capability is essential in the development of large knowledge-intensive systems, where
a long and sustained effort is required to create and validate knowledge bases. Audit trails are also
important for programs that do non-monotonic reasoning. Such programs must work with incomplete
information, and must be able to revise their conclusions in response to new information.

1 7

XEROX RULES

1.3 Organizing a Rule-Oriented Program

In any programming paradigm, it is important to have an organizational scheme for composing large
systems from smaller ones. Stated differently, it is important to have a method for partitioning large
programs into nearly-independent and manageably-sized pieces. In the procedure-oriented paradigm,
programs are decomposed into procedures. In the object-oriented paradigm, programs are
decomposed into objects. In the rule-oriented paradigm, programs are decomposed into RuleSets. A
Xerox LOOPS program that uses more than one programming paradigm is factored across several of
these dimensions.

There are three approaches to organizing the invocation of RuleSets in Xerox LOOPS:

Procedure-oriented Approach. This approach is analogous to the use of subroutines in procedure-
oriented programming. Programs are decomposed into RuleSets that call each other and return
values when they are finished. SubRuleSets can be invoked from multiple places. They are used to
simplify the expression in rules of complex predicates, generators, and actions.

Object-oriented Approach. In this approach, RuleSets are installed as methods for objects. They are
invoked as methods when messages are sent to the objects. The method RuleSets are viewed
analogously to other procedures that implement object message protocols. The value computed by
the RuleSet is returned as the value of the message sending operation.

Data-oriented Approach. In this approach, RuleSets are installed as access functions in active values.
A RuleSet in an active value is invoked when a program gets or puts a value in the Xerox LOOPS
object. As with active values with Lisp functions for the getFn or putFn, these RuleSet active values
can be triggered by any Xerox LOOPS program, whether rule-oriented or not.

These approaches for organizing RuleSets can be combined to control the interactions between bodies
of decision-making knowledge expressed in rules. For example, Figure 1 shows the RuleSet of
consumer instructions for testing a washing machine. The work space for the ruleSet is a Xerox
LOOPS object of the class WashingMachine. The control structure While1 loops through the rules
trying an escalating sequence of actions, starting again at the beginning of some rule is applied. Some
rules, called one-shot rules, are executed at most once. These rules are indicated by preceding them
with a one in braces ({1}).

1 8

XEROX RULES

RuleSet Name: CheckWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: while1 ;
While Condition: ruleApplied;

(* What a consumer should do when a washing machine failes.)

 IF .Operational THEN (STOP T);

 IF load>1.0 THEN .ReduceLoad;

 If ~pluggedInTo THEN .PlugIn;

{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;

{1} IF pluggedInTo:voltage<110 THEN SPGE.Call;

{1} THEN dealer.RequestService;

{1} THEN manufacturer.Complain;

{1} THEN $ConsumerBoard.Complain;

{1} THEN (STOP T);

 Figure 1. Basic RuleSet

1.4 Control Structures for Selecting Rules

RuleSets in Xerox LOOPS consist of an ordered list of rules and a control structure. Together with the
contents of the rules and the data, a RuleSet control structure determines which rules are executed.
Execution is determined by the contents of rules in that the conditions of a rule must be satisfied for it
to be executed. Execution is also controlled by data in that different values in the data allow different
rules to be satisfied. Criteria for iteration and rule selection are specified by a RuleSet control
structure. There are two primitive control structures for RuleSets in Xerox LOOPS which operate as
follows:

Do1 [RuleSet Control Structure]

The first rule in the RuleSet whose conditions are satisfied is
executed. The value of the RuleSet is the value of the rule. If no
rule is executed, the RuleSet returns NIL.

The Do1 control structure is useful for specifying a set of mutually
exclusive actions, since at most one rule in the RuleSet will be
executed for a given invocation. When a RuleSet contains rules for
specific and general situations, the specific rules should be placed
before the general rules.

1 9

XEROX RULES

DoAll [RuleSet Control Structure]

Starting at the beginning of the RuleSet, every rule is executed
whose conditions are satisfied. The value of the RuleSet is the
value of the last rule executed. If no rule is executed, the RuleSet
returns NIL.

The DoAll control structure is useful when a variable number of
additive actions are to be carried out, depending on which
conditions are satisfied. In a single invocation of the RuleSet, all of
the applicable rules are invoked.

Figure 2 illustrates the use of a Do1 control structure to select one of three mutually exclusive actions.

RuleSet Name: SimulateWashingMachine;
WorkSpace Class: WashingMachine;
Control Structure: Do1 ;

(* Rules for controlling the wash cycle of a washing machine.)

 IF controlSetting = ’RegularFabric
 THEN .Fill .Wash .Pause .SpinAndDrain
 .SprayAndRinse .SpinAndDrain
 .Fill. DeepRinse .Pause .DampDry;

 IF controlSetting = ’PermanentPress
 THEN .Fill .Wash .Pause .SpinAndPartialDrain
 .FillCold .SpinAndPartialDrain
 .FillCold .Pause .SpinAndDrain
 .FillCold. DeepRinse .Pause .DampDry;

 IF controlSetting = ’DelicateFabric
 THEN .FillSoak1 .Agitate .Soak4 .Agitate
 .Soak1 .SpinAndDrain .SprayAndRinse
 .SpinAndDrain .Fill .DeepRinse .Pause .DampDry;

Figure 2. RuleSet showing Do1

There are two control structures in Xerox LOOPS that specify iteration in the execution of a RuleSet.
These control structures use an explicit while-condition associated with the RuleSet. They are direct
extensions of the two primitive control structures above.

While1 [RuleSet Control Structure]

This is a cyclic version of Do1. If the while-condition is satisfied,
the first rule is executed whose conditions are satisfied. This is
repeated as long as the while condition is satisfied or until a Stop
statement or transfer call is executed (see Section 2.14, "Stop
Statements"). The value of the RuleSet is the value of the last rule
that was executed, or NIL if no rule was executed.

2 0

XEROX RULES

WhileAll [RuleSet Control Structure]

This is a cyclic version of DoAll. If the while-condition is satisfied,
every rule is executed whose conditions are satisfied. This is
repeated as long as the while condition is satisfied or until a Stop
statement is executed. The value of the RuleSet is the value of the
last rule that was executed, or NIL if no rule was executed.

The "while-condition" is specified in terms of the variables and constants accessible from the RuleSet.
The constant T can be used to specify a RuleSet that iterates forever (or until a Stop statement or
transfer is executed). The special variable ruleApplied is used to specify a RuleSet that continues as
long as some rule was executed in the last iteration. Figure 3 illustrates a simple use of the WhileAll
control structure to specify a sensing/acting feedback loop for controlling the filling of a washing
machine tub with water.

RuleSet Name: FillTub;
WorkSpace Class: WashingMachine;
Control Structure: WhileAll ;
Temp Vars: waterLimit;
WhileCond: T;

(* Rules for controlling the filling of a washing tub with
water.)

{1!} IF loadSetting = ’Small THEN waterLimit_10;
{1!} IF loadSetting = ’Meduim THEN waterLimit_13.5;
{1!} IF loadSetting = ’Large THEN waterLimit_17;
{1!} IF loadSetting = ’ExtraLarge THEN waterLimit_20;

(* Respond to a change of temperature setting at any time.)

 IF termperatureSetting = ’Hot
 THEN HotWaterValve.Open ColdWaterValve.Close;

 IF termperatureSetting = ’Warm
 THEN HotWaterValve.Open ColdWaterValve.Open;

 IF termperatureSetting = ’Cold
 THEN HotWaterValve.Close ColdWaterValve.Open;

(* Stop when the water reaches its limit.)

 IF waterLevelSensor.Test >= waterLimit
 THEN HotWaterValve.Close ColdWaterValve.Close
 (Stop T);

Figure 3. RuleSet with WhileAll

There are two control structures in Xerox LOOPS that specify iteration over a set of elements in the
execution of a RuleSet. These control structures use an explicit while-condition associated with the
RuleSet. They are direct extensions of the two primitive control structures above.

2 1

XEROX RULES

FOR1 [RuleSet Control Structure]

This is a cyclic version of Do1. If the iteration-condition (or while-
condition) is satisfied, the first rule is executed whose conditions
are satisfied or until a Stop statement is executed. This is repeated
as long as the iteration condition is satisfied. The value of the
RuleSet is the value of the last rule that was executed, or NIL if no
rule was executed.

FORALL [RuleSet Control Structure]

This is a cyclic version of DoAll. If the iteration-condition is
satisfied, every rule is executed whose conditions are satisfied.
This is repeated as long as the iteration condition is satisfied or until
a Stop statement is executed. The value of the RuleSet is the
value of the last rule that was executed, or NIL if no rule was
executed.

The "iteration-condition" is specified in terms of the variables and constants accessible from the
RuleSet. The simplest condition is

(FOR <iterVar> IN <setExpr> DO ruleSet) ;

The setExpr will be parsed with the RuleSet parser. The symbol ruleSet is a reserved word, and must
be spelled as shown (no changes in capitalization).

Here is an example of iteration:

Control Structure: FORALL;
Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)) DO ruleSet) ;

For each buyer in the list produced by RoadStops, the ruleSet will be run. In a FOR1, the iteration will
go on to the next buyer as soon as one rule executes. In a FORALL, all rules in the RuleSet will be
tried.

For nested iteration one can use a slightly more complicated form, as illustrated by the following
example:

Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)) DO
(FOR seller in (RoadStops ($ Producer)) DO ruleSet)) ;

An experienced Lisp user can see that this resembles the CLISP iteration construct. In fact, except
that you can (must) use the RuleSet syntax in the construct, it is the CLISP construct, and any such
construct can be used. A DO1 or DOALL ruleSet will be substituted for the occurrence of the atom
ruleSet, depending on whether the Control Structure is a FOR1 or FORALL.

2 2

XEROX RULES

As an abbreviation, if the construct does not contain the atom ruleSet, then (DO ruleSet) is appended
to the Iteration Condition for a FOR1 or FORALL. Thus one could write the first example as:

Iteration Condition: (FOR buyer IN (RoadStops ($ Consumer)))

1.5 One-Shot Rules

One of the design objectives of Xerox LOOPS is to clarify the rules by factoring out control information
whenever possible. This objective is met in part by the declaration of a control structure for RuleSets.

Another important case arises in cyclic control structures in which some of the rules should be
executed only once. This was illustrated in the Washing Machine example in Figure 1 where we
wanted to prevent the RuleSet from going into an infinite loop of resetting the breaker, when there was
a short circuit in the Washing Machine. Such rules are also useful for initializing data for RuleSets as
in the example in Figure 3.

In the absence of special syntax, it would be possible to encode the information that a rule is to be
executed only once as follows:

Control Structure: While1
Temporary Vars: triedRule3;

...

IF ~triedRule3 condition1 condition2 THEN triedRule3_T action1;

In this example, the variable triedRule3 is used to control the rule so that it will be executed at most
once in an invocation of a RuleSet. However, the prolific use of rules with such control clauses in large
systems has led to the common complaint that control clauses in rule languages defeat the
expressiveness and conciseness of the rules. For the case above, Xerox LOOPS provides a
shorthand notation as follows:

{1} IF condition1 condition2 THEN action1;

The brace notation means exactly the same thing in the example above, but it more concisely and
clearly indicates that the rule executes only once. These rules are called "one shot" or "execute-once"
rules.

In some cases, it is desired not only that a rule be executed at most once, but that it be tested at most
once. This corresponds to the following:

Control Structure: While1
Temporary Vars: triedRule3;

...

IF ~triedRule3 triedRule3_T condition1 condition2 THEN action1;

2 3

XEROX RULES

In this case, the rule will not be tried more than once even if some of the conditions fail the first time
that it is tested. The Xerox LOOPS shorthand for these rules (pronounced "one shot bang") is

{1!} IF condition1 condition2 THEN action1;

These rules are called "try-once" rules.

The two kinds of one-shot rules are our first examples of the use of meta-descriptions preceding the
rule body in braces. See Section 1.7, "Saving an Audit Trail of Rule Invocation," for information on
using meta-descriptions for describing the creation of audit trails.

