
1NoteCards Evolving Outline

Filed on {Eris}<NoteCards>Doc>1.0>Working>000-OutLine.TEdit

NoteCards
Evolving Outline

Chapter
Status

4 Title Page

4 Preface
Audiences
Small selection of article & book references.

3 Table of Contents

I Introduction & Installation

4 1 Introduction
NoteCards
System Overview
Useful SunOS and UNIX Conventions
NoteCards Device Conventions
Stylistic Conventions

Prompts
Font Usage
Keyboard Conventions

4 2 System Requirements
Prerequisites

Processor Hardware
Memory
Swap Space
Disk Space
Input/Output Devices

Bitmap Display
Printers

Tape Access
Operating System Requirements

Constraints
Resource Constraints
Shared Sun Workstations

Release Contents
Documentation
Software

4 3 Software Installation
Insuring Adequate Swap Space
Installing Software
Copy Protection
Configuring the Software

Relinking
Enabling PUP /XNS Ethernet
Using/Installing the Host Access Key

4 4 System Use Issues
Site Initialization File
Starting NoteCards
Exiting NoteCards and Saving State
Keyboard Interpretation

Sun Type 2 Keyboard
Sun Type 3 Keyboard
Sun Type 4 Keyboard

Console Messages
File Compatibility

Sysout Compatibility with Xerox Workstations
File Compatibility with Xerox Workstations

2 NoteCards Evolving Outline

NoteCards Evolving Outline

Notefile Compatibility with Prerelease Versions of NoteCards
Using SunOS Files from NoteCards

File Naming Conventions
Common {DSK} and {UNIX} Naming Conventions
{DSK} Naming Conventions

Version Numbering
Pathnames

{UNIX} Naming Conventions
Directories

Directory Enumeration
Directory Creation

Open File Limit
Default Pathname

File Attributes
File System Errors

II NoteCards Tutorial

1 5 NoteCards Basics
Starting NoteCards
Keyboard & Mouse

Keyboard map
Mouse button usage

Left, Middle & Right button menus
Accessing & using scroll bars

Accessing menus
Making & not making selections
Accessing submenu items

Exiting NoteCards
Saving state vs. not saving state

Escaping from Error Conditions
UpArrow, Proceed, (& OK?)

Basic NoteFile Commands
Create
Open
Close
Delete

NoteFile menus
Card Types

FileBoxes
Text

Miscellaneous
Background Menu

What options will be included, excluded, added (Logout T)
{DSK} and {UNIX} devices

4 6 Building NoteCard Structures & Modes of Use.
Introduction to hypertext
Introduction to what NC is and does; isn’t and doesn’t
Some examples of applications NoteCards has been used for

Documentation
Bug & feature tracking/Software development records

Using embedded fileboxes or text to group cards
When to use multiple notefiles for a single project

III Reference Manual

4 7 The User Interface
Keyboard
Mouse

Left mouse button behavior in (includes shift, copy & move)
Cards
Other windows
Card titlebars
Link Icons
Card & Shrink Icons
Notefile Banners

3NoteCards Evolving Outline

NoteCards Evolving Outline

Middle mouse button behavior in...
Right mouse button behavior in ...

Window Menu
Background Menu
Window Icon Menu

4 8 Links
Introduction to Links
Links and Link Types

System-Reserved Link Types
User-Specified Link Types
Link Directions and Link Ends

Link Categories
Other Link Terminology

Link Types vs. Card Types
Link Access and Use

Link Icon Functionality
Link Icons Active Regions
Mouse Button Actions in Link Icons

Viewing Local and Global Links
Unfiled and Lost Cards

Creating Links
Creating Links in Text Cards

Insert Link
Insert Links
Add Global Link
Add Global Links

Creating Links in Other Card Types
Text-Based Cards
Sketch-Based Cards
Graph-Based Cards

Deleting Links
Deleting Links from Card Contents

Text-Based Cards
Sketch-Based Cards
Graph-Based Cards

Deleting Links from the Show Links Display
Tailoring Links

Link Icon Menu
Bring Up Card/Box
Change Link Type
Change Card Title
Change Display Mode

System Parameters for Links
Cross-File Links

Appearance
Missing Notefiles

4 9 Cards and Banners
The Notefile Banner
The Banner Title Bar

Notefile Ops Menus
Middle-Mouse-Button Title-Bar Menu

Full File Name
File Capacity

Special Cards
Table of Contents FileBox
To Be Filed FileBox
Orphans FileBox

New Cards
User Cards and System Cards
Text-, Sketch-, and Graph-based cards
The Card Menus

4 10 User Cards
Text Cards

The Text-Card Menu

4 NoteCards Evolving Outline

NoteCards Evolving Outline

FileBox Cards
Suggested FileBoxes and Note Cards

Bibliography
Index
Read Me
Active Cards

The FileBox-Card Menu
System Parameters Affecting FileBoxes

Sketch Cards
The Sketch-Card Menu
System Parameters Affecting Sketch Cards

Graph Cards
The Graph-Card Menu

Bit Map Editor

4/2 11 System Cards
Browser
Search
Link Index
Document

4/3 12 The MenuBox Icon
Notefile Options

Open
Compact
Inspect & Repair
Copy
Rename
Delete
Create

Checkpoint
Close
Abort

NC FileBrowser

Card Options
Close (Structure)
Delete (Structure)
Copy (Structure)
Move (Structure)

Other Options
Edit Parameters
NF Indicators On
TEdit Killer On

4 13 System Parameters
Accessing System Parameters
NoteCards System Parameters

Extra TEdit Props
Include Card Object in ShowInfo
Del TEdit Process When Shrinking

Font Parameters
Menu Font
Default Font
Link Icon Font

Notefile Parameters
Show Notefile On Cards
New Notefile Initial Size
Menu Lingers After Notefile Close

Card Parameters
Force Filing
Force Titles
Default Card Type
Close Cards Off Screen
Bring Up Cards At Previous Pos

FileBox Card Parameters

5NoteCards Evolving Outline

NoteCards Evolving Outline

Markers In FileBoxes
Alphabetized FileBox Children

Browser Card Parameters
Special Browser Specs
Arrow Heads In Browsers
Link Dashing In Browser

Sketch Card Parameters
Attach Sketch Menu

Link Parameters
Link Icon Border Width
Link Icon Multi Link Mode
Cross File Link Mode
Link Icon Max Width in Pixels
Link Icon Show Title Default
Link Icon Attach Bitmap Default
Link Icon Show Link Type Default
Use Deleted Link Icon Indicators

3 14 The FileBrowser

4 15 Other Tools
The Clocks

Digital clock
Analog clock

The Directory Connector

4 16 Printing
Interpress
Postscript
Fonts available in each

4 17 Known Problems, Error Conditions and Recovery
Known Problems
Break Windows
URAID

2 Appendix A Notefile Concepts

2 Appendix B Notefile Inspector

4 Appendix C Initialization Files

4 Appendix D Checksum Control

4 Glossary

0 Index

##########

4 TEdit Manual

##########

4 Sketch Manual

##########

2 Programmers Interface to NoteCards

##########

Status Codes:
0 Nothing done.

6 NoteCards Evolving Outline

NoteCards Evolving Outline

1 Chapter started.
2 Initial draft written, needs major cleanup.
3 Needs minor cleanup.
4 Ready for initial release.
5 Ready for final release.

Release 1.1
 300300
March, 1989

ENVOS NOTECARDS™

 USER’S GUIDE

Address comments to:
Envos Corporation
User Documentation
1157 San Antonio Rd.
Mountain View, CA 94043
415-966-6200

ENVOS NOTECARDS™ USER’S GUIDE

Release 1.1

Part Number 300300

March, 1989

Copyright © 1989 by Envos Corporation.

All rights reserved.

Envos is a trademark of Envos Corporation.

NoteCards™ is a trademark of Xerox Corporation, used with
permission of Xerox Corporation

Xerox® is a registered trademark of Xerox Corporation.

UNIX® is a registered trademark of AT&T Bell Laboratories.

Postscript is a trademark of Adobe Systems.

The following are trademarks of Sun Microsystems, Inc.:

SunOS

Sun® and Sun Workstation® are registered trademarks

Copyright protection includes material generated from the software
programs displayed on the screen, such as icons, screen display
looks, and the like.

The information in this document is subject to change without notice
and should not be construed as a commitment by Envos Corporation.
While every effort has been made to ensure the accuracy of this
document, Envos Corporation assumes no responsibility for any errors
that may appear.

Text was written and produced with Envos text formatting tools; Xerox
printers were used to produce text masters. The typeface is Modern.

1 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

1. INTRODUCTION

NoteCards
NoteCards is a computer environment designed to help people
work with ideas. Its users are authors, researchers, designers, and
other intellectual laborers engaged in analyzing information,
constructing models, formulating arguments, designing artifacts,
and generally processing ideas. The system provides these users
with a variety of tools for collecting, representing, managing,
interrelating, and communicating ideas. NoteCards is based on the
notion that creative intellectual work is a hand-craft, a uniquely
human skill that cannot be easily automated.

Notecards provides the user with a "semantic network" of electronic
notecards interrconnected by typed links. This network serves as a
medium in which the user can represent collections of related
ideas. It also functions as a structure for organizing, storing, and
retrieving information. The system provides the user with tools for
displaying, modifying, manipulating, and navigating through this
network.

From: NoteCards in a Nutshell, by Frank G. Halasz, Thomas P.
Moran, Randall H. Trigg of the Intelligent Systems Laboratory in the
Xerox Palo Alto Research Center, Preceedings of the ACM CHI+GI
’87 Conference, Toronto, Canada April 1987

System Overview

Functionally, the NoteCards system for the Sun Workstation
consists of the following parts:

emulator A SunOS executable program which executes the NoteCards
system contained in the sysout and provides access to the Sun
host’s hardware.

sysout A virtual memory image (the sysout) containing both the NoteCards
program and its data structures. The sysout provided can be used
both on the Sun Workstations and on the Xerox 1100 series
workstations.

notefiles A file containing your cards on a particular topic and all their links.
This is your data and its organizational structure.

fonts Data describing the "looks" of printed characters used by
NoteCards’ graphics, windowing, and hardcopying subsystems.
Font directories are in four groups, display fonts, PostScript printer
fonts, Interpress printer fonts, and Press printer fonts.

1 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

1. INTRODUCTION

Useful SunOS and UNIX Conventions

SunOS is Sun Microsystems’ version of the UNIX operating
system. For users unfamiliar with the Sun Workstation, the
following SunOS (and UNIX) conventions, are used in the manual.

For complete information on UNIX and SunOS, refer to your Sun
documentation set.

case, filenames Type-in to UNIX is case sensitive. Typically, input is in lower case.
When UNIX searches for a name, it is case sensitive; it
distinguishes between lower and upper case characters. By
convention, most names are lower case characters.

shell Command interpreter; the commands shown are in the C-Shell,
unless otherwise noted.

NoteCards Device Conventions

NoteCards allows users to interact with SunOS file systems
(including file systems mounted from other machines) by using host
device names. The device names are

{DSK} A host name which gives you access to the SunOS file system
using Xerox workstation local disk conventions.

{UNIX} A host name which gives you access to the file system using
normal SunOS conventions.

The {DSK} device name provides an interface to the Sun
Workstation for users who want to maintain compatibility with
existing development tools and applications originally developed on
a Xerox workstation. The {UNIX} device name provides a way for
new applications to interact naturally with UNIX. Chapter 4, System
Use Issues, explains, in greater detail, some important exceptions
and restrictions to the {DSK} and {UNIX} device name.

Stylistic Conventions
Text marked by a revision bar in the right margin contains
information that was added or modified since the last release.

Prompts

All examples which include SunOS dialogues use the following
conventions for the SunOS prompt:

A number sign (#), as part of the system prompt, indicates that the
user is logged on as root or is running su; e.g.,

prompt #

1 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

1. INTRODUCTION

A percentage sign (%), as part of the system prompt, indicates that
a user other than root is logged on; e.g.,

prompt %

Font Usage

Bold text in TITAN font indicates text you should type in
exactly as printed.

Regular text in TITAN font indicates what the system
prints on your workstation screen. UNIX files and programs are
shown in TITAN FONT.

Italic text in Titan font indicates variables or
parameters that you should replace with the appropriate word or
string.

Bold text in Modern font is used to indicate menu commands and
NoteCards parameters.

Italic text in Modern font is used to indicate emphasis.

Quote marks are used to indicate window titles, parameter values,
and when refering to the names of section headings within
chapters; e.g., The "Stylistic Conventions" section in Chapter 1,
Introduction.

Keyboard Conventions

Keys that you press are in uppercase (e.g., COPY, for the Copy
key). A carriage return is displayed as <RETURN>. Instructions
that ask you to press two or three keys simultaneously are
indicated as follows:

"Press CONTROL-E"

Note that on some Xerox machines, the CONTROL key is labeled
PROPS or EDIT, but has the same function as the CONTROL key.

1 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

1. INTRODUCTION

[This page intentionally left blank]

i i iENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

PREFACE
Welcome to NoteCards, an idea manipulation tool for the modern
intellectual. NoteCards provides you with a new way to organize
and manage your ideas on your computer desk top.

This guide explains in detail how to install NoteCards on your Sun 3
or Sun 4 workstation, provides a basic tutorial for the NoteCards
environment, and contains the reference manual for NoteCards.

Audience
The Envos NoteCards Users’s Guide was written for users of
NoteCards on Sun workstations. The Guide assumes that you are
already familiar with UNIX and SunOS concepts.

Section I of this manual, Introduction and Installation, should be
read by the System Administrator or person installing the
NoteCards system. The NoteCards user should also read this
section, in particular, Chapters 1 and 4, Introduction and System
Use Issues. The user who wishes to remain safely ignorant of
system-level aspects of UNIX and NoteCards can skip over
Chapters 2 and 3, System Requirements and Software Installation.
(The system installer should also read Appendices C and D.)

Section II, NoteCards Tutorial, provides an introduction to
NoteCards and the system which underlies it. Chapter 5,
NoteCards Basics, is the place for all new users of NoteCards to
start once they have their system up and running.

Section III, Reference Manual, is a compilation of all the necessary
background information on NoteCards new and old users will need
to learn to fully exploit the NoteCards system.

The final section contains the Appendices, Glossary, and Index for
the Envos NoteCards User’s Guide.

Included with the NoteCards Guide are the manuals for TEdit and
Sketch, A User’s Guide to TEdit and A User’s Guide to Sketch.

What’s in the Manual
Here is what you will find in this manual, chapter by chapter,
accompanied by a brief description of when you will want to read
each chapter.

Chapter 1, Introduction, gives a brief introduction to and some
background on NoteCards as well as explaining the stylistic
conventions used in the Guide. Read this chapter before you install
NoteCards.

Chapter 2, System Requirements, goes over the hardware
requirements of the system. Read this chapter before you install
NoteCards on a particular machine to verify that it will run
acceptably on that machine.

i v ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

PREFACE

Chapter 3, Software Installation, gives you step by step directions
for installing NoteCards. Read this chapter before and during
system installation.

Chapter 4, System Use Issues, discusses some of the basic ins
and outs of using the system, Initialization, Starting, and Exiting
NoteCards, as well as file access. Read this chapter after you have
installed NoteCards. In particular, read the sections "Starting
NoteCards" and "Exiting NoteCards and Saving State" when you
are modifying your .cshrc and .login UNIX files for ideas on how to
simplify the NoteCards booting process. In order to allow it to run
on two different file systems NoteCards differs slightly from the
standard SunOS and UNIX file systems. Read the section "Using
SunOS Files from NoteCards" when you are learning how to
access files from NoteCards.

Chapter 5, NoteCards Basics, takes you by the hand and leads you
step by step through the basics of using the NoteCards system.
This is the place for new users to start once you have NoteCards
up and running. Once you get going, this is also a good chapter to
review as it brings together ideas scattered through the users’s
guides whose importance many not be obvious from their context in
the user’s guides.

Chapter 6, Building NoteCards Structures, tries to give you some
insights on how to use the NoteCards sytems to its best advantage.
NoteCards has been around as a PARC research prototype for
several years. In this chapter we try to present some of what they
have learned about using this system. Read this chapter after you
have become somewhat familiar with NoteCards.

Chapter 7, The User Interface, covers some of the more basic
aspects of using the system, the mouse, the keyboard, menus, etc.
Read this chapter to understand more of the lower level capabilities
of the system.

Chapter 8, Links, describes the link icon in all of its manifestations.
Links and their physical representation, link icons, live at the core of
NoteCards. Read and understand this chapter as soon as possible
to make the most effective use of the system.

Chapter 9, Cards and Banners, discusses the user interface to
individual notefiles and those aspects that all cards have in
common. This is also an important chapter. The section "The Card
Menu" is particularly important as it explains the functionality all
cards have in common.

Chapter 10, User Cards, discusses cards where you are
responsible for creating the contents. Read the sections "Text
Cards" and "FileBox Cards" right away. The "Text Cards" section
points you to the TEdit manual A User’s Guide to TEdit. As TEdit
forms the core of the system. We suggest that you make an effort
to gradually learn more about TEdit all the time. Read the
remaining sections as you explore the other card types. Note that
the Bit Map Editor is discussed at the end of this chapter even
though there is no bit-map card type

Chapter 11, System Cards, covers those cards where the system
creates the contents for you. The section "Browser Cards" is the

vENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

PREFACE

most important one to read for a beginner. The others can be read
as you need them.

Chapter 12, The MenuBox Icon, discusses the functionality on the
three menus available from the MenuBox. The important
commands for a new users are on the "Notefile Ops" menu. When
just getting used to NoteCards, focus on the commands: Open,
Checkpoint, Close, and Abort.

Chapter 13, System Parameters, explains how to change the global
defaults for the system. New users can safely ingore this chapter.
Most users will find that the default settings will suit all their needs.

Chapter 14, The FileBrower, explains how to use the FileBrowser.

Chapter 15, Other Tools, explains how to use the Directory
Connector, and the clocks.

Chapter 16, Printing, covers setting up print capabilities and printing
to PostScript and Interpress printers. Read this chapter when you
have the machine on a network and are ready to set up your print
capability.

Chapter 17, Known Problems, Error Conditions and Recovery,
covers those problems we know about as of this writing and how to
cope with and avoid them. A quick reading of the sections "Known
Problems" and "Break Windows" are all that most users will ever
need.

Appendix A, Notefile Concepts, explains the inner workings and
structure of notefiles. Read this if you want to understand how
information is stored in the notefile and why you have to perform
operations like compacting occasionally. This is essential
background material if you are about to inspect or fix a damaged
notefile.

Appendix B, Notefile Inspector, explains how to fix notefiles
damaged by power failured, broken net connections and other
unforeseeable calamities. Read this before you attempt to fix a
damaged notefile.

Appendix C, Initialization Files, collects a lot of information on how
to write a file which will automatically set site specific values for
parameters like printer names and font locations. Read this
appendix when you are first setting up your system.

Appendix D, Checksum Control, covers what to do if you believe
the files loaded from the distribution tape are damaged.

Acknowledgements
NoteCards has a long history. Its gestation began in October 1982
when the U.S. Government funded XSIS (Xerox Special
Information Systems) and Xerox PARC (Palo Alto Research
Center) to prototype a Problem-Structuring-Aids system to allow
users to build "semantic networks of textual information." The first
successful prototype was completed by Frank Halasz, at PARC, in

v i ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

PREFACE

November 1983. The first real user of the NoteCards system was
Ken Allen, a history graduate student at Stanford University, in the
spring of 1984. The birth came in June 1984 when NoteCards was
released to the government, in fulfillment of the Problem-
Structuring-Aids contract. Since then, XSIS and PARC have
released three unsupported versions of NoteCards on Xerox D-
machines. In November 1988, the Envos NoteCards product team
started work on a supported, productized version of NoteCards.
Envos NoteCards Release 1.1 for the Sun Workstation was
completed in April 1989.

NoteCards is based on the work of many people.

From Xerox, Frank Halasz, Tomas Moran, Randall Trigg, Richard
Burton, Ronald Kaplan, Peggy Irish, Catherine Marshall, and many
others.

From Envos, Robert Krivacic, Keith Mountford, Craig Sweat, Karin
Sye, Daniel Sagalowicz, Larry Harada, John Sybalsky, and others.

v i iENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

PREFACE

[This page intentionally left blank]

1

ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION
1

ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION
2. SYSTEM REQUIREMENTS
1

2. SYSTEM REQUIREMENTS
1

2. SYSTEM REQUIREMENTS
6

This chapter outlines the hardware and system requirements for running
NoteCards on a Sun Workstation. It also describes the contents of the
software release and documentation provided.
2

Prerequisites
1

Processor Hardware
1

NoteCards runs on Sun 3 and Sun 4 workstations. It runs on both
standalone workstations and diskless workstations linked to servers.

NoteCards on the Sun 3 workstation requires the MC68881 floating
point coprocessor chip; all Sun 3 workstations are currently sold with this
chip. On the Sun 4 workstation, the Weitek 1164/1165 coprocessor is optional.

For adequate performance, we recommend at least a 20MHz 68020 (Sun
3/60 or 3/260), or a 14MHz SPARC (Sun 4/110 or 4/260).
Memory
1

You can expect reasonable interactive performance with 8 megabytes
or more of RAM. Smaller configurations of diskless workstations have been
tested, but performance suffers.
Swap Space
1

NoteCards requires 45 megabytes of swap space for its own use.
NoteCards reserves this space at startup, but its requirement does not grow.
Disk Space
1

You need a minimum of 16 megabytes of disk file space for loading
the software from tape, and an additional 1 megabyte of disk file space (on
the file system where the installation is taking place) to install and
configure the NoteCards image. The 16 megabytes of disk space needed for the
NoteCards software can be broken down as follows:

NoteCards sysout 7 Mb
Fonts 7 Mb
Byte code emulator 2 Mb

Input/Output Devices
1

NoteCards gives you access to the Sun’s input/output devices, such as display,
keyboard, mouse, and file systems. It also provides access to PUP and XNS
Ethernet services directly.
Bitmap Display
1

2

NoteCards only runs on machines with either monochrome displays or
color displays that can be operated in single-bit-per-pixel mode. NoteCards
supports both the standard resolution display (1152 x 900) and the high-
resolution display (1600 x 1280).
Printers
1

For hardcopy output, NoteCards allows you to print to a Postscript printer,
via NFS, or to a Xerox Interpress or Press printer, via PUP/XNS.
Tape Access
1

For installation you need a 1/4-inch cartridge tape, located locally or on a
remote machine.
Operating System Requirements
1

NoteCards on the Sun 3 workstation requires SunOS operating system versions
3.2, 3.4, 3.5, or 4.0. On the Sun 4 workstation, NoteCards requires SunOS
version 4.0.
Note: NoteCards XNS Ethernet code cannot be run simultaneously with SunOS 3.5
Kernel XNS Ethernet code.
2

Constraints
1

Resource Constraints
1

When NoteCards is running, it takes over the entire display screen. Other
window systems such as suntools are unavailable.
Shared Sun Workstations
1

NoteCards runs its own process scheduler; NoteCards is always running as far
as the UNIX scheduler is concerned. For this reason, other heavy
computational jobs on the same Sun Workstation will not get as good
performance as they would competing with conventional UNIX interactive
environments.
Similarly, NoteCards may not have adequate interactive performance if it is
competing with other compute-bound processes.
For these reasons, we recommend that NoteCards be used on machines that are
set up primarily for a single user.
2

Release Contents
1

The release distribution contains the following documentation and software.
Documentation
1

The NoteCards documentation kit contains
Envos NoteCards User’s Guide
NoteCards Release Notes
A User’s Guide to TEdit
A User’s Guide to Sketch

 Sun Type 3 and Type 4 keyboard templates
Software
1

The software release comes on a 1/4-inch tape cartridge. The

3

software release is specific to the Sun architecture (Sun 3 or 4) for which
you purchased NoteCards, but contains multiple SunOS versions. This tar tape
contains the following directories:

./install.sunos3.mc68020 Contains makefile, lde.o, ldeether.c, lde,
ldeether, usersubrs.c for SunOS 3.x.

./install.sunos4.mc68020 Contains makefile, lde.o, ldeether.c, lde,
ldeether, usersubrs.c for SunOS 4.x.

./install.sunos4.sparc Contains makefile, lde.o, ldeether.c, lde,
ldeether, usersubrs.c for SunOS 4.x.

./sysouts Contains the sysout, notecards.sysout

./lisp Contains demo.NOTEFILE, the example notefile,
init.NoteCards, the standard NoteCards system initialization file, and
various post-release patches to the NoteCards system.

./fonts Contains the font directories.

./checksumdir Contains ldechecksum, checksum, and X.sum, checksum
files and README file.
Table 2-1 shows the organization of the font directories, as well as the
descriptions and contents of the directories.
Table 2-1. Font Directories

Directory Name Description Font Families Font Types
./fonts/display/presentation All presentation fonts Helvetica sans serif
./fonts/interpress/presentation for display and user Gacha monospace
screen font in

interface applications 8, 10, 12 MRR
Times Roman serif

./fonts/display/publishing All publishing fonts for Classic serif;
in all character sets,
./fonts/interpress/publishing character sets, foreign sizes, faces

characters, and techni- Modern sans serif; in all character
cal alphabets sets, faces, but with

selected sizes
Terminal monospaced, in all
 character sets, faces,

but with selected sizes

./fonts/display/printwheel All printwheel fonts BoldPS proportional
serif
./fonts/interpress/printwheel for word processing LetterGothic
monospaced sans serif

applications Titan monospaced serif

./fonts/display/JIS1 Japanese Kanji fonts, Classic point sizes 8
through 24
./fonts/interpress/JIS1 character set 1

./fonts/display/JIS2 Japanese Kanji fonts, Classic point sizes 8
through 24
./fonts/interpress/JIS2 character set 2

./fonts/display/chinese Chinese character Classic point sizes 12 and 24

./fonts/interpress/chinese fonts Modern 12 point

./fonts/display/miscellaneous Miscellaneous fonts ClassicThin brackets and
parentheses
./fonts/interpress/miscellaneous for nonstandard and in 16, 20,
26, 30 points

rare applications Hippo Greek
Logo Xerox logo
Math math symbols
OldEnglish point sizes 10 and 18
Symbol math symbols
Tonto thick monospaced, 14 point

MRR

4

./postscript All the postscript fonts

./fonts/press All metric information for Press printers.
If you do not use some of these files, you may choose to delete

them after installation. Alternately, you might selectively tar off only
those files/directories of interest (see your UNIX documentation). For
example, most sites might not use Chinese fonts, or Interpress/Press printers,
so the directories ./display/chinese, ./interpress, and ./press would be
candidates for deletion.
[This page intentionally left blank]

Ä(LIST ((PAGE NIL (PAPERSIZE Letter FOLIOINFO (ARABIC "2-" "") STARTINGPAGE# 1)
(0 0 612 792) ((FOLIO NIL (PARALOOKS (QUAD RIGHT) CHARLOOKS (SUPERSCRIPT 0
INVISIBLE OFF SELECTPOINT OFF PROTECTED OFF SIZE 10 FAMILY MODERN OVERLINE OFF
STRIKEOUT OFF UNDERLINE OFF EXPANSION REGULAR SLOPE REGULAR WEIGHT MEDIUM
INVERTED OFF USERINFO NIL STYLE NIL) FORMATINFO (ARABIC "2-" "")) (270 15 288
36) NIL) (HEADING NIL (HEADINGTYPE FOOTINGR) (54 27 558 36) NIL) (TEXT NIL NIL
(54 54 504 723) NIL))) (PAGE NIL (PAPERSIZE Letter FOLIOINFO (ARABIC "2-" ""))
(0 0 612 792) ((FOLIO NIL (PARALOOKS (QUAD LEFT) CHARLOOKS (SUPERSCRIPT 0
INVISIBLE OFF SELECTPOINT OFF PROTECTED OFF SIZE 10 FAMILY MODERN OVERLINE OFF
STRIKEOUT OFF UNDERLINE OFF EXPANSION REGULAR SLOPE REGULAR WEIGHT MEDIUM
INVERTED OFF USERINFO NIL STYLE NIL) FORMATINFO (ARABIC "2-" "")) (54 15 288
36) NIL) (HEADING NIL (HEADINGTYPE FOOTINGV) (54 27 558 36) NIL) (HEADING NIL
(HEADINGTYPE VERSOHEAD) (54 762 558 36) NIL) (TEXT NIL NIL (54 54 504 684)
NIL))) (PAGE NIL (PAPERSIZE Letter FOLIOINFO (ARABIC "2-" "")) (0 0 612 792)
((FOLIO NIL (PARALOOKS (QUAD RIGHT) CHARLOOKS (SUPERSCRIPT 0 INVISIBLE OFF
SELECTPOINT OFF PROTECTED OFF SIZE 10 FAMILY MODERN OVERLINE OFF STRIKEOUT OFF
UNDERLINE OFF EXPANSION REGULAR SLOPE REGULAR WEIGHT MEDIUM INVERTED OFF
USERINFO NIL STYLE NIL) FORMATINFO (ARABIC "2-" "")) (270 15 288 36) NIL)
(HEADING NIL (HEADINGTYPE FOOTINGR) (54 27 558 36) NIL) (HEADING NIL
(HEADINGTYPE RECTOHEAD) (54 762 558 36) NIL) (TEXT NIL NIL (54 54 504 684)
NIL))))) Å $ - Áł ‘ ÂÂÁ ÁÞ ÁT > Áł Â ÂÄÁ Å Ã ž ÁÒ Á

v i iENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE of CONTENTS

Preface iii

I Introduction and Installation

1. Introduction 1-1

NoteCards1-1

System Overview 1-1

Useful SunOS and UNIX Conventions 1-2

NoteCards Device Conventions 1-2

Stylistic Conventions 1-2

Prompts 1-2

Font Usage 1-3

Keyboard Conventions 1-3

2. System Requirements 2-1

Prerequisites 2-1

Processor Hardware 2-1

Memory 2-1

Swap Space 2-1

Disk Space 2-1

Input/Output Devices 2-1

Bitmap Display 2-2

Printers 2-2

Tape Access 2-2

Operating System Requirements 2-2

Constraints 2-2

Resource Constraints 2-2

Shared Sun Workstations 2-2

Release Contents 2-3

Documentation 2-3

Software 2-3

3. Software Installation 3-1

Insuring Adequate Swap Space 3-1

Installing Software 3-1

Copy Protection 3-3

Configuring the Software 3-3

Relinking 3-4

Enabling PUP/XNS Ethernet 3-4

v i i i ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

Using/Installing the Host Access Key 3-4

4. System Use Issues 4-1

Site Initialization File 4-1

Starting NoteCards 4-1

Exiting NoteCards and Saving State 4-2

Keyboard Interpretation 4-4

Sun Type 2 Keyboard 4-4

Sun Type 3 Keyboard 4-5

Sun Type 4 Keyboard 4-6

Consol Messages 4-6

File Compatibility 4-7

Sysout Compatibility between Sun and Xerox Workstations 4-7

File Compatibility between Sun and Xerox Workstations 4-7

Notefile Compatibility with Prerelease Versions of NoteCards 4-8

Using SunOS Files from NoteCards 4-8

File Naming Conventions 4-9

Common {DSK} and {UNIX} Naming Conventions 4-9

{DSK} Naming Conventions 4-10

Version Numbering 4-10

Pathnames 4-12

{UNIX} Naming Conventions 4-12

Directories 4-13

Directory Enumeration 4-13

Directory Creation 4-13

Open File Limit 4-14

Default Pathname 4-14

File Attributes 4-14

File System Errors 4-15

II NoteCards Tutorial

5. NoteCards Basics 5-1

A Few Pointers on Mouse Etiquette 5-1

Mouse Button Use 5-2

Left Mouse Button 5-2

Middle Mouse Button 5-2

Right Mouse Button 5-2

Regions Sensitive to Mouse Activity 5-2

The Background 5-2

i xENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

Windows and the Window Title Bar 5-3

Icons 5-5

Scroll Bars 5-5

Dealing with Simple Error Conditions 5-6

Starting NoteCards 5-7

Closing Notefiles and Exiting NoteCards 5-8

Closing Notefiles 5-8

Close 5-9

Abort 5-9

6. Building NoteCards Structures and Modes of Use 6-1

Introduction 6-1

A Standard View of Building NoteCards Structures 6-1

A Non-Standard View of Building NoteCards Structures 6-1

FileBoxes and Hierarchies 6-1

The Flat System 6-2

The Almost Flat System 6-2

Link Types 6-2

Multiple Users 6-2

Cards and Information Chunk Size 6-2

Types of Structures People Have Built with Notecards 6-3

Specalizing NoteCard 6-3

III Reference Manual

7. The User Interface 7-1

8. Links 8-1

Links and Link Types 8-1

System-Reserved Link Types 8-1

User-Specified Link Types 8-2

Link Directions and Link Ends 8-3

Link Categories 8-3

Other Link Terminology 8-3

Link Types vs. Card Types 8-3

Link Access and Use 8-4

Link Icon Functionality 8-4

Active Regions of Link Icons 8-4

Mouse-Button Actions in Link Icons 8-5

Viewing Local and Global Links 8-7

Unfiled and Lost Cards 8-8

x ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

Creating Links 8-9

Creating Links in Text Cards 8-9

Insert Link 8-9

Insert Links 8-12

Add Global Link 8-13

Add Global Links 8-13

Creating Links in Other Card Types 8-13

Text-Based Cards 8-13

Sketch-Based Cards 8-13

Graph-Based Cards 8-14

Deleting Links 8-14

Deleting Links from Card Contents 8-15

Text-Based Cards 8-15

Sketch-Based Cards 8-15

Graph-Based Cards 8-15

Deleting Links from the Show Links Display 8-16

Tailoring Links 8-16

Link Ops Menu 8-16

Bring Up Card/Box 8-16

Change Link Type 8-16

Change Card Title 8-16

Change Display Mode 8-16

System Parameters for Links 8-18

Cross-File Links 8-18

Appearance 8-18

Missing Notefiles 8-19

9. Cards and Banners 9-1

The Notefile Banner 9-1

The Banner Title Bar 9-1

Notefile Ops Menus 9-1

Middle-Mouse-Button Title-Bar Menu 9-3

Full File Name 9-3

File Capacity 9-3

Special Cards 9-4

Table of Contents FileBox 9-5

To Be Filed FileBox 9-5

Orphans FileBox 9-6

New Cards 9-6

User Cards and System Cards 9-7

Text-, Sketch-, and Graph-Based Cards 9-8

x iENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

The Card Menu 9-8

The Standard Card Menu 9-8

Edit Property List 9-8

Show Links 9-9

Show Info 9-10

Designate FileBoxes 9-11

Assign Title 9-11

Title/FileBoxes 9-12

Insert Link 9-12

Close and Save 9-13

The FileBox Card Menu 9-13

Add Global Link 9-13

Put Cards Here 9-14

10. User Cards 10-1

Text Cards 10-1

The Text-Card Menu 10-1

FileBox Cards 10-2

Suggested FileBoxes and Note Cards 10-3

Bibliography 10-3

Index 10-3

Read Me 10-3

Active Cards 10-3

The FileBox-Card Menu 10-3

System Parameters Affecting FileBoxes 10-3

Sketch Cards 10-3

The Sketch-Card Menu 10-3

The Map Option 10-4

System Parameters Affecting Sketch Cards 10-4

Graph Cards 10-4

The Graph-Card Menu 10-5

The Grapher Menu 10-5

The Graph-Card and Grapher Menu Options 10-6

Move Node Move Node 10-6

Remove Node Delete Node 10-7

Connect Nodes Add Link 10-7

Disconnect Nodes Delete Link 10-7

Add Label Add Node 10-8

Change Label Change Label 10-8

Smaller Label Label Smaller 10-8

Larger Label Label Larger 10-8

x i i ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

Toggle Shade <-> Shade 10-8

Toggle Border <-> Border 10-8

Directed/Undirected <-> Directed 10-8

Sides/Centers <-> Sides 10-9

Fix Menu 10-10

Stop 10-10

Bit Map Editor 10-10

Inserting Bit Maps into Cards 10-10

Text-Based Cards 10-10

Sketch-Based Cards 10-11

Bit Map Operations 10-11

Change Scale 10-11

Hand Edit 10-12

Trim 10-12

Reflect Left-to-right 10-12

Reflect Top-to-Bottom 10-12

Reflect Diagonally 10-12

Rotate Left 10-12

Rotate Right 10-12

Expand on Right 10-12

Expand on Left 10-13

Expand on Bottom 10-13

Expand on Top 10-13

Switch Black & White 10-13

Add Border 10-13

The Bit Map Editor 10-14

Paint 10-16

ShowAsTile 10-16

Grid On/Off 10-16

GridSize 10-16

Reset 10-17

Clear 10-17

Cursor 10-17

OK 10-17

Abort 10-18

11. System Cards 11-1

Search Cards 11-1

Link Index Cards 11-2

Document Cards 11-3

HeadingsFromFileBoxes 11-3

x i i iENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

TitlesFromNoteCards 11-4

BuildBackLinks 11-4

CopyEmbeddedLinks 11-4

ExpandEmbeddedLinks 11-4

Browser Cards 11-5

Changes to the NoteCards Browser 11-6

Multiple Roots 11-7

Dashed Links 11-7

Arrowheads 11-7

Browser Specs 11-7

New Middle-Button Title-Bar Menu Options 11-9

Editing the Browser Manually and Structure Editing 11-9

Overview Windows on Browser Cards 11-12

Creating an Overview Window 11-12

Reshaping the Overview Window 11-13

Scrolling and the Wire Frame 11-13

Recomputing the Overview Contents 11-13

The Browser Overview Stylesheet 11-13

Tidbits 11-14

12. The MenuBox Icon 12-1

Notefile Options 12-1

Open 12-2

Compact 12-3

Inspect & Repair 12-4

Copy 12-4

Rename 12-4

Delete 12-4

Create 12-4

Checkpoint 12-5

Close 12-6

Abort12-6

NC FileBrowser 12-6

Card Options 12-6

Close 12-7

Delete 12-8

Copy 12-8

Move 12-8

Other Options 12-9

Edit Parameters 12-9

NF Indicators On 12-9

x i v ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

TEdit Killer On 12-9

13. System Parameters 13-1

Accessing System Parameters 13-1

NoteCards System Parameters 13-3

Extra TEdit Props 13-3

Include Card Object In ShowInfo 13-3

Del TEdit Process When Shrinking 13-3

Font Parameters 13-4

Menu Font 13-4

Default Font 13-4

Link Icon Font 13-4

Notefile Parameters 13-5

Show Notefile On Cards 13-5

New Notefile Initial Size 13-6

Menu Lingers After Notefile Close 13-6

Card Parameters 13-6

Force Filing 13-6

Force Titles 13-6

Default Card Type 13-6

Close Cards Off Screen 13-7

Bring Up cards At Previous Pos 13-7

FileBox Card Parameters 13-7

Markers In FileBoxes 13-7

Alphabetize FileBox Children 13-7

Browser Card Parameters 13-7

Special Browser Specs 13-7

Arrow Heads In Browsers 13-8

Link Dashing In Browsers 13-8

Sketch Card Parameters 13-8

Attach Sketch Menu 13-8

Link Parameters 13-8

Link Icon Border Width 13-8

Link Icon Multi Line Mode 13-9

Cross File Link Mode 13-9

Link Icon Max Width in Pixels 13-9

Link Icon Show Title Default 13-9

Link Icon Attach Bitmap Default 13-10

Link Icon Show Link Type Default 13-10

Use Deleted Link Icon Indicators 13-10

x vENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

14. The FileBrowser 14-1

User Interface 14-1

Starting FileBrowser 14-1

Specifying What Files to Browse 14-1

Examples 14-2

Using the FileBrowser Window 14-3

Selecting Files 14-5

Commands the Require Input 14-5

Aborting Commands 14-6

Quitting the FileBrowser 14-6

Copy-Selecting Files 14-7

Getting Hardcopy Directory Listings 14-7

FileBrowser Commands 14-8

Delete, Undelete 14-8

Copy 14-9

Rename 14-11

Hardcopy 14-12

See 14-13

FileBrowse 14-15

Edit 14-15

Load 14-16

Compile 14-16

Expunge 14-16

Recompute 14-16

New Info 14-17

Set Depth 14-19

Sort 14-19

Troubleshooting Problems with FileBrowser 14-20

15. Other Tools 15-1

Digital Clock 15-1

Introduction 15-1

Starting the Digital Clock 15-1

Stopping the Digital Clock 15-2

Changing the Digital Clock 15-2

Set Font 15-3

Set Time 15-4

Set Alarm 15-4

Quiet Alarm/Loud Alarm 15-5

Delete Alarm Setting 15-5

x v i ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

Shape to Fit 15-5

12-Hour/24-Hour Clock 15-5

Set Local Time Zone 15-5

Add New Regional Time Zone 15-5

Delete This Window 15-6

Set Font for Aux Clocks 15-6

Set Aux Clock Font In Just This Window 15-6

Set Time-Zone Heading 15-6

Set Regional Time Zone 15-7

Analog Clock 15-7

Introduction 15-7

Starting the Analog Clock 15-7

Stopping the Analog Clock 15-8

Changing the Analog Clock 15-8

Numbers 15-9

Points 15-9

No Numbers 15-9

Rings 15-9

No Rings 15-9

Hands 15-9

No Hands 15-9

Times 15-9

No Times 15-9

Show Style 15-9

Set to Default 15-9

Change Default 15-10

Set Time 15-10

Known Problems 15-10

Directory Connector 15-10

Starting the Directory Connector 15-10

Stopping the Directory Connector 15-10

Changing the Directory Connector Fonts 15-10

Using the Directory Connector 15-11

Left Mouse Button 15-11

Middle Mouse Button 15-12

16. Printing 16-1

17. Error Recovery and Known Problems 17-1

System Status, Aborting Operations, and Spawning a New Mouse 17-1

System Status 17-1

x v i iENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

Aborting Operations 17-1

Spawning a New Mouse 17-3

Break Windows 17-3

Errors While Running NoteCards 17-4

I/O Errors 17-4

Virtual Memory Errors 17-5

URAID 17-5

Entering URAID 17-5

 URAID Commands 17-5

Other Fatal Error Conditions 17-6

System Error Conditions 17-6

Known Problems 17-7

Printing Browsers 17-7

Notefile Indicator Window 17-8

PostScript Fonts 17-8

Appendices, Glossary, and Index

Appendix A. Notefile Concepts A-1

Appendix B. Notefile Inspector B-1

Appendix C. Installation Files C-1

Appendix D. Checksum Control D-1

Glossary GLOSSARY-1

Index INDEX-1

x v i i i ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

TABLE OF CONTENTS

[This page intentionally left blank]

4 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

This chapter provides basic system information to get you started in
NoteCards on your Sun Workstatio after your system administrator
has installed NoteCards 1.1.

Site Initialization File

When NoteCards starts, it reads in the NoteCards site initialization
file, init.NoteCards. This file sets the pointer to fonts, site le>)
1

These functions retrieve the three predefined FileBoxes for the
currently open NoteFile. These boxes can be modified (but not
deleted) by the user in the same way as any other filebox.
 5. Creating and Accessing Links
1

Links consist of source card, destination card, link type, display

mode and anchoring mod
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN The new

function NUnknown IMAGEOBJ type
GETFN: HRULE.GETFN .CreateLink can be used to create any sort of link. We still provide the

four functions NCP.GlobalGlobalLink, NCP.LocalGlobalLink, etc. for
those who have grown used to that style.
(NCP.GetLinks <cards> <destinationCards> <labels> <NoteFile>)
1

See documentation in the previous section.
(NCP.CreateLink <source> <destination> <linkType>
<displayMode)
1

<source> can be either a card or a list of two elements
(<sourceCard> <sourceLoc>). <sourceCard> should be a card to

use as the source of the link while <sourceLoc> should be either
the atom GLOBAL (in which case a global-to-global link is
created) or a Loc directive as described in NCP.CardAddText
above, that is, an integer or one of the atoms START, END or

NIL. This creates and returns a new link with type
<linkType>, connecting <sourceCard> to
<destinationCard>. For text cards, Loc, if present,
designates where to insert the link. If the link is local-to-

global, then <displayMode> should be a valid displaymode or
NIL. (See description of NCP.LinkDisplayMode for

the valid values for <displayMode>.) (In the future, Locs for
non-text cards will be specifiable. In the far

future, we hope to allow local anchoring at the
destination end of the link as well as the source.)
(NCP.GlobalGlobalLink <label> <sourceCard>
<destinationCard>)
1

4 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

Creates and returns a new link with label <label>, connecting
<sourceCard> to <destinationCard>.

(NCP.LocalGlobalLink <label> <sourceCard> <destinationCard> <fromloc>
<displaymode>)

1

Creates and returns a new link with label <label>, connecting
from <fromloc> of <sourceCard> card to <destinationCard>. If
<displaymode> is non-nil, then the new link is displayed in the
given mode. Otherwise the default displaymode for the source

card’s type is used. See the description of NCP.LinkDisplayMode
for the valid entries for the <displaymode> arg.
(NCP.GlobalLocalLink <label> <sourceCard> <destinationCard>
<toloc>)
1

Not implemented at this time.
(NCP.LocalLocalLink <label> <sourceCard> <destinationCard>
<fromloc> <toloc>)
1

Not implemented at this time.
(NCP.LinkDesc <link> <followCrossFileLinkFlg)
1

Returns list of three items (<label> <sourceDesc>
<destinationDesc>) where <label> is the link type and
<sourceDesc> and <destinationDesc> have the form (<anchor

mode> <card> <loc>). <anchor mode> is either LOCAL or
GLOBAL, <card> is the card at this end of the link, and <loc> gives
a position in the text of <card> if <anchor type> is LOCAL and
<card>’s substance’s type is TEXT. If the link is a cross-file link
and if <followCrossFileLinkFlg> is non-nil, then the link will be
traversed, opening the remote notefile if necessary to determine
information about the source or destination card of the

li
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN .

(NCP.LinkDisplayMode <link> [<newdUnknown IMAGEOBJ type
GETFN: HRULE.GETFN playmode>])

1

Returns old display mode of <link>. If <newdisplaymode> is
present, then set <link>’s displaymode accordingly. If non-nil, it
can be an instance of the LINKDISPLAYMODE record. Or it can
be one of the litatoms Icon, Title, Label, or Both. Finally, it can be a
list of three elements (<ShowTitleFlg> <ShowLinkTypeFlg>
<AttachBitmapFlg>). Each element can have one of the three
values T, NIL, or FLOAT. If a field, say <ShowTitleFlg>, has value
FLOAT then the corresponding global parameter
(DefaultLinkIconShowTitle, in this case) will be consulted to decide
whether or not to display the destination card’s title in this icon.
(See Section 7 for a description of the global parameters.)
(NCP.CoerceToLinkDisplayMode <thing>)
1

Returns a LINKDISPLAYMODE record. Thing can be a

4 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

LINKDISPLAYMODE record, cardtype, card, link, atom, or list. If
thing is a LINKDISPLAYMODE record, that record is returned. If
thing is a cardtype, the default LinkDisplayMode for that cardtype is
returned. If thing is a card, the LinkDisplayMode of that card is
returned. If thing is a link, the LinkDisplayMode of that link is
returned. If thing is an atom or a list, then the

corresponding LinkDisplayMode, as specified under
NCP.LinkDisplayMode (see above), is returned.
(NCP.LinkType<link> [<newLinkType>])
1

Returns old linktype of <link>. If <newLinkType> is present, set
<link>’s type to <newLinkType>.
(NCP.LinkSource <link>)
1

Returns the card at the source end of <link>.
(NCP.LinkDestination <link>)

1

Returns the card at the destination end of <link>.
(NCP.DeleteLinks <links>)
1

Removes all links in <links> (or just one if <links> is a single link
object).
(NCP.ValidLinkP <link>)
1

Returns non-nil if <link> is a link in the current
notefile.

(NCP.SameLinkP <link1> <link2>)
1

Returns non-nil if <link1> is the same link as <link2>. Error if either
arg is not a valid link.
(NCP.AllLinks <NoteFile>)
1

Returns a list of all existing links in <NoteFile>. (This is equivalent
to but faster than (NCP.GetLinks NIL NIL NIL

<NoteFile>).)

(NCP.MapLinks <NoteFile> <fn> <collectResultsPredicate>)
1

Maps down the set of all links in the given notefile,
applying <fn> to each. If <collectResultsPredicate> is
non-nil, then for those links satisfying the predicate,
the values of <fn> applied to them are collected.
(NCP.MapLinksOfType <types> <NoteFile> <fn>
<collectResultsPredicate>)
1

This is similar to NCP.MapLinks, but only looks at links whose

4 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

type appears on <types>. <types> can be a single type or a list of
types.
6. Creating and Accessing Link Labels
1

The following functions allow the user to manipulate link labels.
(NCP.CreateLinkType <linkType> <NoteFile> <QuietFlg>)
1

Creates a new link type with name <LinkType> in <NoteFile>
unless there is already one defined by that name. A non-NIL
<QuietFlg > suppresses the error message that is normally

printed if the link type has already been defined for this
notefile.
(NCP.DeleteLinkType <linkType> <NoteFile>)
1

Deletes the link type <linkType> from <NoteFile>. The link type
must exist and must not be the type of any existing

link, and it must not be a system-defined link type (e.g.
SubBox or BrowserContents).
(NCP.RenameLinkType <linkType> <newLinkType> <NoteFile>)
1

Changes any links in <NoteFile> having link type <linkType> to
have type <newLinkType>. <linkType> must exist and neither
<linkType> nor <newLinkType> should be a system-defined type.
(NCP.LinkTypes <NoteFile>)
1

Returns a list of all existing link types in <NoteFile> including
system-defined ones.
(NCP.ReverseLinkTypes <NoteFile>)
1

Returns a list of the reverse link types for every link type in
<NoteFile>. Thus, whereas SubBox would appear in the list
returned by NCP.LinkTypes, _SubBox

(<backarrow>
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN bBox) would appear

in theUnknown IMAGEOBJ type
GETFN: HRULE.GETFN ist returned by NCP.ReverseLinkTypes.

(NCP.UserLinkTypes <NoteFile>)
1

Returns a list of all existing user-defined link labels in <NoteFile>.
(NCP.SystemLinkTypeP <LinkType>)
1

Returns non-nil if <LinkType> is a system link type..
(NCP.ValidLinkTypeP <LinkType> <NoteFile>)
1

Returns non-nil if <LinkType> is a defined link type for <NoteFile>.
7. Customizing the NoteCards Interface
1

4 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

There are currently several areas where the user may tailor the

NoteCards
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN ser interface: the NoteCards Session Icon menus, the left button menu on

the title bar of a notefile’s
m e o le button
menu on s of displayed cards and
card types key.

 The BACK SPACE key is DELETE WORD.

 The DELETE key is BACK SPACE.

 The RIGHT key is EXPAND.

Sun Type 3 Keyboard

Figures 4-1 through 4-3 show NoteCards’s key assignments for the
Sun Type 3 keypads.

Unknown IMAGEOBJ type
GETFN: SKIO.GETFN.2rB

Unknown IMAGEOBJ type
GETFN: SKIO.GETFN.2SHADE. This

variable should be changed with the function NCP.SetGrayShade

(s
Unknown IMAGEOBJ type
GETFN: SKIO.GETFN.2

Figure 4-3. Sun Type 3 Center Key Pad Interpretation

4 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

Sun Type 4 Keyboard

Figures 4-3 through 4-5 show the keyboard and the left and right
key pads for the Sun Type 4 keyboard.

Help

Find Delete

Open Move

Same Copy

Props Undo

Stop Again

Ins Del

DOIT

1
End

2 3
PgDN

4 5 6

+

7
Home

8 9
PgUP

= / * -

Break PrSc scroll
lock

num
lock

Figure 4-3. Sun Type 4 Figure 4-4. Sun Type 4
 Left Key Pad Right Key Pad

Caps Meta Left
Spc Space Right

Spc Expand Next

Shift Z
z

X
x

C
c

V
v

B
b

N
n

M
m

<
,

>
.

?
/ Shift LF

Ctrl A
a

S
s

D
d

F
f

G
g

H
h

J
j

K
k

L
l

:
;

"
’

~
‘

Return

Tab Q
q

W
w

E
e

R
r

T
t

Y
y

U
u

I
i

O
o

P
p

{
[

}
]

Esc !
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

)
0

_
-

+
=

Back
Space

F1
Center

F2
Bold

F3
Italic

F4
Case

F5
Strike

F6
Under

F7
Super

F8
Large

F9
Margin

F10 F11 F12 |
\

Delete
Word

Figure 4-5. Sun Type 4 Center Key Pad Interpretation

Note: In SunOS 4.0, the NEXT (ALT/GRAPH) key on the Type 4
keyboard is inaccessible. Later versions of SunOS are
believed to fix this.

Console Messages

Under SunOS, various system processes and operations attempt to
log information on the console. Since NoteCards takes over the

4 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

screen, console messages are redirected; a background process in
NoteCards causes them to appear in the prompt window.

When NoteCards is run remotely (i.e., not from the console), most
console, or operating system, messages are printed in the prompt
window. Some messages may also appear in the middle of the
NoteCards display screen or on the remote tty. This occurs
because UNIX is often confused about where to send messages.
NoteCards is normally run remotely only for debugging purposes.

CAUTION

Critical UNIX system processes can hang if the buffer holding
console messages fills. There are two points to watch for:

NoteCards uses a temporary file, /tmp/XXXX-lisp.log, where
XXXX is the user’s login name, to buffer console messages before
printing them. Do not delete this log file while NoteCards is
running. If the log file is deleted, console messages can no longer
be printed in the NoteCards prompt window.

The process \10MBWATCHER, used to watch for Ethernet packets,
reads console messages. Thus, you should never kill the
\10MBWATCHER process, even if you don’t use the Ethernet
capabilities of NoteCards. If you do kill the \10MBWATCHER
process, console messages cannot be printed and the operating
system can hang.

File Compatibility

Sysout Compatibility between Sun and Xerox Workstations

Sysout files created on Xerox Workstations can be moved to Sun
workstations. However, sysout files created on Sun Workstations
cannot be moved to Xerox workstations.

File Compatibility between Sun and Xerox Workstations

Some care must be taken in moving files to and from Xerox
workstations and services, since the default end-of-line convention
in UNIX is to terminate lines with the line feed (LF) character, while
traditionally Xerox systems have terminated lines with the carriage
return (CR) character. In particular, if you use some other file
transfer mechanism, such as FTP or Kermit, be careful to transfer
.TEDIT and .NOTEFILE files in binary mode.

In NoteCards on the Sun Workstation, the default end-of-line
convention for all text files is line feed (LF). The default end-of-line
convention for all binary files is carriage return (CR); this is because
CR is used internally in the system.

When working with the Xerox protocols XNS and PUP as well as
Sun NFS, it is important that you use the suffix .TEDIT on all TEdit

4 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

files, the suffix .SKETCH on all Sketch files, and the suffix
.NOTEFILE on all notefiles for NoteCards to treat the files properly
when moving them from one device to another.

TEdit files not transfered in binary mode frequently get "Font not
found." error messages when you try to open then. The carriage
returns, which are represented by the number 13, are reinterpreted
as font information and the system breaks trying to look for a font of
size 13. These files are irrecoverably lost.

Notefile Compatibility with Prerelease Versions of NoteCards

NoteCards 1.1 uses an internal format for notefiles different from
that used in prerelease versions of NoteCards. Prerelease
notefiles must be converted to the new format before they can be
used in NoteCards 1.1.

Conversion is one-way. Once a notefile is converted to the new
format and used in Envos NoteCards, it cannot be converted back
to the old format. Conversion is non-destructive. The converted
notefile is a copy of the original notefile, so the original notefile is
still available for use with prerelease versions of NoteCards.

Conversion is carried out automatically the first time you open a
prerelease notefile using NoteCards 1.1. The conversion process
copies and reformats the notefile, then opens the copy. The new
notefile has the same name but higher version number than the old
prerelease notefile.

Conversion takes from 10 minutes for a small notefile to an hour or
more for a very large notefile. Conversion requires disk space
equal to 120% of the space required by a compacted version of the
prerelease notefile. The converter does not check beforehand to
see if it has enough disk space to complete the conversion. It will
simply crash if it runs out of space. Therefore, make sure there is
plenty of disk space available before starting any conversions.

Note that in order to convert a prerelease notefile, all of the card
types contained in that notefile must be available in NoteCards 1.1.
An attempt to convert a notefile containing a card type not available
in NoteCards 1.1 will cause the conversion to fall into a break
window. Typing ^ into the break window will exit the break and
abort the conversion.

Using SunOS Files from NoteCards

You can access any mounted SunOS file system directly from
NoteCards. The mounted file system is available as an I/O device
of the NoteCards environment. This file system appears as the
local disk of NoteCards, even though it may be a remotely mounted
file system of networked Sun file servers.

