
History of Interlisp
Dr .Warren Teitelman

Google, Inc.

1962
I was first introduced to Lisp in 1962 as a first year graduate
student at M.I.T. in a class taught by James Slagle. Having
programmed in Fortran and assembly, I was impressed with
Lisp’s elegance. In particular, Lisp enabled expressing recursion
in a manner that was so simple that many first time observers
would ask the question, “Where does the program do the work?”
(Answer – between the parentheses!) Lisp also provided the
ability to manipulate programs, since Lisp programs were
themselves data (S-expressions) the same as other list structures
used to represent program data. This made Lisp an ideal language
for writing programs that themselves constructed programs or
proved things about programs. Since I was at M.I.T. to study
Artificial Intelligence, program writing programs was something
that interested me greatly.

However, Lisp was at that point in time just a language.
Programming in Lisp consisted of submitting a job, usually as a
deck of punched cards that was run in batch mode on a main
frame. You would then pick up your output a few hours later, if
lucky, otherwise the next day, and hope that it did not consist of a
lengthy sequence of left parentheses or NILs, as would be the case
if the program had certain kinds of bugs.

1964
The introduction of time-sharing at M.I.T. in 1964 dramatically
changed the paradigm of software development. Instead of the
developer doing their debugging offline, the user could now sit
and interact directly with his program online. Originally
developed as a way of making more efficient and economic use of
a very expensive computer, time-sharing had the surprising side-
effect of drastically reducing the amount of time it took to get a
program working. Users experiencing this phenomenon reported
that it was because they did not have to lose and then reestablish
context so frequently, but could get very deep into their programs
and the problems they presented, and stay there. The situation is
analogous to trying to resolve an issue between two people via a
conversation rather than sending letters back and forth. Regardless
of how short the cycle of iteration is, e.g., if email is used instead
of letters, if the process involves discovery and a lot of back-and-
forth, it is much easier to do via a conversation. You can establish
a context and stay focused until the problem is solved.

1965
I personally experienced this phenomenon when I started working
on my Ph.D. project in 1965. At first, I wanted to develop a
general game playing program, one that could be given the rules
for a new, simple game, and devise a strategy, possibly drawing
on games it had previously mastered. (I was both ambitious and
naïve!) I quickly realized that I was going to be spending a
significant amount of effort changing my program as I evaluated
its behavior and identified shortcomings. I would not be able to
work out a design and them code and debug it.

This led me to the notion of building a system wherein the
computer took an active role in helping me to make changes to a
program:

The goal of artificial intelligence is to construct
computer programs which exhibit the kinds of behavior
we call ‘intelligent’ when we observe it in human
beings. These programs are usually so complex that the
programmer cannot accurately predict their behavior.
He must run them to see whether any changes should be
made. Developing these programs thus involves a
lengthy trial and error process in which most of the
programmer’s effort is spent in making modifications.
PILOT is a system designed specifically to facilitate
making modifications in programs.

The central innovation in PILOT was a concept I called Advising,
wherein the user could treat a particular function or subroutine as
a black box and without knowing what was inside the box, wrap
“advice” (stealing the term from McCarthy’s Advice Taker paper)
around it that could operate before the function/subroutine ran,
potentially changing its input parameters, after it ran, possibly
changing its value, or detour around it entirely. However, what I
really was envisioning was a programming environment:

This term is meant to suggest not only the usual
specifics of programming system and language but also
more elusive and subjective considerations such as ease
and level of interaction, “forgivefullness” of errors,
human engineering, and system “initiative.” The
programmer’s environment influences, to a large extent
determines, what sort of problems he can (and will want
to) tackle, how far he can go, and how fast. If the
environment is “cooperative” and “helpful”, then the
programmer can be more ambitious and productive. If
not, he will spend most of his time and energy
“fighting” the system, which at times seems bent on
frustrating his best efforts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Lisp50, October 20, 2008, Nashville, Tennessee, USA.
Copyright 2008 ACM 978-1-60558-383-9/08/10 …$5.00.

(I did not know at the time that this pursuit would occupy me for
the next 20 years.)