1.6 First/Last Rules

It is sometimes useful to have rules which fire before or after the ordinary part of the RuleSet is
invoked, independent of the form of the control structure. For example, in a DO1, such "FIRST " rules
could be used for initialization. These now exist, and are notated by putting a {F} for a first rule in the
MetaDescription field, and a {L} for a last rule. If a RuleSet has L rules which execute, the value of the
RuleSet is the value of the last rule which executed.

1.7 Saving an Audit Trail of Rule Invocation

A basic property of knowledge-based systems is that they use knowledge to infer new facts from older
ones. (Here we use the word "facts" as a neutral term, meaning any information derived or given, that
is used by a reasoning system.) Over the past few years, it has become evident that reasoning
systems need to keep track not only of their conclusions, but also of their reasoning steps.
Consequently, the design of such systems has become an active research area in AI. The audit trail
facilities of Xerox LOOPS support experimentation with systems that can not only use rules to make
inferences, but also keep records of the inferential process itself.

1.7.1 Motivations and Applications

Debugging. In most expert systems, knowledge bases are developed over time and are the major
investment. This places a premium on the use of tools and methods for identifying and correcting bugs
in knowledge bases. By connecting a system’s conclusions with the knowledge that it uses to derive
them, audit trails can provide a substantial debugging aid. Audit trails provide a focused means of
identifying potentially errorful knowledge in a problem solving context.

Explanation Facilities. Expert systems are often intended for use by people other than their creators,
or by a group of people pooling their knowledge. An important consideration in validating expert
systems is that reasoning should be transparent, that is, that a system should be able to give an
account of its reasoning process. Facilities for doing this are sometimes called explanation systems

2 4

XEROX RULES

and the creation of powerful explanation systems is an active research area in AI and cognitive
science. The audit trail mechanism provides an essential computational prerequisite for building such
systems.

Belief Revision. Another active research area is the development of systems that can "change their
minds". This characteristic is critical for systems that must reason from incomplete or errorful
information. Such systems get leverage from their ability to make assumptions, and then to recover
from bad assumptions by efficiently reorganizing their beliefs as new information is obtained.
Research in this area ranges from work on non-monotonic logics, to a variety of approaches to belief
revision. The facilities in the rule language make it convenient to use a user-defined calculus of belief
revision, at whatever level of abstraction is appropriate for an application.

1.7.2 Overview of Audit Trail Implementation

When audit mode is specified for a RuleSet, the compilation of assignment statements on the right-
hand sides of rules is altered so that audit records are created as a side-effect of the assignment of
values to instance variables. Audit records are Xerox LOOPS objects, whose class is specified in
RuleSet declarations. The audit records are connected with associated instance variables through the
value of the reason properties of the variables.

Audit descriptions can be associated with a RuleSet as a whole, or with specific rules. Rule-specific
audit information is specified in a property-list format in the meta-description associated with a rule.
For example, this can include certainty factor information, categories of inference, or categories of
support. Rule-specific information overrides RuleSet information.

During rule execution in audit mode, the audit information is evaluated after the rule’s LHS has been
satisfied and before the rule’s RHS is applied. For each rule applied, a single audit record is created
and then the audit information from the property list in the rule’s meta-description is put into the
corresponding instance variables of the audit record. The audit record is then linked to each of the
instance variables that have been set on the RHS of the rule by way of the reason property of the
instance variable.

Additional computations can be triggered by associating active values with either the audit record class
or with the instance variables. For example, active values can be specified in the audit record classes
in order to define a uniform set of side-effects for rules of the same category. In the following example,
such an active value is used to carry out a "certainty factor" calculation.

1.7.3 An Example of Using Audit Trails

The following example illustrates one way to use the audit trail facilities. Figure 4 illustrates a RuleSet
which is intended to capture the decisions for evaluating the potential purchase of a washing machine.
As with any purchasing situation, this one includes the difficulty of incomplete information about the
product. For example in this RuleSet, the reliability of the washing machine is estimated to be 0.5 in
the absence of specific information from Consumer Reports. The meta-descriptions for the rules,
which appear in braces, categorize them in terms of the basis of belief (the category basis is either a
fact or estimate) and a certainty factor (cf) that is supposed to measure the "implication power" of the

2 5

XEROX RULES

rule. Within the braces, the variable on the left of the assignment statement is always interpreted as
meaning a variable in the audit record, and the variables on the right are always interpreted as
variables accessible within the RuleSet. This makes it straightforward to experiment with user-defined
audit trails and experimental methods of belief revision. (Realistic belief revision systems are usually
more sophisticated than this example.)

The result of running the RuleSet is an evaluation report for each candidate machine. Since the
RuleSet was run in audit mode, each entry in the evaluation report is tagged with a reason that points
to an audit record. Figure 5 illustrates the evaluation report for one machine and one of its audit
records. In this example, each of the entries in the report has a reason and a cumulative certainty (cc)
property in addition to the value. The value of the reason properties are audit records created as a
side effect of running the RuleSet. The auditing process records the meta-description information of
each rule in its audit record. This information can be used later for generating explanations or as a
basis for belief revision. The auditing process can have side effects. For example, the active in the cf
variable or the audit record performs a computation to maintain a calculated cumulative certainty in the
reliability variable of the evaluation report.

The meta-descriptions for basis and cf are saved directly in the audit record. The certainty factor
calculation in this combines information from the audit description with other information already
associated with the object. To do this, the cf description triggers an active value inherited by the audit
record from its class. This active value computes a cumulative certainty in the evaluation report.
(Other variations on this idea would include certainty information descriptive of the premises of the
rule.)

RuleSet Name: EvaluateWashingMachine;
WorkSpace Class: EvaluationReport;
Control Structure: doAll ;
Audit Class: CFAuditRecord ;
Compiler Options: A;

(* Rules for evaluating a potential washing machine for a
purchase.)

 .
 .
 .
 {(basics_Fact cf_1)}
 IF buyer:familySize>2 machine:capacity<20
 THEN suitability_’Poor;

 {(basics_Fact cf_.8)}
 reliability_(_($ ConsumerReports) GetFacts machine);

 {(basics_Estimate cf_.4)}
 IF ’reliability THEN reliability_.5;
 .
 .
 .

Figure 4. RuleSet Showing Evaluation

EvaluationReport "uid1"
expense: 510

2 6

XEROX RULES

suitability: Poor cc 1 reason ...
reliability: .5 cc .6 reason "uid2"
.
.
.
AuditRec "uid2"
rule: "uid3"
basis: Estimate;
cf: #(.4 NIL PutCumulativeCertainity)

Figure 5. Example of an Audit Trail

1.8 Comparison with Other Rule Languages

This section considers the rationale behind the design of the Xerox LOOPS rule language, focusing on
ways that it diverges from other rule languages. In general, this divergence was driven by the following
observation:

When a rule is heavy with control information, it obscures the domain knowledge that the rule is
intended to convey.

Rules are harder to create, understand, and modify when they contain too much control information.
This observation led us to find ways to factor control information out of the rules.

1.8.1 The Rationale for Factoring Meta-Level Syntax

One of the most striking features of the syntax of the Xerox LOOPS rule language is the factored
syntax for meta-descriptions, which provides information about the rules themselves. Traditional rule
languages only factor rules into conditions on the left hand side (LHS) and actions on the right hand
side (RHS), without general provisions for meta-descriptions.

Decision knowledge expressed in rules is most perspicuous when it is not mixed with other kinds
knowledge, such as control knowledge. For example, the following rule:

IF ~triedRule4 pluggedInTo:voltage=0
THEN triedRule4_T breaker.Reset;

is more obscure than the corresponding one-shot rule from Figure 1:

{1} IF pluggedInTo:voltage=0 THEN breaker.Reset;

which factors the control information (that the rule is to be applied at most once) from the domain
knowledge (about voltages and breakers). In the Xerox LOOPS rule language, a meta-description
(MD) is specified in braces in front of the LHS of a rule. For another example, the following rule from
Figure 4:

2 7

XEROX RULES

{(basis_Fact cf_.8)}
IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

uses an MD to indicate that the rule has a particular cf ("certainty factor") and basis category for belief
support. The MD in this example factors the description of the inference category of the rule from the
action knowledge in the rule.

In a large knowledge-based system, a substantial amount of control information must be specified in
order to preclude combinatorial explosions. Since earlier rule languages fail to provide a means for
factoring meta-information, they must either mix it with the domain knowledge or express it outside the
rule language. In the first option, intelligibility is degraded. In the second option, the transparency of
the system is degraded because the knowledge is hidden.

1.8.2 The Rationale for RuleSet Hierarchy

Some advocates of production systems have praised the flatness of traditional production systems,
and have resisted the imposition of any organization to the rules. The flat organization is sometimes
touted as making it easy to add rules. The argument is that other organizations diminish the power of
pattern-directed invocation and make it more complicated to add a rule.

In designing Xerox LOOPS, we have tended to discount these arguments. We observe that there is no
inherent property of production systems that can make rules additive. Rather, additivity is a
consequence of the independence of particular sets of rules. Such independence is seldom achieved
in large sets of rules. When rules are dependent, rule invocation needs to be carefully ordered.

Advocates of a flat organization tend to organize large programs as a single very large production
system. In practice, most builders of production systems have found it essential to create groups of
rules.

Grouping of rules in flat systems can be achieved in part by using context clauses in the rules. Context
clauses are clauses inserted into the rules which are used to alter the flow of control by naming the
context explicitly. Rules in the same "context" all contain an extra clause in their conditions that
compares the context of the rules with a current context. Other rules redirect control by switching the
current context. Unfortunately, this approach does not conveniently lend itself to the reuse of groups of
rules by different parts of a program. Although context clauses admit the creation of "subroutine
contexts", they require you to explicitly program a stack of return locations in cases where contexts are
invoked from more than one place. The decision to use an implicit calling stack for RuleSet invocation
in Xerox LOOPS is another example of the our desire to simplify the rules by factoring out control
information.

1.8.3 The Rationale for RuleSet Control Structures

Production languages are sometimes described as having a recognize-act cycle, which specifies how
rules are selected for execution. An important part of this cycle is the conflict resolution strategy, which
specifies how to choose a production rule when several rules have conditions that are satisfied. For

2 8

XEROX RULES

example, the OPS5 production language has a conflict resolution strategy (MEA) which prevents rules
from being invoked more than once, prioritizes rules according to the recency of a change to the data,
and gives preference to production rules with the most specific conditions.

In designing the rule language for Xerox LOOPS, we have favored the use of a small number of
specialized control structures to the use of a single complex conflict resolution strategy. In so doing,
we have drawn on some control structures in common use in familiar programming languages. For
example, Do1 is like Lisp’s COND, DoAll is like Lisp’s PROG, WhileAll is similar to WHILE statements
in many programming languages.

The specialized control structures are intended for concisely representing programs with different
control relationships among the rules. For example, the DoAll control structure is useful for rules
whose effects are intended to be additive and the Do1 control structure is appropriate for specifying
mutually exclusive actions. Without some kind of iterative control structure that allows rules to be
executed more than once, it would be impossible to write a simulation program such as the washing
machine simulation in Figure 1.

We have resisted a reductionist argument for having only one control structure for all programming.
For example, it could be argued that the control structure Do1 is not strictly necessary because any
RuleSet that uses Do1 could be rewritten using DoAll. For example, the rules

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF a2 b2 c2 THEN d2 e2;

IF a3 b3 c3 THEN d3 e3;

could be written alternatively as

Control Structure: DoAll;
Task Vars: firedSomeRule;

IF a1 b1 c1 THEN firedSomeRule_T d1 e1;

IF ~firedSomeRule a2 b2 c2 THEN firedSomeRule_T d2 e2;

IF ~firedSomeRule a3 b3 c3 THEN firedSomeRule_T d3 e3;

However, the Do1 control structure admits a much more concise expression of mutually exclusive
actions. In the example above, the Do1 control structure makes it possible to abbreviate the rule
conditions to reflect the assumption that earlier rules in the RuleSet were not satisfied.