Many of the file devices to which the NoteCards environment can
talk, including PUP, XNS file servers, the {CORE} device, and
others, have facilities that are not directly supported by SunOS.

4 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

For example, many file systems have file version numbers and
case insensitive file search conventions.

NoteCards on the Sun Workstation has two distinct "host" names
that can be used to access the SunOS file system. These host
names are provided for compatibility with existing applications and
tools. They also simultaneously allow natural interaction with the
SunOS file system. The names are:

{DSK} On the Sun Workstation, the {DSK} device allows you to access
the file system using similar conventions to those used for Xerox
services. In particular, {DSK} files have version numbers; {DSK}
file name recognition also ignores the case of letters.

{UNIX} The {UNIX} device lets you use the mounted file systems with the
normal naming conventions of the SunOS file system. {UNIX} files
do not have version numbers, and the file name recognition treats
lower case letters as distinct from their upper case equivalents.

File streams can be opened or closed on both devices. The reason
for having both devices is to more easily support the running of
applications that were originally developed using Xerox services,
while still allowing new applications to interact more naturally with
UNIX.

File Naming Conventions

In NoteCards, a file name (pathname) consists of a collection of
fields: the host, directory, name, extension and version. These
fields are optional. The standard NoteCards syntax for these fields
is:

{host}<directory>name.extension;version

The directory field can be a directory path consisting of a sequence
of directory and subdirectory components. Slashes (/) and right
angle brackets (>) can be used to delimit a directory name; there is
no distinction made between them. However, you should use one
delimiter or the other consistently. What the directory returns is
unpredictable if you mix delimiters. Note that square brackets ([])
are not acceptable as directory delimiters.

Common {DSK} and {UNIX} Naming Conventions

* The following special characters cannot be used: backslash (\),
slash (/), right angle bracket (>), semicolon (;) and tilde (~).
Thus, from {DSK} you cannot name files containing these
characters. The following UNIX file names are illegal in
NoteCards:
foo/fee

foo>fee

foo;3

foo;

* {DSK} cannot distinguish between a file name with a period
(e.g., foo.) and a simple file name (e.g., foo). For {DSK}, each is
version 1 of the file (e.g., {DSK}foo.;1).

4 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

* On {DSK}, the C-Shell and SunOS directory notations (~, .,
and ..) are only allowed in the NoteCards directory
specifications at the very beginning of the directory specification
of a pathname. The tilde character (~) corresponds to the user’s
home directory at login. The period (.) corresponds to the
current working directory, while two periods (..) indicates the
parent of the current working directory.

{DSK} Naming Conventions

File access to the {DSK} device goes through the following file
name transformation when actually accessing the SunOS file
system:

* Mixed case letters are read as such.

* File name searches are done case sensitive first; if a match is
not found, the system then does a case insensitive search.

* A left angle bracket (<) is translated to a slash (/), the delimiter
for the root directory.

* {DSK} does not accept file names ending in tilde (~).

* {DSK} supports relative pathnames. You can specify relative
pathnames by omitting a slash (/) or left angle bracket (<) as the
first character in the directory field. For example,
{DSK}foo.fee and {DSK}~/foo.fee are relative to your
UNIX home directory (~/foo.fee).

{DSK}./foo.fee is relative to your current working directory
(SunOS ./foo.fee).

{DSK}../foo.fee is relative to the parent directory of your
current UNIX working directory (../foo.fee).

However, a combination of relative path specifiers (~, ., ..) is not
supported. For instance, {DSK} cannot interpret
{DSK}~/../anotherone/foo.c. In addition, {DSK} does not
support the tilde-name (~name) convention (e.g., {DSK} cannot
interpret {DSK}~tom/foo.c). {DSK} also does not accept file
names ending in tilde; a {DSK} file name ending in tilde causes
an error message to appear in the prompt window.

Version Numbering

The UNIX file system does not support version numbers in file
names; {DSK} emulates versions with a naming convention. This
section explains how {DSK} version numbers are represented in
the SunOS file system.

* When you create a completely new file, it appears in the SunOS
file system without a version number.

{DSK} Name From NoteCards File Name From SunOS
bar.baz;1 bar.baz

* When you create (from NoteCards) a file with a version other
than 1, NoteCards adds version numbers to that file name, as a

4 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

trailing number between tildes, e.g., "myfile.~12~" for the 12th
version of myfile.

The following shows some examples of equivalent file names in
NoteCards and SunOS.

{DSK} Name From NoteCards File Name From SunOS
bar.baz;1 bar.baz.~1~
bar.baz;2 bar.baz.~2~
bar.;23 bar.~23~

* NoteCards always maintains a versionless file which is hard-
linked to the highest extant version of the file (i.e., they are two
names for the very same file). This file name does not appear in
the {DSK} directory listing.

From {DSK} From SunOS
foo.c;15 foo.c (hard linked with foo.c.~23~)
foo.c;23 foo.c.~15~

foo.c.~23~

Similarly, a file created in UNIX with no version number is treated
by {DSK} as the highest version.

* When you create a new version of a file, the versionless-file link
is broken, and the versionless file is hard-linked to the new
highest version.

From {DSK} From SunOS
foo.c;15 foo.c (hard linked with foo.c.~24~)
foo.c;22 foo.c.~15~

foo.c;24 (new file) foo.c.~23~ (no link with foo.c)
foo.c.~24~ (new file, link from
foo.c)

* When you delete the highest version of a file, the versionless file
is also deleted. If any older versions of the file remain, a new
link is created from the versionless name to the highest version
extant. For example, if you have the files

From {DSK} From SunOS
foo.c;1 foo.c (linked to foo.c.~2~)
foo.c;2 foo.c.~1~

foo.c.~2~

and you delete foo.c;2 from {DSK}, the resulting files are:

From {DSK} From SunOS
foo.c;1 foo.c (linked to foo.c.~1~)

foo.c.~1~

* When you rename a file it works the same as deleting the file
under the old name then creating it under the new name. For
example, if you have the following {DSK} files,

From {DSK} From SunOS
foo.c;1 foo.c (linked to foo.c.~2~)
foo.c;2 foo.c.~1~
fee.c;1 foo.c.~2~

fee.c;2 fee.c (linked to fee.c.~2~)

4 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

fee.c.~1~
fee.c.~2~

and you rename "foo.c" to "fee.c", your renamed {DSK} files and
the linked SunOS files would appear as

From {DSK} From SunOS
foo.c;1 foo.c (linked to foo.c.~1~)
fee.c;1 foo.c.~1~
fee.c;2 fee.c (linked to fee.c.~3~)
fee.c;3 fee.c.~1~

fee.c.~2~

fee.c.~3~ (renamed file)

* When a file has a name suffix that is not a valid version number
(e.g., myfile.~12x~), that file is inaccessible using {DSK}.

From {DSK} From SunOS
— myfile.~12x~

Pathnames

A pathname on {DSK} is always case insensitive. When you
specify a file, the {DSK} device handler first searches for the file
with the specified name. If no such file is found, it then searches for
a file with the same spelling but different case.

If a pathname on {DSK} has no directory specification, a tilde-slash
combination (~/) is used, i.e., the NoteCards directory specification
{DSK}foo is the equivalent of UNIX ~/foo.

{UNIX} Naming Conventions

For the {UNIX} device, file name translation takes place only on
the directory. An initial left angle bracket (<) is treated as if it were
an initial slash (/); both signify a path relative to the SunOS file
system root directory; if there is no initial left angle bracket or slash,
the directory is relative to the current working directory. Initially this
is the working directory where NoteCards was started; you can
change it using the CHDIR function, described below. Tilde (~)
translates to your home directory.

For example,
{UNIX}myfile/abc

 means the file abc on the ./myfile/ directory.

The {UNIX} device does not recognize version numbers, does
not return them, and ignores them for recognition.

No case translation or recognition is done; upper and lower case
letters are treated as distinct.

Examples:
{UNIX} Name From NoteCards File Name From SunOS
<foo>fee>bar.baz;1 /foo/fee/bar.baz;1

<foo>fee/bar.;1 /foo/fee/bar.;1

<foo/fee> /foo/fee/

</foo/fee/> /foo/fee/

4 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

/foo/fee/bar.~1~ /foo/fee/bar.~1~

/foo/fee/ /foo/fee/

In the first two examples the ;1 is treated as part of the file name,
not the version number. Note in the last two examples that
translation is not done.

Directories

In places where NoteCards expects a directory name, {UNIX}
paths must end with a slash (/).

Directory Enumeration

You cannot use the wildcard character, asterisk (*), in
subdirectories for either {DSK} or {UNIX} devices. For example,
typing

{DSK}/users/x*/foo

into the FileBrowser prompt window will return

No files in group {DSK}<users>x*>foo.*;*

Enumeration of files in directories differs between {DSK} and
{UNIX} devices. On the {DSK} device, a versionless file which
has a link to the highest version file is not enumerated in a
directory.

On the {UNIX} device, all files are enumerated in a directory. For
instance, if the following SunOS files, linked with foo.c.~2~ exist
foo.c
foo.c.~1~
foo.c.~2~

the {DSK} directory enumeration, would look like this:
{DSK}/users/envos/foo.c;1
{DSK}/users/envos/foo.c;2

The {UNIX} directory enumeration, on the other hand, would look
like this:
{UNIX}/users/envos/foo.c
{UNIX}/users/envos/foo.c.~1~
{UNIX}/users/envos/foo.c.~2~

Directory Creation

{DSK} When you write a new file on {DSK}, if the directory named in a
pathname does not exist, the {DSK} device handler creates the
directory automatically. This feature is provided for compatibility
with Xerox services.

If you try to connect to a nonexistent directory (using the Directory
Connector tool), NoteCards beeps and prints the following
message in the system prompt window
Not a valid directory name.

{UNIX} The {UNIX} device does not support such directory creation. An
attempt to create a file on a nonexistent directory results in an error.

4 - 1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

NoteCards beeps and prints the following message in the system
prompt window.
System call error: stat errno = 2

No such file or directory.

Neither {UNIX} nor {DSK} support automatic directory deletion.
To delete a directory you must use the SunOS C-Shell command
rmdir.

Open File Limit

The number of simultaneously open {DSK} and {UNIX} files must
fall within the SunOS limits for a process. For OS 3.4, this number
of open files may be configured, with 30 as the maximum
permissible number of open files per process. This means that it is
not possible to have more than 30 files open for a process, minus
whatever files NoteCards has open for its own use, at any one time
in the NoteCards system. If you try to open too many files, the
system call error number 24,
Too many open files

appears in the prompt window.

For OS 4.0, the maximum number of files/processes that can be
open at one time is 64, unless your kernel is configured otherwise.

Default Pathname

If no path is given, the {DSK} device defaults to the user’s home
directory, tilde-slash (~/). The {UNIX} device defaults to the current
working directory. This current working directory can be changed
with the Directory Connector tool. Note that the current working
directory is also used to resolve the interpretation of the period (.)
and double period (..) specifications at the beginning of a {DSK}
pathname. The current working directory is the directory you were
in when you started NoteCards, not your connected directory in
NoteCards.

File Attributes
This section describes how the various file attributes are treated by
NoteCards on the Sun Workstation and what they translate to in
SunOS. For more discussion of file attributes, see Chapter 14,
Other Tools, for a description of the FileBrowser.

WRITEDATE and CREATIONDATE [File Attributes]

The date is reset to the current time whenever the contents of a file
are modified. Since UNIX does not naturally support more than
one date for file modification, the WRITEDATE and CREATIONDATE
are treated identically by NoteCards, and by the {DSK} and
{UNIX} devices.

4 - 1 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

TYPE [File Attribute]

Returns the TYPE property of files; normally either TEXT or
BINARY. However, UNIX does not distinguish between TEXT and
BINARY files. Normally, programs will infer the type by the file
extension. If no file extension is given, the default file type TEXT is
used.

SIZE [File Attribute]

Returns the file size. For compatibility with other NoteCards
environments running on Xerox workstations and servers, the SIZE
attribute is computed as the length of the file (in bytes) divided by
512 (rounded up).

File System Errors

Several types of errors may occur in the NoteCards file system.

When a remotely mounted file system or the NFS service is down,
any attempt to access a file on the file system eventually results in
a timeout error. The following error message is printed in the
prompt window:
File access timed out

If the mounted device is mounted with the "hard" option, NoteCards
continues to wait until the mounted device responds. During that
time, user interrupts are not available. We recommend mounting
remote file systems with the "soft" option. You can use the UNIX
command /etc/mount to check the current mount options.

The following error messages may appear when there are
NoteCards file errors:
Not owner

Device error:

Protection-violation

File-won’t-open

Too-Many-Files-Open

File too large

File-System-Resources-Exceeded

Connectiom timed out

No-Such-Directory

Bad Host Name

Another type of error occurs occasionally when the file system
prints an incorrect message such as
File not found

A more accurate console message appears, at the same time, in
the prompt window. This message appears in the SunOS message
form
System call error: open errno=13 Permission
denied

4 - 1 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

4. SYSTEM USE ISSUES

See the UNIX Interface Reference Manual, Intro (2), for
descriptions of all OS system call messages.

4 - 1 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMÅNTATION

4. SYSTEM USE ISSUES

[This page intentionally left blank]

6 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

BUILDING
6. NOTECARDS STRUCTURES

NoteCards has been around for some time and people have
developed different ways of using it. In this chapter we have
recorded some of the different approaches people have taken
towards using NoteCards in the hopes that these notes will help
you discover the best way of using NoteCards for you.

If you have ideas about ways of using NoteCards which you would
like to share with others please send them to us.

Introduction

By its very design, NoteCards encourages you to use it in specific
ways. However, some users have found that they make the best
use of NoteCards by not following the intended path but by
branching off and forcing NoteCards to conform to their own idea of
what a hypertext system should look like.

A Standard View of Building NoteCards Structures

NoteCards was intented to support two parallel modes of
organization, a hierarchial one, implemented with FileBoxes, and a
relational one, implemented with links.

One possible scenario is that you would collect a body of material
and break it up into logical bits which would then be placed into
Text, Sketch, Graph, and other card types. Ideally, the material
would be scanned in, or collected from electronic sources. You
would then build a hierarchial structure with FileBoxes inserting the
data cards in their appropriate place in the FileBox hierarchy. Once
you had established the structure you would then read through the
document building links between related ideas, and constructing
other non-hierarchial structures keeping these several lines of
thought apart by using different link types. The different lines of
thought in the material could then be collected by using document
cards to follow the different link types.

This is a stereotypical view of how you might generate a structure
in NoteCards however, it is not the only view.

6 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

6. BUILDING NOTECARDS STRUCTURES

A Non-Standard View of Building NoteCards Structures

FileBoxes and Hierarchies

One frequent comment from long time users is that people have a
tendency to use FileBoxes too soon. They try to organize their data
into a structure before the best structure is apparent and wind up
reorganizing their ideas, wasting much time and energy. These
users suggest that you build your structures only after you have
worked with your data for awhile.

Other users simply do not use FileBoxes at all or use them to build
only very shallow structures. Note that you could use links directly
to build the equivalent hierarchial structure as with FileBoxes.

The Flat System

In the flat system, all cards are filed in the "Table of Contents", the
"To Be Filed" or some user-specified FileBox card. These users
may specify one or several start points for the reader, but aside
from that the system is flat.

The Almost Flat System

In this organization the cards are grouped into large bunches which
can be based on source, topic or some other broad category. One
FileBox is used for each source, topic, or whatever the divisions
are. One user likens his use of FileBoxes to library shelves where
each FileBox is a different shelf. He then uses Sketch cards as an
organization and integration tool, to help him navigate through his
system.

Link Types

The system is built with the idea that you will classify each link type
so that later you can build documents or browsers based on link
types. However, some users make all their link types
"Unspecified."

One of the dangers with links is that new users tend to link
everything to everything else and end up with spaghetti.

Multiple Users

NoteCards was not designed with collaboration in mind. One way
users have gotten around the problem of tracking what each user
has done is to assign each collaborator a different font. Each
contributor’s work can then be recognized by font face.

Cards and Information Chunk Size

Because cards come up on the screen a particular size, able to
display a small amount of information, the perception grows among
new users that the information chunks have to be small. It is
important to recognize that cards can hold any amount of
information, and that they can be scrolled or resized to display all
the information they hold.

6 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

6. BUILDING NOTECARDS STRUCTURES

There are trade offs, however. If you work with large cards, the
size of your notefile grows much more rapidly. This is not serious.
It only means that you need to compact your notefile more
frequently than people who work with smaller information chunks
do.

A second trade off is that links always point to the beginning of a
card never into the body of a card. If your cards are very large, it
may not be immediately clear what the relationship is between the
source card and the destination card.

Types of Structures People Have Built with NoteCards

One user working on a design project used a notefile structured
with design goals as roots moving down to the component level at
leaf nodes. This structure allowed him to see the design history,
subgoals, and goals which were retracted.

Other users use NoteCards to maintain indices of where to find
sources of information. This is fairly common. Users frequently
implement on-line rolodexes, customer-support or customer-
tracking notefiles, and other types of text databases, such as
project tracking.

The most common use is in writing large reports. NoteCards is
used to collect, organize, and cross-reference information until the
writer has a firm grasp of the material and how various pieces of it
interact.

Specializing NoteCards

It is possible to specialize NoteCards to specific tasks.

One user has created an interface to the Lexis legal database. To
do this he created a new text-card type which receives retrieved
data from Lexis. He is also working on an interface to videodisk
and other sources.

At Xerox PARC there is a group working on an Instructional Design
Environment for designing, developing, and presenting instruction.
These people are extensively modifying the NoteCards
environment

If you have a need for a particular extension to NoteCards there is
a programmers interface which you or your company’s developers
can use to extend the NoteCards environment, or Envos Consulting
Services group can provide you with specalized extensions to
NoteCards.

6 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

6. BUILDING NOTECARDS STRUCTURES

[This page intentionally left blank]

7 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

This chapter covers the basics of using the window system
NoteCards is built on top of. Read this chapter if you are a new
user of the system or you need to understand how to manipulate
windows, icons, and use the functions on the background menu.
For a lower-level introduction to mouse-button and keyboard use,
read Chapter 5, NoteCards Basics.

This chapter explains:

Where to find system menus.

What these menus do.

The Window Menu

The NoteCards window system allows you to interactively
manipulate the windows on the screen, moving them around,
changing their shape, etc. by selecting various operations from the
window menu.

Figure 7-1. The window menu.

When you press and hold down the right mouse button in a
window’s title bar, as shown in Figure 7-2, that window will come to
the top and a menu of window operations will appear. In some
cases, you can hold down the right mouse button anywhere in the
window to access the window menu.

7 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Figure 7-2. The window menu being accessed
from a TEdit-window title bar. Note how the TEdit
window has been brought to the top of all the
windows.

Close

Closes a window, i.e., removes it from the screen. If you have
modified the contents of the window, the system may ask you to
confirm, by pressing the left mouse button, that you want to close
the window and lose your changes. Pressing the right or middle
mouse button cancels the close operation.

Figure 7-3. A TEdit window requesting you to
confirm the Close command.

Snap

Prompts for a region on the screen and makes a new window
whose image is a snapshot of the image currently in that region.
Useful for saving some particularly choice image before the window
image changes.

7 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Figure 7-4. The mouse cursor prompting you to
sweep out a new size and shape for a window.

Most of the images presented as figures in this manual are screen
snaps.

When making a snap, it is possible to change corners and change
the snap shape from a different side of the ghost frame. In the
middle of a snap process, while you still have the left mouse button
down, simultaneously press and hold down the right mouse button.

When you do this, the forceps cursor () will appear. Move this
cursor to the corner of the ghost frame you want to move and still
holding the left mouse button down, release the right mouse button.
You will now be able to adjust the snap from the corner you just
selected.

Paint

Switches to a mode in which the cursor can be used like a paint
brush to draw in a window. This can be useful for making notes on
a window or touching up snaps. While the left key is down, pixels
are blackened. While the middle key is down, they are erased.
The right button pops up a command menu that allows you to
change the brush size, shape, shade, mode, and to quit the paint
utility.

Figure 7-5. Paint command menu.

Set Mode

Brings up the menu shown in Figure 7-6.

Figure 7-6. The Mode menu for Paint.

Changing the paint mode changes the way the bits in the brush
combine with the existing bits in the snap.

Figure 7-7. The vertical bars show a sample bit
map pattern from a snap. The horizontal bars are
the pattern in the example brush.

7 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Replace Invert Add

Figure 7-8. The snap and brush patterns shown in
Figure 7-7 combine as shown here.

Set Shade

Pops up a menu which allows you to choose one of a preexisting
set of shades or specify your own 4x4 shade. New shades are
added to the "Choose shade" menu.

Figure 7-9. The "Choose shade" menu.

Figure 7-10. The 4x4 shade tool.

Set Shape

Pops us the menu below which allows you to set the shape of the
mouse cursor.

Figure 7-11. The shape menu.

7 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Set Size

Brings ut the following menu which sets the cursor brush size.

Figure 7-12. The size menu.

Quit

Quits the paint program.

Clear

Clears the window. Sets all pixels in the window to white.

Bury

Places the window under all other windows which it covers or
overlaps, thereby exposing any windows that it was hiding.

Redisplay

Clears the window and rewrites the window contents to the window.

Hardcopy

Sends the contents of the window to the printer. If the window is
associated with a text, sketch, or graph editor the editor’s contents
are printed. In the case of TEdit and Sketch, this means that the
associated TEdit file, if there is one, is printed. If the window is not
associated with an editor a bit-map image of the window is sent to
the printer.

To save the image in a PostScript, Interpress, or Press formatted
file, or to send it to a non-default printer, use the submenu of the
Hardcopy command. When the mouse is moved off to the right of
the Hardcopy menu item, a second pop-up menu appears giving
the choices To a file or To a printer.

Figure 7-13. The Hardcopy submenu.

7 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

If To a file is selected, you are prompted to supply a file name, and
the format of the file (PostScript or Interpress) from the "File type?"
menu and the contents of the window is stored in that file, formatted
for the printer type you specified.

Figure 7-14. The "File type?" menu.

The system provides the suffixes for these files. PostScript files
have a "ps" suffix. Interpress files have an "ip" suffix. For example,
given a file name of "Letter," the system stores a file with the name
"Letter.ps" for a PostScript formatted file and "Letter.ip" for an
Interpress formatted file. If you change the suffix for a formatted file
from "ps" or "ip" to some other name, the system will prompt you to
let it know the file type when you try to print the file. For a
formatted file, select the BINARY response. For an unformatted
file, select the TEXT response. You print a formatted file the same
way you print an unformatted file, by using the Hardcopy option on
the FileBrowser menu.

Figure 7-15. The "File Type?" menu requesting the
file type of a file formatted for a particular printer
type.

If you select To a printer, you are prompted to select a printer from
the list of known printers, or to type the name of another printer.

Figure 7-16. The "Which printer?" menu asking
which printer you want to send to.

The topmost printer in the "Which printer?" menu is the default
printer. If the printer selected is not the topmost printer on the list,
indicating that it is not the default printer, you will be asked whether
to make the printer you selected the new default printer.

Figure 7-17. The "Make this the new default?"
menu asking you whether you want to make the
printer you selected the default printer.

Note, unless you are using only fully specified Interpress printer
names or you have set the DEFAULTPRINTERTYPE variable from
your initialization file, it is unadvisable to use the Other... option on
the "Which printer?" menu shown in Figure 7-16, as using this
option does not allow you to specify the printer type.

7 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Move

Moves the window to a new screen location. When you select
Move you are presented with a ghost frame which is the size and
shape of the original of the window you are moving. You move the
mouse to position the ghost frame where you want the window to
appear and then you plant the window by clicking the left mouse
button.

Figure 7-18. A TEdit window and its ghost frame.

Shape

Allows the user to specify a new size and shape for an existing
window. You can use either the left or middle mouse buttons to
shape a window.

Using the left mouse button allows you to change the size, shape,
and location of a window. Once you have selected Shape from the
window menu, position the cursor where you want the upper left
corner of the window to be located, press and hold down the left
mouse button, sweep out a new region for the window, and release
the mouse button when the window has the size and shape you
want.

Using the middle mouse button allows you to change the size and
shape of a window by moving just one corner of the window.
Select Shape from the window menu and position the mouse
cursor at the corner you want to move. Press and hold down the
middle mouse button and move the mouse cursor to the location
you want that corner of the window to be at. A ghost frame will
appear to indicate the new size and shape of the window.

When reshaping a window with either the left or middle mouse
button it is possible to change corners and change the window
shape from a different side of the window. In the middle of a shape
process, while you still have the left or middle mouse button down,
simultaneously press and hold the right mouse button down. When

you do this, the forceps cursor () will appear. Move this cursor
to the window corner you want to move and still holding the left or
middle mouse button down, release the right mouse button. You
will now be able to reshape the window from the corner you just
selected.

If you have too many windows on the screen and you are having
problems accessing them, you probably want to try shrinking some
windows.

7 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Shrink

Removes the window from the screen and brings up its icon. The
window can be restored by clicking the middle mouse button inside
the window’s icon, or by selecting Expand from the right button
icon menu. Some icons are shown below.

Figure 7-19. TEdit-window shrink icons look like books.

Figure 7-20. Sketch-window shrink icons look like
sketch pads.

Figure 7-21. FileBrowser-window shrink icons look
like filing cabinet drawers.

Figure 7-22. The NoteCards MenuBox shrink icon
looks like a recipe file box.

Figure 7-23. Notecard shrink icons look like link
icons with an extra border.

The Icon Menu

Icons are a varient of windows and have a menu similar in form and
function to the window menu.

7 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Figure 7-24. The icon menu.

For the options Close, Snap, Paint, Bury, Move, and Shape see the
discussion above under the "Window Menu" heading.

Expand

Restores the window associated with the icon accessed and
removes the icon image from the screen. You can also expend an
icon by clicking the middle mouse button inside the icon.

The Background Menu

If the right button is pressed while the cursor is not in any window,
the background menu appears.

Figure 7-25. The background menu.

TEdit

Opens a new TEdit window and starts a new TEdit session.

Sketch

Opens a new Sketch window and starts a new Sketch session.

7 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Figure 7-26. The Sketch submenu options.

Page sized sketch

Allows you to start a sketch which will fit exactly on an 8 1/2 x 11
inch sheet of paper when held in the normal vertical or portrait
position.

Landscaped sketch

Allows you to start a sketch which will fit exactly on an 8 1/2 x 11
inch sheet of paper when held in a horizontal or portrate position.

Sketch, from a file

Allows you to start a preexisting sketch which is stored in a file.

NoteCards

Opens the NoteCards MenuBox Icon which is the interface for a
NoteCards session.

Snap

The same as the window menu command Snap described above.

Also, TEdit, Sketch, and NoteCards allow information to be shift-
inserted at the current cursor position by selecting an area of the
screen with the SHIFT key held down. To shift-insert the bitmap of
a snap into an editor, position the cursor where you want the image
to appear, hold the SHIFT key down, press and hold down the right
mouse button in the background, and select Snap from the single
item menu which appears. Finally, sweep out the area for the snap
and release the mouse button and the SHIFT key. The snap will
appear in the editor where the cursor was positioned. Note,
sometimes it is necessary to scroll or redisplay the window for the
snap to appear.

Hardcopy

Prompts for a region on the screen, and sends the bit map image to
the default printer. Note that the region can cross window
boundaries.

Like the window menu Hardcopy command discussed above, you
can print to a file or specify a different printer than the default by
using the Hardcopy submenu. See the discussion of the Hardcopy
command under the "Window Menu" section above, for more detail.

7 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Clocks

Starts an analog clock and places it on the screen. The Clocks
submenu gives you access to a digital clock.

Figure 7-27. The Clocks option on the background
menu.

For a complete discussion of this menu option, see Chapter 15,
Other Tools.

FileBrowser

Opens a FileBrowser window which prompts you for a directory to
browse.

For a complete discussion of this menu option, see Chapter 14,
The FileBrowser.

Directory Connector

Opens a window which displays your currently connected directory,
and allows you to change directories.

For a complete discussion of this menu option, see Chapter 15,
Other Tools.

 Idle

Enters idle mode, which blacks out the display screen to save the
phosphor. Idle mode can be exited by pressing any key on the
keyboard or mouse. This menu command has subitems that allow
the user to interactively set idle options to erase the password
cache (for security), to request a password before exiting idle
mode, to change the timeout before idle mode is entered
automatically, etc.

Figure 7-28. The Idle submenu.

If either shift key is pressed while NoteCards is in idle mode, the
current user name and the amount of time spent idling are
displayed in the prompt window. This information appears as long
as the shift key is held down.

7 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Show Profile

Displays the current idle profile in the system prompt window.

Set Timeout

Sets the amount of time that the machine will wait for a key stroke
or mouse click before automatically going into idle mode.

When you select this option the system brings up a number pad on
which you can enter the new idle time out. An idle time out of zero
sets the machine so that it will never go into idle mode.

Figure 7-29. The number pad menu requesting a
new idle timeout duration.

The submenu option Never, will set the machine so that it never
goes into idle mode. We counsel against using this option as it can
result in the phosphor on your screen being damaged.

Choose Display

Allows you to select what will be displayed on the blacked out
screen when the machine is in idle mode. Selecting this option
brings up the two-choice menu shown below.

Figure 7-30. The idle display menu.

Bouncing Box Chooses the Envos logo as the idle display.

Figure 7-31. The Bouncing Box Envos logo.

Bouncing Username Chooses the your username as the item to bounce around on the
screen while in idle mode.

7 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Forget

If set to "Don’t" (or NIL), your password is not erased when idle
mode is entered. Default is "Do" (or T(rue)) erase password. The
initialization file distributed with the NoteCards system resets
Forget to "Don’t."

Figure 7-32. The Forget submenu.

Note: If the password is erased, any programs left running when
idle mode is entered will fail if they try doing anything requiring
passwords, such as accessing file servers.

Allowed Logins

Determines who can exit idle mode.

Figure 7-33. The "Allowed Logins" submenus.

Unlocked Sets the system such that login is not required to exit idle mode.
Initialization file value is "NIL."

Locked Lets only the previous user exit idle mode. Initialization file value is
"(T)."

Any Login Require login, but let anyone exit idle mode. Login overwrites the
previous user’s user name and password each time idle mode is
exited. Initialization file value is "(*)."

Group Allow any members of a specified group to exit idle mode. Figure
7-33 shows the Group submenu which allows you to add and
delete group members.

Authenticate

The value of this property determines what mechanism the system
uses to check passwords.

Figure 7-34. The Authenticate submenu.

If the value of this property is "Do" or "T(rue)," the Xerox network
system protocol is used to do the authentication.

7 - 1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

If the property value is "UNIX," the Sun Operating System is used
to do the authentication. This option is set in the standard
initialization file. See Appendix C for a complete discussion.

If the value of this property is "Don’t" or NIL, the password is not
checked. Any password is accepted.

Logout

Saves the NoteCards virtual memory working image to a file and
returns the system to UNIX. This is the normal way to return to
UNIX.

Figure 7-35. The Logout option and its submenu
on the background menu.

Save image & Exit

The same as Logout.

Flush image & Exit.

Returns the system to UNIX without saving the working image.
Use this option when you have saved all your work to files and you
do not care if the system comes up in the same state it was in when
you left it.

Save VM

Saves the NoteCards virtual memory working image to a file but
does not return the system to UNIX. Use this option frequently if
you are concerned about power failures or other problems which
may cause your machine to crash.

Suspend & Exit

Suspends the NoteCards session and returns control to UNIX. You
restart the NoteCards session by entering the command fg
(foreground), at the UNIX prompt.

Low Level Tools

This menu option provides people extending the NoteCards system
access to the Lisp executives, the process status window, and
allows them to set the Show TEdit Props flag. The NoteCards
user should never access these options except under the
instruction of a developer or support person.

7 - 1 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

Set Default Printer

Allows you to specify which printers you want to print to and which
one is the default.

For a complete discussion of this menu option, see Chapter 16,
Printing.

Postscript Parameters

Allows you to control the way PostScript documents are printed.

For a complete discussion of this menu option, see Chapter 16,
Printing.

Set Default Display Font

Brings up a series of menus which allow you to specify what fonts
will be used on the screen. This is a particularly useful option if you
are using a high resolution screen and want to increase font size or
for people who are vision impaired.

Figure 7-36. The "Choose Font Profile to Update"
menu.

To change a display font, select the Set Default Display Font
background menu option and choose the font you want to change
from the "Choose Font Profile to Update" menu. Each of the font
options is discussed below. Once you have selected the font you
want to modify, the "Please select a font:" menu will appear. Select
the font family, size, and face you want then select DONE. RESET
makes the menu display the current setting for the default display
font you are modifying. ABORT terminates this operation and
closed the "Please select a font:" menu.

Figure 7-37. The "Please select a font:" menu.

If you choose a font which does not exist or the system is unable to
find, the old font specification remains unchanged.

7 - 1 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

If the system is unable to find a font which you know to exist, check
the setting of the display font directory list. This is done with the
Show Font Directories subsubmenu option off the Set Default
Printer background menu option. See Chapter 16, Printing, for a
complete description of how to use this option.

FileBrowser Display Font

The font in which the information in the main display window is
printed, initially 10-point Gacha.

FileBrowser Prompt Font

The font in which FileBrowser prompt messages are printed.
Initially 8-point Gacha. Changing this value only affects new
FileBrowsers created from the background menu. Existing
FileBrowsers are unaffected.

Prompt Window Font

The font used to print information in the black system-prompt
window.

Default Font

The starting font used in TEdit and Sketch windows as well as all
other windows which do not have an explicitly specified font
associated with them.

Note that the default font for NoteCards cards is specified from the
"NoteCards System Parameters" menu. See Chapter 13, System
Parameters for a complete discussion of how to specify this default
font.

Menu Font

The font used in all system menus. The menu font is used in the
window, icon, background, and other menus.

7 - 1 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

7. THE USER INTERFACE

[This page intentionally left blank]

8 - 1ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

A link is a connection between a source card and a destination
card. A link icon represents the link.

Figure 8-1. A link-icon image.

By clicking on the link icon, you can display the destination card.
Links are the glue which holds together the relationships and
conceptual structures represented in a notefile.

This chapter explains:

What links and link types are.

How links are accessed and used.

How to create links.

How to delete and undelete links.

How to tailor links to your taste.

What cross-file links are.

Links and Link Types

Link types specify the nature of the relationship between the source
and destination cards. Some typical link types are Question,
Answer, and Explanation.

Two groups of link types exist in the NoteCards system; one group
is system-reserved, the other is user-specified. Some of the
system-reserved links support the FileBox hierarchy that NoteCards
helps you to create. The user-specified links add a relational
dimension to information structuring. Here you can link cards
together to form networks. These networks allow you to represent
the interconnections between various ideas or pieces of
information, independent of any categorization into topic areas. In
contrast, the set of FileBoxes forms a strict hierarchy typically
representing a breakdown of information into subtopics or
subcategories. By strict hierarchy, we mean that you are not
allowed to create circular lists of FileBoxes. Circular lists of other
card types are allowed, however.

System-Reserved Link Types

SubBox A link pointing to a FileBox from another FileBox.

FiledCard A link pointing from a FileBox card to any non-FileBox card. Text,
Sketch, Graph, Browser, Search, LinkIndex, and Document cards
are non-FileBox cards.

BrowserContents A link pointing to a card or box from a Browser card. This type of
link is traversed when you bring up any of the cards or boxes
represented as link icons in a Browser card.

8 - 2 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

ListContents A link pointing to a card or box from a Search card, enabling you to
bring up any of the cards or boxes found during the search process.

LinkIndexBackPtr A link pointing to a card or box from a LinkIndex card. This type of
link is built when you specify that a LinkIndex card should have
back pointers to the cards and boxes being indexed, i.e., link icons
should be included in the LinkIndex card.

DocBackPtr A link pointing to a card or box from a Document card. This type of
link is built when you specify that a Document card should include
back pointers to each card and/or box used to build the document.

User-Specified Link Types

User-specified links indicate the logical relationships between
cards. The system comes with three predefined user-specified link
types, Comment, See, and Unspecified. However, the system
allows you to create new link types as you need them. Typical link
types users create include Explanation, Example, Question,
Answer, Next, and Source. Choose your link types carefully as
they determine the lines along which you will be able to extract
information from your notefiles with Document cards.

Randy Trigg, one of the developers of the NoteCards prototype at
Xerox PARC, proposed a long list of standard link types for users to
follow in categorizing the relationships between their notes. A
partial list is included here to give you some idea of the possibilities.

Citation
C-source
C-credit
C-leads

Argument
A-deduction
A-induction
A-analogy
A-intuition

Background/Future
Refutation/Support
Methodology/Data
Solution
Continuation
Correction/Update
Simplification/Complication
Explanation
Summarization/Detail
Alternate-view
Rewrite
Generalization/Specification
Abstraction/Example
Formalization/Application

Note that some long-time users of the system use only one link
type. NoteCards gives you a great deal of flexibility. Just because

8 - 3ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

some functionality is there does not mean you should feel obligated
to use it if it is not helpful to your task.

Link Directions and Link Ends

Links have a single start point and a single end point. However,
whenever you create a link from one card to another, the system
automatically builds a backwards link so that it is possible to
traverse a linked sequence of cards in either direction. The result is
that all cards are linked bidirectionally.

A link’s start point is either the card itself or somewhere in the
card’s contents. In the case of a text card, this would be
somewhere within the body of the card’s text. A link’s end point is
always another card. Thus, there are three distinct link categories.
There are also a few terms which refer to different groupings of
these categories.

Link Categories

To-Links Refer to links whose start point is in a card’s contents and whose
end point is another card. These links are represented as link icons
in a card’s body.

Global To-Links Refer to links whose start point is a card itself and whose end point
is another card. These links are not represented by link icons in a
card’s body. To see and access these link icons you must choose
the Show Links option from a card’s left-button title-bar menu.

From-Links For every to-link and global to-link there is a corresponding from-
link which points from the destination card to the source card. All
from-links are global.

Other Link Terminology

Local Links Links whose start point is somewhere in the contents of a card.

Global Links Links whose start point is the card itself and not some point in the
card’s contents. These links are not represented by link icons in a
card’s body. To see and access these link icons, you must choose
the Show Links option from a card’s left-button title-bar menu.

Forward Links Include both to-links and global to-links. This term is used when
setting Browser and LinkIndex card parameters.

Backward Links The same as from-links. This term is used when setting Browser
and LinkIndex card parameters.

Back Links System-generated to-links. These links point from a Document or
LinkIndex card back to the source cards from which the Document
or LinkIndex was built. Hence the name back link.

Link Types vs. Card Types

Link types and card types are frequently confused but they are
totally independent of each other.

Link types classify the assigned relationship between two cards.
Link types frequently include Explanation, Question, Answer, and
Citation.

8 - 4 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

A card’s type specifies the functional capabilities of that card and is
associated with a text or graphics editor. The eight card types are
Text, FileBox, Search, LinkIndex, Document, Sketch, Graph, and
Browser. The Text, FileBox, Search, LinkIndex, and Document
cards are all based on the text editor TEdit. The Sketch card is
based on the Sketch editor and the Graph, and Browser cards are
based on the graph editor Grapher.

Link Access and Use

Link Icon Functionality

A link icon is an active region with an associated menu and four
functions. The most frequently used functionality is to click the left
mouse button in the body of the link icon to traverse the link to the
destination card. The middle mouse button brings up a menu
which allows you to traverse the link, change the link type, change
the card title and change the link display mode.

Active Regions of Link Icons

The entire link icon except for 10 pixels at the left edge and 10
pixels at the right edge responds to mouse clicks by carrying out a
NoteCards action.

Active Region of Link Icon

10 Pixels 10 Pixels

Link Icon

Inactive Inactive

Figure 8-2. Link icon active and inactive regions.

Clicking in the "inactive" 10-pixel strips at the left and right edges of
the link icon selects the link icon, in text-based cards (Text, FileBox,
Search, LinkIndex, and Document cards), for delete, copy, and
move operations, without traversing the link. This region does not
exist on sketch- and graph-based cards (Sketch, Graph, and
Browser cards).

The inactive area can be somewhat difficult to access without
touching the active region of the card. One way to access it is to
hold the left or middle mouse button down and slide into the link
icon’s inactive region. You have selected the link icon when it
appears underlined.

8 - 5ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

Figure 8-3. A selected icon

If you go too far and the card redisplays in reverse video, simply
slide the mouse cursor out to the edge of the link icon and watch for
it to underline again. Once the icon appears underlined release the
mouse button.

If a link icon is so narrow that its active region would be less than
10 pixels wide, the active region is set to the middle 50% of the link
icon width, with 25% at left and 25% at the right being the inactive
strips. If the link icon is less than 10 pixels in width altogether, then
the link icon will have no inactive strips. Its entire area will be
active.

Mouse-Button Actions in Link Icons

The exact response to a mouse click in the active region of a link
icon varies depending on a number of conditions. For more
general mouse button behaviors, see Chapter 7, The User
Interface, as well as the User’s Guide to TEdit and the User’s Guide
to Sketch.

Left Button Brings up the destination card represented by the link icon.

Middle Button Brings up the link icon menu which allows you to change the link
type, title, and display mode.

Right Button Following a left- or middle-button click elsewhere in a TEdit-based
card, selects a region of the window for moving, copying, or
deletion which can include link icons.

Copy/Shift or Move/Shift-Control key plus mouse-button operations
are three-step operations. First, you specify the destination window
by clicking the left mouse button to position the flashing cursor in
the window. Second, hold the appropriate keyboard key down.
Third, while still holding the key down, use the mouse to select the
piece of text/graphics to be operated on. Once you have
completed your selection, release the keyboard key and what you
have selected will be copied or moved to the destination window.

Link icons should only be copied or moved to NoteCards windows.
TEdit and Sketch, when used outside of NoteCards text-based and
sketch-based cards, will not understand link icons.

Copy/Shift key + Left Button This operation is frequently referred to as a shift-select,
occasionally as a copy-select. This operation copies a link icon, or
link-icon name and link, to another card.

If the flashing cursor is in the body of a card, holding the SHIFT or
COPY key down and clicking the left mouse button on a link icon
copies the link icon and the link it represents to the position of the
caret cursor in the destination card.

8 - 6 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

If the flashing cursor is a crosshairs and is in a "Selecting cards to
file" prompt window, holding the SHIFT or COPY key down and
clicking the left mouse button on a link icon will copy the link icon
name and link to the select-card prompt window. This operation is
used when you are inserting links in cards or filing cards in a
FileBox card.

Figure 8-4. A select card prompt window.

Copy/Shift key+ Middle Button Same as left button.

Copy/Shift key + Right Button Holding the COPY or SHIFT key down and pressing the right
mouse button following a left- or middle-button click elsewhere in a
text-based card, selects a region of the window for copying which
can include link icons.

Move/Shift-Control + Left Button Moves a link and link icon from one card to another card by deleting
the link in the first card and inserting it into the second. To move a
link, position the caret cursor in the destination window where you
want the link to appear and, holding the MOVE key down or holding
the CONTROL and SHIFT keys down simultaneously, select the
link icon you want to move with the left mouse button. When you
release the key or keys you are holding down, the link icon will
move to its new position.

Move/Shift-Control + Middle Button Same as left button.

Move/Shift-Control + Right Button Holding the MOVE key or SHIFT and CONTROL keys down and
pressing the right mouse button following a left- or middle-button
click elsewhere in a text-based card, selects a region of the window
to be moved which can include link icons.

CONTROL key plus mouse button operations are two-step
operations. First, hold the CONTROL key down. Second, while
still holding the key down, use the mouse to select the piece of
text/graphics to be deleted. Once you have completed your
selection, release the CONTROL key and what you have selected
will be deleted.

Control key+ Left Button Deletes a link and link icon from a card. Holding the CONTROL
key down and pressing the left mouse button on a link icon will
select the link icon for deletion. This is shown by displaying the link
icon in reverse video.

Figure 8-5. A selected link icon.

8 - 7ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

The link icon and the link it represents are deleted when you
release the CONTROL key. You can cancel this operation before
you release the CONTROL key by clicking elsewhere in the window
to deselect the link icon.

Figure 8-6. An unselected link icon.

You can undo this operation, after you have released the control
key, by hitting the UNDO key.

Control key + Middle Button Same as left button.

Control key + Right Button Holding the CONTROL key down and pressing the right mouse
button following a left- or middle-button click elsewhere in a text-
based card, selects a region of the window for deletion which can
include link icons.

It is also possible to just backspace over a link icon or to select it
and then hit the DELETE key. Note that on some Sun keyboards,
the backspace key has the word "Delete" printed on it and that the
NoteCards DELETE key is one of the function keys, usually the key
labeled "L10."

Viewing Local and Global Links

All links are stored in three places.

1) as a to-link on a source card

2) as a from-link on a destination card

and either

3a) for local to-links, in the card’s contents as a link icon

3b) for global to-links, in the card’s global links list

Only the local to-links, the links in a card’s contents, are
immediately visible.

To see all of the links to and from a card, hold the left mouse button
down in the card’s title bar and select the Show Links option.

Figure 8-7. The card menu with the Show Links
option selected.

This will open a window titled: "List of Links". This window always
opens with the same initial height. If the list of links is longer than
three or four, you will need to scroll or reshape the window to see

8 - 8 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

the rest of the links. The link icons in this window have the
standard left-button functionality, you can traverse links, but no
middle-button functionality. Links can also be copied, moved, and
deleted from this window.

Figure 8-8. A "List of Links" window showing links
to and from the "Earth"and "Moon" cards.

The headings to the left of the links are active but have no
operations associated with them.

You can close the "List of Links" window by holding down the left or
middle mouse button in the window title bar and selecting Quit from
the single-option menu, or by pressing the right mouse button in the
title bar and selecting the Close option from the standard window
menu.

Figure 8-9. The "List of Links" left button menu.

Unfiled and Lost Cards

All cards, including FileBox cards, must be filed in at least one
FileBox. This assures that you will have a pointer to your
information and helps to remind you to hierarchically organize your
information in addition to specifying other types of relationships.
When you close a card without linking it to a FileBox card, the
closed card is placed in the "To Be Filed" FileBox. You can access
this FileBox card by holding the middle mouse button down on the
notefile-banner Special Cards menu option and selecting the To
Be Filed option from the menu which appears.

Figure 8-10. The To Be Filed option on the
"Special Cards" menu.

From this FileBox all "unfiled" cards are accessible. It is possible to
force yourself to file cards in a FileBox by setting the Force Filing

8 - 9ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

Edit Parameter. See Chapter 13, System Parameters, for a
complete explanation.

You can remove all FileBox links to a card by accident or by design.
When you do this, the following message is displayed in the
System Prompt Window. "You have just unfiled card name from its
last filebox. It is being filed in the Orphan FileBox." You can
access this FileBox card by holding the middle mouse button down
on the notefile-banner Special Cards menu option and selecting
the Orphans option from the menu which appears.

Finally, you can delete card links from the "Orphans" FileBox.
When you do this the following message is displayed in the card’s
prompt window. "You have just deleted the last filing link to card
name. The Search operation can be used to find it." At this point, if
there are no other cards with links to this card, it becomes a lost
card and there is no simple way to access the card even though it
still exists. As the message says, though, you can retrieve lost
cards by building new links to them with a Search card. However,
unless you remember some fragment of the card’s name, using a
Search card to find lost cards can be a time consuming task in a
large notefile.

Creating Links

The links you create always run from a source card to a destination
card. References to the source card refer to the card with the link
icon. References to the destination card refer to the card which
opens, or flashes if already open, when you click on the link icon.

Figure 8-11. An illustration of a link icon pointing to
its destination card.

Creating Links in Text Cards

The procedures for creating links are basically the same for all
cards. We will use Text cards as the model, and then discuss the
differences between Text cards and other cards.

Insert Link

You use the Insert Link command to create a link originating in the
source card’s contents and terminating at another card. This is a
multi-step process. First, you place the caret cursor in the card at
the position where you want the link to appear by clicking in the
source card’s window. If the type-in process belongs to another
card or window this usually takes two mouse clicks, one to make
the card the active card and one to position the mouse cursor.
Once you have established the location for the link icon in the

8 - 1 0 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

source card, you hold the left mouse button down in the source
card’s title bar and select the Insert Link option.

Figure 8-12. The card menu with the Insert Link
option selected.

At this point the "Link Type" menu will open, asking you to specify
the link type.

Figure 8-13. The "Link Type" menu with the --New
Link Type-- option selected.

Choosing appropriate link types is important as they will determine
the ways you will be able to extract information from your notefiles.
For more information on link types see the section User-Specified
Link Types in this chapter and the section on Document cards in
Chapter 12, System Cards. You can create new link types as you
need them by selecting the --New Link Type-- option and typing
the name of the new link type into the prompt window which will
appear above the source card. When you type a carriage return to
this prompt widow, without defining a new link type, the system
assigns the link type the value "Unspecified."

Figure 8-14. A note card prompt window
requesting a new link type.

After you have selected an existing link type or defined a new one,
the system opens a "Selecting Note Card" window and prompts you
to shift-select the card UID from the destination card.

8 - 1 1ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

Figure 8-15. A "Selecting Note Card" window
prompting the user to shift-select a card ID from the
destination card’s title bar.

A card UID is shift-selectable from three locations,

a card’s title bar

a card’s shrink icon

and a card’s link icon

When shift-selecting the card UID, there are two distinct behaviors.
From the link icon, it is necessary to lift the Shift or Copy key after
each selection. This is the expected behavior when shift-selecting
anything from an edit window. From the title bar and shrink icon, it
is not necessary to lift the Shift key. The transfer happens
immediately.

What you see transfered is the destination card’s title, but
NoteCards also maintains an identifier for each card which is
unique across all cards and notefiles. This is what you are really
shift-selecting from one card to another. And this is also the reason
why it is not possible to shift-select or type text into this window.

Figure 8-16. A link icon to a destination card as it
appears in a source card.

At this point, the new link icon will appear in the source card. From
now on, when you click on this link icon, it will open the destination
card, or flash the destination card if it is already open.

Selecting New Card from the menu on top of the "Selecting Note
Card" prompt window will bring up a menu allowing you to create a
new card, of any type, which will be the destination card.

Selecting Cancel from this menu, cancels the entire Insert Link
operation.

8 - 1 2 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

 At any point in this process, it is possible to transfer the type-in
process from a prompt window to some other window by clicking in
the window you want to use. The prompt window will stay open
waiting for you to complete the operation. When you are ready to
finish inserting the link, simply click in the prompt window to make it
the active window, shown by the flashing crosshairs, and continue
where you left off.

Insert Links

If you need to insert multiple links of the same link type at the same
location in a source card, Insert Links will save you from inserting
each link individually.

Figure 8-17. The card menu with the Insert Links
option on the Insert Link submenu selected.

Insert Links works exactly as Insert Link except you will be
allowed to select multiple destination cards. It is possible to shift-
select a mixture of text and link icons from a card. In this case, the
source card’s prompt window will ignore all the extraneous text. To
complete the insert operation, either type a carriage return or select
the Done menu option.

Figure 8-18. A "Selecting Note Cards" prompt window.

The Cancel option terminates the entire link insertion operation.

Undo allows you to remove the last item from the list. You can
select Undo until you have removed all the items from the list.

Add Global Link

Global links are not rooted in a card’s contents. For this reason we
draw the contrast between inserting a link into a card’s contents
and adding a global link to a card.

8 - 1 3ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

A second result of this difference is that the procedure for Add
Global Link is somewhat different from that for Insert Link. To
add a global link, hold the left mouse button down on the card’s title
bar and slide off Insert Link to access the submenu and select the
Add Global Link option.

Figure 8-19. The card menu with the Add Global
Links option on the Insert Link submenu
selected.

Because you are adding a link to a card itself and not inserting a
link into a card’s contents, it is not necessary to first position the
caret cursor to select the link icon’s insertion point. Note that the
link will not be visible unless you use the Show Links option to
show the links to and from that card. Aside from these few minor
differences the procedure is exactly the same as that for Insert
Link.

Add Global Links

Add Global Links functions just like a combination of Add Global
Link and Insert Links. It allows you to add multiple global links of
the same link type to a source card without adding each link
individually. If you want the global links to have different link types,
they must be added one by one using Add Global Link.

Creating Links in Other Card Types

There are three basic card types in NoteCards, text-based, sketch-
based and graph-based cards.

Text-Based Cards

Text-based cards are based on the TEdit editor and can contain the
output from sketch-based and graph-based cards. Text-based
cards include Text, FileBox, Search, LinkIndex, and Document
cards. The link creation procedure for all text-based cards is the
same as for Text cards.

Sketch-Based Cards

Sketch-based cards are based on the Sketch editor. There is only
one sketch-based card and it is the Sketch card.

The link icon insertion procedure differs from that for text-based
cards only concerning when the new link icon is positioned in the
card. For text-based cards, the cursor is positioned where you
want the link to appear and then one of the link insertion options is
selected. For sketch-based cards, the order is reversed. The

8 - 1 4 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

menu option is selected first and then, after you have indicated
which card you want to link to, you move the cursor into the Sketch
card and position the link icon.

Graph-Based Cards

Graph-based cards are based on the graph editor. Graph and
Browser cards are graph-based cards.

As with sketch-based cards, the link icon position is selected after
the card you are linking to.

Deleting Links

When you delete a link icon you are deleting the to-link that points
from the source card to the destination card and also the from-link
which points from the destination card back to the source card.

To understand what happens when you delete a link, create a
Source Card and a Destination Card. Next insert a link from the
Source Card to the Destination Card, and open the "List of Links"
windows on each card by selecting the Show Links option from the
left-button title-bar menu. When you delete one link, all the links
will be deleted.

Figure 8-20. A "List of Links" window showing a to-
link to a destination card.

Figure 8-21. A "List of Links" window showing a
from-link pointing back to a source card.

The delete procedure for links depends on where you are
accessing the link and the card type you are deleting the link from.

Deleting Links from Card Contents

Text-Based Cards

Link icons in the body of text-based cards can be deleted in several
ways.

8 - 1 5ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

You can select the link icon with the mouse by clicking in the
inactive region of the link icon and hitting the delete key. Also, you
can select a region of text in a text-base card with a sequence of
left+right or middle+right mouse buttons and hit the delete key to
delete the selected region which can include a mixture of text and
link icons.

You can also hold the control key down and select the link icon by
pressing the left or middle mouse button in the link icon active
region, when you release the control key, the link icon will be
deleted.

Finally, you can simply backspace over a link to delete it.

All of these operations can be undone by hitting the Undo key.

For more detail on inactive regions of link icons and coordinated
keyboard-plus-mouse operations, see the Link Access and Use
section above and as well as the TEdit documentation.

Sketch-Based Cards

You can delete link icons in the body of sketch-based cards by
bringing up the sketch menu, if it is not permanantly attached to the
right side of the sketch window, and selecting the delete option.
Next, click in the link icons control point which is the small box
attached to one corner of the link icon.

Figure 8-22. A selected link icon in a Sketch card.

This operation can be undone by hitting the Undo key.

For more detail on this and other Sketch operations see the Sketch
documentation.

Graph-Based Cards

To delete a link from a Graph card, hold the right mouse button
down in the Graph card window, select the Delete Node option,
and then click on the card you want to delete. When you confirm,
the link will be deleted.

Note, this operation cannot be undone.

Because a Browser card is an overview of a link network in addition
to being a member of that network, the meanings of delete
operations in Browser cards is not straightforward. Please turn to
the section on Browser cards in Chapter 11, System Cards, for a
detailed explanation of links in Browser cards.

Deleting Links from the Show Links Display

Deleting links from the show links display is very similar to deleting
links from text-based cards.

You select the link icon with the mouse by clicking in the inactive
region of the link icon and hitting the delete or backspace key.

8 - 1 6 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

You can also hold the control key down and select the link icon with
the mouse by pressing the left- or middle-mouse button in the link-
icon active region, when you release the control key, the link icon
will be deleted. This second way is frequently the easier of the two,
as it does not require you to access the narrow inactive regions on
either end of the link icon.

Note, this delete operation cannot be undone.

Tailoring Links

It is possible to modify the appearance of links to suit your personal
tastes and the task at hand. Links can be modified using the
middle-button icon menu and the NoteCards "System Parameters"
menu.

Link Ops Menu

You bring up the "LinkOps" menu by holding the middle mouse
button down in the active region of the link icon.

Figure 8-23. The "Link Ops" menu.

Bring Up Card/Box

Performs the same function as clicking the left mouse button in the
link icon’s active region. It traverses the link to the destination card
and opens it, or flashes it if it is already open.

Change Link Type

Allows you to choose a different link type for the link you select.

Change Card Title

Changes the title of the card the link points to and the titles shown
in all the link icons pointing to that card. The one exception to this
statement is when you have created one-way cross-file links.
These links update only when you access the link icon which points
to the changed card.

Change Display Mode

Selecting Change Display Mode brings up the "Display Mode?"
menu. This menu allows you to override the display mode defaults
for the individual link icon you have selected.

