Venue MEDLEY LANGUAGE REFERENCE

Address comments to:
Venue

User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

MEDLEY REFERENCE MANUAL

VOLUME I: LANGUAGE

April, 1993

Copyright © 1985, 1991, 1993 by Venue.

All rights reserved.

Medley is a trademark of Venue.

InterPress is a trademark of Xerox Corporation.

PostScript is a registered trademark of Adobe Systems Inc.
Copyright protection includes material generated from the software

programs displayed on the screen, such as icons, screen display looks,
and the like.

The information in this document is subject to change without notice
and should not be construed as a commitment by Venue. While every
effort has been made to ensure the accuracy of this document, Venue
assumes no responsibility for any errors that may appear.

Text was written and produced with Venue text formatting tools;
PostScript printers were used to produce masters. The typeface is
Palatino.

TABLE of CONTENTS
__|

Volume 1 - Lanuage Reference

I 1)1 0T LU Tox 1 o] o RSP RPRRTSRPR 1
2. LItatoms (SYMDBOIS) ...ovoiiiiiiiiiee s 2-1
Using Symbols as Variables ... 2-1
Function Definition CellS...........oiiiii e 2-3
PrOPEITY LISES ..ottt 2-4
PrINE INAIMES ...ttt et 2-5
Characters and Character COOESerierciriiieereee e 2-9
TR I 1] £ SRR U PRSP 3-1
CrEatiNgG LISTS...ocviiiviiciiiieictcstee ettt b et e bt e 3-3
Building Lists from Left to Right.........ccccoooiiiiiiiiie e 34
COPYING LISTS oottt be s ene e 3-6
EXtracting Tails Of LiSTS.......ccciiiiiiiicice e 3-6
CoUNtING LIST CeIIS....ciiiiiiiiicicecesee e 3-8
LOgical OPEIatiONScociiieiiiiiceiee et ene e 3-9
SEArCHING LISES ...o.viviiiiiciicicece e bbb 3-10
SUDSEITULION FUNCLIONS ..ot e 3-10
Association Lists and Property ListS.........ccocooiiviiiiiiiieiii e 3-11
SOFEING LSS ...ttt st esn s 3-13
Other LISt FUNCHIONS ..ottt e 3-15
S 1] o o [P PRURPPR 4-1
T AN 1 - |V TSP 5-1
B. HASN ATITAYS ..ottt re e 6-1
HaSh OVEITIOW ... 6-3
User-Specified Hashing FUNCLIONS ..o 6-3
7. Numbers and Arithmetic FUNCLIONSccccoiiiiii e 7-1
GENEIIC AFTENMELIC ... e 7-2
Integer Arithmetic
Logical Arithmetic FUNCLIONS...........coiiiiiieee e 7-6
Floating-Point ArithmetiC...........ccooiiiiiie e 7-8
Other Arithmetic FUNCHIONSccoiiiiiiieeeee e 7-10
8. RECOId PACKAGEcueeiiiiiiiie e 8-1
FETCH and REPLACEccooi ittt 8-1

RECOI TYPIES. ...ttt ettt et b e 8-5

Optional Record SPecifiCations ... 8-10
Defining NeW RECOId TYPES ..c..cviiiiiiiieicrieieie ettt 8-12
Record Manipulation FUNCLIONS..........ccccoiiiniiee e 8-12
CRANGETIAN ...ttt et ne e 8-13
BUilt-in and USEr Data TYPESccoeirerieirieiserieie et 8-15

9. Conditionals and Iterative Statementscccccvvevienienienie e 9-1
Data TYPE PrediCatescocoiiieiiiisieseee e 9-1
EQUAlitY PrediCates........cooiiiiieeee s 9-2
LOQICAl PrediCALES.ovciiieieiecies e 9-3
COND Conditional FUNCLION........c.ccoiiiiiiiieeeeee e 9-3
THE TF STALEMENT ...t 9-4
SeIECHION FUNCLIONS. ..ottt 9-5
PROG and Associated Control FUNCLIONSccocooiiiiineiicneese e 9-6
The Iterative STAteMENTt.... ..o s 9-7

LS. TYPES ettt 9-8

Iterative Variable 1.S.0PrS ... 9-9

CONAITION L.S.0PIS ...ttt 9-12

OTNEE LLS.0PIS ..ttt 9-13

Miscellaneous Hints 0N L.S.0PIS ..o 9-13

Errors in lterative Statementscoceviiiinreie e 9-15

Defining New Iterative Statement OPeratorsccovvvvrivreieninseienennns 9-15

10. Function Definition, Manipulation, and Evaluation 10-1
FUNCTION TYPES woviiiictiieeste ettt st b et e et st re v e ers 10-2

Lambda-Spread FUNCLIONSccccooviviiiiiciccc e 10-2

Nlambda-Spread FUNCLIONS ... 10-3

Lambda-Nospread FUNCLIONS.........cc.coooviiiiiicice e 10-4

Nlambda-Nospread FUNCLIONS...........cccooiiiiiiiicicee e 10-4

Compiled FUNCLIONS. ..o 10-5

FuNnction TYPe FUNCLIONS.........ccciiiviiiicc e 10-5
DefiNiNG FUNCLIONSccvoiiiiicic e 10-7
FUNCLION EVAIUALION ..ot s 10-1
Iterating and Mapping FUNCLIONScccccovviiiiieiiice e 10-1
FUNCTION AFQUIMENTS ...ttt sttt st ve e ens 10-1
IVIBCTOS ...ttt b bbbt 10-1

DEFMAGCRO. ...ttt 10-15

INTErPreting MACIOS ..o 10-15

11. Variable Binds and the Interlisp Stackc.cccoccovviviiiiiiicicen,

SPAGNETLE STACK ...
StACK FUNCLIONS ..o
Searching the Stack
Variable Binds in Stack Framesccccocoeeeiinnae
Evaluating Expressions in Stack Frames
Altering Flow of Control ...,
Releasing and Reusing Stack Pointers...................
Backtrace FUNCLIONS.........ccccovnieiinicice
Other Stack FUNCLIONSc.coviiiicece
The Stack and the INTErPreter.o
(CTeT o 1= - 1 (0] £ TSP SUP ST PTPTP
(©0] o 11 11T J OSSR
POSSIDIIITIES LISES .uveviiieiiciiieecieie e
12. MISCEIIANEOUS ..ot
Greeting and INItialization FIleS ...
Idle Mode.......ccoovnviniicins
Saving Virtual Memory State
System Version INFOrmation ...
Date and Time FUNCLIONS.........cviiirieiiseeeee e
Timers and Duration FUNCLIONS..........ccooiiiiiiiieese s 12-13
RESOUITES ...ttt bbbttt et b e bbbt sttt e et e e e b e bbb 12-15
A SIMPIE EXAMPIE ..o 12-16
Trade-offs in More Complicated CasesScovvrreieiernieerenseei s 12-18
Macros for ACCESSING RESOUICESccurvrviveiiriiieiiinieee e 12-18
Saving ReSOUrces iN @ File ... 12-19
Pattern MAatChiNg ... 12-19
Pattern EIEMENTSccoiiieeeee e 12-20
EIEMENT PATEINS ...ttt 12-20
SEOMENT PAIEINS ... 12-21
ASSIONIMENTS ...t 12-23
Place-MAarKEerS.......cveiieieiee et 12-23
REPIACEMENTS......oiiiiicee e 12-24
RECONSTIUCTION ...ttt 12-24
EXAMPIES ..o 12-25

Volume 2 - Environment Reference

13. INterlisSp EXECULIVEcoooviiieiieceee e 13-1
INPUE FOPMIALS ...c.eiiiicicee e bbb 13-3
Programmer’s Assistant ComMMANASccccooeeiieninieneiinese e 13-4

Event SPeCIifiCatioN ..o s 13-4

COMMEANTS ..o
P.A. Commands Applied to P.A. Commands

Changing the Programmer’s ASSIStANTc.ccoveieiiennenecreee s
L8 1 To (17 [o [OOSR USSR
UNdOoiNg OUL Of OFEr ..o
SAVESET ..ottt
UNDONLSETQ and RESETUNDO.........cccornnnirinnnsnissenesseneens
Format and Use of the HiStory LiSt ..o
Programmer’s AsSistant FUNCLIONS...........ocooiiiiiiiiieeeee e
The Editor and the Programmer’s ASSIiStant...........ccccoceviennieneinennieneeeee
14, Errors and Breaks ..o
BIEEKS ...ttt
Break WINAOWS.......c.coiiiiiiii et
Break COMMEANTSooviiiiieie bbb e
Controlling When 10 Break ... s
Break WIiNdoW Variables...........ccoiiiiiii e
Creating Breaks With BREAKL.........cccooiiiiiiiieee s
SIGNAITIING EXTOTS ...
CAtCRING EXTOIS.... .ot
Changing and Restoring System State ...
EPTOE LISt ..ttt et
15. Breaking, Tracing, and AdVISINGccccoceiiriininniieneee e 15-1
Breaking Functions and Debuggingccccovviiiiiriiiicisesece s 15-1
AGVISING oot et b et b e ns 15-7
Implementation of AdVISING........cccooeiveiiiiiiiie e 15-7
AAVISE FUNCHIONS ...ttt 15-8
16. LiSt Structure EAITOrcccooiiiiiiiiiei e 16-1
1S o || SO SRUTPRSOUSRPRRSN 16-1
Local Attention-Changing Commands ..o 16-10
Commands That SEArChcoceiiiiiir e 16-14
Search AlGOritNM. ... s 16-15
Search COMMEANTS..........ociiiiieiiie et 16-16
Location SPeCIfiCatioN.........ccovieirieiie e 16-18
Commands That Save and Restore the Edit Chainccccovvviniiiiinne, 16-21
Commands That Modify StrUCTUTE............ccceorieiiiecee e 16-22
IMPIEMENTALION ..o 16-23
The A, B, and : COMMANAScceieiiiiiiicie ettt 16-24
Form Oriented Editing and the Role of UP ..., 16-26
Extract and EMDBDEdcciiiiiiiiiceee e 16-26
The MOVE COMMANGc.ooviiiiiiiiiiiiseice s 16-28
Commands That Move Parentheses ... 16-30
TO AN THRU ..ot 16-31

The R Command......
Commands That Print

Commands for Leaving the EAIitor..........cccoeiiiiiiinie e 16-37
Nested Calls t0 EQITON ... 16-39
Manipulating the Characters of an Atom or String.........ccccecevvveneiicinieneens 16-39
Manipulating Predicates and Conditional EXPressions..........c.cccoceoiireienccas 16-40
History Commands in the EAItOr ... 16-41
Miscellaneous COMMEANGS ..o 16-41
Commands That EVAIUALEcceoriiiiiec s 16-43
CommaANAS That TEST ... s 16-45
EIT IMBCTOS ...ttt 16-46
UNO .. 16-48
EDITDEFAULT ..ottt 16-50
EdItOr FUNCLIONS. ..o 16-51
THME STAIMIPS .ttt ettt e ettt e b e 16-57
17, FIlE PACKAGE ..ot 17-1
LOAAING FIIES ...ttt 17-3
SEOFING FIIES ..o 17-8
Remaking a SYmbBolic File ... 17-12
Loading Files in a Distributed ENVIroNMeNntcocoovoviiniinineniceeseeae 17-13
MaArKing CRANQES. ..o 17-13
INOTICING FIIES ...t 17-15
Distributing Change INformation.............cccocviiiiineie e 17-16
File PACKAgE TYPES ..ottt 17-16
Functions for Manipulating Typed Definitionsccccoceoniiinninens 17-19
Defining New File Package TYPES ... 17-23
File Package COmMMEANGS.........ccoiiiiiiiiiiiecee et 17-25
FUNCEIONS @Nd MECIOSccciiiiiiiieeie e 17-26
VATTADIES. ...ttt e 17-27
Litatom PrOPEIti€Scccovviiueiiiiiriei et 17-29
Miscellaneous File Package Commandscccovveieninneienenseiennesenen, 17-30
DECLARE: ..ottt 17-31
EXPOrting Definitions.........ccoooiieiirreieeeee e
FHEVAIS. ...ttt
Defining New File Package Commands

18. Compiler

Functions for Manipulating File Command Lists
Symbolic File FOrmat.........c.cccooevirnnieiinnsienrneenenns
Copyright Notices
Functions Used Within Source Files
FIlE IMIAPS ..ottt

Compiler Printout
Global Variables............coooiiiiiciicse s

Local Variables and Special Variables
CONSTANTS ... e

Compiling FUNCLION CallS ..o e
FUNCTION and Functional ArgumEeNtSccoerierrineine e 18-7
OPEN FUNCHIONS. ...ttt ettt bt 18-8
COMPILETYPELST .ottt 18-8
COMPIIING CLISP ... 18-9
COMPIIEE FUNCLIONS.......coiitiiiiiieieteees e 18-9
BIOCK COMPITING ... 18-12
BIOCK DECIAratioNS.......c.cciiieiiieieie et 18-13
Block Compiling FUNCLIONS.........cooiiiiiiiie e 18-15
COMPIlEr Error MESSAGES......coveeiieieieiieiesiesie ettt 18-16
19, DWIM oo 20-1
Spelling Correction ProtoCol...........cooiiiiiiiiiee e 20-3
Parentheses Errors ProtOCONo s 20-4
Undefined FUNCLION T EFTOIS. ..ottt 20-4
DWIIM OPEIALION.ctiieieiieieteieie ettt ettt r e e enas 20-5
DWIM Correction: Unbound AtOMS..........cccoieiriininnineese e 20-6
Undefined CAR of Formccc.........
Undefined Function in APPLY..........
DWIMUSERFORMSccccooiriiininininens
DWIM Functions and Variables................
Spelling Correction...........occovevveicienenene.
Synonyms..........
Spelling Lists
Generators for Spelling Correction
Spelling Corrector AlQOrithM ...t
Spelling Corrector Functions and Variables...........cc.ccocoveiiinennienciccen, 20-15
20, CLISP .
CLISP Interaction with User
CLISP Character Operators..........c.cccceueueee
Declarations...........
CLISP Operation
CLISP TranSIatioNSccooeiiiiieieesie et
DWIMIFY oottt
CLISPIFY ottt
Miscellaneous Functions and Variables............cccoooiiiiiiiices 21-18
CLISP Internal CONVENTIONSccoiiiiiiiiieieesee e 21-20
21. PerformancCe ISSUEScccccveieiiieiieie ettt ee s 22-1
Storage Allocation and Garbage Collection ..o 22-1
Variable BINAINGScc.oiiiiiiee s 22-4
Performance MEASUFINGccoeiiiireiei it 22-5

BREAKDOWN

GAINSPACE ..ottt bbb bbb bbb bbb bbb bbbt
Using Data Types Instead of RecOrds...........coooeiiinniniiniicec e 22-9
Using Incomplete File NAmMES.........ccoiiiiiiieeee e 22-10
Using "Fast" and "Destructive” FUNCLIONSccoiiiiiiiiee e 22-10
22, PIOCESSESeeiiieiiiiie ittt b e 23-1
Creating and DesStroying PrOCESSESccocereirienieerienisesieese e 23-1
Process Control Constructs
EVENTS ..o
IMIONITOTS ..o s
GlODAI RESOUICES. ..o
Typein and the TTY PrOCESS. ..ottt 23-9
SWItING the TTY PrOCESSccveiiiiiiieeee e 23-9
Handling of INTErTUPLS ..o 23-11
Keeping the MOUSE ALIVE ..o 23-12
Process Status WINAOW...........coiiiniriiiiieee e 23-12
NoN-Process Compatibilityccoooiiiriiiiiiiie e 23-14
Volume 3 - I/O Reference
23. Streams and FIles ... 24-1
Opening and Closing File StreamsS...........ccoceieiinnienenee e 24-1
FIle INBMIES ..o 24-4
INncoMpPlete File NAMEScooiiii e 24-7
VErsion RECOGNITIONc.oiuiiiiiiiiieieeieiese et 24-9
Using File Names Instead Of StreamsS.........ccoeveiiiininiiienc e 24-10
File Name Efficiency Considerations...........ccoccoveriiniincnnineiene e 24-11
Obsolete File Opening FUNCLIONSccoiiiiinieniiee s 24-11
Converting Old Programs ..o 24-11
USING Files WIth PrOCESSEScooiiieiiiiiiiieceee e 24-12
File AtIrIDULES. ..o 24-12
Closing and Reopening FileS ... 24-15
Local Hard DiSK DEVICE ...t 24-16
FIOPPY DiSK DEVICE ...ttt 24-18
1/0 Operations To and From SEriNGScooiiireieirireese e 24-22
Temporary Files and the CORE DEVICE.........ccooeereiireneenecsieseeeseee s 24-23
INULL DEVICE......coiiiircieireieeirsee et 24-24
Deleting, Copying, and Renaming Files..........ccocoeiiiiiiiiiiiiiec e 24-24
Searching File DIreCtOIIES........cooiiieiie e
LiSting File DIFECIOTIEScvieiiiiieiec et
FIlE SEIVEIS ..o

PUP File Server Protocols

Xerox NS File Server Protocols..........
Operating System Designations

LOGGING TN o
ADBNOrMal CoONAITIONScvcviiiieii e
24. INPU/OULPUL FUNCHIONS ...oviiiiiiieiceee s
Specifying Streams for Input/Output FUNCLIONSccooiiriiniiinece 25-1
INPUL FUNCLIONS......coiiiiiiiice s
Output Functions
PRINTLEVEL
Printing NUMDEIS. ..o 25-10
User Defined Printing ... 25-12
Printing Unusual Data StrUCTUIES...........ccoiireiieierireeeeese e 25-13
Random ACCess File OPErations..........cccoiiiireriiirieiie et 25-14
Input/Output Operations with Characters and Bytesc.ccccocevvieniiinenn 25-17
PRINTOUT ..ottt 25-17
Horizontal Spacing Commands..........cccceoiiriiiiininese e 25-19
Vertical Spacing ComMmMAaNGScccooueiiiiiiniinee e 25-20
Special Formatting CoNtrolsccooeeirniiiennee e 25-20
Printing SPecCifiCatioNSccoviiiriei e 25-20
Paragraph FOIMALc.coeiiiieiee e 25-21
RIGNE-FIUSNING ..o 25-21
(O7C]) (=1 o T o o [RSSO 25-22
INUMDEIING .ttt 25-22
ESCAPING T0 LISP ..ttt 25-23
User-Defined COMMANASccoorrririnrnsrrssss s 25-23
Special Printing FUNCLIONScccoeiiieiiineensee e 25-24
READFILE and WRITEFILEcooviiiriirrsssssss s 25-25
REAA TADIES ... 25-25
Read Table FUNCHIONS. ... 25-26
SYNEAX CIASSESecviiiiiiiiiiiiieieeieic bbb 25-26
REA MACTOS ...t 25-29
25. User Input/Output PaCKagesccccoveiieiiiieiieie e 26-1
1Y 0 1=Tod (] SRRSO 26-1
Calling the INSPECLON........ccvciicecececc e 26-1
Multiple Ways of INSPECLING.......cceviiviiieiiciseee e 26-2
INSPECT WINAOWSooviiiiciciic et bbb 26-3
Inspect Window CommandS...........ccueiviiiiiiieiienecs e 26-3
Interaction with Break WINAOWS ... 26-4
Controlling the Amount Displayed During Inspection...........cc..ccceevvvenen. 26-4
INSPECE IMACTOS ...ttt
INSPECTWS ..ottt
PROMPTFORWORD
ASKUSER ..ottt

Format of KEYLST

OPLIONS ..t ettt sttt sb et b e e
OPEIALION ...ttt bttt
CoMPIELING @ KBY ...
SPECIAL KBYS ...ttt
Startup Protocol and Typeahead............ccocooiiiiiniiiiiineeee e 26-16
TTYIN TYPEIN EAITOF ...ttt 26-17
Entering INput With TTYIN ..o 26-17
Mouse Commands (INterlisp-D ONlY)......ccccoiiiiniiiniiiir e 26-19
Display Editing COMMANGS.........ccccoiruiiiiiiiriiseeecsee e 26-19
Using TTYIN for LiSp INPUL........ooiiiiiecee e 26-22
USETUI IMIBCTOS. ... 26-23
Programming With TTYINccoiiiiiiiee e 26-23
Using TTYIN as a General Editor ... 26-25
P2 HANAIEE .o s 26-26
REAA MACTOSocviiieiiiieree e 26-27
ASSOMTEA FIAGS ...ttt 26-28
SPECIAl RESPONSES ...t et 26-29
DiISPIAY TYPES ... ettt 26-30
PrETEYPIINT. .ttt 26-31
ComMMENt FEALUIE ... 26-33
COMMENT POINTEIS ... 26-34
Converting CommeNnts t0 LOWEICASEccccerieererinenieenieiee e 26-35
Special Prettyprint CONrolS...... ..ot 26-36
26. Graphics OUtput OPEratioNSccoceieiiiiiinisieeee e
Primitive Graphics CONCEPLS ...c.oiviiiiiiiieriee s
POSITIONS ..o
REGIONS ...t
BITMIAPS. .ttt
TEXEUIES ..o
OpPening IMAagE SIFEAIMS. ..o
Accessing Image Stream FIelds ..o
Current Position of an Image SIream ...
Moving Bits Between Bitmaps With BITBLTccccooiiiiniiiiirreceeieae
Drawing LiNES......c.cccviiiiniiiiiienesee e

Drawing Curves

Miscellaneous Drawing and Printing Operations
Drawing and Shading Grids........cc.cccoceorvieinneiniennns
Display Streamscccevvreieniireerese e

Font Files and Font Directories...........ccccoooevvivivieninennan,

FONE PIOTIIES ..ot et

IMAQGE ODJECES ...viviiiieeiietee ettt et
IMAGEFNS MEtNOAScoveviiiiiciece ettt

Registering Image Objects.........cccccovevrincennne.
Reading and Writing Image Objects on Files

Copying Image Objects Between WiNAOWScccoeeiviiieniiineincne

Implementation of Image Streams. ...t

27. WINAOWS @NA IMENUSocviiiiieiiieiesie st see e nae s

Using the Window System.............c.ccoe.....