For some particular sets of rules the conditions are naturally mutually exclusive. Even for these rules
Do1 can yield additional conciseness. For example, the rules:

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF ~a1 b1 c1 THEN d2 e2;

IF ~a1 ~b1 c1 THEN d3 e3;

2 9

XEROX RULES

can be written as

Control Structure: Do1;

IF a1 b1 c1 THEN d1 e1;

IF b1 c1 THEN d2 e2;

IF c1 THEN d3 e3;

Similarly it could be argued that the Do1 and DoAll control structures are not strictly necessary
because such RuleSets can always be written in terms of While1 and WhileAll. Following this
reductionism to its end, we can observe that every RuleSet could be re-written in terms of WhileAll.

1.8.4 The Rationale for an Integrated Programming Environment

RuleSets in Xerox LOOPS are integrated with procedure-oriented, object-oriented, and data-oriented
programming paradigms. In contrast to single-paradigm rule systems, this integration has two major
benefits. It facilitates the construction of programs which don’t entirely fit the rule-oriented paradigm.
Rule-oriented programming can be used selectively for representing just the appropriate decision-
making knowledge in a large program. Integration also makes it convenient to use the other
paradigms to help organize the interactions between RuleSets.

Using the object-oriented paradigm, RuleSets can be invoked as methods for Xerox LOOPS objects.
Figure 6 illustrates the installation of the RuleSet SimulateWashingMachineRules to carry out the
Simulate method for instances of the class WashingMachine. This definition of the class
WashingMachine specifies that Lisp functions are to be invoked for Fill and Wash messages. For
example, the Lisp function WashingMachine.Fill is to be applied when a Fill message is received.
When a Simulate message is received, the RuleSet SimulateWashingMachineRules is to be invoked
with the washing machine as its work space. Simulate message to invoke the RuleSet may be sent by
any Xerox LOOPS program, including other RuleSets.

The use of object-oriented paradigm is facilitated by special RuleSet syntax for sending messages to
objects, and for manipulating the data in Xerox LOOPS objects. In addition, RuleSets, work spaces,
and tasks are implemented as Xerox LOOPS objects.

3 0

XEROX RULES

[DEFCLASS WashingMachine
 (MetaClass Class Edited (* "rtk: 12-Jun-87 07:57")
 doc (* Home appliance for wachine cloothes.))
 (Supers ElectricalDevice PlumbedDevice CleaningDevice)
 (ClassVariables)
 (InstanceVariables
 (controlSetting Meduim
 doc (* One of Small, Medium, Large, ExtraLarge))...)
 (Methods
 (Fill WashingMachine.Fill doc (* Fill the tub with water.))
 (Wash WashingMachine.Wash doc (* Perofrm the wash cycle.))
 (Simulate UseRuleSet RuleSet SimulateWashingMachineRules)
 .
 .
 .
]

Figure 6. RuleSet Invoked as a Method

Using the data-oriented paradigm, RuleSets can be installed in active values so that they are triggered
by side-effect when Xerox LOOPS programs get or put data in objects. For example:

[DEFINST WashingMachine (StefiksMaytagWasher "uid2")
 (controlSetting RegularFabric)
 (loadSetting #(Medium NIL RSPut) RSPutFn CheckOverLoadRules)
 (waterLevelSensor "uid3")
]

The above code illustrates a RuleSet named CheckOverLoadRules which is triggered whenever a
program changes the loadSetting variable in the WashingMachine instance in the figure. This data-
oriented triggering can be caused by any Xerox LOOPS program when it changes the variable,
whether or not that program is written in the rules language.

3 1

XEROX RULES

2. THE RULE LANGUAGE

This chapter describes the syntax and semantics of the rule language.

2.1 Language Introduction

A rule in Xerox LOOPS describes actions to be taken when specified conditions are satisfied. A rule
has three major parts called the left hand side (LHS) for describing the conditions, the right hand side
(RHS) for describing the actions, and the meta-description (MD) for describing the rule itself. In the
simplest case without a meta-description, there are two equivalent syntactic forms:

LHS -> RHS;

IF LHS THEN RHS;

The If and Then tokens are recognized in several combinations of upper and lower case letters. The
syntax for LHSs and RHSs is given below. In addition, a rule can have no conditions (meaning always
perform the actions) as follows:

-> RHS;

if T then RHS;

Rules can be preceded by a meta-description in braces as in:

{MD} LHS -> RHS;

{MD} If LHS Then RHS;

{MD} RHS;

Examples of meta-information include rule-specific control information, rule descriptions, audit
instructions, and debugging instructions. For example, the syntax for one-shot rules shown in Section
1.5, "One-Shot Rules:"

{1} IF condition1 condition2 THEN action1;

is an example of a meta-description. Another example is the use of meta-assignment statements for
describing audit trails and rules. These statements are discussed in Section 1.7, "Saving an Audit Trail
of Rule Invocation."

LHS Syntax: The clauses on the LHS of a rule are evaluated in order from left to right to determine
whether the LHS is satisfied. If they are all satisfied, then the rule is satisfied. For example:

3 2

XEROX RULES

A B C+D (Prime D) -> RHS;

In this rule, there are four clauses on the LHS. If the values of some of the clauses are NIL during
evaluation, the remaining clauses are not evaluated. For example, if A is non-NIL but B is NIL, then
the LHS is not satisfied and C+D will not be evaluated.

RHS Syntax: The RHS of a rule consists of actions to be performed if the LHS of the rule is satisfied.
These actions are evaluated in order from left to right. Actions can be the invocation of RuleSets, the
sending of Xerox LOOPS messages, Interlisp function calls, variables, or special termination actions.

RuleSets always return a value. The value returned by a RuleSet is the value of the last rule that was
executed. Rules can have multiple actions on the right hand side. Unless there is a Stop statement or
transfer call as described later, the value of a rule is the value of the last action. When a rule has no
actions on its RHS, it returns NIL as its value.

Comments: Comments can be inserted between rules in the RuleSet. They are enclosed in
parentheses with an asterisk for the first character as follows:

(* This is a comment)

2.2 Kinds of Variables

Xerox LOOPS distinguishes the following kinds of variables:

RuleSet arguments: All RuleSets have the variable self as their workspace. References to self can
often be elided in the RuleSet syntax. For example, the expression self.Print means to send a Print
message to self. This expression can be shortened to .Print . Other arguments can be defined for
RuleSets. These are declared in an Args: declaration.

Instance variables: All RuleSets use a Xerox LOOPS object for their workSpace. In the LHS and RHS
of a rule, the first interpretation tried for an undeclared literal is as an instance variable in the work
space. Instance variables can be indicated unambiguously by preceding them with a colon, (e.g.,
:varName or obj:varName).

Class variables: Literals can be used to refer to class variables of Xerox LOOPS objects. These
variables must be preceded by a double colon in the rule language, (e.g., ::classVarName or
obj::classVarName).

Temporary variables: Literals can also be used to refer to temporary variables allocated for a specific
invocation of a RuleSet. These variables are initialized to NIL when a RuleSet is invoked. Temporary
variables are declared in the Temporary Vars declaration in a RuleSet.

Audit record variables: Literals can also be used to refer to instance variables of audit records created
by rules. These literals are used only in meta-assignment statements in the MD part of a rule. They
are used to describe the information saved in audit records, which can be created as a side-effect of
rule execution. These variables are ignored if a RuleSet is not compiled in audit mode. Undeclared
variables appearing on the left side of assignment statements in the MD part of a rule are treated as

3 3

XEROX RULES

audit record variables by default. These variables are declared indirectly -- they are the instance
variables of the class declared as the Audit Class of the RuleSet.

Interlisp variables: Literals can also be used to refer to Interlisp variables during the invocation of a
RuleSet. These variables can be global to the Interlisp environment, or are bound in some calling
function. Interlisp variables can be used when procedure-oriented and rule-oriented programs are
intermixed. Interlisp variables must be preceded by a backSlash in the syntax of the rule language
(e.g., \lispVarName).

Reserved Words: The following literals are treated as read-only variables with special interpretations:

self [Variable]

The current work space.

rs [Variable]

The current RuleSet.

caller [Variable]

The RuleSet that invoked the current RuleSet, or NIL if invoked
otherwise.

ruleApplied [Variable]

Set to T if some rule was applied in this cycle. (For use only in
while-conditions).

The following reserved words are intended mainly for use in creating audit trails:

ruleObject [Variable]

Variable bound to the object representing the rule itself.

ruleNumber [Variable]

Variable bound to the sequence number of the rule in a RuleSet.

ruleLabel [Variable]

Variable bound to the label of a rule or NIL.

reasons [Variable]

Variable bound a list of audit records supporting the instance
variables mentioned on the LHS of the rule. (Computed at run
time.)

3 4

XEROX RULES

auditObject [Variable]

Variable bound to the object to which the reason record will be
attached. (Computed at run time.)

auditVarName [Variable]

Variable bound to the name of the variable on which the reason will
be attached as a property.

Other Literals: As described later, literals can also refer to Interlisp functions, Xerox LOOPS objects,
and message selectors. They can also be used in strings and quoted constants.

The determination of the meaning of a literal is done at compile time using the declarations and syntax
of RuleSets. The characters used in literals are limited to alphabetic characters and numbers. The
first character of a literal must be alphabetic.

The syntax of literals also includes a compact notation for sending unary messages and for accessing
instance variables of Xerox LOOPS objects. This notation uses compound literals. A compound
literal is a literal composed of multiple parts separated by a periods, colons, and commas.

2.3 Rule Forms

Quoted Constants: The quote sign is used to indicate constant literals:

a b=3 c=’open d=f e=’(This is a quoted expression) -> ...

In this example, the LHS is satisfied if a is non-NIL, and the value of b is 3, and the value of c is
exactly the atom open, the value of d is the same as the value of f, and the value of e is the list (This
is a quoted expression).

Strings: The double quote sign is used to indicate string constants:

IF a b=3 c=’open d=f e=="This is a string"
THEN (WRITE "Begin configuration task") ... ;

In this example, the LHS is satisfied if a is non-NIL, and the value of b is 3, and the value of c is
exactly the atom open, the value of d is the same as the value of f, and the value of e equal to the
string "This is a string".

Interlisp Constants: The literals T and NIL are interpreted as the Interlisp constants of the same name.

a (Foo x NIL b) -> x_T ...;

In this example, the function Foo is called with the arguments x, NIL, and b. Then the variable x is set
to T.

3 5

XEROX RULES

2.4 Infix Operators and Brackets

To enhance the readability of rules, a few infix operators are provided. The following are infix binary
operators in the rule syntax:

+ [Rule Infix Operator]

Addition.

++ [Rule Infix Operator]

Addition modulo 4.

- [Rule Infix Operator]

Subtraction.

-- [Rule Infix Operator]

Subtraction modulo 4.

* [Rule Infix Operator]

Multiplication.

/ [Rule Infix Operator]

Division.

> [Rule Infix Operator]

Greater than.

< [Rule Infix Operator]

Less than.

>= [Rule Infix Operator]

Greater than or equal.

<= [Rule Infix Operator]

Less than or equal.

= [Rule Infix Operator]

EQ -- simple form of equals. Works for atoms, objects, and small
integers.

~= [Rule Infix Operator]

NEQ. (Not EQ.)

3 6

XEROX RULES

== [Rule Infix Operator]

EQUAL -- long form of equals.

<< [Rule Infix Operator]

Member of a list. (FMEMB)

In addition, the rule syntax provides two unary operators as follows:

- [Rule Unary Operator]

Minus.

~ [Rule Unary Operator]

Not.

The precedence of operators in rule syntax follows the usual convention of programming languages.
For example

1+5*3 = 16

and

[3 < 2 + 4] = T

Brackets can be used to control the order of evaluation:

[1+5]*3 = 18

Ambiguity of the minus sign: Whenever there is an ambiguity about the interpretation of a minus sign
as a unary or binary operator, the rule syntax interprets it as a binary minus. For example

a-b c d -e [-f] (g -h) (_ ($ Foo) Move -j) -> ...