8 - 1 7ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

Figure 8-24. The "Display Mode?" menu.

There are two levels of defaults for link icon display modes. Each
card defined in the NoteCards system sets how links will be
displayed in its contents. This is the first level of defaults and you
have no control over them. These defaults can be set to three
values, "Yes," "No" and "System Defaults." These are the values
which appear in the "Display Mode?" menu shown above. If the
value is set to "System Defaults," NoteCards consults the System
Parameters to determine whether or not to display that particular
attribute. See Chapter 13, System Parameters for how to set link
default display modes.

With all the values set to "No," the link appears as a small
rectangular box.

Figure 8-25. A link icon with all display mode
values set to "No."

With all the values set to "yes," the links have the following
appearance.

Figure 8-26. A link icon with all display mode
values set to "Yes."

The link type is shown in angled brackets and the card title is to the
right of the link type. The card-type bitmap is the square piece on
the left of the link icon and varies in design depending on the card
type.

Represents Text cards.

Represents FileBox cards.
The image is a stylized file drawer.

Represents Sketch cards.
The image is a stylized sketch.

Represents Graph cards.
The image is a stylized letter "G."

Represents Browser cards.
The image is a stylized Browser.

Represents Search cards.
The image is a stylized eye.

8 - 1 8 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

Represents LinkIndex cards.
The image is a stylized list of link icons.

Represents Document cards.
The image is a stylized linear list of note cards.

Represents cards for which the type is unknown occurs with cross-
file links.

System Parameters for Links

There are nine system parameters to enable you to customize the
appearance of links. They are Link Icon Font, Link Icon Border
Width, Link Icon Multi Line Mode, Cross File Link Mode, Link
Icon Max Width in Pixels, Link Icon Show Title Default, Link
Icon Attach Bitmap Default, Link Icon Show Link Type Default,
and Use Deleted Link Icon Indicators. For a complete discussion
of these parameters, see Chapter 13, System Parameters.

Cross-File Links

The NoteCards system allows you to have links from one notefile
that point to cards in another notefile. These types of links are
known as cross-file links. See also Chapter 13, System
Parameters for how to set the cross-file link mode.

Appearance

Cross-file links are indicated by an arrow bitmap on the right-hand
side of the link icon.

Figure 8-27. A cross-file link indicated by an arrow
bitmap on the right-hand side of the link icon.

It is also possible to cross-file cards. This is to say that you can file
a card from one notefile in the FileBox of another notefile. Note
that this is only possible after you have first filed it in its origin
notefile. This is, in effect, just another way of creating a cross-file
link. Cards are always physcially filed in their origin notefiles.

When a cross-file link is displayed, and the notefile the link points to
is closed, then the link can have the following form.

Figure 8-28. A cross-file link to a closed notefile.
The question-mark bitmap indicates that the card
cannot be accessed to determine its card type.

The card-type bitmap on the left of the link icon is a question mark
because the card type is stored on the card and this link has no
access to the card because the notefile is closed. As a result, the

8 - 1 9ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

link cannot display the appropriate card-type link. When you click
on the cross-file link the system will ask you if you want to open the
corresponding notefile. At this point, if you redisplay the card, by
selecting the Redisplay option on the window menu, the link will be
shown with its appropriate card-type bitmap.

Missing Notefiles

If you rename or delete a notefile which has cross-file links pointing
to it, the system will try to open the notefileby its original name.
When it cannot find the notefile under its original name, it will ask
you which notefile to look in. You cannot give a name with wild
card characters like "*" or "?." You must give actual notefile names.
The system will continue to prompt you for new notefiles to search
until you give up.

8 - 2 0 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

8. LINKS

[This page intentionally left blank]

9 - 1ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS
Cards are the basic units of information in the NoteCards system.
This information can be a mixture of text and graphics. The cards
can contain as much or as little information as you deem
necessary. You can link each card to any number of other cards to
create an information network which you can randomly browse or
systematically read. You access cards through the notefile Banner.

This chapter explains:

What you can do from the notefile Banner.

How to access old cards.

How to create new cards.

What card types there are.

What the card menu does.

The Notefile Banner
Each notefile which you have opened is represented on the screen
by a notefile Banner. The notefile name appears across the top of
the Banner in the region called the title bar. The semi-colon after
the name is followed by the notefile version number.

Figure 9-1. The Banner for the Solar System notefile.

The Banner has three active regions, the title bar, the New Cards
option and the Special Cards option.

The Banner Title Bar
From the title bar you can access three notefile menus.

Notefile Ops Menus

There are two "Notefile Ops" Menus. One displays only those
options which work on open notefiles. The other displays only
those options which work on closed notefiles.

Holding the left mouse button down in the Banner title bar when the
notefile is closed brings up the following "Notefile Ops" menu. Note
that the New Cards and Special Cards options are grayed over
when the notefile is closed.

9 - 2 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Figure 9-2. "Notefile Ops" menu from the Banner
of a closed notefile.

Holding the left mouse button down in the Banner title bar when the
notefile is open brings up the following "Notefile Ops" menu.

Figure 9-3. "Notefile Ops" menu from the Banner
of an open notefile.

These two sets of options are a subset of those found on the
"Notefile Ops" menu accessed by holding the left mouse button
down on the MenuBox Icon’s Notefile option.

Figure 9-4. The MenuBox Icon’s "Notefile Ops" menu.

All of these commands are discussed in Chapter 12, The MenuBox
Icon.

9 - 3ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Middle-Mouse-Button Title-Bar Menu

Holding the middle mouse button down in a notefile Banner’s title
bar brings up the following menu.

Figure 9-5. Middle-button menu in notefile Banner title bar.

Full File Name

Selecting the Full File Name option will bring up a window
containing the full name of a file, including its directory path.

Figure 9-6. The full file name of the Solar System notefile.

Press any mouse button to continue. The window will close and
you will be allowed to continue your work. This option is useful
when you have two files with the same name, but different
directories, on the screen and you need to be able to differentiate
their Banners.

File Capacity

When the notefile is open, selecting the File Capacity option will
attach a window to the top of the notefile Banner which will display
the percentage and ratio of used cards in the notefile.

Figure 9-7. Notefile Banner with file capacity window open.

To close the file capacity window, hold the right button down in the
file capacity window, not in the Banner title bar, and select the
Close option off the window menu.

When 90% of the cards in a notefile have been used, the file
capacity window will automatically open and warn you that the file
is almost full and that it needs to be compacted. You must close a
notefile before you can compact it. See Chapter 12,The MenuBox
Icon, for instructions on compacting notefiles.

9 - 4 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Figure 9-8. Notefile Banner with file capacity
window warning to compact notefile.

If you try to create a new card when the notefile is 100% full, the
system will display a message that the notefile is full and you will be
asked if it is ok to checkpoint the notefile and make room for some
number of new cards.

Figure 9-9. "Expand notefile index?" menu and
prompt window.

If you select Yes, the system will save all the open cards, close the
notefile, expand the notefile index by the amount you indicated,
reopen the notefile, and create the card you requested. Note that
the notefile is not compacted in this operation.

Cancel stops the operation. Change Num allows you to change
the number of cards to expand the notefile by, after which you can
choose the Yes option from the "Expand notefile index?" menu and
proceed to save and expand the notefile.

Special Cards
Old notecards are accessed from the notefile Banner under the
option Special Cards, (see Figure 9-1). Clicking the left mouse
button in the Special Cards option brings up the "Table of
Contents" FileBox card for the named notefile.

9 - 5ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Figure 9-10. "Table of Contents" FileBox card for
the "Solar System" notefile.

Holding down the middle mouse button in the Special Cards option
brings up the "Special Cards" menu.

Figure 9-11. The "Special Cards" menu.

This menu allows you to access all of the top-level FileBoxes.
Ultimately, all accessible cards are linked to one of these three
FileBoxes.

Table of Contents FileBox

This is the top-level FileBox of each notefile. It is intended for
storage of links to FileBoxes and other cards at the highest level of
the information hierarchy.

To Be Filed FileBox

A temporary FileBox for cards that are not filed in any FileBoxes. If
you close a card without specifying its FileBox, or if you close a
notefile, without having specified the FileBoxes for every card, the
system will place the cards without assigned FileBoxes in the "To
Be Filed" FileBox.

If you later designate a FileBox for an unfiled card using the
Designate FileBoxes or Title/FileBoxes commands from the card
menu, this does not remove the card from the "To Be Filed"
FileBox. To remove a card from the "To Be Filed" FileBox either
delete its link or use the Unfile From FileBoxes suboption on the
card menu of the newly filed card.

9 - 6 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Figure 9-12. A card menu showing the Unfile from
FileBoxes suboption selected.

As a general rule, it is a good idea to check the "To Be Filed"
FileBox at the end of every session to verify that you have properly
filed every card where you want it. You might also keep a copy of
this FileBox on the screen so that you can tell at a glance if any
cards have been filed there.

Orphans FileBox

A FileBox for cards whose last link from another FileBox has been
removed.

Removing a link icon from the "Orphans" FileBox severs the card
from the FileBox hierarchy but does not delete it from the notefile.
Cards in this state are lost cards. The only means of retrieving a
lost card is with a search card.

As a general rule, it is a good idea to check the "Orphans" FileBox
at the end of every session to verify that you have properly filed
every card where you want it. You might also keep a copy of this
FileBox on the screen so that you can tell at a glance if any cards
have been filed there.

New Cards
New cards are created from the notefile Banner under the option
NewCards, (see Figure 9-1).

Clicking the left mouse button on the NewCards option immediately
creates a specific type of card. The type of card created is
determined by the value of the Default Card Type System
Parameter. See Chapter 12, The MenuBox Icon, which describes
how to set this parameter. The default value is "Text."

Pressing the middle mouse button over the NewCards option
brings up the "Card Types" menu.

9 - 7ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Figure 9-13. The "Card Types" menu.

Selecting one of these options creates a card of that type.

Figure 9-14 graphically represents the notecard types and their
range of use. Text, Graph, and Sketch cards help you to collect
and express your ideas. FileBoxes allow you to express the
relationships between your ideas and organize them into coherent
structures. Browser cards provide a broad range of functionality,
and are a means of representing as well as retrieving information.
LinkIndex cards build sorted lists of cards. Search cards perform
searches on card titles. And, Document cards create a linear
document from your linked cards.

Retrieve

Analyze

Communicate

Organize

Capture

Express

Document

Search

Filebox

Browser

Text

LinkIndex

Graph

Sketch

Figure 9-14. Card types and their range of use.

User Cards and System Cards
Cards can be broadly divided into two categories. User cards are
those cards for which you create the contents. System cards are
cards where the contents are built by the system for you. Chapter
10 discusses user cards; Chapter 11, system cards.

9 - 8 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

In Figure 9-13, the top four card types (Text, FileBox, Sketch, and
Graph) are user notecards. The bottom four card types (Browser,
Search, LinkIndex, and Document) are system notecards.

Text-, Sketch-, and Graph-Based Cards
All cards are based on one of three editors, the text editor TEdit,
the Sketch editor Sketch, or the Graph editor Grapher.

Text, FileBox, Search, LinkIndex, and Document cards are all
based on the text editor TEdit. Hence they all behave in essentially
the same way and are referred to as text-based cards.

The Sketch card is the only card based on the Sketch editor. This
card is referred to as a sketch-based card.

Graph and Browser cards are both based on the graph editor
Grapher. These cards behave in basically the same way and are
referred to as graph-based cards.

The Card Menu
All cards have a left-button title-bar menu called the card menu.
This menu is the same for all cards except FileBox cards. Each
card also has a middle-button title-bar menu which is frequently
card-specific. These menus are discussed under their respective
card types in Chapter 10, User Cards, and Chapter 11, System
Cards.

The Standard Card Menu

Figure 9-15. The note card menu

This menu is found on all cards except the FileBox card which has
a slight ly different version.

Edit Property List

The property list editor allows you to associate property-value pairs
with cards. For example, you might want to attach a Certainty
Value property (and value) to every card. The value of this property

9 - 9ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

would indicate the degree to which you believe the information
contained on the card is true.

You bring up the "Edit Property List" window by selecting the Edit
property List option off the card menu.

Figure 9-16. "Edit Property List Window"

You can only change the property list of a card interactively, from
the menu shown in Figure 9-17. Holding down the left or middle
mouse button in the "Edit Property List" window’s title bar brings up
the following edit menu for property lists. Select commands from
this menu before releasing the button.

Figure 9-17. Menu from "Edit Property List"
window title bar.

Add New Property Adds user-defined properties to the property list of this card. Type
in the property name and the value when prompted. Next, select
one of the properties already in the list. The new property will be
inserted in front of the selected property. Properties are displayed
in bold type and values are displayed between brackets in regular
type. You can abort the add process by hitting the Stop key.

In Figure 9-16, Source and Certainty Factor are the properties
and "John Smith" and ".9" are the values. You can edit the values
directly with the mouse and keyboard as you would any text string.

Delete Selected Property Deletes a property from the property list of this card. After choosing
this option click on the property to be deleted with the left mouse
button. Properties are displayed in bold type. Once you have
started the delete process there is no way to abort it, but you can
hit the Undo key to undo the deletion.

Quit w/o Saving Changes Closes the display without saving any of the current changes made
using Add New Property or Delete Selected Property.

Quit - Saving Changes Closes the display saving all current changes made using Add
New Property or Delete Selected Property.

Show Links

Displays, in the "List of Links" window above the card, a list of all
links to and from other cards. Links are represented by link icons.
Selecting an icon in this window with the left mouse button displays
the card referenced by that link icon.

To close this display, place the cursor in the title bar of the "List of
Links" window, depress the left button, and select Quit from the
single item menu.

9 - 1 0 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

For more on the Show Links option, see the section "Viewing
Local and Global Links" in Chapter 8, Links.

Show Info

Brings up the "Card Attributes" window. This window displays the
card’s type, the dates each of the card parts was last changed, and
a list of dates chronicling when the card was updated.

Figure 9-18. The "Card attributes" window.

The Show Info option also automatically brings up the notefile
indicator on the card.

Indicate NoteFile This pull-across subitem on the Show Info option brings up the
notefile indicator without bringing up the "Card Attributes" window.

Figure 9-19. The Indicate Notefile submenu off Show Info.

Figure 9-20 A card with its notefile indicator
window open on the top of the card.

9 - 1 1ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

To close the "Card Attributes" window, just choose the Close item
on the standard window title bar menu of the "Card Attributes"
window. Closing the "Card Attributes" window does not close the
notefile indicator window, which must be closed separately using its
standard window title bar menu.

Designate FileBoxes

Pops up a prompt window above the card asking the user to file the
card in one or more FileBox cards.

Figure 9-21. The "Selecting FileBox(es)" prompt window.

Associated with the prompt window is a three-item menu. Select
Done from this menu or type a carriage return after shift-selecting
the FileBoxes to file the card in. Select Cancel to abort the filing
operation. Choose Undo to remove the last selected FileBox from
the list of new parent FileBoxes.

Figure 9-22. A card menu showing the Unfile from
FileBoxes suboption selected.

Unfile from FileBoxes Unfiles the card from the FileBoxes you select. You unfile the card
by shift-selecting the FileBox card IDs from their title bars. The
system tells you when you have made an invalid selection. The
prompt window menu options are the same as those for Designate
FileBoxes, shown in Figure 9-21.

Assign Title

Assign Title allows you to assign a title to a card or edit an existing
title.

You can reposition the cursor in the edit string with the mouse. You
can also use the mouse to delete pieces of the string by using the
left mouse button to position the cursor at the beginning of the
piece you want to delete and sweeping out the portion to delete
while holding down the right mouse button. When you release the
right mouse button the selected text will be deleted.

9 - 1 2 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

To cancel the delete operation, still holding the right mouse button
down, move the mouse cursor outside the prompt window and
release the right mouse button.

You can undo the delete operation by hitting the Undo key.

Title/FileBoxes

Selecting Title/FileBoxes is identical to selecting Assign Title and
Designate FileBoxes in sequence.

Insert Link

Insert Link inserts a user-specified link to another card inside the
body of the current card. The link is represented by a link icon.

Before execution of this command, select the point, in the body of
the card, where you want the link icon to appear.

When you select this menu option, a menu pops up displaying a list
of link types currently available in the notefile. Link types are
notefile specific. Specify the type of link by selecting one from this
list or select --New Link Type-- to create a new type. This new
type of link is added to the notefile and becomes a choice in its list
of link types. It is not possible to assign a system-reserved type of
link to a user-specified link. Select **CANCEL** from the menu to
abort the Insert Link command or just click outside the menu.

After a type has been designated, a prompt window and menu pops
up above the card asking the user to choose the destination card
for the link. The user has the option of selecting an existing card or
of creating a new card as the destination card by selecting New
Card from the menu with the left mouse button. If this option is
chosen, a menu of card types pops up from which the user selects
the desired type of card. Again, selecting Cancel from the
"Selecting Note Card" menu aborts this command.

At this point, the link icon will be inserted at the flashing caret in the
body of the source card.

For more on Insert Link and its submenu options Insert Links,
Add Global Link, and Add Global Links, see Chapter 8, Links.

Close and Save

Figure 9-23. The submenu off the Close and Save option

Close and Save Saves the card in the notefile before closing the card. If the Force
Titles and Force Filing system parameters are set to "Yes,"
NoteCards will request that you provide a title and a FileBox for the
card before closing it. If you do not wish to provide this information,

9 - 1 3ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

simply type a carriage return to both requests. In this case, the
card will be titled "Untitled," and be filed in the "To Be Filed"
FileBox.

Close w/o Saving Closes the card without saving it, in the notefile. Any changes you
have made to the card since the last save are lost. This option is
useful if the card contents are mistakenly lost or scrambled while
you are editing. This command may ask for confirmation. Type a
carriage return or click on the Yes option to confirm. Type "n" or
"N" and a carriage return or click on the No option to cancel.

Save w/o Closing Saves, to the notefile, all changes you have made to the card
without closing the card. Saving updates the card in the notefile but
does not update the notefile index. If there is a system crash you
will have to perform an Inspect & Repair operation to recover the
card contents.

Delete Card Permanently deletes the card from the notefile and all its links to
and from other cards. Because this deletion is irreversible, the user
is asked to confirm before the delete command is executed. Type
a carriage return or click on the Yes option to confirm. Type "n" or
"N" and a carriage return or click on the No option to cancel. Note
that a deleted card cannot be retrieved with a search card as a lost
card can.

The FileBox Card Menu

The FileBox card menu differs in only two items, Add Global Link,
and Put Cards Here.

Add Global Link

The Add Global Link and Add Global Links options are the same
global link options found on the submenu of the Insert Link option.
Insert Link appears in this position on this menu for all other cards.
These two options are discussed extensively in Chapter 8, Links.

Figure 9-24. The FileBox card menu with the Add
Global Link submenu.

Put Cards Here

The Put Cards Here menu option is a specialization of the Insert
Links option for FileBox cards. It allows you to file more than one
card in a FileBox in a single operation. Selecting this option brings
up the "Selecting cards to file" prompt window into which you can
shift select the card IDs from the title bars of all the cards you want
to file in this FileBox card.

9 - 1 4 ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

Figure 9-25. The "Selecting cards to file" prompt window.

9 - 1 5ENVOS NOTECARDS 1.1 BETA RELEASE OF DOCUMENTATION

9. CARDS AND BANNERS

[This page intentionally left blank]

1 0 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Cards can be broadly divided into two categories. User cards are
those cards for which you create the contents. System cards are
cards where the contents are built by the system for you. This
chapter discusses user cards.

This chapter explains :

How to use Text cards.

How to use FileBox cards.

How to use Sketch cards.

How to use Graph cards and the graph editor.

How to use the bit map editor.

Text Cards
The Text card is based on TEdit, a versatile editor and text
formatter. This entire document was produced using TEdit. For a
detailed discussion of how this editor works, see A User’s Guide to
TEdit. Text cards allow you to include sketches, graphs, and bit
maps. To learn how to manipulate sketches, see A User’s Guide to
Sketch. For graphs and bit maps see the sections below on the
Graph card and the bit map editor.

The Text-Card Menu

The text-card menu is the same as the TEdit menu with one
additional option separated from the others by a dashed line.

Figure 10-1. The text-card menu.

You use the Restart Editor command when the contents of the
Text card are incorrectly displayed on the screen.

For all the other menu items, see A User’s Guide to TEdit.

1 0 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

FileBox Cards
The FileBox card, like the Text card, is based on TEdit. For a
detailed discussion of how this editor works, see A User’s Guide to
TEdit. Text-based cards allow you to include sketches, graphs, and
bit maps. To learn how to manipulate sketches, see A User’s
Guide to Sketch. For graphs and bit maps see the sections below
on the Graph card and the bit map editor.

A FileBox is a card that contains links to other cards including other
FileBox cards. All cards, including FileBox cards, can be filed in
one or more FileBoxes. Every card, including FileBox cards,
except the top level Special FileBox Cards, is contained in at least
one other FileBox. Whereas other cards may be linked together to
form an arbitrary network, the set of FileBoxes forms a strict
hierarchy This is to say that no child FileBox is allowed to have its
parent FileBox as a child. In short, no circular linkages.

FileBoxes are meant to hold all cards relating to some given topic.
A FileBox typically contains both links to subFileBoxes, which
contain any cards relevant to the subtopics of the main topic, and
links to other card types, which contain information relevant to the
main topic. For example, the screen image below shows a FileBox
containing both FileBoxes and other note cards.

Figure 10-2. The Solar System FileBox containing
subFileBoxes for its subtopics and a Sketch card
dealing with the main topic, the Solar System.

The FileBox structure provides a way of keeping track of sets of
cards on a common topic. In contrast, the links between individual
cards allow you to represent the interconnections between various
ideas or pieces of information, independent of any categorization
into topic areas.

The markers FILE BOXES and NOTE CARDS help differentiate
what kinds of cards are filed in the FileBox. In addition, since
FileBoxes are text-based cards, anything you can do with a text
card, you can also do with a FileBox. This means that you can, for
example, insert your own labels or short lines of commentary to
break up the links into subgroups.

1 0 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Suggested FileBoxes and Note Cards

You may find it helpful to create the following types of general
FileBoxes

Bibliography

A FileBox for the collection of sources used in the notefile.

Index

A FileBox listing keywords from the notefile, may be helpful when
using Search cards.

Read Me

A note card in the top level FileBox giving global information about
the notefile for first time browsers.

Active Cards

A FileBox kept at the top level of the FileBox hierarchy containing
FileBoxes and note cards that represent work in progress and are
thus frequently accessed. A Sketch card containing links to these
FileBoxes and note cards is another method of organizing active
cards, using spatial cues as a way of representing structure.

The FileBox-Card Menu

This menu is the same as the Text-card menu. See the section
immediately above on Text cards as well as A User’s Guide to
TEdit.

System Parameters Affecting FileBoxes

FileBoxes have two system parameters associated with them,
Markers In FileBoxes and Alphabetized FileBox Children. For a
complete discussion of these parameters see Chapter 13, System
Parameters.

Sketch Cards
The Sketch card is based on Sketch, a sophisticated graphics
package. For a detailed discussion of how Sketch works, see A
User’s Guide to Sketch. Sketch cards allow you to include graphs,
and bit maps. To learn how to manipulate graphs and bit maps
see the sections below on the Graph card and the bit map editor.

The Sketch-Card Menu

This menu is the same as the Sketch editor menu. For a detailed
discussion of this menu’s functionality, see A User’s Guide to
Sketch.

1 0 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Figure 10-3. The Sketch card menu.

System Parameters Affecting Sketch Cards

Sketch cards have one system parameter associated with them,
Attach Sketch Menu. For a complete discussion of this parameter
see Chapter 13, System Parameters.

Graph Cards
The Graph card is designed to allow you to construct a layout of
user-defined words or phrases, called nodes, which may be
connected together with lines to indicate some structure. Each
node may be easily moved about the card without losing its
connections.

The Graph-Card Menu

The Graph card, like the Browser card, is based on the graph
editor Grapher. To make the graph-card menu and terminology
more consistent with the browser-card menu and terminology the

1 0 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Graph card presents a slightly different menu to you than Grapher
does. However, since the functionalities are virtually identical, both
the graph-card and Grapher menus are discussed in parallel below.
The graph-card menu-option titles are left justified while the
Grapher menu-option titles are right justified.

You display the graph-card menu by depressing the right mouse
button in the body of the card. Select the desired command before
releasing the button.

Figure 10-4. The graph-card menu.

The Grapher Menu

You will probably encounter the Grapher menu only if you save
your document cards to TEdit files and edit a graph-card graph
from within the TEdit document. You can safely skip over this
section and still understand the Graph card.

To edit a graph from a TEdit document you must first select the
Edit graph option from the one-item menu which appears when
you hold any mouse button down in the graph region.

Figure 10-5. The "Edit graph" menu.

When you select this option, Grapher opens a window containing
the graph. Hold the middle mouse button down in this window to
make the menu shown in Figure 10-6 appear. Use the left mouse
button to move nodes. When you are done editing the graph,
select the STOP option.

While you are editing a graph, Grapher captures the type-in
process and does not allow you to do anything other than mouse
operations. To free the type-in process, select the STOP option.

1 0 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

There is no simple way to abort out of the Grapher editor and throw
away all the changes you have made to the graph. For this reason,
if you are going to edit the graph extensively, we recommend that
you use shift-select to copy the original graph in place and call the
Grapher editor on the copy. In a worst case scenario, you can try
hitting the STOP key or typing CONTROL-E.

Figure 10-6. The Grapher menu.

Prompts for information or confirmation are given in the card
prompt window for Graph cards and appear in the system prompt
window for Grapher. General information is printed to the system
prompt window for both Graph cards and Grapher.

The Graph-Card and Grapher Menu Options

Move Node Move Node

Moves a node and connections to a new position. After selecting
this option, point to the node you want to move, press and hold the
left mouse button, move the node to its new position, and release
the mouse button.

Move Node has three options on a submenu. These same three
options appear on the Grapher Move Node submenu.

Figure 10-7. The Move Node submenu.

Move Single Node Functions exactly as Move Node does.

Move Node & SubTree Moves a selected node and all subnodes which it is connected to.
This operation does not move any super nodes of the selected
node. That is, nodes which are connected to the selected node as
opposed to nodes which the selected node is connected to.

1 0 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Figure 10-8. A node and subtree selected to be moved.

Figure 10-8 shows what happens, when you select Move Node &
SubTree and then hold the left mouse button down on node B.
Nodes B, C, and D are selected to be moved, but not node A.
Grapher keeps track of the nodes where each connection starts
and ends, and in this case the connections run from A to B to C to
D. So node A is not in the subtree of node B and hence is not
moved. See the Directed/Undirected option below for more
information.

Move Region Allows you to sketch out a region of the graph which you want to
move. Move Region does not pay attention to the graph hierarchy,
it only pays attention to the area you sweep out in the Graph card.

Remove Node Delete Node

Removes a node from the graph. Select the node to be deleted
with the left mouse button. The card prompt window will prompt
you for confirmation.

Connect Nodes Add Link

Draws a connection between two nodes. Select the "from" node
and then the "to" node with the left mouse button when prompted.
If a second overlapping connection is made running in the opposite
direction between the same two nodes, the lines representing the
connections, between those two nodes, will not be visible You can
make them visible by choosing the directed display option.

A B

C

Figure 10-9. A graph, with connections from A to B
to C and a third connection from C to B, displayed
using the Undirected option.

A B

C

Figure 10-10. A graph, with connections from A to
B to C and a third connection from C to B,
displayed using the Directed option.

Disconnect Nodes Delete Link

Removes a connection from between two nodes. Select the "from"
node and then the "to" node with the left mouse button when
prompted.

1 0 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Add Label Add Node

Pops up a window prompting you to type in a label name followed
by a carriage return. The label will appear next to the cursor within
the graph card. Position the new label by moving the cursor to
where you want the label to appear. Plant the label by clicking any
mouse button. This operation can be cancelled by typing a
carriage return before typing any other characters to the prompt
window.

Change Label Change Label

Allows you to change a label. Change Label first waits for you to
select, with the left mouse button, the label you want to change. It
then pops open a window prompting you to type in a new label
name followed by a carriage return. The new label immediately
replaces the old label, preserving font, position, and connections.
You can cancel this operation by clicking outside a node, or by
typing a carriage return before typing any other characters to the
prompt window.

Smaller Label label smaller

Decreases the font size of the selected node. Repeat this
command as many times as necessary to achieve the font size you
want.

Larger Label label larger

Increases the font size of the selected node. Repeat this command
as many times as necessary to achieve the font size you want.

Toggle Shade <-> Shade

Inverts the shade around the selected node. For example, a black
label on a white background becomes a white label on a black
rectangular background. Select the node to be inverted with the left
mouse button. To change the shade back, re-apply this option.

Toggle Border <-> Border

Draws a rectangular border around the selected node. Select the
node to have a border drawn around it with the left mouse button.
To remove a border, re-apply this option.

Directed/Undirected <-> Directed

A graph is stored as a directed lattice. Connections always run
from one node to some other node.

The Directed option makes the flow of the connections explicit in
the presentation of the graph. When you select the Directed
option, connections prefer to run from the left side of the parent
node to the right side of the child node when you have Sides
selected. When you have the Centers option selected,
connections prefer to run from the bottom center of the parent node
to the top center of the child node.

1 0 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

A B

C D
Figure 10-11. A Directed graph which explicitly
shows the flow of connections from A to B to C to
D, with the Sides option selected.

A

B

C

D
Figure 10-12. A Directed graph which explicitly
shows the flow of connections from A to B to C to
D, with the Centers option selected.

The Undirected option draws the graph without regard to the flow
of connections. The lines are drawn starting and ending on the
sides of the nodes closest to each other.

A B

C D
Figure 10-13. An Undirected version of Figure 10-11.

A

B

C

D
Figure 10-14. An Undirected version of Figure 10-12.

Sides/Centers <-> Sides

The sides mode predisposes the graph editor to make the left and
right sides of the nodes the connection points for lines.

A

B
Figure 10-15. A graph drawn favoring sides.

The centers mode predisposes the graph editor to make the top
and bottom centers of the nodes the connection points for lines.

1 0 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

A

B
Figure 10-16. A graph drawn favoring centers.

FIX MENU

Attaches the graph-card menu to the right side of the Graph card.

STOP

Only appears on the Grapher menu, not on the Graph card menu.
STOP exits the Grapher editor saving all your changes.

The Bit Map Editor

The bit map editor allows you to manipulate bit maps that have
been inserted in Text or Sketch cards as well as TEdit and Sketch
files. It is automatically invoked when the bit map area is selected.

Inserting Bit Maps into Cards

The method for inserting bit maps into text-based cards differs
slightly from that for inserting them into sketch-based cards. Each
procedure is discussed below.

You cannot insert bit maps into graph-based cards.

Text-based Cards

Inserting a bit map into a text-based card involves several steps.
First, position the caret cursor where you want the bit map to
appear in the destination card, or TEdit window, by clicking at that
position with the left mouse button. Second, depressing the Copy
key or either of the Shift keys, hold the right mouse button down
somewhere in the background and select the Snap option from the
single item menu which will appear.

Figure 10-17. The single-item "Snap" menu.

At this point the mouse cursor changes to look like this, . This
is the prompt asking you to sweep out an area of the screen to be
made into a bit map. Third, press and hold the left mouse button
while you sweep out a region of the screen. When you release the
left mouse button, the bit map will be transferred to the designated
card or edit window.

If you need to adjust the area you are sweeping out, do the
following. Hold down the right mouse button, in addition to the left

mouse button, to bring up the forceps prompt, . This prompt

1 0 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

allows you to change corners so that you can adjust the size of
your bit map in all directions.

Sketch-based Cards

The procedure for inserting bit maps into sketch-based cards differs
in only one respect from that for text-based cards. The sketch-
based card must be the active card, which is to say you must click
in it so that it has the type-in process to mark it as the destination
for the bit map. However, when you do this, you are not indicating
the insertion point for the bit map. In sketch-based cards,
positioning the bit map is done last. After you have swept out a
region of the screen to include as a bit map in the sketch, move the
mouse cursor back into the Sketch card. When you enter the
Sketch card, the snapped bit map will appear attached to your
mouse cursor, and you can position it by clicking the left mouse
button.

Bit Map Operations

Moving the mouse cursor into a bit map and holding down the left
or middle mouse button brings up the "Operations on bitmaps"
menu.

Figure 10-18. The "Operations on bitmaps" menu.

Change Scale

Changes the scale or size of the bit map. Giving a scale of 2
doubles the size of the bit map; a scale of .5 halves the size of the
bit map. You achieve the best results shrinking or enlarging a bit
map when you change the scale by evenly divisible amounts. For
example, 4, 2, 1, .5, or .25.

Hand Edit

Invokes the bit map editor on the bit map. The bit map editor is
described in detail below.

1 0 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Trim

Trims the white columns and rows from all four edges of the
bitmap. This is a very useful operation to remove any extraneous
white space from around the bit map. Position the image that you
are taking a snap of on a white background to take the greatest
advantage of this option.

Reflect Left-to-right

Flips the bitmap about its vertical centerline.

Reflect Top-to-bottom

Flips the bitmap about its horizontal centerline.

Reflect Diagonally

Flips the bitmap about its X=Y diagonal so that the resulting bit map
is reversed and lying on its right side. The same effect can be
achieved by performing a Reflect Left-to-Right followed by a
Rotate Right.

Rotate Left

Rotates the bit map by 90 degrees in a counterclockwise direction
so that the resulting bit map is lying on its left side.

Rotate Right

Rotates the bit map by 90 degrees in a clockwise direction so that
the resulting bit map is lying on its right side.

Expand on Right

Adds white space to the right of the bit map. You specify the width
of the white space in pixels using the number pad. Select ok when
you are done.

Figure 10-19. The number pad.

The number pad is used much like a simple calculator to enter
numbers. The ok button returns the number to the system. bs
deletes the last digit you entered. clr resets the input to "0." You
abort the operation by setting the input value to"0" and selecting
ok.

You enter a negative number by first entering the digits and then
selecting the minus sign. Entering a negative number removes that
many pixels from the right side of the bit map.

1 0 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Expand on Left

Adds white space to the left of the bit map. You specify the width of
the white space in pixels using the number pad. Select ok when
you are done. See the Expand on Right option for more detail.

Expand on Bottom

Adds white space to the bottom of the bit map. You specify the
width of the white space in pixels using the number pad. Select ok
when you are done. See the Expand on Right option for more
detail.

Expand on Top

Adds white space to the top of the bit map. You specify the width
of the white space in pixels using the number pad. Select ok when
you are done. See the Expand on Right option for more detail.

Switch Black & White

Inverts all of the pixels in the bit map; exchanges black for white
and white for black.

Add Border

Adds a border to the bit map. The system prompts you for the
width of the border using the number pad described above. It then
prompts you for the texture of the border with the texture bit map
editor.

Figure 10-20 The texture bit map editor.

The area at the top of the window shows what the texture looks like
in true screen scale and the bottom area contains a four-by-four

1 0 - 1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

edit array. Clicking the left mouse button in the edit grid turns a
pixel on; clicking the middle button turns a pixel off. Select the Quit
option when the texture looks the way you want it to. The texture
will then appear as the border around the bit map.

To abort this operation, select clr followed by ok, on the number
pad.

There is no simple way to abort this operation once you have
brought up the texture bit map editor. However, you can turn all the
pixels off (set them to white space) and select Quit. Then selecting
Trim from the "Operations on bitmaps" menu should return the bit
map to its previous condition.

The Bitmap Editor

The editing window has three active areas, a grid edit area in the
lower part of the window, a display area in the upper left part, and a
gray bar in the upper right.

Figure 10-21. The "Bitmap Editor" display.

In the edit area, the left button adds points and the middle button
erases points. The display area shows the actual size and form of
the bit map. The gray bar provides access to the "Bitmap Editor"
menu.

The right mouse button brings up the normal window menu in all
areas of the window.

If the bit map is too large to fit in the edit area, you can change the
portion which can be edited by scrolling up and down in the left
margin, and left and right in the bottom margin. Pressing the
middle mouse button while in the display area brings up a menu
that allows you to make a global placement of the portion of the bit
map which can be edited. If you want to see more of the bit map

1 0 - 1 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

you are editing, you can reshape the window to make it larger, or
you can use the GridSize command, described below, to reduce
the bit size in the edit area.

Whenever you press the left or middle mouse button down with the
cursor inside the display area or the gray bar, the section of the bit
map that is currently in the edit area is shown in reverse video.
Pressing the left button while in the gray bar puts the lower left 16 x
16 bit section of the bit map into the mouse cursor for as long as
the left button is held down.

Pressing the middle button while in the grey bar or in the title bar
brings up the "Bitmap Editor" menu.

Figure 10-22. The "Bitmap Editor" menu.

Holding the middle button down over a command results in an
explanatory message being printed in the system prompt window.

Paint

Puts the current bit map into a window and calls the paint command
on the bit map. You use the left mouse button for drawing and the
right for erasing. The paint command implements drawing with
various brush sizes and shapes but only on an actual sized bit map.
You set brush characteristics and exit paint by pressing the right
mouse button and selecting the appropriate command from the
paint command menu. When you exit, you will be asked whether or
not the changes you made while in Paint mode should be placed in
the current bit map. Paint is particularly useful for erasing or filling
in large regions in bit maps. See the section "The Window Menu"
in Chapter 7, The User Interface for a detailed discussion of all the
paint menu options.

Figure 10-23. Paint command menu.

ShowAsTile

Tesselates the current bit map in the gray bar. This is useful for
determining how a bit map will look if it were made the display
background. The tiled display does not automatically change as

1 0 - 1 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

the bit map changes. To update it, use the ShowAsTile command
again.

Grid On/Off

Turns the editing grid display on or off.

GridSize

Allows you to specify the size of the editing grid. When you select
this option, a number menu appears, giving you a choice of several
point sizes for the grid.

Figure 10-24. The number menu.

When you select a size, the editing portion of the bit map editor is
redrawn. A smaller size allows you to edit more of the bit map
without scrolling, while a larger size makes it easier for you to turn
individual bits on and off. The original size is chosen heuristically.
It is typically about 8. Clicking outside the number menu aborts this
operation.

Reset

Sets all or part of the bit map to the contents it had when you
originally called the bit map editor. When you select this option, a
second menu appears giving you a choice between resetting the
entire bit map or just the portion that is in the edit area.

Figure 10-25. The "RESET how much?" menu.

This second menu also acts as a confirmation, since clicking
outside of this menu results in no action being taken. Note that if
the entire bit map appears in the edit area the menu only has the
WholeBitmap option.

Clear

Sets all or part of the bit map to white space. As with the Reset
command, a second menu gives you a choice between clearing the
entire bit map or just the portion that is in the edit area.

Figure 10-26. The "CLEAR how much?" menu.

1 0 - 1 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

Cursor

Sets the cursor to the contents of the lower left part of the bit map.
This operation next prompts you to specify the new cursor’s active
pixel. You do this by clicking somewhere in the lower left 16 x 16
portion of the grid. Cursors created this way are typically very short
lived. This option is intended for people extending the NoteCards
environment. We recommend that non-programmers do not use
this option.

OK

Copies the edited bit map image into the original bit map, exits the
bit map editor, and closes its edit window. The image you modify
using the editor is a copy of the original bit map. Unless you exit
the bit map editor via OK, no changes are made to the original bit
map.

Abort

Exits the bit map editor without making any changes to the original
bit map. Contrast with OK.

1 0 - 1 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

10. USER CARDS

[This page intentionally left blank]

1 2 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON
The MenuBox Icon is the main interface to NoteCards. Through
this icon you access all the system NoteCards menus.

This Chapter explains:

How to create notefiles.

How to perform basic operations on notefiles.

How to recover notefiles when they are damaged.

How to perform structure operations on notefiles.

Figure 12-1. The MenuBox Icon.

Notefile Options

It is through the Notefile-Operations menu that you interact with
notefiles. The word "Operations" is usually abbreviated as "Ops"
and, as a result, this menu is usually refered to as the "Notefile
Ops" menu.

You access the "Notefile Ops" menu by holding the left mouse
button down in the Notefile option of the MenuBox Icon. The menu
has three regions, separated by dashed lines. The top region
contains operations you can only apply to closed notefiles. The
middle region contains commands you can only apply to open
notefiles. The bottom item, NC FileBrowser, does not share these
limitations. It provides you with a notefile interface.

Figure 12-2. The MenuBox Icon’s "notefile Ops" menu.

1 2 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Open

Opens an existing notefile. If you have not previously opened any
files, the system prompts you to type in a file name. The file name
is not case sensitive. If you provide just a file name with no path,
the system looks in the connected directory for the notefile. If
NoteCards does not find the file there, it asks you if you want to
create the file.

The system maintains a list of all notefiles you open.
Subsequently, when you select Open, these files will be presented
to you in menu format. If the file you want to open is not on the
menu, select the --Other Notefile-- option.

There are two submenu options for Open, Open Read/Write and
Open Read-only.

Figure 12-3. The Open submenu.

Open Read/Write

Is the same as selecting Open from the top-level menu.

Open Read-only

Opens the file but does not allow you to make any changes to the
file. When you open a file read-only, the file name appears in its
Banner with a read-only prefix (RO:).

Figure 12-4. A notefile opened read-only with its
Banner showing the read-only prefix "RO:"

If the notefile is damaged the following menu appears.

Figure 12-5. The menu which appears when you
open a damaged notefile.

Cancel causes the open notefile operation to be aborted.

Truncate File deletes everything after the checkpoint pointer.

Inspect & Repair causes the notefile inspector to be called on your
notefile. This is an easy, but slow, way to incorporate these post-
checkpoint changes into the notefile. For more details, see the

1 2 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Inspect & Repair and Appendix A, Notefile Concepts and Appendix
B, The Notefile Inspector.

Compact

Compresses a notefile by deleting old information. NoteCards
never actually overwrites any information in the data area of a
notefile. When cards are revised, old information remains in the
notefile. Compacting creates a new, compressed version of the
notefile by copying into the new version only the latest information
from the old version. To understand the structure of notefiles and
compacting, see Appendix A, Notefile Concepts.

Compacting can take 5 to 20 minutes, depending on the size of the
notefile.

There are two submenu options off Compact, Compact To New
File and Compact in Place.

Figure 12-6. The Compact submenu.

Compact To New File

Is the same as selecting Compact from the main menu.
NoteCards prompts you to type in a new file name. The default is
the same file name with a higher version number.

Figure 12-7. NoteCards prompting for the output
file name for the compact operation.

Figure 12-8. The notefile Banner after compacting
to the same file name. The old version is "Solar
System;1." The new version is "Solar System;2."

Compact In Place

Does not build a new copy of your notefile, rather the contents of
the old file are rearranged in such a way that old versions of cards
are written over. This is useful when your notefile is large and there
isn’t room to store another version. However, be aware that when
you use this option you are not able to back up cards to previous
versions by using the Inspect & Repair utility. We recommend

1 2 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

compacting to a target file and saving the uncompacted version
until you are sure that the older versions of cards are not needed.

Inspect & Repair

Reads the data area of your notefile, looking for good card parts,
including outdated and deleted versions. It then allows you to
delete or back up card parts to earlier versions through its menu
interface. Only when the notefile is considered healthy are you
allowed to perform the link rebuilding.

Inspect & Repair has two submenu options, From Links and From
Contents.

Figure 12-9. The Inspect & Repair submenu.

From Links

Rebuilds the notefile index using only the links part of the notefile.

From Contents

Rebuilds the notefile index using the links part of the notefile as well
as the links stored in the bodies of individual note cards. From
Contents takes longer to rebuild a notefile index.

For a detailed explanation of the Inspect & Repair utility, see
Appendix B, The Notefile Inspector.

Copy

Allows you to copy a notefile.

Prompts you for a new name and path for the notefile to be copied
and copies it. This is the same as doing a file copy.

Rename

Allows you to rename a notefile.

Prompts you for a new name and path for the notefile to be
renamed and renames it. This is the same as executing a file
rename.

Delete

Deletes a notefile.

NoteCards asks you to confirm the deletion by typing a carriage
return for "No" or a Y and a carriage return for "Yes." If your
response is "Yes," a second confirmation is required a second time
to insure against unintentional deletion.

Create

Creates a new empty notefile. When you use Create, it is possible
to assign an already existing name to the new notefile, thereby
creating more than one version of the notefile.

1 2 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Create has two submenu options, Create without Open and
Create and Open.

Figure 12-10. The Create submenu.

Create without Open

Is the default action. It prompts you for a new notefile name,
creates a new notefile, and place the new notefile’s Banner on the
screen. If you supply only a name and no path, the notefile is
created in your connected directory.

Create and Open

Does all of the above, and opens the new notefile.

Checkpoint

Saves the contents of any active cards to the notefile without
closing the cards or the notefile. The index array is written out to
the file and the checkpoint pointer is reset to the end of the file.

A notefile consists of two parts, an index area and a data area. For
each card, the index contains four pointers into the data area.
There are pointers for the notecard’s contents, title, property list,
and list of links. When, for example, you change a card’s title,
NoteCards writes the new title at the end of the file, and the card’s
title pointer is changed to point to the new title. To increase access
speed, index modifications are written in memory and are not
written to the file till checkpoint, or close time. There is a
checkpoint pointer that is updated to point to the end of file at
checkpoint or close. New data, such as a new title, is still written to
the file, but always at the end of the file. Thus if a crash occurs,
due to a power failure or some other mishap, and later you reopen
the notefile, NoteCards can notice the extra data beyond the
checkpoint pointer. Each time a notefile is opened, the checkpoint
pointer is compared with the end of file pointer. If they don’t agree,
then a message that something is wrong is printed out. At this
point, you must choose one of three options from a menu: Cancel,
Truncate File, or Inspect & Repair.

Figure 12-11. The menu which appears when you
open a damaged notefile.

Cancel causes the open notefile operation to be aborted.

1 2 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Truncate File deletes everything after the checkpoint pointer.

Inspect & Repair causes the notefile inspector to be called on your
notefile. This is an easy, but slow, way to incorporate these post-
checkpoint changes into the notefile. For more details, see
Appendix A, Notefile Concepts and Appendix B, The Notefile
Inspector.

Figure 12-12. The Checkpoint submenu.

Checkpoint and Checkpoint Notefile pop up a menu of known
notefiles which you can checkpoint.

Figure 12-13. A menu of the list on known
notefiles.

The grayed over notefiles are closed and cannot be checkpointed.
Selecting one of the open notefiles causes that notefile to be
checkpointed.

Checkpoint All checkpoints all open notefiles.

Figure 12-14. The card menu with the Close w/o
Saving menu option selected.

In contrast to Checkpoint, when you choose Close and Save or
Save w/o Closing from the card menu, the card’s contents are
written to the notefile but the notefile index is not written to the
notefile. If you are anticipating a crash, you should checkpoint you
notefile frequently.

Close

Allows you to close a notefile.

Figure 12-15. The Close submenu.

1 2 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Close and Close Notefile

Pop up a menu of known notefiles like that shown in Figure 12-13.
Selecting one of these notefiles closes that notefile. The grayed
over notefiles are already closed. Selecting one of these has no
effect.

Close w/o confirm

Closes a notefile without asking you about open cards on the
screen. Open cards are closed and saved to either their
designated FileBox or the "To Be Filed" FileBox.

Close All

Closes all open notefiles.

Close All w/o confirm

Closes all open notefiles without asking you about open cards on
the screen. Open cards are closed and saved to either their
designated FileBox or the "To Be Filed" FileBox.

Abort

Truncates and closes a notefile.

If you discover that you have made changes to a notefile that you
don’t want to keep, choose this option to truncate your file. This
should only be done if you feel that the post-checkpoint work is not
worth saving.

Figure 12-16. The Abort submenu.

Abort and Abort Notefile

Pop up a menu of known notefiles like that shown in Figure 12-13.
Selecting one of these notefiles aborts that notefile. The grayed
over notefiles are already closed. Selecting one of these has no
effect.

Abort All

Aborts all open notefiles.

NC FileBrowser

Opens up a FileBrowser specialized for NoteCards.

1 2 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Figure 12-17. The NC FileBrowser.

The commands: Open, Checkpoint, Close, Abort, Compact, and
Inspect & Repair can be looked up in this chapter.

The commands: Copy, Rename, Delete, Undelete, Recompute,
Sort, and Expunge should be looked up in Chapter 14, The
FileBrowser.

Card Options
The Card options allow you to perform a Close, Delete, Copy, or
Move, on a series of cards or a card structure.

Figure 12-18. The "Card Ops" menu.

Close

Enables you to close any number of currently open cards by simply
shift-selecting each one’s card-ID into the "Selecting Cards" prompt
window.

After you have specified your choices, select Done from the menu
on top of the "Selecting Cards" prompt window, or type a carriage
return. Cancel aborts this command. Undo removes the last
selected card from the list.

1 2 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Figure 12-19. The "Selecting Cards" prompt
window and menu.

The Close option has two submenu options.

Close and Close NoteCards

Perform the same action as Close.

Close Structure

Closes a linked list of cards. This operation follows both local and
global links.

Figure 12-20. The Close submenu.

Once you have selected the cards from which to start the Close
Structure operation, a menu opens asking you what types of links
you want to follow. When you are done, select Done. Reset sets
the menu to the values it had when it came up. Abort, terminates
the operation.

Figure 12-21. The "Include cards at:" menu.

For an explanation of Forward and Backward links see Chapter 8,
Links. The Depth variable determines how many link levels are
traversed in carrying out the operation. If set to a depth of 2, only
cards two levels down are closed. For example, if you had cards 1,

1 2 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

2, 3, and 4 on the screen, each forming a sequence (card 1 only
pointing to card 2, and card 2 only pointing to card 3, etc.), then if
the depth were set to two and you started the close operation from
card 1, only cards 1, 2, and 3 would be closed, because only two
levels of links would be traversed. Card 4 would remain open on
the screen after the Close Structure operation.

Delete

Works just like Close.

Figure 12-22. The Delete submenu.

We caution you to be very careful with the Delete Structure
command as it is very easy to unintentionally delete large numbers
of cards. This command is most useful in conjunction with Copy
Structure as a way of performing a safe Move Structure. First
you copy the structure you think you want and then once you have
verified that you have gotten the structure you wanted, you use
Delete Structure to remove it.

Copy

Works just like Close. Allows you to copy a group of cards or a
card structure to another FileBox which may be in a different
notefile.

Figure 12-23. The Copy submenu.

Move

Works just like Close. Allows you to move a group of cards or a
card structure to another FileBox which may be in a different
notefile.

Figure 12-24. The Move submenu.

1 2 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Other Options

Figure 12-25. The "Other Ops" menu.

Edit Parameters

The Edit Parameters option brings up the System Parameters
menu. This menu is discussed in detail in Chapter 13, System
Parameters.

NF Indicators On

NF Indicators On and the submenu option Indicators On turn on
notefile indicators for all the cards on the screen.

Indicators Off

Turns off all notefile indicator windows for all the cards on the
screen. Note that whether or not cards come up with notefile
indicators is determined by the system parameter Show Notefile
On Cards. To learn more about this parameter and changing
system parameters, see Chapter 13, System Parameters.

Figure 12-26. The "NF Indicators On" submenu.

Notefile indicators are small windows on the tops of cards which
show the name and path of the card’s notefile.

Figure 12-27. A notefile indicator window attached
to the "Table of Contents" card from the Solar
System notefile.

TEdit Killer On

Kills TEdit processes after they have been around for a specified
period of time.

1 2 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Figure 12-28. The "TEdit Killer On" submenu.

Since every text-based card and every TEdit window, including
TEdit command menus, is a separate TEdit process it is very easy
to get twenty or thirty TEdit processes all vying for machine time.
This can greatly slow down your machine’s response time. If you
like to work with many cards and windows open on the screen at
one time turning the TEdit killer on will help improve your machine’s
response time. Note that TEdit killer only affects text-based cards.
The processes for sketch-based cards are unaffected. To restart a
TEdit process that has been killed in this manner, you only have to
click in the TEdit window.

TEdit Killer On

Turns on the TEdit killer process.

TEdit Killer Off

Turns off the TEdit killer process.

New Process Limit

Sets the number of TEdit process which are allowed to exist.
Selecting this option brings up the following menu.

Figure 12-29. The TEdit process limit number pad.

A response of "0" allows you to have one TEdit process running
and not none.

The default value is "5."

New Wait Time

Sets the number of second which a TEdit process can be idle
before it will be killed. Selecting this option brings up the following
menu.

1 2 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

Figure 12-30. The TEdit killer wait time number
pad.

Note: If both the TEdit process limit and the TEdit killer wait time
are set to "0," it can freeze your system.

The default value is "100."

Load Patches

Forces the loading of any patches which were distributed with the
NoteCards sysout.

1 2 - 1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

12. THE MENUBOX ICON

[This page intentionally left blank]

1 3 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS
System parameters allow you to customize the NoteCards
environment to your particular needs and tastes.

This chapter explains:

How to set system parameters.

What each system parameter does.

Accessing System Parameters
System parameters are set from the "NoteCards Parameters"
menu. To access this menu, hold the left mouse button down on
the Other option on the MenuBox Icon. When the "Other Ops"
menu comes up, still holding the mouse button down, slide off and
select the Edit Parameters option. At this point, you release the
mouse button. You can also execute a single rapid left-button click
on the Other menu option and the "Other Ops" menu will come up
and stay up. To select the option you want click on it.

Figure 13-1. The MenuBox Icon with the Edit
Parameters option on the Other menu option
selected.

This action brings up the "NoteCards Parameters" permanent
menu, shown below in Figure 13-2.

Each parameter is preset to a default value. Placing the cursor
over the name of the parameter and depressing the left mouse
button will toggle the value, listed to the right, between "Yes" and
"No" if binary, and allow selection from an appropriate menu
otherwise.

1 3 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

Figure 13-2. The "NoteCards Parameters" menu.

1 3 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

NoteCards System Parameters

Extra TEdit Props

Does not initially appear on the list of parameters for the user
version of NoteCards. It is optained by going into the Low Level
Tools option on the background menu. This parameter is to be
used by people extending the NoteCards environment. Users of
NoteCards should not add this parameter to their "NoteCards
Parameters" menu.

The value of this parameter is a property list that is appended to the
property list passed as the PROPS argument to every call to TEdit.
This parameter allows you to set up the initial TEdit props for all
new text-based cards.

Selecting this property brings up a type-in window above the
parameter editor window. To set the parameter value, type in a
sequence of zero or more attribute/value pairs followed by carriage
return. The possibilities for attributes and values are described in A
User’s Guide to TEdit, Chapter 8, The Programmer’s Interface to
Tedit, in the section "Using the Top-level TEdit function".

For example, to set the default line leading to 2 you would type:

PARALOOKS (LINELEADING 2)

You should be very careful when setting other than LOOKS-related
properties. In particular, NoteCards sets properties like QUITFN
and PROMPTWINDOW itself, overriding any alternative values for
these properties that you may have typed in.

Special note: If for some reason, you need to have an expression
EVAL’ed in the typein window, precede it with ctrl-y.

The default value is "None."

Include Card Object In ShowInfo

When the value of this parameter is Yes, the Show Info inspector
will include the Card Object. This option is for people extending or
modifying the NoteCards system.

The default value is "No."

Del TEdit Process When Shrinking

If the value of this parameter is "Yes," when you shrink any text-
based card, NoteCards will kill the TEdit process behind it. If the
value is "No," the TEdit process remains running even when the
card is shrunk to an icon.

Expanding an icon for a card whose TEdit process has been killed
will not automatically restart the TEdit process. Instead, the user
has to click the MIDDLE button in the substance of the card, and
select the New Edit Process item from the singleton menu that
appears.

Running TEdit processes use up limited resources. As a result,
only about 25 to 30 TEdit processes can be active simultaneously.
Setting the value of this parameter to "Yes," eliminates

1 3 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

unnecessary use of these limited resources when text-based cards
are shrunk to icons. The cost is the extra effort needed to restart
the process when the card is expanded.

The default value is "No."

Font Parameters
When you select any of the parameters in the Fonts section the
system displays the "Please select a font:" menu.

Figure 13-3. The "Please select a font" menu.

To change the link icon font, select the values you want for each of
the parameters with the mouse and click on DONE. RESET
returns the values to their original settings. ABORT returns the
values to their original settings and exits.

The value for each font parameter is three-element list which
includes the font family, the font size in points and the font face.

Menu Font

The value of this parameter is a description of the font in which the
text in all menus will be printed.

The default value is "(HELVETICA 10 BOLD)."

Default Font

This parameter controls the font all new text-based cards will use.

The default value is "(HELVETICA 12 STANDARD)."

1 3 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

Link Icon Font

The value of this parameter is a description of the font which is
used to print the card name and link type that appear inside the
links.

The default value is "(HELVETICA 10 BOLD)."

Notefile Parameters

Show Notefile On Cards

In order to associate a card with its notefile, NoteCards provides a
notefile indicator window which attaches to the top of the card’s title
bar.