Changing the Window System

Interactive Display Functions...................

WMVINAOWS ...ttt bbbt et eb e
WiINAOW PrOPertiescocoiiiiiiiie st
Creating WINAOWS ..ot
Opening and Closing WINAOWS...........ccoeriniininneneeee s 28-11
Redisplaying WINAOWScooiiiiiiiiiinese e 28-12
ResShaping WINGOWS ..o 28-13
MOVING WINAOWS......cooiiiiiiieeee e 28-14
Exposing and Burying WiNAOWSccooeoiiiiiinineneee e 28-16
Shrinking Windows iNt0 ICONS ... 28-16
Coordinate Systems, Extents, and Scrolling.........ccccoooevernnniennncieninns 28-18
Mouse ACtiVity iNn WINAOWS...........cceiiirieiininrese e 28-21
Terminal 170 and Page Holding..........ccccoonviiiinneieeeseesees 28-22
TTY Process and the Caret ... 28-23
Miscellaneous Window FUNCLIONS...........cccceiiriinneieeee e 28-24
Miscellaneous Window Properties...........cccoveerirneieninneienenseeesesieens 28-25
Example: A Scrollable Window ... 28-26

IMIBINIUS ..ot bbb 28-28
MENU FIEIAS ... 28-29
Miscellaneous Menu FUNCLIONS.........ccco i 28-32
Examples Of MEeNU USE.......cccoviiirireiieeess e 28-32

ALACHED WINAOWS ..ottt 28-34
Attaching Menus to WINAOWS...........ccccerirreiinneieneee e 28-37
Attached Prompt WINAOWS ... 28-38
Window Operations and Attached Windows.............cccovvvienneinncriniennn. 28-39
Window Properties of Attached Windows ..., 28-41

28. Hardcopy FaCHITIESccooiiiiiiieeee e 29-1

Hardcopy FUNCLIONSccoouiiiiicicc et 29-1

Low-Level Hardcopy Variables ... 29-4

29. Terminal INPUt/OULPULcooiiiiiiiiie e 30-1

INTErTUPL ChAaraCLErS. ..o s 30-1

TermiNal TADIES ..o 30-4
Terminal SYNtaX ClIaSSES.........ccviiviiiriiieiriiee e 30-4
Terminal Control FUNCLIONS..........ocoiiieiiie e 30-5
LiN@-BUFfEriNGc.eovivieiirccee e 30-7

10

30. Ethernet

Dribble Files...............
Cursor and Mouse

Changing the Cursor IMage ..ot s 30-11
Flashing Bars 0N the CUISOK ...t 30-13
CUISOF POSITION ... 30-13
MOUSE BULLON TESTING ..ottt 30-14
Low-Level MouSe FUNCLIONS...........coeiiicieecseee e 30-15
Keyboard INterpretation ... 30-15
DISPIAY SCIEEN ...ttt 30-18
Miscellaneous Terminal 17O ..o 30-19

Ethernet ProtOCOIS. ..o s
ProtoCOl LAYEIINGcccviiiieiiiiiieieeese e
Level Zero ProtOCoIS. ...
Level ONe ProtoCOIS. ...
Higher LeVel ProtOCOISccociiiiiiiiee s
Connecting Networks: Routers and Gatewaysc.ccocoeeeeneinenecnieens
Addressing Conflicts with Level Zero Mediums...........ccocoovviininnincens
RETEIENCES ...t

Higher-Level PUP ProtocOl FUNCLIONScooeiiiiiiiiieeec s

Higher-Level NS Protocol FUNCLIONS ..ot
Name and Address CONVENTIONS ...
Clearinghouse FUNCLIONS ..o
NS PRINTING ottt
SPP Stream INTErface ..o
Courier Remote Procedure Call Protocol............cccoveeimeiiicciinccinnns

Defining Courier Programs ...
Courier Type Definitionsccccocoeirrneiiniieieneee e
Pre-defined TYPES ..o
CONSLIUCIEA TYPES ...ttt
User Extensions to the Type Language........ccccoevvvererneencrennenen.
Performing Courier Transactionscccccoveerennneierseienenennenens
Expedited Procedure Callc.occeiiriniiinseienseeesse e
Expanding RiNg BroadCast............cccooerrreirinnenennseienese e
Using Bulk Data Transfer...........ccccooeenene.
Courier Subfunctions for Data Transfer...
Level One Ether Packet FOrmatcccooovvririnieiriene.
PUP Level One Functions....................
Creating and Managing Pups
SOCKELS ..o
Sending and Receiving Pups.......
Pup Routing INfOrmMation ...
Miscellaneous PUP ULIIITIES ...
PUP Debugging AiSceiiiiirieiieieerese e

11

NS Level One Functions.........ccccccoeevreenne.
Creating and Managing XIPs

NS SOCKELS ...
Sending and ReCeiVINg XIPSc.ocoiiiiiiiieeee e
NS Debug@ing AdSc..coiiiiiee e
Support for Other Level One ProtoCols.........coccviiiiineieniineneeeeeec e 31-29
The SYSQUEUE MeCh@niSIMcccccviiiiiiiieieie s 31-31
GHOSSAIY ..ot GLOSSARY-1
FNABX .. et INDEX-1

12

[This page intentionally left blank]

13

1.

INTRODUCTION

Medley is a programming system that consists of a programming language, a large number of predefined
programs (or functions) that you can use directly or as subroutines, and an environment that supports
you with a variety of specialized programming tools. The language and predefined functions of Lisp
are rich, but similar to those of other modern programming languages. The Medley programming
environment, on the other hand, is very distinctive. Its main feature is an integrated set of
programming tools that know enough about Interlisp and Common Lisp to act as semi-autonomous,
intelligent "assistants" to you. This environment provides a completely self-contained world for
creating, debugging and maintaining Lisp programs.

This manual describes all three parts of Medley. There are discussions of the language, about the
pieces of the system that can be incorporated into your programs, and about the environment. The
line between your code and the environment is thin and changing. Most users extend the
environment with some special features of their own. Because Medley is so easily extended, the
system has grown over time to incorporate many different ideas about effective and useful ways to
program. This gradual accumulation over many years has resulted in a rich and diverse system. It is
also the reason this manual is so large.

The rest of this manual describes the individual pieces of Medley; this chapter describes system as a
whole—including the otherwise-unstated philosophies that tie it all together. It will give you a global
view of Medley.

Lisp as a Programming Language

This manual is not an introduction to programming in Lisp. This section highlights a few key points
about lisp that will make the rest of the manual clear.

In Lisp, large programs (or functions) are built up by composing the results of smaller ones. Although
Medley, like most modern Lisps, lets you program in almost any style you can imagine, the natural
style of Lisp is functional and recursive—each function computes its result by calling lower-level
“building-block” functions, then passing that result back to its caller (rather than by producing “side-
effects” on external data structures, for example).

Lisp is also a list-manipulation language. Like other languages, Lisp can process characters and
numbers. But you get more power if you program at a higher level. The primitive data objects of Lisp
are “atoms” (symbols or identifiers) and “lists” (sequences of atoms or lists), which you use to
represent information and relationships. Each Lisp dialect has a set of operations that act on atoms
and lists, and these operations comprise the core of the language.

Invisible in the programs, but essential to the Lisp style of programming, is an automatic memory
management system (an *allocator” and a “garbage collector”). New storage is allocated
automatically whenever a you create a new data object. And that storage is automatically reclaimed
for reuse when no other object refers to it. Automated memory management is essential for rapid,

11

INTERLISP-D REFERENCE MANUAL

large-scale program development because it frees you from the task of maintaining the details of
memory administration, which change constantly during rapid program evolution.

A key property of Lisp is that Lisp function definitions are just pieces of Lisp list data. Each
subfunction "call" (or function application) is written as a list with the function first, followed by its
arguments. Thus, (PLUS 1 2) represents the expression 1+2. A function’s definition, then, is just a
list of such function applications, to be evaluated in order. This representation of program as data lets
you use the same operations on programs that you use on data—making it very easy to write Lisp
programs that look at and change other Lisp programs. This, in turn, makes it easy to develop
programming tools and translators, which was essential to the development of the Medley
environment.

The most important benefit of this is that you can extend the Lisp programming language itself. Do
you miss some favorite programming idiom? Just define a function that translates the desired
expression into simpler Lisp. Now your idiom is part of the language. Medley has extensive facilities
for making this type of language extension. Using this ability to extend itself, Interlisp has
incorporated many of the constructs that have been developed in other modern programming
languages (e.g. if-then-else, do loops, etc.).

Medley as an Interactive Environment

1-2

Medley programs should not be thought of as simple files of source code. All Medley programming
takes place within the Medley environment, which is a completely self-sufficient environment for
developing and using Medley programs. Beyond the obvious programming facilities (e.g., program
editors, compilers, debuggers, etc.), the envionrment also contains a variety of tools that "keep track"
of what happens. For example, the Medley File Manager notices when programs or data have been
changed, so the system will know what needs to be saved at the end of a session. The "residential"
style, where you stay inside the environment throughout the development, is essential for these tools
to operate. Furthermore, this same environment is available to support the final production version,
some parts providing run time support and other parts being ignored until the need arises for further
debugging or development.

For terminal interaction, Medley provides a top level "Read-Eval-Print" executive, which reads
whatever you type in, evaluates it, and prints the result. (This interaction is also recorded, so you can
ask to do an action again, or even to undo the effects of a previous action.) Although Executives
understand some specialized commands, most of the interaction will consist of simple Lisp
expressions. So rather than special commands for operations like manipulating your files, you just
type the same expressions that you would use to accomplish them in a Lisp program. This creates a
very rich, simple, and uniform set of interactive commands, since any Lisp expression can be typed at
an executive and evaluated immediately.

In normal use, you write a program (or rather, "define a function") by typing in an expression that
invokes the "function defining" function (DEFI NEQ) , giving it the name of the function being defined
and its new definition. The newly-defined function can be executed immediately, simply by using it
in a Lisp expression.

INTRODUCTION

In addition to these basic programming tools, Medley also provides a wide variety of programming
support mechanisms:

List structure editor Since Lisp programs are represented as list structure, Medley
provides an editor which allows one to change the list structure of
a function’s definition directly. See Chapter 16.

Pretty-printer The pretty printer is a function that prints Lisp function
definitions so that their syntactic structure is displayed by the
indentation and fonts used. See page Chapter 26.

Debugger When errors occur, the debugger is called, allowing you to
examine and modify the context at the point of the error. Often,
this lets you continue execution without starting from the
beginning. Within a break, the full power of Interlisp is available
to you. Thus, the broken function can be edited, data structures
can be inspected and changed, other computations carried out,
and so on. All of this occurs in the context of the suspended
computation, which remains available to be resumed. See
Chapter 14.

DWIM The "Do What | Mean" package automatically fixes misspellings
and errors in typing. See Chapter 20.

Programmer’s Assistant Medley keeps track of your actions during a session and allows
each one to be replayed, undone, or altered. See Chapter 13.

Masterscope Masterscope is a program analysis and management tool which
can analyze users’ functions and build (and automatically
maintain) a data base of the results. This allows you to ask
questions like "WHO CALLS ARCTAN' or "WHO USES COEF1
FREELY" or to request systematic changes like "EDI T WHERE
ANY [function] FETCHES ANY FI ELD OF [the data structure]
FOO'. See Chapter 19.

Record/Datatype Package Medley allows you to define new data structures. This enables
one to separate the issues of data access from the details of how
the data is actually stored. See Chapter 8.

File Manager Source code files in Medley are managed by the system, removing
the problem of ensuring timely file updates from the user. The
file manager can be modified and extended to accomodate new
types of data. See Chapter 17.

Performance Analysis These tools allow statistics on program operation to be collected
and analyzed. See Chapter 22.

Multiple Processes Multiple and independent processes simplify problems which
require logically separate pieces of code to operate in parallel. See
Chapter 23.

1-3

INTERLISP-D REFERENCE MANUAL

Windows The ability to have multiple, independent windows on the display
allows many different processes or activities to be active on the
screen at once. See Chapter 28.

Inspector The inspector is a display tool for examining complex data
structures encountered during debugging. See Chapter 26.

These facilities are tightly integrated, so they know about and use each other, just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes.
By combining the program analysis features of Masterscope with the features of the structural editor,
large scale system changes can be made with a single command. For example, when the lowest-level
interface of the Medley 1/0 system was changed to a new format, the entire edit was made by a single
call to Masterscope of the form EDI T WHERE ANY CALLS ' (BI N BOUT ...).[Burton etal.,, 1980]
This caused Masterscope to invoke the editor at each point in the system where any of the functions in
the list” (BI N BOUT ...) were called. This ensured that no functions used in input or output were
overlooked during the modification.

Philosophy

1-4

Medley’s extensive environmental support has developed over the years to support a particular style
of programming called "exploratory programming" [Sheil, 1983]. For many complex programming
problems, the task of program creation is not simply one of writing a program to fulfill specifications.
Instead, it is a matter of exploring the problem (trying out various solutions expressed as partial
programs) until one finds a good solution (or sometimes, any solution at all!). Such programs are by
nature evolutionary; they are transformed over time from one realization to another in response to a
growing understanding of the problem. This point of view has lead to an emphasis on having the
tools available to analyze, alter, and test programs easily. One important aspect of this is that the tools
be designed to work together in an integrated fashion, so that knowledge about the user’s programs,
once gained, is available throughout the environment.

The development of programming tools to support exploratory programming is itself an exploration.
No one knows all the tools that will eventually be found useful, and not all programmers want all of
the tools to behave the same way. In response to this diversity, Interlisp has been shaped, by its
implementors and by its users, to be easily extensible in several different ways. First, there are many
places in the system where its behavior can be adjusted by the user. One way that this can be done is
by changing the value of various "flags" or variables whose values are examined by system code to
enable or suppress certain behavior. The other is where the user can provide functions or other
behavioral specifications of what is to happen in certain contexts. For example, the format used for
each type of list structure when it is printed by the pretty-printer is determined by specifications that
are found on the list PRETTYPRI NTMACROS. Thus, this format can be changed for a given type simply
by putting a printing specification for it on that list.

Another way in which users can affect Medley’s behavior is by redefining or changing system
functions. The "Advise" capability, for instance, lets you modify the operation of virtually any
function in the system by wrapping code "around" the selected function. (This same philosophy
extends to breaking and tracing, so almost any function in the system can be broken or traced.) Since

How

INTRODUCTION

the entire system is implemented in Lisp, there are few places where the system’s behavior depends
on anything that you can’t modify (such as a low level system implementation language).

While these techniques provide a fair amount of tailorability, there’s a price: Medley is complex.
There are many flags, parameters, and controls that affect its behavior. Because of this complexity,
Interlisp tends to be more comfortable for experts, rather than casual users. Beginning users of
Interlisp should depend on the default settings of parameters until they learn what dimensions of
flexibility are available. At that point, they can begin to "tune" the system to their preferences.

Appropriately enough, even Medley’s underlying philosophy was itself discovered during Medley’s
development, rather than laid out beforehand. The Medley environment and its interactive style were
first analyzed in Sandewall’s excellent paper [Sandewall, 1978]. The notion of "exploratory
programming" and the genesis of the Interlisp programming tools in terms of the characteristic
demands of this style of programming was developed in [Sheil, 1983]. The evolution and structure of
the Interlisp programming environment are discussed in greater depth in [Teitelman & Masinter,
1981].

to Use this Manual

This document is a reference manual, not a primer. We have tried to provide a manual that is
complete, and that lets you find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference, these arguments are fully
explained, even though you will normally let them default. There is a lot of information in this
manual that is of interest only to experts.

Do not try to read straight through this manual, like a novel. In general, the chapters are organized
with overview explanations and the most useful functions at the beginning of the chapter, and
implementation details towards the end. If you are interested in becoming acquainted with Medley,
we urge you to work through An Introduction to Medley before attempting this manual.

A few comments about the notational conventions used in this manual:

Lisp object notation: All Interlisp objects in this manual are printed in the same font:
Functions (AND, PLUS, DEFI NEQ, LOAD) ; Variables
(MAX. | NTEGER, FI LELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG ((A 1)) ...),etc

Case is significant: In Interlisp, upper and lower case is significant. The variable FOO is
not the same as the variable foo or the variable Foo. By
convention, most Interlisp system functions and variables are all
uppercase, but users are free to use upper and lower case for their
own functions and variables as they wish.

One exception to the case-significance rule is provided by the
CLISP facility, which lets you type iterative statements and record
operations in either all uppercase or all lowercase letters: (for X

1-5

INTERLISP-D REFERENCE MANUAL

from1l to 5 ...) isthesameas (FOR X FROM 1 TO 5

.). The few situations where this is the case are explicitly
mentioned in the manual. Generally, assume that case is
significant.

This manual contains a large number of descriptions of functions, variables, commands, etc, which are
printed in the following standard format:

(FOOBAR BAZ) [Function]

This is a description for the function named FOO. FOO has two arguments,
BAR and BAZ. Some system functions have extra optional arguments that
are not documented and should not be used. These extra arguments are
indicated by "—".

The descriptor [Function] indicates that this is a function, rather than a
[Variable], [Macro], etc. For function definitions only, this can also indicate
whether the function takes a fixed or variable number of arguments, and
whether the arguments are evaluated or not. [Function] indicates a lambda
spread function (fixed number of arguments, evaluated), the most common

type.