In this example, the first and second minus signs are both treated as binary subtraction statements.
That is, the first three clauses are (1) a-b, (2) c and (3) d-e. Because the rule syntax allows arbitary
spacing between symbols and there is no syntax to separate clauses on the LHS of a rule, the
interpretation of "d -e" is as a single clause (with the subtraction) instead of two clauses. To force the
interpretation as a unary minus operator, one must use brackets as illustrated in the next clause. In
this clause, the minus sign in the clause [-f] is treated as a unary minus because of the brackets. The
minus sign in the function call (g -h) is treated as unary because there is no preceding argument.
Similarly, the -j in the message expression is treated as unary because there is no preceding
argument.

3 7

XEROX RULES

2.5 Interlisp Functions and Message Sending

Calls to Interlisp functions are parenthesized with the function name as the first literal after the left
parenthesis. Each expression after the function name is treated as an argument to the function. For
example:

a (Prime b) [a -b] -> c (Display b c+4 (Cursor x y) 2) ;

In this example, Prime, Display, and Cursor are interpreted as the names of Interlisp functions. Since
the expression [a -b] is surrounded by brackets instead of parentheses, it is recognized as meaning a
minus b as opposed to a call to the function a with the argument minus b. In the example above, the
call to the Interlisp function Display has four arguments: b, c+4, the value of the function call (Cursor
x y), and 2.

The use of Interlisp functions is usually outside the spirit of the rule language. However, it enables the
use of Boolean expressions on the LHS beyond simple conjunctions. For example:

a (OR (NOT b) x y) z -> ... ;

Xerox LOOPS Objects and Message Sending: Xerox LOOPS classes and other named objects can be
referenced by using the dollar notation. The sending of Xerox LOOPS messages is indicated by using
a left arrow. For example:

IF cell_(_ ($ LowCell) Occupied? ’Heavy)
THEN (_ cell Move 3 ’North);

In the LHS, an Occupied? message is sent to the object named LowCell. In the message expression
on the RHS, there is no dollar sign preceding cell. Hence, the message is sent to the object that is the
value of the variable cell.

For unary messages (i.e., messages with only the selector specified and the implicit argument self), a
more compact notation is available as described selow.

Unary Message Sending: When a period is used as the separator in a compound literal, it indicates
that a unary message is to be sent to an object. (We will alternatively refer to a period as a dot.) For
example:

tile.Type=’BlueGreenCross command.Type=’Slide4 -> ... ;

In this example, the object to receive the unary message Type is referenced indirectly through the tile
instance variable in the work space. The left literal is the variable tile and its value must be a Xerox
LOOPS object at execution time. The right literal must be a method selector for that object.

The dot notation can be combined with the dollar notation to send unary messages to named Xerox
LOOPS objects. For example,

$Tile.Type=’BlueGreenCross ...

In this example, a unary Type message is sent to the Xerox LOOPS object whose name is Tile.

The dot notation can also be used to send a message to the work space of the RuleSet, that is, self.
For example, the rule

3 8

XEROX RULES

IF scale>7 THEN .DisplayLarge;

would cause a DisplayLarge message to be sent to self. This is an abbreviation for

IF scale>7 THEN self.DisplayLarge;

2.6 Variables and Properties

When a single colon (:) is used in a literal, it indicates access to an instance variable of an object. For
example:

tile:type=’BlueGreenCross command:type=Slide4 -> ... ;

In this example, access to the Xerox LOOPS object is indirect in that it is referenced through an
instance variable of the work space. The left literal is the variable tile, and its value must be a Xerox
LOOPS object when the rule is executed. The right literal type must be the name of an instance
variable of that object. The compound literal tile:type refers to the value of the type instance variable
of the object in the instance variable tile.

The colon notation can be combined with the dollar notation to access a variable in a named Xerox
LOOPS object. For example,

$TopTile:type=’BlueGreenCross ...

refers to the type variable of the object whose Xerox LOOPS name is TopTile.

A double colon notation (::) is provided for accessing class variables. For example

truck::MaxGas<45 ::ValueAdded>600 -> ... ;

In this example, MaxGas is a class variable of the object bound to truck. ValueAdded is a class
variable of self.

A colon-comma notation (:,) is provided for accessing property values of class and instance variables.
For example

wire:,capacitance>5 wire:voltage:,support=’simulation -> ...

In the first clause, wire is an instance variable of the work space and capacitance is a property of that
variable. The interpretation of the second clause is left to right as usual: (1) the object that is the value
of the variable wire is retrieved, and (2) the support property of the voltage variable of that object is
retrieved. For properties of class variables

::Wire:,capacitance>5 node::Voltage:,support=’simulation -> ...

In the first clause, wire is a class variable of the work space and capacitance is a property of that
variable. In the second clause, node is an instance variable bound to some object. Voltage is a class
variable of that object, and Support is a property of that class variable.

3 9

XEROX RULES

The property notation is illegal for ruleVars and lispVars since those variables cannot have properties.

2.7 Computing Selectors and Variable Names

The short notations for instance variables, properties, and unary messages all show the selector and
variable names as they actually appear in the object.

object.selector
object:ivName
object::cvName
object:varname:,propName

(_ object selector arg1 arg2)

For example,

apple:flavor

refers to the flavor instance variable of the object bound to the variable apple. In Interlisp terminology,
this implies implicit quoting of the name of the instance variable (flavor).

In some applications it is desired to be able to compute the names. For this, the Xerox LOOPS rule
language provides analogous notations with an added exclamation sign (!). After the exclamation sign,
the interpretation of the variable being evaluated starts over again. For example

apple:!\x

refers to the same thing as apple:flavor if the Interlisp variable x is bound to flavor. The fact that x is
a Lisp variable is indicated by the backslash. If x is an instance variable of self or a temporary
variable, we could use the notation:

apple:!x

If x is a class variable of self, we could use the notation:

apple:!::x

All combinations are possible, including:

object.!selector
object.!\selector
object.!::selector
object:!ivName
object::!cvName
object:!varname:,propName

(_! object selector arg1 arg2)

4 0

XEROX RULES

2.8 Recursive Compound Literals

Multiple colons or periods can be used in a literal, For example:

a:b:c

means to (1) get the object that is the value of a, (2) get the object that is the value of the b instance
variable of a, and finally (3) get the value of the c instance variable of that object.

Similarly, the notation

a.b:c

means to get the c variable of the object returned after sending a b message to the object that is the
value of the variable a. Again, the operations are carried out left to right: (1) the object that is the value
of the variable a is retrieved, (2) it is sent a b message which must return an object, and then (3) the
value of the c variable of that object is retrieved.

Compound literal notation can be nested arbitrarily deeply.

2.9 Assignment Statements

An assignment statement using a left arrow can be used for setting all kinds of variables. For example,

x_a;

sets the value of the variable x to the value of a. The same notation works if x is a task variable, rule
variable, class variable, temporary variable, or work space variable. The right side of an assignment
statement can be an expression as in:

x_a*b + 17*(LOG d);

The assignment statement can also be used with the colon notation to set values of instance variables
of objects. For example:

y:b_0 ;

In this example, first the object that is the value of y is computed, then the value of its instance variable
b is set to 0.

Properties: Assignment statements can also be used to set property values as in:

box:x:,origin_47 fact:,reason_currentSupport;

Nesting: Assignment statements can be nested as in

a_b_c:d_3;

4 1

XEROX RULES

This statement sets the values of a, b, and the d instance variable of c to 3. The value of an
assignment statement itself is the new assigned value.

2.10 Meta-Assignment Statements

Meta-assignment statements are assignment statements used for specifying rule descriptions and
audit trails. These statements appear in the MD part of rules.

Audit Trails: The default interpretation of meta-assignment statements for undeclared variables is as
audit trail specifications. Each meta-assignment statement specifies information to be saved in audit
records when a rule is applied. In the following example from Figure 4, the audit record must have
variables named basis and cf:

{(basis_Fact cf_1.)}
IF buyer:familySize>2 machine:capacity<20
THEN suitability_’Poor;

In this example, the RHS of the rule assigns the value of the work space instance variable suitability
to ’Poor if the conditions of the rule are satisfied. In addition, if the RuleSet was compiled in audit
mode, then during RuleSet execution an audit record is created as a side-effect of the assignment.
The audit record is attached to the reason property of the suitability variable. It has instance variables
basis and cf.

In general, an audit description consists of a sequence of meta-assignment statements. The
assignment variable on the left must be an instance variable of the audit record. The class of the audit
record is declared in the Audit Class declaration of the RuleSet. The expression on the right is in terms
of the variables accessible by the RuleSet. If the conditions of a rule are satisfied, an audit record is
instantiated. Then the meta-assignment statements are evaluated in the execution context of the
RuleSet and their values are put into the audit record. A separate audit record is created for each of
the object variables that are set by the rule.

2.11 Push and Pop Statements

A compact notation is provided for pushing and popping values from lists. To push a new value onto a
list, the notation _+ is used:

myList_+newItem;

focus:goals_+newGoal;

To pop an item from a list, the _- notation is used:

item_-myList;

4 2

XEROX RULES

nextGoal_-focus:goals;

As with the assignment operator, the push and pop notation works for all kinds of variables and
properties. They can be used in conjunction with infix operator << for membership testing.

2.12 Invoking RuleSets

One of the ways to cause RuleSets to be executed is to invoke them from rules. This is used on the
LHS of rules to express predicates in terms of RuleSets, and on the RHS of rules to express actions in
terms of RuleSets. A short double-dot syntax(..) for this is provided that invokes a RuleSet on a work
space:

Rs1..ws1

In this example, the RuleSet bound to the variable Rs1 is invoked with the value of the variable ws1 as
its work space. The value of the invocation expression is the value returned by the RuleSet. The
double-dot syntax can be combined with the dollar notation ($) to invoke a RuleSet by its Xerox
LOOPS name, as in

$MyRules..ws1

which invokes the RuleSet object that has the Xerox LOOPS name MyRules.

This form of RuleSet invocation is like subroutine calling, in that it creates an implicit stack of
arguments and return addresses. This feature can be used as a mechanism for meta-control of
RuleSets as in:

IF breaker:status=’Open
THEN source_$OverLoadRules..washingMachine;

IF source=’NotFound
THEN $ShortCircuitRules..washingMachine;

In this example, two "meta-rules" are used to control the invocation of specialized RuleSets for
diagnosing overloads or short circuits.

2.13 Transfer Calls

An important optimization in many recursive programs is the elimination of tail recursion. For example,
suppose that the RuleSet A calls B, B calls C, and C calls A recursively. If the first invocation of A
must do some more work after returning from B, then it is useful to save the intermediate states of
each of the procedures in frames on the calling stack. For such programs, the space allocation for the
stack must be enough to accommodate the maximum depth of the calls.

4 3

XEROX RULES

There is a common and special case, however, in which it is unnecessary to save more than one frame
on the stack. In this case each RuleSet has no more work to do after invoking the other RuleSets, and
the value of each RuleSet is the value returned by the RuleSet that it invokes. RuleSet invocation in
this case amounts to the evaluation of arguments followed by a direct transfer of control. We call such
invocations transfer calls.

The Xerox LOOPS rule language extends the syntax for RuleSet invocation and message sending to
provide this as follows:

RS..*ws

The RuleSet RS is invoked on the work space ws. With transfer calls, RuleSet invocations can be
arbitrarily deep without using proportional stack space.

2.14 Stop Statements

To provide premature terminations in the execution of a RuleSet, the Stop statement is provided.

(Stop value) [RuleSet Statement]

value is the value to be returned by the RuleSet.

4 4

XEROX RULES

[This page intentionally left blank]

4 5

XEROX RULES

3. USING RULES IN LOOPS

The Xerox LOOPS rules language is supported by an integrated programming environment for
creating, editing, compiling, and debugging RuleSets. This section describes how to use that
environment.