Figure 13-4. A card with its notefile indicator
window attached to the top of the card.

The notefile indicator is constructed by concatenating the root file
name, the version number, and the full file name. The indicator is
left justified. If the card is too narrow to show the entire Indicator
string, the full file name is truncated before the root name and
version number as shown.

Figure 13-5. A card with its notefile indicator
window attached to the top of the card, showing a
truncated full file name.

1 3 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

If the NoteCards system parameter Show Notefile On Cards has
the value "Yes," then a notefile indicator is attached to every card
as it is brought up on the screen.

Occasionally, after you have reshaped a card, a piece of the text in
the notefile indicator window will be garbled or broken. To
redisplay the text in this window, place the point of the mouse
cursor in the notefile indicator window, hold down the right mouse
button, and select the Redisplay option from the window menu
which pops up.

The default value is "No."

New Notefile Initial Size

When you create a new notefile, the system consults the value of
this parameter to determine the initial size of the notefile index.
The notefile-index size is equal to the number of cards the notefile
can hold. Larger notefiles take a little longer to create. Notefiles
can be enlarged later on, using the Inspect & Repair option.

The default value is "1000."

Menu Lingers After Notefile Close

If the value of this parameter is "No," the notefile Banner is
removed from the screen when the notefile is closed. If the value is
set to "Yes," then the Banner remains on the screen with its menu
items greyed.

The default value is "Yes."

Card Parameters

Force Filing

If you set Force Filing to "Yes," the system will require you to file
every card in a FileBox before the card can be closed. Setting the
value to "No" eliminates this forced filing, but the system will file the
card in the "To Be Filed" FileBox if the card has no parent FileBox
when you close it.

The default value is "Yes."

Force Titles

If you set Force Titles to "Yes," this parameter will require you to
title a card before it can be closed. Setting the value to "No"
eliminates forced titling. When a card is not titled, it is named
"Untitled" by default. This may cause confusion if several cards are
left untitled. The system, however, has a unique identifier for each
card and will continue to regard them as unambiguous entities.

The default value is "Yes."

1 3 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

Default Card Type

When you select the New Cards option from the notefile Banner
with the left mouse button, a card of the default type is immediately
created and displayed. This parameter allows you to change this
default to suit your needs. Select the new default card type from
the list of choices provided.

The default value is "Text."

Close Cards Off Screen

If set to "Yes," then when a card is closed, it is first moved off the
screen so that the close happens invisibly.

The default value is "No."

Bring Up Cards At Previous Pos

If set to "Yes," cards are brought up on the screen in the position
they occupied when you last closed them. You are not asked to
position a frame image.

The default value is "No."

FileBox Card Parameters

Markers In FileBoxes

If set to "Yes," then new fileboxes will contain the markers "FILE
BOXES" and "NOTE CARDS." New child boxes are inserted under
the FILE BOXES marker and new child cards under the NOTE
CARDS marker. If set to "No," then new fileboxes come up without
markers and new children are inserted at the current cursor position
. Note that regardless of the Markers In FileBoxes setting, if a
filebox has no markers (because you’ve deleted them) then new
children are inserted at the cursor position.

Figure 13-6. A FileBox card showing the markers
"FILE BOXES" and "NOTE CARDS."

The default value is "Yes."

1 3 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

Alphabetized FileBox Children

If set to "Yes," then FileBoxes created while this parameter is set to
"Yes" will automatically alphabetize any new cards filed in them.

The default value is "No."

Browser Card Parameters

Special Browser Specs

If set to "Yes", this parameter causes a sequence of five prompts to
appear above the Browser NoteCard during the Browser creation
process. These prompts mainly concern the node-link graph
properties documented in the "Browser Cards" section of Chapter
11, System Cards.

For example, this option may be used to create a vertical browser
instead of the default horizontal presentation. Note that a carriage
return given as a response to any of the prompts will cause the
Special Browser Spec to retain its default value.

The default value is "No."

Arrow Heads In Browsers

This dictates whether arrow heads are drawn on browser links.
The variable can be set to either AtMidpoint, AtEndpoint, or None.
See the Browser card section of Chapter 11, System Cards for
details.

The default value is "None."

Link Dashing In Browser

If set to "Yes", this parameter builds a Browser with dashed links.
Each link in a Browser refers to the type of link being followed.
With link dashing, each link included in the Browser is assigned a
different style of dashing (up to six styles). A "No" setting means
links will be presented as solid lines in a Browser. A Browser with
link dashing will take a little longer to create than one with solid
lines.

There may be problems printing Browsers with dashed lines.

The default value is "No."

1 3 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

Sketch Card Parameters

Attach Sketch Menu

If set to "Yes," the Sketch menu is automatically attached to the
right-hand side of each Sketch card when it is opened.

The default value is "No."

Link Parameters

Link Icon Border Width

Changes the border size of a link icon.

Figure 13-7. A link icon with a border size of 3.

The link icon border width can also be set to zero for link icons that
blend more smoothly with text.

Figure 13-8. A link icon with a border size of 0.

The default value is "1."

Link Icon Multi Line Mode

This parameter works in conjunction with Link Icon Max Width in
Pixels. Multi line mode determines whether the link icon will allow
multiple text lines or whether all the text will be forced to appear on
a single line. If Link Icon Multi Line Mode is set to "Yes," all link
icons will display in multiple lines, with each line fitting withing the
width specified by Link Icon Max Width in Pixels. Line breaks
occur at word boundaries.

Figure 13-9. A link icon in multi line mode.

The default value is "No."

Cross File Link Mode

All links in NoteCards are bidirectional or two-way with one possible
exception. When you are creating cross-file links, these links can
be unidirectional or one-way. A one-way link means that a source
card contains a to-link pointing to the destination card, but the
destination card does not contain a corresponding from-link
pointing back to the source card. This allows you to update a
source-card file without being forced to open any corresponding
destination-card files.

1 3 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

One-Way Creates unidirectional links between cards in different notefiles.

Two-Way Creates the usual bidirectional links between cards in different
notefiles.

Ask The system asks you whether you want One-Way or Two-Way links
each time you create a cross-file link.

The default value is "Ask."

Link Icon Max Width in Pixels

Sets the maximum width in pixels of a link icon. This value includes
the card-type bitmap, if it is displayed. All links are truncated at the
width specified by this parameter.

Figure 13-10. A truncated link icon in single line mode.

The default value is "1024" pixels.

Link Icon Show Title Default

This parameter and the following two determine the manner in
which link icons are displayed if these parameters are not currently
specified in the icon. Which is to say, if the link icon display mode
values are set to "System Default."

If the title field in a link icon is set to "System Default" then the Link
Icon Show Title Default parameter is consulted to determine
whether the title will be shown inside the link icon. If it is set to
"Yes" then the title will be shown.

The default value is "Yes."

Link Icon Attach Bitmap Default

If the bitmap field in a link icon is set to "System Default" then the
Link Icon Attach Bitmap Default parameter is consulted to
determine whether the card-type bitmap is shown next to the link
icon. If it is set to "Yes" then the card-type bitmap is shown.

The default value is "Yes."

Link Icon Show Link Type Default

If the link type field in a link icon is set to "System Default" then the
Link Icon Show Link Type Default parameter is consulted to
determine whether the link type will be shown inside the link icon. If
it is set to "Yes" then the link type will be shown.

The default value is "No."

Use Deleted Link Icon Indicators

If the value of this parameter is "Yes," when you delete a card, all
link icons which point to that card are replaced with a deleted icon.

1 3 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

Figure 13-11. A deleted icon.

If the value of this parameter is "No," the links to the card are simply
removed, leaving no trace behind.

Delete icons are useful when you may be deleting cards where you
have link icons pointing to them and these link icons are refered to
in the text.

Eg. "This link takes you to the next card in the
sequence." If the "Next" card were subsequently deleted with this

parameter set to "Yes," this would become, "This link
takes you to the next card in the sequence." If this parameter were
set to "No," the sentence would become the following more obscure
version, "This link takes you to the next card in the sequence." with
no visible link.

The default value is "Yes."

1 3 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

13. SYSTEM PARAMETERS

[This page intentionally left blank]

1 4 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

The FileBrowser provides a convenient user interface for
manipulating files stored on a workstation or file server. It enables
you to see, edit, delete, print, load, copy, move, rename, compile,
sort, and get several types of information about groups of files.

User Interface

Starting FileBrowser

To open a browser on a set of files select the FileBrowser
command from the background menu.

FileBrowser will prompt you to create a window by presenting you
with a dashed rectangle with the mouse cursor and a small
geometric design at the lower right corner.

1. Move your mouse until the upper left corner of the rectangle is
where you want it on the screen.

2. Hold down the left mouse button and move your mouse down
and to the right, thus expanding the window diagonally, until the
window is the right size.

3. Release the mouse button. This creates a window group on
your screen in the outlined area.

Next, FileBrowser prompts you for a file pattern. Type a pattern, as
described in the section "Specifying What Files to Browse," below.

FileBrowser enumerates the set of files matching the pattern you
requested to see. While the enumeration is in progress, the
Recompute command is grayed out. When the enumeration is
finished, you may select files and issue commands. You can scroll
the window at any time, even while the browser is busy.

If FileBrowser can’t find any files matching the pattern you
specified, or you decide you specified the wrong pattern and want
to try again, you can specify a new file name pattern from within the
browser using the New Pattern command; see Recompute in the
section "FileBrowser Commands," below.

You can have as many active FileBrowsers open at once as you
like.

Specifying What Files to Browse

A full file name in NoteCards consists of a device or host (such as
your local disk, a file server), a principal directory and zero or more
subdirectories, a file name (possibly including an extension), and a
version number. These fields are put together in the form

{HOST}<DIRECTORY>SUBDIRECTORY>FILENAME.EXTENSION;VERSION

A file name pattern, as specified to FileBrowser, consists of a file
name with one or more pieces omitted or filled with wild cards (*).
All the files matching the pattern are listed by FileBrowser. Thus,

1 4 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

you can browse all the files in a particular directory, all the files in a
subdirectory of that directory, all the files in a directory with a
particular extension, and so forth. The wild card * can be used to
stand for zero or more consecutive characters in the file name.
You can use as many wild cards in a pattern as you wish.

If you leave out some of the fields in a file name pattern, the
missing fields are defaulted by the system. Omitted fields in the
front of the pattern, i.e., the host, device, or directory fields, are
filled in by consulting your connected directory. Other omitted fields
are filled in with wild cards unless they are explicitly omitted; i.e.,
the field is empty, but the preceding punctuation is still present. In
more detail, some of the cases are as follows:

If you leave out the name of the host/device, specifying
<DIRECTORY>FILENAME, FileBrowser will use the name of the
host/device for the directory to which you are currently connected.

If you leave out both the device and directory names, specifying
FILENAME, FileBrowser will use the device and directory to which
you are currently connected.

If you do not specify a file name, FileBrowser lists all the files in the
specified directory (or the connected directory if you also omitted
the host and directory).

If you leave out the extension of a file name, FileBrowser lists all
the files with the specified file name and any extension. If you omit
the extension but include the period that usually precedes the
extension, FileBrowser lists only the files with the specified name
and no extension.

If you omit the version number of the file name, FileBrowser lists all
versions of the matching files. If you omit the version number but
include the semicolon that usually precedes the version,
FileBrowser lists only the highest version of the matching files.

Thus, the minimal pattern you can type is * (asterisk—enumerate
all files in the connected directory) or ; (semicolon—enumerate just
the highest version of all files). If you press the RETURN key
without giving a pattern, FileBrowser aborts the prompt for a
pattern, leaving you with an empty browser in which the only things
you can do are change some FileBrowser parameters (see the
subcommands of Recompute in the section "FileBrowser
Commands," below) and then use the Recompute command to be
prompted for a pattern again.

Examples

The pattern * specifies all files in the connected directory. It is
equivalent to *.* or *.*;*.

The pattern <NoteCards>Demo specifies all files in directory
NoteCards with name Demo and any extension. It is equivalent to
<NoteCards>Demo.*;*.

The pattern <NoteCards>Demo. specifies all files in directory
NoteCards with name Demo and no extension. It is equivalent to
<NoteCards>Demo.;*.

1 4 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

The pattern *.TEdit specifies all files in the connected directory with
the extension TEdit. It is equivalent to *.TEdit;*.

The pattern *.TEdit; specifies only the newest version of all files in
the connected directory with the extension .TEdit.

The pattern <NoteCards>A*E specifies all files in directory
NoteCards whose names begin with A and end with E and have
any extension.

The pattern {DSK}<NoteCards>*MY* specifies all files in directory
{DSK}<NoteCards> whose names contain the substring MY and
any extension.

Using the FileBrowser Window

The FileBrowser window has six major subwindows, which from top
to bottom are as follows.

Figure 14-1. The FileBrowser display.

Prompt window This topmost subwindow is where FileBrowser prints messages
about what it is doing and receives input from you. Its contents are
cleared before every command.

Tally window This subwindow immediately below the prompt window keeps a
running tally of the total number of files listed in the window and the
number of files that you have marked for deletion. In addition, if
one of the attributes you are displaying is a size attribute (Pages or
Length, as in the INFO menu, described below), this window
maintains a tally of the total number of pages in the files listed and
the files marked for deletion.

This window also has a title bar across the top identifying the
pattern you specified and the time at which the directory
enumeration was performed.

The window is blank while the files are being enumerated.

Browser window This is the principal subwindow, in which the files matching the
specified pattern are listed. Each file’s name appears at the left,
and various attributes of the file are displayed in columns to the
right. A title bar across the top of the browser window identifies the
contents of each column (e.g., Name, Pages, Created). The files
are listed in alphabetical order, with multiple versions of the same

1 4 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

file listed in decreasing version order; i.e., the newest version
appears first. The width of the column listing the file names is
initially chosen to be appropriate for average-sized file names. If
the files you asked to browse have particularly long names, then
when FileBrowser has finished listing all the files it may choose to
redraw the browser window with the attribute columns moved
farther to the right to accommodate the longer file names.

Command menu This menu appears vertically along the right side of FileBrowser
window (under a title bar "FB Commands") and lists the commands
that you may select to perform operations on the files in the
browser, or to change the appearance of the browser. Most of the
commands operate on the set of currently selected files (see the
section "Selecting Files" below). Some commands have
subcommands, as indicated by the small triangle alongside them,
which can be selected by holding down the left mouse button and
sliding the mouse to the right over the triangle.

Info menu An additional subwindow, the Info menu, is not normally displayed.
It is used to change the set of file information (attributes) displayed
in the browser (see the section "Getting Information About Files,"
below).

Scroll bar If there are more files in the listing than fit at one time in the
browser window, you can scroll the browser window to view more
files. Slide the mouse cursor out the left side of the browser
window to get the scroll bar and press the left mouse button to
scroll the region up and the right mouse button to scroll it down.
Pressing a mouse button when the cursor is near the bottom of the
scroll bar will scroll the region by larger increments than when the
cursor is at the top.

You can also press the middle mouse button in the scroll bar to
move the listing to the place that corresponds to that position in the
scroll bar. For example, pressing the middle mouse button when
the cursor is at the bottom of the scroll bar will display the end of
the listing. This quick-scrolling technique is called thumbing. The
gray box in the scroll region indicates where the currently displayed
contents are, relative to the entire contents of the browser.

Similarly, if there is more attribute information than fits in the
browser window, you can scroll the browser window horizontally to
view the rest of the attribute information. To do this, slide the
mouse out the bottom of the browser window to get the horizontal
scroll bar. The left button scrolls to the left, the right button to the
right.

1 4 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Selecting Files

Most FileBrowser operations are performed by selecting a single
file or set of files, then giving a command that specifies what you
want to do with the selected files. The current selection is indicated
by a small triangle in the left margin of the browser next to each
selected file.

Figure 14-2. Four selected files marked by
triangles.

To select one file, point to any part of the line (which lists the file
name and its attributes) and press the left mouse button. If other
files are already selected, this unselects them; thus, a file selected
with the left mouse button is always the only selection.

To add a single file to the current selection, press the middle mouse
button at any place in the line. The file is selected without
unselecting any other file.

To remove a single file from the current selection, hold down the
control key and press the middle mouse button at any place in the
line. The file is unselected without affecting any other file.

To extend the selection to include a group of contiguous files, that
is, to select all the files between a file and the nearest already
selected file, press the right mouse button on any part of the line.
You can only extend the selection from the first selected file
upward, or the last selected file downward. In addition, files
marked for deletion are not normally selected when you extend.

If you want to include all files, both deleted and undeleted, hold
down the control key while extending the selection.

Some lines in a FileBrowser display are directory-only lines. These
lines are slightly indented and name the directory and subdirectory
to which the files listed below that line belong. You cannot select in
these lines, though you can copy-select them (see the section
"Copy-Selecting Files," below).

Commands that Require Input

Some FileBrowser commands require input from you. For
example, the Copy command requires that you supply a
destination file name. When a command requires input,
FileBrowser prints a prompt message in its prompt window. This is
usually followed by a default answer. If you want the default
answer, you can just press the carriage return to finish the input. If
you want to specify a different answer, simply start typing it; the
default answer is erased and your answer replaces it.

1 4 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Alternatively, you can modify the default answer by backspacing
over individual letters, or typing control-W to back up over complete
words. Typing CONTROL-Q erases the entire answer. You can
also use the mouse to edit your answer, using the same rules as
followed by the Executive (see the documentation of TTYIN).
Briefly, the left mouse button positions the caret at a character
boundary; the middle mouse button positions the caret at the
nearest word boundary; and the right mouse button deletes the
characters between the caret and the mouse.

When you have finished, position the caret at the end of your
answer, if it isn’t there already, and press the carriage return. You
can also type CONTROL-X to finish your answer even if the caret
isn’t at the end.

If you change your mind and want to abort the command, supply an
empty input; i.e., if there is an answer in progress, backspace over
it or type CONTROL-Q to erase it, then press <RETURN>.
FileBrowser prints "aborted" and aborts the command. In most
situations, the CONTROL-E interrupt can also be used to abort
your answer.

While you are typing an answer, you can copy-select file names out
of the browser (or any other browser), as described below in the
section "Copy-Selecting Files". This can be useful, for example, if
you wish to rename a file to a similar name in the same directory, or
move a file into a subdirectory listed in the browser.

Aborting Commands

During commands of indefinite duration, such as Recompute or
Copy, FileBrowser adds another command to the browser, Abort.

Figure 14-3. The FileBrowser menu with the Abort
option attached.

Clicking on the Abort command will immediately abort the current
operation. Aborting some commands can take a little while, as
FileBrowser may need to do some cleaning up, so the Abort
command is greyed out during this time to show you that it is doing
something.

Quitting the FileBrowser

1 4 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

To quit a FileBrowser, simply close the browser window. If any files
have been deleted but not expunged, a small menu will pop up
listing two options: Expunge deleted files and Don’t Expunge. If
you choose Expunge deleted files, the files will be expunged
before the window closes. If you choose Don’t Expunge, your
deletions are ignored. If you click outside the menu, no action is
taken, and the Close command is aborted.

Figure 14-4. The "Do what with deleted files?"
menu.

If you have finished with FileBrowser only temporarily and want to
put it aside to work on later, you can shrink the browser by
selecting the Shrink command from the right-button background
menu. The browser shrinks to an icon which displays the file
pattern inside the browser. If any files are marked for deletion, you
will be prompted with the same menu of expunge options as when
you close a browser.

Figure 14-5. A FileBrowser shrink icon.

Copy-Selecting Files

You can copy-select file names from a FileBrowser into other
windows, such as TEdit windows, by holding down the COPY or
SHIFT key while selecting a name in the window. The full name of
the file is inserted as if you had typed it where the input caret is
flashing. You can also copy-select in a directory-only line, in which
case the full directory name is inserted in your type-in.

Getting Hardcopy Directory Listings

You can get a hardcopy listing of the directory displayed in a
FileBrowser by using the regular window Hardcopy command.
Press the right button in FileBrowser’s prompt window or tally
window and select Hardcopy from the menu. FileBrowser will
produce a hardcopy listing of the files and the attributes displayed
in the browser.

If the browser displays a large number of attributes, or your default
printer font is too large, the listing may not accommodate all the
attributes on one line, making the listing less readable. You may
want to make the listing with fewer attributes, or use a smaller font
for the listing.

FileBrowser Commands

1 4 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Delete, Undelete

Removing a file from the file system using FileBrowser is a two-step
process. First, you mark the file or files for deletion. Then you
issue the Expunge command. Any time between the deletion and
the expunge you can change your mind and undelete any of the
files.

To mark a file or files for deletion, select them, then choose the
Delete command. FileBrowser draws a line through the deleted
files. It also adjusts the numbers in the tally window to show how
many files are marked deleted and how many pages they contain.
It is thus easy to see how much file space you will regain when you
issue the Expunge command.

Figure 14.6 Two files marked for deletion.

To undelete a file or files (i.e., to remove the deletion mark), select
them, then choose the Undelete command. The lines through the
files are removed, and the tally of deleted files is updated. The
Undelete command has a single subcommand, Undelete ALL
Files, which undeletes all the files in the browser, independently of
whether they are selected. This is useful if you completely change
your mind about deleting any files.

Figure 14-7. The Undelete submenu.

The Delete command has a useful subcommand, Delete Old
Versions. When you have been editing a file in the text editor and
performing repeated Put commands, multiple versions of the file
accumulate, each more recent version denoted by a higher version
number. The Delete Old Versions command is used to delete
excess versions of the files displayed in the browser.

1 4 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Figure 14-8. The Delete submenu.

To use this command, press the mouse down on the Delete
command and slide the cursor out to the right, choosing the Delete
Old Versions command. Unlike the Delete command (or Delete
Selected Files, the equivalent subcommand), the Delete Old
Versions command operates on all the files in the browser.
FileBrowser prompts you for the number of versions of each file
that you wish to retain. It offers the default of one version. You can
accept the default or you can type a different number of your
choosing, followed by a carriage return. FileBrowser then marks for
deletion all but the most recent n versions of all the files in the
browser, where n is the number you specified. Before issuing the
Expunge command, you can, if you wish, scroll through the
browser, undeleting any particular files for which you wish to retain
more versions than you specified.

The Delete Old Versions command is sometimes useful even
when you are not planning to actually expunge the files. This is
because of the way extending the selection avoids deleted files
(see the section "Selecting Files," above).

For example, if you wanted to copy only the most recent version of
all the files in the browser to another location, you could do the
following:

1. Use the Delete Old Versions command, retaining just one
version. This marks deleted all files but the newest version of
each.

2. Go to the start of the browser and select the first file, then scroll
to the end of the browser and press the right mouse button to
extend the selection to the end of the browser. You have
selected exactly the newest version of each file.

3. Use the Copy command to copy those files.

4. Finally, use the Undelete ALL Files command to undelete all
the old versions.

Copy

The Copy command is used to copy an entire file or set of files to
another file system location; for example, from your disk to a file

1 4 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

server. Select the file(s) you wish to copy, then select the Copy
command. FileBrowser prompts you to supply a destination.

If you selected just one file, FileBrowser prints the old name and
offers a default, which consists of the same file name and either the
same directory that was last used in a Copy or Rename in this
FileBrowser, or the connected directory if this is the first use of
Copy in this FileBrowser. You can accept the default or supply
your own destination file name. If you supply just a directory
specification, e.g., {SERVER}<DIRECTORY>, the file is copied to
that directory under its current name. If you supply a complete
name, the file is copied to that exact name.

Figure 14-9. The Copy command comfirming the
name of the file to copy to.

Note: Unless you specify a version number in the destination file
name, the version number of the new file will be 1, or one
higher than the highest existing version of the file in the
destination directory, independent of the version number of
the old name.

Even files marked for deletion can be copied.

If you selected several files, FileBrowser notes how many files you
wish to copy and offers as a default destination the connected
directory. You can accept the default or supply a different directory.
All the files are copied to that directory under the names they
currently have.

You must supply a directory specification, e.g.,
{SERVER}<YOURDIRECTORY>, rather than a complete file name,
since you can’t copy multiple files to the same name. If you
mistakenly type a file name, rather than a directory specification,
FileBrowser will complain and abort the command.

If you want to copy files from different subdirectories, FileBrowser
will ask, via a message in its prompt window, if you want to
preserve the subdirectory structure at the destination. If you
answer Yes, then the names at the destination will include not just
the root name of each source file, but also all the subdirectory
names below the greatest subdirectory prefix common to all the
selected files (this common prefix is displayed as part of the
question). If you answer No, then the names at the destination are
formed solely from the root name of each file (the name displayed
in the browser), ignoring any directory information each name might
have. This can cause multiple files with the same root name to be
copied into the same destination name (but with different version
numbers, of course).

1 4 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

When copying (or renaming) multiple versions of the same file,
FileBrowser does the copying in order of increasing version
number, so that the versions at the destination are in the same
relative order as at the source.

As each file is copied, FileBrowser prints a message giving the full
name of the new file. If a file with the chosen name already exists,
the new file’s version number will be one higher; otherwise it will be
version 1 (one). The new file will have the same creation date as
the original file. If the destination file happens to be one that
matches the pattern of the files in the browser, the new file is
inserted in the appropriate place in the browser display. However,
if it matches the pattern of some other FileBrowser, it is not inserted
in that other browser’s display (in other words, FileBrowsers do not
know about each other). You would have to Recompute the
destination FileBrowser to see that the file was copied into it.

Rename

The Rename command is used for changing the name of a file or
group of files, or for moving a file or group of files to a different
directory.

The Rename command is used in exactly the same way as the
Copy command. If you rename a single file, you can supply a
complete new name or just a directory; if you rename several files,
you must specify a directory. As each file is renamed, FileBrowser
prints a message giving the file’s new name and removes the file
from the browser display. If the new name belongs in the same
browser, it is inserted in the appropriate place. If for some reason a
file could not be renamed, this is noted in the FileBrowser prompt
window. The reasons for the failure of a renaming operation are
roughly the same as for the failure of an Expunge; the file is open,
or you do not have the access rights needed to rename the file.

Note: If the destination of the rename is on a different file system
than the original file, changing its name is equivalent to
copying the file to its new name and then deleting the
original file.

Hardcopy

You can print text files, TEdit, Sketch, Interpress, and PostScript
files from FileBrowser. Select the appropriate file or files, then
select the Hardcopy command. The Hardcopy command will
determine what type of file you are printing and call the appropriate
function for printing that file. Then the files will be printed one at a
time on your default printer. The prompt window will display status
messages telling you when files are being printed and when they
are done (if your printer is one that provides this status service).

1 4 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Figure 14-10. The Hardcopy submenu.

You may specify printing to a file or to a printer other than the
default printer by means of a submenu from the Hardcopy
command. This menu is the same as the one on the Hardcopy
command in the background menu. Selecting To a printer
presents you with a choice of printers from a menu. Selecting To a
file prompts you to supply a file name. If you selected a single file,
you must specify a single hardcopy file name (or accept the offered
default). If you selected multiple files, then you must specify a
pattern with a single asterisk somewhere in the "name" field, for
example, *.INTERPRESS or Hardcopy-*.IP. The output file names
are constructed by merging the pattern with each selected file
name. If the name includes an extension that implies the type of
print format (e.g., .IP or .INTERPRESS implies the Interpress print
format), then a file of the specified type is made automatically.
Otherwise, you are prompted to supply a print format type.

Note: For files stored on servers not supporting random access,
FileBrowser is currently unable to determine that a file is in
TEdit format unless the file has the extension .TEDIT.
Therefore you should use TEdit to hardcopy TEdit files with
other extensions. Use FileBrowser’s Edit command (to call
TEdit), then the Hardcopy command either from the TEdit
Expanded Menu or from the right-button menu.

Note: To obtain a hardcopy of the directory itself, use the
Hardcopy command from the right-button window menu.
See the section "Getting Hardcopy Directory Listings".

See

When you browse a directory you sometimes want to see a file
before printing or performing some other operation on it. To do
this, select the file, then select the See command from the
command menu. FileBrowser will prompt you to open a window by
presenting you with a dashed rectangle and printing a message in
the system prompt window. The window will be blank until
FileBrowser starts printing the contents of the file in it.

There are actually four different See commands, as shown in the
submenu for See. The Fast SEE Pretty and Fast SEE
Unformatted commands are provided to let you quickly see the
contents of a file, but not do anything fancy, such as scroll around

1 4 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

at random in the file. The slower Scrollable & Pretty command
does let you scroll, and if the file contains formatting information of
a kind that FileBrowser knows about (via the editors you have
loaded), you will see the file formatted. However, this command
does much more work, and may take a bit longer to show you even
the first line of the file. The Filebrowse command is for use on files
that are directories; it is described in the next section.

Figure 14-11. The See submenu.

The Fast SEE Pretty and Fast SEE Unformatted commands
display the selected file in the display window one windowfull at a
time. When the file fills the window, a small menu appears at the
bottom-left corner of the window (or top-left if your display window
is at the bottom of the screen) giving you the option of seeing more
of the file or aborting the See command. If you issued the
command with more than one file selected, you also have the
choice of aborting just the display of this file or the entire See
command.

Figure 14-12. The See window control menu.

If you select More, the See command displays another windowful
of the file. If you select Next File, the See command closes this file
and goes on to display the next file in the current selection. If you
select Abort, the entire See command is aborted. You can also
abort the See command by closing the display window.

The next time you give a Fast See Pretty or Fast SEE
Unformatted command, the same window will be reused.

The only difference between the Fast See Pretty and the Fast SEE
Unformatted commands is the manner in which the characters of
the file are processed as they are displayed.

1 4 - 1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

The pretty (formatted) version interprets certain control characters
found in source files to be font change commands, and interprets
certain multibyte sequences as representing characters in the
Xerox extended character set. It also squeezes out blank lines and
shrinks the indentation of indented lines in order to better fit the text
in a window that is generally much narrower than the standard file
width. The formatted version is thus most appropriate for viewing
source files and files containing plain text.

The unformatted version of the See command does no special
processing on the characters whatsoever. It simply displays each
eight-bit byte as a single character, uninterpreted. This means that
bytes that do not represent normal printing characters may be
displayed as black boxes, in the form ^x or #x, or as a flashing of
the window (for the byte that represents the ASCII "bell’’ character).
The Unformatted version is thus most appropriate for viewing
binary files that also contain text portions that might be worth
seeing; e.g., compiled files (those with extension .LCOM) or
Interpress masters (extension .IP or .INTERPRESS).

The Scrollable & Pretty command views a file in a different way.
This command brings up a new read-only TEdit window for viewing
a file (only if TEdit is loaded in your system; otherwise, Scrollable
& Pretty reverts to fast format). You can scroll and copy-select the
file’s contents at will, as with any TEdit window. If the file is a
NoteCards source file, its contents are first formatted into a TEdit
document, so that all the font information is retained. This
formatting, however, can take a long time for a large file. For other
kinds of files, the Scrollable & Pretty command is exactly like
viewing the file in a regular TEdit window, except that you can’t edit
it. If you want to edit a file, use the Edit command instead of the
See command.

You can keep the display window used by the Scrollable & Pretty
command open as long as you like. The command uses a different
window for each file you select. Simply close the window with the
standard right-button window menu when you are finished with it.

Filebrowse

The Filebrowse command is a subcommand of See used to view a
subdirectory in its own FileBrowser window. The selected file must
be a (sub)directory. Subdirectory files appear in browsers on XNS
file servers when the depth is finite (see the Set Depth command),
and their names always end in ">". On Sun servers subdirectory
file names end in "/."

Figure 14-13. Some subdirectories on a Sun
server, indicated by trailing slashes.

1 4 - 1 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

The Filebrowse command prompts you for a region for a new
FileBrowser window group, in which it proceeds to enumerate the
contents of the selected subdirectory, to the same depth as the
main browser used, if any.

Edit

The Edit command invokes an editor on the selected file. To
specify an editor explicitly, use one of the commands on the
submenu.

Figure 14-14. The Edit submenu.

To start up a TEdit editor on a selected text file, select Edit with the
left mouse button. If you have recently closed a TEdit window, then
TEdit will probably reuse that window; otherwise, you will be
prompted to create an editor window. TEdit only remembers the
most recently abandoned window, however, so if you issue the Edit
command when you have several files selected, you will be
prompted to create windows for all but the first file.

The subcommand Lisp Edit is for people extending the NoteCards
environment. Do not use this command unless you are extending
the NoteCards system.

If you select the main Edit command, without sliding off to the
submenu, then FileBrowser’s default editor, TEdit, is called.

Load

The Load command is for people extending the NoteCards system.
Do not use this command unless you are extending the NoteCards
system.

Compile

The Compile command is for people extending the NoteCards
system. Do not use this command unless you are extending the
NoteCards system.

Expunge

If you are sure you want to delete files permanently, choose the
Expunge command. The Expunge command is grayed while
FileBrowser expunges the files that were marked for deletion by the

1 4 - 1 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Delete command. As each file is removed from the system, it is
removed as well from the browser display, and the tally of total
number of files and number of deleted files is updated, so you can
see the progress of the command.

If for some reason a file can not be expunged, FileBrowser prints a
message saying so in its prompt window, but continues to expunge
the other files. The main reasons that prevent a file from being
expunged are its being opened, either by you or some other user,
or your not having the access rights required to delete it (if it is on a
file server). See the section "Troubleshooting Problems with
FileBrowser," below.

Note: The Expunge command is not affected by the current
selection; it operates only on files marked for deletion,
whether currently selected or not.

Recompute

FileBrowser’s display shows those files that existed and matched
the specified pattern at the time you created the browser. If you
want the browser to reflect the latest state of the file system, use
the Recompute command.

For example, if you open a FileBrowser on your directory, then
save several versions of a TEdit file on that directory, the file listing
will not display the new versions until you Recompute.

The Recompute command operates exactly as when you started
up FileBrowser initially: it clears the display and tally windows, then
enumerates the files matching the pattern. The Recompute
command in the menu is grayed until the enumeration is finished.
During this time you cannot scroll or perform any other operations
on the browser. However, you can close the window if you want to
abort the command and throw away the browser.

If any files are marked for deletion at the time you request a
Recompute, FileBrowser will present the choice of expunging or
undeleting the files, just as it does when you want to quit the
browser (see the section "Quitting the FileBrowser," above).

The Recompute command also has a menu of subcommands that
allow you to list different files or different information for the same
set of files.

Figure 14-15. The Recompute submenu.

1 4 - 1 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Same Pattern Is the same as the main Recompute command, i.e., it enumerates
the files matching the same pattern as before.

New Pattern Lets you change the pattern, i.e., browse a new set of files.
FileBrowser prompts you to supply a new file name pattern and
offers the old pattern as an initial default. You can either type an
entirely new pattern, replacing the one offered, or delete the old
pattern one character at a time by backspacing. Press the carriage
return when you have finished specifying the pattern. FileBrowser
then enumerates the files matching this pattern, just as with the
Recompute command. You can abort the command with the Abort
button, or by erasing the whole pattern (by backspacing or using
CONTROL-Q) and then pressing the <RETURN>.

New Info Lets you change which attributes the browser displays. It is
described in the next section.

Set Depth Lets you change the depth to which FileBrowser enumerates a
directory on an XNS file server. It is described in the section "Set
Depth."

Shape to Fit Reshapes the FileBrowser window so that all the attributes in the
display are visible at once, eliminating the need to horizontally
scroll the window to get at all the information.

New Info

FileBrowser displays some file attributes, or information about the
file, alongside each file in the browser display. Ordinarily, the
attributes displayed are the size of the file in pages, its creation
date, and its author. You can change the attributes displayed in a
particular browser window by using the New Info command.

To use the New Info command, select it from the submenu of the
Recompute command. FileBrowser opens up an additional
subwindow, the "Info Options" window, below the display window.
This subwindow contains a menu of attributes, with the current
defaults shaded. Selecting a shaded item unshades it; selecting an
unshaded item shades it. When you have selected all the attributes
you wish to see displayed, issue either the Recompute or the New
Pattern command. The files will be listed with the new information
you requested. The "Info Options" window stays open—you can
close it at any time.

1 4 - 1 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

Figure 14-16. A FileBrowser showing the "Info
Options" window.

The Info Options items have the following meanings:

Created The date and time that the content of the file was created. This
date changes whenever the file is modified, but does not change
when a file is copied or renamed.

Written The date and time the file was last written to the file system. This
date is never older than the Created date, but it can be newer if the
file is copied, unmodified, from one file system to another.

Read The date and time the file was last read. This attribute may be
blank if the file has never been read.

Author The login name of the person who wrote the file, or last modified it.

Length The length of the file in (usually eight-bit) bytes.

Pages The number of 512-byte pages in the file. On some servers, this
attribute is blank if the file is empty.

ByteSize The size (in bits) of the bytes in the file.

Type A value indicating what kind of data the file contains. The usual
values of this attribute are TEXT, meaning the file contains just
characters, or BINARY, meaning the file contains arbitrary data.
Some servers have additional types, such as INTERPRESS for
files in Interpress format.

Set Depth

XNS file servers support a feature that allows enumerating a
directory to a user-specifiable depth. The "depth" of a file reflects
the number of subdirectories between it and the root of the
enumeration, i.e., the directory or subdirectory you gave in the
pattern to FileBrowser, not counting any containing wildcards
(asterisks). The immediate descendants of the root are at depth 1,
files in subdirectories of depth 1 are at depth 2, and so on.

Ordinarily, FileBrowser enumerates a directory to the default depth,
which is usually unlimited. To enumerate a directory to a different
default, use the FB command with argument :DEPTH n, for some
positive integer n, or T for unlimited depth. To change the depth in
an existing FileBrowser, use the Set Depth command, a
subcommand under the Recompute command. The command
offers you a menu of choices:

Figure 14-17. The Set Depth menu.

Global default means use the default depth, overriding the depth
at which this browser was last enumerated. Infinite means use no
depth limit (same as depth T). 1 and 2 are common depth choices;

1 4 - 1 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

to choose some other numeric value, select Other and enter the
value via the displayed keypad.

The Set Depth command does not affect the current display. It
takes effect the next time you use the Recompute or FileBrowse
commands from the same browser.

During a Recompute, if a subdirectory appears at the specified
maximum depth, its descendants are not enumerated; rather, the
subdirectory itself appears as an entry in the browser display. This
entry can be selected, just like a file, but only a small number of
commands can be used on it: you can Rename it, you can Delete it
if it has no descendants, and you can FileBrowse it. It has
attributes, just as ordinary files do. Its page size is the size of the
entire subtree rooted at the subdirectory.

Note: Depth currently affects only XNS servers; all other devices
ignore it and enumerate to their own default depths. In
addition, due to a bug in XNS Services 10, depth is ignored
for nontrivial patterns, i.e., anything but "*.*".

Sort

The Sort command allows you to sort the files in the browser by
any attribute of the files displayed in the browser. Selecting Sort
brings up a menu of attributes by which to sort. This menu includes
all the attributes currently displayed in the browser (such as
Creation Date, Author), plus the choice Name. For some attributes
you can sort forward or backwards; the choice is on a submenu,
and the default is generally in the order of numerically greatest
(e.g., size) or most recent (e.g., creation date) first.

If the attribute you select is not Name, then the file names
displayed in the browser will be reformatted to include their
directory portion (if there are any subdirectories below the
browser’s main pattern), as the subdirectory information is no
longer implicit in a file’s position in the browser.

The sort order Name, Decreasing Version is the default order in
which browsers initially are created.

Troubleshooting Problems with FileBrowser

When FileBrowser returns the message: No files in group

FILENAMEPATTERN when you know those files exist, the file server
is probably down or rejecting connections. If this is so, your only
option is to wait until the server is functioning again, and then give
the Recompute command. In the case of an Xerox file server, the
enumeration of files can also fail if you do not have sufficient
access privileges; this condition is usually noted by a message in
the system prompt window.

When you try to expunge a file and FileBrowser displays the
message: Can’t expunge FILENAME, it may be because you

1 4 - 2 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

don’t have write access to the file, or someone else is reading the
file. However, the most common reason is that the file is still open.
Be sure to close any TEdit windows in which you may still be
viewing the file. If you have recently issued a Hardcopy command
for the file, a background process may still be working on the file.

1 4 - 2 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

14. THE FILEBROWSER

[This page intentionally left blank]

1 5 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Digital Clock

Introduction

The digital clock allows you to keep track of the time in multiple
time zones. The clock updates itself once a minute. Clicking the
left mouse button inside any of the clock windows will cause the
digital clock to update itself.

Figure 15-1. The Digital Clock with two auxilliary
regional time-zone windows showing the time in
Washington and Tokyo.

Starting the Digital Clock

To put a digital clock on the screen, bring up the background menu
by holding down the right mouse button, position the mouse over
the Clocks option and slide off to the right to bring up the Clocks
submenu. Slide the mouse cursor over the Digital Clock choice
and release the right mouse button.

Figure 15-2. The Digital Clock option from the
Clocks submenu from the background menu.

Selecting the digital clock option will delete any existing digital clock
and start a new one.

When the clock comes up, it will prompt you for an auxilliary time
zone. If you click outside the "Enter Time Zone" menu, the clock
will come up with just the local time zone.

1 5 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-3. The "Enter Time Zone" menu.

Stopping the Digital Clock

To remove the clock from your screen and kill the clock process,
simply close the clock window using the clock window’s right
mouse-button Close option.

Changing the Digital Clock

You can specalize the digital clock to suit your needs. You modify
the digital clock by holding the middle mouse button down in the
clock window. Holding this mouse button down in the main clock
window brings up the menu shown in Figure 15-4. Holding the
middle mouse button down in one of the regional time-zone
windows brings up the menu shown in Figure 15-5.

1 5 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-4. The main-window middle-button menu.

Figure 15-5. The auxilliary-window middle-button menu.

Set Font

Brings up a series of menus which allows you to change the font in
the main clock window.

Figure 15-6. The font menu.

Figure 15-7. The font size menu.

1 5 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-8. The font face menu.

Select each option you want in sequence. If you want to keep any
particular aspect of a font, simply click outside that particular menu.
Clicking outside all the menus, leaves the font exactly the way it
was to begin with.

While the system is searching for a font in the font files, it displays
the message, "Fetching Font."

Not all possible combinations of every font exist. When the clock
cannot find a particular font, it displays the message "Font Not
Found."

Set Time

Brings up a menu which allows you to set the time.

Figure 15-9. The set-time menu.

Each click on a + advances the counter for that category; each click
on a - decreases the counter for that category. Selecting the Set
option sets the time and closes the menu. Selecting Esc (Escape)
closes the menu without setting the time.

Set Alarm

Brings up the set-time menu shown in Figure 15-9. The menu
functions the same way it does for the Set Time option. After you
have set the time, the clock will ask you for a message to associate
with the alarm time. Type in your message followed by a carriage
return.

Figure 15-10. The Digital Clock with the auxilliary
window prompting for a message to associate with
the alarm time.

1 5 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Quiet Alarm/Loud Alarm

Toggles the clock back and forth between, a loud/auditory alarm
and a quiet/visual alarm.

Figure 15-11. The main window middle-button
menu with the Loud Alarm option showing instead
of the Quite Alarm option.

The loud alarm causes the monitor to beep once a minute when the
alarm is ringing. The quiet alarm causes the screen to flash once a
minute when the alarm is ringing.

Delete Alarm Setting

Turns the alarm off when it is ringing. This option, shown in Figure
15-11, only appears when the alarm is set.

Shape to Fit

Resizes the window to the minimum size necessary for the font you
are using.

The window should resize automatically whenever you change the
font. If ever the window and font size get out of synch, you can
force the window to resize itself by selecting this option.

12-Hour Clock/24-Hour Clock

Toggles the digital clock back and forth between 12- and 24-hour
modes. Compare Figures 15-4 and 15-11 to see how these options
appear in the menu.

Set Local Time Zone

Allows you to change the time zone shown in the main digital clock
window. Selecting this option brings up the "Enter Time Zone"
menu, shown in Figure 15-3, from which you can choose the
appropriate time zone. Clicking outside this menu leaves the time
zone unchanged.

Add New Regional Time Zone

Allows you to add an additional regional time zone to the digital
clock display. Selecting this option opens a new auxilliary window
on the bottom of the clock and then pops up the "Enter Time Zone"

1 5 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

menu, shown in Figure 15-3, for you to select a time zone for the
auxilliary window.

Delete This Window

Deletes the auxilliary window the mouse cursor was in when you
pressed the middle mouse button to bring up the auxilliary-window
meu.

Figure 15-12. The auxilliary-window menu.

Set Font for Aux Clocks

Changes the font for all the auxilliary clocks indepent of the main
clock. Selecting the option brings up the series of menus shown in
Figures 15-6, 15-7, and 15-8. Clicking outside of any menu leaves
that aspect of the font the way it was originally.

Set Aux Clock Font In Just This Window

Changes the font for the auxilliary window the mouse cursor was in
when you pressed the middle mouse button to bring up the
auxilliary-window meu. Selecting the option brings up the series of
menus shown in Figures 15-6, 15-7, and 15-8. Clicking outside of
any menu leaves that aspect of the font the way it was originally.

Figure 15-13. The submenu for setting the font in
just one auxilliary window.

Set Time-Zone Heading

Prompts you for a new heading for the auxilliary window you were
in when you pressed the middle mouse button to bring up the
auxilliary-window meu. Type in the name followed by a carriage
return.

1 5 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-14. An auxilliary window prompting for a
new heading.

Occasionally, the window isn’t wide enough to display the whole
name. In this case choose the option Shape to Fit from the main
window middle-button menu.

Set Regional Time Zone

Brings up the "Enter Time Zone" menu shown in Figure 15-3, which
allows you to change the time zone region. Set Regional Time
Zone does not allow other than hour increments.

Analog Clock

Introduction

The Analog Clock suboption off the Clock option on the
background menu sets up an analog clock on your screen. The
clock is updated once a minute.

Figure 15-15 The analog clock.

Starting the Analog Clock

To put an analog clock on the screen, bring up the background
menu by holding down the right mouse button, position the mouse
over the Clocks option and slide off to the right to bring up the
Clock submenu. Slode the mouse cursor over the Analog Clock
choice and release the right mouse button.

1 5 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-16. The Analog Clock option from the
Clock submenu from the background menu.

The first time you bring the analog clock up in a sysout, it will
prompt you to sweep out a window. Once you have done this this
clock will always appear in its last size. If you want to resize the
analog clock, choose the Shape option from the right button
window menu, and sweep out the new shape for the clock.

Stopping the Analog Clock

To remove the clock from your screen and kill the clock process,
simply close the clock window using the clock window’s right
mouse-button Close option.

Changing the Analog Clock

Holding the middle mouse button down inside the analog clock
pops up the following menu.

Figure 15-17. The analog clock menu.

There are four independent properties which the user may control:
the hands of the clock, time digits printed where the hands end,
rings on the clock face, and 12 numbers around the outside of the
clock face.

1 5 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-18. An analog clock with no points or
numbers, rings, no hands, and times.

NUMBERS

Removes points and adds numbers to the clock face.

POINTS

Removes numbers and adds points to the clock face.

NO.NUMBERS

Removes both numbers and points from the clock face.

RINGS

Adds rings to the clock face.

NO.RINGS

Removes rings from the clock face.

HANDS

Adds hands to the clock face.

NO.HANDS

Removes hands from the clock face.

TIMES

Adds time digits to the clock face.

NO.TIMES

Removes time digits from the clock face.

SHOW.STYLE

Prints the current style to the system prompt window.

SET.TO.DEFAULT

Resets the clock face to the default settings.

1 5 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

CHANGE.DEFAULT

Sets the default to the current style.

SETTIME

Forces the clock to go to the machine to ask it the time.

Known Problems

The clock will occasionally not respond to style changes. To force
it to change, close the clock window and restart the clock from the
background menu.

Directory Connector

The directory connector allows you to keep track of your currently
connected directory and allows you to change the directory. It
updates itself about once every ten seconds.

Figure 15-19. The directory connector window.

Starting the Directory Connector

To put a directory connector on the screen, bring up the
background menu by holding down the right mouse button, position
the mouse over the Directory Connector option and release the
right mouse button.

Stopping the Directory Connector

To remove the directory connector from your screen and kill its
process, simply close the directory connector window using the
window’s right mouse-button Close option.

Changing the Directory Connector Fonts

To change the directory connector font, bring up the background
menu by holding down the right mouse button, position the mouse
over the Directory Connector option, slide off the menu to the
right, position the mouse over the Change Font option, and release
the right mouse button.

Figure 15-20. The Directory Connector option on
the background menu showing the Change Font
submenu option.

When you select the Change Font option you will be presented with
a series of two menus asking you for a font and a size.

1 5 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Figure 15-21. The font menu.

Figure 15-22. The font size menu.

While the directory connector is looking for a font, it prints the
message"Fetching Font..." to the system prompt window.

Not all possible combinations of fonts are possible. If a font is not
found the directory connector prints the message "Font Not Found."
in the system prompt window.

Using the Directory Connector

The directory connector can be used in two ways.

Left Mouse Button

Clicking the left mouse button in the directory connector window
causes the window to update itself.

You can shift-select the connected directory name out of the
directory connector window with the left mouse button. You do this
by pointing to the position in the window where you want the name
of the directory to appear and clicking the left mouse button to
position the caret cursor there, a FileBrowser prompt window for
instance. Next you hold a SHIFT key down and click the left mouse
button in the directory connector window. The name of the
directory will appear where you positioned the caret cursor.

1 5 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

Middle Mouse Button

Clicking the middle mouse button in the directory connector window
brings up a menu of directories to connect to.

Figure 15-23. The "New Directory?" menu.

If the directory you want to connect to is on this list, click the left
mouse button on it to connect to it.

If you change your mind and want to abort the operation, click
outside the "New Directory?" menu.

If the directory you want to connect to is not on this list, click the left
mouse button on * * Connect to Other Directory * * and type the
directory name into the prompt window which will appear.

Figure 15-24. The "New Directory?" prompt window.

The prompt window will come up with your currently connected
directory. The moment you start typing the system will erase the
window and show what you are typing.

If you want to modify the name of your currently connected
directory, backspace over as much of the name as you need to and
type the name of the new subdirectory. Be sure to end it with a
slash.

If you type in an invalid directory name, directory connector will
beep and print the message "Not a valid directory name." to the
system prompt window.

1 5 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

15. OTHER TOOLS

[This page intentionally left blank]

1 6 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

NoteCards includes facilities for printing in the PostScript language
by Adobe, and the Interpress, language by Xerox.

This chapter explains:

How to setup your printers.

How to specify where your font directories are.

How to deal with some common printer problems.

How to customize your postscript printer.

Setting Up Printers

You can set up printers from either the background menu or the
initialization file. For how to set up your printers with the
initialization file, see Appendix C.

Adding Default Printers

To set up a new default printer from the background menu, press
and hold the right mouse button in the background, place the
mouse cursor on Set Default Printer then slide off to the right and
select Add Default Printer.

Figure 16-1. The Set Default Printer background
menu option displaying its submenu.

A prompt window will appear showing you the name of the current
default printer and asking for the name of a new default printer.

Figure 16-2. A PostScript printer name being
entered as a new default printer.

Figure 16-3. An Interpress printer name being
entered as a new default printer.

Enter the name of the new default printer. The moment you type
the first character of the new printer name, the old name will be
deleted and replaced with what you type. If you don’t want to make
any changes, strike the carriage return key. If you want to modify
the name that is there, you can backspace over the name to erase
part of it. If you type a carriage return without a entering printer
name, this operation is aborted.

1 6 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

When you type a carriage return to end the name, a menu will pop
up requesting the printer type. Select one of the options with the
left mouse button.

Figure 16-4. The system prompting you for the
printer type.

If you do not select any option (by clicking outside the menu) and
the printer’s type was previously defined, it will remain the same. If
the printer’s type was not previously defined, and you do not select
any option, the printer’s type will be left undefined which will cause
problems when you try to print. If you leave the printer type
undefined the system will warn you.

Figure 16-5. The system prompt window giving the
new printer status and warning you that the printer
type for Oahu is undefined.

Figure 16-6. The system prompt window giving the
new printer status.

At this point, if you have already specified the font directories, you
should be able to print to any default printer.

Setting the Default Printer

The system maintains a list of printers, one of which is the default
printer--the printer that files are sent to when no printer is explicitly
specified.

To set the default printer, select the Set Default Printer option from
the background menu.

1 6 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Figure 16-7. The Set Default Printer option on the
background menu.

This will cause the system to open a menu listing all the known
printers.

Figure 16-8. The "Choose Default Printer." menu

Selecting one of these options will make that printer the default
printer. The current default printer is the topmost option.

Once you have selected a new default printer, the system will
confirm your choice by printing the printer name and type to the
system prompt window.

Figure 16-9. The system prompt window giving the
new printer status.

If the printer type is undefined the system beeps and issues a
warning.

Figure 16-10. The system prompt window giving
the new printer status and warning you that the
printer type for Oahu is undefined.

Removing a Default Printer

If you make a mistake specifying a printer or want to remove a
printer for some reason, you can use the Remove Default Printer
submenu option on the background menu.

1 6 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Figure 16-11. The Remove Default Printer
submenu option off the background menu.

Selecting this option brings up a menu of known printers. Selecting
one of these deletes it from the known-printers list and makes the
topmost remaining printer the default printer.

Figure 16-12. The "Choose Printer to Remove."
menu.

Setting Font Directories

As with printers, it is possible to set your font directories from either
the background menu or your initialization file. We recommend that
you set your directories from the initialization file. There are two
reasons for this. Setting the font directories involves a lot of typing,
and these directories are set correctly for you by the standard
initialization file unless you have moved the font files. See
Appendix C for how to set the font directories from the initialization
file.

Adding a New Font Directory

To add a font directory from the background menu, press and hold
the right mouse button in the background to bring up the
background menu. Position the mouse cursor on the Set Default
Printer option and slide off to bring up the submenu containing
Add Font Directory.

Figure 16-13. The Add Font Directory submenu
options on the background menu.

Selecting Add Font Directory brings up a menu asking you to
specify the font group you want to add a search directory to.

1 6 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Figure 16-14. The "Add to which directory group?"
menu.

The NoteCards system supports one display and three hard copy
modes. For each of these there is a specialized set of fonts. The
fonts for the screen display are stored in the display font directories,
the fonts for PostScript printers are stored in the PostScript font
directories, those for Interpress printers are stored in the Interpress
font directories, etc. When you add a new directory to one of these
groups, you are providing the system with another place to search
for fonts. For example, the display font directories typically include
the following directories:

{DSK}/usr/local/lde/fonts/display/presentation/
{DSK}/usr/local/lde/fonts/display/presentation/
{DSK}/usr/local/lde/fonts/display/publishing/
{DSK}/usr/local/lde/fonts/display/printwheel/
{DSK}/usr/local/lde/fonts/display/miscellaneous/

When the system is looking for a new display font, it will search
through each of these directories in sequence for the font. The
fonts are broken up into separate directories for convenience and
efficiency reasons.

Once you have specified the font directory group you want to work
with, the system will prompt you for the name of a new directory to
search for fonts of that type.

Figure 16-15. The system prompting for a new font
directory to search for Interpress fonts.

Enter the name of the new font directory. The moment you type the
first character of the font directory name, the old name will be
deleted and replaced with what you type. If you don’t want to make
any changes, strike the carriage return key. If you want to modify
the name that is there, you can backspace over the name to erase
part of it. If you type a carriage return without a printer name, this
operation is aborted.

Note that for Sun machines, the directory name will always start
with {DSK}, that subdirectories in the path name are separated by
slashes, and that the directory path name must end in a slash (/).

Showing the Font Directories

In order to view a particular set of font directories, use the Show
Font Directories submenu option shown in Figure 16-13.

Like Add Font Directory, this first brings up menu asking you for
the directory group you want to show.

1 6 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Figure 16-16. The "Show which directory group?"
menu.

Once you have selected the directory group, the system pops up a
window which displays the font directories in that group. You can
close this window using the standard window-menu close option or
the window will close of its own accord after about two minutes.

Figure 16-17. A window showing the list of display
font directories.

Removing a Font Directory

If you make a mistake entering a font directory name or for some
other reason want to remove a font directory, use the Remove
Font Directory option shown in Figure 16-13.

Like the Add Font Directory this first brings up menu asking you
for the directory group you want to modify.

Figure 16-18. The "Remove from which directory
group?" menu.

Once you have selected the directory group, the system pops up a
menu of all the directories currently in that group.

Figure 16-19. The "Remove which directory?"
menu.

Selecting one of these options deletes that directory. Clicking
outside the menu aborts this operation.

1 6 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Trouble Shooting Common Printer Problems

This section discusses some of the more common breaks which
occur when your printers are not properly set up.

Can’t determine IMAGETYPE for {LPT}

This break occurs when you do not have any printers specified on
the default printer list, or if you have not specified the printer type.

Figure 16-20. A break window indicating that the
system cannot find a valid printer.

Type an up-arrow to exit the break and make sure that the printer
and its type are properly set.