In 1965, there were very few tools for developing Lisp programs,
and those that were available, were very primitive. There was a
utility called Prettyprint which printed out a nicely formatted
representation of Lisp programs, using indentation to indicate
depth of structure. A Trace facility was also available which
modified specified functions to print on the terminal their input
parameters on entry and their value on exit. You could think of
this as a special case of Advising in that the advice was the same
for all programs. There was also a Break package which enabled
the user to cause program execution to halt at the entry point to
specified functions. The user could then examine the value of the
function’s arguments (input parameters), even change them, then
cause the function to run, and again gain control so as to examine
the value that the function returned or side effects of the
function’s operation. The user could change input parameters and
reexecute the function, or manually specify the desired value and
have it be returned to the caller as though it had been the value
produced by that function.

1966
When I received my Ph.D from M.I.T. in 1966, I took a position
at Bolt, Beranek and Newman in Cambridge. At the time, BBN’s
computer was a DEC PDP-1, and Daniel Murphy had written a
version of Lisp 1.5 for it. This Lisp was really just a toy – single
user, slow, small address space, but I obtained copies of the Break
and Prettyprint utilities (both being written in Lisp itself) from
MIT, and read them in and thus began my pursuit of a Lisp
programming environment.

1967
In 1967, BBN purchased an SDS 940 computer from Scientific
Data Systems and began work building a time sharing system on
it. The SDS 940 had a large address space and the ability to
support a paging system. BBN was awarded an ARPA contract to
provide a LISP system that could be distributed to other ARPA
sites for doing A.I. research. Dan Murphy implemented Lisp 1.5
on the SDS 940, and we called this BBN Lisp. In BBN Lisp, I
would over the next five years flesh out my vision of a
programming environment for Lisp.

One of the interesting things about the SDS 940 was that it was a
hybrid processor (SDS’s term). In addition to performing the
standard operations of a digital computer, the 940 also had some
interesting analog properties: a portion of its memory could be
used as a frame buffer to drive a display. (This may not seem like
a big deal, but back in the 60s, every computer did not have an
attached display!) I took advantage of this capability to write a
circuit drawing program in which the structure of the circuit was
maintained in and operated on by Lisp, which in turn would call
primitives written in assembly language for performing display
operations such as draw a line from A to B or display the
following text at location (x,y). We were even able to hook up a
stylus to use as input for pointing at various elements of the circuit
on the display, and a driver for a Calcomp plotter to produce

hardcopy of circuits being designed. This may have been the first
example of a CAD program.

1968
Bob Kahn was at BBN during this period, and working on what
would become the ARPA Net. I wrote a network simulation and
display program for him in BBN LISP which enabled him to
study various important aspects of networking, especially the
ways in which networks become clogged, and to explore
algorithms and heuristics for unclogging them. At the time we
were looking at a network with perhaps a dozen nodes! We would
start a packet from LA to Boston, and then pull Denver off line
and see – on the display – whether the packet would automatically
reroute to Salt Lake City, and go around Denver, etc.

In the area of programming tools, Peter Deutsch wrote a structure
editor in Lisp for editing Lisp programs. Prior to this, Lisp source
was prepared and edited offline in textual form and read into the
Lisp system. Peter’s editor enabled the user to edit Lisp programs
without ever leaving Lisp. The editor provided operations for
moving up, down, left or right in the list structure definition of a
Lisp function, and to make insertions, deletions, or replacements,
e.g. (-3 X) to insert X in front of the 3rd item in the current list, 2
to descend into the second item in the current list, 0 to ascend one
level, etc. Other more sophisticated commands were soon added,
such as a find command to search through all levels of the
function being edited looking for a specified string or pattern, a
mark command to mark, i.e. save, the current location, and a
command to restore the context to one that had previously been
marked, ability to define macros, etc.

The ability to edit a Lisp program in situ meant that a user could
modify a running program and continue execution. For example,
the user might be at a Break, evaluate the current function,
identify a problem, edit the definition using the structure editor,
and reevaluate the current, now modified function and go on.