3.1 Creating RuleSets

RuleSets are named Xerox LOOPS objects and are created by sending the class RuleSet a New
message as follows:

(_ ($ RuleSet) New)

After entering this form, the user will be prompted for a Xerox LOOPS name as

RuleSet name: RuleSetName

Afterwards, the RuleSet can be referenced using Xerox LOOPS dollar sign notation as usual. It is also
possible to include the RuleSet name in the New message as follows:

(_ ($ RuleSet) New NIL RuleSetName)

3.2 Editing RuleSets

A RuleSet is created empty of rules. The RuleSet editor is used to enter and modify rules. The editor
can be invoked with an EditRules message (or ER shorthand message) as follows:

(_ RuleSet EditRules)
(_ RuleSet ER)

If a RuleSet is installed as a method of a class, it can be edited conveniently by selecting the
EditMethod option from a browser containing the class. Alternatively, the EditMethod message can
be used:

(_ ClassName EditMethod selector) [Message]

Both approaches to editing retrieve the source of the RuleSet and put the user into the TTYIN or TEdit
editor, treating the rule source as text.

Initially, the source is a template for RuleSets as shown in Figure 7. The rules are entered after the
comment at the bottom. The declarations at the beginning are filled in as needed and superfluous
declarations can be discarded.

4 6

XEROX RULES

RuleSet Name: RuleSetName;
WorkSpace Class: ClassName;
Control Structure: doAll;
While Condition: ;
Audit Class: StandardAuditRecord;
Rule Class: Rule;
Task Class: ;
Meta Assignments: ;
Temporary Vars: ;
Lisp Vars: ;
Debug Vars: ;
Compiler Options: ;

 (* Rules for whatever. Comment goes here.)

Figure 7. Initial Template for a RuleSet

You can then edit this template to enter rules and set the declarations at the beginning. In the current
version of the rule editor, most of these declarations are left out. If you choose the EditAllDecls option
in the RuleSet editor menu, the declarations and default values will be printed in full.

The template is only a guide. Declarations that are not needed can be deleted. For example, if there
are no temporary variables for this RuleSet, the Temporary Vars declaration can be deleted. If the
control structure is not one of the while control structures, then the While Condition declaration can
be deleted. If the compiler option A is not chosen, then the Audit Class declaration can be deleted.

When you leave the editor, the RuleSet is compiled automatically into a Lisp function.

If a syntax error is detected during compilation, an error message is printed and you are given another
opportunity to edit the RuleSet.

3.3 Copying RuleSets

Sometimes it is convenient to create new RuleSets by editing a copy of an existing RuleSet. For this
purpose, the method CopyRules is provided as follows:

(_ oldRuleSet CopyRules newRuleSetName) [Message]

This creates a new RuleSet by some of the information from the pespectives of the old RuleSet. It
also updates the source text of the new RuleSet to contain the new name.

4 7

XEROX RULES

3.4 Saving RuleSets on Lisp Files

RuleSets can be saved on Lisp files just like other Xerox LOOPS objects. In addition, it is usually
useful to save the Lisp functions that result from RuleSet compilation. In the current implementation,
these functions have the same names as the RuleSets themselves. To save RuleSets on a file, it is
necessary to add two statements to the file commands for the file as follows:

(FNS * MyRuleSetNames)
(INSTANCES * MyRuleSetNames)

where MyRuleSetNames is a Lisp variable whose value is a list of the names of the RuleSets to be
saved.

If RuleSets are methods associated with a class, and they are saved by using (FILES?), then the file
package saves the appropriate entries. The user does not have to be concerned with editing the
filecoms of the file being made.

3.5 Printing RuleSets

To print a RuleSet without editing it, one can send a PPRules or PPR message as follows:

(_ RuleSet PPRules) [Message]

(_ RuleSet PPR) [Message]

A convenient way to make hardcopy listings of RuleSets is to use the function ListRuleSets. The files
will be printed on the DEFAULTPRINTINGHOST as is standard in Interlisp-D. ListRuleSets can be
given four kinds of arguments as follows:

(ListRuleSets RuleSetName)
(ListRuleSets ListOfRuleSetNames)
(ListRuleSets ClassName)
(ListRuleSets FileName)

In the ClassName case, all of the RuleSets that have been installed as methods of the class will be
printed. In the last case, all of the RuleSets stored in the file will be printed.

3.6 Running RuleSets from Xerox LOOPS

RuleSets can be invoked from Xerox LOOPS using any of the usual protocols.

Procedure-oriented Protocol: The way to invoke a RuleSet from Xerox LOOPS is to use the RunRS
function:

4 8

XEROX RULES

(RunRS RuleSet workSpace arg2 ... argN) [Function]

workSpace is the Xerox LOOPS object to be used as the work
space. This is "procedural" in the sense that the RuleSet is invoked
by its name. RuleSet can be either a RuleSet object or its name.

Object-oriented Protocol: When RuleSets are installed as methods in Xerox LOOPS classes, they can
be invoked in the usual way by sending a message to an instance of the class. For example, if
WashingMachine is a class with a RuleSet installed for its Simulate method, the RuleSet is invoked
as follows:

(_ washingMachineInstance Simulate)

Data-oriented Protocol: When RuleSets are installed in active values, they are invoked by side-effect
as a result of accessing the variable on which they are installed.

3.7 Installing RuleSets as Methods

RuleSets can also be used as methods for classes. This is done by installing automatically-generated
invocation functions that invoke the RuleSets. For example:

[DEFCLASS WashingMachine
 (MetaClass Class doc (* comment) ...)
 ...
 (InstanceVariables (owner ...))
 (Methods
 (Simulate RunSimulateWMRules)
 (Check RunCheckWMRules
 doc (* Rules to Check a washing machine.))
...]

When an instance of the class WashingMachine receives a Simulate message, the RuleSet
SimulateWMRules will be invoked with the instance as its work space.

To simplify the definition of RuleSets intended to be used as Methods, the function DefRSM (for
"Define Rule Set as a Method") is provided:

(DefRSM ClassName Selector RuleSetName) [Function]

If the optional argument RuleSetName is given, DefRSM installs
that RuleSet as a method using the ClassName and Selector. It
does this by automatically generating an installation function as a
method to invoke the RuleSet. DefRSM automatically documents
the installation function and the method.
If the argument RuleSetName is NIL, then DefRSM creates the
RuleSet object, puts the user into an Editor to enter the rules,

4 9

XEROX RULES

compiles the rules into a Lisp function, and installs the RuleSet as
before.

DefRSM can be invoked with the browser as follows:

• Position the cursor over a class in a browser.

• Press the middle mouse button. A menu pops up.

• Select the Add option in this menu, and drag the mouse to the right to display the submenu that
includes the "DefRSM" option. You are prompted to enter a selector name.

 After a RuleSet has been installed as a method by using DefRSM, you can then edit that RuleSet by
selecting the "EditMethod" option from the browser editing menu.

3.8 Installing RuleSets in Active Values

Note: The following section and any other references to active values within the rule documentation
refer to active values as they were implemented in the Buttress release. The functionality of
triggering rules from active values has not been tested using the current implementation of
active values. It should work to use the ExplicitFnActiveValue class to implement this
behavior.

RuleSets can also be used in data-oriented programming so that they are invoked when data is
accessed. To use a RuleSet as a getFn, the function RSGetFn is used with the property RSGet as
follows:

...
(InstanceVariables
 (myVar #(myVal RSGetFn NIL) RSGet RuleSetName))
...

RSGetFn is a Xerox LOOPS system function that can be used in an active value to invoke a RuleSet
in response to a Xerox LOOPS get operation (e.g., GetValue) is performed. It requires that the name
of the RuleSet be found on the RSGet property of the item. RSGetFn activates the RuleSet using the
local state as the work space. The value returned by the RuleSet is returned as the value of the get
operation.

To use a RuleSet as a putFn, the function RSPutFn is used with the property RSPut as follows:

...
(InstanceVariables
 (myVar #(myVal NIL RSPutFn) RSPut RuleSetName))
...

RSPutFn is a function that can be used in an active value to invoke a RuleSet in response to a Xerox
LOOPS put operation (e.g., PutValue). It requires that the name of the RuleSet be found on the
RSPut property of the item. RSGetFn activates the RuleSet using the newValue from the put

5 0

XEROX RULES

operation as the work space. The value returned by the RuleSet is put into the local state of the active
value.

3.9 Tracing and Breaking RuleSets

Xerox LOOPS provides breaking and tracing facilities to aid in debugging RuleSets. These can be
used in conjunction with the auditing facilities and the rule executive for debugging RuleSets. The
following summarizes the compiler options for breaking and tracing:

T Trace if rule is satisfied. Useful for creating a running display of
executed rules.

TT Trace if rule is tested.

B Break if rule is satisfied.

BT Break if rule is tested. Useful for stepping through the execution
of a RuleSet.

Specifying the declaration Compiler Options: T; in a RuleSet indicates that tracing information should
be displayed when a rule is satisfied. To specify the tracing of just an individual rule in the RuleSet, the
T meta-descriptions should be used as follows:

{T} IF cond THEN action;

This tracing specification causes Xerox LOOPS to print a message whenever the LHS of the rule is
tested, or the RHS of the rule is executed. It is also possible to specify that the values of some
variables (and compound literals) are to be printed when a rule is traced. This is done by listing the
variables in the Debug Vars declaration in the RuleSet:

Debug Vars: a a:b a:b.c;

This will print the values of a, a:b, and a:b.c when any rule is traced or broken.

Analogous specifications are provided for breaking rules. For example, the declaration Compiler
Options: B; indicates that Xerox LOOPS is to enter the rule executive (see Section 3.10, "The Rule
Exec") after the LHS is satisfied and before the RHS is executed. The rule-specific form:

{B} IF cond THEN action;

indicates that Xerox LOOPS is to break before the execution of a particular rule.

Sometimes it is convenient in debugging to display the source code of a rule when it is traced or
broken. This can be effected by using the PR compiler option as in

Compiler Options: T PR;

which prints out the source of a rule when the LHS of the rule is tested and

5 1

XEROX RULES

Compiler Options: B PR;

which prints out the source of a rule when the LHS of a rule is satisfied, and before entering the break.

3.10 The Rule Exec

A Read-Compile-Evaluate-Print loop, called the rule Executive, is provided for the rule language. The
rule Executive can be entered during a break by invoking the Lisp function RE. During RuleSet
execution, the rule executive can be entered by typing ^f (<control>-f) on the keyboard.

On the first invocation, RE prompts the user for a window. It then displays a stack of RuleSet
invocations in a menu to the left of this window in a manner similar to the Interlisp-D Break Package.
Using the left mouse button in this window creates an Inspector window for the work space for the
RuleSet. Using the middle mouse button pretty prints the RuleSet in the default prettyprint window.

In the main rule Executive window, RE prompts the user with "re:". Anything in the rule language
(other than declarations) that is typed to this Executive will be compiled and executed immediately and
its value printed out. For example, you may type rules to see whether they execute or variable names
to determine their values. For example:

re: trafficLight:color
Red
re:

this example shows how to get the value of the color variable of the trafficLight object. If the value of
a variable was set by a RuleSet running with auditing, then a why question can be typed to the rule
executive as follows:

re: why trafficLight:color

IF highLight:color = ’Green farmRoadSensor:cars timer.TL
THEN highLight:color _ ’Yellow timer.Start;

Rule 3 of RuleSet LightRules
Edited: Conway "13-Oct-82"

re:

The rule executive may be exited by typing OK.

3.11 Auditing RuleSets

Two declarations at the beginning of a RuleSet affect the auditing. Auditing is turned on by the
compiler option A. The simplest form of this is

5 2

XEROX RULES

Compiler Options: A;

The Audit Class declaration indicates the class of the audit record to be used with this RuleSet if it is
compiled in audit mode.

Audit Class: StandardAuditRecord;

A Meta Assignments declaration can be used to indicate the audit description to be used for the rules
unless overridden by a rule-specific meta-assignment statement in a meta-descriptor.

Meta Assignments: cf_.5 support_’GroundWff;

3.12 Loading Rules

Set the variable LOOPSUSERSDIRECTORIES to include the directory where the Rules files are
stored.

Load the file LOOPSRULES-ROOT.LCOM, which will load the following files from
LOOPSUSERSDIRECTORIES:

• LOOPSBACKWARDS.LCOM

• LOOPSMIXIN

• LOOPSRULES.LCOM

• LOOPSRULESP.LCOM

• LOOPSRULESC.LCOM

• LOOPSRULESD.LCOM, which will load the file TTY.LCOM from LISPUSERSDIRECTORIES.