You can get into this situation by choosing the hardcopy To a
printer suboption off the standard window menu and then selecting
the Other... option from the "Which Printer?" menu.

Figure 16-21. The standard right button window
menu, showing the hardcopy To a printer
submenu option selected.

Figure 16-22. The "Which printer?" menu showing
the Other... option selected.

The Other... option does not automatically prompt you for a printer
type. Therefore, we recommend that you always add new printers
using the background menu Add Default Printer submenu option.

Font not Found

This break occurs when you do not have one of your font
directories set properly.

1 6 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Figure 16-21. A break window indicating that the
system cannot find the appropriate font.

In this particular case, the system was unable to find an Interpress
font. Note that the font description contains the word Interpress.
This implies that either there are no Interpress font directories set
or that the given Interpress font directories do not contain that font.

Type an up-arrow to exit the break and make sure that the
appropriate font directory is properly set. You can do this by
selecting the Show Font Directories suboption off the Set Default
Printer option on the background menu. If directories are not
correctly set use the Add Font Directory and Remove Font
Directory options to correct the errors.

Can’t Convert a POSTSCRIPT for a NIL printer

This break can occur if you have incorrectly typed the case of the
printer name.

Figure 16-22. A break window indicating that the
system cannot find the appropriate printer.

Type an up-arrow to exit the break and if you have entered a printer
name in lower case, try entering the same name in upper case by
selecting the Add Default Printer option off the Set Default
Printer submenu on the background menu.

Customizing Your PostScript Printer
The PostScript driver allows you to set a number of parameters to
modify the output to suit your needs.

Portrait vs. Landscape

There are two terms used to describe how an image is printed on a
piece of paper which you need to know.

1 6 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

8 1/2"

11"

Figure 16-23. Portrait describes the way we
normally hold a piece of paper.

11"

8 1/2"

Figure 16-24. Landscape describes a piece of
paper held on its side.

Maximum Wild Font Size

Indicates the maximum point size that the system will indicate as
available when looking for fonts.

The default value is "72."

Font Association Menu

Maps display font names onto PostScript font names. To change
the mapping click the left mouse button on a display font name in
the left-hand column then select a PostScript font from the a menu
of PostScript fonts names which will appear.

1 6 - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

Figure 16-25. The "Postscript Font Association
Menu" showing the display fonts on the left and the
PostScript printer fonts on the right.

Figure 16-26. The "Postscript Font Association
Menu" with the TIMESROMAN display font
selected and about to be set to correspond to the
COURIER PostScript printer font.

PostScript Short Edge Shift

Is the distance (in points) to shift the image perpendicular to the
short edge of the paper. A positive value gives a shift upward in
portrait mode, and to the right in landscape mode. A negative
value shifts the image down in portrait and to the left in landscaped
mode.

The default value is "0."

1 6 - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

+

-

Figure 16-27. The short edge shift in portrait
mode.

+-

Figure 16-28. The short edge shift in landscape
mode.

PostScript Short Edge Points

Indicates the printable region of the page, in points, along the short
edge of the paper. It should be adjusted to allow for any short edge
shifts of the image.

The default value is "576" points or 8 inches.

PostScript Long Edge Shift

Is the corresponding variable for shifts perpendicular to the long
edge of the paper. A positive value here gives a shift to the right in
portrait mode and downward in landscape mode.

The default value is "0."

1 6 - 1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

+-

Figure 16-29. The long edge shift in portrait mode.

+

-

Figure 16-30. The long edge shift in landscape
mode.

PostScript Long Edge Points

Indicates the printable region of the page, in points, along the long
edge of the paper. It should be adjusted to allow for any long edge
shifts of the image.

The default value is "786.24" or "10.92" inches.

Note:

The AST TurboLaser PS has an imageable area on the page which
is a different size than that of the Apple LaserWriter. The values of
PostScript Short Edge Points and PostScript Long Edge Points
for the AST are "575.76" and "767.76," respectively.

Landscape Mode

Indicates whether the default orientation of output files is
landscape.

The default value is "No."

Landscape Text Mode

Indicates if the printing of text files should force the orientation of
output files to landscape.

The default value is "No."

Bitmap Scale

Specifies an independent scale factor for display of bit map images,
window hardcopies, for example. Values less than 1 reduce the
image size, i.e. a value of 0.5 will give a half size bit map image.
The position of the scaled bit map will still have the same lower-left

1 6 - 1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

corner, i.e., the scaled bit map is not centered in the region of the
full size bit map image.

The default value is "1."

Note:

Setting bit map scale to 0.96, instead of 1, will give cleaner bit map
images on a 300 dpi printer. This corrects for the 72 ppi
imagestream vs. the 75 dpi printer, using 4x4 device dots per bit
map pixel. Also, values of 0.24, 0.48 and 0.72, instead of 0.25, 0.5
and 0.75, will also give cleaner images for reduced size output. In
general, use integer multiples of 0.24 for a 300 dpi printer.

Texture Scale

Specifies an independent scale for the display of bit map textures.
The value represents the number of printer bits per screen pixel.
The default value is 4, which represents each pixel of the texture as
a 4x4 block, so that textures are approximately the same resolution
as on the screen for 300 dpi output devices, such as the Apple
Laserwriter.

The PostScript package extends the allowed representations of a
texture, beyond 16-bit integers and 16x16 bit maps, to any square
bit map. (If the bit map is not square, its longer edge is truncated
from the top or right to make it square.) Use this feature with
caution, as large bit map textures, or sizes other than multiples of
16 bits square, require large amounts of storage in the PostScript
interpreter, and can cause errors when printing.

Image Size Factor

Specifies an independent factor to change the overall size of the
printed image. This resizing affects the entire printed output.
Values greater than 1 enlarge the printed image, and values less
than 1 reduce it. The Bitmap Scale parameter does not consider
the Image Size Factor when determining the scale factor for a bit
map.

1 6 - 1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

16. PRINTING

[This page intentionally left blank]

1 7 - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

ERROR RECOVERY
17. AND KNOWN PROBLEMS

NoteCards on the Sun Workstation has an error handling system
which includes

the break window error system,
a diagnostic program, URAID, which handles emulator errors.

Occasionally, you may encounter SunOS error messages. Refer to
your Sun documentation set for recovery procedures when these
errors occur.

Known problems with the NoteCards system are discussed at the
end of this chapter.

System Status, Aborting Operations, and Spawning a New Mouse

NoteCards provides a number of keyboard combinations for
enquiring about system status and aborting operations.

System Status

Typing CONTROL-T prints status information on the type-in
process. The type-in process is the process which has the flashing
caret cursor. This is of minimal usefulness as the type-in process is
usually just sitting waiting for you to type characters in, and the
messages are aimed a people extending the NoteCards system.
However, if you need to know if the system is still active, typing
CONTROL-T will force the system to give you the status on one
process.

Aborting Operations

Hitting the STOP key will frequently abort the process you want it
to. However, as the system runs multiple processes the process
which receives the stop command may not be the one you intended
to receive it .

Typing CONTROL-G gives you a list of all the currently running
processes, in menu format, as shown in Figure 17-1.

1 7 - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

Figure 17-1. The "Interrupt which process?" menu
showing all the currently running processes.

Selecting one of these processes will cause a break to occur in that
process. You can then uparrow, ^, out of the break to abort the
process. If you decide you have broken the wrong process, you
can type ok to have the process resume where it left off.

Figure 17-2. A break caused by a CONTROL-G.
The OLDMOUSE process is being resumed with
the ok command.

Because there can be so many processes, TEdit processes in
particular (there is one TEdit process for every TEdit window
including the expanded-menu command windows), it is important to
know which process you want to break to abort an operation.
Generally, if you start an operation with the mouse, it either runs
under the MOUSE or OLDMOUSE process, which is deleted the
moment the operation finishes. If you see an OLDMOUSE
process, this is usually the process you want to break.

There are exceptions to the OLDMOUSE rule. Performing
operations from the FileBrowser causes a process with an "FB-"
prefix to be spawned. All operations on the TEdit expanded menus
are run in the main TEdit process associated with that edit window.
If you have one TEdit window open on your screen and one TEdit
expanded menu open, you will have two TEdit processes running:
TEdit, which is the process associated with the main TEdit window,
and TEdit#2, which is the process associated with the expanded
menu.

1 7 - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

Killing the wrong process can cause you to lose information.
USE WITH CAUTION!

Spawning a New Mouse

If by some chance you do manage to kill your mouse process off, it
is easy to start a new one. Type CONTROL-G and choose the
[Spawn Mouse] option on the "Interrupt which process?" menu.
[Spawn Mouse] will always be the very top option. If you create
several new mouse processes, the system will remove all but one
mouse process.

Break Windows

Occasionally, when performing certain operations like accessing a
file which has been moved to another directory, deleted, or
renamed, or trying to create a font which does not exist, NoteCards
will enter a break. When this happens, NoteCards provides you
with information about what caused the break, and asks you what
to do.

Figure 17-3. A break window caused by a font-not
-found error.

In cases like this, you should first determine if the cause of the
break is a simple error. Here for instance, there is no Helvetica 33
bold font. There is, however, a Helvetica 32. The appropriate
action in this case would be to up arrow out of the break window by
typing a ^, and reexecuting the operation with the correct font.

Another possibility is that the font directories may have been moved
and the system may be looking in the wrong place for the fonts.
Here again, you would up arrow out of the break window by typing
a ^, edit the initialization file (see Appendix C, Initialization Files) to
insert the correct values for DISPLAYFONTDIRECTORIES, load
the initialization file, and then retry the operation.

If the break is caused by a missing file, you should up arrow out of
the break window by typing a ^, find the current location of the file,
and retry the operation with the new path and file name.

If you are unable to uparrow out of a break, or the system is
behaving strangely, you should save all your work by closing your
notefiles, and saving your TEdit and Sketch files, perform a Flush

1 7 - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

image & Exit, and reload your system. Flush image & Exit is a
submenu off Logout on the background menu.

Errors While Running NoteCards

The following errors may occur running NoteCards on the Sun
Workstation.

ERROR MESSAGE REASON/FUNCTION RESPONSIBLE

File access timed out Occurs when you try to access a file on a remotely mounted file
system or NFS service that is down.

File too large Self explanatory.

Too-Many-Files-Open Occurs when

1) you exceed the SunOS open file limit (see Chapter 4, System
Use Issues)

2) you exceed system file resources while writing a sysout (using
the Logout command from the background menu.)

Nonexistent directory Occurs when user tries to connect to a nonexistent directory.

No-Such-Directory Occurs when user tries to connect to a nonexistent directory.

Connection timed out Self explanatory.

Bad Host Name Self explanatory.

I/O Errors

These Xerox workstation-specific errors may occur if certain
functions are inadvertently used on the Sun Workstation.

ERROR MESSAGE REASON/FUNCTION RESPONSIBLE

Floppy: No floppy drive Self-explanatory.

on this machine.

Device error: {FLOPPY} Occurs when you try to access a floppy device while running on the
Sun Workstation.

Wrong machinetype Occurs when functions controlling Xerox disk drive device-specific
behavior are entered when running on a Sun.

1 7 - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

Virtual Memory Errors

ERROR MESSAGE REASON/FUNCTION RESPONSIBLE

File-System-Resources-Exceeded Logout, Save image & Exit, Save VM

Protection-Violation Logout, Save image & Exit, Save VM

File-Wont-Open Logout, Save image & Exit, Save VM

URAID

The NoteCards system normally operates as a self-contained
environment. In some unusual circumstances NoteCards may
encounter a situation from which it cannot recover. In this case,
when an unrecoverable emulator error is encountered, the emulator
halts and enters into a small debugger called URAID. URAID
allows you to inspect memory, or to look inside the sysout file, and
attempt to recover from the error.

If you produce the same type of error condition in NoteCards on a
Xerox workstation as you did on a Sun Workstation, you get an MP
error instead of a URAID error.

Entering URAID

Normally, the emulator automatically enters URAID when an
unrecoverable emulator error occurs. If the system freezes and will
not let you regain control, you can throw the system into URAID by
simultaneously holding down the SHIFT, CONTROL and DELETE
(L10) keys or the SHIFT, CONTROL, and NEXT (ALTERNATE)
keys.

URAID Commands

URAID has a few simple commands which you can use to attempt
error recovery. All URAID commands are case sensitive.

h Hard Reset. Attempts to recover by resetting the Lisp stack. Quits
URAID and causes NoteCards to resume execution. This
command should not be used unless you are sure that execution
can be resumed.

e Exit to SunOS. NoteCards will end. If you are going to call
Customer Support, call before you give this command. After giving
this command, nothing is recoverable.

q Quits URAID and returns to NoteCards.

Note: An error may occur while the NoteCards system is running
uninterruptably. The following message signals this error:

Error in uninterruptable system code -- ^N
to continue into error handler

1 7 - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

Disregard the ^N command; it is not supported by URAID.
Use the q command to continue.

Other Fatal Error Conditions

Occasionally, other emulator, operating system, or system
administration errors may occur from which the URAID program
cannot recover. Such error conditions include a process dying, the
emulator going into an infinite loop, the keyboard being lost, or the
system freezing up.

If any of these emulator errors occur, use the UNIX kill

command to kill the lde process.

System Error Conditions

The following are error messages generated by SunOS. For
complete information on these error messages, see the SunOS
Reference Manual, Intro(2).

ERROR MESSAGE DESCRIPTION
:0 Unused

:1 EPERM Not owner

:2 ENOENT No such file or directory

:3 ESRCH No such process

:4 EINTR Interrupted system call

:5 EIO I/O error

:6 ENXIO No such device or address

:7 E2BIG Arg list too long

:8 ENOEXEC Exec format error

:9 EBADF Bad file number

:10 ECHILD No children

:11 EAGAIN No more processes

:12 ENOMEM Not enough core

:13 EACCES Permission denied

:14 EFAULT Bad address

:15 ENOTBLK Block device required

:16 EBUSY Mount device busy

:17 EEXIST File exists

:18 EXDEV Cross-device link

:19 ENODEV No such device

:20 ENODIR Not a directory

:21 EISDIR Is a directory

:22 EINVAL Invalid argument

:23 ENFILE File table overflow

:24 EMFILE Too many open files

:25 ENOTTY Not a typewriter

:26 Unused

:27 EFBIG File too large

:28 ENOSPC No space left on device

1 7 - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

:29 ESPIPE Illegal seek

:30 EROFS Read-only file system

:31 EMLINK Too many links

:32 EPIPE Broken pipe

:33 EDOM Math argument

:34 ERANGE Result too large

:35 EWOULDBLOCK Operation would block

:36 EINPROGRESS Operation now in progress

:37 EALREADY Operation already in progress

:38 ENOTSOCK Socket operation on non-socket

:39 EDESTADDRREQ Destination address required

:40 EMSGSIZE Message too long

:41 EPROTOTYPE Protocol wrong type for socket

:42 ENOPRTOOPT Bad protocol option

:43 EPROTONOSUPPORT Protocol not supported

:44 ESOCKTNOSUPPORT Socket not supported

:45 EOPNOTSUPP Operation not supported on socket

:46 EPFNOSUPPORT Protocol family not supported

:47 EAFNOSUPPORT Address family not supported by protocol
family

ERROR MESSAGE DESCRIPTION
:48 EADDRINUSE Address already in use

:49 EADDRNOTAVAIL Can’t assign requested address

:50 ENETDOWN Network is down

:51 ENETUNREACH Network is unreadable

:52 ENETRESET Network dropped connection on reset

:53 ECONNABORTED Software caused connection abort

:54 ECONNRESET Connection reset by peer

:55 ENOBUFS No buffer space available

:56 EISCONN Socket is already connected

:57 ENOTCONN Socket is not connected

:58 ESHUTDOWN Can’t send after socket shutdown

:59 Unused

:60 ETIMEDOUT Connection timed out

:61 ECONNREFUSED Connection refused

:62 ELOOP Too many levels of symbolic link

:63 ENAMETOOLONG File name is too long

:64 EHOSTDOWN Host is down

:65 EHOSTUNREACH No route to host

:66 ENOTEMPTY Directory not empty

:67 Unused

:68 Unused

:69 EDQUOT Disc quota exceeded

:70 ESTALE Stale NFS file handle

:71 EREMOTE Too many levels of remote in path

:72 ENOSTR Not a stream device

:73 ETIME Timer expired

:74 ENOSR Out of stream resources

:75 ENOMSG No message of desired type

:76 EBADMSG Not a data message

:77 EIDRM Identifier removed

1 7 - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

Known Problems

Printing Browsers

Printing Browsers which contain dashed lines may cause your
printer to hang.

Notefile Indicator Window

Occasionally, after you have reshaped a card, a piece of the text in
the notefile indicator window will be garbled or broken. To
redisplay the text in this window, place the point of the mouse
cursor in the notefile indicator window, hold down the right mouse
button, and select the Redisplay option from the window menu
which pops up.

Fonts

The PostScript Zapfchancery font does not work at this point in
time.

TEdit

When a TEdit window is positioned such that part of the display
region of the window is off the screen, TEdit will display some lines
of text in a garbled fashion. Simply move the window so that the
entire extent of the window is on the screen or redisplay the window
using the Redisplay option on the title-bar right-button mouse
menu.

1 7 - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

17. KNOWN PROBLEMS AND ERROR RECOVERY

[This page intentionally left blank]

A - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A NOTEFILE
CONCEPTS
This document provides a brief explanation of the structure of
notefiles. It also describes how checkpointing, aborting, and
recovering a notefile after a crash work. Finally, it describes the
use of Inspect & Repair to repair a notefile with inconsistent links.
For additional information see Appendix B, The Notefile Inspector.

Note: The information in this appendix was copied whole from the
documentation for a prerelease of NoteCards and has not yet been
updated for this release. As such, it may be inaccurate in places.

Background Concepts

Unique identifiers: UIDs

All objects in NoteCards (i.e., cards, links, notefiles) are assigned a
unique identifier called a UID. Each UID is a 112-bit number that is
guaranteed to be unique across all time and space. UIDs are used
in many places in NoteCards as keys for indexing and retrieving
cards, links, and notefiles.

Card parts

For storage purposes a note card is decomposed into 4
independent parts: contents, title, property list, and links. Each of
these parts is stored separately in the data area of the notefile.
This is discussed in the Notefile Structure section below. When a
card is saved, only those card parts that have changed are
rewritten in the notefile.

The contents of the card are stored on the notefile in a manner
appropriate to its type. Thus a Text card’s content is a text stream
and is written on the notefile exactly the way TEdit writes out text
streams (i.e., text followed by "looks" information). In contrast, all
titles are stored as strings and all property lists as standard Lisp
lists. Storage of Links is described in Section 4 below.

Notefile Structure: index and data areas
A notefile consists of three parts, a header, an index, and a data
area. The header and the index are fixed in size for each notefile.
The data area follows the index area and grows as cards are added
to or modified in the notefile.

The notefile header contains the following information about the
notefile: its UID, a number identifying its format, the checkpoint
pointer, the size of the index, and a pointer to the next available
index entry. If the notefile header is destroyed, it cannot be
automatically reconstructed. Careful hand manipulation of the
notefile by a NoteCards wizard is required to recover a notefile with
a bad header.

A - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

The structure of the index and data area is shown in Figure A-1 .

The index contains a fixed number of index entries. Each index
entry that is in use, contains information for one of the cards in the
notefile. Specifically, an index entry contains 5 fields: a status
character, the card’s UID, and 4 pointers. The status character
specifies whether the index entry is free (not in use) or contains
information for an active or a deleted card. If the index entry is not
free, the UID field contains the UID of the card refered to by this
index entry and the four pointer fields contain the location in the
data area of the 4 parts of its card: contents, title, links and
property list.

The number of index entries is fixed at notefile creation time. The
default is 1000 entries. The number of index entries is
automatically doubled by the notefile compactor if 75% of the
entries are used. The compactor also frees (i.e., makes unused) all
of the index entries that refer to deleted cards. In normal
operation, NoteCards prints a warning whenever more than 90% of
the index entries in a notefile are used. At this point, the notefile
should be compacted to increase the index size.

The data area contains the actual information about the card.
Whenever you change, say, the title of a card, the new title is
written at the end of the data area. The title pointer in the card’s
index entry is then updated to point to this new location in the data
area. Thus, in general, a notefile’s data area grows every time any
part of any card is changed.

The old information, now somewhere in the middle of the data area,
is not removed. However, it is no longer directly accessible
because there is no index entry that points to it. Thus, for most
purposes this old information can be considered "dead space" in
the notefile. The notefile compactor rewrites the notefile,
eliminating all such dead space.

A - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

Notefile Header

Card A
Contents

Index Entry #2

Index Entry #1

 Active: UID: | | | |

Index Entry #N

...

 Index Entry #3

Card A
Title

Card B
Links

Card A
Links

Card B
Contents

Card A
Title

Card D
Title

Card B
Contents

Card A
Prop List

Index Entry for Card A

Legend

Dead Space

Index

Data
Area

Figure A-1. The structure of a notefile.

As long as the notefile has not been compacted, all the old
information can be accessed (and made to be "current") via the
notefile Inspect and Repair facility. Inspect and Repair does this by
ignoring the index and parsing the entire data area to produce a
listing of all the information (both current and old) about a card that
is stored on the data area. See the Inspect and Repair manual for
more information.

Notefile Checkpointing
As long as a notefile is open, its index area is cached in memory.
When a card part is saved, the card part’s information is written to
the end of the data area but the card’s actual index entry on the
notefile is not updated with this new location. Instead, the
appropriate pointer in the card’s in-memory index entry is updated.
Thus, the index in the notefile continues to point to the old
information in the data area, while the in-memory index points to
the new information.

Thus while a notefile is open, its current state is distributed between
the actual notefile and information cached in memory. The current
index is cached in memory. For cards open on the screen (or
cached in memory from the programmer’s interface), the "current"
card part information is contained in an in-memory cache. For all

A - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

other cards, the current information is contained in the data area of
the notefile pointed to by the in-memory index entry.

If a machine crashes while a notefile is open, the information
cached in memory is lost. A crash not only discards changes made
to cards on the screen, but its also leaves the information stored
on the notefile in an inconsistent state. For example, the index on
the notefile may point to old information in the data area. This
occurs because the new information (e.g., a new title) is written to
the data area but only the in-memory index pointers (which are lost
in the crash) have been updated to point to the new information.

Checkpointing forces all of the in-memory information to be written
onto the notefile. Specifically, checkpointing causes all open cards
to be saved and the in-memory index to be written to the notefile’s
index area. Thus, immediately after checkpointing, the notefile
itself contains its current (and consistent) state. If the machine
were to crash at this point, no information would be lost and the
notefile would be consistent.

Checkpointing also writes a checkpoint pointer onto the notefile
header. The checkpoint pointer contains the location of the end of
the data area (i.e., the end of the notefile) at the time the
checkpoint is done.

As the notefile is used after the checkpoint, information is written in
the data area past the checkpoint pointer but only the in-memory
index entries are updated to point to this information. The on-file
index entries still point to the information in the data area before the
location referenced by the checkpoint pointer. Thus, a consistent
notefile can be constructed from the index area and all of the
information in the data area located before the checkpoint location.
This is essentially the notefile as it was at the time of the last
checkpoint. (Note: one small exception is that changes to a card’s
size on the screen are actually written in the middle of the data area
rather than at the end. Thus, truncating a notefile to its checkpoint
location cannot "undo" the reshaping of a card.)

When opening a notefile after a crash, the system will insure that
the notefile is in a consistent state. It does so by truncating the
data area to the last checkpoint location, saving the truncated
information if requested by the user. This leaves the notefile in the
state it was during the last checkpoint before the crash.

Aborting a notefile does the same thing. It truncates the data area
to the last checkpoint location, thereby eliminating all changes
made to the notefile since the last checkpoint. It also discards the
in-memory index. Thus, the notefile is left in the exact state it was
after the last checkpoint.

Finally, note that notefile Close forces a checkpoint. Therefore,
aborts and recovery after crashes actually restore the NoteFIle to
its state as of the last user-initiated checkpoint or close.

A - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

Storing links and reparing notefiles with inconsistent links
The links card part is divided into three subcomponents: to-links,
from-links, and global links. The to-links is a list of all links whose
Source is the given card (i.e., that point from the card to some other
card). The from-links is a list of links whose Destination is the given
card (i.e., that point from some other card to the given card).
Finally, the global links is a subset of the to-links that includes only
the Global links originating in the given card.

Given this scheme, every link is stored on the notefile in three
different places. First, if the link is Local it is stored inside the link
icon which in turn is inside the content part of the link’s source card.
If the link is global, it is stored in the global links subpart of its
source card. Second, the link is stored in the to-links list of its
source card. Third, the link is stored in the from-links list of its
destination card.

These three records of the same link occasionally get out of synch,
resulting in an inconsistent notefile. There are a number of
symptoms of such inconsistency. For example, the ShowLinks
display for card may indicate that the card is a destination for a link
from some source card X while the ShowLinks display for X does
not include a ToLink to that destination card. Occasionally,
inconsistent links will also result in link icons that contain the words
"DELETED" or "FREE" when displayed on the screen. This usually
means that the card at one end of a link was deleted, but somehow
the links of the card at the other end were not updated. Such link
icons cause NoteCards to break when you try to follow them.

One function of the NoteCards Inspect & Repair facility is to
resynchronize the three records for all links in the notefile. The
inspector’s third phase rebuilds the links as follows. First it
removes all to- and from-links for every card. Then it reads the
contents for each card and recreates to-links and from-links by
looking at the links found inside the link icons in the card’s content
and in its global links list. In addition, the links rebuilder phase of
the notefile inspector can rebuild filebox contents from cards
pointed to by the filebox, and the set of all link types from the list of
all links.

A - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX A. NOTEFILE CONCEPTS

[This page intentionally left blank]

B - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B NOTEFILE
INSPECTOR

The main purpose of the notefile inspector is to repair notefiles by
rebuilding their links. However, the inspector is generally useful for
checking the health of notefiles, deleting cards and backing up
cards (or more precisely, card parts) to previous versions. Thus,
you may want to use the inspector even if your notefile is healthy
and doesn’t need its links rebuilt.

The notefile inspector has three separate phases: reading the
notefile’s data area searching for healthy card parts, allowing the
user to make modifications, and rebuilding the links. The process
can be aborted after phase 1 or 2 if desired. This document
describes each of the three phases in turn and concludes with tips,
strategies and pitfalls to watch for.

Using the notefile inspector requires some knowledge of the
innards of notefile organization. We recommend that you read
Appendix A, Notefile Concepts, before continuing.

Note: The information in this appendix was copied whole from the
documentation for a prerelease of NoteCards and has not yet been
updated for this release. As such, it may be inaccurate in places.

Running the Notefile Inspector: Phase 1: Scouring the Data Area
To start the inspector on a notefile, first be sure that the notefile is
not open. Then select the item Inspect&Repair from one of the
NoteFile Ops menus (i.e. from the notefile Banner, the MenuBox
icon or the notefile FileBrowser). There is one option available at
this level by "pulling to the side" called ReadSubstances. This
ensures that substances of all cards pronounced valid by the
inspector are readable. If this option is not invoked, then a check is
still run on the length of the substance, but not on its contents.
Unfortunately, the ReadSubstances option requires MUCH more
work by phase 1. We recommend that you only use this option if
Phase 3 (link rebuilding) breaks with some error like "Bad Piece
Tbl" from TEdit. In that case, up-arrow out of the break and start
the Inspect&Repair process over again, this time using the slower
but more comprehensive ReadSubstances option.

Selecting Inspect&Repair will invoke phase 1 of the inspector,
wherein the data area of the notefile is scoured for valid card parts.
A record of all such parts is kept and statistics printed out at the
end. You’ll be asked to position the window in which those
statistics as well as later inspector communications will be printed.
(Note that closing this window will abort the Inspect&Repair
process if you confirm.) You can monitor the progress of phase 1
by watching the prompt window. It will be printing messages like
"Processing byte xxxxx of yyyyy."

When phase 1 has completed and you’ve positioned the interaction
window, statistics on your notefile will be provided. You’ll be told
the total number of cards and the number of deleted ones. If all
seems well with the world, the next line will read "All non-deleted

B - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

cards look okay." If not, there will be various messages outlining
the problems. (See Figure 1.)

Figure B-1: Snapshot of a sample interaction window

Normally, the messages describing problems are of the form shown
in Figure 1, namely a count of the number of cards broken in a
given way. Some messages are a bit trickier. If you have fileboxes
with bad substances (i.e. main card data), then you’re told that if
you don’t wish to delete or back up such fileboxes to previous
versions, then phase 3 will rebuild them. If, however, the filebox is
one of the top level boxes (Contents, Orphans, ToBeFiled), then
deletion is not an option. (See Section 3.)

If there are cards having user-defined types whose type definition
code has not been loaded, then you’ll get a message to that effect,
something like "<n> cards have unknown card types (FOO BAR)."
At this point you should load the lisp files containing the definitions
of the unknown card types. If not, then these cards will show up
with bad substance in phase 2. If you do load the appropriate files,
then run Recheck Bad Cards to get the bad cards list recomputed
before inspecting any cards.

If you have a card for which no substance versions could be read,
then you’ll also get unknown card type messages for it (reading
something like "<n> cards have unknown card types (NIL)"). This is
because the inspector couldn’t find a card type on the notefile for
that card.

A menu of options appears attached to the upper right corner of the
interaction window. (See Figure 2.) The particular options you get
in that menu depend on the state of your notefile and are described
below. The last three options appear in all cases. The other two
may or may not be present in the menu you get. In any case, you
should select one of the options before attempting any other
NoteCards-related work.

Figure B-2: The Phase 1 options menu.

Continue Repair

This option is only available if the notefile is in fairly good health
(i.e. okay except for fileboxes to rebuild or global links to rebuild -
see Section 3). Selecting it causes Inspect&Repair to move to
phase 3 and rebuild your notefile’s links.

B - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

End Inspect & Repair

This option is only available if it seems that you don’t need to
continue to the link rebuilding phase. You will not get this option if
you’ve deleted any cards, or generally if there are problems with
the notefile. Choosing this option causes the Inspect&Repair
process to end gracefully (via a normal checkpoint and close
notefile), thus skipping phase 3 of rebuilding links.

Abort

Choosing this option aborts the Inspect&Repair process entirely,
throwing away any changes you might have made (such as card
deletions or back ups.) It requires your confirmation in the prompt
window.

Recheck Bad Cards

Recompute the bad cards list by running the last part of phase 1
again. This is useful if you’ve loaded files containing definitions of
previously undefined card types.

Inspect Cards

This brings up a menu of titles of active cards with which you can
inspect, delete, or back up particular cards. There is a "pull-across"
menu item called Include Deleted Cards, which if selected will
include card titles for deleted cards as well as active ones. Using
this option, one can undelete deleted cards and restoring them to
some previous version.

Running the Notefile Inspector: Phase 2: Your Chance to Tinker
After selecting Inspect Cards in the interaction window’s attached
menu, a menu containing numbered titles of notecards pops up and
is attached to the interaction window’s lower left corner. It contains
the first 10 characters of titles for all active cards and possibly
deleted cards as well if you selected the submenu item Include
Deleted Cards described above. The menu can hold some 100
card titles. If your notefile has more than that, then the menu is
composed of several pages each containing around 100 cards.
Rapid switching between pages is possible. Figure 3 below shows
a sample card inspector menu.

Attached to the upper right corner of the cards inspector menu is a
menu containing at least the three options: Abort, Done and
Search. If the menu has multiple pages (there are more than 100
active cards in the notefile), then the attached menu will also
include the items Next Page, Previous Page, and First Page.
Selecting these causes the current menu to be exchanged for
either the next menu, previous menu, or first menu, respectively.

Clicking Abort causes the entire Inspect&Repair process to quit,
throwing away any changes you’ve made. It requires your
confirmation in the prompt window. (This is equivalent to choosing

B - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

Abort from the inspector window as described in the previous
section.)

Choosing Done from this attached menu indicates that you’re done
tinkering with card parts and wish to return to the main interaction
window. This causes the card inspector menu to close and the
phase 1 process outlined in the previous section to be performed
again (leaving you looking at something like Figure 1). Note,
however, that the scanning of the data area is not repeated (it takes
way too long). Rather, your changes are made to the in-core index
array and the statistics on bad cards are recomputed. This cycle of
compute statistics (phase 1) followed by inspect and tinker (phase
2) can be repeated as often as desired. Eventually, you must either
abort, end the Inspect&Repair via End Inspect&Repair, or
continue to phase 3 via Continue Repair.

Choosing Search from the attached menu allows you to find those
cards having titles matching a given string. This works much like
the Search card in Notecards. That is, you specify a string and the
list of cards whose titles contain that string is printed out. This is
handy, for example, if you want to undelete a card, but only know
its title. Note that the search is case insensitive.

The card inspector menu

In the card inspector menu, those titles corresponding to deleted
cards have a line drawn through them. Those having some sort of
problem appear shaded. In addition, an upper-case letter suffix is
attached to such entries indicating the problem. For example, in
the card inspector menu shown in Figure 3, the shaded menu item
"10: BNF for Li|S" indicates that the card with title beginning "BNF
for Li" has bad substance. The letter codes are S, L, P, and T
indicating bad substance, links, property list, and title, respectively.
If such a letter code appears in lower case, then the meaning is that
the current version of that card part is beyond the last checkpoint
pointer. (There may have been a crash, for example, thus
preventing the notefile from closing normally.)

Figures 3 and 4 show both pages of a two page card inspector
including deleted cards. Sometimes deleted cards (e.g. "110:
NIL|LSPT" in Figure 4) show up shaded with LSPT suffixes. This is
because they were deleted before any data about the card was
written to the notefile. Thus there are no valid card parts to back up
to for those cards. But often, deleted cards can be backed up to
previous versions. (See Figure 6 and discussion below.)

B - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

Figure B-3: A card inspector menu: Page 1.

Figure B-4: A card inspector menu: Page 2.

At the top of the first page of any notefile’s card inspector, there are
entries for the top level boxes and special cards. These are labeled

B - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

"1: Contents", "2: Orphans", "3: To Be File", "4: Link Label", and "5:
Registry".

Note that if the inspector shows no entry in the card inspector menu
for some card, it is because that card has been deleted. If you’ve
asked to show deleted cards and it still doesn’t appear, it’s because
the notefile has been compacted since that card was deleted

If you button card title entry in the card inspector menu, then a
popup menu allows up to two choices Inspect and/or Delete. If the
card is currently deleted (has a line drawn through it), then the
Delete option is replaced by Undelete. Certain cards cannot be
deleted and thus their popup menus only contain the Inspect
option. These are the 5 special cards mentioned above.

Choosing Delete or Undelete from this popup menu causes the
card to be deleted or undeleted, respectively and the line through
the menu item either drawn or undrawn. Note, however, that this
action (and all others) can be undone by choosing ABORT from
either the card inspector menu or the interaction window menu.

Choosing Inspect from the popup menu for a card entry brings up a
card parts inspector for that card.

The card parts inspector

Figures 5 and 6 below show examples of card parts inspectors. A
card parts inspector is composed of four attached menus arranged
vertically and one attached operations menu atop the stack.

B - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

Figure B-5: Card parts inspector for a browser card.

In Figure B-5, the four menus contain entries for every valid version
of card parts for the browser card with title "Tailorability". The top
menu is for versions of titles and below that are menus for versions
of the card’s substance, links, and prop list. For example, the
Substance submenu contains entries for 6 versions of the
substance of this card. The current version of each card part is
shaded. Each menu entry gives the date that that version was
written. (Very old notefiles may show "NO DATE AVAILABLE" in
place of a real date.)

Figure B-6: Card parts inspector for a deleted card.

Figure B-6 shows a card parts inspector for a deleted text card and
thus allows the UNDELETE option. By clicking UNDELETE, this
card can be backed up to its last version.

If the current version of the card part is bad, then the menu entry
will be a string so indicating, for example, "BADSUBSTANCE."

The title of the top menu includes the card’s type. In addition, each
menu item contains some information, in square brackets, before
the date. In the title versions menu, this information is the first few
characters of the title. In the substance versions menu, it is the
number of bytes in the substance. In the links versions menu, it is
a triple of numbers giving the number of to links, from links, and
global links for this card. Finally, the proplist versions menu
includes the number of entries on the property list for this card (i.e.
twice the number of attribute-value pairs).

Atop the stack of menus is an attached menu of operations,
described below.

CANCEL

This cancels this card parts inspector, throwing away any changes
made.

B - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

UPDATE

This closes the card parts inspector, incorporating any changes
(backing up to previous versions of card parts) you might have
done.

DELETE

This option closes the card parts inspector and deletes the card.

UNDELETE

For cards that have been deleted, this option appears instead of
DELETE. Choosing it causes the card to be undeleted.

RESET

This causes the selections in the submenus to be restored to the
values they had when the card parts inspector was first brought up.
(Equivalent to doing CANCEL and then inspecting this card again
from the card inspector menu.)

Note that cards that can’t be deleted (like the top level fileboxes)
don’t have the DELETE option on their card parts inspector.

Buttoning an entry in a submenu of a card parts inspector pops up
a short menu unless the entry is for a bad version (e.g.
"BADSUBSTANCE"). This menu contains at least the entry
Inspect and possibly Change Selection, if the selected entry is not
the same as the current one (i.e. not shaded).

Choosing Inspect allows further inspection of the details of the
selected card part version. (See Figure B-7 below.) For example,
inspecting a title version brings up the Interlisp inspector on a
record containing the title, date and card object. Similarly,
inspecting a links or prop list version brings up the Interlisp
inspector on a record containing the lists of links (i.e. to links, from
links and global links) or the prop list. Note that changing values in
these Interlisp inspectors has no affect on the notefile and is
ignored.

B - 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

Figure B-7: Card part version inspectors for title, links and prop list.

All substance versions for card types inheriting from Text, Sketch
and Graph can currently be inspected. (This includes most cards
except those having user-defined substance types, like the NCFile
card.) Inspecting a card’s substance version will bring up a window
showing a copy of the substance. (Note that changes to this copy
have no affect on the notefile.) Any links in the substance of the
card will show up as bracketed strings describing the link.

Choosing Change Selection from the card part version popup
menu causes the current selection to be changed to the selected
one. This changes a card part’s current version to another legal
one. (This change can be undone by resetting or canceling the
card parts inspector as well as by later aborting the card inspector
or interaction window.)

Running the Notefile inspector: Phase 3: Rebuilding your links
To complete the Inspect&Repair process, select the Continue
Repair option from the interaction window menu. This invokes
phase 3, the links rebuilder. Normally, this simply rebuilds links
from card substances. In certain circumstances, it may do extra
work as well. If your link types list is bad, and you didn’t back it up
to a previous version, then phase 3 will rebuild it. If there are
fileboxes with bad substances that you haven’t either deleted or
backed up to previous versions, then phase 3 will rebuild them.
Finally, if there are cards with bad links that you haven’t backed up
or deleted, then phase 3 will rebuild those links as well. (It rebuilds
ALL to links and from links anyway. For those cards, it will rebuild
global links as well.)

First the links rebuilder removes all the to and from links for every
card. Then it reads the substances for each card and recreates to

B - 1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

links and from links by looking at the links found inside the link
icons in the card’s substance.

The link rebuilder is also able to rebuild bad filebox substances. It
does this by looking for all cards in the notefile with from links from
the bad box and creating a new substance for the box containing
only links to those cards. This process loses any text that the box
might have contained as well as scrapping the original ordering of
links. Nonetheless, in some cases this may be preferred to backing
up the substance to a previous version or to deleting the box
altogether.

The links rebuilder can rebuild the notefile’s list of link types in a
similar manner. That is, it records the set of link types seen on
valid links and replaces the old links types with the new set. Note
that this throws away any link types for which there are no links in
the notefile.

Finally, the links rebuilder can rebuild bad global links for a card. It
does this by looking for any cards with from links from the bad card
that are global. This assumes that the card at the destination end
has good links. Thus, if the cards at both ends of a global link have
unreadable links, then there is no way to recover that link.

Note that the links rebuilder automatically files any unfiled cards in
the ToBeFiled box. A message is printed in that case.

Tips and hints for using Inspect & Repair
This section contains a list of strategies and tips for using
Inspect&Repair. For the most part, they are ordered from the
useful and obvious to the esoteric. Several of these are implicit in
the first four sections of the document, but are repeated here for
emphasis and completeness.

When in doubt, abort!

All your changes will be lost, but then if you’re uncertain about
what’s happened this is the safe course. Often, in fact, you may
simply want to check the health of your notefile and abort without
tinkering.

Fixing versus tinkering

There are two main ways to use the inspector, either for fixing a
broken notefile, or tinkering with a healthy one. The latter case
occurs when you wish to recover some card that was inadvertantly
deleted. Or back up a card that was accidentally changed to its
original version.

Inspect & Repair after a crash

If you try to open a notefile and you get the infamous "Work was
done since last checkpoint..." message, then you’re given the
chance to run Inspect&Repair on the notefile. This is a good idea

B - 1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX B. NOTEFILE INSPECTOR

whenever you wish to recover that post-checkpoint work. The
inspector will integrate the changes you made since that
checkpoint. (You do have to continue through phase 3, however.)

Compacting

It used to be the case that old versions of card parts were in the
notefile but inaccessible. Thus, there was little reason not to
compact a notefile often. Now there is a tradeoff between the need
to save space by compacting versus the need to be able to back up
using Inspect&Repair. Probably the safest course is to keep a
backed up copy of the pre-compacted notefile around until you
have confidence that the compacted one is healthy and that you
have no need for previous versions of any of its cards.

Inspect & Repair closes the notefile before starting

This means that if you are working in your notefile and notice a card
you’d like to inspect a previous version of, you must record the
card’s title and close the notefile. Then, run Inspect&Repair, find
the card’s entry in the inspector menu using the Search facility, and
tinker with it as desired.

Fixing enough problems to allow phase 3 to run

You can’t run phase 3 unless Inspect&Repair thinks your notefile is
above a certain threshold of health. There are certain problems it
can handle (e.g. bad filebox substances, see Section 3), and others
that it can’t (e.g. bad substance for non-filebox). You have to
decide either to fix these sorts of problems yourself in phase 2, let
phase 3 attempt to rebuild them, or just abort the whole thing
(always an option).

Sometimes these decisions can be tricky. For example, suppose a
filebox’s substance is bad. Call it BadBox. Should you (a) delete
BadBox altogether, (b) back its substance up to a previous version,
or (c) allow phase 3 to rebuild it by looking for from links in other
cards from BadBox? Option (c) may not be advisable if there was
important text in BadBox or if the order of cards in BadBox was
important. On the other hand, option (b) may be of little use if the
last good version is too out of date (or if there is no good version at
all

C - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION
FILES

Once your system administrator has installed the NoteCards
software on your Sun, you can customize your NoteCards
environment. The initialization file allows you to specalize your
NoteCards environment to the idiosyncracies of your individual site.
This file is automatically loaded when you start a fresh sysout.

Site Initialization File

When NoteCards starts, it reads in a site initialization file. This file
sets things like the pointer to fonts, printers, and other site-specific
parameters.

Locating the Initialization File

When running under SunOS, NoteCards looks for a site
initialization file in a number of locations.

LDEINIT If the UNIX environment variable LDEINIT is set to a complete
NoteCards file name, NoteCards looks there first for the site
initialization file:

prompt% setenv LDEINIT /users/smith/site-init.lisp

- or -

prompt% setenv LDEINIT /users/smith/nc-init

/usr/local/lde/site-init.lisp If LDEINIT is not set or there is no file with the name given,
NoteCards looks for a site initialization file called
/usr/local/lde/site-init.lisp. The distribution tape
contains a standard site initialization file in the NoteCards lisp
directory /usr/local/lde/lisp/init.NoteCards which is
linked to /usr/local/lde/site-init.lisp. You or your
system administrator should customize this file for your site.
The comments below and in the standard site-init.lisp
describe the parameters it sets and gives some guidelines for
customizing it to your local conditions.

{DSK}INIT.LISP NoteCards looks for a site initialization file on your NoteCards home
directory ({DSK}). Chapter 4, System Use Issues, describes the
{DSK} device.

Finally, to load an initialization file after you have been working in a
sysout , FileBrowse the directory the initialization file is in, select
the file with the left mouse button, and select the Load option. The
file will load and reset all of the initialization variables.

C - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION FILES

Figure C-1. A FileBrowser loading an initialization file.

Initialization File Structure

The structure of each command in the initialization file is as follows:

(SETQ variable-name value)

Each command must appear between parentheses. There must
always be an even number of parentheses. Every open
parenthesis must have a corresponding close parenthesis. SETQ is
the assignment command. The variable name is always a single
word, and the value is usually either a single word preceded by a
single quote mark (’) or a list of words enclosed in parentheses
preceded by a single quote mark.

The initialization file must always start with two specific lines. The
first line must be a comment line, indicated by starting the line with
a semicolon (;). The second line must contain the command
(CL:IN-PACKAGE "INTERLISP").

Site Variables

The following NoteCards variables should be set in your site
initialization file.

LISPUSERSDIRECTORIES The list of paths to search for library files. Every path in this list
should also be in DIRECTORIES.

(SETQ LISPUSERSDIRECTORIES

 ’("{DSK}/usr/local/lde/lispusers/"

 "{DSK}/usr/local/lde/lisplibrary/"))

Note that each directory name is a string enclosed in double quotes
("). Unless you are a developer who is modifying NoteCards, there
will probably never be any reason to change these values. You
only need to change the value for this variable if you move the files
in these directories to some other location, such as a central
fileserver.

DIRECTORIES The list of paths to search for files that are not found in the current
NoteCards connected directory. The current NoteCards connected

C - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION FILES

directory is distinct from the current UNIX connected directory, and
NoteCards will not necessarily search for files in the UNIX
connected directory.

(SETQ DIRECTORIES (COPYALL LISPUSERSDIRECTORIES))

Note that there is no quote mark (’) before the parenthesis in front
of COPYALL. If you set DIRECTORIES in this fashion, this
command must follow the one which sets
LISPUSERSDIRECTORIES.

You can also simply copy the directories from
LISPUSERSDIRECTORIES, e.g.

(SETQ DIRECTORIES

 ’("{DSK}/usr/local/lde/lispusers/"

 "{DSK}/usr/local/lde/lisplibrary/"))

Unless you are a developer who is modifying NoteCards, there will
probably never be any reason to change these values.

DISPLAYFONTDIRECTORIES A list of directories to search when the system is looking for display
fonts. The site initialization file should set
DISPLAYFONTDIRECTORIES to a list of of path names where each
path name is represented as a string in double-quotes ("), e.g.,

(SETQ DISPLAYFONTDIRECTORIES

 ’("{DSK}/usr/local/lde/fonts/display/presentation/"

 "{DSK}/usr/local/lde/fonts/display/publishing/"

 "{DSK}/usr/local/lde/fonts/display/printwheel/"

 "{DSK}/usr/local/lde/fonts/display/miscellaneous/"

 "{DSK}/usr/local/lde/fonts/display/jis1/"

 "{DSK}/usr/local/lde/fonts/display/jis2/"

 "{DSK}/usr/local/lde/fonts/display/chinese/"))

If you remove the Chinese and Japanese fonts from the font
directories it is not necessary to edit this variable to reflect the
change.

You only need to change the value for this variable if you move the
fonts to some other location, such as a central fileserver. If you do
change the value for this variable, note that each location is
represented as a double quoted string and that each path name
must end with a slash (/).

INTERPRESSFONTDIRECTORIES A list of directories for the system to search for Interpress font
widths files. The site initialization file should set
INTERPRESSFONTDIRECTORIES to a list of of path names where
each path name is represented as a string in double-quotes ("),
e.g.,

(SETQ INTERPRESSFONTDIRECTORIES

’("{DSK}/usr/local/lde/fonts/interpress/presentation/"

 "{DSK}/usr/local/lde/fonts/interpress/publishing/"

 "{DSK}/usr/local/lde/fonts/interpress/printwheel/"

 "{DSK}/usr/local/lde/fonts/interpress/miscellaneous/"

 "{DSK}/usr/local/lde/fonts/interpress/jis1/"

 "{DSK}/usr/local/lde/fonts/interpress/jis2/"

C - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION FILES

 "{DSK}/usr/local/lde/fonts/interpress/chinese/"))

If you remove the Chinese and Japanese fonts from the interpress
font directories it is not necessary to edit this variable to reflect the
change.

You only need to change the value for this variable if you move the
interpress fonts to some other location, such as a central fileserver.
If you do change the value for this variable, note that each location
is represented as a double quoted string and that the lowest
subdirectory name in each path must end with a slash (/).

POSTSCRIPTFONTDIRECTORIES The list containing the name of the PostScript font width files, for
PostScript printers.

(SETQ POSTSCRIPTFONTDIRECTORIES

 ’("{DSK}/usr/local/lde/fonts/postscript/"))

You only need to change the value for this variable if you move the
PostScript fonts to some other location, such as a central fileserver.
If you do change the value for this variable, note that the location is
represented as a double quoted string and that the lowest
subdirectory name in the path must end with a slash (/).

USERGREETFILES The list of places to search for personal initialization files. If not set
in the site initialization file, no personal initialization file is used.
The list should be similar to the following

(SETQ USERGREETFILES

 ’(("{DSK}~/lde/INIT.LISP") ("{DSK}~/INIT.LISP")))

This will search for the file INIT.LISP in your home directory and
in the subdirectory lde immediately under your home directory. The
file INIT.LISP can be renamed to what ever you want it to be, but
it has to be a name which is used by all users of the NoteCards
system.
Unless you are a developer who is modifying NoteCards, there will
probably never be any reason to change these values or use user
greet files.

DEFAULTOSTYPE Specifies the default operating system type for file servers.

(SETQ DEFAULTOSTYPE ’UNIX)

Unless you are using other than Sun NFS (Network File System)
servers there is no reason to change the value of this variable.

DEFAULTPRINTINGHOST A list of names of default printers.

(SETQ DEFAULTPRINTINGHOST NIL)

NIL is the default setting and signifies that there are no default
printers specified. This variable can also be set from the Set
Default Printer background menu option, (see Chapter 16,
Printing).

The following example shows how to set DEFAULTPRINTINGHOST
to a mixed list of PostScript and Interpress printers.

(SETQ DEFAULTPRINTINGHOST

C - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION FILES

 ’(MAUI |Tremor:mv:envos|))

- or -

(SETQ DEFAULTPRINTINGHOST

 ’(MAUI "Tremor:mv:envos"))

MAUI is the name of a PostScript printer, |Tremor:mv:envos|
the name of an interpress printer. Each interpress printer name
must be surrounded by vertical bars (|) or double quotes (").

DEFAULTPRINTERTYPE The default printer type for all the available printers.

(SETQ DEFAULTPRINTERTYPE NIL)

Possible values are ’POSTSCRIPT, ’INTERPRESS, and NIL
meaning unspecified. Note that ’POSTSCRIPT and

’INTERPRESS are all preceded by single quote marks (’), but that
NIL is not.

If all your printers are PostScript printers you would make the
following setting.

(SETQ DEFAULTPRINTERTYPE ’POSTSCRIPT)

If all your printers are not of the same type set
DEFAULTPRINTERTYPE to NIL, and add the following command
for each printer.

(PUTPROP ’Printer-Name ’PRINTERTYPE ’Type)

Where ’Printer-Name is the name of the printer and ’Type is
one of ’POSTSCRIPT, ’INTERPRESS, or ’PRESS, for example.

(PUTPROP ’MAUI ’PRINTERTYPE ’POSTSCRIPT)

(PUTPROP ’|Tremor:mv:envos| ’PRINTERTYPE ’INTERPRESS)

IDLE.PROFILE The lines below set the IDLE.PROFILE such that any user with a
valid UNIX login is allowed to exit idle mode.

(LISTPUT IDLE.PROFILE ’AUTHENTICATE ’UNIX)

The value of AUTHENTICATE determines what mechanism is used
to check passwords. If ’UNIX, it checks your password with
SunOS. If T, it uses the NS authentication protocol (this requires
the presence of an NS Authenticatioin server accessible via the
network). If NIL, the password is not checked at all--any password
is accepted. The latter is only useful if ALLOWED.LOGINS contains
*.

(LISTPUT IDLE.PROFILE ’ALLOWED.LOGINS ’(*))

The value of ALLOWED.LOGINS determines who is allowed to exit
idle mode. If the value is NIL no login is required at all to exit idle
mode. If the value is ’(*), the system requires a login but lets
anyone exit idle mode.

(LISTPUT IDLE.PROFILE ’SAVEVM NIL)

This line sets the IDLE.PROFILE such that NoteCards does not
save the virtual memory file to disk when it enters idle mode. To

C - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION FILES

have NoteCards automatically save the virtual memory file to disk
when it enters idle mode, replace NIL in the line above with T.

\\BeginDST The day of the year on or before which Daylight Savings Time
takes effect (i.e., the Sunday on or immediately preceding this day).
Must be set to 98 in the USA if NoteCards is to perform time
computations correctly. (Note: This number is subject to future
Congressional legislation.) If you are in a region where Daylight
Savings Time is not observed, use the value 367.

(SETQ |\\BeginDST| 98)

\\EndDST The day of the year on or before which Daylight Savings Time
ends. Must be set to 305 in the USA.

(SETQ |\\EndDST| 305)

XCL:*LONG-SITE-NAME* A long version of your company’s name, for example, "Envos
Corporation."

(SETQ XCL:*LONG-SITE-NAME* "Envos Corporation")

XCL:*SHORT-SITE-NAME* A short version of your Company’s name, for example, "Envos."

(SETQ XCL:*SHORT-SITE-NAME* "Envos")

C - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX C. INITIALIZATION FILES

[This page intentionally left blank]

D - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

CHECKSUM
APPENDIX D. CONTROL

If you encounter inexplicable problems shortly after you install
NoteCards, they may be due to files being corrupted — the release
tape may have been damaged, errors may have occurred while the
tape was being read, etc. If you have unexplained problems, we
recommend that you verify the checksums of your installed files.

Description

The script generates checksum files named filename.check and
compares them to the released filename.sum residing in the
/checksumdir subdirectory.

The checksum script reports inconsistent files, the correct
checksum values for the files, and an error message. The
checksum of individual files can be generated with the UNIX
command: sum filename.

Commands

ldechecksum [-cg] [ncdir [dir | dirgroup]] [Command]

-c Generates checksums for your installed files and compares them
with correct values. This is the default action.

-g Generates checksums for the files specified.

ncdir Name of the NoteCards installation directory. Usually it is
/usr/local/lde.

dir Any specific directory residing under ncdir. Only relative pathnames
with respect to ncdir are accepted.

dirgroup The directory group. Valid directory groups are system, fonts,
and all.

system includes lisp, sysouts, install.sunos3.mc68020,
install.sunos4.mc68020, install.sunos4.sparc.

fonts includes the display, interpress, press and postscript
directories.

all includes all of the above.

Output

As it begins checking each directory, the script prints a message in
the form:

Checking directory: /usr/local/lde/subdir

D - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX D. CHECKSUM CONTROL

Error and warning messages may be in one of two forms:

< E > 36610 6973 NoteCards.sysout

Indicates that file NoteCards.sysout is erroneous or does not reside
in the directory. The correct checksum of 36610, together with the
size (6973 kbytes) of the file, are shown.

< W > /usr/local/lde/fonts/display/chinese:

Directory not installed

Indicates that Chinese fonts were not installed or were removed
after NoteCards was installed.

Examples

prompt% ldechecksum /usr/local/lde

All files in the installed NoteCards directories in /usr/local/lde
are checked.

prompt% ldechecksum /usr/local/somedir/lde system

This example checks all files in:

/usr/local/somedir/lde/install.sunos3.mc68020

/usr/local/somedir/lde/install.sunos4.mc68020

/usr/local/somedir/lde/install.sunos4.sparc

/usr/local/somedir/lde/sysouts

/usr/local/somedir/lde/lisp

prompt% cd/usr/local/lde

prompt% ldechecksum -c . fonts/display

This example checks only the display font directories. The period
(.) is used because you are positioned under the current
NoteCards installation directory.

D - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

APPENDIX D. CHECKSUM CONTROL

[This page intentionally left blank]

G L O S S A R Y - 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY
abort To terminate any action before it is finished. When selected from

the "Notefile Ops" menu, Abort means to close a notefile without
saving your changes to the notefile.

back links System generated to-links. These links point from a Document or
LinkIndex card back to the source cards from which the Document
or LinkIndex was built. Hence the name "back link."

background menu The menu brought up by holding the right mouse button down in
the gray region not associated with any windows.

backward links The same as from-links. This term is used when setting Browser
and LinkIndex card parameters.

Banner The location from which you access old cards and create new
ones. Also called "notefile Banner." The "Solar System" Banner is
shown below.

bit map A two-dimensional grid of zeros and ones where a zero represents
white space and a one represents black space. The screen is a bit-
mapped display.

break The state entered by NoteCards during error processing that allows
you to recover from the error by typing Lisp commands in the break
window. If you don’t know what to do with a break, type ^ after the
prompt to abort the operation, then start over.