References

[Burton, et al., 1980] Burton, R. R., L. M. Masinter, A. Bell, D. G. Bobrow, W. S.
Haugeland, R.M. Kaplan and B.A. Sheil, "Interlisp-D: Overview
and Status" — in [Sheil & Masinter, 1983].

[Sandewall, 1978] Sandewall, Erik, "Programming in the Interactive Environmnet:
The LISP Experience” — ACM Computing Surveys, vol 10, no 1,
pp 35-72, (March 1978).

[Sheil, 1983] Sheil, B.A., "Environments for Exploratory Programming” —
Datamation, (February, 1983) — also in [Sheil & Masinter, 1983].

[Sheil & Masinter, 1983] Sheil, B.A. and L. M. Masinter, "Papers on Interlisp-D", Xerox
PARC Technical Report CIS-5 (Revised), (January, 1983).

[Teitelman & Masinter, 1981] Teitelman, W. and L. M. Masinter, "The Interlisp Programming
Environment" — Computer, vol 14, no 4, pp 25-34, (April 1981) —
also in [Sheil & Masinter, 1983].

1-6

2. SYMBOLS (LITATOMS)

A litatom (for “literal atom”) is an object that conceptually consists of a print name, a value, a function
definition, and a property list. Litatoms are also known as “symbols” in Common Lisp. For clarity,
we will use the term “symbol”.

A symbol is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntactic characters that delimit symbols are called “separator” or “break” characters (see Chapter
25) and normally are space, end-of-line, line-feed, left parenthesis (, right parenthesis) , double quote
", left square bracket [, and right square bracket] . However, any character may be included in a
symbol by preceding it with the character % Here are some examples of symbols:

A wxyz 23SKI DDOO %
Long% Li t at om? Wt h% Enbedded% Spaces

(LI TATOM X) [Function]

Returns T if X is a symbol, NI L otherwise. Note that a number is not a symbol.
(LITATOMNL) =T

(ATOM X) [Function]

Returns T if X is an atom (i.e., a symbol or a number) or NI L (e.g. (ATOM NIL) = T);
otherwise returns NI L.

Warning: (ATOM X) is NI L if X is an array, string, etc. In Common Lisp, the function
CL: ATOMis defined equivalent to the Interlisp function NLI STP.

Each symbol has a print name, a string of characters that uniquely identifies that symbol: Those
characters that are output when the symbol is printed using PRI N1, e.g., the print name of the symbol
ABCY% D consists of the five characters ABC(D.

Symbols are unique: If two symbols print the same, they will always be EQ Note that this is not true
for strings, large integers, floating-point numbers, etc.; they all can print the same without being EQ
Thus, if PACK or MKATOM s given a list of characters corresponding to a symbol that already exists,
they return a pointer to that symbol, and do not make a new symbol. Similarly, if the read program is
given as input a sequence of characters for which a symbol already exists, it returns a pointer to that
symbol.

Symbol names are limited to 255 characters. Attempting to create a larger symbol will cause an error:
Atom too | ong.

Sometimes we’ll refer to a “ PRI N2-name”. The PRI N2-name of a symbol is those characters output
when it is printed using PRI N2. So the PRI N2-name of the symbol ABC% D is the six characters
ABCY% D. The PRI N2-name depends on what readtable is being used (see Chapter 25), since this
determines where % will be inserted. Many of the functions below allow either print names or
PRI N2-names to be used, as specified by FLG and RDTBL arguments. If FLGis NI L, print names are
used. Otherwise, PRI N2-names are used, computed with respect to the readtable RDTBL (or the
current readtable, if RDTBL = NI L).

2-1

INTERLISP-D REFERENCE MANUAL

(MKATOM X) [Function]
Creates and returns a symbol whose print name is the name as that of the string X or, if X
is not a string, the same as that of (MKSTRI NG X) . Examples:

(MKATOM ' (A B C)) => % A% B% C%
(MKATOM "1.5") => 1.5

Note that the last example returns a number, not a symbol. It is a deeply-ingrained
feature of Interlisp that no symbol can have the print name of a number.

(SUBATOM X N M [Function]

Returns a symbol made from the Nth through Mh characters of the print name of X. If Nor
Mare negative, they specify positions counting backwards from the end of the print name.
Equivalent to (MKATOM (SUBSTRI NG X N M). Examples:

(SUBATOM "FQOOL. 5BAR" 4 6) => 1.5
(SUBATOM' (A B C) 2 -2) => A% B%C
(PACK X) [Function]

If X is a list of symbols, PACK returns a single symbol whose print name is the
concatenation of the print names of the symbols in X. If the concatenated print name is
the same as that of a number, PACK returns that number. For example:

(PACK ’ (A BC DEF G)) => ABCDEFG
(PACK ' (1 3.4)) => 13.4
(PACK ’ (1 E -2)) => .01

Although X is usually a list of symbols, it can be a list of arbitrary objects. The value of
PACK is still a single symbol whose print name is the concatenation of the print names of
all the elements of X, e.g.,

(PACK " ((A B) "CD')) => % A% B® CD

If Xis notalistor NI L, PACK generates the error | | | egal arg.
(PACK* X1 X2... XN) [NoSpread Function]

Version of PACK that takes an arbitrary number of arguments, instead of a list. Examples:

(PACK* ' A ' BC ' DEF ' G => ABCDEFG
(PACK* 1 3.4)) => 13.4

(GENSYM PREFI X ————) [Function]

Returns a symbol of the form Xnnnn, where X = PREFI X (or A if PREFI X is NI L) and
nnnn is an integer. Thus, the first one generated is AO001, the second A0002, etc. The
integer suffix is always at least four characters long, but it can grow beyond that. For
example, the next symbol produced after A9999 would be A10000. GENSYMprovides a
way of generating symbols for various uses within the system .

Note: The Common Lisp function CL: GENSYMis not the same as Interlisp’s GENSYM
Interlisp always creates interned symbols whereas CL: GENSYM creates uninterned
symbols.

2-2

SYMBOLS (LITATOMS)

GENNUM [Variable]

The value of GENNUM initially 0, determines the next GENSYM e.g., if GENNUMis set to 23,
(GENSYM =A0024.

The term “gensym” is used to indicate a symbol that was produced by the function
GENSYM Symbols generated by GENSYMare the same as any other symbols: they have
property lists, and can be given function definitions. The symbols are not guaranteed to
be new. For example, if the user has previously created A0012, either by typing it in, or
via PACK or GENSYM itself, then if GENNUM is set to 11, the next symbol returned by
GENSYM will be the A0O012 already in existence.

(MAPATOVS FN) [Function]

Applies FN (a function or lambda expression) to every symbol in the system. Returns
NI L. For example:

(MAPATOVS (FUNCTI ON (LAMBDA(X) (if (GETD X) then (PRINTX)]
will print every symbol with a function definition.

Warning: Be careful if FN is a lambda expression or an interpreted function: since
NOBI ND is a symbol, it will eventually be passed as an argument. The first reference to
that argument within the function will signal an error.

A way around this problem is to use a Common Lisp function, so that the Common Lisp
interpreter will be invoked. It will treat the argument as local, not special and no error
will be signaled. An alternative solution is to include the argument to the Interlisp
function in a LOCALVARS declaration and then compile the function before passing it to
MAPATOMS. This will significantly speed up MAPATOVS.

(APROPOS STRI NG ALLFLG QUI TFLG OUTPUT) [Function]

APROPGS scans all symbols in the system for those which have STRI NGas a substring and
prints them on the terminal along with a line for each relevant item defined for each
selected symbol. Relevant items are:

= function definitions, for which only the arglist is printed
= dynamic variable values

= non-null property lists
PRI NTLEVEL (see Chapter 25) issetto (3 . 5) when APROPCS is printing.

If ALLFLG is NI L, then symbols with no relevant items and “internal” symbols are
omitted (“internal” currently means those symbols whose print name begins with a \ or
those symbols produced by GENSYM). If ALLFLG s a function, it is used as a predicate on
symbols selected by the substring match, with value NI L meaning to omit the symbol. If
ALLFLGis any other non-NI L value, then no symbols are omitted.

Note: Unlike CL: APROPGS which lets you designate the package to search, APROPOS
searches all packages.

2-3

INTERLISP-D REFERENCE MANUAL

Using Symbols as Variables

Symbols are commonly used as variable names. Each symbol has a “top level” value, which can be an
arbitrary object. Symbols may also be given special variable bindings within PROGs or functions,
which only exist for the duration of the function. When a symbol is evaluated, the “current” variable
binding is returned. This is the most recent special variable binding, or the top-level binding if the
symbol hasn’t been rebound. SETQis used to change the current binding. For more information on
variable bindings in Interlisp, see Chapter 11.

A symbol whose top-level value is the symbol NOBI ND is considered to have no value. If a symbol has
no local bindings, and its top-level value is NOBI ND, trying to evaluate it will cause an unbound-atom
error. In addition, if a symbol’s local binding is to NOBI ND, trying to evaluate it will cause an error.

The symbols T and NI L always evaluate to themselves. Attempting to change the value of T or NI L
with the functions below will generate the error; Attenpt to set T or Attenpt to set NL.

The following functions (except BOUNDP) will also generate the error Arg not |itat om if not given

a symbol.

(BOUNDP VAR) [Function]
Returns T if VAR has a special variable binding, or if VAR has a top-level value other than
NOBI ND; otherwise NI L. That is, if X is a symbol, (EVAL X) will cause an Unbound
at omerror if and only if (BOUNDP X) returns NI L.
Note: The Interlisp interpreter has been modified so that it will generate an Unbound
Vari abl e error when it encounters any symbol bound to NOBI ND. This is a change from
previous releases that only signaled an error when a symbol had a top-level binding of
NOBI ND in addition to no dynamic binding.

(SET VAR VALUE) [NoSpread Function]
Sets the “current” value of VAR to VALUE, and returns VALUE.
SET is a normal function, so both VAR and VALUE are evaluated before it is called. Thus, if
the value of X is B, and value of Y is C, then (SET X Y) would result in B being set to C,
and Cbeing returned as the value of SET.

(SETQVAR VALUE) [NoSpread Function]
Like SET, but VAR is not evaluated, VALUE is. Thus, if the value of X is B and the value of
Yis C, (SETQ X Y) would result in X (not B) being set to C, and Cbeing returned.
Actually, neither argument is evaluated during the calling process. However, SETQ itself
calls EVAL on its second argument. As a result, typing (SETQ VAR FORM and SETQ
(VAR FORM to the Interlisp Executive are equivalent: in both cases VAR is not
evaluated, and FORMis.

(SETQQ VAR VALUE) [NoSpread Function]
Like SETQ but neither argument is evaluated, e.g., (SETQQ X (A B C)) sets Xto(A B
0.

2-4

SYMBOLS (LITATOMS)

(PSETQ VAR; VALUE; ... VARy VALUEN) [Macro]

Does a SETQin parallel of VAR (unevaluated) to VALUE], VAR2 to VALUED, etc. All of
the VALUE; terms are evaluated before any of the assignments. Therefore, (PSETQ A B
B A) can be used to swap the values of the variables A and B.

(GETTOPVAL VAR) [Function]
Returns the top level value of VAR (even if NOBI ND), regardless of any intervening local
bindings.

(SETTOPVAL VAR VALUE) [Function]
Sets the top level value of VAR to VALUE, regardless of any intervening bindings, and
returns VALUE.

(GETATOWAL VAR) [Function]

Same as (GETTOPVAL VAR).

(SETATOWAL VAR VALUE) [Function]
Same as SETTOPVAL.

Note: The compiler (see Chapter 18) treats variables somewhat differently from the interpreter, and
you need to be aware of these differences when writing functions that will be compiled. For
example, variable references in compiled code are not checked for NOBI ND, so compiled code
will not generate unbound-atom errors. In general, it is better to debug interpreted code,
before compiling it for speed. The compiler offers some facilities to increase the efficiency of
variable use in compiled functions: Global variables can be defined so that the entire stack is
not searched at each variable reference. Local variables have bindings that are not visible
outside the function, which reduces variable conflicts and makes variable lookup faster.

Function Definition Cells

Each symbol has a function-definition cell, which is accessed when that symbol is used as a function.
This is described in detail in Chapter 10.

Property Lists

Each symbol has an associated property list, which allows a set of named objects to be associated with
the symbol. A property list associates a name (known as a “property name” or “property”) with an
arbitrary object (the “property value” or “value”). Sometimes the phrase “to store on the property X”
is used, meaning to place the indicated information on a property list under the property name X.

Property names are usually symbols or numbers, although no checks are made. However, the
standard property list functions all use EQto search for property names, so they may not work with
non-atomic property names. The same object can be used as both a property name and a property
value.

Many symbols in the system already have property lists, with properties used by the compiler, the
break package, DWIM, etc. Be careful not to clobber such system properties. The variable SYSPROPS
is a list of property names used by the system.

2-5

INTERLISP-D REFERENCE MANUAL

2-6

The functions below are used to manipulate the property lists of symbols. Except when indicated,
they generate the error ATM i s not a SYMBCL, if given an object that is not a symbol.

(GETPROP ATM PRCP) [Function]

Returns the property value for PROP from the property list of ATM Returns NI L if ATMis
not a symbol, or PROP is not found. GETPROP also returns NI L if there is an occurrence of
PROP but the corresponding property value is NI L. This can be a source of program
errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PRCP VAL) [Function]

Puts the property PROP with value VAL on the property list of ATM VAL replaces any
previous value for the property PROP on this property list. Returns VAL.

(ADDPROP ATM PROP NEW FLG) [Function]

Adds the value NEWto the list which is the value of property PROP on the property list of
the ATM If FLG is T, NEWis CONSed onto the front of the property value of PROP;
otherweise, it is NCONCed on the end (using NCONCL1). If ATMdoes not have a property
PROP, or the value is not a list, then the effect is the same as (PUTPROP ATM PROP
(LI ST NEW). ADDPROCRP returns the (new) property value. Example:
<—(’\IF|>L|J_TPRO3 " POCKET ' CONTENTS NI L)
<—((ADIZ))PRO3 " POCKET ' CONTENTS ' COVB)
(COVB)
<—(ADDPROP ' POCKET ' CONTENTS ' WALLET)
(COVB WALLET)

(REMPROP ATM PROCP) [Function]

Removes all occurrences of the property PROP (and its value) from the property list of
ATM Returns PROP if any were found (T if PROP is NI L), otherwise NI L.

(CHANGEPROP X PROP1 PROP2) [Function]

Changes the property name of property PROP1 to PROP2 on the property list of X (but
does not affect the value of the property). Returns X, unless PROP1 is not found, in which
case it returns NI L.

(PROPNAMES ATM) [Function]

Returns a list of the property names on the property list of ATM

(DEFLI ST L PROP) [Function]

Used to put values under the same property name on the property lists of several
symbols. L is a list of two-element lists. The first element of each is a symbol, and the
second element is the property vgalue of the property PROP. Returns NI L. For example:

(DEFLI ST ’ ((FOO MA) (BAR CA) (BAZ RI)) ’ STATE)

SYMBOLS (LITATOMS)

puts MA on FOOs STATE property, CA on BAR's STATE property, and Rl on BAZ’s STATE
property.
Property lists are conventionally implemented as lists of the form
(NAME7 VALUE] NAMEZ VALUES. . .)
although the user can store anything as the property list of a symbol. However, thge functions which
manipulate property lists observe this convention by searching down the property lists two CDRs at a
time. Most of these functions also generate the error Arg not 1it at om if given an argument which
is not a symbol, so they cannot be used directly on lists. (LI STPUT, LI STPUT1, LI STGET, and

LI STGET1 are functions similar to PUTPROP and GETPROP that work directly on lists (see Chapter 3) .
The property lists of symbols can be directly accessed with the following functions.

(GETPROPLI ST ATM [Function]
Returns the property list of ATM

(SETPROPLI ST ATM LST) [Function]
If ATMis a symbol, sets the property list of ATMto be LST, and returns LST as its value.

(GETLI S X PROPS) [Function]
Searches the property list of X, and returns the property list as of the first property on
PROPS that it finds. For example:

«—(GETPROPLI ST ’ X)
(PROP1 A PROP3 B A Q)
—(GETLIS ' X ' (PROP2 PROP3))

(PROP3 B A Q)

Returns NI L if no element on props is found. X can also be a list itself, in which case it is
searched as described above. If Xis not a symbol or a list, returns NI L.

(REMPRCPLI ST ATM PROPS) [Function]

Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM Returns NI L.

Print Names

The term “print name” has an extended meaning: The characters that are output when any object is
printed. In Medley, all objects have print names, although only symbols and strings have their print
names explicitly stored. Symbol print names are limited to 255 characters.

This section describes a set of functions that can be used to access and manipulate the print names of
any object, though they are primarily used with the print names of symbols. In Medley, print
functions qualify symbol names with a package prefix if the symbol is not accessible in the current
package. The exception is Interlisp’s PRI N1, which does not include a package prefix.

The print name of an object is those characters that are output when the object is printed using PRI N1,
e.g., the print name of the list (A B "C') consists of the seven characters (A B C) (two of the
characters are spaces).

2-7

INTERLISP-D REFERENCE MANUAL

The PRI N2-name of an object is those characters output when the object is printed using PRI N2. Thus
the PRI N2-name of the list (A B "C") is the 9 characters (A B "C") (including the two spaces).
The PRI N2-name depends on what readtable is being used (see Chapter 25), since this determines
where %s will be inserted. Many of the functions below allow either print names of PRI N2-names to
be used, as specified by FLGand RDTBL arguments. If FLGis NI L, print names are used. Otherwise,
PRI N2-names are used, computed with respect to the readtable RDTBL (or the current readtable, if

RDTBL = NI L).

The print name of an integer depends on the setting of RADI X (see Chapter 25). The functions
described in this section (UNPACK, NCHARS, etc.) define the print name of an integer as though the
radix was 10, so that (PACK (UNPACK ’ X9)) will always be X9 (and not X11, if RADI Xis set to 8).
However, integers will still be printed by PRI N1 using the current radix. The user can force these
functions to use print names in the current radix by changing the setting of the variable PRXFLG (see

Chapter 25).

(CL: SYMBOL- NAME SYM [Common Lisp Function]
Returns a string displaced to the SYM print name. Strings returned from CL: SYMBOL-
NAME may be destructively modified without affecting SYMs print name.

(NCHARS X FLG RDTBL) [Function]
Returns the number of characters in the print name of X. If FLG= T, the PRI N2-name is
used. Examples:

(NCHARS ' ABC) => 3
(NCHARS "ABC' T) => 5
NCHARS works most efficiently on symbols and strings, but can be given any object.

(NTHCHAR X N FLG RDTBL) [Function]
Returns X, if X is a tail of the list Y; otherwise NI L. X is a tail of Y if it is EQto O or more
CDRs of Y.

(NTHCHAR "ABC 2) => B

(NTHCHAR 15.6 2) => 5

(NTHCHAR ' ABC% D -3 T) => %%

(NTHCHAR "ABC' 2) => B

(NTHCHAR "ABC' 2 T) => A
NTHCAR and NCHARS work much faster on objects that actually have an internal
representation of their print name, i.e., symbols and strings, than they do on numbers and
lists, since they don’t have to simulate printing.

(L-CASE X FLG [Function]

Returns a lowercase version of X. If FLGis T, the first letter is capitalized. If X is a string,
the value of L- CASE is also a string. If X is a list, L- CASE returns a new list in which L-
CASE is computed for each corresponding element and non-Nl L tail of the original list.

Examples:

(L-CASE ' FOO) => foo
(L-CASE ' FOO T) => Foo
(L-CASE "FILE NOT FOUND' T) => "File not found"

2-8

SYMBOLS (LITATOMS)

(L- CASE ' (JANUARY FEBRUARY (MARCH "APRIL")) T) =>
" (January February (March "April"))

(U CASE X) [Function]
Like L- CASE, but returns the uppercase version of X.