Editing rules will be easier if TEdit is loaded. Loading the Rules does not automatically load TEdit.

3.13 Known Problems

In a rule, the expression $pipe.ri..$p compiles to (RunRS (QUOTE ($ pipe)) ($ p)), which fails.

Meta-assignment statements cannot handle expressions. This means that statements like {cf _ .5}
work fine, but {validity _ ’fact} fails.

A value of 1 in a meta-descriptor statement is always taken to be a one-shot designator. You cannot
have a meta-descriptor statement like {cf_1}. However, the number 1.0 can be used; the meta-
descriptor statement, {cf_1.0}, works.

5 3

XEROX RULES

Rules have not been tested without loading TEdit in order to edit RuleSets.

5 4

XEROX RULES

[This page intentionally left blank.]

9

 RULES

RULES

 Modified by: Rick Martin (Martin.pasa@Xerox.com)

 14-Apr-86

1 0

 RULES

[This page intentionally left blank.]

1 1

 RULES

TABLE OF CONTENTS

1. INTRODUCTION TO RULE-ORIENTED PROGRAMMING IN LOOPS 15

1.1 Introduction 15

1.2 Basic Concepts 16

1.3 Organizing a Rule-Oriented Program 17

1.4 Control Structures for Selecting Rules 18

1.5 One-Shot Rules 22

1.6 First-Last Rules 23

1.7 Saving an Audit Trail of Rule Invocation 23

1.7.1 Motivations and Applications 23

1.7.2 Overview of Audit Trail Implementation 24

1.7.3 An Example of Using Audit Trails 24

1.8 Comparison with Other Rule Languages 26

1.8.1 The Rationale for Factoring Meta-Level Syntax 26

1.8.2 The Rationale for RuleSet Hierarchy 27

1.8.3 The Rationale for RuleSet Control Structures 28

1.8.4 The Rationale for an Integrated Programming Environment 29

2. THE RULE LANGUAGE 31

2.1 Language Introduction 31

2.2 Kinds of Variables 32

2.3 Rule Forms 34

2.4 Infix Operators and Brackets 35

1 2

 RULES

2.5 Interlisp Functions and Message Sending 37

2.6 Variables and Properties 38

2.7 Computing Selectors and Variable Names 39

2.8 Recursive Compound Literals 40

2.9 Assignment Statements 41

2.10 Meta-Assignment Statements 41

2.11 Push and Pop Statements 42

2.12 Invoking RuleSets 42

2.13 Transfer Calls 43

2.14 Stop Statements 43

3. USING RULES IN LOOPS 45

3.1 Creating RuleSets 45

3.2 Editing RuleSets 45

3.3 Copying RuleSets 46

3.4 Saving RuleSets on Lisp Files 47

3.5 Printing RuleSets 47

3.6 Running RuleSets from LOOPS 47

3.7 Installing RuleSets as Methods 48

3.8 Installing RuleSets in ActiveValues 49

3.9 Tracing and Breaking RuleSets 50

3.10 The Rule Exec 51

3.11 Auditing RuleSets 52

3.12 Loading Rules 52

3.13 Known Problems 52

1 3

 RULES

LIST OF FIGURES

1. Basic RuleSet 18

2. RuleSet Showing Do1 19

3. RuleSet with WhileAll 20

4. RuleSet Showing Evaluation 25

5. Example of an Audit Trail 26

6. RuleSet Invoked as a Method 30

7. Initial Template for a RuleSet 46

1 4

 RULES

[This page intentionally left blank.]

5 5

XEROX RULES

A. CONVERTING FROM BUTTRESS RULES

The primary change to rules was the removal of the VarLength mixin as a super class of
RuleSetSource. Rules are now stored on the IV ruleList of RuleSetSource. If any user had added
properties to a rule with a construct similar to the following expression, these will need to be
reimplemented in some fashion:

(PutNthValue ($ some-Instance-Of-A-RuleSetSource) ruleNumber prop)

A number of other changes were made to account for changes from Buttress LOOPS to the product
release. These should not be noticeable to the general user.

A utility was built to allow rules that were saved in Buttress to be loaded into the product release of
LOOPS. In order to convert from Buttress, follow this procedure.

• Load the necessary files for Rules as described in the Section 3.12, "Loading Rules."

• Load the file LOOPSRULESBACKWARDS. This redefines ConvertLoopsFiles to add
functionality for converting rules.

• Do not load the Buttress files that need to be converted. Instead call:

(ConvertLoopsFiles files-to-convert T T)

This will load, convert, remake, and recompile the files specified by files-to-convert.

Any rules that were saved with auditing turned on will need to run through the rule compiler. The old
rule compiler output a form that was (_ ($ StandardAuditRecord) NewTemp). The message NewTemp
no longer exists. The rule compiler now puts out the form (_ ($ StandardAuditRecord) New).

If rules were saved with auditing turned on, then call (ConvertLoopsFiles files-to-convert T).
Deleting the final "T", will not enable the cleanup. After recompiling the rules to eliminate the
message NewTemp, remake your files.

5 6

XEROX RULES

[This page intentionally left blank]

HOW TO SET UP FOR TESTING LOOPS

Start with a fresh LISP.SYSOUT from {erinyes}<lisp>lyric>basics>, dated 27-
Apr-87.

Give no INIT file

Log in.

Type into the exec:
(SETQ IL:DISPLAYFONTDIRECTORIES ’("{ERINYES}<lisp>LYRIC>FONTS>"))
CONN {ERINYES}<lisp>Lyric>library>
(il:load ’TEDIT.lcom)
(il:tedit ’{erinyes}<cate3>loops>LOOPS-setup.tedit)

This should bring up this document.
Shift selected all lines below here into the EXEC:

(il:load ’FILEBROWSER.lcom)
CONN {erinyes}<lisp>lyric>lispusers>
(il:load ’WHO-LINE.dfasl)
(il:load ’filewatch.lcom)

CONN {erinyes}<lispusers>lyric>
(il:load ’CROCK.lcom)

CONN {erinyes}<test>lisp>lyric>internal>library>
(il:load ’do-test.dfasl)

(setq il:*DEFAULT-CLEANUP-COMPILER* ’cl:COMPILE-FILE)

(setq il:ch.default.domain "AISNORTH")
(SETQ IL:CH.DEFAULT.ORGANIZATION "XEROX")
CONN |{PELE:AISNorth:Xerox}<CATE3>|

(il:closew il:logow)
(IL:CHANGEBACKGROUND 42405)
(il:crock)

Follow the instructions for loading loops from the release notes manual.
As long as the workstation can get the font files from the network, steps 1-3
can be ignored in the Installation of Loops (4.3 of Release Notes)
For step 4:
The modified network version:

CONN {ERINYES}<lisp>Lyric>library>
(il:load ’grapher.lcom)

For steps 5-6:
Insert Lyric LOOPS System #1 floppy, then type:
(il:fb ’{floppy})
and copy all files to {dsk}<lispfiles>loops>
Do the same for the Lyric LOOPS System #2 floppy
Then type or shift select in an Interlisp window:

2

CONN "{DSK}<lispfiles>loops>"
(LOAD ’LOOPS)

Stuff the following lines into a temp file in core then shift select out the
sysout command.
(il:sysout ’{erinyes}<cate3>loops>test-loops.sysout)
(il:login)
(il:fb ’{erinyes}<cate3>loops>)
; Make sure the Loops stuff is copied to <lispfiles>loops>
load the right software, and change to loops stuff

1

XEROX CACHEOBJECT

CACHEOBJECT

 By: sML (Lanning.pa@Xerox.com)

 4-Sep-86

INTRODUCTION

The file CACHEOBJECT defines a Loops mixin that defines a protocol for instances that cache
computed values.

CLASSES

ObjectWithCache [Class]

Instance of the class ObjectWithCache follow a standard protocol for manipulating a dynamic cache.
The cache is not stored when an ObjectWithCache is saved on a file.

(← self ClearCache) [Method of ObjectWithCache]

Clears the entire cache of self.

(← self ClearCacheEntry name) [Method of ObjectWithCache]

Removes the cache entry for name on self.

(← self GetCache name) [Function]

Returns the value of the cache entry for name on self. If there is no cached value, returns NIL.

(← self PutCache name datum) [Function]

Stores datum as the value of the cache entry for name on self. Returns datum.

1

XEROX LOOPS-FB

LOOPS-FB

 By: sML (Lanning.pa@Xerox.com)

INTRODUCTION

LOOPS-FB adds a command to the Lisp File Browsers for opening Loops browsers on files.

Loading the file will automatically add a "Browse" command to all new Lisp FIle Browsers. Selecting
the "Browse" item will open a Loops FileBrowser on each of the currently selected files. The files will
be loaded first if they are not currently loaded.

1

XEROX LOOPSIDLE

LOOPSIDLE

 By: sML (Lanning.pa@Xerox.com)

 4-Sep-86

INTRODUCTION

LOOPSIDLE make IDLE "bouncing box" function bounce a Loops icon about about the screen.

VARIABLES

BouncingLoopsIcon [Variable]

The (value of the) variable BouncingLoopsIcon is an expanded copy of the Loops icon. LOOPSIDLE
sets IDLE.BOUNDING.BOX to (the value of) BouncingLoopsIcon.

1

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Interlisp IMAGEOBJs are "objects" that know how to display themselves on IMAGESTREAMs.

IMAGEOBJs are most often used to insert non-character items into a TEdit document. Standard

Interlisp IMAGEOBJs are available for displaying bitmaps, graphs, and horizontal bars.

Interlisp IMAGEOBJs are not objects in the sense of Loops: there is no provision for specialization of

existing IMAGEOBJs and no default behavior is provided. Creation of a new type of IMAGEOBJs

requires some effort. Functions must be specified for printing, reading, displaying, and handling button

events for the new IMAGEOBJ type.

Loops image objects are Loops objects that can be used as Interlisp IMAGEOBJs. They let the

programer use the full power of the Loops environment in the creation of new IMAGEOBJs.

The LoopsImageObjects file defines a number of classes that can be used to create Interlisp

IMAGEOBJs, and an interface that makes it easy to insert these Loops image objects into a TEdit

document. Section
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn tells how to insert Loops image objects into a TEdit

document; section
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn describes some predefined Loops image object

classes; sections
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn to

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn describe the Loops

image object protocol, for people wishing to define their own Loops image objects.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFnInserting Loops image objects into a TEdit document is easy.

(LIO) [Function]

2

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn Loops Users Packages

The standard way to insert IMAGEOBJs into a TEdit file is via the CONTROL-O character. Hitting

CONTROL-O lets you type in a LISP form, and the value of this form is an IMAGEOBJ that will be

inserted into the document at the current location. (LIO) will present you with a menu of all known

Loops image object classes. If you select a class from this menu, (LIO) will return the IMAGEOBJ that

points to a new Loops image object of the specified class. If the instance has IVs that can be edited,

you will be given a chance to edit the instance first.

LIOInsertCharCodes [Variable]

When the Loops image object package is loaded, it redefines the interpretation in TEdit of the

characters specified by the variable LIOInsertCharCodes. Hitting one of these characters is

equivilent to hitting CONTROL-O and then typing in the form (LIO). The default value of

LIOInsertCharCodes is (the value of) (LIST (CHARCODE #W) (CHARCODE #w)). This is an

INITVAR, so you override the default before you load the package.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFnMany of these objects display themselves as text. This can be confusing

for the user, who can easily mistake the object for a sequence of characters. To avoid this possibility

for confusion, these objects appear boxed when displayed in a TEdit window. The box will not appear

in a printed document.

The character looks of these objects can be set from TEdit in the same way that normal characters can

have their looks set: select the object and use TEdit’s Character Looks Menu, or the Looks item on the

title bar pop-up menu. Note that the object can have only a single character looks--all the characters in

the object will be displayed with the same looks. There is no way to change the looks of single

characters displayed by a Loops image object.