1969
In 1969, BBN acquired a Digital Equipment PDP-10 to replace
the SDS 940. The DEC PDP-10 had a 32 bit word, which meant
that we had a 256K address space. At the time, that number was
so big (the version of LISP 1.5 I used at M.I.T. in the early sixties
had about 8K free space!), that we seriously considered not
bothering to write a garbage collector. How could you ever run
out of space with that much to start with??

Alice K. Hartley took over Dan Murphy’s role in BBN Lisp. A
number of new data types were added to augment lists and
numbers: arrays, strings, large numbers, floating point numbers.

1970
As Lisp users began to write larger and larger programs,
performance began to be an issue. A compiler had been available
for Lisp programs since the early sixties. Compiling a Lisp
function eliminated the overhead of interpreting conditional
expressions, PROG, GO TO, and primitive arithmetic functions

such as IPLUS, IMINUS, etc. However, calling a function in Lisp,
even from within a compiled Lisp function, was still a fairly
heavy operation, because of the need to create a new frame on the
stack, populate it with input values, and reverse the procedure
when the function returned. We addressed this by providing
various ways of avoiding a function call. For example, Lisp
included a variety of searching functions such as Member, Assoc,
etc., all of which used EQUAL for comparison. EQUAL could not
be compiled open, but required a function call because of the
possibility of having to recursively compare two expressions. We
provided corresponding versions of such functions that used EQ
instead of EQUAL, which was just a comparison of two pointers,
which could therefore be compiled inline, thereby avoiding the
function call. If the programmer knew that if a given item being
searched for was either atomic, or else if a list, known to be the
exact same list structure, they could use MEMB instead of
MEMBER, thereby avoiding a function call. Similarly, we
provided fast versions of RPLACA and RPLACD, the Lisp
functions that physically alter list structures. FRPLACA and
FRPLACD eschewed making any checks on their arguments but
simply deposited the second parameter into CAR or CDR of their
first parameter. This did have the unfortunate consequence of
allowing a buggy program to actually clobber NIL, which did
very bad things to LISP programs that took advantage of the fact
that CAR and CDR of NIL were NIL. Once this happened, almost
nothing worked correctly. As a result, we had to implement a
check at the top level EVALQT for NIL being clobbered and to
inform the user and then restore NIL.

To further reduce the number of function calls, Danny Bobrow
came up with the idea of a Block Compiler. The Block Compiler
would compile a collection of the programmer’s functions into a
single block. Calls from one function to another would not be
visible on the stack and not require an external function call. We
also improved the performance of a number of BBN Lisp tools
such as Prettyprint, and the compiler itself, by block compiling
them.

In order to better profile where a program was expending
resources – compute time, free storage, large numbers, or any
other measurable quantity – I wrote a Breakdown package that
operated by using the same paradigm as that employed by Break
and Advise packages. It wrapped user-specified functions in a call
to a function that would compute the value of the quantity being
measured, call the specified function, and then compute the value
again, and save the aggregate count/value. The user could see a
roll up of the resources expended by various components of his
program and thereby focus his performance tuning in the
appropriate areas.

Another significant extension to the Lisp environment came in
1970 when Danny Bobrow and Alice Hartley designed and
implemented the “spaghetti stack”. This functionality introduced a
new data type, the stack pointer, and enabled running programs to
search the current execution stack, e.g., find the second
occurrence up the stack of the function FOO, and return the name
of the function that called FOO, to alter the normal flow of
control, e.g., return from a specified stack pointer a specified
value (very useful when debugging programs in order to manually
by pass a known problem), and to evaluate an expression or

variable in a specified context, e.g. what is the value of x as of six
function calls back up the stack. Spaghetti stack functionality was
similar to the notion of exceptions, catch, and throw in Java.
While the full generality of the spaghetti stack was rarely used,
RETFROM – return a specified value, i.e. unwind the stack to the
indicated stack pointer, RETEVAL – evaluate an expression in the
specified context and return it, STKEVAL – evaluate an
expression in the specified context but don’t unwind the stack,
EVALV – evaluate a variable in the specified context, STKNTH,
and STKPOS all saw heavy use, especially in implementing
various commands in the Break package, and by DWIM.