(U CASEP X) [Function]

Returns T if X contains no lowercase letters; NI L otherwise.

Characters and Character Codes

Characters are represented 3 different ways in Medley. In Interlisp they are single-character symbols
or integer character codes. In Common Lisp they are instances of the CHARACTER datatype. In
general Interlisp character functions don’t accept Common Lisp characters and vice versa. The only
exceptions are Interlisp string-manipulation functions that accept “string or symbol” types as
arguments.

You can convert between Interlisp and Common Lisp characaters by using the functions CL: CODE-
CHAR, CL: CHAR- CODE, and CHARCODE (see below).

Medley uses the 16-bit NS character set, described in the document Character Code Standard (Xerox
System Integration Standards, XSIS 058404, April 1984). Legal character codes range from 0 to 65535.
The NS (Network Systems) character encoding encompasses a much wider set of available characters
than the 8-bit character standards (such as ASCII), including characters comprising many foreign
alphabets and special symbols. For instance, Medley supports the display and printing of the
following:

= Le systeme d’information Medley est remarqueablement polyglotte

= Das Medley Kommunikationssystem bietet merkwirdige multilinguale Nutzméglichkeiten

e MCU[w] « Vv with Rwv: M C [v]

These characters can be used in strings, symbol print names, symbolic files, or anywhere else 8-bit

characters could be used. All of the standard string and print name functions (RPLSTRI NG, GNC,
NCHARS, STRPGS, etc.) accept symbols and strings containing NS characters. For example:

<—(STRPCS "char""this is an 8-bit character string")
18

<—(STRPCS "char""cel ui-ci conports des characteres NS')
23

In almost all cases, a program does not have to distinguish between NS characters or 8-bit characters.
The exception to this rule is the handling of input/output operations (see Chapter 25).

The function CHARCODE (see below) provides a simple way to create individual NS character codes.
The VirtualKeyboards library module provides a set of virtual keyboards that allows keyboard or
mouse entry of NS characters.

(PACKC X) [Function]

Like PACK except X is a list of character codes. For example,
(PACKC ' (70 79 79)) => FOO

29

INTERLISP-D REFERENCE MANUAL

2-10

(CHCON X FLG RDTBL) [Function]

Like UNPACK, but returns the print name of X as a list of character codes. If FLG=T, the
PRI N2-name is used. For example:

(CHOON * FOO) => (70 79 79)

(DCHCON X SCRATCHLI ST FLG RDTBL) [Function]
Like DUNPACK.
(NTHCHARCODE X N FLG RDTBL) [Function]

Like NTHCHAR, but returns the character code of the Nth character of the print name of X.
If N is negative, it is interpreted as a count backwards from the end of X. If the absolute
value of N is greater than the number of characters in X, or 0, then the value of
NTHCHARCODE is NI L.

If FLGis T, then the PRI N2-name of X is used, computed with respect to the readtable.

(CHCONL X) [Function]
Returns the character code of the first character of the print name of X; equal to
(NTHCHARCCDE X 1).

(CHARACTER N) [Function]
Nis a character code. Returns the symbol having the corresponding single character as its
print name.

(CHARACTER 70) => F

(FCHARACTER N) [Function]
Fast version of CHARACTER that compiles open.

The following function makes it possible to gain the efficiency that comes from dealinig with character
codes without losing the symbolic advantages of character symbols.

(CHARCODE CHAR) [Function]

Returns the character code specified by CHAR (unevaluated). If CHAR is a one-character
symbol or string, the corresponding character code is simply returned. Thus, (CHARCCDE
A) is 65, (CHARCODE 0) is 48. If CHARis a multi-character symbol or string, it specifies a
character code as described below. If CHAR is NI L, CHARCODE simply returns NI L.
Finally, if CHARis a list structure, the value is a copy of CHAR with all the leaves replaced
by the corresponding character codes. For instance, (CHARCODE (A (B C))) => (65
(66 67)).

If a character is specified by a multi-character symbol or string, CHARCODE interprets it as
follows:

CR, SPACE, etc.

SYMBOLS (LITATOMS)

The variable CHARACTERNAMES contains an association list mapping special
symbols to character codes. Among the characters defined this way are CR
(13), LF (10), SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB
(9), NULL (0), and DEL (127). The symbol EOL maps into the appropriate
end-of-line character code in the different Interlisp implementations (31 in
Interlisp-10, 13 in Interlisp-D, 10 in Interlisp-VAX). Examples:

(CHARCODE SPACE) => 32
(CHARCODE CR) => 13

CHARSET, CHARNUM, CHARSET- CHARNUM

If the character specification is a symbol or string of the form CHARSET,
CHARNUM or CHARSET- CHARNUM the character code for the character number
CHARNUMInN the character set CHARSET is returned.

The 16-bit NS character encoding is divided into a large number of “character
Sets”. Each 16-bit character can be decoded into a character set (an integer
from 0 to 254 inclusive) and a character number (also an integer from 0 to 254
inclusive). CHARSET is either an octal number, or a symbol in the association
list CHARACTERSETNAMES (which defines the character sets for GREEK,
CYRI LLI C, etc.).

CHARNUM is either an octal number, a single-character symbol, or a symbol
from the association list CHARACTERNAMES. If CHARNUM is a single-digit
number, it is interpreted as the character “2”, rather than as the octal number
2. Examples:

(CHARCODE 12,6) => 2566

(CHARCODE 12, SPACE) => 2592
(CHARCODE GREEK, A) => 9793

TCHARSPEC (control chars)

If the character specification is a symbol or string of one of the forms above,
preceded by the character 1, this indicates a “control character,” derived from
the normal character code by clearing the seventh bit of the character code
(normally set). Examples:

(CHARCODE 1A) => 1

(CHARCODE 1GREEK, A) => 9729

#CHARSPEC (net a chars)

If the character specification is a symbol or string of one of the forms above,
preceded by the charactger #, this indicates a meta character, derived from the
normal character code by setting the eighth bit of the character code (normally
cleared). 1 and # can both be set at once. Examples:
(CHARCODE #A) => 193
(CHARCODE #1GREEK, A) => 9857
A CHARCODE form can be used wherever a structure of character codes would be
appropriate. For example:

2-11

INTERLISP-D REFERENCE MANUAL

(FMEMB (NTHCHARCODE X 1) (CHARCODE (CR LF SPACE 1A)))
(EQ (READCCODE FOO) (CHARCODE GREEK, A))

There is a macro for CHARCODE which causes the character-code structure to be
constructed at compile-time. Thus, the compiled code for these examples is exactly as
efficient as the less readable:

(FMEMB (NTHCHARCODE X 1) (QUOTE (13 10 32 1)))
(EQ (READCCODE FOO) 9793)

(CL: CHAR- CODE CHAR) [Common Lisp Function]

Returns the Interlisp character code of CHAR Use to convert a Common Lisp character to
an Interlisp character code.

(CL: CODE- CHAR N) [Common Lisp Function]

Returns a character with the given non-negative integer N code. Returns NI L if no
character is possible with N. Use to convert an Interlisp character code to a Common Lisp
character.

(SELCHARQ E CLAUSE;... CLAUSEN DEFAULT) [Function]

Lets you branch one of several ways, based on the character code E. The first item in each
CLAUSEY is a character code or list of character codes, given in the form CHARCODE would
accept. If the value of E is a character code or NI L, and it is EQ or MEMB to the result of
applying CHARCODE to the first element of a clause, the remaining forms of that clause are
evaluated. Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN FOO))
((SPACE TAB) (FUM)
((1D NL)(BAR))

(a (BAZ))
(Z21P)))

is exactly equivalent to

(SELECTQ (BI N FOO))

((32 9)(FUM)
((4 NIL)(BAR))
(97 (BAZ))
(Z21P)))

If (BI N FOO returned 32 (the SPACE character), the function FUMwould be called.

2-12

2-13

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

2-14

3. LISTS

One of the most useful datatypes in Lisp is the list cell, a data structure that contains pointers to two
other objects, called the CAR and the CDR of the list cell. You can build very complicated structures
out of list cells, including lattices and trees, but most often they’re used to represent simple linear lists
of objects.

The following functions are used to manipulate individual list cells:

(CONS X YY) [Function]

CONS is the primary list construction function. It creates and returns a new list cell
containing pointers to X and Y. If Y is a list, this returns a list with X added at the
beginning of .
(LI'STPX) [Function]
Returns X if Xis a list cell, e.g., something created by CONS; NI L otherwise.
(LISTP NIL) = NIL
(NLI STP X) [Function]

The same as (NOT (LISTP X)). Returns T if X is not a list cell, NI L otherwise.
However, (NLI STP NIL) = T

(CARX) [Function]

Returns the first element of the list X. CAR of NI L is always NI L. For all other nonlists
(e.g., symbols, numbers, etc.), the value returned is controlled by CAR/ CDRERR (below).

(CDR X) [Function]

Returns all but the first element of the list X. CDRof NI L is always NI L. The value of CDR
for other nonlists is controlled by CAR/ CDRERR (below).

CAR/ CDRERR [Variable]

The variable CAR/ CDRERR controls the behavior of CAR and CDR when they are passed
non-lists (other than NI L).

If CAR/ CDRERR = NI L (the current default), then CAR or CDR of a non-list (other than
NI L) return the string "{car of non-list}" or "{cdr of non-list}". If
CAR/ CDRERR = T, then CARand CDR of a non-list (other than NI L) causes an error.

If CAR/ CDRERR = ONCE, then CAR or CDR of a string causes an error, but CAR or CDR of

anything else returns the string "{car of non-list}" or"{cdr of non-list}" as
above. This catches loops which repeatedly take CAR or CDR of an object, but it allows
one-time errors to pass undetected.

If CAR/ CDRERR = CDR, then CAR of a non-list returns "{car of non-list}" as
above, but CDR of a non-list causes an error. This setting is based on the observation that

31

INTERLISP-D REFERENCE MANUAL

3-2

nearly all infinite loops involving non-lists occur from taking CDRs, but a fair amount of
careless code takes CAR of something it has not tested to be a list.
(CAARX) (CADR X) (CDDR X) etc. [Function]

Often, combinations of CAR and CDR are used to extract parts of complex list structures.
Functions of the form C. . . Rmay be used for some of these combinations:

(CAAR X) ==> (CAR (CAR X))
(CADR X) ==> (CAR (CDR X))
(CDDDDR X) ==> (CDR (CDR (CDR (CDR X))))
All 30 combinations of nested CARs and CDRs up to 4 deep are included in the system.
(RPLACD X YY) [Function]

Replaces the CDR of the list cell X with Y. This physically changes the internal structure of
X, as opposed to CONS, which creates a new list cell. You can make a circular list by using
RPLACD to place a pointer to the beginning of a list at the end of the list.

The value of RPLACD is X. An attempt to RPLACD NI L will cause an error, Attenpt to
RPLACD NI L (exceptfor (RPLACD NIL NI L)). An attempt to RPLACD any other non-
list will cause an error, Arg not |ist.

(RPLACAX Y) [Function]

Like RPLACD, but replaces the CAR of X with Y. The value of RPLACA is X. An attempt to
RPLACA NI L will cause an error, Att enpt to RPLACA NI L, (except for (RPLACA NI L
NI L)). An attempt to RPLACA any other non-list will cause an error, Arg not |i st.

(RPLNODE X A D) [Function]
Performs (RPLACA X A), (RPLACD X D), and returns X.

(RPLNCDE2 X Y) [Function]
Performs (RPLACA X (CAR Y)),(RPLACD X (CDR Y)) and returns X.

(FRPLACD X Y) [Function]

(FRPLACAX YY) [Function]

(FRPLNCDE X A D) [Function]

(FRPLNCDE2 X Y) [Function]

Faster versions of RPLACD, etc.

Usually, you don’t use list cells alone, but in structures called “lists”. A list is represented by a list cell
whose CARis the first element of the list, and whose CDRis the rest of the list. That’s normally another
list cell (with another element of the list) or the “empty list,” NI L, marking the list’s end. List elements
may be any Lisp objects, including other lists.

You type in a list as a sequence of Lisp data objects (symbols, numbers, other lists, etc.) enclosed in
parentheses or brackets. Note that () is read as the symbol NI L.

LISTS

Sometimes, you won’t want your list to end in NI L, but just with the final element. To indicate that,
type a period (with spaces on both sides) in front of the final element. This makes CDR of the list’s
final cell be the element immediately following the period, e.g. (A . B) or(A B C . D). Note that
a list needn’t end in NI L. It is simply a structure composed of one or more list cells. The input
sequence (A B C . NI L) isequivalentto(A B C),and(A B . (C D)) isequivalentto(A B C
D). Note, however, that (A B . C D) will create a list containing the five symbols A, B, % , C, and D.

Lists are printed by printing a left parenthesis, and then printing the first element of the list, a space,
the second element, etc., until the final list cell is reached. The individual elements of a list are printed
by PRI N1, if the list is being printed by PRI N1, and by PRI N2 if the list is being printed by PRI NT or
PRI N2. Lists are considered to terminate when CDR of some node is not a list. If CDR of this terminal
node is NI L (the usual case), CAR of the last node is printed followed by a right parenthesis. If CDR of
the terminal node is not NI L, CAR of the last node is printed, followed by a space, a period, another
space, CDR of the last node, and the right parenthesis. A listinputas (A B C . N L) will print as
(A B Q,andalistinputas (A B . (C D)) will printas(A B C D). PRI NTLEVEL affects the
printing of lists (see the PRI NTLEVEL section of Chapter 25), and that carriage returns may be inserted
where dictated by LI NELENGTH (see the Output Functions section of Chapter 25).

Note: Be careful when testing the equality of list structures. EQwill be true only when the
two lists are the exact same list. For example,

< (SETQ A’ (1 2))
(12)

< (SETQ B A)
(12)

— (EQ A B)
T

—(SETQ C ' (1 2))
(12)
<(EQ A Q

NI L
—(EQUAL A O
T

In the example above, the values of A and B are the exact same list, so they are EQ
However, the value of Cis a totally different list, although it happens to have the same
elements. EQUAL should be used to compare the elements of two lists. In general, one
should notice whether list manipulation functions use EQ or EQUAL for comparing lists.
This is a frequent source of errors.

Creating Lists

(LIST X1 Xo... XN) [NoSpread Function]

Returns a list of its arguments, e.g.
(LIST'"A'B’'(CD) => (AB(CD)

(LIST* X1 X2 ... XN) [NoSpread Function]

Returns a list of its arguments, using the last argument for the tail of the list. This is like
an iterated CONS: (LI ST* A B C) == (CONS A (CONS B Q)). Forexample,

3-3

INTERLISP-D REFERENCE MANUAL

(LIST* "A'B’'C) => (AB. O
(LIST* "A’'B’'(CD) => (ABCD)

(APPEND X1 X2 ... XN) [NoSpread Function]

Copies the top level of the list X1 and appends this to a copy of the top level of the list X2
appended to . . . appended to X\, e.g.,

(APPEND ' (A B) '(CDE) "(FQ) = (ABCDEFOQ
Only the first N- 1 lists are copied. However N = 1 is treated specially; (APPEND X)
copies the top level of a single list. To copy a list to all levels, use COPY.

The following examples illustrate the treatment of non-lists:

(APPEND ' (ABC 'D) => (ABC. D
(APPEND A ' (B C D)) => (B C D)

(APPEND (ABC. D) '(EFG) = (ABCEFO
(APPEND (ABC. D)) => (ABC. D

(NCONC X1 X2 ... XN) [NoSpread Function]
Returns the same value as APPEND, but modifies the list structure of X1 . .. Xp- 1.

NCONC cannot change NI L to a list:

<(SETQ FOO NI L)
NI L

—(NCONC FOO ' (A B Q)
(A B O

—FOO
NI L

Although the value of the NCONCis (A B C), FOOhas not been changed. The “problem”
is that while it is possible to alter list structure with RPLACA and RPLACD, there is no way
to change the non-list NI L to a list.

(NCONCL LST X) [Function]
Adds X to the end of LST: (NCONC LST (LI ST X))

(ATTACHX L) [Function]

“Attaches” X to the front of L by doing a RPLACA and RPLACD. The value is EQUAL to
(CONS X L), but EQto L, which it physically changes (except if L is NI L). (ATTACH X
NI L) is the same as (CONS X NI L). Otherwise, if L is not a list, an error is generated,
Arg not list.

(MKLI ST X) [Function]
“Make List.” If Xisalist or NI L, returns X; Otherwise, returns (LI ST X).

LISTS

Building Lists From Left to Right

(TCONC PTR X) [Function]

TCONC is similar to NCONCL,; it is useful for building a list by adding elements one at a
time at the end. Unlike NCONC1, TCONC does not have to search to the end of the list each
time it is called. Instead, it keeps a pointer to the end of the list being assembled, and
updates this pointer after each call. This can be considerably faster for long lists. The cost
is an extra list cell, PTR. (CAR PTR) is the list being assembled, (CDR PTR) is (LAST
(CAR PTR)). TCONCreturns PTR, with its CARand CDR appropriately modified.

PTR can be initialized in two ways. If PTRis NI L, TCONC will create and return a PTR. In
this case, the program must set some variable to the value of the first call to TCONC. After
that, it is unnecessary to reset the variable, since TCONC physically changes its value.
Example:
< (SETQ FOO (TCONC NI'L 1))
((1) 1)
<—(fﬁlrLl from2 to 5 do (TCONC FOO 1))

<—FOO
((1 23 45)5)
If PTRis initially (NI L), the value of TCONC is the same as for PTR = NI L. but TCONC
changes PTR This method allows the program to initialize the TCONC variable before
adding any elements to the list. Example:

< (SETQ FOO (CONS))

(NI'L)
<—(for | from1l to 5 do (TCONC FOO 1))
NI L
<—FOO
((1 23 45)5)
(LCONC PTR X) [Function]

Where TCONC is used to add elements at the end of a list, LCONC is used for building a list
by adding lists at the end, i.e., it is similar to NCONC instead of NCONC1. Example:

<—(SETQ FOO (CONS))

(NIL)
—(LCONC FOO ' (1 2))
((12) 2

<(LCONC FOO ' (3 4 5))
((1 23 4 5) 5)
—(LCONC FOO NI'L)
((1 2 3 4 5) 5)

LCONC uses the same pointer conventions as TCONC for eliminating searching to the end
of the list, so that the same pointer can be given to TCONC and LCONC interchangeably.
Therefore, continuing from above,

< (TCONC FOO NI L)
((12345NL) NL)

35

INTERLISP-D REFERENCE MANUAL

3-6

—(TCONC FOO ’ (3 4 5))
((12345NL(345)) (345))

The functions DOCOLLECT and ENDCOLLECT also let you build lists from left-to-right like TCONC, but
without the overhead of an extra list cell. The listis kept as a circular list. DOCOLLECT adds items;
ENDCOLLECT replaces the tail with its second argument, and returns the full list.

(DOCOLLECT | TEM LST) [Function]

“Adds” | TEMto the end of LST. Returns the new circular list. Note that LST is modified,
but it is not EQto the new list. The new list should be stored and used as LST to the next
call to DOCOLLECT.