When a break has occurred, we recommend that you perform an
Inspect & Repair on the notefile after you have closed it.

break window A window that opens when a break occurs. The title is usually the
name of the broken function.

button A button on the two- or three-button mouse.

card Refers to any card type in the NoteCards system. Contrast with the
entry for note card.

card contents The text or graphics in the body of a card.

card menu The menu brought up when you hold the left mouse button down in
a card’s title bar.

card type Specifies a card’s functional capabilities. NoteCards comes with
eight card types. Each card type is specalized to perform a specific
of operation, e.g., Search cards perform searches on card titles.
Document cards create documents.

card-type bit map The image on the left of the link icon which indicates the card type.
In the image below, the card-type bit map indicates a FileBox card.
See the section "Change Display Mode" in Chapter 8 for more a
complete list of card-type bit maps.

card UID The number given to each card which uniquely identifies it. See
Appendix A for more information.

G L O S S A R Y - 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

caret A blinking arrowhead in a window, , indicating where the keyboard
characters will appear when typed. You change the position of the
caret by moving the mouse cursor and pressing the left mouse
button.

cascading menu Same as submenu.

cross-file link A link which points to a destination card stored in a notefile other
than the source card’s notefile.

click To press and release a mouse button, the left button unless
otherwise indicated.

connected directory The directory the system uses by default when you do not specify a
complete path when saving, retrieving, or loading a file. Also
referred to as the default directory.

connection A line drawn between two nodes in a Graph or Browser card. A
connection may or may not represent a link.

control point A position that helps to determine the location and shape of a
Sketch element. Each element has one or more control points. In
the following sketch, the ellipse has three control points indicated
by the boxes.

current selection The text in a Text card that is marked as selected in some way
(underlining, highlighting, etc.) and has the caret at one end of the
selection, e.g.

 dashing The property of a line that causes it to be dashed., e.g.

Links in browser cards may be dashed.

default An action taken (or value specified) unless another is specified by
the user.

deleted icon An icon which appears in a source card when the destination card a
link points to is deleted. Shown below.

destination card The card which is opened (or flashed if already open) when you
click on a link icon.

directory The name of a group of related files. In UNIX a directory is a file
containing a list of other directories and files.

extension A string appended to a file name, indicating the type of file. The
extension is separated from the file name with a period; the version
number is separated from the extension by a semicolon. Sketch
files have the extension ".sketch" followed by a version number.
See file name.

G L O S S A R Y - 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

file name A character string used to refer to a file stored on disk. A full file
name is composed of the file name followed by the file extension,
followed by the version number, e.g. "Solar System. NOTEFILE;2."
Here the file name is "Solar System," the extension is "NOTEFILE,"
and the version number is "2." The file name and extension are
separated by a period and the extension and version number are
separated by a colon. See extension and version number.

file server A computer that provides file storage and retrieval service for users
on the network.

font A collection of characters in one size and style of type, e.g., 10-
point Modern Italic.

font family A complete assortment of letters, numbers, punctuation marks, etc.,
of a given design, such as Modern or Classic.

font size The distance from the top of the highest character in a font to the
bottom of the lowest.

forward links To-links and global to-links. This term is used when setting
Browser and LinkIndex card parameters.

from-link A link corresponding to every to-link and global to-link. From-links
point from the destination card to the source card. All from-links
are global.

global links Links whose start point is the card itself and not some point in the
card’s contents.

global to-links Links whose start point is a card itself and whose end point is
another card. These links are not represented by link icons in a
card’s body. To see and access these link icons, you must choose
the Show Links option from a card’s left button title bar menu.

graph-based cards Cards based on the graph editor. Graph and Browser cards are
graph-based cards.

hard copy The physical copy (on paper) of an on-screen document.

host Any machine on a network. Often used to refer specifically to a
machine that provides a network service, such as filing.

icon An on-screen pictorial image which can represent some other
object, such as card, window, or link.

image object A graphic image, such as a Sketch drawing, graph, bit map, link
icon, horizontal rule, etc.

initialization file A file that is loaded when NoteCards is first started, to customize
your environment according to your tastes and the idiosyncracies of
your site.

justification The uniform spacing of words in a line, so that the line ends flush
with both margins.

label A character string which does not represent a card in a Graph or
Browser card. In the display below, "Planet" is a label.

Unknown IMAGEOBJ type
GETFN: GRAPHOBJ.GETFN

G L O S S A R Y - 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

line bar The left part of a text card where the cursor shifts from being left-
pointing to right-pointing allowing you to select larger units
(paragraphs and lines) of text.

link A connection between a source card and a destination card.

link icon The graphical representation of the link. Clicking on a link icon
traverses the link it represents and opens the destination card, or
flashes it if it is already open.

link type A word or phrase assigned by the user which classifies the
relationship between two cards. Examples of link types include
explanation, question, and answer.

local links Links whose start point is somewhere in the contents of a card.
Local links contrast with global links.

menu A collection of text strings, buttons, or icons generally used to
present a set of possible actions on the screen for user selection
with the mouse.

MenuBox Icon The icon from which you access the NoteCards system menus.
Also refered to as the MenuBox.

mouse A pointing device equipped with buttons.

mouse cursor A small image (usually an arrow) on the display screen that
tracks the position of the mouse and lets you do things like
reposition the caret. The cursor changes shape under certain

conditions. An hourglass shape () indicates that a process is
going on which may take some time to complete. A small image

representing the mouse () which indicates that the system is
waiting for a confirmation response before a selected process is
performed.

node Refers to a card or label in a Browser graph. The graph below
shows four nodes, one of which (Moons) is a label.

Unknown IMAGEOBJ type
GETFN: GRAPHOBJ.GETFN

note cards Refers to non-FileBox cards, i.e., Text, Sketch, Graph, Browser,
Search, LinkIndex, and Document cards. The generic term for
cards of all types is just "card."

notefile The file produced by the NoteCards system that contains the card
index and cards.

notefile index A fixed-size index of all the cards in the notefile. Its size must be
explicitly changed.

G L O S S A R Y - 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

network An interconnection of several computers and other devices, such
as printers, that lets them communicate and share resources.
Sometimes also used to refer to the medium itself, such as a
coaxial cable in the case of the Ethernet. Also, "net."

number pad menu A calculator-style menu in which numbers can be entered to specify
such values as line thickness.

path name The complete name of a file you want to access. Includes the
name of the host file server, device, directory, subdirectories, file
name, extension, and version number. For example, in UNIX a
notefile path name might be
{dsk}/usr/users/kmount/nc/notefiles/demo.notefile,
where dsk is the name of a device, usr is the directory, users,
kmount, nc, and notefiles are the subdirectories, and
demo.notefile is the file name of the notefile you want to
access.

persistent menu A menu that stays open until you close the menu or a window it is
attached to. Also refered to as a "permanent menu" and "fixed
menu."

pixel A pixel is the smallest element of a display surface (a dot on a
screen) which can be independently assigned a color or intensity.
A blend of the words picture and element.

pop-up menu A menu that appears when you press a mouse button and
disappears when you release the button. Usually appears at the
location of the cursor. The background menu is an example of a
pop-up menu. See also menu and background menu.

prompt window A small window attached to the top of a card, icon, or editor
window where process information is printed and where you are
asked questions. See also system prompt window.

scroll bar The narrow window that opens when you move the cursor just
outside the left or bottom edge of a window. You use the scroll bar
to move through a body of information. The scroll bar frequently
does not appear unless there is more information than can be
displayed in the window.

sketch-based cards Cards based on the Sketch graphical editor. There is only one
sketch-based card and it is the Sketch card.

screen point The size of a single pixel on the display. A screen point is 1/72 of
an inch, normally.

select This term has several meanings depending on the context of its
use. When refering to menus, select means:

Move the mouse cursor over the menu command, press the mouse
button until the command is highlighted, then release the mouse
button. You also select text (see current selection).

source card A card containing a link icon.

G L O S S A R Y - 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

submenu A menu obtained by sliding to the right off an option on another
menu. The existence of a submenus is indicated by a gray arrow
head in the extreme right margin of a menu option. In the example
below Close, Delete, Copy, and Move have submenus. In the
case of Move, the user has slid the mouse off the right of the Move
option and the Move Cards/Move Structure submenu has
appeared.

sysout A frozen version of the Notecards environment. It contains all the
information needed to initialize virtual memory when Notecards is
started.

 system prompt window The black window, usually at the top of the screen, used to display
system information.

text-based cards Cards based on the TEdit text editor which can also contain the
output from sketch-based and graph-based cards. The text-based
cards are Text, FileBox, Search, LinkIndex, and Document cards.

title bar The black bar containing the window’s title that appears at the top
of a card or window.

to-links Links whose start point is in a card’s contents and whose end point
is another card. These links are represented as link icons in a
card’s body.

type size The distance from the top to the bottom of the characters that
represent the highest and lowest points in a character set.
Measured in points.

type-in process The editor process associated with a card or window which is the
destination for keyboard input.

version number The number at the end of the file name that indicates when the file
was created with respect to other files of the same name. The
system assigns each successive file created with the same name a
higher version number. The higher the version number, the newer
the file.

virtual memory Working space on the local disk that can be used, with the aid of
swapping programs, to emulate random access memory.

window A defined area within a display screen that can be used as a
working space. Multiple windows can appear simultaneously on
one display screen, and can overlay one another.

G L O S S A R Y - 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

window menu The menu that appears whenever you press the right button with
the cursor in the black title bar of a card or window, or at the top of
a window with no title bar.

G L O S S A R Y - 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

GLOSSARY

[This page intentionally left blank]

1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS
PROGRAMMER’S INTERFACE

Introduction
This document describes a facility whereby users with some
programming know-how can obtain a software interface to
NoteCards in Interlisp. In this way, they can create and modify
Notefiles, cards and links under program control.

The functions described below are divided into 8 groups:

1. NoteFile Creation and Access

2. Creating and Accessing NoteCard Types

3. Creating NoteCards and FileBoxes

4. Accessing NoteCards and FileBoxes

5. Creating and Accessing Links

6. Creating and Accessing Link Labels

7. Customizing the NoteCards Interface

8. Handy Miscellaneous Functions

Information for Prerelease Users

The two main changes to NoteCards from 1.2 are multiple open
notefiles and cards stored as datatypes rather than atoms. The
former change probably has a greater effect on users of the
programmer’s interface. Many functions now take a NoteFile
argument that didn’t before. In addition, many functions have been
renamed or dropped altogether. Though we attempted to preserve
some backward compatibility by keeping around old function
names, we strongly recommend that you go over all your code and
bring it up to date with this documentation. (For example, the
whole notion of "Substance types" has been removed along with
the Substance fns, etc.)

Other changes to watch out for include: traversal of NoteCards
structures ala browsers; copying of groups of cards and their
"internal" links across notefiles; new <quietFlg> args to many of the
notefile access functions; undisplaying cards without uncaching;
case insensitivity in NCP.TitleSearch; and registering of cards by
key in the new notefile hash table. There are lots of handy new
functions like NCP.ChangeCardTypeFields,
NCP.CreateCardTypeStub, NCP.CollectCards, NCP.CopyCards,
NCP.ListOfOpenNoteFiles, NCP.NumCardSlotsRemaining,
NCP.ExpandNoteFileIndex, NCP.NoteFileMenu,
NCP.NoteFileProp, NCP.WhichNoteFile, NCP.CreateLink,
NCP.CardUserDataProp, NCP.DisplayedCards,
NCP.RegisterCardByName, NCP.LookupCardByName,
NCP.ListRegisteredCards, NCP.OpenCard, NCP.CloseCards,
NCP.CacheCards, NCP.UncacheCards, NCP.DisplayCard,
NCP.UndisplayCards, NCP.AskYesOrNo, NCP.CardNeighbors,
NCP.MapCardsOfType, NCP.MapLinksOfType.

2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

1. NoteFile Creation and Access

Note that some of the following accept filename arguments, some
take notefile object arguments and some can take either. In any
case, if the function accepts a filename, the .notefile suffix will be
attached if not already present.

(NCP.CreateNoteFile <Filename><quietFlg>)

If <Filename> is not already a notefile, then creates a notefile with
name "<Filename>.NoteFile", and returns this filename which can
later be passed to NCP.OpenNoteFile. If <quietFlg> is non-nil, then
communicative messages are held to a minimum.

(NCP.OpenNoteFile <NoteFileOrFilename> <don’tCreateFlg> <convertw/oConfirmFlg> <quietFlg>
<menuPosition> <readOnlyFlg> <Don’tCreateInterfaceFlg>)

<NoteFileOrFileName> can be either a notefile object or a file
name. Opens notefile, returning resultant notefile object if
successful, else nil. If <don’tCreateFlg> is non-nil, then a new file
is not created if the given one doesn’t exist. If
<convertw/oConfirmFlg> is non-nil, then if needed, the file is
converted to the most recent format without user confirmation. If
<quietFlg> is non-nil, then communicative messages are held to a
minimum. If <menuPosition> is non-nil, then it should be a position
at which to bring up the notefile main menu icon. If <readOnlyFlg>
is non-nil, then the notefile is opened for read only. If
<Don’tCreateInterfaceFlg> is non-nil, then don’t bring up a control
panel menu for the notefile.

(NCP.CloseNoteFiles <NoteFilesOrT> <quietFlg>)

If <NoteFilesOrT> is a list (or a single notefile), then close all open
notefiles on that list (or the single one). If T, then close all open
notefiles. If <quietFlg> is non-nil, then communicative messages
are held to a minimum.

(NCP.CheckpointNoteFiles <NoteFilesOrT> <quietFlg>)

If <NoteFilesOrT> is a list (or a single notefile), then checkpoint all
open notefiles on that list (or the single one). If T, then checkpoint
all open notefiles. In case of a system crash or abort, the notefile
can be recovered to the last checkpoint. Note that closing a
notefile does a checkpoint. <quietFlg> non-nil will keep messages
to a minimum.

(NCP.AbortNoteFiles <NoteFilesOrT> <Don’tConfirmFlg> <quietFlg>)

If <NoteFilesOrT> is a list (or a single notefile), then abort all open
notefiles on that list (or the single one). If T, then abort all open
notefiles.Aborting a notefile closes it and scraps all work since last
checkpoint or successful close. <quietFlg> non-nil will keep
messages to a minimum. <Don’tConfirmFlg> non-nil will prevent
the asking of user for confirmation before throwing away work since
last checkpoint.

(NCP.CompactNoteFile <fromNoteFileOrFilename> <toFilename> <inPlaceFlg>)

<fromNoteFileOrFilename> can be either a notefile or a file name.
It is compacted, usually recovering space. If <inPlaceFlg> is non-

3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

nil, then <toFilename> is ignored and the compaction is in place.
Will close <fromNoteFileOrFilename> if it’s currently open.

(NCP.CompactNoteFileInPlace <NoteFileOrFilename>)

Compacts <NoteFile> in place, replacing the old version.
Equivalent to (NCP.CompactNoteFile <NoteFile> NIL T).

(NCP.NumCardSlotsRemaining <NoteFile>)

Returns the total number of cards that can be created in <NoteFile>
before its index must be expanded. <NoteFile> should be an open
notefile.

(NCP.ExpandNoteFileIndex <NoteFile> <numNewCardSlots> <QuietFlg>)

Causes <NoteFile> (which should be a valid notefile) to be
checkpointed and then have its index expanded in place to make
room for <num NewCardSlots> new cards. If <NoteFile> is
currently closed, then it is opened, expanded and then closed
immediately.

(NCP.RepairNoteFile <NoteFileOrFilename> <readSubstancesFlg>)

Runs the Inspect&Repair facility on <NoteFileOrFilename>. It must
not be currently open. If <readSubstancesFlg> is non-nil, then
the inspector will check the contents of card substances rather than
the simpler check of substance length. This means the first phase
of the inspector takes MUCH longer so use with care. See the
documentation on the Inspect&Repair facility for more information.

(NCP.DeleteNoteFile <NoteFileOrFilename> <Don’tConfirmFlg> <quietFlg>)

Deletes the <NoteFileOrFilename> notefile. Must not be open.
<quietFlg> non-nil will keep messages to a minimum.
<Don’tConfirmFlg> non-nil will prevent the asking of user for
confirmation before deleting.

(NCP.NoteFileFromFileName <Filename>)

Returns the notefile corresponding to Filename if any, else nil.

(NCP.FileNameFromNoteFile <NoteFile>)

Returns the full name of the given notefile.

(NCP.NoteFileMenu <NoteFile>)

Returns the main menu for <NoteFile>.

(NCP.OpenNoteFileP <NoteFile>)

Returns non-NIL if <NoteFile> is a currently open notefile.

(NCP.ValidNoteFileP <NoteFile>)

Returns non-NIL if the notefile is a valid notefile.

(NCP.NoteFileClosingP <DontCheckForAbortFlg >)

Returns non-NIL if it has been called from under a close notefile
operation. If DontCheckForAbortFlg is NIL, aborting the notefile
counts as closing it. If DontCheckForAbortFlg is non-NIL, aborting

4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

the notefile is considered a different operation, and the function will
return NIL.

(NCP.ListOfOpenNoteFiles)

Returns a list of all currently open notefiles.

(NCP.CheckOutNoteFile <fromFilename> <toFilename>)

Copies <fromFilename> to <toFilename> unless <fromFilename> is
locked. If successful, creates a lock file in <fromFilename>’s
directory. The name of the lock file is formed by concatenating the
atom LOCKFILE onto <fromFilename>.

(NCP.CheckInNoteFile <fromFilename> <toFilename>)

Check lock file for <toFilename>. If none, then just copy
<fromFilename> to <toFilename>. If there is one and it’s owned by
us, then do the copy and remove the lock file. If there is a lock file
owned by someone else or if date of <toFilename> is more recent
than date of lock file, then print a message and do nothing.

2. Creating and Accessing NoteCard Types

These functions give the user access to the NoteCard user-defined
types facility. (In the functions below, card type arguments should
be atoms.) For example, one of the simplest card types commonly
created is what we call a "form" card. At card create time, it adds
certain predefined text to the card’s contents. Otherwise, form
cards behave just like Text cards. Figure 1 shows the code needed
to implement a sample form card type. For a full explanation of this
facility, see the NoteCards Types Mechanism documentation.

--

FooForm.AddFooFormType

FooForm.MakeFn

5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

Figure 1: Sample card type definition

--

(NCP.CardTypes)

Returns list of all currently defined NoteCard types.

(NCP.CardTypeP <type>)

Returns non-nil if <type> is an existing NoteCard type.

(NCP.CardTypeFns)

Returns a list of the valid Fns fields for NoteCard types. Currently,
these include: MakeFn, EditFn, QuitFn, GetFn, PutFn, CopyFn,
MarkDirtyFn, DirtyPFn, CollectLinksFn, DeleteLinksFn,
UpdateLinkIconsFn, InsertLinkFn and TranslateWindowPositionFn.

[The following hooks should some day become legitimate Fns
or Vars fields for NoteCard types. Currently, they are
properties placed on the card type’s atom.

WhenSavedFn If you need to have certain functionality happen just before a card’s
contents is saved to the notefile, then make a function be the value
of the WhenSavedFn prop of the card type atom. It will be called
whenever a card’s contents is saved.

WhenDeletedFn If you need to have certain functionality happen just before a card is
deleted, then make a function be the value of the WhenDeletedFn
prop of the card type atom. It will be called whenever a card is
deleted. If the function returns ’ABORT, then the deletion of the
card will be aborted.

LinkIconLeftButtonFn One may now specify an operation other than TraverseLink to be
used when left buttoning in link icons. Just put the property
"LinkIconLeftButtonFn" with the value of a function on the
(destination card’s) card type atom. The function will get called with
two args, the destination card and the window containing the link
icon. (This is similar to the ExtraLinkIconMenuItems card type
property consulted by the link icon middle button code.)

AttachedBitMapFn You may now supply a function to calculate the attached bitmap for
a card type. This function should be the value of the
AttachedBitMapFn prop of the card type atom, and it will be passed
Card, ScaledHeightToMatch, and Scale. If it exists, it will be
applied first in calculating the bitmap to be displayed. If it returns a
bitmap, a list of heights and bitmaps will be computed and placed

6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

on the LinkIconAttachedBitMap field of the card type. This hook
may also be used to calculate the bitmap to be displayed on the
right side of a link icon if it is a cross-file link and its attached bitmap
is being displayed. In this case, the function should be the value of
the AttachedBitMapFn prop of the card type atom ’CrossFileLink.
(For computing the list of heights and bitmaps in an
AttachedBitMapFn, see NCP.MakeTypeIconBitMapSet at the end
of this section.)

Don’tForceFilingFlg It is possible to turn off forced filing on either the card type level or
the card level. To define all cards of a type as not needing filing,
you should put the property "Don’tForceFilingFlg" with the value of
T on the card type atom. To define an individual card as not
needing filing, use the function (NCP.MarkAsNotNeedingFiling
<card>) (see Section 8: Handy Miscellaneous Functions).

 NewCardPos If present, the value of this property determines where new cards of
the type are brought up on the screen, assuming the
RegionOrPosition argument now accepted by all card type makefns
(passed to NC.DetermineDisplayRegion) is NIL.]

(NCP.CardTypeVars)

Returns a list of the valid Vars fields for NoteCard types. Currently,
these include: SuperType, StubFlg, FullDefinitionFile,
LinkDisplayMode, DefaultWidth, DefaultHeight,
LinkAnchorModesSupported, DisplayedInMenuFlg,
LinkIconAttachedBitMap, LeftButtonMenuItems and
MiddleButtonMenuItems.

(NCP.CardTypeFnP <fn>)

(NCP.CardTypeVarP <var>)

Returns non-nil if <fn> (<var>) is a valid function (variable) field for
NoteCard types, for example, the litatom MakeFn (DefaultWidth).
In other words, <fn> (<var>) can serve as the <fn> (<var>) arg to
NCP.CardTypeFn (NCP.CardTypeVar).

(NCP.CardTypeFn <type> <fn>)

Returns the <fn> field for <type>. Note that this may be a value
inherited at card type creation from <type>’s super type.

(NCP.CardTypeVar <type> <var>)

Returns the <var> field for <type>. Note that this may be a value
inherited at card type creation from <type>’s super type.

(NCP.CardTypeSuper <type>)

Returns the super type of <type>. Equivalent to
(NCP.CardTypeVar <type> ’SuperType).

(NCP.CreateCardType <TypeName> <SuperType> <FnsAssocList> <VarsAssocList>)

Makes a new NoteCard type with name <TypeName> and super
type <SuperType>. Any functions not appearing in <FnsAssocList>
or vars not appearing in <VarsAssocList> will be inherited from
<SuperType>.

7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

Note that, for now, specializing the FileBox card type is very
dangerous and has unknown repercussions.

(NCP.DeleteCardType <TypeName> <DeleteSubTypesFlg)

Deletes the NoteCard type with name <TypeName>. If
DeleteSubTypesFlg is non-NIL, then it recursively deletes all sub-
types of <TypeName>. If DeleteSubTypesFlg is NIL, then
attempting to delete a type with sub-types is an error.

(NCP.CreateCardTypeStub <TypeName> <SuperType> <FullDefinitionFileName> <FnsAssocList>
<VarsAssocList>)

Makes a stub for a new NoteCard type with name <TypeName>
and super type <SuperType>. Some subset of the fns and vars
can appear in <FnsAssocList> and <VarsAssocList>, however, the
full definition will be loaded from <FullDefinitionFileName> the first
time an attempt is made to access an undefined field name.

(NCP.ChangeCardTypeFields <TypeName> <FnsAssocList> <VarsAssocList>)

<TypeName> should be an existing NoteCard type. Some subset
of the fns and vars should appear in <FnsAssocList> and/or
<VarsAssocList>. These will be changed in the card type and then
the inheritance mechanism will propagate these changes to any
inheriting card types. For example, to make some existing card
type FOO appears in the card type menu, do
(NCP.ChangeCardTypeFields ’FOO NIL ’((DisplayedInMenuFlg
T))).

(NCP.ApplyCardTypeFn <CardTypeFn> <Card> <arg1> ...)

This macro applies the card type fn <CardTypeFn> (unevaluated)
of the card type of <Card> to <Card> and the other args.

(NCP.ApplySuperTypeFn <CardTypeFn> <Card> <arg1> ...)

This macro applies the card type fn <CardTypeFn> (unevaluated)
of the super type of <Card>’s type to <Card> and the other args.

(NCP.IsSubTypeOfP <type1> <type2>)

Returns non-nil if type1 inherits directly or indirectly from type2, that
is, type2 can be found somewhere up the SuperType chain from
type1.

(NCP.TextBasedP <cardOrType>)

(NCP.SketchBasedP <cardOrType>)

(NCP.GraphBasedP <cardOrType>)

If <cardOrType> is a card then we use its type. Returns non-nil if
that type inherits directly or indirectly from Text, Sketch or Graph
respectively.

(NCP.AutoLoadCardType <TypeName>)

<TypeName> is currently undefined. This asks NoteCards to look
around for the file containing it and load it. It searches
NOTECARDSDIRECTORIES for a file named
NC<TypeName>TYPE.

8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.LinkIconAttachedBitMap <TypeName> <Size>)

Returns the link icon attached bitmap of size Size for card type
TypeName. Default size is determined by the global variable
NCP.DefaultLinkIconAttachedBitMapSize, whose initial value is 17.

(NCP.MakeTypeIconBitMapSet <Bitmap> <Heights>)

Returns a list of heights and bitmaps to be used in determining the
appropriately sized bitmap for a given link icon. (Typically used
when supplying an AttachedBitmapFn - see above.) <Bitmap> will
be scaled to all of the heights in <Heights>, which defaults to
NC.DefaultLinkIconAttachedBitMapHeights if NIL.

3. Creating NoteCards and FileBoxes

The following functions create various sorts of cards and boxes
within the currently open notefile.

(NCP.CreateCard <type> <NoteFile> <title> <nodisplayflg> <props> <parentfileboxes>
<otherargs><InterestedWindow> <RegionOrPosition>)

Creates and returns a card of the given (possibly user-defined)
type, with given title, props, and parents. <otherargs> is a possibly
nil list of args that will be passed to the MakeCardFn of <type>.
Card is initially displayed or not according to value of
<nodisplayflg>. Note that actually a top level copy of <props> is
used (i.e. (APPEND <props>)). <InterestedWindow> is a window
used to attach a prompt window for messages.
<RegionOrPosition> is used to position and/or shape the new card.

(NCP.CreateTextCard <NoteFile> <title> <nodisplayflg> <props> <parentfileboxes> <InterestedWindow>
<RegionOrPosition>)

Creates and returns a new notecard having type Text. If <title> is
non-nil, it is installed as the Notecard’s title, otherwise the title is
"Untitled." <props>, if non-nil, should be a prop-list of properties
and values to be placed on the user property list of the Notecard. If
<parentfileboxes> is non-nil, then it should be a list of FileBoxes in
which to initially file this card. <InterestedWindow> is a window
used to attach a prompt window for messages.
<RegionOrPosition> is used to position and/or shape the new card.

(NCP.CreateFileBox <NoteFile> <title> <nodisplayflg> <props> <childcardsboxes> <parentfileboxes>
<InterestedWindow> <RegionOrPosition>)

Creates and returns a new Filebox with title <title> (or a gensym’ed
name if <title> is nil). It will initially contain child cards and boxes
from the list <childcardsboxes> (if that arg is non-nil). If
<parentfileboxes> is nil, then the new filebox will be filed in the
value of (NCP.GetToBeFiledFileBox). The <props> arg is handled
as it was for NCP.CreateNoteCard. <InterestedWindow> is a
window used to attach a prompt window for messages.
<RegionOrPosition> is used to position and/or shape the new card.

(NCP.CreateBrowserCard <NoteFile> <title> <paramList> <nodisplayflg> <props> <parentfileboxes>
<InterestedWindow><RegionOrPosition>)

Creates and returns a new browser card with given title, props and
parents. <paramList> should be a prop list of browser parameters.
The properties currently recognized are:

9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

ROOTCARDS A list of Notecards to serve as roots of the forest or lattice
generated by the browser. If omitted or NIL then user is asked to
choose root cards.

LINKTYPES A list of link types to follow when creating the browser. Any label
present in the list having the backarrow prefix ("_") represents that
link type but in the reverse direction. This list can also contain the
atoms ALL or _ALL (<backarrow>ALL) in which case browsing will
be done on all links in either the forward or reverse direction. If
both ALL and _ALL (<backarrow>ALL) are specified, then links in
both directions will be used (generally making a mess).

DEPTH The depth at which to cut off the browser. This should be a non-
negative integer. If NIL or omitted, then will assume no limit.
(Currently integers greater than 9 are assumed equivalent to
infinity.)

FORMAT This should be a list of one, two or three elements. The first should
be an atom indicating grapher format. The choices are FAST
(layed out as a forest, sacrificing screen space for speed),
COMPACT (layed out as a forest, using minimal screen space),
LATTICE (layed out as a directed acyclic graph, the default),
GRAPH (layed out as a graph, i.e. virtual nodes are eliminated).
The second element of the FORMAT list, if present, should be
either HORIZONTAL (the default) or VERTICAL specifying whether
the graph is layed on its side or up and down. The third element, if
present, should be the atom REVERSE. This indicates that
horizontal graphs should be layed out from right to left instead of
left to right and that vertical graphs should be layed out from bottom
to top rather than vice versa.

If all of LINKTYPES, DEPTH, or FORMAT are omitted, the user is
asked to choose them from a stylesheet. If one or more is
specified, even as being NIL, the user is not prompted for them.
<InterestedWindow> is a window used to attach a prompt window
for messages. <RegionOrPosition> is used to position and/or
shape the new card.

(NCP.CreateSketchCard <NoteFile> <title> <nodisplayflg> <props> <parentfileboxes>
<InterestedWindow><RegionOrPosition>)

Creates and returns an initially empty sketch/map card having
given title, props, and parents. <InterestedWindow> is a window
used to attach a prompt window for messages.
<RegionOrPosition> is used to position and/or shape the new card.

(NCP.CreateGraphCard <NoteFile> <title> <nodisplayflg> <props> <parentfileboxes>
<InterestedWindow><RegionOrPosition>)

Creates and returns an initially empty graph card having given title,
props, and parents. <InterestedWindow> is a window used to
attach a prompt window for messages. <RegionOrPosition> is
used to position and/or shape the new card.

(NCP.MakeDocument <NoteFile> <rootcard> <parametersProplist> <nodisplayflg> <props>
<parentfileboxes><InterestedWIndow> <RegionOrPosition>)

Creates and returns a Document card starting from <rootcard>.
The user may specify new values for the set of parameters for
making a document with <parametersProplist>. For example, a
value of ’(TitlesFromNoteCards Bold ExpandEmbeddedLinks ALL)

1 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

for <parametersProplist> would cause these values for the
parameters TitlesFromNoteCards and ExpandEmbeddedLinks to
be used, and the current defaults for the other parameters will be
used. If no <parametersProplist> is provided, the user will be
prompted for the parameters with a stylesheet. As usual, the
resulting card will have the given props and parents.
<InterestedWindow> is a window used to attach a prompt window
for messages. <RegionOrPosition> is used to position and/or
shape the new card.

(NCP.MakeLinkIndex <NoteFile> <linktypes> <backpointersP> <nodisplayflg> <props> <parentfileboxes>
<InterestedWIndow> <RegionOrPosition>)

Creates and returns a LinkIndex text card consisting of a sorted
record of all instances of links in the current notefile having one of
the given link types. <linktypes> can contain the litatoms ALL
and/or _ALL (<backarrow>ALL) as well as any particular backwards
links. (See the above description of NCP.MakeDocument.)
Backpointer links are inserted in the text if <backpointersP> is non-
nil. Resulting card will have given props and parents.
<InterestedWindow> is a window used to attach a prompt window
for messages. <RegionOrPosition> is used to position and/or
shape the new card.

4. Accessing NoteCards and FileBoxes

The following functions provide access to the cards and boxes
present in the current notefile. Note that whether a card’s window
has been brought up on the screen has little or no impact on most
of the following functions. If the user changes some field of a card
while that card is visible on the screen, then the field will update
itself automatically. Thus, users can switch between program-
driven and screen-interface-driven modes at will.

Most of the following functions take as first argument a card or
filebox. If this does not in fact correspond to an existing card or
box, then an error message is printed and nil is returned.

Cards can be displayed, cached or closed. A cached card has its
information cached in memory thus saving time (to access) at the
expense of space. All cards displayed on the screen are also
cached. In almost all cases, users will need only use
NCP.OpenCard and NCP.CloseCards. NCP.OpenCard does both
caching and displaying while NCP.CloseCards does both
undisplaying and uncaching, if necessary.

(NCP.OpenCard <card> <region/position> <typeSpecificArgs>)

Brings up on the screen the given card in the given region or at the
given position. If <region/position> is nil, then user is asked to
specify position with mouse. <typeSpecificArgs>, if any, will be
passed to the card type’s EditFn.

(NCP.CloseCards <cardOrListOfCards> <quietFlg>)

Undisplay and uncache all the cards in <cardOrListOfCards>.
<quietFlg> non-nil cuts down on messages.

1 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.DisplayCard <card> <region/position> <typeSpecificArgs>)

If <card> was cached but not displayed, then bring it up on the
screen. The <region/position> argument is as in NCP.OpenCard.
<typeSpecificArgs>, if any, will be passed to the card type’s EditFn.

(NCP.UndisplayCards <cardOrListOfCards> <quietFlg> <writeChangesFlg>)

If any of <cardOrListOfCards> were displayed, then undisplay
them. <quietFlg> non-nil cuts down on messages. Normally,
changes are not written to the notefile when a card is undisplayed,
but only when it is uncached. <writeChangesFlg> non-nil makes
changes be written through to the notefile.

(NCP.CacheCards <cardOrListOfCards>)

If any of <cardOrListOfCards> are not currently cached, then cache
them.

(NCP.UncacheCards <cardOrListOfCards> <quietFlg>)

If any of <cardOrListOfCards> are cached but not displayed, then
uncache them. <quietFlg> non-nil cuts down on messages.

(NCP.CardDisplayedP <card>)

Returns non-nil if given card or box is currently displayed in a
window.

(NCP.CardCachedP <card>)

Returns non-nil if given card’s information is currently cached.

Most of the following functions leave the card in the same state as it
was when they started (except NCP.BringUpCard, which makes it
active). Thus, users needing to do several consecutive operations
to the same card should consider temporarily caching the card’s
information via NCP.CacheCards (and then uncaching with
NCP.CloseCards).

(NCP.CardType <card>)

Returns the type of <card> or NIL if the card does not exist.

(NCP.ValidCardP <card>)

Returns <card> if <card> exists (hasn’t been deleted), otherwise
returns NIL. (This is currently a synonym for NCP.CardType.)

(NCP.SameCardP <card1> <card2>)

Returns non-nil if <card1> is the same card as <card2>. Error if
either arg is not a valid card.

(NCP.NewCardP <card>)

Returns non-nil if <card> is new; ie. not yet saved in the notefile.
Error if the arg is not a valid card.

(NCP.CardBeingDeletedP <card>)

Returns non-nil if <card> is in the process of being deleted; for use
with user-defined card types. Error if the arg is not a valid card.

1 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.CardTitle <card> [<newtitle>])

Returns old title of <card>. If <newtitle> is present, then set
<card>’s title to <newtitle>. <newtitle> can be an atom or string.
Note, however, that all titles are converted internally to strings by
NoteCards.

(NCP.FileCards <cards> <fileboxes>)

Every card or box in <cards> is filed in every box in <fileboxes>.
Either arg may be a card object or a list.

(NCP.UnfileCards <cards> <fileboxes>)

Every card or box in <cards> is unfiled from every box in
<fileboxes>. Furthermore if <cards> is the litatom ALL, then the
boxes in <fileboxes> will be cleared of all children. Similarly, if
<fileboxes> is the litatom ALL, then the cards and boxes in <cards>
will be unfiled from all their parent boxes. Either arg may be a card
object or a list.

(NCP.CardParents <card> <FollowCrossFileLinksFlg>)

Returns list of fileboxes in which <card> is filed.
<FollowCrossFileLinksFlg>, if non-nil, causes cross-file links to be
followed to recover fileboxes in remote notefiles in which <card> is
filed.

(NCP.FileBoxChildren <filebox> <FollowCrossFileLinksFlg>)

Returns list of children of <filebox> in the order in which they
appear in the box’s textstream. <FollowCrossFileLinksFlg> is as in
NCP.CardParents.

(NCP.GetLinks <cards> <destinationCards> <labels> <NoteFile>)

Returns list of all links from any of <cards> to any of
<destinationCards> having any label in <labels>. Any of these
arguments can be nil. For example, if <destinationCards> is nil,
then all links pointing from <cards> to anywhere with a label in
<labels> are returned. If both <cards> and <destinationCards> are
nil, then <NoteFile> should not be nil and this returns all links in
<NoteFile> having a label in <labels>. If all three args are nil, then
this is a slow synomym for (NCP.AllLinks <NoteFile>).

(NCP.GetCrossFileLinkDestCard <CrossFileLinkCard> <InterestedWindow>
<Don’tOpenDestNoteFileFlg>)

For a given <CrossFileLinkCard>, tries to follow the link to a remote
card in the destination notefile and returns that card if found. If
<Don’tOpenDestNoteFileFlg> is non-nil, then destination notefile
must be open. <InterestedWindow> is an optional window
argument whose prompt window is used for messages.

Cross-file link cards are "hidden" cards that serve as placeholders
for true cross-file links. That is, a (two-way) cross-file link from card
A to card B (in different notefiles) actually consists of 2 links and 2
cross-file link cards. In the source notefile, card A is linked to a
cross-file link card AA. AA "knows" about the notefile that contains
B and B’s UID. Similarly, the destination notefile contains a cross-
file link card BB which is linked to card B. Again, the substance of
BB contains a filename "hint" for the source notefile as well as the

1 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

UID for A. One-way cross-file links only contain cross-file link cards
in the source notefile. The destination card contains no record that
it’s been linked to.

(NCP.CardNeighbors <cards> <linkTypes> <FollowCrossFileLinksFlg>)

Return a list of cards each of which is one link away from some
card in <cards>. Only links having types in <linkTypes> are
considered. Both <cards> or <linkTypes> can be either nil, card
objects (or link type atoms) or a list. Null <cards> means that all
cards linked to by anyone are returned. <linkTypes> can include
link types prefixed with the character ’_’ (<backarrow>). This
means to follow links of that type in the reverse direction.
<linkTypes> can also include either or both of the atoms ANY and
_ANY (<backarrow>ANY). The former means to include any cards
one link away in the forward direction, while the latter causes
inclusion of any cards one link away in the backwards direction.
<linkTypes>=NIL is equivalent to <linkTypes>=’ANY. If
<FollowCrossFileLinksFlg> is non-nil, then any links that cross
notefile boundaries are followed to their remote destination cards.
Otherwise, cross-file links are ignored.

(NCP.CardPropList <card>)

Returns the prop list of the given card.

(NCP.CardProp <card> <propname> [<newvalue>])

Returns old value of property <propname> on <card>’s prop list. If
<newvalue> is present, then set <card>’s <propname> property to
<newvalue>. (Semantics are analogous to the Interlisp function
WINDOWPROP.)

(NCP.CardAddProp <card> <propname> <newitem>)

Adds <newitem> to the list present on the <propname> property of
<card>. Returns old value of property. (Semantics are analogous
to WINDOWADDPROP.)

(NCP.CardDelProp <card> <propname> <itemToDelete>)

Deletes <itemToDelete> from the <propname> property of <card> if
it is there, returning the previous value of that property. If not there,
return nil. (Semantics are analogous to WINDOWDELPROP.)

(NCP.CardRegion <card> [<newRegion>])

Returns the region of <card>. This works even if <card> is not
currently up on the screen, since the region information is stored on
the notefile. If <newRegion> is provided, then the saved region of
the card is changed. If the card is currently displayed, then it is
reshaped to the new region.

(NCP.CardSubstance <card> [<newSubstance>])

Returns the substance of <card>. For example, returns a
textstream in the case that the type of <card> is built on the TEdit
text editor. In general, this is what the PutFn of a card type writes
down to the notefile and what the GetFn reads in. If a
<newSubstance> argument is present, then the substance of the
card is replaced and NCP.MarkCardDirty is called.

1 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.CardAddText <card> <textstr> <loc>)

Adds the text within the string <textstr> to the text card <card>. If
<loc> is the litatom START or END, then the text will be placed at
the start or end of the card respectively. If <loc> is a number, then
it is assumed to be a character count within the card at which to
place the new text. If <loc> is NIL, then the text is placed at the
current cursor location.

(NCP.ChangeLoc <card> <loc>)

Changes the cursor’s location in <card>’s textstream to <loc>.
Possible values for <loc> are as described for NCP.CardAddText.

(NCP.DeleteCards <cardOrListOfCards>)

Deletes the given cards and fileboxes from their notefile, or deletes
just the one if <cards> is a single card object.

(NCP.CardNoteFile <card>)

Returns <card>’s NoteFile.

(NCP.CardWindow <card>)

Returns <card>’s window if <card> is currently displayed
somewhere on the screen. (The function NCP.WindowFromCard is
an alias for NCP.CardWindow.)

(NCP.CardFromWindow <window>)

Returns the card associated with <window>, or NIL if not a
notecards window.

(NCP.CardFromTextStream <TextStream>)

Returns the card associated with <TextStream>, or NIL if
<TextStream> doesn’t belong to some text card.

(NCP.FileBoxP <card>)

Returns non-nil if <card> is a filebox.

(NCP.AllCards <NoteFile>)

Returns a list of all extant cards for the given notefile.

(NCP.CardsOfTypes <CardsOrNoteFile> <Types>)

Returns a list of all cards of the given type (or types) for the given
notefile (or list of cards).

(NCP.AllBoxes <NoteFile>)

Returns a list of all fileboxes in the given notefile.

(NCP.MapCards <NoteFile><fn> <collectResultsPredicate>)

Maps down the set of all cards in the current notefile, applying <fn>
to each. If <collectResultsPredicate> is non-nil, then for those
cards satisfying the predicate, the values of <fn> applied to them
are collected.

1 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.MapCardsOfType <types> <NoteFile> <fn> <collectResultsPredicate>)

This is similar to NCP.MapCards, but only looks at cards whose
type appears on <types>. <types> can be a single type or a list of
types.

(NCP.ContentsFileBox <NoteFile>)

(NCP.OrphansFileBox <NoteFile>)

(NCP.ToBeFiledFileBox <NoteFile>)

These functions retrieve the three predefined FileBoxes for the
currently open NoteFile. These boxes can be modified (but not
deleted) by the user in the same way as any other filebox.

 5. Creating and Accessing Links

Links consist of source card, destination card, link type, display
mode and anchoring mode. The new function NCP.CreateLink can
be used to create any sort of link. We still provide the four
functions NCP.GlobalGlobalLink, NCP.LocalGlobalLink, etc. for
those who have grown used to that style.

(NCP.GetLinks <cards> <destinationCards> <labels> <NoteFile>)

See documentation in the previous section.

(NCP.CreateLink <source> <destination> <linkType> <displayMode)

<source> can be either a card or a list of two elements
(<sourceCard> <sourceLoc>). <sourceCard> should be a card to
use as the source of the link while <sourceLoc> should be either
the atom GLOBAL (in which case a global-to-global link is created)
or a Loc directive as described in NCP.CardAddText above, that is,
an integer or one of the atoms START, END or NIL. This creates
and returns a new link with type <linkType>, connecting
<sourceCard> to <destinationCard>. For text cards, Loc, if present,
designates where to insert the link. If the link is local-to-global, then
<displayMode> should be a valid displaymode or NIL. (See
description of NCP.LinkDisplayMode for the valid values for
<displayMode>.) (In the future, Locs for non-text cards will be
specifiable. In the far future, we hope to allow local anchoring at
the destination end of the link as well as the source.)

(NCP.GlobalGlobalLink <label> <sourceCard> <destinationCard>)

Creates and returns a new link with label <label>, connecting
<sourceCard> to <destinationCard>.

(NCP.LocalGlobalLink <label> <sourceCard> <destinationCard> <fromloc> <displaymode>)

Creates and returns a new link with label <label>, connecting from
<fromloc> of <sourceCard> card to <destinationCard>. If
<displaymode> is non-nil, then the new link is displayed in the
given mode. Otherwise the default displaymode for the source
card’s type is used. See the description of NCP.LinkDisplayMode
for the valid entries for the <displaymode> arg.

(NCP.GlobalLocalLink <label> <sourceCard> <destinationCard> <toloc>)

Not implemented at this time.

1 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.LocalLocalLink <label> <sourceCard> <destinationCard> <fromloc> <toloc>)

Not implemented at this time.

(NCP.LinkDesc <link> <followCrossFileLinkFlg)

Returns list of three items (<label> <sourceDesc>
<destinationDesc>) where <label> is the link type and
<sourceDesc> and <destinationDesc> have the form (<anchor
mode> <card> <loc>). <anchor mode> is either LOCAL or
GLOBAL, <card> is the card at this end of the link, and <loc> gives
a position in the text of <card> if <anchor type> is LOCAL and
<card>’s substance’s type is TEXT. If the link is a cross-file link
and if <followCrossFileLinkFlg> is non-nil, then the link will be
traversed, opening the remote notefile if necessary to determine
information about the source or destination card of the link.

(NCP.LinkDisplayMode <link> [<newdisplaymode>])

Returns old display mode of <link>. If <newdisplaymode> is
present, then set <link>’s displaymode accordingly. If non-nil, it can
be an instance of the LINKDISPLAYMODE record. Or it can be
one of the litatoms Icon, Title, Label, or Both. Finally, it can be a list
of three elements (<ShowTitleFlg> <ShowLinkTypeFlg>
<AttachBitmapFlg>). Each element can have one of the three
values T, NIL, or FLOAT. If a field, say <ShowTitleFlg>, has value
FLOAT then the corresponding global parameter
(DefaultLinkIconShowTitle, in this case) will be consulted to decide
whether or not to display the destination card’s title in this icon.
(See Section 7 for a description of the global parameters.)

(NCP.CoerceToLinkDisplayMode <thing>)

Returns a LINKDISPLAYMODE record. Thing can be a
LINKDISPLAYMODE record, cardtype, card, link, atom, or list. If
thing is a LINKDISPLAYMODE record, that record is returned. If
thing is a cardtype, the default LinkDisplayMode for that cardtype is
returned. If thing is a card, the LinkDisplayMode of that card is
returned. If thing is a link, the LinkDisplayMode of that link is
returned. If thing is an atom or a list, then the corresponding
LinkDisplayMode, as specified under NCP.LinkDisplayMode (see
above), is returned.

(NCP.LinkType<link> [<newLinkType>])

Returns old linktype of <link>. If <newLinkType> is present, set
<link>’s type to <newLinkType>.

(NCP.LinkSource <link>)

Returns the card at the source end of <link>.

(NCP.LinkDestination <link>)

Returns the card at the destination end of <link>.

(NCP.DeleteLinks <links>)

Removes all links in <links> (or just one if <links> is a single link
object.

1 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.ValidLinkP <link>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Returns non-nil if <link> is a link in the current notefile.

(NCP.SameLinkP <link1> <link2>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Returns non-nil if <link1> is the same link as <link2>. Error if either arg is not a valid link.

(NCP.AllLinks <NoteFile>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Returns a list of all existing links in <NoteFile>. (This is equivalent to but faster than

(NCP.GetLinks NIL NIL NIL <NoteFile>).)
(NCP.MapLinks <NoteFile> <fn> <collectResultsPredicate>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Maps down the set of all links in the given notefile, applying <fn> to each. If

<collectResultsPredicate> is non-nil, then for those links satisfying
the predicate, the values of <fn> applied to them are collected.
(NCP.MapLinksOfType <types> <NoteFile> <fn>

<collectResultsPredicate>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN This is similar to NCP.MapLinks, but only looks at links whose type appears on <types>.

<types> can be a single type or a list of types.
6. Creating and Accessing Link Labels

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN The following functions allow the user to manipulate link labels.

(NCP.CreateLinkType <linkType> <NoteFile> <QuietFlg>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Creates a new link type with name <LinkType> in <NoteFile> unless there is already one

defined by that name. A non-NIL <QuietFlg > suppresses the error
message that is normally printed if the link type has already been
defined for this notefile.
(NCP.DeleteLinkType <linkType> <NoteFile>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Deletes the link type <linkType> from <NoteFile>. The link type must exist and must not

be the type of any existing link, and it must not be a system-defined
link type (e.g. SubBox or BrowserContents).
(NCP.RenameLinkType <linkType> <newLinkType>

<NoteFile>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Changes any links in <NoteFile> having link type <linkType> to have type

<newLinkType>. <linkType> must exist and neither <linkType> nor
<newLinkType> should be a system-defined type.
(NCP.LinkTypes <NoteFile>)

1
Unknown IMAGEOBJ type
GETFN: HRULE.GETFN Returns a list of all existing link types in <NoteNFile> including system-defined ones.

(NCP.ReverseLinkTypes <NoteFile>)

Returns a list of the reverse link types for every link type in
<NoteFile>. Thus, whereas SubBox would appear in the list
returned by NCP.LinkTypes, _SubBox (<backarrow>SubBox)
would appear in the list returned by NCP.ReverseLinkTypes.

(NCP.UserLinkTypes <NoteFile>)

Returns a list of all existing user-defined link labels in <NoteFile>.

(NCP.SystemLinkTypeP <LinkType>)

Returns non-nil if <LinkType> is a system link type..

(NCP.ValidLinkTypeP <LinkType> <NoteFile>)

Returns non-nil if <LinkType> is a defined link type for <NoteFile>.

1 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

7. Customizing the NoteCards Interface

There are currently several areas where the user may tailor the
NoteCards user interface: the NoteCards Session Icon menus, the
left button menu on the title bar of a notefile’s menu icon, the
middle button menu of a notefile’s menu icon, the ShowCards
middle button menu on a notefile’s menu icon, and the title bar
menus of displayed cards and card types.

The Session Icon: The menus associated with this icon may be
modified using the following functions:

(NCP.AddSessionIconMenuItem <MenuName> <Item>)

Adds the menu item <Item> to the session icon menu specified by
<MenuName> (one of ’Card, ’NoteFile, or ’Other). <Item> should
be a complete menu item and may contain subitems in the
standard format. For the Card and Other menus, the item can be a
normal menu item. For the NoteFile menu, it must be slightly
different. Instead of providing an expression to be evaluated as the
second part of the menu item (and of any subitems), you should
provide the name of a function of two arguments: NoteFile and
Window. This function will be applied to these arguments when the
menu item is selected.

Returns the item added if successful, NIL otherwise.

Example:
(NCP.AddSessionIconMenuItem ’ NoteFile ’(Foo% Function
NC.DoFoo "Performs the function Foo on this notefile"))

(NCP.RemoveSessionIconMenuItem <MenuName> <ItemName>)

Removes the menu item named <ItemName> from the session icon
menu specified by <MenuName> (one of ’Card, ’NoteFile, or
’Other). <ItemName> should be only the name of the menu item.

Returns the full item removed if successful, NIL otherwise

Example:
(NCP.RemoveSessionIconMenuItem ’ NoteFile ’Foo% Function)

(NCP.RestoreSessionIconMenu <MenuName>)

Restores the menu specified by <MenuName> (one of ’Card,
’NoteFile, or ’Other) to its initial state. If <MenuName> is NIL, all
three menus will be restored.

(NCP.SessionIconWindow)

Returns the session icon window.

(NCP.BringUpSessionIcon <IconPosition>)

Brings up the NoteCards icon at IconPosition. If no IconPosition is
given and the icon is already on the screen, it will be flashed. If it is
not on the screen, the user will be prompted to place it.

The left button menu on the title bar of a notefile’s menu icons: The
user may modify this menu using the following functions.

1 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.AddNoteFileIconMenuItem <Item> <OpenOrClosedOrBoth>)

Adds the menu item <Item> to the NoteFile icon menu. <Item>
should be a complete menu item and may contain subitems.. The
second part of the menu item (and of any subitems) should be a
function of two arguments: NoteFile and Window. Window will be
the icon window for the notefile. This function will be applied to
these arguments when this menu item is selected.
<OpenOrClosedOrBoth> specifies for which type of notefile the
new operation will be valid. If <OpenOrClosedOrBoth> is ’Open,
the item will appear as an operation for open notefiles. If
<OpenOrClosedOrBoth> is ’Closed, the item will appear as an
operation for closed notefiles. If <OpenOrClosedOrBoth> is ’Both,
the item will be available for both open and closed notefiles.

Returns the full item added if successful, NIL otherwise.

Example:
(NCP.AddNoteFileIconMenuItem ’(Foo% Function NC.DoFoo
"Performs the function Foo on this notefile") ’Open)

(NCP.RemoveNoteFileIconMenuItem <ItemName>)

Removes the menu item named <ItemName> from the NoteFile
icon menu.

Returns the full item removed if successful, NIL otherwise.

Example:
(NCP.RemoveNoteFileIconMenuItem ’Foo% Function)

(NCP.RestoreNoteFileIconMenu)

Restores the NoteFile Icon menu to its initial state.

The middle button menu of a notefile’s menu icon: It is now
possible for users to add menu items to this menu using the
following functions.

(NCP.AddNoteFileIconMiddleButtonItems <Notefile><MenuItems>)

Adds list of menu items <MenuItems> to the middle button menu of
the main menu icon corresponding to <Notefile>. These menu
items will remain on the menu until the next time the notefile is
closed. The second item of each menu item should be an atom
that is the name of a function to be called when selected.

(NCP.AddDefaulltNoteFileIconMiddleButtonItems <MenuItems>)

Adds list of menu items <MenuItems> to the middle button menu of
the main menu icons for all notefiles. These menu items will
remain on the menus for the life of the session. The second item of
each menu item should be an atom that is the name of a function to
be called when selected.

The ShowCards middle button menu on the notefile icon: Users
can indicate that certain cards should be added to or deleted from
this menu using the following functions.

2 0 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.AddSpecialCard <Card>)

Adds <Card> to the list of special cards appearing in the middle
button menu on the ShowCards option of the notefile icon (for the
notefile containing <Card>).

(NCP.RemoveSpecialCard <Card>)

Removes <Card> from the list of special cards appearing in the
middle button menu on the ShowCards option of the notefile icon
(for the notefile containing <Card>).

The title bar menus of cards and card types: Users can add menu
items to either a specific window containing a card, or to the
default menu of a card type.

(NCP.AddTitleBarMenuItemsToWindow <Win> <Button> <NewMenuItems><TopOrBottom>)

Adds the menu items <NewMenuItems> to the title bar menu of
<Win>. <Button> should be one of ’Left or ’Middle, corresponding
to either the LeftButtonTitleBarMenu or the
MiddleButtonTitleBarMenu. <Win> should be the window of a
visible notecard. <TopOrBottom> should be one of ’Top or ’Bottom,
indicating where in the menu the new items should appear.

(NCP.AddTitleBarMenuItemsToType <Type> <Button> <NewMenuItems> <TopOrBottom>)

Adds the menu items <NewMenuItems> to the title bar menu of all
cards of type <Type>. <Button> should be one of ’Left or ’Middle,
corresponding to either the LeftButtonTitleBarMenu or the
MiddleButtonTitleBarMenu. <TopOrBottom> should be one of ’Top
or ’Bottom, indicating where in the menu the new items should
appear.

Menu of notefiles: the user may use the list and menu of noticed
notefiles maintained by NoteCards.

NCP.NoticedNoteFileNames

Global var containing a list of the currently available notefile names
noticed by NoteCards.

(NCP.NoticedNoteFileNamesMenu <IncludeNewNoteFileFlg> <AllowedOperations> <InterestedWindow>
<Operation>))

Provides user with a menu of noticed notefile names.
<IncludeNewNoteFileFlg> should be non-NIL if new notefiles are
allowed. <AllowedOperations> should be one of the atoms: OPEN,
CLOSED or NIL for both. <Operation> should be a string or atom
containing the name of the operation to be performed on the result
and the word NoteFile; e.g. (QUOTE Open% NoteFile). This is
used in the prompt for a new notefile name. <InterestedWindow> is
the window to receive a prompt window for any messages printed.

(NCP.ForgetNoteFileName <NoteFileOrFileName>)

The notefile is removed from the menu of noticed notefiles. It will
not be added to the menu again until explicitly remembered using
NCP.RememberNoteFileName regardless of other operations
performed on the notefile.

2 1ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.RememberNoteFileName <NoteFileOrFileName>)

The notefile is added to the menu of noticed notefiles. This is only
necessary if the NoteFile name has been forgotten.

NCP.GrayShade

Global var containing the shade used for shading various menu
items in the interface. The default value of NCP.GrayShade is
GRAYSHADE. This variable should be changed with the function
NCP.SetGrayShade (see below).