These objects often violate the principle of WYSIWYG (What You See Is What You Get) in that they

display more text in a TEdit window then they do when printed. They let you know what text will

appear in print by displaying all non-printing text inverted. Thus, the object that displays in a TEdit

window as will show up as the string "IndexEntry" when printed. (Note the

interaction of this inversion with the boxing mentioned in the previous paragraph: the inversion is

performed after the boxing, so that the entire object will still appear boxed if displayed inverted (as in

TEdit’s highlighting to indicate pending-delete).)

3

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

These objects respond to a button event by presenting a menu of options to the user. The items in the

menu depend on the class of the object. All objects include a menu item for storing the Loops instance

in (SavedValue), and for inspecting the instance. If the instance has IVs that can be set by the user,

the menu will include an "Edit" item. The "Edit" item will bring up the standard Loops instance editor on

the object. If the instance has a textual IV, the menu will include an option to edit the value of this IV in

a new TEdit window.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Many people include in a TEdit file the time the file was last edited, or the name of the file that holds

the document. The following classes can be used to automate this process.

WhenLastSaved [Class]

A WhenLastSaved image object will display a time stamp indidating the time the TEdit document was

last saved. For example, a WhenLastSaved instance in this document might produce the image

when displayed to a TEdit window (but would appear without the

box when hardcopied).

If the document has not been saved since the WhenLastSaved object was inserted, the

WhenLastSaved object will display the string "NotYetSaved" instead of the time stamp.

WhereLastSaved [Class]

A WhereLastSaved image object is much like a WhenLastSaved object, except that it displays the

name of the file that the TEdit document was last saved in, instead of the time last saved.

WhenLastSaved and WhereLastSaved objects are used in the running footers in this document.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Using image objects, it is easy to build an index table for a TEdit document.

IndexEntry [Class]

An IndexEntry object associates a string with a page number for inclusion in an index. The IV text

of an IndexEntry will be added to the accumulated index, together with the number of the page

containing the object. If the IV displayText? is non-NIL (the default), then the text string will also

appear in the document, otherwise the object will be invisible in the final hardcopy. For example, an

IndexEntry that adds a reference to the string "IndexEntry" appears in a TEdit window as

4

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn Loops Users Packages

. If the displayText? IV were NIL, it would appear as

 when displayed in a TEdit window, but would be invisible when printed.

InitIndex [Class]

An InitIndex object must appear in a TEdit document before any IndexEntry object. The

InitIndex object initializes the collection of the index table. It will be invisible when printed.

CollectIndex [Class]

A CollectIndex object should appear after all the IndexEntry objects that appear in a TEdit

document. It will sort the index and print the index information into a new TEdit window (you will be

prompted for the window). You can then format the text, save it away, print it, or discard it. The IVs

looks, paraLooks, firstPageFormat, rectoPageFormat, and versoPageFormat determine

the initial formatting of the index. See the TEdit documentation for a discussion of the definition of

these fields. The CollectIndex object will not be visible in the printed document.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Automatic chapter and section numbering, and generation of a table of contents, is provided by the

following classes.

SectionHeading [Class]

SectionHeading objects have three IVs: level, text, and displayText?. The level IV

determines the subsection nesting of the object. Each SectionHeading object in the document

increments the current section number at the given level. Smaller level numbers will not be affected.

Larger level numbers are reset to zero. For example, a sequence of SectionHeading objects with

level IVs of 1, 2, 1, 2, 2, 3, 2, and 1 will produce final section numbers of 1., 1.1., 2., 2.1., 2.2.,

2.2.1., 2.3., and 3.

The text IV determines the section title for inclusion in the table of contents. If the displayText? is

non-NIL (the default), the text will also be displayed in the document.

As an example, when first displayed in a TEdit window the SectionHeading for this subsection

looked like . If the displayText? IV were NIL,

the text would have been inverted to indicate that it will not be present in the final hardcopy:

. Once the containing document had been

5

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

hardcopied, the object displayed the section number used at hardcopy time instead of the placeholder

"n.n.". (Due to a "bug", you have to redisplay the window to see the updated section numbers.)

InitTOC [Class]

An InitTOC object must appear in a TEdit document before any SectionHeading object. The

InitTOC object initializes the collection of the table of contents. The IV initialSectionNumbers

can be used to initialize the first section numbers to values other than 1. For example, if the

initialSectionNumbers IV is (2 1 3), and the first SectionHeading object has a level IV of

3, it will be given the subsection number "2.1.4.". The InitTOC object will be invisible when printed.

CollectTOC [Class]

A CollectTOC object should be placed at the end of a document, after all SectionHeading objects,

to collect the table of contents information into a new TEdit stream. When the document is hardcopied,

a new TEdit stream will be opened containing the accumulated table of contents. You can then format

this TEdit document as you wish. CollectTOC uses the same IVs as does the CollectIndex to

determine the initial formatting of the table of contents. The CollectTOC object not be visible in the

final hardcopy.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

The following classes provide a somewhat clumsy way of having page and section references included

an a document. Because there is no lookahead in the TEdit page formatting, documents containing

these objects must be hardcopied twice. The first time will compute the correct page and section

numbers, the second time will incorporate them into the document.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

PageNote [Class]

At hardcopy time, a PageNote object remembers the current page number, associating it with the

value of its tag IV. See the PageReference class, below.

PageReference [Class]

At hardcopy time, a PageReference object looks up the value of its tag IV to see if a PageNote

object has noted a page number for that tag. If there is page number stored, the PageReference

object will display the number, otherwise it will display the string "nn". If the PageNote occurs before

6

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn Loops Users Packages

the PageReference object in the document, this reference will be found the first time the document is

printed. If the PageNote occurs after the PageReference object, a second hardcopy must be

generated.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

SectionNote [Class]

At hardcopy time, a SectionNote object remembers the current section number, associating it with

the value of its tag IV. See the SectionReference class, below.

SectionReference [Class]

At hardcopy time, a SectionReference object looks up the value of its tag IV to see if a

SectionNote object has noted a section number for that tag. If there is section number stored, the

SectionReference object will display the number, otherwise it will display the string "n.". If the

SectionNote occurs before the SectionReference object in the document, this reference will be

found the first time the document is printed. If the SectionNote occurs after the

SectionReference object, a second hardcopy must be generated.

SectionReferences are used in this document in the last paragraph of the first section.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

The following class illustrates the posiblity of nesting image objects inside of other image objects.

BoxedImageObject [Class]

IVs: boxShade (the shade of the box: either a shade or a form that will be evaluated to a shade; e.g.

GRAYSHADE), boxWhiteSpace (blank space between the boxed object and the box), boxWidth (the

width of the box), boxedObject (a LoopsImageObject).

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

A common document form consists of a table of text entries. These are easy to build in TEdit when

each entry fits within its row without having to occupy multiple lines.

7

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn.

Example: BoxedImageObjects and TableTextObjects

The following class takes care of the case where the table entries are too large to fit on a single line.

TableTextObject [Class]

describes a (possibly multiple line) table entry. The class TableTextObject defines five important

IVs.

text [IV of TableTextObject]

contains the text that will be displayed in the table entry.

widthInWs [IV of TableTextObject]

defines the width of the table entry. This width is measured in "W"s, in the current font. If the text is

too long, it will be broken at word boundaries and displayed in multiple lines. The default value is 10.

nLines [IV of TableTextObject]

defines the maximum number of lines to be used to print the text. If nLines is NIL (the default), the

object will be as tall as it needs to be to display the entire text subject to the width constraint specified

by the widthInWs IV.

justify [IV of TableTextObject]

determines the horizontal justification of the individual lines within the table entry. Possible values are

left (for left–justify), center (for centered text), and right (for right–justify). The defualt is left.

verticalJustify [IV of TableTextObject]

determines the vertical justification of the lines within the table entry. Possible values are top (the first

line will be flush with the top of the table entry), center (the text will be centered vertically), and

bottom (the last line of text will be at the bottom of the entry). The defualt is bottom. Note that this

IV only has an effect if the IV nLines is specified.

8

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn Loops Users Packages

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Image objects can be used to include prettyprinted forms in a document.

PPImageObject [Class]

prettyprints a form in the image stream. The relevant IVs of PPImageObject are:

form [IV of PPImageObject]

~mumble~

minWidth [IV of PPImageObject]

~mumble~

maxWidth [IV of PPImageObject]

~mumble~

Due to an unfortunate bug in Interlisp, PPImageObject work correctly on display devices .

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Example: PPImageObject

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFnLoops image objects are Loops objects that are wrapped around an

Interlisp IMAGEOBJ. The IMAGEOBJ in turn points back to the Lops image object. When Interlisp

"sends a message" to the underlying IMAGEOBJ (more correctly, applies one of the IMAGEOBJ’s

IMAGEFNS to the IMAGEOBJ), the IMAGEOBJ forwards this message on to the Loops image object.

The translation from Interlisp IMAGEOBJ protocol to Loops image object protocol is accomplished by a

special set of IMAGEFNS and the LoopsImageObject class.

LoopsImageObject [AbstractClass]

9

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

The following methods implement the IMAGEFNS for the Loops image object. These message are not

intended to be sent by the user; they are sent automatically by TEdit and other packages.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

(_ self ImageBox imageStream currentX

 rightMargin) [Method of LoopsImageObject]

returns an instance of the record IMAGEBOX with fields XSIZE, YSIZE, XKERN, and YDESC. This is

used by TEdit to determine the size of the object for formatting purposes. Specializations of

LoopsImageObject should override this method.

(_ self Display imageStream) [Method of LoopsImageObject]

should actually display the object on the imageStream. Specializations of LoopsImageObject

should override this method.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

(_ self ButtonEventIn windowStream selection

 relX relY window textStream button) [Method of LoopsImageObject]

~mumble~

(_ self CopyButtonEventIn windowStream) [Method of LoopsImageObject]

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

(_ self Copy) [Method of LoopsImageObject]

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

1 0

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn Loops Users Packages

Due to restrictions imposed by IMAGEOBJects, LoopsImageObjects cannot duplicate the full generality

of saving and retoring Loops objects. Specialized subclasses of LoopsImageObjects cannot change

how they are stored or read back in. However, the following methods do give the user some control

over what extra information is dumped out when a LoopsImageObjects is stored.

(_ self BeforePutToFile stream) [Method of LoopsImageObject]

~mumble~

(_ self AfterPutToFile fileStream) [Method of LoopsImageObject]

~mumble~

(_ self AfterGetFromFile textStream) [Method of LoopsImageObject]

~mumble~

(_ self PrePrint) [Method of LoopsImageObject]

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

(_ self WhenCopied targetWindowStream

 sourceTextStream targetTextStream) [Method of LoopsImageObject]

~mumble~

(_ self WhenDeleted targetWindowStream

 sourceTextStream targetTextStream) [Method of LoopsImageObject]

~mumble~

(_ self WhenInserted targetWindowStream

 sourceTextStream targetTextStream) [Method of LoopsImageObject]

~mumble~

(_ self WhenMoved targetWindowStream

 sourceTextStream targetTextStream) [Method of LoopsImageObject]

~mumble~

1 1

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

(_ self WhenOperatedOn windowStream howOperatedOn

 selection textStream) [Method of LoopsImageObject]

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

The class LoopsImageObject provides a number of other methods that can be used by

specializations of the above methods.

(_ self CachedImageBox imageStream) [Method of LoopsImageObject]

returns the image box computed by the last ImageBox method. This is often used inside the Display

method to avoid resending the ImageBox message.

(_ self DisplayImageStream? imageStream) [Method of LoopsImageObject]

returns NIL unless the image stream is a display image stream.

(_ self PrintText imageStream text font) [Method of LoopsImageObject]

prints the string text in the font font, centered in the object’s CachedImageBox.

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

Certain subclasses of LoopsImageObject capture some commonly desired functionality. These may

be useful to anyone interested in building their own Loops image objects.

TEditImageObject [AbstractClass]

The class TEditImageObject contains a few methods that are only applicable when the object is

being displayed in a TEdit stream.

(_ self CurrentFont imageStream) [Method of TEditImageObject]

returns the font of the image object in the current TEdit stream.

1 2

Loops Image Objects

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn Loops Users Packages

(_ self TextStream imageStream) [Method of TEditImageObject]

returns the text stream that is being displayed in imageStream.