(ENDCOLLECT LST TAI L) [Function]

Takes LST, a list returned by DOCOLLECT, and returns it as a non-circular list, adding
TAI L as the terminating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRI NT is used to print the
results because they are circular lists. Notice that FOO has to be set to the value of
DOCOLLECT as each element is added.
< (SETQ FOO NI L]
NI L
<(HPRINT (SETQ FOO (DOCOLLECT 1 FOQ
(1. {1})
<—(HPRINT (SETQ FOO (DOCOLLECT 2 FOQ
(2 1. {1})
<(HPRINT (SETQ FOO (DOCOLLECT 3 FOQ
1(312. {1})

—(HPRI NT (SETQ FOO (DOCOLLECT 4 FOQ|
(4 123. {1})

«—(SETQ FOO (ENDCOLLECT FQO 5]
(1234.5)

The following two functions are useful when writing programs that reuse a scratch list to collect
together some result(s) (both of these compile open):

(SCRATCHLI ST LST X1 X2 ... XN) [NLambda NoSpread Function]

SCRATCHLI ST sets up a context in which the value of LST is used as a “scratch” list. The
expressions X1, X2, ... Xy are evaluated in turn. During the course of evaluation, any
value passed to ADDTOSCRATCHLI ST will be saved, reusing CONS cells from the value of
LST. If the value of LST is not long enough, new CONS cells will be added onto its end. If
the value of LST is NI L, the entire value of SCRATCHLI ST will be “new” (i.e., no CONS
cells will be reused).

(ADDTOSCRATCHLI ST VALUE) [Function]

For use under calls to SCRATCHLI ST. VALUE is added on to the end of the list of things
being collected by SCRATCHLI ST. When SCRATCHLI ST returns, its value is a list
containing all of the things added by ADDTOSCRATCHLI ST.

LISTS

Copying Lists

(CoPY X) [Function]

Creates and returns a copy of the list X. All levels of X are copied down to non-lists, so
that if X contains arrays and strings, the copy of X will contain the same arrays and strings,
not copies. COPY is recursive in the CAR direction only, so very long lists can be copied.

To copy just the top level of X, do (APPEND X) .

(COPYALL X) [Function]

Like COPY, but it copies down to atoms. Arrays, hash-arrays, strings, user data types, etc.,
are all copied. Analagous to EQUALALL (see the Equality Predicates section of Chapter 9).
This will not work if given a data structure with circular pointers; in this case, use
HCOPYALL.

(HCOPYALL X) [Function]

Like COPYALL, but it will work even if the data structure contains circular pointers.

Extracting Tails of Lists

(NTHX N) [Function]

Returns the tail of X beginning with the Nth element. Returns NI L if X has fewer than N
elements. This is different from Common Lisp’s NTH. Examples:

(NTH'(ABCD 1) => (ABCD)
(NTH'(ABCD) 3) => (CD)
(NTH'(ABCD 9) => NL
(NTH'(A. B) 2) => B
For consistency, if N = 0, NTHreturns (CONS NI L X):
(NTH'(AB) 0) => (NL AB)
(FNTHX N) [Function]

Faster version of NTHthat terminates on a null-check.

(LAST X) [Function]

Returns the last list cell in the list X. Returns NI L if X is not a list. Examples:

(LAST "' (A B Q) = (O
(LAST'(AB. Q) => (B. O
(LAST 'A) => NL
(FLAST X) [Function]

Faster version of LAST that terminates on a null-check.

(NLEFTL N TAIL) [Function]

NLEFT returns the tail of L that contains N more elements than TAI L. If L does not contain
N more elements than TAI L, NLEFT returns NI L. If TAI L is NI L or not a tail of L, NLEFT

3-7

INTERLISP-D REFERENCE MANUAL

returns the last N list cells in L. NLEFT can be used to work backwards through a list.
Example:
<—(SETQ FOO ' (A B C D E))
(ABCDE
<(NLEFT FOO 2)
(D E)
<(NLEFT FOO 1 (CDDR FQO))
(B CDE

—(NLEFT FOO 3 (CDDR FOO))
NI L

(LASTNL N) [Function]

Returns (CONS X Y), where Y is the last Nelements of L, and X is the initial segment, e.g.,

(LASTN'(ABCDE) 2) => ((ABC DE)
(LASTN' (A B) 2) => (NL A B)

Returns NI L if L is not a list containing at least N elements.

(TAILPX YY) [Function]
Returns X, if X is a tail of the list Y; otherwise NI L. Xis a tail of Y if it is EQto 0 or more
CDRs of V.

Note: If Xiis EQto 1 or more CDRs of Y, Xis called a “proper tail.”

Counting List Cells

(LENGTH X) [Function]
Returns the length of the list X, where “length” is defined as the number of CDRs required
to reach a non-list. Examples:

(LENGTH ' (A B Q) => 3
(LENGTH'(ABC. D) => 3
(LENGTH 'A) => 0
(FLENGTH X) [Function]

Faster version of LENGTH that terminates on a null-check.

(EQLENGTH X N) [Function]

Equivalent to (EQUAL (LENGTH X) N), but more efficient, because EQLENGTH stops as
soon as it knows that X is longer than N. EQLENGTH is safe to use on (possibly) circular
lists, since it is “bounded” by N.

(COUNT X) [Function]

Returns the number of list cells in the list X. Thus, COUNT is like a LENGTH that goes to all
levels. COUNT of a non-list is 0. Examples:

(COUNT * (A)) => 1
(COUNT " (A . B)) => 1
(COUNT * (A (B) Q) => 4

3-8

LISTS

In this last example, the value is 4 because the list (A X C) uses three list cells for any
object X, and (B) uses another list cell.

(COUNTDOMN X N) [Function]

Counts the number of list cells in X, decrementing N for each one. Stops and returns N
when it finishes counting, or when N reaches 0. COUNTDOWN can be used on circular
structures since it is “bounded” by N. Examples:

(COUNTDOWN ’ (A) 100) => 099

(COUNTDOMWN " (A . B) 100) => 99

(COUNTDOMWN * (A (B) © 100) => 096

(COUNTDOWN (DOCOLLECT 1 NI'L) 100) => O

(EQUALN X Y DEPTH) [Function]

Like EQUAL, for use with (possibly) circular structures. Whenever the depth of CAR
recursion plus the depth of CDR recursion exceeds DEPTH, EQUALN does not search further
along that chain, and returns the symbol ?. If recursion never exceeds DEPTH, EQUALN
returns T if the expressions X and Y are EQUAL ; otherwise NI L.

(EQUALN " (((A) B) ' (((2)) B) 2) => 72

(EQUALN " (((A)) B) "(((2)) B) 3) => NIL

(EQUALN " (((A)) B) "(((A) B) 3) => T

Set Operations

(1 NTERSECTI ON X Y) [Function]

Returns a list whose elements are members of both lists X and Y (using EQUAL to do
compares).

Note that (| NTERSECTI ON X X) gives a list of all members of X without duplicates.

(UNTONX YY) [Function]

Returns a (new) list consisting of all elements included on either of the two original lists
(using EQUAL to compare elements). It is more efficient for X to be the shorter list.

The value of UNI ON is Y with all elements of X not in Y CONSed on the front of it.
Therefore, if an element appears twice in Y, it will appear twice in (UNI ON X Y). Since
(UNION " (A "(A A) = (A A,while(UNTON " (A A "(A)) = (A,UN ONis
non-commutative.

(LDI FFERENCE X) [Function]

“List Difference.” Returns a list of the elements in X that are not members of Y (using
EQUAL to compare elements).

Note: If Xand Y share no elements, LDI FFERENCE returns a copy of X.

(LDI FF LST TAIL ADD) [Function]

TAI L must be a tail of LST, i.e., EQto the result of applying some number of CDRs to LST.
(LDI FF LST TAI L) returns a list of all elements in LST up to TAI L.

39

INTERLISP-D REFERENCE MANUAL

If ADDis not NI L, the value of LDI FF is effectively (NCONC ADD (LDI FF LST TAIL)),
i.e., the list difference is added at the end of ADD.

If TAIL is not a tail of LST, LDl FF generates an error, LDI FF: not a tail. LD FF
terminates on a null-check, so it will go into an infinite loop if LST is a circular list and
TAI L is not a tail.

Example:

«—(SETQ FOO' (A B CDEF))
(ABCDEF

< (CDDR FOO)
(CDEF

<(LDI FF FOO (CDDR FOQO))
(A B)

<(LDI FF FOO (CDDR FOO) '(1 2))
(12 AB

—(LDIFF FOO'(C D E F))
LD FF: not a tail
(CDEF

Note that the value of LDI FF is always new list structure unless TAIL = NI L, in which
case the value is LST itself.

Searching Lists

(MEMB X Y) [Function]

Determines if X is a member of the list Y. If there is an element of Y EQto X, returns the
tail of Y starting with that element. Otherwise, returns NI L. Examples:
(MEMB'A'(A (W CD) => (AW CD
(MEMB'C'(A(W CD)) => (CD
(MEMB "W (A(W CD)) => NL
(MEMB' (W "(A(W CD)) => NL

(FMEMB X Y) [Function]

Faster version of MEMB that terminates on a null-check.

(MEMBER X YY) [Function]
Identical to MEMB except that it uses EQUAL instead of EQto check membership of X in Y.
Examples:

(MEMBER 'C ' (A (W CD) =>(CD
(MEMBER "W' (A (W CD) => NL
(MEMBER ' (W ' (A (W CD) => ((W CD

(EQVEMB X Y) [Function]
Returns T if either Xis EQto Y, or else Y is a list and X is an FMEMB of Y.

3-10

LISTS

Substitution Functions

(SUBST NEW OLD EXPR) [Function]

Returns the result of substituting NEWfor all occurrences of OLD in the expression EXPR.
Substitution occurs whenever OLD is EQUAL to CAR of some subexpression of EXPR, or
when OLD is atomic and EQ to a non-NI L CDR of some subexpression of EXPR For
example:

(SUBST "A'B’'(CB (X . B))) => (CA (X. A)
(SUBST'A'(BC '((BC DBC) => (ADBOC not (AD. A

SUBST returns a copy of EXPR with the appropriate changes. Furthermore, if NEWis a list,
it is copied at each substitution.

(DSUBST NEW OLD EXPR) [Function]

Like SUBST, but it does not copy EXPR, but changes the list structure EXPR itself. Like
SUBST, DSUBST substitutes with a copy of NEW More efficient than SUBST.

(LSUBST NEW OLD EXPR) [Function]

Like SUBST, but NEWis substituted as a segment of the list EXPR rather than as an
element. For instance,

(LSUBST "(AB) 'Y '(XYZ)) => (XABZ2
If NEWis not a list, LSUBST returns a copy of EXPRwith all OLD’s deleted:
(LSUBST NIL 'Y "(X Y 2)) => (X 2
(SUBLI SALST EXPR FLG) [Function]
ALST is a list of pairs:
((OLD1 . NEW) (Q.D2 . NEV§) ... (OLDN . NEWY)
Each OLD; is an atom. SUBLI S returns the result of substituting each NEW for the
corresponding OLD; in EXPR e.g.,
(SUBLIS'((A. X) (C. Y) "(ABCD) => (XBYD)

If FLG = NI L, new structure is created only if needed, so if there are no substitutions, the
value is EQto EXPR If FLG = T, the value is always a copy of EXPR.

(DSUBLI S ALST EXPR FLG) [Function]
Like SUBLI S, but it changes the list structure EXPR itself instead of copying it.

(SUBPAI ROLD NEW EXPR FLQ) [Function]

Like SUBLI S, but elements of NEWare substituted for corresponding atoms of OLD in
EXPR, e.g.,

(SUBPAIR'(AC) '(XY) '(ABCD) => (XBYD)

311

INTERLISP-D REFERENCE MANUAL

As with SUBLI S, new structure is created only if needed, or if FLG = T, e.g., if FLG =
NI L and there are no substitutions, the value is EQto EXPR.

If OLD ends in an atom other than NI L, the rest of the elements on NEWare substituted for
that atom. For example, if OLD = (A B . ©C and NEW = (U V X Y 2),Uis
substituted for A, Vfor B,and (X Y 2Z) for C. Similarly, if OLD itself is an atom (other
than NI L), the entire list NEWis substituted for it. Examples:

(SUBBPAIR'(AB. O '(WXYZ '(CABBY)) => ((Y2) WX X
Y)

SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression, whereas SUBLI S,
and DSUBLI S, and SUBPAI R substitute the identical structure (unless FLG = T). For example:

< (SETQ FOO '’ (A B))
(A B

< (SETQBAR ' (X Y 2))
(XY 2)

< (DSUBLI'S (LIST (CONS ' X FOO)) BAR)
((AB) Y 2

< (DSUBLI'S (LIST (CONS 'Y FOO)) BAR T)
((AB) (AB) 2

- (FQ(CAR BAR) FQO)

< (EQ (CADR BAR) FQOO)
NI L

Association Lists and Property Lists

312

It is often useful to associate a set of property names (NAMEL, NAME2, etc.), with a set of property
values (VALUEL, VALUE2, etc.). Two list structures commonly used to store such associations are
called “property lists” and “association lists.” A list in “association list” format is a list where each
element is a call whose CAR s a property name, and whose CDR is the value:

((NAMEL . VALUE1) (NAME2 . VALUE2) ...)

A list in “property list” format is a list where the first, third, etc. elements are the property names, and
the second, forth, etc. elements are the associated values:
(NAME1l VALUE1l NAME2 VALUE2 ...)

Another data structure that offers some of the advantages of association lists and property lists is the
hash array (see the first page of Chapter 6).

The functions below provide facilities for searching and changing lists in property list or association
list format.

Note: Property lists are used in many Medley system datatypes. There are special functions that can
be used to set and retrieve values from the property lists of symbols (see the Property Lists section of
Chapter 2), from properties of windows (see the Window Properties section of Chapter 28), etc.

(ASSOC KEY ALST) [Function]

ALST is a list of lists. ASSOC returns the first sublist of ALST whose CAR is EQto KEY. If
such a list is not found, ASSOC returns NI L. Example:

LISTS

(ASSCC "B’ ((A. 1) (B. 2) (C. 3))) => (B. 2
(FASSOC KEY ALST) [Function]
Faster version of ASSCC that terminates on a null-check.
(SASSOC KEY ALST) [Function]

Same as ASSOC, but uses EQUAL instead of EQwhen searching for KEY.

(PUTASSOC KEY VAL ALST) [Function]

Searches ALST for a sublist CAR of which is EQto KEY. If one is found, the CDR is replaced
(using RPLACD) with VAL. If no such sublist is found, (CONS KEY VAL) is added at the
end of ALST. Returns VAL. If ALST is not a list, generates an error, Arg not |ist.

The argument order for ASSOC, PUTASSCQC, etc. is different from that of LI STGET, LI STPUT, etc.

(LI STGET LST PRCP) [Function]

Searches LST two elements at a time, by CDDR, looking for an element EQto PROP. If one
is found, returns the next element of LST, otherwise NI L. Returns NI L if LST is not a list.

Example:
(LISTGET "(A1 B2 C3) 'B) => 2
(LISTGET "(A1 B2 C3) "W => NL
(LI STPUT LST PROP VAL) [Function]

Searches LST two elements at a time, by CDDR, looking for an element EQ to PROP. If
PROP is found, replaces the next element of LST with VAL. Otherwise, PROP and VAL are
added to the end of LST. If LST is a list with an odd number of elements, or ends in a
non-list other than NI L, PROP and VAL are added at its beginning. Returns VAL. If LST is
not a list, generates an error, Arg not |ist.

(LI STGET1 LST PROP) [Function]

Like LI STGET, but searches LST one CDR at a time, i.e., looks at each element. Returns the
next element after PROP. Examples:

(LISTGET1 "(A1B2C3) 'B) => 2
(LISTGET1 "(A1B2C3) '1) => B
(LISTGET1 "(A1B2C3) 'W => NL
(LI STPUTL LST PROP VAL) [Function]

Like L1 STPUT, but searches LST one CDR at a time. Returns the modified LST. Example:

—(SETQ FOO ' (A 1 B 2))
(A1 B2

—(LI STPUT1 FOO ' B 3)
(A1 B 3)

(LI STPUT1 FOO '’ C 4)
(A1 B3C4

—(LISTPUTL FOO 1 ' W
(A1 W3 C4

—FOO

313

INTERLISP-D REFERENCE MANUAL

Sorting Lists

(A1 W3 C4)

If LST is not a list, no error is generated. However, since a non-list cannot be changed into
a list, LST is not modified. In this case, the value of LI STPUT1 should be saved.
Example:

«—(SETQ FOO NI L)
NI L

—(LI STPUT1 FOO ' A 5)
(A 5)

—FQO
NI L

3-14

(SORT DATA COVPAREFN) [Function]

DATA is a list of items to be sorted using COMPAREFN, a predicate function of two
arguments which can compare any two items on DATA and return T if the first one
belongs before the second. If COMPAREFN is NI L, ALPHORDER is used; thus (SORT
DATA) will alphabetize a list. If COMPAREFN is T, CAR'’s of items that are lists are given to
ALPHORDER, otherwise the items themselves; thus (SORT A- LI ST T) will alphabetize
an assoc list by the CAR of each item. (SORT X ' | LESSP) will sort a list of integers.

The value of SORT is the sorted list. The sort is destructive and uses no extra storage. The
value returned is EQto DATA but elements have been switched around. There is no safe
way to interrupt SORT. If you abort a call to SORT by any means, you may loose elements
from the list beeing sorted. The algorithm used by SORT is such that the maximum
number of compares is N*logoN, where N is (LENGTH DATA) .

Note: If (COWAREFN A B) = (COWPAREFN B A), then the ordering of Aand B
may or may not be preserved.

For example, if (FOO . FI E) appears before (FOO . FUM in X, (SORT X T) may or
may not reverse the order of these two elements.

(MERGE A B COVPAREFN) [Function]

Aand B are lists which have previously been sorted using SORT and COVPAREFN. Value is
a destructive merging of the two lists. It does not matter which list is longer. After
merging both A and B are equal to the merged list. (In fact, (CDR A) is EQto (CDR B)).

(ALPHORDER A B CASEARRAY) [Function]

A predicate function of two arguments, for alphabetizing. Returns a non-NI L value if its
arguments are in lexicographic order, i.e., if B does not belong before A. Numbers come
before literal atoms, and are ordered by magnitude (using GREATERP). Literal atoms and
strings are ordered by comparing the character codes in their print names. Thus
(ALPHORDER 23 123) is T, whereas (ALPHORDER ' A23 ' A123) is NI L, because the
character code for the digit 2 is greater than the code for 1.

LISTS

Atoms and strings are ordered before all other data types. If neither A nor B are atoms or
strings, the value of ALPHORDER is always T.

If CASEARRAY is non-NI L, it is a casearray (see the Random Access File Operations section
of Chapter 25) that the characters of A and B are translated through before being
compared. Numbers are not passed through CASEARRAY.

Note: If either A or B is a number, the value returned in the “true” case is T. Otherwise,
ALPHORDER returns either EQUAL or LESSP to discriminate the cases of A and B being
equal or unequal strings/atoms.

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or NTHCHARs. It is several times
faster for alphabetizing than anything that can be written using these other functions.

(UALPHORDER A B) [Function]

Defined as (ALPHORDER A B UPPERCASEARRAY). UPPERCASEARRAY maps every
lowercase character into the corresponding uppercase character. For more information on
UPPERCASEARRAY see Chapter 25.

(MERGEI NSERT NEW LST ONEFLG) [Function]
LST is NI L or a list of partially sorted items. MERGEI NSERT tries to find the “best” place to
(destructively) insert NEWe.g.,

(MERGEI NSERT ’ FI E2 ' (FOO FOOL FIE FUM) => (FOO FOOL FI E
FIE2 FUM

Returns LST. MERGEI NSERT is undoable.

If ONEFLG = T and NEWis already a member of LST, MERGEI NSERT does nothing and
returns LST.

MERGEI NSERT is used by ADDTOFI LE (see the Functions for Manipulating File Command Lists
section of Chapter 17) to insert the name of a new function into a list of functions. The algorithm is
essentially to look for the item with the longest common leading sequence of characters with respect
to NEW and then merge NEWin starting at that point.