DWIM, the most well known, and in some cases, reviled, feature
of BBN LISP was introduced in 1970. DWIM stands for Do-
What-I-Mean and embodies my view that people time is more
valuable/expensive than computer time. When I first started
programming in FORTRAN in 1960, I was appalled at receiving
the error message, “on line 70, DIMENSION is misspelled”. If the
Fortran Compiler knew this to be the case, why didn’t it accept
this and go on an compile my program? It’s almost like the
computer was the parent and I, the programmer, was the child,
and the computer was sending the programmer to his room in
punishment for making a mistake. To me, that was wrong.

So one night when using a model 33 teletype whose keys were
sticking, causing doubling of characters and consequent undefined
function or unbound atom errors to occur, I had the epiphany that
any competent Lisp programmer watching over my shoulder, even
without knowing the semantics of my program or what I was
trying to accomplish, would nevertheless have understood what I
was typing despite the typos, so why not have the computer
recognize my intent and correct my mistakes?

In order to accomplish this, the BBN-LISP interpreter was
modified so that rather than throw an error when an undefined
function or unbound atom was encountered, instead it would call
the function FAULTEVAL (or in some cases, FAULTAPPLY).
FAULTEVAL would be initially defined to throw an error, but it
could be redefined by the user. When the user turned DWIM on,
FAULTEVAL was redefined to instead call a program that used
various heuristics to identify and attempt to correct the error.
Spelling correction was the most common scenario. An algorithm
was implemented that took advantage of the most common types
of errors made by a touch typist, e.g., doubled characters,
transpositions, case error, etc. A spelling list appropriate for the
context of the error was searched, and a metric computed for each
item on the list that measured the difference between that item and
the unknown word. If the match was sufficiently close, e.g., the
only difference being a doubled character or a transposition, the
correction was performed without the user having to approve.
Otherwise, the user was offered the closest match and asked to
approve the correction. If the user approved or the correction was
automatically done, a message was printed on the terminal and
computation would continue as though the error had not occurred.
If the user was not at the terminal, after an appropriate interval,
DWIM would default to Yes or No depending on how close the
match was. It was not uncommon for a user to perform some
editing, then start a computation, go get some coffee, and come
back to find the computation complete with several corrections
having been made.

DWIM was also programmed to handle the case where the user
typed a number instead of ‘(‘ or ‘)’ because of failure to hit the
shift key, e.g. 8COND instead of COND. This kind of error was
particularly nasty to fix, because not only did it cause a misspelled
function or variable, but totally altered the structure of the
expression being evaluated. For the user to manually fix such an
error using the structure editor required not only removing the 8
or 9, but rearranging the list structure. Having be able to DWIM
handle such errors was quite helpful.

Spelling correction was also used in contexts besides evaluating
Lisp expressions. For example, there was a spelling list of edit
commands that was used to correct a mistyped editor command.
When loading a file where the file name was not found, a spelling
list of previously encountered file names would be used.

I later used DWIM to extend the syntax of Lisp by taking
advantage of the fact that an unrecognized expression would
cause a call to FAULTEVAL, where such an expression could be
translated to an equivalent Lisp expression. For example, iterative
statements were implemented by translating them into the
equivalent PROG, MAPC, MAPCAR, et al, when FAULTEVAL
was called because FOR or WHILE, etc., were not the name of
defined Lisp functions. Similarly, the expression (X + Y) would
be translated to (PLUS X Y) the first time it was evaluated
because X was not a defined function.

Another innovation introduced to BBN LISP in 1970 was the
History package. The idea was rather than simply performing the
operations requested by the user, call functions, edit expressions,
perform break commands, etc., and discarding that information, to
have an agent that would record what the user entered so that the
user could examine the history, and replay portions of it, possibly
with substitutions. (The history feature of the UNIX C-shell
introduced in the late 70’s was in fact patterned after the Interlisp
history package.) The history also contained any messages
displayed to the user during the execution of the corresponding
event, e.g., any DWIM corrections, or messages about global
variables being reset or functions being redefined, etc.