(NCP.SetGrayShade <Shade>)

This function should be used to change the value of
NCP.GrayShade to <Shade>. In addition to changing
NCP.GrayShade, it also resets all cached menus that use
NCP.GrayShade. If <Shade> is NIL, NCP.GrayShade will not be
changed, but the menus will still be reset. Returns the new value of
NCP.GrayShade.

8. Handy Miscellaneous Functions

(NCP.BringUpNoteCardsIcon <IconPosition>)

Brings up the NoteCards session icon at the position
<IconPosition>. If no position is given, will prompt the user th place
the icon. If the icon is already on the screen and no position is
given, it will be flashed. (equivalent to (NoteCards <IconPosition>).

(NCP.TitleSearch <NoteFile> <keys> <caseSensitiveFlg>)

Returns a list of all cards in <NoteFile> having all of the <keys>
(can be atom, string or list) within their titles. Normally case
insensitive unless <caseSensitiveFlg> is non-nil.

(NCP.PropSearch <NoteFile> <propOrPair> <propOrPair> ...)

Returns a list of all cards in <NoteFile> such that for every
<propOrPair> arg, if it is atomic, then the card contains that
property. If it is a list of two elements, then the card must have a
property EQ to the first element with value EQ to the second
element.

(NCP.WhichCard <x> <y>)

Returns the card currently displayed on the screen whose window
contains the position in screen coordinates of <x> if <x> is a
POSITION, the position (<x>,<y>) if <x> and <y> are numbers, or
the position of the cursor if <x> is NIL. Returns NIL if the
coordinates are not in the window of any card. If they are in the
window of more than one card, then returns the uppermost. If <x>
is a window, then NCP.WhichCard will return the card associated
with that window. (The function NCP.WC is an alias for
NCP.WhichCard.)

(NCP.WhichNoteFile <x> <y>)

Works just like NCP.WhichCard, returning the notefile
corresponding to the indicated window. If the window is for a card,
then the card’s notefile is returned, if it’s for a notefile menu, then

2 2 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

that notefile is returned. (The function NCP.WNF is an alias for
NCP.WhichNoteFile.)

(NCP.NoteFileIconWindow <NoteFile>)

Returns the main menu icon window, if any, for given <NoteFile>.

(NCP.DisplayedCards <NoteFiles > <CardTypes >)

Returns a list of all cards currently displayed on the screen that are
in one of <NoteFiles > and are of one of the types in <CardTypes
>. (Shrunken ones are included.) If <CardTypes > is NIL, then
looks at all card types. If <NoteFiles > is NIL, then looks at all
notefiles.

(NCP.SelectCards <instigatingCardOrWindow> <singleCardFlg> <selectionPredicate> <message>
<checkForCancelFlg> <NewCardFlg>)

Returns a list of those cards selected from the screen. A menu
appears in or near <instigatingCardOrWindow> displaying
<message> and having buttons for DONE, UNDO, CANCEL
(unless <singleCardFlg> is non-nil, in which case there is only a
CANCEL button) and NEW CARD (if <NewCardFlg> is non-NIL).
Card selections must satisfy <selectionPredicate> and are made by
left buttoning in the title bars of the desired cards. If user hits
CANCEL button, then NIL is returned unless <checkForCancelFlg>
is non-nil, in which case the atom DON’T is returned.

(NCP.DocumentParameters <parametersProplist>)

Returns the old value of the document parameters in the form of a
proplist. If <parametersProplist> is non-nil then it should be a
proplist whose properties are (some of the) valid document
parameter names and whose values are permissible values for
those parameters. The valid parameters and possible values are
as follows:

HeadingsFromFileboxes NumberedBold, UnnumberedBold, NONE.

TitlesFromNoteCards Bold, NotBold, NONE.

BuildBackLinks ToCardsBoxes, ToCards, ToBoxes, NONE.

CopyEmbeddedLinks ALL, NONE, <listOfLinkLabels>.

ExpandEmbeddedLinks ALL, NONE, <listOfLinkLabels>.

[See the Notecards user’s manual for an explanation of these
parameters and how their values affect the document created.]

(NCP.NoteCardsParameters <parametersProplist>)

Returns the old value of the global Notecards parameters in the
form of a proplist. If <parametersProplist> is non-nil then it should
be a proplist whose properties are (some of the) valid document
parameter names and whose values are permissible values for
those parameters. The valid parameters and possible values are
as follows:

DefaultCardType <legalCardType>

MenuLingersAfterNoteFileClose T or NIL

ShowNoteFileOnCards T or NIL

2 3ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

NewNoteFileInitialSize <positive number (default is 1000)>

ForceFiling T or NIL

ForceTitles T or NIL

CloseCardsOffScreen T or NIL

BringUpCardsAtPreviousPos T or NIL

MarkersInFileBoxes T or NIL

AlphabetizedFileBoxChildren T or NIL

DefaultLinkIconAttachBitmap T or NIL

DefaultLinkIconShowTitle T or NIL

DefaultLinkIconShowLinkType T or NIL

UseDeletedLinkIconIndicators T or NIL

DelTEditProcessWhenShrinking T or NIL

ExtraTEditProps a prop list

EnableBravoToTEditConversion T or NIL

IncludeCardObjectInShowInfo T or NIL

LinkDashingInBrowsers T or NIL

ArrowHeadsInBrowsers one of the litatoms {AtEndpoint, AtMidpoint, None}

SpecialBrowserSpecs T or NIL

DefaultFont a font

LinkIconFont a font

MenuFont a font

NoteFileIndicatorFont a font

Here, <legalCardType> should be an existing Notecard type, i.e.
one that appears in the list returned by NCP.CardTypes.

(NCP.CoerceToInterestedWindow <WinOrCardOrNoteFile>)

Coerces a window, card or notefile into a window which can have a
prompt window.

(NCP.PrintMsg <window> <clearFirstFlg> <arg1> <arg2> ...)

Prints a message in the prompt window of <window>. If <window>
is NIL, then prints message in the Lisp prompt window. If
<clearFirstFlg> is non-nil, then clears the prompt window first. The
args are PRIN1’ed one at a time.

(NCP.ClearMsg <window> <closePromptWinFlg> <WaitMsecs>)

Clears the prompt window associated with <window> (or with the
main Lisp prompt window if <window> is NIL) and closes it if
<closePromptWinFlg> is non-nil. The prompt window will not be
cleared before the specified wait has expired.

2 4 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.AskUser <Msg> <prompt> <FirstTry> <ClearFirstFlg> <MainWindow> <DontCloseAtEndFlg>
<DontClearAtEndFlg> <PROMPTFORWORDFlg>)

This function can be used to ask questions of the user in a
window’s prompt window. The <Msg> and <prompt> are printed
along with <FirstTry> (if non-nil). The value returned is whatever
the user types. If <ClearFirstFlg> is non-nil, then the prompt
window is cleared first. If <MainWindow> is nil, then the top level
prompt window is used. If <DontCloseAtEndFlg> is non-nil, then
the prompt window won’t be closed after the question is answered
and if <DontClearAtEndFlg> is non-nil, then the prompt window
won’t be cleared at the end. If <PROMPTFORWORDFlg> is non-
nil, then the PROMPTFORWORD typein protocol will be used
rather than TTYIN. The former doesn’t allow mouse editing of the
string typed in. On the other hand, typing automatically overwrites
the prompt when PROMPTFORWORD is used.

(NCP.AskYesOrNo <Msg> <prompt> <FirstTry> <ClearFirstFlg> <MainWindow> <DontCloseAtEndFlg>
<DontClearAtEndFlg>)

This function can be used to ask yes/no questions of the user in a
window’s prompt window. The fields are as in NCP.AskUser
except that PROMPTFORWORD is always used so there is no Flg
for that.

(NCP.CardDates <Card>)

Returns a NOTECARDDATES record structure containing the
dates of last modification of each of the four card parts of <Card>.
The fields of the record are SUBSTANCEDATE, TITLEDATE,
LINKSDATE and PROPLISTDATE.

(NCP.DetermineDisplayRegion <card> <region/position>)

Returns the region that <card> would occupy if displayed. If
<region/position> is NIL, then asks the user to position a ghost
region to get the position. Also checks previous size of card or
default heights and widths for the card type to find the size. If
BringUpCardAtPreviousPos is on, then won’t require positioning of
ghost region even if <region/position> is NIL.

(NCP.SetUpTitleBar <CardWindow> <CardType>)

This function is usually called from the MakeFn for those card types
that inherit from a card type that doesn’t display in a window, like
the List or NoteCard type. It creates and installs left and middle
menus using the menu items found in <CardType>’s definition. It
also installs a default button event fn on the window.

(NCP.LinkFromLinkIcon <linkIcon>)

If <linkIcon> is an image object for a link icon, then returns the
associated link. Note that link icons can be obtained by calling the
card type’s CollectLinksFn (see the card types mechanism
documentation).

(NCP.MakeLinkIcon <link>)

If <link> is a valid link, then creates and returns a new link icon
image object containing it.

2 5ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

(NCP.MarkCardDirty <card> <resetFlg>)

Mark <card>’s substance as dirty thus forcing it to be written down
at the next save. If <resetFlg> is non-nil, then unmark <card> as
dirty.

(NCP.MarkAsNotNeedingFiling <card>)

Mark <card> as not needing filing. This is done by setting the
card’s Don’tRequireFilingFlg prop to T.

(NCP.CoerceToCard <cardIdentifier>)

Return the card object (if any) associated with <cardIdentifier>
which can currently be any of: a card object, window or text stream.

(NCP.CollectCards <RootCards> <LinkTypes> <MaxDepth> <FollowCrossFileLinksFlg>)

Starting from <RootCards> and following links having types in
<LinkTypes> to a maximum depth of <MaxDepth>, collect and
return a list of all cards encountered. A value of NIL for
<MaxDepth> causes search to be "infinitely" deep. <LinkTypes>
and <FollowCrossFileLinksFlg> are as described in
NCP.CardNeighbors.

(NCP.CopyCards <Cards> <DestNoteFileOrFileBox> <RootCards> <QuietFlg>
<CopyExternalToLinksMode> <InterestedWindow>)

This copies all cards in <Cards> along with all links among them. If
<CopyExternalToLinksMode> is ’COPY, external to-links will also
be copied; if it is ’DON’TCOPY, external to-links will not be copied;
and if it is NIL, the user will be asked if he/she wishes to copy these
links. <DestNoteFileOrFileBox> designates a filebox in which to file
the card copies. (If <DestNoteFileOrFileBox> is a notefile, then its
Contents box is used.) <RootCards> should be a subset of Cards
or NIL. If <RootCards> is NIL, then all the card copies are filed in
the destination box, otherwise just those appearing in
<RootCards>. If <RootCards> is the atom NONE, then none of the
new cards will be filed in the destination filebox. <QuietFlg> cuts
out the messages. Note that currently, <Cards> must all live in the
same notefile, but this can be a different notefile from the
destination notefile. <InterestedWindow> is a window used to
attach a prompt window for messages.

(NCP.MoveCards <Cards> <DestNoteFileOrFileBox> <RootCards> <QuietFlg>
<CopyExternalToLinksMode><InterestedWindow>)

This moves all cards in <Cards> along with all links among them. If
<CopyExternalToLinksMode> is ’COPY, external to-links will also
be copied; if it is ’DON’TCOPY, external to-links will not be copied;
and if it is NIL, the user will be asked if he/she wishes to copy these
links. <DestNoteFileOrFileBox> designates a filebox in which to file
the card copies. (If <DestNoteFileOrFileBox> is a notefile, then its
Contents box is used.) <RootCards> should be a subset of Cards
or NIL. If <RootCards> is NIL, then all the card copies are filed in
the destination box, otherwise just those appearing in
<RootCards>. If <RootCards> is the atom NONE, then none of the
new cards will be filed in the destination filebox. <QuietFlg> cuts
out the messages. Note that currently, <Cards> must all live in the
same notefile, but this can be a different notefile from the

2 6 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

destination notefile. <InterestedWindow> is a window used to
attach a prompt window for messages.

The following functions allow users to register cards by name for
fast access. This is normally done using the card’s notefile’s
system registry. Thus this registering is preserved over notefile
closing.

(NCP.RegisterCardByName <Name> <Card> <RegistryCard>)

Stores <Card> in <RegistryCard> hashed under the name
<Name>. If <RegistryCard> is nil, then use <Card>’s notefile’s
system registry.

(NCP.LookupCardByName <Name><NoteFIleOrRegistryCard>)

If <NoteFileOrRegistryCard> is a registry card, then recovers the
card that was hashed under <Name>. If <NoteFileOrRegistryCard>
is a notefile, then use its system registry.

(NCP.UnregisterName <Name><NoteFIleOrRegistryCard>)

If <NoteFileOrRegistryCard> is a registry card, then smashes
whatever was stored under <Name>. If <NoteFileOrRegistryCard>
is a notefile, then use its system registry.

(NCP.ListRegisteredCards <NoteFIleOrRegistryCard> <IncludeKeysFlg>)

If <NoteFileOrRegistryCard> is a registry card, then returns the list
of cards hashed in it. If <NoteFileOrRegistryCard> is a notefile,
then use its system registry. If <IncludeKeysFlg> is non-nil, then
return list of cons pairs with car=Name and cdr=Card.

One can associate functionality with the opening and closing of
notefiles using two special List cards registered under the names
OpenEventsCard and CloseEventsCard. Their substances each
consist of a list of lisp s-expressions to be evaluated at notefile
open and close time respectively. Thus, to cause a new expression
to be evaluated at notefile open time, one cons’s (or appends) the
expression to the substance of OpenEventsCard (either via DEdit
or NCP.CardSubstance). Note that during the evaluation of the
expressions, the atom NoteFile is bound to the notefile being
opened or closed. When a notefile is closed, the expressions in the
CloseEventsCard are evaluated both just before the notefile is
closed, and after it is finished being closed. In this case, the atom
When is bound to either ’Before or ’After, indicating when the
expressions are evaluated with respect to the close operation.

(NCP.GetOpenEventsCard <NoteFIle>)

Returns the open events card for <NoteFile> creating a new one if
necessary. Thus, this is basically just (NCP.LookupCardByName
’OpenEventsCard <NoteFile>), except that a new List card is
created and registered under the name OpenEventsCard if none
exists.

(NCP.GetCloseEventsCard <NoteFIle>)

Returns the close events card for <NoteFile> creating a new one if
necessary. Thus, this is basically just (NCP.LookupCardByName
’CloseEventsCard <NoteFile>), except that a new List card is

2 7ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

created and registered under the name CloseEventsCard if none
exists.

Sometimes, it’s nice to have a place to temporarily hang your hat,
so to speak. For this purpose, we provide what are called
UserProps for both card and notefile objects. These are temporary
in that they vanish when the notefile closes.

(NCP.CardUserDataProp <Card><Prop> [<NewValue>])

Returns the value under the <Prop> user data prop for <Card>. If
<NewValue> is present, then value under <Card>’s <Prop> is
reset. (That is, it works like WINDOWPROP or NCP.CardProp.)

(NCP.NoteFileProp <NoteFile><Prop> [<NewValue>])

Returns the value under the <Prop> user data prop for <NoteFile>.
If <NewValue> is present, then value under <NoteFile>’s <Prop> is
reset. (That is, it works like WINDOWPROP or NCP.CardProp.)

(NCP.NoteFileAddProp <NoteFile><Prop> [<NewValue>])

Returns the value under the <Prop> user data prop for <NoteFile>.
If <NewValue> is present, then it is added to the list under
<NoteFile>’s <Prop>. If <NoteFile> has no value under <Prop>,
then <NewValue> is placed on that property as a list. (That is, it
works like WINDOWADDPROP.)

Error breaks/messages under the programmer’s interface: When
the programmer’s interface detects an error, it calls
NCP.ReportError or NCP.ReportWarning depending on the severity
of the error. Normally the former causes a break while the latter
merely prints a message. However, this behavior can be changed
using the global var NCP.ErrorBrkWhenFlg, a litatom whose value
should be one of NIL, ALWAYS or NEVER (default is NIL).

(NCP.ReportError <Function><Message>)

Forces a break using BREAK1 unless the value of
NCP.ErrorBrkWhenFlg is the litatom NEVER. If so, then simply
prints a message and continues.

(NCP.ReportWarning <Function><Message>)

Prints the given warning message <Message> unless the value of
NCP.ErrorBrkWhenFlg is the litatom ALWAYS. If so, then forces a
break with BREAK1.

There are a few old functions preserved for backward compatibility,
but we encourage users to rewrite all their code to use only
functions described above. The old functions still available are:
NCP.BringUpCard, NCP.ActivateCards, NCP.ActiveCardP,
NCP.DeactivateCards, NCP.ValidCard, NCP.GetContentsFileBox,
NCP.GetOrphansFileBox, NCP.GetToBeFiledFileBox,
NCP.GetLinkSource, NCP.GetLinkDestination,
NCP.CreateLinkLabel, NCP.DeleteLinkLabel,
NCP.RenameLinkLabel, NCP.GetLinkLabels,
NCP.GetUserLinkLabels, NCP.GetReverseLinkLabels,
NCP.ValidLinkLabel, NCP.AddLeftButtonTitleBarMenuItems,
NCP.AddMiddleButtonTitleBarMenuItems.

2 8 ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

2 9ENVOS NOTECARDS 1.1, BETA RELEASE OF DOCUMENTATION

NOTECARDS PROGRAMMER’S INTERFACE

[This page intentionally left blank]

Inspecting and Repairing Notefiles

Xerox Corporation

Randy Trigg

[First written: 8/9/85 Randy Trigg]
[Last updated: 8/26/85 Randy Trigg]

This document describes the Notefile inspector facility available via the Inspect&Repair option
on the Notefile Ops menu in NoteCards Release1.2i.

The old Repair Notefile facility rebuilt the links in a Notefile from the contents of card
substances. This was used whenever a notefile was thought to have inconsistent links. The
problem was that notefiles with inconsistent links often had other problems that caused Repair to
break. Thus the motivation for developing the notefile inspector documented here was to verify
a notefile’s readability before invoking the link rebuilder. As it turns out, this inspector is useful
generally for checking the health of a notefile, deleting cards and backing up other cards (or
more precisely, card parts) to previous versions. Thus, you may want to use the inspector even if
your notefile is healthy and doesn’t need its links rebuilt.

The notefile inspector has three separate phases: reading the notefile’s data area searching for
healthy card parts, allowing the user to make modifications, and rebuilding the links. The
process can be aborted after phase 1 or 2 if desired. This document begins with a brief
discussion of the organization of a notefile. Then follows sections describing each of the three
phases. Finally, I outline some tips, strategies and pitfalls to watch for.

1. What you need to know about a notefile’s innards.

1.1 Notefile structure.

A notefile consists of two parts, the index and the data area. Each card in the notefile has an
entry in the index. An index entry has 5 parts, a status field and 4 pointers. The status field
specifies whether the index entry is free or occupied by an active or deleted card. There is one
pointer in the index entry to each of the 4 parts of a card: substance, title, links and property list.
These point into the data area. Whenever you change, say, the title of a card, the new title is
written to the end of the data area and the index entry title pointer for that card is updated to
point to the new location in the data area. Thus, in general, a notefile’s data area grows every
time any part of any card is changed. To throw away the old versions of card parts, it is
necessary to compact the notefile.

1.2 Card IDs.

Every card in the notefile has a unique ID, e.g. NC00023. The top level fileboxes; Contents,
Orphans, and To Be Filed have IDs NC00001, NC00002, and NC00003, respectively. Note
that these boxes cannot be deleted. The IDs from NC00004 through NC00020 are unused.
Currently, an old ID is never reused, even if its card is deleted and the notefile is compacted.
Thus, if the inspector shows no entry in the card inspector menu for some ID, it is because that
card has been deleted. If you’ve asked to show deleted cards and it still doesn’t appear, it’s
because the notefile has been compacted since that card was deleted.

1.3 Card parts.

2

Of the four parts of a card, the title and property list are simplest. The title is simply a string
while the property list is a list of attribute value pairs. If you have not been attaching properties
to your cards, then the inspector will only show those properties that the system maintains.
Currently the only such property is "Updates" with value equal to a list of dates on which the
card was updated going chronologically backwards from the front of the list to the back.

The substance of the card is simply its contents. Thus a text card’s substance is a text stream, a
browser card’s is its graph, etc. These are stored on the file in a manner appropriate to the
substance type. Thus a text substance on the notefile looks like the way TEdit writes out text
streams (text followed by "looks" information).

1.4 Links on the notefile.

The links of a card are divided into three groups: to links, from links, and global links, where
the global links form a subset of the to links. The to links of a card are those links pointing from
this card to some other card. The from links are those links pointing from another card to this
one. Finally, the global links are those to links that are global, that is, they point from this card
as a whole to another card. (Global links are the ones that aren’t anchored in the source card’s
substance. Source links are an example.)

The confusing thing about links out on the notefile is that they are stored in several places. All
links are stored as to links with their source card and as from links with their destination card.
Furthermore, links that are not global are also stored within the substance of their source card
inside of a link icon. Links that are global are also stored on the global links list of their source
card. Thus, all links are stored in three places: as a to link on the source card, as a from link on
the destination card and either in the substance of the source card or on its global links list. If
these three records of a link don’t agree for some reason, then we say that the notefile is
inconsistent and needs its links rebuilt.

1.5 The links rebuilder.

The third phase of the inspector rebuilds the links of a notefile as follows: First it removes all
the to and from links for every card. Then it reads the substances for each card and recreates to
links and from links by looking at the links found inside the link icons in the substance.

The link rebuilder is also able to rebuild bad filebox substances. It does this by looking for all
cards in the notefile with from links from the bad box and creating a new substance for the box
containing only links to those cards. This process loses any text that the box might have
contained as well as scrapping the original ordering of links. Nonetheless, in some cases this
may be preferred to backing up the substance to a previous version or to deleting the box
altogether.

The links rebuilder can rebuild the notefile’s list of link types in a similar manner. That is, it
records the set of link types seen on valid links and replaces the old links types with the new set.
Note that this throws away any link types for which there are no links in the notefile.

Finally, the links rebuilder can rebuild bad global links for a card. It does this by looking for any
cards with from links from the bad card that are global. This assumes that the card at the
destination end has good links. Thus, if the cards at both ends of a global link have unreadable
links, then there is no way to recover that link.

3

The inspector provides the option of having the links rebuilder phase rebuild bad filebox
substances, bad link types, and bad global links. See Section ?? below.

2. Running the Notefile inspector: Phase 1: Scouring the data area

To start the inspector, first be sure that there is no open notefile. Then select the item
Inspect&Repair from the NoteFile Ops menu. There is one option available at this level by
"pulling to the side" called ReadSubstances. This ensures that substances of all cards
pronounced valid by the inspector are readable. If this option is not invoked, then a check is still
run on the length of the substance, but not on its contents. Unfortunately, the ReadSubstances
option requires MUCH more work by phase 1. I recommend that you only use this option if
Phase 3 (link rebuilding) breaks with some error like "Bad Piece Tbl" from TEdit. In that case,
up-arrow out of the break and start the Inspect&Repair process over again, this time using the
slower but more comprehensive ReadSubstances option.

Selecting Inspect&Repair will invoke phase 1 of the inspector, wherein the data area of the
notefile is scoured for valid card parts. A record of all such parts is kept and statistics printed out
at the end. You’ll be asked to position the window in which those statistics as well as later
inspector communications will be printed. You can monitor the progress of phase 1 by watching
the prompt window. It will be printing messages like "Processing byte xxxxx of yyyyy."

When phase 1 has completed and you’ve positioned the interaction window, statistics on your
notefile will be provided. You’ll be told the total number of card IDs used and the number of
those that are currently associated with active and deleted cards. (The rest are free and will
never be reused. See Section 1.2 above.) If all seems well with the world, the next line will read
"All active cards look okay." If not, there will be various messages outlining the problems. (See
Figure 1.)

Figure 1: Snapshot of a sample interaction window

Note that several fileboxes have bad substances and that a special message is printed on their
behalf. This indicates that if you don’t wish to delete or back these up to a previous version, then
phase 3 will rebuild them. (See Section 1.5 above.)

4

If there are cards having user-defined types whose type definition code has not been loaded, then
you’ll get a message to that effect, something like "<n> cards have unknown card types (FOO
BAR)." At this point you should load the lisp files containing the definitions of the unknown
card types. If not, then these cards will show up with bad substance in phase 2. If you have a
card for which no substance versions could be read, then you’ll also get unknown card type
messages for it (reading something like "<n> cards have unknown card types (NIL)"). This is
because the inspector couldn’t find a card type on the notefile for that card.

A menu of options appears attached to the upper right corner of the interaction window. The
particular options you get in that menu depend on the state of your notefile and are described
below. The first two options appear in all cases. The other two may or may not be present in the
menu you get. In any case, you should select one of the options before attempting any other
NoteCards-related work.

ABORT: Choosing this option aborts the Inspect&Repair process entirely, throwing away any
changes you might have made (such as card deletions or back ups.)

INSPECT CARDS: This brings up a menu of active card IDs with which you can inspect,
delete, or back up particular cards. There is a "pull-across" menu item called INCLUDE
DELETED CARDS, which if selected will include card IDs for deleted cards as well as active
ones. Using this option, one can undelete deleted cards and restore some previous version.

END INSPECT&REPAIR: This option is only available if it seems that you don’t need to
continue to the link rebuilding phase. You will not get this option if you’ve deleted any cards, or
generally if there are problems with the notefile. Choosing this option causes the
Inspect&Repair process to end gracefully (via a normal checkpoint and close notefile), thus
skipping phase 3, rebuilding links.

CONTINUE INSPECT&REPAIR: This option is only available if the notefile is in fairly good
health (i.e. okay except for fileboxes to rebuild or global links to rebuild - see Section 1.5 above).
Selecting it causes Inspect&Repair to move to phase 3 and rebuild your notefile’s links.

3. Running the Notefile inspector: Phase 2: Your chance to tinker

After selecting INSPECT CARDS in the interaction window’s attached menu, a menu containing
Notecards IDs will pop up and be attached to the interaction window’s lower left corner. It will
contain IDs for all active cards and possibly deleted cards as well if you selected the submenu
item INCLUDE DELETED CARDS described above. The menu can hold some 200 card IDs.
If your notefile has more than that, then the menu will be composed of several pages each
containing around 200 IDs. Rapid switching between pages is possible.

Attached to the upper right corner of the cards inspector menu is a menu containing at least the
two options: ABORT and DONE. If the menu has multiple pages (there are more than 200
active cards in the notefile), then the attached menu will also include the items NEXT PAGE,
PREVIOUS PAGE, and FIRST PAGE. Selecting these causes the current menu to be swapped
with either the next menu, previous menu, or first menu, respectively.

Clicking ABORT causes the entire Inspect&Repair process to quit, throwing away any changes
you’ve made. (This is equivalent to choosing ABORT from the inspector window as described
in Section 2.)

Choosing DONE from this attached menu indicates that you’re done tinkering with card parts
and wish to return to the main interaction window. Normally, this causes the card inspector

5

menu to close and the phase 1 process outlined in Section 2 to be performed again. Thus the
data area will be rescoured and new statistics on the health of your notefile will be printed. This
cycle of scour data area (phase 1) followed by inspect (phase 2) can be repeated as often as
desired. Eventually, you must either abort, end the Inspect&Repair process gracefully, or
continue to phase 3. Because phase 1 can be quite slow for large uncompacted notefiles, there is
one optimization: if you’ve made no changes in phase 2, then the data area scouring is not
repeated in phase 1. Rather, the old information from the last scouring is recovered and used
instead.

If you’ve clicked DONE, but there are still cards with bad prop lists, titles, or links (because you
haven’t either deleted them or backed up their card parts to previous versions), you will be asked
up to three questions. The list of card IDs of cards with bad prop lists is printed out and you’re
asked whether it’s okay to set the prop lists of those cards to NIL. Then, the list of card IDs of
cards with bad titles is printed out and you’re asked whether it’s okay to set the titles of those
cards to "Untitled." Finally, card IDs for cards with bad links are printed out and you’re asked
whether it’s okay to set the global links to nil. (Global links will be rebuilt as much as possible
in phase 3. See Sections 1.5 and 4.) If you want phase 3 to be able to run, it is necessary to
either answer yes to these questions or fix each of the bad card parts by hand in phase 2.

3.1 The card inspector menu

In the card inspector menu, those IDs corresponding to deleted cards have a line drawn through
them. Those having some sort of problem appear shaded. In addition, an upper-case letter suffix
is attached to such IDs indicating the problem. For example, a shaded menu item NC00023SL
indicates that ID NC00023 has bad substance and bad links. The letter codes are S, L, P, and T
indicating bad substance, links, property list, and title, respectively. If such a letter code appears
in lower case, then the indication is that the current version of that card part is beyond the last
checkpoint pointer. For example, NC00023t indicates that NC00023’s current title was changed
since the last checkpoint. (There may have been a crash, for example, thus preventing the
notefile from closing normally.)

In addition to menu entries for each card ID, there is also one entry labeled LNTYPES allowing
you to inspect (and possibly back up to a previous version) the Link Types for this notefile.

If you button an ID in the card inspector menu, then a popup menu allows up to two choices
Inspect and/or Delete. If the card is currently deleted (has a line drawn through it), then the
Delete option is replaced by Undelete. Certain card IDs cannot be deleted and thus their popup
menus only contain the Inspect option. These are the top level file boxes NC00001, NC00002,
NC00003. The link types menu entry LNTYPES also does not allow deletion.

Choosing Delete or Undelete from this popup menu causes the card to be deleted or undeleted,
respectively and the line through the menu item either drawn or undrawn. Note, however, that
this action (and all others) can be undone by choosing ABORT from either the card inspector
menu or the interaction window menu.

Choosing Inspect from the popup menu for a card ID entry brings up a card parts inspector for
that card.

3.2 The card parts inspector

Figure 2 below shows an example of a card parts inspector. It is composed of four attached
menus arranged vertically and one attached operations menu atop the stack.

6

Figure 2: A card parts inspector

The four menus contain entries for every valid version of card parts for the card with ID
NC00027. The top menu is for version of titles and below that are menus for versions of the
card’s substance, links, and prop list. For example, the Substance submenu contains entries for
three versions of the substance of this card. The current version of each card part is shaded.
Each menu entry gives the date that that version was written if available or the string "NO DATE
AVAILABLE" if there is no date on the notefile. (The latter is the case for old notefiles prior to
the time we began recording card parts write dates.)

If the current version of the card part is bad, then the menu entry will be a string so indicating,
for example, "BADSUBSTANCE."

The title of the top menu includes the card’s type and ID. In addition, each menu item contains a
bit of information, in square brackets, before the date. In the title versions menu, this
information is the first few characters of the title. In the substance versions menu, it is the
number of bytes in the substance. In the links versions menu, it is a triple of numbers giving the
number of to links, from links, and global links for this card. Finally, the proplist versions menu
includes the number of entries on the property list for this card (i.e. twice the number of
attribute-value pairs).

Atop the stack of menus is an attached menu of operations, described below.

ABORT: This aborts this card parts inspector, throwing away any changes made.

UPDATE: This closes the card parts inspector, effecting any changes (backing up to previous
versions of card parts) you might have done.

DELETE: This option closes the card parts inspector and deletes the card. (Again, this can be
undone by choosing ABORT from the card inspector menu.)

UNDELETE: For cards that have been deleted, this option appears instead of DELETE.
Choosing it causes the card to be undeleted.

7

RESET: This causes the selections in the submenus to be restored to the values they had when
the card parts inspector was first brought up. (Equivalent to doing ABORT and then inspecting
this ID again from the card inspector menu.)

Note that cards that can’t be deleted don’t have the DELETE option on their card parts inspector.

Buttoning an entry in a submenu of a card parts inspector pops up a short menu unless the entry
is for a bad version (e.g. "BADSUBSTANCE"). This menu contains at least the entry Inspect
and possibly Change Selection, if the selected entry is not the same as the current one (i.e. not
shaded).

Choosing Inspect allows further inspection of the details of the selected card part version. For
example, inspecting a title version brings up the Interlisp inspector on a record containing the
title, date and card ID. Similarly, inspecting a links or prop list version brings up the Interlisp
inspector on a record containing the lists of links (for to links, from links and global links) or the
prop list. Note that if you wish to continue inspecting a links version down to the single link
level, choose to inspect the link as a NOTECARDLINK. This is somewhat more communicative
about record field names. Note also that changing values out in the Interlisp inspectors has no
affect on the notefile and is ignored.

All substance versions for cards having substance types TEXT, SKETCH and GRAPH can
currently be inspected. (This includes all cards except those having user-defined substance
types, like the NCFile card.) Inspecting a card’s substance version will bring up a window
showing a copy of the substance. (Note that changes to this copy have no affect on the notefile.)
Any links in the substance of the card will show up as bracketed strings describing the link.

Choosing Change Selection from the card part version popup menu causes the current selection
to be changed, thus backing up the card to the selected version. (This change can be undone by
resetting or aborting the card parts inspector as well as by later aborting the card inspector or
interaction window.)

4. Running the Notefile inspector: Phase 3: Rebuilding your links

To complete the Inspect&Repair process, select the Continue Inspect&Repair option from the
interaction window menu. This invokes phase 3, the links rebuilder. Normally, this simply
rebuilds links from card substances (see Section 1.5). In certain circumstances, it may do extra
work as well. If your link types list is bad, and you didn’t back it up to a previous version, then
phase 3 will rebuild it. If there are fileboxes with bad substances that you haven’t either deleted
or backed up to previous versions, then phase 3 will rebuild them. Finally, if there are cards with
bad links that you haven’t backed up or deleted, then phase 3 will rebuild those links as well. (It
rebuilds ALL to links and from links anyway. For those cards, it will rebuild global links as
well.) Again, for details, see Section 1.5.

5. Tips and hints for using Inspect&Repair

This section contains a list of strategies and tips for using Inspect&Repair. For the most part,
they are ordered from the useful and obvious to the esoteric. Several of these are implicit in the
first four sections of the document, but are repeated here for emphasis and completeness.

When in doubt, abort! All your changes will be lost, but then if you’re uncertain about what’s
happened this is the safe course. Often, in fact, you may simply want to check the health of your
notefile and abort without tinkering.

8

Fixing versus tinkering. There are two main ways to use the inspector, either for fixing a
broken notefile, or tinkering with a healthy one. The latter case occurs when you wish to recover
some card that you inadvertantly deleted. Or back up a card that you inadvertantly changed to a
previous version.

Compacting. Old versions of card parts have always been stored in notefiles, but up till now
have been inaccessible. Thus, there was little reason not to compact your notefile often. Now
there is a tradeoff between the need to save space by compacting versus the need to be able to
back up using Inspect&Repair. Probably the safest course is to keep a backed up copy of the
pre-compacted notefile around until you have confidence that the compacted one is healthy and
that you have no need for previous versions of any of its cards.

Inspect&Repair can’t run when notefile is open. This means that if you are working in your
notefile and notice a card you’d like to inspect a previous version of, you must record the card’s
ID and close the notefile. Then, run Inspect&Repair, find the card ID in the inspector menu and
tinker with it as desired.

Fixing enough problems to allow phase 3 to run. You can’t run phase 3 unless
Inspect&Repair thinks your notefile is above a certain threshold of health. There are certain
problems it can handle (e.g. bad filebox substances, see Sections 1.5 and 4), and others that it
can’t (e.g. bad title). You have to decide either to fix these sorts of problems yourself in phase 2,
let phase 3 attempt to rebuild them, or just abort the whole thing (always an option).

Sometimes these decisions can be tricky. For example, suppose a filebox’s substance is bad.
Call it BadBox. Should you (a) delete BadBox altogether, (b) back its substance up to a previous
version, or (c) allow phase 3 to rebuild it by looking for from links in other cards from BadBox?
Option (c) may not be advisable if there was important text in BadBox or if the order of cards in
BadBox was important. On the other hand, option (b) may be of little use if the last good version
is too out of date (or if there is no good version at all).

NoteCards Programmer’s Interface
Release 1.2i

Randy Trigg

Xerox PARC

Updated version: 18-Mar-85

Modified: 26-Aug-85 by Randy Trigg

Modified: 1-Aug-85 by Lissa Monty

Introduction

This document describes a facility whereby users with some programming know-how can obtain a lisp

interface to NoteCards. In this way, they can create and modify Notefiles, cards and links under program

control.

The functions described below are divided into 7 groups:

1. NoteFile Creation and Access

2. Creating and Accessing NoteCard Types

3. Creating NoteCards and FileBoxes

4. Accessing NoteCards and FileBoxes

5. Creating and Accessing Links

6. Creating and Accessing Link Labels

7. Handy Miscellaneous Functions

1. NoteFile Creation and Access

For each of the following functions (except NCP.CloseNoteFile), the argument is a filename. The suffix

".NoteFile" is added if not already present. In any case, the filename used by NoteCards always has this

suffix.

2

(NCP.CreateNoteFile <filename>)

If <filename> is not already a notefile, then create a notefile <filename>.NoteFile, and return this

filename which can later be passed to NCP.OpenNoteFile.

(NCP.OpenNoteFile <filename> <don’tCreateFlg> <convertw/oConfirmFlg>)

If there is no currently open notefile, then open <filename> and make it the currently active

NoteFile. Returns resultant stream if successful, else nil. If <don’tCreateFlg> is non-nil, then a

new file will not be created if the given one doesn’t exist. If <convertw/oConfirmFlg> is non-nil,

then if needed, the file will be converted to release1.1 format without user confirmation.

(NCP.CloseNoteFile [<stream>])

Closes <stream> if it is corresponds to a currently open Notefile. Returns its filename if

successful. If <stream> is nil, then closes current open notefile.

(NCP.CheckpointSession)

Checkpoint the current Notecards session, first writing out any dirty cards. In case of a system

crash or abort, the notefile can be recovered to the last checkpoint. Note that closing a notefile

does a checkpoint.

(NCP.AbortSession)

Abort the current Notecards session, losing all work since last checkpoint or successful close.

(NCP.RepairNoteFile <filename>)

Rebuilds the link structure of <filename>. It must *not* be currently open.

(NCP.CompactNoteFile <filename>)

Copies <filename> to a later version, recovering space. Must not be open.

(NCP.CompactNoteFileInPlace <filename>)

Compacts <filename> in place, replacing the old version. Must not be open.

(NCP.DeleteNoteFile <filename>)

Removes the <filename> notefile. Must not be open.

(NCP.CurrentNoteFileStream)

3

Returns the currently open notefile stream if there is one, else nil.

(NCP.CurrentNoteFile)

Returns the full name of the currently active notefile if there is one, else nil.

(NCP.CheckOutNoteFile <fromFilename> <toFilename>)

Copies <fromFilename> to <toFilename> unless <fromFilename> is locked. If successful, creates

a lock file in <fromFilename>’s directory. The name of the lock file is formed by concatenating

the atom LOCKFILE onto <fromFilename>.

(NCP.CheckInNoteFile <fromFilename> <toFilename>)

Check lock file for <toFilename>. If none, then just copy <fromFilename> to <toFilename>. If

there is one and it’s owned by us, then do the copy and remove the lock file. If there is a lock file

owned by someone else or if date of <toFilename> is more recent than date of lock file, then print

a message and do nothing.

2. Creating and Accessing NoteCard Types

These functions give the user access to the NoteCard user-defined types facility. For an explanation of

this facility, see the NoteCards Types Mechanism documentation.

(NCP.CardTypes)

(NCP.SubstanceTypes)

Returns lists of all currently defined NoteCard types and substances, respectively.

(NCP.CreateCardType <TypeName> <SuperType> <SubstanceType>
<FnsAssocList> <VarsAssocList>)

Makes a new NoteCard type with name <TypeName>, super type <SuperType>, substance

<SubstanceType>. Any functions not appearing in <FnsAssocList> will be inherited from

<SuperType>. The CardWidth and CardHeight vars fields will be inherited if not specified in

<VarsAssocList>. Other vars fields default to nil. Note that, for now, specializing the FileBox

card type is not allowed.

4

(NCP.CreateSubstanceType <SubstanceName> <FnsAssocList>
<VarsAssocList>)

Makes a new substance type with name <SubstanceName> and the given functions and vars

fields. None of the function fields should be nil (but might conceivably be the function NILL).

(NCP.CardTypeSuper <type>)

Returns the super type of <type>.

(NCP.CardTypeSubstance <type>)

Returns <type>’s substance type.

(NCP.CardTypeLinkDisplayMode <type>)

Returns the link display mode of <type>.

(NCP.CardTypeFn <type> <fn>)

(NCP.CardTypeVar <type> <var>)

Returns the <fn> (<var>) field for <type>.

(NCP.CardTypeInheritedField <type> <field>)

Returns the value of the card type function or variable <field> for <type>. This is possibly

different from the value returned by NCP.CardTypeFn or NCP.CardTypeVar in that if the defined

value for <field> of <type> is nil, then the super is checked for a non-nil value. This checking

continues until either a non-nil <field> is found or we reach the top of the super hierarchy. In that

case, the value of <type>’s substance’s <field> is used. Note that among the variable fields, only

CardDefaultWidth and CardDefaultHeight inherit, so for the other Var fields, the result of

NCP.CardTypeVar is valid (even if it’s nil).

(NCP.SubstanceTypeFn <substance> <fn>)

(NCP.SubstanceTypeVar <substance> <var>)

Returns the <fn> (<var>) field for the substance <substance>.

(NCP.ValidCardType <type>)

Returns non-nil if <type> is an existing NoteCard type.

(NCP.ValidSubstanceType <substance>)

5

Returns non-nil if <type> is an existing NoteCard substance type.

(NCP.ValidCardTypeFn <fn>)

(NCP.ValidCardTypeVar <var>)

Returns non-nil if <fn> (<var>) is a valid function (variable) field for NoteCard types, for example,

the litatom MakeCardFn (CardDefaultWidth). In other words, <fn> (<var>) can serve as the <fn>

(<var>) arg to NCP.CardTypeFn (NCP.CardTypeVar).

(NCP.ValidSubstanceTypeFn <fn>)

(NCP.ValidSubstanceTypeVar <var>)

These return non-nil if <fn> (<var>) is a valid function (variable) field for substance types. In other

words, <fn> (<var>) can serve as the <fn> (<var>) arg to NCP.SubstanceTypeFn

(NCP.SubstanceTypeVar).

(NCP.CardTypeFns)

(NCP.CardTypeVars)

(NCP.SubstanceTypeFns)

(NCP.SubstanceTypeVars)

These return lists of all valid Fn (Var) fields for NoteCard types and substances respectively.

3. Creating NoteCards and FileBoxes

The following functions create various sorts of cards and boxes within the currently open notefile.

(NCP.CreateTextCard <title> <nodisplayflg> <props> <parentfileboxes>)

Creates and returns a new notecard having type Text. If <title> is non-nil, it is installed as the

Notecard’s title, otherwise the title is "Untitled." <props>, if non-nil, should be a prop-list of

properties and values to be placed on the user property list of the Notecard. If <parentfileboxes>

is non-nil, then it should be a list of FileBoxes in which to initially file this card.

6

(NCP.CreateFileBox <title> <nodisplayflg> <props> <childcardsboxes>
<parentfileboxes>)

Creates and returns a new Filebox with title <title> (or a gensym’ed name if <title> is nil). It will

initially contain child cards and boxes from the list <childcardsboxes> (if that arg is non-nil). If

<parentfileboxes> is nil, then the new filebox will be filed in the value of

(NCP.GetToBeFiledFileBox). The <props> arg is handled as it was for NCP.CreateNoteCard.

(NCP.CreateBrowserCard <title> <paramList> <nodisplayflg> <props>
<parentfileboxes>)

Creates and returns a new browser card with given title, props and parents. <paramList> should

be a prop list of browser parameters. The properties currently recognized are:

ROOTCARDS: A list of Notecards to serve as roots of the forest or lattice generated by the

browser. If omitted or NIL then user is asked to choose root cards.

LINKTYPES: A list of link types to follow when creating the browser. Any label present in the list

having the backarrow prefix ("_") represents that link type but in the reverse direction. This list

can also contain the atoms ALL or _ALL in which case browsing will be done on all links in either

the forward or reverse direction. If both ALL and _ALL are specified, then links in both directions

will be used (generally making a mess).

DEPTH: The depth at which to cut off the browser. This should be a non-negative integer. If NIL

or omitted, then will assume no limit. (Currently integers greater than 9 are assumed equivalent

to infinity.)

FORMAT: This should be a list of one, two or three elements. The first should be an atom

indicating grapher format. The choices are FAST (layed out as a forest, sacrificing screen space

for speed), COMPACT (layed out as a forest, using minimal screen space), LATTICE (layed out

as a directed acyclic graph, the default), *GRAPH* (layed out as a graph, i.e. virtual nodes are

eliminated). The second element of the FORMAT list, if present, should be either HORIZONTAL

(the default) or VERTICAL specifying whether the graph is layed on its side or up and down. The

third element, if present, should be the atom REVERSE. This indicates that horizontal graphs

should be layed out from right to left instead of left to right and that vertical graphs should be

layed out from bottom to top rather than vice versa.

(NCP.CreateSketchCard <title> <nodisplayflg> <props> <parentfileboxes>)

Creates and returns an initially empty sketch/map card having given title, props, and parents.

(NCP.CreateGraphCard <title> <nodisplayflg> <props> <parentfileboxes>)

Creates and returns an initially empty graph card having given title, props, and parents.

7

(NCP.CreateCard <type> <title> <nodisplayflg> <props> <parentfileboxes>
<otherargs>)

Creates and returns a card of the given (possibly user-defined) type, with given title, props, and

parents. <otherargs> is a possibly nil list of args that will be passed to the MakeCardFn of

<type>. Card is initially displayed or not according to value of <nodisplayflg>.

(NCP.MakeDocument <rootcard> <parametersProplist> <nodisplayflg> <props>
<parentfileboxes>)

Creates and returns a Document card starting from <rootcard>. The default set of parameters for

making documents can be accessed via NCP.DocumentParameters, but some of these can be

given new values just for the duration of this MakeDocument by specifying a non-nil

<parametersProplist>. For example, a value of ’(TitlesFromNoteCards Bold

ExpandEmbeddedLinks ALL) for <parametersProplist> would cause temporary changes to the

values of the parameters TitlesFromNoteCards and ExpandEmbeddedLinks. As usual, the

resulting card will have the given props and parents.

(NCP.MakeLinkIndex <linktypes> <backpointersP> <nodisplayflg> <props>
<parentfileboxes>)

Creates and returns a LinkIndex text card consisting of a sorted record of all instances of links in

the current notefile having one of the given link types. <linktypes> can contain the litatoms ALL

and/or _ALL as well as any particular backwards links. (See the above description of

NCP.MakeDocument.) Backpointer links are inserted in the text if <backpointersP> is non-nil.

Resulting card will have given props and parents.

4. Accessing NoteCards and FileBoxes

The following functions provide access to the cards and boxes present in the current notefile. Note that

whether a card’s window has been brought up on the screen has little or no effect on the following

functions. If the user changes some field of a card while that card is visible on the screen, then the field

will update itself automatically. Thus, users can switch between program-driven and screen-interface-

driven modes at will.

Cards can be active or inactive. An active card has its information cached (on its property list) thus

saving time at the expense of memory. All cards visible on the screen are active. Most of the following

functions leave the card in the same state as it was when they started (except NCP.BringUpCard, which

makes it active). Thus, users needing to do several consecutive operations to the same card should

consider temporarily caching the card’s information via NCP.ActivateCards (and then uncache with

NCP.DeactivateCards).

8

Most of the following functions take as first argument a card or filebox. If this does not in fact correspond

to an existing card or box, then an error message is printed and nil is returned.

(NCP.BringUpCard <card> <region/position>)

Brings up on the screen the given card in the given region or at the given position. If

<region/position> is nil, then user is asked to specify position with mouse.

(NCP.ActiveCardP <card>)

Returns non-nil if given card or box is currently active (i.e. information is currently cached in

memory).

(NCP.ActivateCards <cardList>)

For each card or box in <cardList> (or just the one, if the argument is atomic), make it active (i.e.

cache its information in memory).

(NCP.DeactivateCards <cardList>)

For each card or box in <cardList> (or just the one, if the argument is atomic), make it inactive

(i.e. uncache its information back into the file). If any cards in <cardList> were on the screen then

this will close their windows.

(NCP.CardType <card>)

Returns the type of <card> or NIL if the card does not exist.

(NCP.ValidCard <card>)

Returns non-nil if <card> exists (hasn’t been deleted). (This is currently a synonym for

NCP.CardType.)

(NCP.CardTitle <card> [<newtitle>])

Returns old title of <card>. If <newtitle> is present, then set <card>’s title to <newtitle>.

<newtitle> can be an atom or string. Note, however, that all titles are converted internally to

strings by NoteCards.

(NCP.FileCards <cards> <fileboxes>)

Every card or box in <cards> is filed in every box in <fileboxes>. Either arg may be an atom or a

list.

9

(NCP.UnfileCards <cards> <fileboxes>)

Every card or box in <cards> is unfiled from every box in <fileboxes>. Furthermore if <cards> is

the litatom ALL, then the boxes in <fileboxes> will be cleared of all children. Similarly, if

<fileboxes> is the litatom ALL, then the cards and boxes in <cards> will be unfiled from all their

parent boxes. Either arg may be an atom or a list.

(NCP.CardParents <card>)

Returns list of fileboxes in which <card> has been filed.

(NCP.FileBoxChildren <filebox>)

Returns list of children of <filebox> in the order in which they appear in the box’s textstream.

(NCP.GetLinks <cards> <destinationCards> <labels>)

Returns list of all links from any of <cards> to any of <destinationCards> having any label in

<labels>. Any of these arguments can be nil. For example, if <destinationCards> is nil, then all

links pointing from <cards> to anywhere with a label in <labels> are returned. If both <cards>

and <destinationCards> are nil, then this returns all links having a label in <labels>. If all three

args are nil, then this is a slow synomym for NCP.AllLinks.

(NCP.CardPropList <card>)

Returns the prop list of the given card.

(NCP.CardProp <card> <propname> [<newvalue>])

Returns old value of property <propname> on <card>’s prop list. If <newvalue> is present, then

set <card>’s <propname> property to <newvalue>. (Semantics are analogous to the Interlisp

function WINDOWPROP.)

(NCP.CardAddProp <card> <propname> <newitem>)

Adds <newitem> to the list present on the <propname> property of <card>. Returns old value of

property. (Semantics are analogous to WINDOWADDPROP.)

(NCP.CardDelProp <card> <propname> <itemToDelete>)

Deletes <itemToDelete> from the <propname> property of <card> if it is there, returning the

previous value of that property. If not there, return nil. (Semantics are analogous to

WINDOWDELPROP.)

(NCP.CardSubstance <card>)

1 0

Returns the substance of <card>. This is a textstream in the case that the type of <card> has

TEXT substance. Otherwise, it is the appropriate underlying structure if <card> has GRAPH or

SKETCH substance.

(NCP.CardRegion <card>)

Returns the region of <card>. This works even if <card> is not currently up on the screen, since

the region information is stored on the notefile.

(NCP.CardAddText <card> <textstr> <loc>)

Adds the text within the string <textstr> to the text card <card>. If <loc> is the litatom START or

END, then the text will be placed at the start or end of the card respectively. If <loc> is a number,

then it is assumed to be a character count within the card at which to place the new text. If <loc>

is NIL, then the text is placed at the current cursor location.

(NCP.ChangeLoc <card> <loc>)

Changes the cursor’s location in <card>’s textstream to <loc>. Possible values for <loc> are as

described for NCP.CardAddText.

(NCP.DeleteCards <cards>)

Deletes the given cards and fileboxes from the current notefile, or deletes just the one if <cards>

is atomic.

(NCP.FileBoxP <card>)

Returns non-nil if <card> is a filebox.

(NCP.AllCards)

Returns a list of all extant cards for the current notefile.

(NCP.AllBoxes)

Returns a list of all fileboxes in the current notefile.

(NCP.MapCards <fn>)

Maps down the set of all cards in the current notefile, applying <fn> to each.

(NCP.MapBoxes <fn>)

Maps down the set of all fileboxes in the current notefile, applying <fn> to each.

1 1

(NCP.GetContentsFileBox)

(NCP.GetOrphansFileBox)

(NCP.GetToBeFiledFileBox)

These functions retrieve the three predefined FileBoxes for the currently open NoteFile. These

boxes can be modified (but not deleted) by the user in the same way as any other filebox.

5. Creating and Accessing Links

Links can be connected to points within a card or to the card as a whole, thus the following four link

creation functions are provided. Those that connect to points within a card specify at least one of

<fromloc> or <toloc>. If nil, then the link icon is placed at the current cursor location in the card. If the

arg is the litatom START or END, then it is placed at the front or end of the text respectively. If the loc arg

is a number, then it is assumed to be a character count at which to place the link icon.

(NCP.GlobalGlobalLink <label> <sourceCard> <destinationCard>)

Creates and returns a new link with label <label>, connecting <sourceCard> to

<destinationCard>.

(NCP.LocalGlobalLink <label> <sourceCard> <destinationCard> <fromloc>
<displaymode>)

Creates and returns a new link with label <label>, connecting from <fromloc> of <sourceCard>

card to <destinationCard>. If <displaymode> is non-nil, then the new link is displayed in the given

mode. Otherwise the default displaymode for the source card’s type is used.

(NCP.GlobalLocalLink <label> <sourceCard> <destinationCard> <toloc>)

Not implemented at this time.

(NCP.LocalLocalLink <label> <sourceCard> <destinationCard> <fromloc>
<toloc>)

Not implemented at this time.

(NCP.LinkDesc <link>)

1 2

Returns list of three items (<label> <sourceDesc> <destinationDesc>) where <label> is the link

type and <sourceDesc> and <destinationDesc> have the form (<anchor mode> <card> <loc>).

<anchor mode> is either LOCAL or GLOBAL, <card> is the card at this end of the link, and <loc>

gives a position in the text of <card> if <anchor type> is LOCAL and <card>’s substance’s type is

TEXT.

(NCP.LinkDisplayMode <link> [<newdisplaymode>])

Returns old diplay mode of <link>. If <newdisplaymode> is present, then set <link>’s

displaymode accordingly. If non-nil, it can be one of the litatoms Icon, Title, Label, or Both. Or it

can be an instance of the LINKDISPLAYMODE record. This has the 3 fields SHOWTITLEFLG,

SHOWLINKTYPEFLG, and ATTACHBITMAPFLG. Each field can have one of the three values

T, NIL, or FLOAT. If a field, say SHOWTITLEFLG, has value FLOAT then the corresponding

global parameter (DefaultLinkIconShowTitle, in this case) will be consulted to decide whether or

not to display the destination card’s title in this icon. (See Section 7 for a description of the global

parameters.)

(NCP.LinkLabel <link> [<newlabel>])

Returns old label of <link>. If <newlabel> is present, set <link>’s label to <newlabel>.

(NCP.GetLinkSource <link>)

Returns the card at the source end of <link>.

(NCP.GetLinkDestination <link>)

Returns the card at the destination end of <link>.

(NCP.DeleteLinks <links>)

Removes all links in <links> (or the single one if <links> is atomic).

(NCP.ValidLink <link>)

Returns non-nil if <link> is a link in the current notefile.

(NCP.AllLinks)

Returns a list of all existing links in the current notefile. (This is equivalent to but faster than

(NCP.GetLinks NIL NIL NIL).)

(NCP.MapLinks <fn>)

Maps down the set of all links in the current notefile, applying <fn> to each one.

1 3

6. Creating and Accessing Link Labels

The following functions allow the user to manipulate link labels.

(NCP.CreateLinkLabel <label>)

Creates a new link label with name <label> for current notefile unless there is already one defined

by that name.

(NCP.DeleteLinkLabel <label>)

Deletes the link label <label> from the current notefile. The label must exist and must not be the

label of any existing link, and it must not be a system-defined link label (e.g. SubBox or

FiledCard).

(NCP.RenameLinkLabel <label> <newlabel>)

Changes any links having label <label> to have label <newlabel>. <label> must exist and neither

<label> nor <newlabel> should be a system-defined label.

(NCP.GetLinkLabels)

Returns a list of all existing link labels including system-defined ones.

(NCP.GetReverseLinkLabels)

Returns a list of the reverse labels for every existing link label. Thus, whereas SubBox would

appear in the list returned by NCP.GetLinkLabels, _SubBox would appear in the list returned by

NCP.GetReverseLinkLabels.

(NCP.GetUserLinkLabels)

Returns a list of all existing user-defined link labels.

(NCP.ValidLinkLabel <label>)

Returns non-nil if <label> is a defined link label for current notefile.

7. Handy Miscellaneous Functions

1 4

(NCP.TitleSearch <key> <key> ...)

Returns a list of all cards having all of the <key>s (can be atoms, numbers or strings) within their

titles.

(NCP.PropSearch <propOrPair> <propOrPair> ...)