Other List Functions

(REMOVE X L) [Function]

Removes all top-level occurrences of X from list L, returning a copy of L with all elements
EQUAL to X removed. Example:

(REMWVE A’ (ABC (A A) => (BC(A)
(REMVE ' (A) "(ABC (A A) => (ABCA

(DREMOVE X L) [Function]

Like REMOVE, but uses EQ instead of EQUAL, and actually modifies the list L when
removing X, and thus does not use any additional storage. More efficient than REMOVE.

DREMOVE cannot change a list to NI L:
<(SETQ FOO ' (A))

3-15

INTERLISP-D REFERENCE MANUAL

(A
< (DREMOVE ’ A FOO)
NI L

<—FOQOO
(A
The DREMOVE above returns NI L, and does not perform any CONSes, but the value of FOO
is still (A) , because there is no way to change a list to a non-list. See NCONC.

(REVERSE L) [Function]

Reverses (and copies) the top level of a list, e.g.,
(REVERSE "(A B (C D)) => ((CD BA
If L is not a list, REVERSE just returns L.

(DREVERSE L) [Function]

Value is the same as that of REVERSE, but DREVERSE destroys the original list L and thus
does not use any additional storage. More efficient than REVERSE.

(COVPARELI STS X V) [Function]

Compares the list structures X and Y and prints a description of any differences to the
terminal. If X and Y are EQUAL lists, COVPARELI| STS simply prints out SAME. Returns
NI L.

COVPARELI STS prints a terse description of the differences between the two list
structures, highlighting the items that have changed. This printout is not a complete and
perfect comparison. If Xand Y are radically different list structures, the printout will not
be very useful. COWVPARELI STS is meant to be used as a tool to help users isolate
differences between similar structures.

When a single element has been changed for another, COMPARELI STS prints out items
suchas (A -> B), for example:
< (COVMPARELI STS "(A B CD) '(X B E D)
(A->X) (C->E)
NI L
When there are more complex differences between the two lists, COMPARELI| STS prints X
and Y, highlighting differences and abbreviating similar elements as much as possible.
“&” is used to signal a single element that is present in the same place in the two lists; “ - -
” signals an arbitrary number of elements in one list but not in the other; “-2-,”“-3-7,
etc. signal a sequence of two, three, etc. elements that are the same in both lists. Examples:
(COVPARELI STS " (A B CD) '(AD)
(ABC--)
(A D
< (COVPARELISTS "(ABCDEFGH "(ABCDX))
(A-3- EF--)
(A-3- X
< (COWPARELISTS"(ABC(DEF (G H 1) "(AB(G C(DEF

H 1))
(A & & (D-2- (O & &

3-16

LISTS

(A& (G & (D-2- &) &)
(NEGATE X) [Function]
For a form X, returns a form which computes the negation of X . For example:
(NEGATE ' (MEMBER X Y)) => (NOT (MEMBER X Y))
(NEGATE " (EQ X Y)) => (NEQ X V)

(NEGATE * (AND X (NLISTP X))) => (OR (NULL X) (LISTP X))
(NEGATE NIL) => T

317

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

3-18

4. STRINGS

A string represents a sequence of characters. Interlisp strings are a subtype of Common Lisp strings.
Medley provides functions for creating strings, concatenating strings, and creating sub-strings of a
string; all accepting or producing Common Lisp-acceptable strings.

A string is typed as a double quote ("), followed by a sequence of any characters except double quote
and % terminated by a double quote. To include %or " in a string, type %in front of them:

"A string"

"Astring with % init, and a %"

" ; an empty string
Strings are printed by PRI NT and PRI N2 with initial and final double quotes, and % inserted where
necessary for it to read back in properly. Strings are printed by PRI N1 without the double quotes and
extra %. The null string is printed by PRI NT and PRIN2 as"". (PRI NL "") doesn’t print anything.

Internally, a string is stored in two parts: a “string header” and the sequence of characters. Several
string headers may refer to the the same character sequence, so a substring can be made by creating a
new string header, without copying any characters. Functions that refer to “strings” actually
manipulate string headers. Some functions take an “old string” argument, and re-use the string
pointer.

(STRINGP X) [Function]

Returns X if Xis a string, NI L otherwise.

(STREQUAL X Y) [Function]

Returns T if X and Y are both strings and they contain the same sequence of characters,
otherwise NI L. EQUAL uses STREQUAL. Note that strings may be STREQUAL without
being EQ For instance,

(STREQUAL "ABC' "ABC') => T

(EQ "ABC' "ABC') => NL
STREQUAL returns T if Xand Y are the same string pointer, or two different string pointers
which point to the same character sequence, or two string pointers which point to

different character sequences which contain the same characters. Only in the first case
would Xand Y be EQ

(STRING EQUAL X Y) [Function]
Returns T if X and Y are either strings or symbols, and they contain the same sequence of
characters, ignoring case. For instance,

(STRING EQUAL "FOO' "Foo") => T
(STRING EQUAL "FOO' ' Foo) => T

This is useful for comparing things that might want to be considered “equal’ even though
they’re not both symbols in a consistent case, such as file names and user names.

4-1

INTERLISP-D REFERENCE MANUAL

(STRING EQUAL X Y) [Function]
Returns T if the print names of X and Y contain the same sequence of characters, ignoring
case. For instance,

(STRI NG EQUAL "320" 320) => T
(STRING EQUAL "FOO' 'Foo) => T

This is like STRI NG EQUAL, but handles numbers, etc., where STRI NG EQUAL doesn’t.

(ALLOCSTRING N I NI TCHAR OLD FATFLG) [Function]

Creates a string of length N characters of | Nl TCHAR (which can be either a character code
or something coercible to a character). If | Nl TCHAR s NI L, it defaults to character code 0.
if OLDis supplied, it must be a string pointer, which is modified and returned.

If FATFLGis non-NI L, the string is allocated using full 16-bit NS characters (see Chapter 2)
instead of 8-bit characters. This can speed up some string operations if NS characters are
later inserted into the string. This has no other effect on the operation of the string
functions.

(MKSTRING X FLG RDTBL) [Function]
If X is a string, returns X. Otherwise, creates and returns a string containing the print
name of X. Examples:

(MKSTRI NG "ABC') => "ABC'
(MKSTRING ' (AB Q) => "(ABQ"
(MKSTRING NIL) => "NIL"

Note that the last example returns the string " NI L" , not the symbol NI L.
If FLGis T, then the PRI N2-name of X is used, computed with respect to the readtable
RDTBL. For example,

(MKSTRING "ABC' T) => "% ABCW"

(NCHARS X FLG RDTBL) [Function]

Returns the number of characters in the print name of X. If FLG=T, the PRI N2-name is
used. For example,

(NCHARS ' ABC) => 3
(NCHARS "ABC' T) => 5

Note: NCHARS works most efficiently on symbols and strings, but can be given any object.

(SUBSTRING X N M OLDPTR) [Function]

Returns the substring of X consisting of the Nth through Mh characters of X. If Mis NI L,
the substring contains the Nth character thru the end of X. N and Mcan be negative
numbers, which are interpreted as counts back from the end of the string, as with
NTHCHAR (Chapter 2). SUBSTRI NGreturns NI L if the substring is not well defined, (e.g., N
or Mspecify character positions outside of X, or N corresponds to a character in X to the
right of the character indicated by M. Examples:

4-2

STRINGS

(SUBSTRI NG " ABCDEFG'
(SUBSTRI NG " ABCDEFG'
(SUBSTRI NG " ABCDEFG'
(SUBSTRI NG " ABCDEFG'
(SUBSTRI NG " ABCDEFG'
(SUBSTRI NG " ABCDEFG'

6) => "DEF"

3) => "C

NlL) => "CDEFG'
-2)" => "DEF"

4)" => NL

9) => NL

rOrWWHA

If Xis not a string, it is converted to one. For example,
(SUBSTRING'(ABC 46) = "BC

SUBSTRI NGdoes not actually copy any characters, but simply creates a new string pointer
to the characters in X. If OLDPTRIs a string pointer, it is modified and returned.

(G\C X) [Function]

“Get Next Character.” Returns the next character of the string X (as a symbol); also
removes the character from the string, by changing the string pointer. Returns NI L if X is
the null string. If Xisn't a string, a string is made. Used for sequential access to characters
of a string. Example:

<—(SETQ FQOO " ABCDEFG')
" ABCDEFG'

—(G\C FOO)
A

—(GN\C FOO)
B

~FOO
" CDEFG'

Note that if Ais a substring of B, (GNC A) does not remove the character from B.

(G.C X) [Function]
“Get Last Character.” Returns the last character of the string X (as a symbol); also
removes the character from the string. Similar to GNC. Example:

—(SETQ FCO " ABCDEFG')
" ABCDEFG'

—(GLC FOO
G

—(G.C FOO
F

—FOO
" ABCDE"

(CONCAT X1 X2 ... XN) [NoSpread Function]
Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are transformed to strings. Examples:

(CONCAT "ABC' "DEF "GHI ") => "ABCDEFGH "
(CONCAT ' (A B C "ABC') => "(A B C)ABC
(CONCAT) returns the null string, ""

4-3

INTERLISP-D REFERENCE MANUAL

4-4

(CONCATLI ST L) [Function]

L is a list of strings and/or other objects. The objects are transformed to strings if they
aren’t strings. Returns a new string which is the concatenation of the strings. Example:

(CONCATLIST ' (A B (C D) "EF')) => "AB(C D)EF"

(RPLSTRING X N Y) [Function]

Replaces the characters of string X beginning at character position Nwith string Y. Xand Y
are converted to strings if they aren’t already. N may be positive or negative, as with
SUBSTRI NG Characters are smashed into (converted) X. Returns the string X. Examples:

(RPLSTRI NG "ABCDEF" -3 "END') => "ABCEND"
(RPLSTRI NG " ABCDEFGHI JK* 4 " (A B C) => "ABC(A B QK"

Generates an error if there is not enough room in X for Y, i.e., the new string would be
longer than the original. If Y was not a string, X will already have been modified since
RPLSTRI NGdoes not know whether Y will “fit” without actually attempting the transfer.

Warning: In some implementations of Interlisp, if X is a substring of Z, Z will also be
modified by the action of RPLSTRI NG or RPLCHARCODE. However, this is not guaranteed
to be true in all cases, so programmers should not rely on RPLSTRI NG or RPLCHARCCODE
altering the characters of any string other than the one directly passed as argument to
those functions.

(RPLCHARCODE X N CHAR) [Function]

Replaces the Nth character of the string X with the character code CHAR. N may be positive
or negative. Returns the new X. Similar to RPLSTRI NG Example:

(RPLCHARCODE "ABCDE" 3 (CHARCODE F)) => "ABFDE"

(STRPGS PAT STRI NGSTART SKI P ANCHOR TAI L CASEARRAY BACKWARDSFLG) [Function]

STRPCS is a function for searching one string looking for another. PAT and STRI NG are
both strings (or else they are converted automatically). STRPCS searches STRI NG
beginning at character number START, (or 1 if START is NI L) and looks for a sequence of
characters equal to PAT. If a match is found, the character position of the first matching
character in STRI NGis returned, otherwise NI L. Examples:

(STRPCS "ABC' "XYZABCDEF') => 4

(STRPCS "ABC' "XYZABCDEF" 5) => NL
(STRPCs "ABC' "XYZABCDEFABC' 5) => 10

SKI P can be used to specify a character in PAT that matches any character in STRI NG
Examples:

(STRPCS "A&C&" "XYZABCDEF' NIL '& => 4

(STRPCS "DEF&" "XYZABCDEF' NIL '& => NL
If ANCHCR is T, STRPCS compares PAT with the characters beginning at position START
(or 1 if START is NI L). If that comparison fails, STRPCS returns NI L without searching
any further down STRI NG Thus it can be used to compare one string with some portion
of another string. Examples:

(STRPCS "ABC' "XYZABCDEF' NIL NNL T) => NL

STRINGS

(STRPCS "ABC' "XYZABCDEF" 4 NIL T) => 4

If TAI L is T, the value returned by STRPGCS if successful is not the starting position of the
sequence of characters corresponding to PAT, but the position of the first character after
that, i.e., the starting position plus (NCHARS PAT) . Examples:

(STRPCS "ABC' "XYZABCDEFABC' NIL NNL NIL T) => 7

(STRPCS "A" "A" NNL NIL NIL T) => 2
If TAIL = NI L, STRPOS returns NI L, or a character position within STRI NGwhich can be
passed to SUBSTRI NG In particular, (STRPCS "" "") => N L. However, if TAI L
= T, STRPCS may return a character position outside of STRI NG For instance, note that
the second example above returns 2, even though “ A” has only one character.

If CASEARRAY is non-NI L, this should be a casearray like that given to FI LEPCS (Chapter
25). The casearray is used to map the string characters before comparing them to the
search string.

If BACKWARDSFLGis non-NI L, the search is done backwards from the end of the string.

(STRPOSL A STRI NG START NEG BACKWARDSFLG) [Function]

STRI NG is a string (or is converted automatically to a string), A is a list of characters or
character codes. STRPOSL searches STRI NGbeginning at character number START (or 1 if
START = NI L) for one of the characters in A. If one is found, STRPOSL returns as its
value the corresponding character position, otherwise NI L. Example:

(STRPOSL ' (A B Q "XYzBCD') => 4
If NEG = T, STRPOSL searches for a character not on A. Example:
(STRPOSL ' (A B C "ABCDEF'" NIL T) => 4

If any element of A is a number, it is assumed to be a character code. Otherwise, it is
converted to a character code via CHCON1. Therefore, it is more efficient to call STRPOSL
with A a list of character codes.

If Aiis a bit table, it is used to specify the characters (see MAKEBI TTABLE below)
If BACKWARDSFLGis non-NI L, the search is done backwards from the end of the string.

STRPOSL uses a “bit table” data structure to search efficiently. If A is not a bit table, it is
converted to a bit table using MAKEBI TTABLE. If STRPOSL is to be called frequently with
the same list of characters, a considerable savings can be achieved by converting the list to
a bit table once, and then passing the bit table to STRPOSL as its first argument.

(MAKEBI TTABLE L NEG A) [Function]

Returns a bit table suitable for use by STRPOSL. L is a list of characters or character codes,
NEG is the same as described for STRPOSL. If A is a bit table, MAKEBI TTABLE modifies
and returns it. Otherwise, it will create a new bit table.

4-5

INTERLISP-D REFERENCE MANUAL

Note: If NEG = T, STRPOSL must call MAKEBI TTABLE whether A is a list or a bit table.
To obtain bit table efficiency with NEG=T, MAKEBI TTABLE should be called with NEG=T,
and the resulting “inverted” bit table should be given to STRPOSL with NEG=NI L.

4-7

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

4-8

5. ARRAYS

An Interlisp array is a one-dimensional vector of objects. Arrays are generally created by the function
ARRAY. By contrast, Common Lisp arrays can be multi-dimensional.

Note: Interlisp arrays and Common Lisp arrays are not the same types. Interlisp functions only
accept Interlisp arrays and vice versa. There are no functions to convert between the two types.

(ARRAYSIZE TYPE INIT ORIG -} [Function]

Creates and returns a new array that holds Sl ZE objects of type TYPE. If TYPE is NI L, the
array can contain any arbitrary Lisp datum. In general, TYPE may be any of the various
field specifications that are legal in DATATYPE declarations (see Chapter 8): PO NTER,
FI XP, FLOATP, (BI TS N), etc. Medley will, if necessary, choose an “enclosing” type if
the given one is not supported; for example, an array of (Bl TS 3) may be represented by
anarray of (BI TS 8).

I NI T is the initial value for each element of the new array. If not specified, the array
elements will be initialized with 0 (for number arrays) or NI L (all other types).

Arrays can have either 0-origin or 1-origin indexing, as specified by the ORI Gargument; if
ORI Gis not specified, the default is 1.

Arrays of type FLOATP are stored unboxed. This increases the space and time efficiency
of FLOATP arrays. If you want to use boxed floating point numbers, use an array of type
PO NTERinstead of FLOATP.

(ARRAYP X) [Function]

Returns X if Xis an array, NI L otherwise.

(ELT ARRAY N) [Function]
Returns the Nth element of the array ARRAY.

Causes the error, Arg not arr ay, if ARRAY is not an array. Causes the error, | | | egal
Ar g, if Nis out of bounds.

(SETA ARRAY NVAL) [Function]
Sets the Nth element of ARRAY to VAL, and returns VAL.

Causes the error, Arg not array, if ARRAY is not an array. theerror, |11 egal Arg,if
N is out of bounds. Can cause the error, Non- nureri ¢ ar g, if ARRAY is an array whose
ARRAYTYP is FI XP or FLOATP and VAL is non-numeric.

(ARRAYTYP ARRAY) [Function]

Returns the type of the elements in ARRAY, a value corresponding to the second argument
to ARRAY.

51

INTERLISP-D REFERENCE MANUAL

If ARRAY coerced the array type as described above, ARRAYTYP returns the new type. For
example, (ARRAYTYP (ARRAY 10 ' (BITS 3))) returns BYTE.

(ARRAYS| ZE ARRAY) [Function]
Returns the size of ARRAY. Generates the error, Arg not arr ay, if ARRAY is not an array.

(ARRAYORI G ARRAY) [Function]
Returns the origin of ARRAY, which may be 0 or 1. Generates an error, Arg not array,
if ARRAY is not an array.

(COPYARRAY ARRAY) [Function]

Returns a new array of the same size and type as ARRAY, and with the same contents as
ARRAY. Generates an error, Arg not array, if ARRAY is not an array.

5-2

5-3

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

5-4

6. HASHARRAYS

Hash arrays let you associate arbitrary Lisp objects (“hash keys”) with other objects (“hash values”),
so you can get from key to value quickly. There are functions for creating hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash
key.

By default, the hash array functions use EQfor comparing hash keys. This means that if non-symbols
are used as hash keys, the exact same object (not a copy) must be used to retrieve the hash value.
However, you can specify the function used to compare hash keys and to “hash” a hash key to a
number. You can, for example, create hash arrays where EQUAL but non-EQ strings will hash to the
same value. Specifying alternative hashing algorithms is described below.

In the description of the functions below, the argument HARRAY should be a hasharray created by
HASHARRAY. For convenience in interactive program development, it may also be NI L, in which case
a hash array (SYSHASHARRAY) provided by the system is used; you must watch out for confusions if
this form is used to associate more than one kind of value with the same key.

Note: For backwards compatibility, the hash array functions will accept a list whose CAR is a hash
array, and whose CDR is the “overflow method” for the hash array (see below). However, hash array
functions are guaranteed to perform with maximum efficiency only if a direct value of HASHARRAY is
given.

Note: Interlisp hash arrays and Common Lisp hash tables are the same data type, so functions from
both may be intermixed. The only difference between the functions may be argument order, as in
MAPHASH and CL: MAPHASH (see below).

(HASHARRAY M NKEYS OVERFLOWHASHBI TSFN EQUI VFN RECLAI MABLE REHASH-
THRESHOL D) [Function]

Creates a hash array with space for at least M NKEYS hash keys, with overflow method
OVERFLOW See discussion of overflow behavior below.

If HASHBI TSFN and EQUI VFN are non-NI L, they specify the hashing function and
comparison function used to interpret hash keys. This is described in the section on user-
specified hashing functions below. If HASHBI TSFN and EQUI VFN are NI L, the default is
to hash EQhash keys to the same value.

If RECLAI MABLE is T the entries in the hash table will be removed if the key has a
reference count of one and the table is about to be rehashed. This allows the system, in
some cases, to reuse keys instead of expanding the table.

Note: CL: MAKE- HASH TABLE does not allow you to specify your own hashing functions
but does provide three built-in types specified by Common Lisp, the Language.

(HARRAY M NKEYS) [Function]

Provided for backward compatibility, this is equivalent to (HASHARRAY M NKEYS
" ERROR), i.e. if the resulting hasarray gets full, an error occurs.