As with DWIM, the History package grew out of my “laziness”
and desire to offload manual tasks to the computer. Frequently
during the course of an online session, I found myself wanting to
redo a particular operation, or perform the same operation with
different parameters. I could see this operation on my terminal
just a few lines back. Why couldn’t I just tell the computer, “Do
that again”?

Perhaps the most important piece of information stored in each
history event was the information required to UNDO that
operation. This was especially valuable in the context of editing.
UNDO is functionality that every user now expects in an editor,
but it was first introduced in BBN-LISP in 1970. The UNDO
functionality provided in BBN-LISP still surpasses that available
in today’s editors in that the user could UNDO operations out of
order. For example, after performing a series of four or five
editing operations, the user could realize that the information

deleted in the first operation is needed, and would be able to
UNDO just that operation by explicitly referring to that operation
using the history package, without affecting the intervening
operations.

In addition to being able to UNDO edit operations, the user could
also UNDO operations that were typed in at the top level or in a
Break. This was most frequently to undo assignments. It could
also be used to undo an entire edit session, rather than undoing
one command at a time, sort of a revert operation for S-
expressions. The user could also arrange to have functions that
they defined to be undoable by storing information on the history
list.

1971
In 1971, CLISP, one of the less successful features, although
loved by some, was added to BBN-LISP. CLISP (for
Conversational LISP) was my attempt to make the Lisp syntax
more palatable by supporting infix notation and fewer
parentheses. The user could write (IF X IS LESS THAN Y AND
Z IS NULL THEN X + Y ELSE Z * 2) which would translate to
the Lisp expression (COND ((AND (LESSP X Y) (NULL Z)) (T
(TIMES Z 2))). As with iterative statements, expressions in
CLISP were translated when first encountered via the
DWIM/FAULTEVAL technique. Alternatively, the user could
invoke a DWIMIFY function which would, without actually
evaluating any expression, sweep through a program and perform
all of the corrections or translations that would have been
performed if the program had been run. This was especially useful
if the user wanted to compile a function without having run it. A
CLISPIFY function was provided to convert LISP conventional
Lisp programs into CLISP.

A better received enhancement was the File Package, added in
1971. For those familiar with UNIX, this was essentially a “make”
for Lisp. The user could specify the set of functions, global
variables, property lists, et al, to be contained in a specified file,
and then “make” that file. When the file was loaded in a
subsequent session, this information would be recorded and
available. Whenever a component known to be in a specified file
was modified, the system would know that the corresponding file
needed to be rewritten. A cleanup function was provided that
would write out all files that contained components that had been
changed. The user would be informed about any items created or
modified during the course of his session that did not appear in
any of the user’s files, and therefore might be lost if the user
abandoned his session without saving them somewhere. The only
thing missing from the File Package that would be provided in
UNIX Make was the notion of dependencies.

1972
In 1972, Danny Bobrow and I left BBN and went to the newly
formed Xerox Palo Alto Research Center – PARC. BBN
continued to provide the low level support for the Lisp system,
i.e., compiler, garbage collector, and all of the SUBRs, whereas
the center of activity for the various packages and utilities moved
with me to PARC. Both sites continued to be supported by ARPA,

and to indicate this partnership and shared responsibility, we
renamed BBN-LISP to be Interlisp.

Around the ARPA net, Interlisp continued to use the DEC PDP-
10 as its principal platform, although ports to various other
machines were performed, especially the DEC VAX. However,
PARC, because of political reasons, could not purchase a Digital
Equipment computer. Xerox, having just purchased Scientific
Data Systems, was concerned about how Digital Equipment
Corporation, with whom they were now competing, would be able
to do with such an event. Given the hardware expertise at PARC,
the simplest solution was to build our own computer, and so we
built MAXC (for Multiple Access Xerox Computer), which
emulated a PDP-10 instruction set and could run the code we got
from BBN.