(_ self TEditIV ivName textStream) [Method of TEditImageObject]

edits the text stored in the IV ivName of self in a new TEdit window. The image object should be

part of the TEdit stream textStream. The textStream argument is used to update the display when

the IV has been edited.

(_ self AllObjects textStream) [Method of TEditImageObject]

returns a list of all imageobjects contained in textStream, in order.

WhenSavedImageObject [AbstractClass]

~mumble~

HardcopySideEffectObject [AbstractClass]

~mumble~

LabelImageMixin [AbstractClass]

~mumble~

EditableImageObjectMixin [AbstractClass]

~mumble~

TEditableImageObjectMixin [AbstractClass]

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

On occasion, it may be useful to wrap a Loops image object around an existing Interlisp IMAGEOBJ,

say to wrap a BoxedImageObject around it.

ImageObjectWrapper [Class]

1 3

Loops Image Objects

Loops Users Packages
Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

~mumble~

Unknown IMAGEOBJ type
GETFN: LoopsImageObjectGetFn

1

XEROX LOOPSINDEX

LOOPSINDEX

 By: sML (Lanning.pa@Xerox.com)

 4-Sep-86

INTRODUCTION

LOOPSINDEX sets up the SINGLEFILEINDEX package to dump out classes, methods, and instances
in an intelligible way. LOOPSINDEX can be loaded into any Interlisp sysout: you do not need to have
Loops loaded to load LOOPSINDEX.

LOOPSINDEX adds appropriate entries to the lists SINGLEFILEINDEX.TYPES and
SINGLEFILEINDEX.FILTERS to cause SINGLEFILEINDEX to index all classes, methods, and
instances defined on a file. See the documentation of SINGLEFILEINDEX for a detailed description of
these variables.

LOOPSINDEX will load SINGLEFILEINDEX if it is not already loaded.

HOW TO SET UP FOR TESTING LOOPS

Start with a fresh LISP.SYSOUT from {erinyes}<lisp>lyric>basics>, dated 27-
Apr-87.

Give no INIT file

Log in.

Type into the exec:
(SETQ IL:DISPLAYFONTDIRECTORIES ’("{ERINYES}<lisp>LYRIC>FONTS>"))
CONN {ERINYES}<lisp>Lyric>library>
(il:load ’TEDIT.lcom)
(il:tedit ’{erinyes}<cate3>loops>LOOPS-setup.tedit)

This should bring up this document.
Shift selected all lines below here into the EXEC:

(il:load ’FILEBROWSER.lcom)
CONN {erinyes}<lisp>lyric>lispusers>
(il:load ’WHO-LINE.dfasl)
(il:load ’filewatch.lcom)

CONN {erinyes}<lispusers>lyric>
(il:load ’CROCK.lcom)

CONN {erinyes}<test>lisp>lyric>internal>library>
(il:load ’do-test.dfasl)

(setq il:*DEFAULT-CLEANUP-COMPILER* ’cl:COMPILE-FILE)

(setq il:ch.default.domain "AISNORTH")
(SETQ IL:CH.DEFAULT.ORGANIZATION "XEROX")
CONN |{PELE:AISNorth:Xerox}<CATE3>|

(il:closew il:logow)
(IL:CHANGEBACKGROUND 42405)
(il:crock)

Follow the instructions for loading loops from the release notes manual.
As long as the workstation can get the font files from the network, steps 1-3
can be ignored in the Installation of Loops (4.3 of Release Notes)
For step 4:
The modified network version:

CONN {ERINYES}<lisp>Lyric>library>
(il:load ’grapher.lcom)

For steps 5-6:
Insert Lyric LOOPS System #1 floppy, then type:
(il:fb ’{floppy})
and copy all files to {dsk}<lispfiles>loops>
Do the same for the Lyric LOOPS System #2 floppy
Then type or shift select in an Interlisp window:

2

CONN "{DSK}<lispfiles>loops>"
(LOAD ’LOOPS)

Stuff the following lines into a temp file in core then shift select out the
sysout command.
(il:sysout ’{erinyes}<cate3>loops>test-loops.sysout)
(il:login)
(il:fb ’{erinyes}<cate3>loops>)
; Make sure the Loops stuff is copied to <lispfiles>loops>
load the right software, and change to loops stuff

The basic loop is (TIMEALL form 10000).

 [[Timing old SmallLoops, on an 1132]]

Test name Time Time in test
(secs) (less var lookup)

Global variable lookup 0.05 0.00

Field fetch 0.07 0.02

Function call 0.11 0.06

Send 0.48 0.43 (= x 7 a function call)

Inherited GetValue 1.95 1.90 (= x 32 a function call)

Local GetValue 0.58 0.53 (= x 9 a function call)

Local PutValue 0.69 0.64 (= x 11 a function call)

Inherited GetIVProp 1.97 1.92 (= x 32 a function call)

Local PutIVProp 1.20 1.05 (= x 18 a function call)

Instance creation, 2IVs ??? ??? (= x ??? a function call)

 [[Timing new Loops, on an 1132]]

Test name Time Time in test
(secs) (less var lookup)

Global variable lookup 0.05 0.00

Field fetch 0.07 0.02

Function call 0.11 0.06

Send (local cache) 0.22 0.17 (= x 3 a function call)

Send (global cache) 0.?? 0.?? (= x 7 a function call)

Send (no cache) 0.?? 0.?? (= x 7 a function call)

Inherited GetValue 1.77 1.72 (= x 29 a function call)

Local GetValue 0.37 0.32 (= x 5 a function call)

Local PutValue 0.48 0.43 (= x 7 a function call)

Inherited GetIVProp 3.36 3.31 (= x 55 a function call)

Local PutIVProp 1.11 1.06 (= x 18 a function call)

Instance creation, 2IVs 7.85 7.85 (= x 131 a function call)

	doc-library-001-TITLEPAGE
	doc-library-002-TOC
	doc-library-003-PREFACE
	doc-library-004-GAUGES
	doc-library-005-MASTERSCOPE
	doc-library-006-VIRTUAL
	doc-library-007-INDEX
	doc-library-A1-TITLEPAGE
	doc-library-A2-TOC
	doc-library-A3-PREFACE
	doc-library-CONVENTIONS
	doc-library-FINAL-INDEX
	doc-library-GAUGES
	doc-library-MASTERSCOPE
	doc-library-PRODUCTIONDETAILS
	doc-library-VC
	doc-loops-AA-README
	doc-loops-medley-rel-notes-APP-A-SUN-INSTALL
	doc-loops-medley-rel-notes-UPDATE-SHEET
	doc-loops-production-specs-BACKCOVER
	doc-loops-production-specs-COMBOCOVERSPINE
	doc-loops-production-specs-CONFIGURATION-REQUEST
	doc-loops-production-specs-COVERSPINE
	doc-loops-production-specs-MAINTABS-LSCAPE
	doc-loops-production-specs-MAINTABS-PORTRAIT
	doc-loops-production-specs-PACKAGING
	doc-loops-production-specs-PARTNUMBERS
	doc-loops-production-specs-SUBTABS1-PORTRAIT
	doc-loops-production-specs-SUBTABS-LSCAPE
	doc-loops-production-specs-USERSCOVERSPINE
	doc-loops-README
	doc-manual-ACTIVEVALUES
	doc-manual-CUSTOMIZEMASTERSCOPE
	doc-manual-MANUAL-OUTLINE
	doc-manual-MANUAL-STRUCTURE
	doc-misc-BINDERCOVER
	doc-misc-COVERSPINE
	doc-misc-ERRATA
	doc-misc-FINAL.REF.PNDXA-BUTTRESS
	doc-misc-KIT-CONFIGS
	doc-misc-MAINTABS-LSCAPE
	doc-misc-MAINTABS-PORTRAIT
	doc-misc-SUBTABS1-PORTRAIT
	doc-misc-SUBTABS2-PORTRAIT
	doc-misc-SUBTABS-LSCAPE
	doc-misc-TAB-REPLACEMENT
	doc-misc-USERSCOVERSPINE
	doc-operations-LOOPS-ALL-CONFIGS
	doc-operations-SUN-TAPE-MANUFACTURING
	doc-refman-001-TITLEPAGE
	doc-refman-01-INTRO
	doc-refman-1-2
	doc-refman-1-3
	doc-refman-1-4
	doc-refman-1-5
	doc-refman-1-6
	doc-refman-1-7
	doc-refman-1-8
	doc-refman-1-9
	doc-refman-1-10
	doc-refman-002-TOC
	doc-refman-02-INSTANCES
	doc-refman-003-LOF
	doc-refman-03-CLASSES
	doc-refman-004-PREFACE
	doc-refman-04-METACLASSES
	doc-refman-05-ACCESSING
	doc-refman-006-GLOSSARY
	doc-refman-06-METHODS
	doc-refman-007-INDEX
	doc-refman-07-MESSAGE
	doc-refman-08-ACTIVEVALUES
	doc-refman-09-DATATYPES
	doc-refman-10A-BROWSER
	doc-refman-10B-BROWSERS
	doc-refman-10C-BROWSERS
	doc-refman-11-ERRORS
	doc-refman-12-BREAKING
	doc-refman-13-EDITING
	doc-refman-14-FILEMANAGER
	doc-refman-15-PERFORMANCE
	doc-refman-16-PROCESSES
	doc-refman-17-READPRINT
	doc-refman-18-USERIO
	doc-refman-19-WINDOWS
	doc-refman-20-SYSFUN
	doc-refman-A1-TITLEPAGE
	doc-refman-A2-TOC
	doc-refman-A3-LOF
	doc-refman-A4-PREFACE
	doc-refman-CONVENTIONS
	doc-refman-INDEX
	doc-refman-PRODUCTIONDETAILS
	doc-refman-SAMPLE
	doc-refman-TAB-REPLACEMENTS
	doc-refman-ZZ-GLOSSARY
	doc-release-notes-001-TITLEPAGE
	doc-release-notes-1-OVERVIEW
	doc-release-notes-2-CHANGES
	doc-release-notes-003-PREFACE
	doc-release-notes-A1-TITLEPAGE
	doc-release-notes-A2-TOC
	doc-release-notes-A3-PREFACE
	doc-release-notes-CH01-OVERVIEW
	doc-release-notes-CH02-CHANGES
	doc-release-notes-CH03-DOCUMENTATION
	doc-release-notes-CH04-INSTALLATION
	doc-release-notes-CH05-REPORTING
	doc-release-notes-CH06-KNOWNPROBLEMS
	doc-release-notes-INDEX
	doc-release-notes-medley-APP-A-SUN-INSTALL
	doc-release-notes-medley-UPDATE-SHEET
	doc-TITLEPAGE
	doc-users-001-TITLEPAGE
	doc-users-1-RULES-INTRO
	doc-users-002-TOC
	doc-users-2-RULE-LANGUAGE
	doc-users-003-PREFACE
	doc-users-3-USING-RULES
	doc-users-004-CONVERT
	doc-users-4-INDEX
	doc-users-005-LOOPSBACKWARDS
	doc-users-006-LOOPSMIXIN
	doc-users-007-RULES-TITLEPAGE
	doc-users-008-RULES-TOC
	doc-users-009-RULES-LOF
	doc-users-A2-TOC
	doc-users-A3-PREFACE
	doc-users-CONVENTIONS
	doc-users-CONVERTER
	doc-users-LOOPSBACKWARDS
	doc-users-LOOPSMIXIN
	doc-users-PRODUCTIONDETAILS
	doc-users-RULES1-INTRO
	doc-users-RULES2-LANGUAGE
	doc-users-RULES3-USE
	doc-users-RULES-A1-TITLEPAGE
	doc-users-RULES-A2-TOC
	doc-users-RULES-A3-LOF
	doc-users-RULESA-CONVERT
	loops-LOOPS-SETUP
	obsolete-from1.1-old-CACHEOBJECT
	obsolete-from1.1-old-LOOPS-FB
	obsolete-from1.1-old-LOOPSIDLE
	obsolete-from1.1-old-LOOPSIMAGEOBJECTS
	obsolete-from1.1-old-LOOPSINDEX
	test-loops-LOOPS-SETUP
	test-timing-TIMING