6-1

INTERLISP-D REFERENCE MANUAL

(HARRAYP X) [Function]
Returns X if it is a hash array; otherwise NI L.

HARRAYP returns NI L if X is a list whose CAR is an HARRAYP, even though this is accepted
by the hash array functions (see below).

(PUTHASH KEY VAL HARRAY) [Function]

Associates the hash value VAL with the hash key KEY in HARRAY. Replaces the previous
hash value, if any. If VAL is NI L, any old association is removed (hence a hash value of
NI L is not allowed). If HARRAY is full when PUTHASH is called with a key not already in
the hash array, the function HASHOVERFLOWis called, and the PUTHASH is applied to the
value returned (see below). Returns VAL.

(GETHASH KEY HARRAY) [Function]
Returns the hash value associated with the hash key KEY in HARRAY. Returns NI L, if KEY
is not found.

(CLRHASH HARRAY) [Function]

Clears all hash keys/values from HARRAY. Returns HARRAY.

(HARRAYPROP HARRAY PROP NEVWAL UE) [NoSpread Function]

Returns the property PROP of HARRAY; PROP can have the system-defined values SI ZE
(the maximum occupancy of HARRAY), NUMKEYS (number of occupied slots), OVERFLOW
(overflow method), HASHBI TSFN (hashing function) and EQUI VFN (comparison function).
Except for SI ZE and NUMKEYS, a new value may be specified as NEW/AL UE.

By using other values for PROP, the user may also set and get arbitrary property values, to
associate additional information with a hash array.

The HASHBI TSFNor EQUI VFN properties can only be changed if the hash array is empty.

(HARRAYSI ZE HARRAY) [Function]
Returns the number of slots in HARRAY. It's equivalent to (HARRAYPROP HARRAY
' S| ZE).

(REHASH OLDHARRAY NEWHARRAY) [Function]

Hashes all hash keys and values in OLDHARRAY into NEWHARRAY. The two hash arrays do
not have to be (and usually aren’t) the same size. Returns NEWHARRAY.

(MAPHASH HARRAY MAPHFN) [Function]

MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN will be
applied to the hash value, and the hash key. For example:

[MAPHASH A
(FUNCTI ON (LAVBDA (VAL KEY)
(if (LISTP KEY) then (PRINT VAL)]

will print the hash value for all hash keys that are lists. MAPHASH returns HARRAY.
6-2

HASHARRAYS

Note: the argument order for CL: MAPHASH is MAPHFN HARRAY.
(DVPHASH HARRAY1 HARRAY? . .. HARRAY)) [NLambda NoSpread Function]

Prints on the primary output file LOADable forms which will restore the hash-arrays
contained as the values of the atoms HARRAY1, HARRAY2, ... HARRAYN. Example:

(DMPHASH SYSHASHARRAY) will dump the system hash-array.

All EQ identities except symbols and small integers are lost by dumping and loading
because READ will create new structure for each item. Thus if two lists contain an EQ
substructure, when they are dumped and loaded back in, the corresponding substructures
while EQUAL are no longer EQ The HORRI BLEVARS file package command (Chapter 17)
provides a way of dumping hash tables such that these identities are preserved.

Hash Overflow

When a hash array becomes full, trying to add another hash key will cause the function
HASHOVERFLOWTto be called. This either enlarges the hash array, or causes the error Hash tabl e
full. How hash overflow is handled is determined by the value of the OVERFLOWproperty of the
hash array (which can be accessed by HARRAYPROP). The possibilities for the overflow method are:

the symbol ERROR The error Hash array full is generated when the hash
array overflows. This is the default overflow behavior for
hash arrays returned by HARRAY.

NI L The array is automatically enlarged by at least a factor 1.5
every time it overflows. This is the default overflow behavior
for hash arrays returned by HASHARRAY.

a positive integer N The array is enlarged to include at least N more slots than it
currently has.

a floating point number F The array is changed to include F times the number of
current slots.

a function or lambda expression FN Upon hash overflow, FN is called with the hash array as its
argument. If FNreturns a number, that will become the size
of the array. Otherwise, the new size defaults to 1.5 times its
previous size. FN could be used to print a message, or
perform some monitor function.

Note: For backwards compatibility, the hash array functions accept a list whose CAR is the hash array,
and whose CDR is the overflow method. In this case, the overflow method specified in the list
overrides the overflow method set in the hash array. Hash array functions perform with maximum
efficiency only if a direct value of HASHARRAY is given.

Specifying Your Own Hashing Functions

In general terms, when a key is looked up in a hash array, it is converted to an integer, which is used
to index into a linear array. If the key is not the same as the one found at that index, other indices are

6-3

INTERLISP-D REFERENCE MANUAL

6-4

tried until it the desired key is found. The value stored with that key is then returned (from GETHASH)
or replaced (from PUTHASH).

To customize hash arrays, you’ll need to supply the “hashing function” used to convert a key to an
integer and the comparison function used to compare the key found in the array with the key being
looked up. For hash arrays to work correctly, any two objects which are equal according to the
comparison function must “hash” to equal integers.

By default, Medley uses a hashing function that computes an integer from the internal address of a
key, and use EQ for comparing keys. This means that if non-atoms are used as hash keys, the exact
same object (not a copy) must be used to retrieve the hash value.

There are some applications for which the EQ constraint is too restrictive. For example, it may be
useful to use strings as hash keys, without the restriction that EQUAL but not EQstrings are considered
to be different hash keys.

The user can override this default behavior for any hash array by specifying the functions used to
compare keys and to “hash” a key to a number. This can be done by giving the HASHBI TSFN and
EQUI VFN arguments to HASHARRAY (see above).

The EQUI VFN argument is a function of two arguments that returns non-NI L when its arguments are
considered equal. The HASHBI TSFN argument is a function of one argument that produces a positive
small integer (in the range [0..216 - 1]) with the property that objects that are considered equal by the
EQUI VFN produce the same hash bits.

For an existing hash array, the function HARRAYPROP (see above) can be used to examine the hashing
and equivalence functions as the HASHBI TSFN and EQUI VFN hash array properties. These properties
are read-only for non-empty hash arrays, as it makes no sense to change the equivalence relationship
once some keys have been hashed.

The following function is useful for creating hash arrays that take strings as hash keys:

(STRI NGHASHBI TS STRI NG) [Function]

Hashes the string STRI NG into an integer that can be used as a HASHBI TSFN for a hash
array. Strings which are STREQUAL hash to the same integer.

Example:
(HASHARRAY M NKEYS OVERFLOW ' STRI NGHASHBI TS ' STREQUAL)

creates a hash array where you can use strings as hash keys.

6-5

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

6-6

7. NUMBERS AND ARITHMETIC FUNCTIONS

There are four different types of numbers in Interlisp: small integers, large integers, bignums
(arbitrary-size integers), and floating-point numbers. Small integers are in the range -65536 to 65535.
Large integers and floating-point numbers are 32-bit quantities that are stored by “boxing” the
number (see below). Bignums are “boxed” as a series of words.

Large integers and floating-point numbers can be any full word quantity. To distinguish among the
various kinds of numbers, and other Interlisp pointers, these numbers are “boxed” When a large
integer or floating-point number is created (by an arithmetic operation or by READ), Interlisp gets a
new word from “number storage” and puts the number into that word. Interlisp then passes around
the pointer to that word, i.e., the “boxed number”, rather than the actual quantity itself. When a
numeric function needs the actual numeric quantity, it performs the extra level of addressing to obtain
the “value” of the number. This latter process is called “unboxing”. Unboxing does not use any
storage, but each boxing operation uses one new word of number storage. If a computation creates
many large integers or floating-point numbers, i.e., does lots of boxes, it may cause a garbage
collection of large integer space, or of floating-point number space.

The following functions can be used to distinguish the different types of numbers:

(SMALLP X) [Function]
Returns X, if X is a small integer; NI L otherwise. Does not generate an error if X is not a
number.

(FI XP X) [Function]

Returns X, if X is an integer; NI L otherwise. Note that FI XP is true for small integers,
large integers, and bignums. Does not generate an error if X is not a number.

(FLOATP X) [Function]

Returns X if X is a floating-point number; NI L otherwise. Does not give an error if X is
not a number.

(NUMBERP X) [Function]

Returns X, if X is a number of any type; NI L otherwise. Does not generate an error if X is
not a number.

Note: In previous releases, NUMBERP was true only if (FLOATP X) or (FI XP X) were true.
With the additon of Common Lisp ratios and complex numbers, NUMBERP now returns T
for all number types . Code relying on the "old" behavior should be modified.

Each small integer has a unique representation, so EQ may be used to check equality. EQ should not
be used for large integers, bignums, or floating-point numbers, EQP, | EQP, or EQUAL must be used
instead.

(EQP XY) [Function]

Returns T, if X and Y are equal numbers; NI L otherwise. EQ may be used if X and Y are
known to be small integers. EQP does not convert X and Y to integers, e.g., (EQP 2000

7-1

INTERLISP-D REFERENCE MANUAL

2000. 3) => NI L, but it can be used to compare an integer and a floating-point number,
e.g., (EQP 2000 2000.0) => T. EQP does not generate an error if X or Y are not
numbers.

EQP can also be used to compare stack pointers (see Chapter 11) and compiled code
objects (see Chapter 10).

The action taken on division by zero and floating-point overflow is determined with the following
function:

(OVERFLOWFLG) [Function]

Sets a flag that determines the system response to arithmetic overflow (for floating-point
arithmetic) and division by zero; returns the previous setting.

For integer arithmetic: If FLG = T, an error occurs on division by zero. If FLG = N L
or 0, integer division by zero returns zero. Integer overflow cannot occur, because small
integers are converted to bignums (see the beginning of this chapter).

For floating-point arithmetic: If FLG = T, an error occurs on floating overflow or floating
division by zero. If FLG = NI L or 0, the largest (or smallest) floating-point number is
returned as the result of the overflowed computation or floating division by zero.

The default value for OVERFLOWis T, meaning an error is generated on division by zero or
floating overflow.

Generic Arithmetic

7-2

The functions in this section are “generic” arithmetic functions. If any of the arguments are floating-
point numbers (see the Floating-Point Arithmetic section below), they act exactly like floating-point
functions, floating all arguments and returning a floating-point number as their value. Otherwise,
they act like the integer functions (see the Integer Arithmetic section below). If given a non-numeric
argument, they generate an error, Non- nuneri ¢ arg. The results of division by zero and floating-
point overflow is determined by the function OVERFLOW/(see the section above).

(PLUS X; X, ... XV [NoSpread Function]
X+ Xo + oo+ Xy

(M NUS X) [Function]
- X

(DI FFERENCE X Y) [Function]
X -Y

(TIMES X; X, ... XV [NoSpread Function]
X % Xo* L. Xy

NUMBERS AND ARITHMETIC FUNCTIONS

(QUOTI ENT X Y) [Function]

If X and Y are both integers, returns the integer division of X and Y. Otherwise, converts
both X and Y to floating-point numbers, and does a floating-point division.

(REMAI NDER X Y) [Function]
If Xand Y are both integers, returns (| REMAI NDER X Y), otherwise (FREMAI NDER X Y) .

(GREATERP X Y) [Function]
T, if X>Y, Nl L otherwise.

(LESSP XY) [Function]
Tif X<Y, N L otherwise.

(CEQXY) [Function]
T, if X>=Y, NI L otherwise.

(LEQXY) [Function]
T, if X<=Y, NI L otherwise.

(ZERCP X) [Function]
The same as (EQP X 0) .

(M NUSP X) [Function]
T, if Xis negative; NI L otherwise. Works for both integers and floating-point numbers.

(MNX; X, ... Xy [NoSpread Function]

Returns the minimum of X;, X,, . .., Xy (M N) returns the value of MAX. | NTEGER (see
the Integer Arithmetic section below).

(MAX X X, . XY [NoSpread Function]

Returns the maximum of X;, X,, ..., Xy (MAX) returns the value of M N. | NTEGER (see the
Integer Arithmetic section below).

(ABS X) [Function]
Xif X> 0, otherwise - X. ABS uses GREATERP and M NUS (not | GREATERP and | M NUS).

Integer Arithmetic

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of decimal digits,
and terminated by a delimiting character. Integers entered with this syntax are interpreted as decimal
integers. Integers in other radices can be entered as follows:

123Q
#0123 If an integer is followed by the letter Q or preceeded by a pound sign and the letter “0”,
the digits are interpreted as an octal (base 8) integer.

7-3

INTERLISP-D REFERENCE MANUAL

7-4

#b10101 If an integer is preceeded by a pound sign and the letter “b”, the digits are interpreted as a
binary (base 2) integer.

#x1A90 If an integer is preceeded by a pound sign and the letter “x”, the digits are interpreted as a
hexadecimal (base 16) integer.

#5r 1243 If an integer is preceeded by a pound sign, a positive decimal integer BASE, and the letter
“r 7, the digits are interpreted as an integer in the base BASE. For example, #8r 123 =
123Q and #16r 12A3 = #x12A3. When typing a number in a radix above ten, the
uppercase letters A through Z can be used as the digits after 9 (but there is no digit above
Z, so it is not possible to type all base-99 digits).

Medley keeps no record of how you typed a number, so 77Q and 63 both correspond to the same
integer, and are indistinguishable internally. The function RADI X (see Chapter 25), sets the radix used
to print integers.

PACK and MKATOM create numbers when given a sequence of characters observing the above syntax,
eg.(PACK ' (1 2 Q) => 10. Integers are also created as a result of arithmetic operations.

The range of integers of various types is implementation-dependent. This information is accessible to
you through the following variables:

M N. SMALLP [Variable]
MAX. SMALLP [Variable]

The smallest/largest possible small integer.

M N. FI XP [Variable]
MAX. FI XP [Variable]

The smallest/largest possible large integer.

M N. | NTEGER [Variable]
MAX. | NTEGER [Variable]

The value of MAX. | NTEGER and M N. | NTEGER are two special system datatypes. For
some algorithms, it is useful to have an integer that is larger than any other integer.
Therefore, the values of MAX. | NTEGER and M N. | NTEGER are two special data types; the
value of MAX. | NTEGER is GREATERP than any other integer, and the value of
M N. | NTEGER is LESSP than any other integer. Trying to do arithmetic using these
special bignums, other than comparison, will cause an error.

All of the functions described below work on integers. Unless specified otherwise, if given a floating-
point number, they first convert the number to an integer by truncating the fractional bits, e.g.,

(I'PLUS 2.3 3.8) = 5;ifgiven a non-numeric argument, they generate an error, Non- numneri c
arg.
(IPLUS X; X5 ... XV [NoSpread Function]
Returnsthesum X; + X, + ... +Xg (I PLUS) = 0.
(I M NUS X) [Function]
-X

NUMBERS AND ARITHMETIC FUNCTIONS

(1 DI FFERENCE X Y) [Function]
X -Y

(ADD1 X) [Function]
X +1

(SUB1 X) [Function]
X-1

(ITIMES Xy X5 ... XN [NoSpread Function]
Returns the product X; * X, * ... * Xy (I TIMES) = 1.

(1 QUOTI ENT X Y) [Function]

X/ Y truncated. Examples:

(IQUOTIENT 3 2) => 1
(I QUOTIENT -3 2) => -1

If Y is zero, the result is determined by the function OVERFLOW.
(| REMAI NDER X Y) [Function]

Returns the remainder when X is divided by Y. Example:
(I REMAINDER 5 2) => 1

(I MODXN) [Function]

Computes the integer modulus of X mod N; this differs from | REMAI NDER in that the
result is always a non-negative integer in the range [O,N).

(| GREATERP XY) [Function]
T, if X>Y; N L otherwise.

(I LESSP XY) [Function]
T, if X<Y; N L otherwise.

(1 GEQXY) [Function]
T, if X>=Y; Nl L otherwise.

(I LEQXY) [Function]
T, if X<=Y; NI L otherwise.

(IMNX; X5 ... XY [NoSpread Function]

Returns the minimum of X;, X,, ..., Xy (I MN) returns the largest possible large
integer, the value of MAX. | NTEGER

INTERLISP-D REFERENCE MANUAL

(TMAX X, X .. XY [NoSpread Function]
Returns the maximum of X;, X;, ..., Xy (I MAX) returns the smallest possible large
integer, the value of M N. | NTEGER.

(I EQP XY) [Function]

Returns T if Xand Y are equal integers; NI L otherwise. Note that EQmay be used if X and
Y are known to be small integers. | EQP converts X and Y to integers, e.g., (| EQP 2000
2000.3) => T.

(FIXN) [Function]

If Nis an integer, returns N. Otherwise, converts N to an integer by truncating fractional
bits Forexample, (FI X 2.3) => 2,(FIX -1.7) => -1,

Since FI Xis also a programmer’s assistant command (see Chapter 13), typing FI X directly
to a Medley executive will not cause the function FI X to be called.

(FIXRN) [Function]

If Nis an integer, returns N. Otherwise, converts N to an integer by rounding. FI XR will
round towards the even number if N is exactly half way between two integers. For
example, (FIXR 2.3) => 2,(FIXR -1.7) => -2,(FIXR 3.5) => 4).

(GCDN; N,) [Function]
Returns the greatest common divisor of N, and N,, (GCD 72 64) =8.

Logical Arithmetic Functions

(LOGAND X; X, . .. X\ [NoSpread Function]

Returns the logical AND of all its arguments, as an integer. Example:
(LOGAND 7 5 6) => 4

(LOGOR X, X, ... Xy [NoSpread Function]
Returns the logical OR of all its arguments, as an integer. Example:
(LOGOR'1 3 9) => 11
(LOGXOR Xy X5 ... XN [NoSpread Function]

Returns the logical exclusive OR of its arguments, as an integer. Example:

(LOGXCOR 11 5) => 14
(LOGXOR 11 5 9) = (LOGXOR 14 9) => 7

(LSHXN) [Function]

(Arithmetic) “Left Shift.” Returns X shifted left N places, with the sign bit unaffected. X
can be positive or negative. If Nis negative, X is shifted right - N places.

7-6

NUMBERS AND ARITHMETIC FUNCTIONS

(RSHXN) [Function]

(Arithmetic) “Right Shift.” Returns X shifted right N places, with the sign bit unaffected,
and copies of the sign bit shifted into the leftmost bit. X can be positive or negative. If Nis
negative, X is shifted left -N places.

Warning: Be careful if using RSH to simulate division; RSHing a negative number isn’t the
same as dividing by a power of two.

(LLSHXN) [Function]
(LRSHXN) [Function]

“Logical Left Shift” and “Logical Right Shift”. The difference between a logical and
arithmetic right shift lies in the treatment of the sign bit. Logical shifting treats it just like
any other bit; arithmetic shifting will not change it, and will “propagate” rightward when
actually shifting rightwards. Note that shifting (arithmetic) a negative number “all the
way” to the right yields - 1, not 0.

Note: LLSH and LRSH always operate mod-232 arithmetic. Passing a bignum to either of
these will cause an error. LRSH of negative numbers will shift 0s into the high bits.

(I NTEGERLENGTH X) [Function]

Returns the number of bits needed to represent X This is equivalent to:
1+fl oor [l og2[abs[X]]]. (I NTEGERLENGTH 0) = 0.

(PONEROFTWOP X) [Function]

Returns non-NI L if X (coerced to an integer) is a power of two.

(EVENP XY) [NoSpread Function]
If Y is not given, equivalent to (ZEROP (1 MOD X 2)); otherwise equivalent to (ZEROP
(IMD X' V)).

(ODDP N MODULUS) [NoSpread Function]

Equivalent to (NOT (EVENP N MODULUS)) . MODULUS defaults to 2.

(LOGNOT N) [Macro]
Logical negation of the bits in N. Equivalentto (LOGXOR N -1).