1974
In 1974, on a visit to Stanford, I met Larry Masinter, who showed
me a number of impressive extensions to Interlisp that he had
prototyped. These included a much more sophisticated version of
Interlisp’s iterative statement, as well as what he called a Record
package, which enabled a user to label various components of a
list structure and refer to them by name, thereby eliminating the
CADADRs and CDADDRs that made Lisp programs so difficult
to use. The Record package also had the advantage that the user
could change a record definition, and his program would
automatically adopt the new structure. For example, if PERSON
were defined as (RECORD PERSON (FIRSTNAME
LASTNAME TITLE)), the expression (X:TITLE) would translate
to (CADDR X). If the user later changed the definition of
PERSON to (RECORD PERSON (FIRSTNAME INITIAL
LASTNAME TITLE)), all expressions involving TITLE would
automatically be retranslated to use CADDDR.

I was fortunate to convince Larry to come to Xerox PARC as an
intern, and later pleased to act as his de facto thesis adviser as he
pursued and received his Ph.D. at Stanford. For his Ph.D. work,
Larry developed another widely used feature in Interlisp:
Masterscope.

Masterscope would analyze a large program and build a data base
of relationships between the various components that could then
be queried using a natural language front end. For example, WHO
CALLS FOO AND USES MUMBLE, EDIT WHERE X IS
USED FREELY AND Y IS BOUND, etc. As LISP programs
became larger and more complex, and were being built by teams
of programmers, rather than a single programmer, functionality
such as that provided by Masterscope was invaluable in
understanding, maintaining, and extending programs.

1975
By 1975, Interlisp had become so rich in functionality that it was
clear that word of mouth was no longer sufficient and in depth
documentation was needed, especially since there was a large and
growing community of users at the various ARPA sites that had
little or no direct contact with the developers of Interlisp at PARC
and BBN. I therefore began work on the first Interlisp manual,
which turned out to be a year long project. When completed, the
manual was over 500 pages and heavily indexed. It was written

using PUB, a text formatting program developed at Stanford by
Dan Swinehart and Larry Tesler. (This was back in the days when
the only WYSIWYG editor was PARC’s Bravo which ran only on
the Alto.) I had the idea of using the fact that the manual was
machine readable, and heavily indexed, to use it to provide online
help and documentation. The user could type in something like
TELL ME ABOUT FILE PACKAGE and see on his
terminal/screen the relevant text. In a break, the user could simply
type ‘?’ and see an explanation of the input parameters for the
current function.

1976
In 1976, Dan Ingalls gave a presentation at one of our weekly
Dealer meetings at PARC in which he demonstrated the first
window system. Written in and for Smalltalk, the user interface
and paradigm it provided for enabling the user to manage and
work with multiple contexts was so compelling that I immediately
began to consider how we might provide such a mechanism for
Interlisp. At the time, although Peter Deutsch had developed a
byte-coded instruction set for Interlisp for the D-machines
(Dandelion, Dolphin, and Daybreak), implementing Interlisp on
these machines was not yet viable as they were somewhat
underpowered for Lisp development. Bob Sproull came up with
the idea for what would turn out to be the first client-server
window system: use the Alto as the window server and Interlisp
running on MAXC as the client and develop a protocol for having
Interlisp tell the Alto what to display, and for the Alto to tell
Interlisp about mouse clicks. Bob developed the ADIS (for Alto
Display) package and I wrote DLISP in Interlisp. DLISP included
a window manager and windowing system that enabled
overlapping windows, cut and paste, etc. J Moore implemented a
text package that would support display and editing of text in
windows. I demonstrated this functionality at IJCAI in 1977, and
presented a paper, a Display Oriented Programmer’s Assistant.

1979
In 1979, PARC began the design of the Dorado, which is the first
real personal computer. A project to specify the requirements for
what we called an Experimental Programming Environment
(meaning an environment which supported experimental
programming) was started. We drew on the experiences of the
three programming communities at PARC: Smalltalk, Interlisp,
and Mesa. This led to the Cedar project, which I joined in 1980.
The availability of the Dorado also made possible building a Lisp
with a native display capability, which led to the Interlisp-D
project.

1993
In 1993, the ACM Software Systems award was given to the
Interlisp team: “For their pioneering work in programming
environments that integrated source-language debuggers, fully
compatible integrated interpreter/compiler, automatic change
management, structure-based editing, logging facilities,
interactive graphics, and analysis/profiling tools in the Interlisp
system.”