Returns a list of all cards such that for every <propOrPair> arg, if it is atomic, then the card must

contain that property. If it is a list of two elements, then the card must have a property EQ to the

first element with value EQ to the second element.

(NCP.WhichCard <x> <y>)

Returns the card currently displayed on the screen whose window contains the position in screen

coordinates of <x> if <x> is a POSITION, the position (<x>,<y>) if <x> and <y> are numbers, or

the position of the cursor if <x> is NIL. Returns NIL if the coordinates are not in the window of

any card. If they are in the window of more than one card, then returns the uppermost. If <x> is

a window, then NCP.WhichCard will return the card associated with that window.

(NCP.CardFromWindow <window>)

Returns the card associated with <window>, or NIL if not a notecards window.

(NCP.CardWindow <card>)

Returns <card>’s window if <card> is currently displayed somewhere on the screen.

(NCP.SelectCards)

Returns a list of those cards selected from the screen. A menu appears near the top of the

screen with buttons for "DONE" and "CANCEL". Selections are made by left buttoning in the title

bars of the desired cards.

(NCP.DocumentParameters <parametersProplist>)

Returns the old value of the document parameters in the form of a proplist. If

<parametersProplist> is non-nil then it should be a proplist whose properties are (some of the)

valid document parameter names and whose values are permissible values for those parameters.

The valid parameters and possible values are as follows:

HeadingsFromFileboxes: NumberedBold, UnnumberedBold, NONE.

TitlesFromNoteCards: Bold, NotBold, NONE.

1 5

BuildBackpointers: ToCardsBoxes, ToCards, ToBoxes, NONE.

CopyEmbeddedLinks: ALL, NONE, <listOfLinkLabels>.

ExpandEmbeddedLinks: ALL, NONE, <listOfLinkLabels>.

[See the Notecards user’s manual for an explanation of these parameters and how their values

affect the document created.]

(NCP.NoteCardsParameters <parametersProplist>)

Returns the old value of the global Notecards parameters in the form of a proplist. If

<parametersProplist> is non-nil then it should be a proplist whose properties are (some of the)

valid document parameter names and whose values are permissible values for those parameters.

The valid parameters and possible values are as follows:

DefaultCardType: <legalCardType>

FixedTopLevelMenu: T or NIL

ShortWindowMenus: T or NIL

ForceSources: T or NIL

ForceFiling: T or NIL

ForceTitles: T or NIL

CloseCardsOffScreen: T or NIL

MarkersInFileBoxes: T or NIL

AlphabetizedFileBoxChildren: T or NIL

DefaultLinkIconAttachBitmap: T or NIL

DefaultLinkIconShowTitle: T or NIL

DefaultLinkIconShowLinkType: T or NIL

LinkDashingInBrowsers: T or NIL

ArrowHeadsInBrowsers: one of the litatoms {AtEndpoint, AtMidpoint, None}

SpecialBrowserSpecs: T or NIL

AnnoAccessible: T or NIL

1 6

EnableBravoToTEditConversion: T or NIL

DefaultFont: a font

LinkIconFont: a font

Here, <legalCardType> should be an existing Notecard type, i.e. one that appears in the list

returned by NCP.CardTypes.

(NCP.PrintMsg <window> <clearFirstFlg> <arg1> <arg2> ...)

Prints a message in the prompt window of <window>. If <window> is NIL, then prints message in

the Lisp prompt window. If <clearFirstFlg> is non-nil, then clears the prompt window first. The

args are PRIN1’ed one at a time.

(NCP.ClearMsg <window> <closePromptWinFlg>)

Clears the prompt window associated with <window> (or with the main Lisp prompt window if

<window> is NIL) and closes it if <closePromptWinFlg> is non-nil.

(NCP.AskUser <Msg> <prompt> <FirstTry> <ClearFirstFlg> <MainWindow>
<DontCloseAtEndFlg> <DontClearAtEndFlg> <PROMPTFORWORDFlg>)

This function can be used to ask questions of the user in a window’s prompt window. The <Msg>

and <prompt> are printed along with <FirstTry> (if non-nil). The value returned is whatever the

user types. If <ClearFirstFlg> is non-nil, then the prompt window is cleared first. If

<MainWindow> is nil, then the top level prompt window is used. If <DontCloseAtEndFlg> is non-

nil, then the prompt window won’t be closed after the question is answered and if

<DontClearAtEndFlg> is non-nil, then the prompt window won’t be cleared at the end. If

<PROMPTFORWORDFlg> is non-nil, then the PROMPTFORWORD typein protocol will be used

rather than TTYIN. The former doesn’t allow mouse editing of the string typed in. On the other

hand, typing automatically overwrites the prompt when PROMPTFORWORD is used.

(NCP.AddTitleBarMenuItems <Win> <NewMenuItems>)

Adds the given menu items to the left button title bar menu of <Win>. <Win> should be the

window of a visible notecard.

(NCP.GetDates <Card>)

Returns a NOTECARDDATES record structure containing the dates of last modification of each

of the four card parts of <Card>. The fields of the record are SUBSTANCEDATE, TITLEDATE,

LINKSDATE and PROPLISTDATE.

1 7

Notice of release of Notecards 1.2i

The 1.2i Intermezzo release of Notecards is hereby officially released.

To run NoteCards, load onto an Intermezzo sysout the file
{qv}<notecards>release1.2i>notecards.dcom. As usual, send bug reports by choosing
"NoteCards Report" from the Lafite middle button send mail menu. Mail of more general
interest to the NoteCards community should be sent to NoteCards^.pa.

Even if you have been using 1.2i for some time and feel comfortable with Notecards, please take
a look at the release notes in {qv}<notecards>release1.2i>doc>ReleaseNotes.ted.

The release notes describe in detail the changes since 1.1. These include incorporation of the
latest version of sketch, new functionality in the browser, a new notefile inspect and repair
facility, several new library packages, and many other feature additions and bug fixes.

Also on {qv}<notecards>release1.2i>doc> you can find updated documentation on the
programmer’s interface, ProgIntFace.ted, and a new document describing the inspect and repair
facility, NoteFileInspector.ted.

The library packages and accompanying documentation can be found in
{qv}<notecards>release1.2i>library>.

Enjoy!

- Randy

NoteCards Release1.2i Announcement

Xerox Corporation

Randy Trigg
Frank Halasz

[Location: {qv}<notecards>release1.2i>notecards.dcom]
[First written: 3/27/85 Randy Trigg]
[Last updated: 8/26/85 Randy Trigg]

This document updates the NoteCards Release1.1 User’s Manual, describing changes and new
features for Release1.2i. As usual, send bug reports to NoteCardsSupport.pa (or use the Lafite
SendMail middle button menu) and matters of more global interest to Notecards^.pa.

You must be in Intermezzo to run NoteCards Release1.2i. From now on, you can depend on the
letter suffix following the release number to indicate the appropriate version of Interlisp.

Changes from 1.1 are mostly in the following areas: the NoteCards browser, notefiles interface,
link icon display and user interface. In addition, there are various miscellaneous changes, a
couple of new card types, and fixes of several outstanding 1.1 bugs.

1. Operating on a Notefile.

Checkpointing and aborting a session:

A fundamental change was made to the way Notecards updates its working notefile that allows
1.2i users to checkpoint their work, abort a session (losing work since the last checkpoint), and
recover more gracefully from crashes. First, a word about the way Notecards notefiles are
structured.

A notefile consists of two parts, an index area and a data area. The index includes for each
notecard, several pointers into the data area. There are separate pointers for the notecard’s
substance, title, prop list, and links. When, say, a notecard’s title is changed, the new title is
written at the end of the data area (in fact the end of the file) and the index pointer is changed. In
Release1.1 (and earlier), the index modifications happened out on the file as they occured. Now,
in Release1.2i they happen in an in-core array and are not written to the file till checkpoint (or
close) time. In addition, there is a checkpoint pointer that points to the end of file at the time of
the last checkpoint or close. New data (such as a new title) is still written to the file, but always
at the end of the file. Thus if a crash occurs and later the notefile is reopened, Notecards can
notice the extra data beyond the checkpoint pointer and truncate the file at that point (if you
confirm).

More concretely, there are now two new NoteFile Ops menu entries: "Checkpoint Session" and
"Abort Session." Checkpointing causes any active cards to have their contents saved to the
notefile (but not closed), the index array to be written back out to the file, and the checkpoint
pointer to be reset to the end of the file. (Note that closing a notefile automatically does a
CheckpointSession.) Aborting a session causes Notecards to close down, discarding all work
since the last checkpoint or close.

When a notefile is opened, the checkpoint pointer is compared with the end of file pointer. If
they don’t agree, then you’re asked whether the file should be truncated. You’re also given the

2

option of saving the extra work since the last checkpoint to a file. If valuable cards were created
(or modifications made) since the last checkpoint, then you should answer yes and provide the
name of a file in which to store the truncated information.

Next, you should open the truncated notefile and bring up a separate TEdit window on the file
containing the truncated information. Though TEdit formatting information is lost, you can
recover a card’s text by browsing this file. (Note that scrolling from back to front will retrieve
the most recent version of each card.)

[Note that closing (or saving without closing) a card writes it out to the file, but does not force
the index to be updated. Thus, if crashes are anticipated, do CheckpointSession often.]

Compacting a Notefile:

Because Notecards never actually overwrites any information in the data area of a notefile, it is
necessary to periodically compact the notefile. This facility has been improved in Release1.2i in
two ways. It is now possible to specify a target file name for the compaction (rather than always
going to the same name), and it is now possible to compact a notefile in place. These two
choices form a submenu of the CompactNotefile entry in the Notefile Ops menu.

Copying, restoring, and backing up notefiles:

The menu entries for RestoreFromFloppy and BackupToFloppy have been removed from the
NotefileOps menu. In their place is a general CopyNotefile option. It prompts you for source
and target file names for the copy.

There is a new facility for checking in and out notefiles using locks for multiple users sharing a
notefile. Still in the experimental stages, it must be called via the programmer’s interface. See
the programmer’s interface documentation.

Inspecting and healing broken notefiles:

The old Repair option on the Notefile Ops menu is now called Inspect&Repair and has been
improved considerably. Before rebuilding the links of your notefile, it reads the entire data area
looking for good card parts (including outdated and deleted versions). It then allows you to
delete and/or back up card parts to previous versions. All this is done interactively through a
menu driven interface. Only when the notefile is deemed healthy are you allowed to perform the
link rebuilding. For details on the operation of Inspect&Repair, see the document titled
NotefileInspector.ted.

2. Changes to the Notecards user interface.

Stylesheets:

Several places in Notecards now use Tayloe Stansbury’s stylesheet package for user interaction,
in particular, changing a link’s display mode, a browser’s specs, or the default text and link icon
fonts from the global parameters menu. Stylesheets allow packaging of several menus together
with "buttons" governing individual menus and the stylesheet as a whole. Menus within a
stylesheet can optionally allow multiple selections. All stylesheets have three global buttons
"Done," "Reset," and "Abort." "Done" causes the new values to be accepted. "Reset" causes the
original values (when the stylesheet was entered) to be recovered. "Abort" causes the stylesheet
to be exited without changing any values. Menus allowing multiple selections also have the

3

buttons "All" and "Clear" attached. "All" causes all values in the menu to be selected while
"Clear" unselects the entire menu. Toggling of menu entries is accomplished by left clicking the
entry.

New global parameters:

The top level global parameters menu has several new additions. These (as well as some old 1.1
ones) are described below. To change the value of a global parameter, click on the variable
name. The value will toggle between "Yes" and "No" if binary, and allow selection from an
appropriate menu otherwise.

ForceSources, ForceFiling, ForceTitles: These dictate whether to bother you at card closing time
about incomplete information for the card. If ForceFiling is set, for example, then you are asked
to designate parent fileboxes of the card before closing. Similarly, for sources and titles. If
ForceFiling is off (value is "No"), then cards without parents will be filed automatically in the
ToBeFiled filebox at closing time. If ForceTitles is off, then an untitled card will be left with the
title "Untitled." ForceTitles and ForceFiling default to "Yes," while ForceSources defaults to
"No."

CloseCardsOffScreen: If "Yes," then when a card is closed, it is first dragged off screen so that
the close happens invisibly.

MarkersInFileBoxes: If "Yes," then new fileboxes will contain the markers "FILE BOXES" and
"NOTE CARDS." New child boxes are inserted under the FILE BOXES marker and new child
cards under the NOTE CARDS marker. If "No," then new fileboxes come up without markers
and new children are inserted at the current cursor position. Note that regardless of the
MarkersInFileBoxes setting, if a filebox has no markers (because you’ve deleted them) then new
children are inserted at the cursor position.

AlphabetizedFileBoxChildren: If "Yes," then new fileboxes will have the property OrderingFn
set to NC.IDAlphOrder. This will cause any new cards put into such a filebox to be inserted in
alphabetical order. For further details on OrderingFn’s for fileboxes see Section 4.

DefaultLinkIconAttachBitmap, DefaultLinkIconShowTitle, DefaultLinkIconShowLinkType:
These dictate the manner in which link icons are displayed if not currently specified in the icon.
There are three fields of a link’s display mode that can be set, unset, or floated independently. If
a field is floated, then the global parameter for that field is consulted. For example, if a link
icon’s display mode has value FLOAT for the ShowTitle field, then whether the title gets shown
inside the link icon depends on the value of DefaultLinkIconShowTitle. See below for a further
description of a link’s display mode.

LinkDashingInBrowsers: If "Yes," then browser links are drawn with dashed lines with the
dashing style corresponding to the link’s type. See Section 3 for further details on browser
changes. Defaults to "No."

ArrowHeadsInBrowsers: This dictates whether arrow heads are drawn on browser links. The
variable can be set to either "AtMidpoint," "AtEndpoint," or "None." See Section 3 for details.
Defaults to "None."

EnableBravoToTEditConversion: If "Yes" then TEdit checks when getting a file whether that
file is in Bravo format and if so, converts. This defaults to "No" for efficiency.

DefaultFont: This dictates the font that new text cards default to.

4

LinkIconFont: This dictates the font for text appearing in link icons.

Link icon display mode:

The display mode of a link icon can be changed by middle buttoning in the icon and selecting
from the three menus in the resulting stylesheet. These are: AttachBitmap, ShowTitle, and
ShowLinkType. AttachBitmap, if "Yes," causes link icons to be shown with a bitmap
representing the type of the destination card attached at the left. ShowTitle and ShowLinkType,
if "Yes," cause the link icon to contain the title of the destination card and/or the link type. Any
of the three fields can have the value FLOAT, in which case the appropriate global parameter
will be consulted. (See description of global parameters above.) If all fields are set to "No" (or
the floating ones inherit No from the global parameters), then a small, uninformative icon is used
to display the link.

"Pushing" and "Pulling" link icons:

There are now two ways to move or copy a link icon between cards or within a card. "Pulling"
works like TEdit shift-select. That is, to move an icon, put the cursor where you want to move to
and hold down the shift key (or shift and ctrl keys) while left clicking in the left or right quarter
of the icon. The new style is called "pushing" and is done by holding down the shift key while
left clicking in the middle part of the icon. Then move the cross-hairs cursor to the icon’s new
home and left-click. To abort a "push," just left click in the background. Note that "pushing"
currently only works for copying, not moving.

Specifying notefile names and card titles:

A different editor has been incorporated into Notecards for obtaining card titles, file names, etc.
This editor is the same one used in the top level lisp exec window (TTYIN). Thus you can
change the title (or file name) given as prompt via mouse edits.

3. Changes to the Notecards browser.

Multiple roots:

Browsers can now contain multiple roots, in which case the graph will be laid out as a forest.

Dashed links:

Dashed browser links was a rarely used option in Release1.1, largely because of speed
considerations. The speed of drawing dashed links has improved in Release1.2i by taking
advantage of improvements in Grapher. There are currently nine different dashing styles
possible. If a browser contains instances of more than nine different link types, then the last
dashing style will be used repeatedly for each link type beyond the ninth. As before, link
dashing is a user-settable option in the GlobalParameters menu (see Section 2).

Arrowheads:

Arrowheads can now be drawn on browser links. These show the direction of the notecards link
being represented in the browser. This is a user-settable parameter in the GlobalParameters
menu with possible values AtMidpoint, AtEndpoint, or None. If AtMidpoint or AtEndpoint is
specified, then arrowheads will be drawn at link midpoints or endpoints, respectively. However,

5

in either case, if two browser nodes are connected by more than one link, then any arrowheads
for those links will appear at the midpoints (so as not to overlap).

Browser specs:

Whereas in Release1.1 only the link types to traverse could be specified, in Release1.2i, link
types is one of a number of browser specs. Also included are browser depth, format, and
orientation. These are accessible through a BrowserSpecs stylesheet, a collection of 5 menus.
For general details on the stylesheet interface see Section 2. In this case, the forward and
backward link types menus are multi-selectable, that is, more than one entry can be chosen. The
other three menus are used to make single selections.

Forward and backward link types function as in Release1.1. That is, the browser will contain
only nodes for cards reachable from the root cards by following forward links in "line of
direction" or backward links in "reverse line of direction."

Browser depth is chosen from a menu containing entries for the integers 0 through 9 and INF (or
infinite depth). The default is INF, meaning that the browser will not be cut off until there are no
more links to follow from leaf nodes. Choosing depth 0 means that only the root nodes will
appear (and no links).

Browser format is one of *GRAPH*, LATTICE, COMPACT, or FAST. The latter three are
provided by the grapher package and correspond to lattice, compact forest and fast forest,
respectively. COMPACT and FAST generate virtual nodes (in double boxes) whenever two or
more links would be drawn to the same node. LATTICE only generates virtual nodes when a
cycle exists in the graph. *GRAPH* is a new format that never generates virtual nodes. The
drawback to using *GRAPH* is that a cycle can cause lines to be drawn that cross boxes or
overlap other lines. Thus you may have to move nodes around for legibility after computing the
browser. The default is LATTICE.

Browser orientation is one of Horizontal, Vertical, Reverse/Horizontal, or Reverse/Vertical.
These specify whether the graph is layed out left-to-right, top-to-bottom, right-to-left, or bottom-
to-top, respectively. The default is Horizontal.

New middle button title bar menu options:

Several new entries have been added to the middle button menu invoked from a browser’s title
bar. The options are now RecomputeBrowser, RelayoutGraph, ReconnectNodes,
UnconnectNodes, ExpandBrowserNode, GraphEditMenu, and ChangeBrowserSpecs.

RecomputeBrowser causes the current contents of the browser to be thrown away and
recomputed as in Release1.1. However, in Release1.2i, you can optionally specify a new set of
root nodes.

RelayoutGraph does not rebuild the graph, but rather causes the nodes and links of the graph to
be repositioned on the screen (using Grapher’s LAYOUTGRAPH). This will destroy any work
you have done moving nodes within the graph.

ReconnectNodes first causes any link edges in the graph to be erased. (Note, however, that non-
link edges, those created by "AddEdge" as described below, are ignored.) Then, each node in the
graph is connected to every other node in the graph for which there is a link between them
having one of the currently selected link types. This can be useful for several reasons:

6

1. when the linking structure between cards has changed, but the current browser layout needs to
be preserved.

2. when some browser nodes need to be moved, but dragging the connected links is too slow. In
this case, do UnconnectNodes followed by ReconnectNodes (after you’ve moved the nodes
around).

3. when special browser layouts are desired. For example, suppose you like the layout that
Grapher gives you when certain links are left out or when you limit the depth. Then calling
ReconnectNodes will fill in the missing links without affecting the graph’s layout.

UnconnectNodes simply erases all edges in the browser. This is useful for positioning a
browser’s nodes before invoking ReconnectNodes.

ExpandBrowserNode allows you to enlarge the graph under a given node. After selecting a
node, you’re asked for a depth (defaults to 1). The graph is then expanded under the selected
node to the given depth, following any currently selected links. Note that ExpandBrowserNode
calls LAYOUTGRAPH so any existing special node arrangements will be lost.

GraphEditMenu brings up the graph editing menu. See the description below.

ChangeBrowserSpecs brings up the BrowserSpecs stylesheet to allow you to change any of the
browser specs. These changes will be noticed at the next RecomputeBrowser,
ExpandBrowserNode, etc.

Editing the browser manually and "structure editing":

The browser can be edited through the use of the GraphEditMenu. This menu can be obtained
either by right-buttoning in the browser window or by choosing GraphEditMenu from the title
bar middle button menu. The GraphEditMenu includes options for "structure editing"; that is,
changing underlying NoteCards structure by editing the browser. The old options for editing
without changing structure are also present. Given below are the menu items in GraphEditMenu
and the actions they engender.

CreateCard&Node causes a new card to be created in the current Notefile and a corresponding
node for it to be included in the browser. You’re asked for the type of the new card, its title, and
where to position the node representing it.

CreateLink&Edge causes a new link to be created between two existing cards and a
corresponding edge to be drawn in the browser. (We call such an edge representing a Notecards
link, a "link edge." See AddEdge below for creating non-link edges.) You’re asked for the
"From" and "To" nodes in the browser corresponding to the cards to be linked as well as a link
type. The link icon for the new link is positioned at the cursor point in the From card if the card
has text substance and an open window. Text cards with closed windows have links inserted at
the start of the text stream. Otherwise, the new link is a global link. You can have multiple link
edges between pairs of cards. In this case the edges are displayed in a spline or "flower"
arrangement.

DeleteCard&Node causes a card to be deleted and its corresponding node in the browser to be
removed. You are asked first to choose the node representing the card to be deleted and then to
confirm the removal of the node (type "y" to confirm) and the deletion of the card. If the

7

selected node is one of a set of virtual nodes (double boxed), then all nodes in the set (i.e.
representing the given card) are removed.

DeleteLink&Edge causes a link in the Notefile to be deleted and the corresponding edge in the
browser to be removed. You first pick the "From" and "To" nodes corresponding to the source
and destination ends of the link respectively. Then, if there is only one link between those two
cards, the link is deleted after user confirms. If there are multiple links between the two cards,
then the user chooses from a menu of link types.

AddLabel puts a "label node" into the browser that does not represent a Notecard. You are
prompted for a string forming the node’s label and then must position the label node. This node
is not boxed. (But note that "virtual" label nodes can be boxed and thus can be confused with
non-virtual regular nodes.)

AddNode adds a node into the browser corresponding to some existing card. You are asked to
point to a card (title bar or link icon) on the screen that this node is to represent and then to
position the node.

AddEdge draws a line between two nodes in the browser. This edge does not correspond to a
real link in the Notefile. To avoid confusion, it is best to have the arrowheads option on (see
Section ??) in this case, since edges formed by AddEdge do not have arrowheads (or dashing).
Only one such edge is allowed between any two nodes and none if there are already link edges
between the nodes. Thus doing CreateLink&Edge will remove any existing non-link edge.

RemoveNode removes a node from the browser. It does not delete the card (if any) that the
node represents. Edges into and out of the node are also removed. If the selected node is one of
a set of virtual nodes representing the same card, then you will be told how many nodes will be
removed with this one and will be asked to confirm. The only way to remove only one node of a
set of virtual nodes, is to first manually remove edges into and out of it using RemoveEdge.
Then RemoveNode can be used to remove only the one virtual node.

RemoveEdge removes an edge from the browser. It does not delete the link (if any) that the
edge represents. The user is asked to select the "From" and "To" nodes of the edge.

MoveNode allows you to change the position of any node, rubber banding any edges pointing to
it. You’re asked to point to the node by left-buttoning, and holding down the left button, drag
the node to its new position.

LabelSmaller is used to decrease the font size of label nodes. Note that it does not work for
regular non-label nodes.

LabelLarger is used to increase the font size of label nodes.

<->Shade toggles the shade of a node between black-on-white and white-on-black. This can
only be performed on label nodes (not on nodes representing Notecards).

FIX MENU causes the GraphEditMenu to be affixed to the lower right edge of the browser
window. Note that this does not prevent you from obtaining the menu via right button inside the
window.

[Note that the above editing commands do not work on old 1.1 browsers. Such browsers should
either be recomputed (via RecomputeBrowser) or unconnected and reconnected.]

8

4. Miscellaneous changes.

Links ordering within text cards:

The internal list of outgoing links in a text card is now kept in the same order that the links
appear in the card’s text. This means, for example, that the daughters of a browser node for a
filebox will appear in the correct order.

Link insertion:

The title bar menu entry for "InsertLinks" now has an attached submenu containing entries for
adding single links, multiple links, and global links. When inserting multiple links (or adding
multiple global links) you’re only asked for one link type which is used to label all the new links
and all are inserted at the same place in the text.

Show links:

This is now a normal entry in the left button title bar menu of a card (rather than a subentry
under Edit Properties). The format of the ShowLinks display has been changed slightly. The
prefix is now either TO, FROM, or Global TO. The link type is shown in the icon. Also, for
text cards, the TO links should appear in the correct order.

Sketch changes and fixes:

Notecards now uses the latest version of sketch. See the sketch documentation for details on
changes. Several long-standing bugs having to do with link icons in sketch cards have been
fixed.

Sketches and graphs in text cards:

It is possible to shift-copy the contents of sketch and graph/browser cards into text cards. In
addition, the Document card is now able to include the contents of sketch and graph cards if
encountering them during card gathering. (It is still not possible for Document to include the
contents of cards having user-defined substance types such as NCFile cards.)

Data saved at card closing:

When a card is closed, only those parts that are dirty are written out to the notefile. A message
indicating which parts are being saved is now printed to the card’s prompt window during
closing. Furthermore, certain card types (in particular, browsers) were saving their substance
even if no changes were made. This source of space inefficiency has been fixed in Release1.2i.

Ordering cards in a filebox:

It is now possible to dictate the relative placement of new cards in a filebox. If the OrderingFn
property of a card has a value, it should be a lisp function that takes two card ID arguments and
returns T if the first should appear before the second and NIL otherwise. You can make such a
function appear automatically on new boxes for the case of alphabetizing by using the global
parameter AlphabetizeFileBoxChildren. See section 2.

Programmer’s interface:

9

The Programmer’s interface has been updated. Thus users with existing programmer’s interface
code should read the revised PI documentation. The changes are not all forward compatible.

Notecards system date:

You can find the date of your Notecards system in the variable NC.SystemDate. The
’NewestFile property on the NC.SystemDate atom contains the name of the last modified
Notecards file.

The Notecards library packages:

The old Release1.1 library packages have been converted to 1.2i and documented and several
new ones have been added. These can be found on {qv}<notecards>release1.2>library> and
include NCScreen, NCCluster, NCChain, NCFileCard, NCKeys, NCHacks, and ARIDemo.
Documentation can be found in <filename>.ted.

NCScreen defines several handy functions for arranging cards on the screen callable from the
programmer’s interface. NCCluster defines several new card types, most notably CaseCluster, a
cluster of cards for use in the sample domain of legal case analysis. NCChain defines the Chain
card type, useful for breaking up a large text card into a linked chain of cards. NCFileCard
defines the new File card type and FILE substance allowing a notefile to link to external files via
standard Notecards links. NCKeys provides a shorthand language for invoking various handy
programmer’s interface functions. NCHacks contains several handy functions written using the
programmer’s interface. Two of these allow global text searches and replaces throughout a
notefile. In addition there is a function that searches by last card modification date and one that
links cards to form chains. Finally, ARIDemo is an example of how the programmer’s interface
can be used to construct notefiles that demo themselves.

Loading NoteCards from different directories:

NoteCards now uses the values of four directories variables to decide from whence to load the
code. These are NOTECARDSDIRECTORIES, NOTECARDSMAPDIRECTORIES,
QUADTREEDIRECTORY, and MAPFILEDIRECTORY. They default to
({QV}<NOTECARDS>RELEASE1.2I>), ({QV}<NOTECARDS>MAPS>NEW>),
{QV}<NOTECARDS>MAPS>, and {QV}<NOTECARDS>MAPS> respectively.

5. Known bugs and plans for future improvements:

o The compactor should check first for available space.

o There are major speed problems in redrawing large browsers. Changing link display mode
could also use some streamlining.

o Integrate the document compiler and the types mechanism so that instances of new card types
can be sucked into TEdit documents.

o Make links into full-fledged objects having properties and type hierarchies.

The NoteCards Types Mechanism
Release 1.2

Frank G. Halasz

Xerox PARC

First Written: 22-Mar-85

Modified: 26-Mar-85 by Frank G. Halasz

Modified: 1-Aug-85 by Lissa Monty

1. Introduction

The NoteCards types mechanism allows a user with some knowledge of Interlisp to add new types of

note cards to the system. The types mechanism is built around an inheritance hierarchy of note card

types. If the user needs to create a new card type that is a small change from an already existing card

type, he or she need only define the few functions or parameters that account for the differences between

the new card and the existing card. However, if the user wishes to create a totally new type of card, then

he or she must define the 20-odd functions and parameters that make up a note card type.

Every note card has a substance. A substance is essentially a data structure that contains the

information in the note card. Different types of note cards have different types of substances.

Associated with every substance type is an editor that can be used to create and/or modify the data

structure of that substance type. For example, the substance of a Text card is a TEXTSTREAM that can

be edited using TEdit. Similarly, the substance of a Browser card is a GRAPH record that can be edited

using GRAPHER. Defining a new note card type involves specifying the functions necessary to handle

the card’s substance and its editor.

1.1 The Inheritance Hierarchy

The inheritance hierarchy in NoteCards has two parts: a tree of NoteCardTypes and a list of

SubstanceTypes. Every NoteCardType has a super-type and a substance type. The super-type is an

already existing NoteCardType from which the NoteCardType will inherit fields. Thus, the set of

NotecardTypes forms a tree structure based on the super-type field. The substance type of a

NotecardType is an already existing SubstanceType.

The inheritance process for a given field of a NoteCardType works as follows: if the field has a non-NIL

value in the NoteCardType then this value is used, otherwise the field value is inherited from its super-

type. If there are no non-NIL values anywhere in the inheritance path for the NoteCardType, then the

field value is taken from the corresponding field in the substance type for the NoteCardType. Substance

types are guaranteed to have values in all of their fields.

2

Example: ProtectedText is a card with super-type Text. Text in turn has super-type NoteCard (the null

root of the NoteCardType tree). In addition, Text has substance type TEXT. If an EditCardFn is not

defined in ProtectedText, then it will be inherited from Text. If Text doesn’t have an EditCardFn then the

EditSubstanceFn from the TEXT SubstanceType will be used (since NoteCard by definition does not have

an EditCardFn).

Functions are inherited all or none. Often, however, a new NoteCardType will require only a minor

addition to the corresponding function of its super-type. In this case, the new card type should define a

new function, but this function can call the corresponding function of its super-type to do the bulk of the

work. The following construction will accomplish this goal:

(APPLY* (NCP.CardTypeInheritedField (NCP.CardTypeSuper <type>) <fn>) <arg1>

<arg2> ...)

where <type> is the TypeName of the card type in question, <fn> is the name of the function in question,

and <arg1> <arg2> ... are the arguments to that function. For example the following might be the

definition of the EditCardFn for the passworded Text card called ProtectedText:

(DEFINEQ

(NC.EditProtectedTextCard
 (LAMBDA (ID Substance Region/Position)
 (* * Edit a Protected Text card, asking for the password first.)
 (PROG (Password Result)
 (* * Get this card’s password from the prop list)
 (SETQ Password (NCP.CardProp ID (QUOTE Password)))
 (COND
 ((EQUAL Password (NC.GetPassword ID))
 (* Password is okay.
 Call the EditCardFn of my super-type)
 (SETQ Result (APPLY*
 (NCP.CardTypeInheritedField
 (NCP.CardTypeSuper (QUOTE ProtectedText))
 (QUOTE EditCardFn))
 ID Substance Region/Position)))
 (T (* Password is bad. Express condolences)
 (NCP.PrintMsg Window T "Sorry." (CHARACTER 13)
 "You do not know the password!!"
 (CHARACTER 13)
 "Bye."
 (CHARACTER 13))
 (DISMISS 2000)))
 (RETURN Result))))

1.2 Links and Link Icons

An integral part of NoteCards is the ability to create a link between two note cards. Presently, there are

two kinds of links: GlobalToGlobal links and LocalToGlobal links. GlobalToGlobal links connect one

entire card with another entire card and are stored separately from either card’s substance.

3

GlobalToGlobal links are maintained (almost) entirely by the NoteCards system code and therefore do not

vary across note card types.

LocalToGlobal links connect a particular position within the substance of one card (the source card) to the

entirety of the other card (the destination card). Within the source card, the link is represented by an

image object called a link icon that must be contained by the card’s substance. Since substances vary

across note card types, the handling of link icons varies across note card types. The destination (or

Global) end of a LocalToGlobal links is maintained by the NoteCards system code.

Not all note cards can be the source of LocalToGlobal links. Card types that support LocalToGlobalLinks

must have their LinkAnchorModesSupported parameter set to T. If a this parameter has any other value,

then cards of this type can be the source of only GlobalToGlobal links. These Global-links-only card

types need to provide only one piece of functionality in support of the linking mechanism. In particular,

they must provide user access to the function NCP.GlobalGlobalLink from the editor that runs when the

card is being displayed. For example, the editor’s command menu might include an "Insert Global Link"

command. All other link maintenance is carried out by the NoteCards system.

If a card type supports LocalToGlobal links, then it must contain the necessary mechanisms for

supporting link icons in its substance. Link icons are instances of standard Interlisp-D image objects (See

documentation of Image Objects in Interlisp-D). The mechanisms supporting link icons include functions

for inserting, deleteing, updating, and collecting the link icons contained in a card’s substance. These

functions are described in detail below. In addition to these functions, a note card type supporting

LocalToGlobal links must provide user access to the function NCP.LocalGlobalLink from the editor that

runs when the card is being displayed. In addition the editor must provide user access to the function

NCP.GlobalGlobalLink.

Inside the link icon image object is a link record containing all of the information about the link. These link

records can be manipulated using the link manipulation functions provided by NoteCards’ programmer’s

interface (e.g., NCP.GetLinkDestination returns the destination field of a link record). The functions

required to define a note card or substance type deal in both link records and link icons. You can

translate between these two representations using the functions NC.MakeLinkIcon and

NC.FetchLinkFromLinkIcon; NC.MakeLinkIcon will create a link icon image object from a link record,

while NC.FetchLinkFromLinkIcon will return the link record contained in a link icon.

1.3 Using the Types Mechanism

Most uses of the types mechanism involve defining new NoteCardTypes. Usually, these new

NoteCardTypes involve specifying a TypeName, a SuperType, a SubstanceType, and one or two

functions that differ from the SuperType. The most commonly defined functions are the MakeCardFn, the

EditCardFn and the QuitCardFn.

Definition of new substance types occurs only when a new kind of substance (e.g., a spreadsheet) and its

corresponding editor are to be added to the system. When defining a substance, all of its fields must be

fully defined since there is no inheritance among SubstanceTypes.

4

2. The NoteCardType

Each note card type in the system is defined by a record structure (i.e., a NoteCardType) containing

about 20 names, functions and parameters. The functions implement behaviors that are required by the

NoteCards system but vary across the different card types. For example, one function is responsible for

writing the card’s substance to the NoteFile. The parameters represent specifications that inform

NoteCards about the specific properties of each card type, e.g., whether it handles local links or not.

The NoteCardTypes are organized into an inheritance hierarchy. Each NoteCardType has a super-type.

If any of the functions or parameters is not specified for a given NoteCardType, that function or parameter

is inherited from its super-type (or its super-type’s super-type, if the function or parameter is not specified

for the super-type either). Each NoteCardType also has a SubstanceType. If any of the functions or

parameters cannot be found along the super-type chain of the NoteCardType, then the card type inherits

the function or parameter from its SubstanceType.

Overall, a card type is a data structure with the following 21 fields:

Inheritance Hierarchy Specifications

1) TypeName

2) SuperType

3) SubstanceType

Functions

4) MakeCardFn

5) EditCardFn

6) QuitCardFn

7) GetCardFn

8) PutCardFn

9) CopyCardFn

10) MarkCardDirtyFn

11) CardDirtyPFn

12) CollectLinksInCardFn

13) DeleteLinksInCardFn

14) UpdateLinkIconsInCardFn

15) InsertLinkInCardFn

16) TranslateWindowPositionToCardPositionFn

Parameters

17) LinkDisplayMode

18) CardDefaultWidth

19) CardDefaultHeight

20) CardLinkAnchorModesSupported

21) CardDisplayedInMenuFlg

5

These fields are defined as follows:

1. TypeName: The atom that is the name of this card type. TypeNames must be unique among

the NoteCardTypes tree, though they may overlap with SubstanceNames. The convention is that

NoteCardType TypeNames have only the first letter capitalized. This is to set them apart from

SubstanceNames which are by convention all caps.

2. SuperType: The TypeName of the NoteCardType that is the super-type for this

NoteCardType. When a new NoteCardType is created, its SuperType must be an existing

NoteCardType.

3. SubstanceType: The SubstanceName for the substance of this card type. When a new card

is created, its SubstanceType must be the name of an existing SubstanceType (see Section 3.0

below). The basic NoteCards system includes the following substance types: TEXT, SKETCH,

GRAPH which represent the the substances handled by the TEdit, Sketch, and Grapher

packages respectively.

4. MakeCardFn: The name of a function to be applied to an ID, a Title, and a NoDisplayFlg.

The function should create a new card of this type. The ID is the note card ID that will be

assigned to the newly created card. It should be used to set the various properties of the new

card. The title is a string specifying the title of the new card. It can be used in messages to the

user or to set the title of any windows created. NoDisplayFlg determines whether the new card is

to be displayed on the screen or not. If NoDisplayFlg is non-NIL, then the card is to be displayed

in a window on the screen. If NoDisplayFlg is NIL, then the card is to be created but not

displayed on the screen.

The MakeCardFn should return the window of the new card if NoDisplayFlg is non-NIL and the ID

if NoDisplayFlg is NIL.

Before returning, every MakeCardFn is required to set the substance property of ID by calling

(NC.SetSubstance ID Substance) where Substance is whatever is considered a substance for

this card type. For example, a TextStream for Text cards, a Graph record for Graph cards, or a

Sketch record for Sketch cards.

By convention, every MakeCardFn sets the SHRINKFN of any window it creates to the function

NC.ShrinkFn using WINDOWPROP.

5. EditCardFn: The name of a function to be applied to ID, Substance, and Region/Position.

The function should start an editor for the given card. ID is the note card ID of the card.

Substance is the substance of the card; it will be a thing of whatever type is considered a

substance for this card type, e.g., a TextStream or Sketch record. Region/Position is a Region or

a Position on the screen that specifies where the card is to be placed.

(NC.DetermineDisplayRegion ID Region/Position) is a function that will determine the exact

region for the card’s window given the ID and the Region/Position.

6

The EditCardFn should return the editor window.

The EditCardFn is responsible for checking to make there is not already an editor for card ID

already on the screen. If there is, the EditCardFn should just flash the previous editor window.

By convention an EditCardFn sets the SHRINKFN of any window it creates to the function

NC.ShrinkFn using WINDOWPROP. Also by convention, an EditCardFn should set the title of

the editor window to be the value of (NCP.CardTitle ID).

6. QuitCardFn: The name of a function to be applied to WindowOrSubstanceOrID which is

either the editor window for a card or the substance of a card or a note card ID. QuitCardFn

should quit out of the editor currently operative on the specified card and close the window

containing the card.

The value returned by QuitCardFn is unspecified.

Before returning the QuitCardFn should apply the function NC.DeactivateCard to the ID of the

card. Note that the ID may have to be computed from the Window or Substance passed to the

QuitCardFn. The function NC.CoerceToID will do this computation.

The QuitCardFn should also insure that all processes related to this card are completed (or

guaranteed to eventually complete) before returning.

7. GetCardFn: The name of a function to be applied to the DatabaseStream, a card ID, and a

screen Region. The GetCardFn should read the substance of the note card specified by ID from

the DatabaseStream. The format of the data to be read is determined by the PutCardFn (see

below). When the GetCardFn is called, the file pointer for DatabaseStream is positioned on the

first byte of the data to be read.

The GetCardFn should return a pointer to the substance read from the DatabaseStream.

GetCardFn need produce no side-effects. The ID and the Region are for reference purposes

only.

Note that the GetCardFn need only read the substance of the card, i.e., that information about the

card which is specific to its card type. General information about a card such as its title, its

property list, its list of links, etc. is read from the DatabaseStream by the system.

8. PutCardFn: The name of a function to be applied to a note card ID and the DatabaseStream.

The PutCardFn should write the substance of the note card specified by ID to the

DatabaseStream. When the PutCardFn is called, the file pointer for DatabaseStream is

positioned at the first byte assigned to the card. When the PutCardFn returns, the file pointer

should be positioned immediately after the last byte written.

7

The format for writing the card’s substance is fairly unrestricted. The data written on the

DatabaseStream can take up any number of bytes, but the bytes must be contiguous. It must be

written so that it can recovered by reading from the DatabaseStream using the GetCardFn. The

only other restriction is that the first 6 bytes of the substance must contain the file position of the

start and the end of the substance: 3 bytes for the start file pointer and 3 bytes for the end file

pointer. These pointers are for use by the CopyCardFn.

The value returned by the PutCardFn is unspecified.

Note that the PutCardFn need only write out the substance of the card, i.e., that information about

the card which is specific to its card type. General information about a card such as its title, its

property list, its list of links, etc. is written to the DatabaseStream by the system.

9. CopyCardFn: The name of a function to be applied to a note card ID, a "from"

DatabaseStream, and a "to" DatabaseStream. The CopyCardFn should copy the substance for

the note card specified by ID from the "from" DatabaseStream to the "to" DatabaseStream.

When the CopyCardFn is called the file pointer for the "from" DatabaseStream is positioned on

the first byte of the data to be copied. The file pointer for the "to" DatabaseStream is positioned

at the first byte of the space assigned to the card on the "to" DatabaseStream.

The format for writing the substance on the "to" DatabaseStream has the same restrictions as for

the PutCardFn.

Most often the the CopyCardFn is a simple COPYBYTES that uses the start and end pointers

written by PutCardFn in the first 6 bytes of the substance. Note, however, that all file absolute

pointers (including the start and end pointers) must be updated; the file location on the "to"

DatabaseStream is almost never the same as the original file location on the "from"

DatabaseStream.

The value returned by the CopyCardFn is unspecified.

The CopyCardFn is used primarily by the compactor that eliminates "dead" space in the

database. Thus, it is important that the CopyCardFn be as time efficient as possible.

10. MarkCardDirtyFn: The name of a function to be applied to a note card ID and a ResetFlg.

If the ResetFlg is non-NIL, the function should mark the card specified by ID as being dirty (i.e.,

changed since it was last written to the DatabaseStream). If the ResetFlg is NIL, the function

should reset the "dirtiness" of the card.

The MarkCardDirtyFn is called by NoteCards system functions that change the card. It is not

necessarily called by user operations inside the editor on the card. Therefore, it is best if the

mechanism used by the MarkCardDirtyFn is somehow coordinated with the corresponding

mechanism used by the editor on the card. (See the CardDirtyPFn below.)

The value returned by the MarkCardDirtyFn is unspecified.

8

The card specified by ID is guaranteed to be active.

11. CardDirtyPFn: The name of a function to be applied to a note card ID. The function should

return a non-NIL value if the card specified by ID is dirty, i.e., if it was changed since it was last

written to the DatabaseStream. NIL should be returned otherwise.

Note that a "dirty" card is one that has been changed in any way. Only NoteCards specific

changes to a card will result in a call to the card’s MarkCardDirtyFn. Changes made through the

editor on the card will use the editors "mark dirty" mechanism and will not call the

MarkCardDirtyFn. Therefore, the CardDirtyPFn should check all dirty flags, i.e., the dirty flag set

by the MarkCardDirtyFn as well as any set by the card’s editor.

The card specified by ID is guaranteed to be active.

12. CollectLinksInCardFn: The name of a function to be applied to a note card ID, a

CheckAndDeleteFlg, a DatabaseStream, a ReturnLinkIconsFlg, and a ReturnLocationsFlg. The

function should examine the substance of the card specified by ID and produce a list of the links

(or link icons) contained by the substance. The ReturnLinkIconsFlg and the ReturnLocationsFlg

determine the contents of the list to be returned as follows:

ReturnLinkIconsFlg and ReturnLocationsFlg both NIL: the list to be returned should be a

list of link records.

ReturnLinkIconsFlg is non-NIL, ReturnLocationsFlg is NIL: the list to be returned should

be a list of link icons.

ReturnLinkIconsFlg is NIL, ReturnLocationsFlg is non-NIL: the list to be returned should

be a list of pairs where the first memeber of the pair is a link record and the second

member of the pair is the "location" of the link icon for that link inside the substance.

ReturnLinkIconsFlg and ReturnLocationsFlg both non-NIL: the list to be returned should

be a list of pairs where the first memeber of the pair is a link icon and the second member

of the pair is the "location" of that link icon.

If CheckAndDeleteFlg is non-NIL, then the list produced by CollectLinksInCardFn should contain

valid links only. Any links found to be invalid should be deleted. To check the validity of a link,

the function NC.ValidLinkP should be applied to the link record and the DatabaseStream. To

delete a link, apply the function NC.MakeInvalidLink to the link icon.

The CollectLinksInCardFn should return the list produced CONSed to a dirty flag. The dirty flag

should be non-NIL if any links were deleted, NIL otherwise.

The card specified by ID is guaranteed to be active.

13. DeleteLinksInCardFn: The name of a function to be applied to a "source" note card ID and

a link record or "destination" note card ID. If the second argument is a link, the function should

9

remove from the substance of the card specified by "source" ID the link icon corresponding to

link. If the second argument is a "destination" note card ID, the function should remove from the

substance of the card specified by "source" ID all link icons corresponding to links pointing to the

card specififed by "destination" ID.

To "remove" a link icon, the link icon should be replaced in the substance by the image object

that is the value of NC.DeletedLinkImageObject. Note that before deleting the link icon, it is

best to replace the IMAGEOBJFNS of the link icon with the value of NC.NoDeleteImageFns.

This will prevent the link icon’s WHENDELTEDFN from being activated when the deletion takes

place.

The value returned by the DeleteLinksInCardFn is unspecified.

The card specified by "source" ID is guaranteed to be active.

14. UpdateLinkIconsInCardFn: The name of a function to be applied to a "source" note card ID

or window and a "destination" note card ID. The function should update (i.e., force a redisplay of)

all link icons in the "source" card that represent links pointing to the "destination" card. This

function is called when some property of the link is changed by the NoteCards code. It is also

called when certain properties of the destination card (e.g., its title) are changed.

The value returned by the UpdateLinkIconsInCardFn is unspecified.

The "source" card is guaranteed to be active.

15. InsertLinkInCardFn: The name of a function to be applied to a window, a link, and a

position. The function should insert a link icon containing the link into the card being edited in the

window at the position specified. The position is whatever object is returned by the

TranslateWindowPositionToCardPositionFn.

The value returned by the InsertLinkInCardFn is unspecified.

The ID of the card being edited by the window is guaranteed to be the SOURCEID of the link.

16. TranslateWindowPositionToCardPositionFn: The name of a function to be applied to a

window, an X-coordinate in that window, and a Y-coordinate in that window. The window is an

editor window on the substance of some card. The function should return a position object that

describes the position in the card substance that is currently located at the given X-Y position in

the window. The format of the position object is undefined. It will be passed to the

InsertLinkInCardFn and used as the position at which to insert a links in the card being edited in

the window.

17. LinkDisplayMode: determines the default display mode for link icons inserted into cards of

this type. It must be a record of type LINKDISPLAYMODE. LINKDISPLAYMODE describes what

information will be displayed in a link icon. It consists of three flags: SHOWTITLEFLG,

SHOWLINKTYPEFLG, and ATTACHBITMAPFLG. If SHOWTITLEFLG is non-NIL, the link icon

will display the destination card’s title. If SHOWLINKTYPEFLG is non-NIL, the link icon will

1 0

display the type of the link. If ATTACHBITMAPFLG is non-NIL, a bit map describing the type of

the destination card will be attached to the right of the link icon.

Note: This property in NOT inherited.

18. CardDefaultWidth: The default width for editor windows on cards of this type.

19. CardDefaultHeight: The default height for editor windows on cards of this type.

20. CardLinkAnchorModesSupported: an atom that determines the kind of links this card type

will support (i.e., the kind of links for which cards of this type can be a source). If NIL, then this

card type does not support links of any type. If Global, this card supports only Global links. If

Local, this card supports only local links. If T, this card supports both Global and Local links.

Note: This property in NOT inherited.

21. CardDisplayedInMenuFlg: if non-NIL then this card type will appear in the choice of card

types in the menu used during card creation using the "Create" entry in the main NoteCards

menu. If NIL, then this card type will not appear in this menu.

3. The SubstanceType

The SubstanceType is a record structure whose fields are virtually identical to those of the NoteCardType

record. In particular, the SubstanceType has the following 17 fields:

1) SubstanceName

2) CreateSubstanceFn

3) EditSubstanceFn

4) QuitSubstanceFn

5) GetSubstanceFn

6) PutSubstanceFn

7) CopySubstanceFn

8) MarkSubstanceDirtyFn

9) SubstanceDirtyPFn

10) CollectLinksInSubstanceFn

11) DeleteLinksInSubstanceFn

12) UpdateLinkIconsInSubstanceFn

13) InsertLinkInSubstanceFn

1 1

14) TranslateWindowPositionToSubstancePositionFn

15) SubstanceDefaultWidth

16) SubstanceDefaultHeight

17) SubstanceLinkAnchorModesSupported

These fields are defined as follows:

1. SubstanceName: The atom that is the name of this substance type. SubstanceNames must

be unique among the substance types, though they may overlap with card TypeNames. The

convention is that SubstanceNames are all in caps. This is to set them apart from card

TypeNames which by convention have only their first letter capitalized.

2 Thru 14. Functions: All of the functions are identical to the corresponding functions in the

NoteCardType record structure. Note the (arbitrary) use of "create" instead of "make" in the

name of the CreateSubstanceFn.

15 Thru 17. Parameters: The parameters are identical to the corresponding parameters in the

NoteCardType data structure. There are no parameters for the LinkDisplayMode and the

DisplayInMenuFlg because these two parameters are not inherited. They must be specified

separately for each card type.

4. Adding a New NoteCardType or SubstanceType to the System

The functions NCP.CreateCardType and NCP.CreateSubstanceType can be used to add new Types to

the system.

NCP.CreateCardType takes 5 arguments: the TypeName, its SuperType, its SubstanceType, a functions

list, and a parameters list. The functions list is an ASSOC list where the CAR of each sub-list is one of

the function field names given above (e.g., EditCardFn, MakeCardFn, etc.). The CDR of the sublist

should contain the name of the required function. Any function field name for which there is no entry will

be set to NIL and will thus be inherited. The parameters list is analogous to the functions list, except that

it applies to the parameter field names (i.e., LinkDisplayMode, CardDefaultWidth, CardDefaultHeight, and

CardLinkAnchorModesSupported).

NC.CreateSubstanceType takes 3 arguments: the SubstanceName, a functions list, and a parameters

list. The functions and parameters list are analogous to those for NCP.CreateCardType except that all of

the function and parameter fields specified above MUST have an entry in the ASSOC lists.

Both NCP.CreateCardType and NC.CreateSubstanceType will overwrite existing types (NoteCard and

Substance, respectively) of the same name.

1 2

5. Example: Defining the ProtectedText NoteCardType

The following is an example of defining a new card type called the ProtectedText card. The card type is

created by specifying new MakeCardFn and EditCardFn functions. All other functions are inherited from

from the super-type, i.e., the Text card. All of the parameters are specified directly for this card.

· The function that creates the new ProtectedText card type:

(NC.AddProtectedTextCardType
 (LAMBDA NIL (* fgh: "26-Mar-85 15:48")
 (* * Create the ProtectedText card type)
 (NCP.CreateCardType (QUOTE ProtectedText)
 (QUOTE Text)
 (QUOTE TEXT)
 (QUOTE ((MakeCardFn NC.MakeProtectedTextCard)
 (EditCardFn NC.EditProtectedTextCard)))
 (QUOTE ((LinkDisplayMode (T NIL NIL))
 (CardDefaultHeight 300)
 (CardDefaultWidth 400)
 (CardLinkAnchorModesSupported T)
 (CardDisplayInMenuFlg T))))))

· The MakeCardFn for the ProtectedText card type:

(NC.MakeProtectedTextCard
 (LAMBDA (ID Title NoDisplayFlg) (* fgh: "26-Mar-85 15:23")
 (* * Make a protected Text card
 by calling the make card fn for a Text card
 and then attaching a password to the card)
 (PROG (Window WindowOrID)
 (* * Create the Text card)
 (SETQ WindowOrID (APPLY*
 (NCP.CardTypeFn (NCP.CardTypeSuper
 (QUOTE ProtectedText))
 (QUOTE MakeCardFn))
 ID Title NoDisplayFlg))
 (* * Get the window for the card, if there is one)
 (SETQ Window (WINDOWP WindowOrID))
 (* * Get the password from the user
 and add it to the cards prop list)
 (NCP.CardProp ID (QUOTE Password)
 (NC.GetPassword Window))
 (* * Return whatever the super-type’s MakeCardFn returned)
 (RETURN WindowOrID))))

· The EditCardFn for the ProtectedText card type:

1 3

(NC.EditProtectedTextCard
 (LAMBDA (ID Substance Region/Position)
 (* fgh: "26-Mar-85 17:21")
 (* * Edit a Protected Text card, asking for the password first.)
 (PROG (ExactRegion Window Password Result)
 (* * Open a window for this card)
 (SETQ ExactRegion (NC.DetermineDisplayRegion ID
 Region/Position))
 (SETQ Window (CREATEW ExactRegion))
 (* * Get this card’s password from the prop list)
 (SETQ Password (NCP.CardProp ID (QUOTE Password)))
 (COND
 ((EQUAL Password (NC.GetPassword Window))
 (* Password is okay.
 Call the EditCardFn of my super-type)
 (SETQ Result (APPLY*
 (NCP.CardTypeInheritedField
 (NCP.CardTypeSuper (QUOTE ProtectedText))
 (QUOTE EditCardFn))
 ID Substance ExactRegion)))
 (T (* Password is bad. Express condolences)
 (NCP.PrintMsg Window T "Sorry." (CHARACTER
 13)
 "You do not know the password!!"
 (CHARACTER 13)
 "Bye."
 (CHARACTER 13))
 (DISMISS 2000)))
 (* * Close the window you created.
 The super-types EdityCardFn will
 have created another window.)
 (CLOSEW Window)
 (RETURN Result))))

· A utility used by the MakeCardFn and the EditCardFn:

(NC.GetPassword

 (LAMBDA (Window) (* fgh: "26-Mar-85 15:50")

 (* * Get a password from the user.

 Window is the main window for the card in question)

 (NCP.AskUser "What is the password for this card?" " -- "

 NIL T Window)))

	Notecards User Guide 1.2
	notecards-docs-user-guide-v1.2-000-OUTLINE
	notecards-docs-user-guide-v1.2-001-TITLE-PAGE
	notecards-docs-user-guide-v1.2-01-INTRODUCTION
	notecards-docs-user-guide-v1.2-002-PREFACE
	notecards-docs-user-guide-v1.2-02-SYSTEM-REQUIREMENTS
	notecards-docs-user-guide-v1.2-003-TOC
	notecards-docs-user-guide-v1.2-04-SYSTEM-USE-ISSUES
	notecards-docs-user-guide-v1.2-06-BUILDING-NC-STRUCTURES
	notecards-docs-user-guide-v1.2-07-THE-USER-INTERFACE
	notecards-docs-user-guide-v1.2-08-LINKS
	notecards-docs-user-guide-v1.2-09-CARDS-&-BANNERS
	notecards-docs-user-guide-v1.2-10-USER-CARDS
	notecards-docs-user-guide-v1.2-12-MENUBOX-ICON
	notecards-docs-user-guide-v1.2-13-PARAMETERS
	notecards-docs-user-guide-v1.2-14-FILEBROWSER
	notecards-docs-user-guide-v1.2-15-OTHER-TOOLS
	notecards-docs-user-guide-v1.2-16-PRINTING
	notecards-docs-user-guide-v1.2-17-PROBLEMS-&-ERRORS
	notecards-docs-user-guide-v1.2-APP-A-NOTEFILE-CONCEPTS
	notecards-docs-user-guide-v1.2-APP-B-NOTEFILE-INSPECTOR
	notecards-docs-user-guide-v1.2-APP-C-INITIALIZATION
	notecards-docs-user-guide-v1.2-APP-D-CHECKSUM
	notecards-docs-user-guide-v1.2-APP-G-GLOSSARY
	notecards-docs-user-guide-v1.2-APP-Z-PROG-INTERFACE

	notecards-docs-misc-NOTEFILEINSPECTOR
	notecards-docs-misc-PROGINTFACE
	notecards-docs-misc-RELEASEANNOUNCEMENT
	notecards-docs-misc-RELEASENOTES
	notecards-docs-misc-TYPESMECH