(BI TTEST N MASK) [Macro]

Returns T if any of the bits in MASK are on in the number N. Equivalent to (NOT (ZEROP
(LOGANDNMASK))) .

(BI TCLEAR N MASK) [Macro]
Turns off bits from MASK in N. Equivalent to (LOGAND N (LOGNOT MASK)) .

(BI TSET N MASK) [Macro]
Turns on the bits from MASK in N. Equivalentto (LOGOR N MASK) .

77

INTERLISP-D REFERENCE MANUAL

7-8

(MASK. 1' S PCsI Tl ON S| ZE) [Macro]

Returns a bit-mask with Sl ZE one-bits starting with the bit at POSI TI ON. Equivalent to
(LLSH (SUB1 (EXPT 2SI ZE)) PCSI TI ON).

(MASK. 0’ S PCSI TI ON S| ZE) [Macro]

Returns a bit-mask with all one bits, except for S| ZE bits starting at PCSI Tl ON.
Equivalent to (LOGNOT (MASK. 1’ SPCSI TI ONSI ZE)) .

(LOADBYTE N PCS SI ZE) [Function]

Extracts Sl ZE bits from N, starting at position POS. Equivalent to (LOGAND (RSH N POS)
(MASK. 1''S 0 SI ZE)).

(DEPCSI TBYTE N PCS S| ZE VAL) [Function]

Insert SI ZE bits of VAL at position PGS into N, returning the result. Equivalent to

(LOGOR (BI TCLEAR N (MASK. 1' S PCS SI ZE))
(LSH (LOGAND VAL (MASK. 1'S 0 Sl ZE))
PCS))

(ROT X N FI ELDSI ZE) [Function]

“Rotate bits in field”. It performs a bitwise left-rotation of the integer X, by N places,
within a field of FI ELDSI ZE bits wide. Bits being shifted out of the position selected by
(EXPT 2 (SUB1 FI ELDSI ZE)) will flow into the “units” position.

The notions of position and size can be combined to make up a “byte specifier”, which is constructed
by the macro BYTE [note reversal of arguments as compared with the above functions]:

(BYTE SI ZE POSI TI ON) [Macro]
Constructs and returns a “byte specifier” containing Sl ZE and POSI TI ON.

(BYTESI ZE BYTESPEC) [Macro]
Returns the SI ZE componant of the “byte specifier” BYTESPEC.

(BYTEPCSI TI ON BYTESPEC) [Macro]
Returns the POSI TI ON componant of the “byte specifier” BYTESPEC.

(LDB BYTESPEC VAL) [Macro]
Equivalent to
(LOADBYTE VAL (BYTEPGCSI TI ON BYTESPEC) (BYTESI ZE BYTESPEC))

(DPB N BYTESPEC VAL) [Macro]
Equivalent to
(DEPCSI TBYTE VAL (BYTEPCSI Tl ON BYTESPEC) (BYTESI ZE BYTESPEC) N)

NUMBERS AND ARITHMETIC FUNCTIONS

Floating-Point Arithmetic

A floating-point number is input as a signed integer, followed by a decimal point, and another
sequence of digits called the fraction, followed by an exponent (represented by E followed by a signed
integer) and terminated by a delimiter.

Both signs are optional, and either the fraction following the decimal point, or the integer preceding
the decimal point may be omitted. One or the other of the decimal point or exponent may also be
omitted, but at least one of them must be present to distinguish a floating-point number from an
integer. For example, the following will be recognized as floating-point numbers:

5. 5.00 5.01 .3
5E2 5.1E2 5E-3 -5. 2E+6
Floating-point numbers are printed using the format control specified by the function FLTFMT (see

Chapter 25). FLTFM is initialized to T, or free format. For example, the above floating-point numbers
would be printed free format as:

5.0 5.0 5.01 .3
500.0 510.0 . 005 -5. 2E6
Floating-point numbers are created by the reader when a “. ” or an E appears in a number, e.g., 1000

is an integer, 1000. a floating-point number, as are 1E3 and 1. E3. Note that 1000D, 1000F, and
1E3D are perfectly legal literal atoms. Floating-point numbers are also created by PACK and MKATOM
and as a result of arithmetic operations.

PRI NTNUM (see Chapter 25) permits greater control over the printed appearance of floating-point
numbers, allowing such things as left-justification, suppression of trailing decimals, etc.

The floating-point number range is stored in the following variables:
M N. FLOAT [Variable]
The smallest possible floating-point number.
MAX. FLOAT [Variable]
The largest possible floating-point number.

All of the functions described below work on floating-point numbers. Unless specified otherwise, if
given an integer, they first convert the number to a floating-point number, e.g., (FPLUS 1 2.3)
<=> (FPLUS 1.0 2.3) => 3.3;if given a non-numeric argument, they generate an error, Non-
numeric arg.

(FPLUS X; X5 . .. XY [NoSpread Function]
Xp+ X+ ...+ Xy

(FM NUS X) [Function]
- X

(FDI FFERENCE X Y) [Function]
X-Y

7-9

INTERLISP-D REFERENCE MANUAL

(FTIMES X; X5 ... XV [NoSpread Function]
X % Xo * L. * Xy

(FQUOTI ENT XY) [Function]
X1Y.
The results of division by zero and floating-point overflow is determined by the function
OVERFLOW

(FREMAI NDER X' Y) [Function]

Returns the remainder when Xis divided by Y. Equivalent to:
(FDI FFERENCE X (FTIMES Y (FI X (FQUOTIENT X Y))))

Example:
(FREMAINDER 7.5 2.3) => 0.6

(FGREATERP X Y) [Function]
T,if X>Y, Nl L otherwise.

(FLESSP X Y) [Function]
T, if X<Y, Nl L otherwise.
(FEQP XY) [Function]

Returns T if X and Y are equal floating-point numbers; NI L otherwise. FEQP converts X
and Y to floating-point numbers.

(FMNX; X5 ... XY [NoSpread Function]

Returns the minimum of X, X,, ..., Xy (FM N) returns the largest possible floating-
point number, the value of MAX. FLOAT.

(FMAX X, X, ... XY [NoSpread Function]

Returns the maximum of X;, X,, . .., Xy (FMAX) returns the smallest possible floating-
point number, the value of M N. FLOAT.

(FLQAT X) [Function]

Converts X to a floating-point number. Example:
(FLOAT 0) => 0.0

Transcendental Arithmetic Functions

(EXPTAN) [Function]

Returns AN. If Ais an integer and Nis a positive integer, returns an integer, e.g, (EXPT 3
4) => 81, otherwise returns a floating-point number. If A is negative and N fractional,

7-10

NUMBERS AND ARITHMETIC FUNCTIONS

generates the error, | | | egal exponenti ati on. If Nis floating and either too large or
too small, generates the error, Val ue out of range expt.
(SQRT N) [Function]

Returns the square root of N as a floating-point number. N may be fixed or floating-point.
Generates an error if Nis negative.

(LOGX) [Function]
Returns the natural logarithm of X as a floating-point number. X can be integer or
floating-point.

(ANTI LOG X) [Function]

Returns the floating-point number whose logarithm is X. X can be integer or floating-
point. Example:

(ANTILOG 1) = e => 2.71828. ..

(SI N X RADI ANSFLG) [Function]
Returns the sine of X as a floating-point number. X s in degrees unless RADI ANSFLG =
T.

(COs X RADI ANSFLG) [Function]
Similar to SI N.

(TAN X RADI ANSFLG) [Function]
Similar to SI N.

(ARCSI N X RADI ANSFLG) [Function]

The value of ARCSI N is a floating-point number, and is in degrees unless RADI ANSFLG =
T. In other words, if (ARCSI N X RADI ANSFLG = Zthen (SIN Z RADI ANSFLG =
X. The range of the value of ARCSI Nis -90 to +90 for degrees, - n/2 to n/ 2 for radians. X
must be a number between -1 and 1.

(ARCCOS X RADI ANSFLG) [Function]
Similar to ARCSI N. Range is 0 to 180, 0 to .

(ARCTAN X RADI ANSFLG) [Function]
Similar to ARCSI N. Range is 0 to 180, 0 to .

(ARCTAN2 Y X RADI ANSFLG) [Function]

Computes (ARCTAN (FQUOTI ENT Y X) RADI ANSFLG), and returns a corresponding
value in the range - 180 to 180 (or -t to), i.e. the result is in the proper quadrant as
determined by the signs of Xand Y.

7-11

INTERLISP-D REFERENCE MANUAL

Generating Random Numbers

7-12

(RAND LOVER UPPER) [Function]

Returns a pseudo-random number between LONER and UPPER inclusive, i.e., RAND can be
used to generate a sequence of random numbers. If both limits are integers, the value of
RAND is an integer, otherwise it is a floating-point number. The algorithm is completely
deterministic, i.e., given the same initial state, RAND produces the same sequence of
values. The internal state of RAND s initialized using the function RANDSET.

(RANDSET X) [Function]

Returns the internal state of RAND. If X = NI L, just returns the current state. If X = T,
RAND is initialized using the clocks, and RANDSET returns the new state. Otherwise, X is
interpreted as a previous internal state, i.e., a value of RANDSET, and is used to reset RAND.
For example,

<(SETQ OLDSTATE (RANDSET))

<—(for Xfrom1l to 10 do (PRIN1 (RAND 1 10)))
2847592748Nl L

< (RANDSET OLDSTATE)

<—(for X from1l to 10 do (PRIN1 (RAND 1 10)))
2847592748N L

7-13

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

7-14

RECORDS AND DATA STRUCTURES

Hiding the details of your code makes it more readable, and lets you program more efficiently. Data
structures are a good example: You’re better off if you can say “Fetch me the sreep field from this
ARPLANE” rather than having to say (car (copbr (caDR Al RPLANE))) . YOu can declare data structures used by
your programs, then work with field names rather than access details. Using the declarations, Medley
performs the access/storage operations you request. If you change a data structure’s declaration,
your programs automatically adjust.

You describe the format of a data structure (record) by making a “record declaration” (see the Record
Declarations section below). The record declaration is a description of the record, associating names
with its various parts, or “fields”. For example, the record declaration

(RECCRD MSG (FROM TO TEXT))

describes a data structure called mvsg, that has three fields: Frow 10, and text. You can refer to these fields
by name, to get their values or to store new values into them, by using rercH and RrepLACE:

(fetch (MSG FROW of MYMBG)
(replace (MSG TO of MYMSG with “John Doe”)

You create new wvscs With creaTe:
(SETQ MYMSG (create MSG))

and Tyee? tells you whether some object is a vsc:
(I'F (TYPE? MSG THI S-THING then (SEND-MSG THI S- THI NG)

So far we’ve said nothing about how your msc is represented—when you’re writing rercHes and RepLACES,
it doesn’t matter. But you can control the representation: The symbol recoro in the declaration above
causes each msc to be represented as a list. There are a number of options, up to creating a completely
new Lisp data type; each has its own specifier symbol, and they’re described in detail below.

The record package is implemented using DWIM and CLISP, so it will do spelling correction on field
names, record types, etc. Record operations are translated using all CLISP declarations in effect
(standard/fast/undoable).

The file manager’s recoros command lets you give record declarations (see Chapter 17), and ri Les? and
a.eanwe Will tell you about record declarations that need to be dumped.

FETCH and REPLACE

The fields of a record are accessed and changed with rercH and repLace. I x is a vsc data structure, (fetch
Frov of x) Will return the value of the rrovfield of x, and (replace FrRovi of x with v) will replace this field
with the value of v. In general, the value of a rerLace Operation is the same as the value stored into the
field.

Note that (fetch FrRov of x) assumes that x is an instance of the record vsc—the interpretation of (fetch
FrRoM of x) never depends on the value of x. If x is not a msg, this may produce incorrect results.

If there is another record declaration, (recorp RepLY (TEXT RESPONSE)), then (fetch TEXT of x) IS ambiguous,
because x could be either a msc or a repLy record. In this case, an error will occur, anbi guous record field.
To clarify this, give rerct and repLace a list for their “field” argument; (fetch (mvse TeEXT) of x) Will fetch
the Text field of a mscrecord. If a field has an identical interpretation in two declarations, e.g., if the field

81

INTERLISP-D REFERENCE MANUAL

Text occurred in the same location within the declarations of vsc and repLy, then (fetch TeEXT of x) Would
not be ambiguous.

If there’s a conflict, “user” record declarations take precedence over *“system” record declarations.
System records are declared by including (svstem in the declaration (see the Record Declarations
section below). All of the records defined in the standard Medley system are system records.

Another complication can occur if the fields of a record are themselves records. The fields of a record
can be further broken down into sub-fields by a “subdeclaration” within the record declaration. For
example,

(RECORD NODE (POSI TION . LABEL) (RECCRD POSI TION (XLOC . YLOQ)))

lets you access the posi i on field with (fetch posi Tion of X), OF its subfield xeoc with (fetch xLoc of %) .

You may also declare that field name in a separate record declaration. For instance, the Text field in the

vsG and repLy records above may be subdivided with the seperate record declaration (recorp TEXT (HEADER

m>1). You get to fields of subfields (to any level of nesting) by specifying the “data path” as a list of

record/field names, where there is some path from each record to the next in the list. For instance,
(fetch (MSG TEXT HEADER) of X)

treats x as a msG record, fetches its text field, and fetches its Heaoer field. You only need to give enough
of the data path to disambiguate it. In this case, (fetch (MG HEADER) of) IS sufficient: Medley searches
among all current record declarations for a path from each name to the next, considering first local
declarations (see Chapter 21) and then global ones. Of course, if you had two records with Heaper
fields, you get an anbi guous data path €rror.

rercH and repLace are translated using the CLISP declarations in effect (see Chapter 21). rrercH and
rrRepLACE are fast versions that don’t do any type checking. /repLace insures undoable declarations.

Record Declarations

82

You define records by evaluating declarations of the form:
(RECORD- TYPE RECORD- NAME RECORD- FI ELDS . RECORD- TAI L)

RECORD- TYPE specifies the “type” of data you're declaring, and controls how instances will be stored
internally. The different record types are described below.

RECORD- NAME is a symbol used to identify the record declaration for create, Type?, FETCH and REPLACE,
and dumping to files (see Chapter 17). patarvee and Tyrerecorp declarations also use RECORD- NAME to
identify the data structure (as described below).

RECORD- FI ELDS describes the structure of the record. Its exact interpretation varies with rRecoro- TYPE.
Generally, it names the fields within the record that can be accessed with rercH and repLace.

RECORD- TAI L is an optional list where you can specify default values for record fields, special create
and tvee? forms, and subdeclarations (described below).

Record declarations are Lisp programs, and could be included in functions, changing a record
declaration at run-time. Don’t do it. You risk creating a structure with one declaration, and trying to
fetch from it with another—complete chaos results. If you need to change record declarations
dynamically, consider using association lists or property lists.

Record Types

RECORDS AND DATA STRUCTURES

The RECORD- TYPE field of the record declaration specifies how the data object is created, and how the
various record fields are accessed. Depending on the record type, the record fields may be stored in a
list, or in an array, or on a symbol’s property list. The following record types are defined:

RECORD [Record Type]

The fields of a recoro are kept in a list. RECORD- FI ELDS is a list; each non-ni L symbol is a
field-name to be associated with the corresponding element or tail of a list structure. For
example, with the declaration (recoro MsG (FRoV TO . TEXT)), (fetch FRoM of x) translates as (car
X) .

NnL can be used as a place marker for an unnamed field, e.g., (» nL B describes a three
element list, with & corresponding to the third element. A number may be used to indicate
asequence of niLS, €.9. (A 4 B) isinterpreted as (A NIL NL NIL NIL B).

DATATYPE [Record Type]

Defines a new user data type with type name RECORD- NAME. Unlike other record types,
the instances of a patatyre are represented with a completely new Lisp type, and not in
terms of other existing types.

RECORD- FI ELDS is a list of field specifications, where each specification is either a list
(FI ELDNAVE FI ELDTYPE), or an symbol FI ELDNAME. If FI ELDTYPE is omitted, it
defaults to pa nter. Possible values for FI ELDTYPE are:

pa NTER Field contains a pointer to any arbitrary Interlisp object.

| NTEGER
rixp Field contains a signed integer. Caution: An i nrecer field is not capable of

holding everything that satisfies ri xp, such as bignums.

FLOATI NG
FLoatp Field contains a floating point number.

siaxeoworp Field contains a 16-bit signed integer.
FLac Field is a one bit field that “contains” T or niL.
B Ts N Field contains an N-bit unsigned integer.
ByTe Equivalent to Bi Ts 8.
wrp Equivalent to siTs 16.

xpa NTER Field contains a pointer like pa nTer, but the field is not reference counted
by the garbage collector. xra nrer fields are useful for implementing back-
pointers in structures that would be circular and not otherwise collected
by the reference-counting garbage collector.

Warning: Use xranter fields with great care. You can damage the
integrity of the storage allocation system by using pointers to objects that
have been garbage collected. Code that uses xra nrer fields should be sure
that the objects pointed to have not been garbage collected. This can be
done in two ways: The first is to maintain the object in a global structure,

8-3

INTERLISP-D REFERENCE MANUAL

8-4

so that it is never garbage collected until explicitly deleted from the
structure, at which point the program must invalidate all the xra NTER
fields of other objects pointing at it. The second is to declare the object as
a patatype beginning with a ra nter field that the program maintains as a
pointer to an object of another type (e.g., the object containing the xra nTer
pointing back at it), and test that field for reasonableness whenever using
the contents of the xra nrer field.

For example, the declaration
(DATATYPE FOO

((FLG BITS 12) TEXT HEAD (DATE BI TS 18)

(PRI O FLOATP) (READ? FLAG)))
would define a data type roo with two pointer fields, a floating point number, and fields
for a 12 and 18 bit unsigned integers, and a flag (one bit). Fields are allocated in such a
way as to optimize the storage used and not necessarily in the order specified. Generally,
a patatype record is much more storage compact than the corresponding recoro structure
would be; in addition, access is faster.

Since the user data type must be set up at run-time, the recoros file package command will
dump a pecLArReDATATYPE expression as well as the pataryre declaration itself. If the record
declaration is otherwise not needed at runtime, it can be kept out of the compiled file by
using a (DECLARE: DONTCOPY --) expression (see Chapter 17), but it is still necessary to ensure
that the datatype is properly initialized. For this, one can use the | n Trecoros file package
command (see Chapter 17), which will dump only the pecarepaTaTYPE €Xpression.

Note: When defining a new data type, it is sometimes useful to call the function perpri nNT
(see Chapter 25) to specify how instances of the new data type should be printed. This
can be specified in the record declaration by including an 1 n 7 record specification (see the
Optional Record Specifications section below), e.g. (DATATYPE Qv.TYPE ... (INIT (DEFPRINT
" QV. TYPE (FUNCTI ON PRI NT. QV. TYPE)))) .

patatype declarations cannot be used within local record declarations (see Chapter 21).

TYPERECORD [Record Type]

Similar to recorp, but the record name is added to the front of the list structure to signify
what “type” of record it is. This type field is used in the translation of Tvre> expressions.
create Will insert an extra field containing RECORD- NAME at the beginning of the structure,
and the translation of the access and storage functions will take this extra field into
account. For example, for (TyperecorD MsG (FROM TO . TEXT)), (fetch FROM of x) translates as
(CADR X), NOt (CAR X) .

ASSOCRECORD [Record Type]

Describes lists where the fields are stored in association list format:
((FI ELDNAME, . VALUE,) (FI ELDNAME, . VALUE,) ...)
RECORD- FI ELDS is a list of symbols, the permissable field names in the association list.

Access is done with asscc (or rasscc, if the current CLISP declarations are rast, see Chapter
21), storing with purasscc.

RECORDS AND DATA STRUCTURES

PROPRECORD [Record Type]
Describes lists where the fields are stored in property list format:

(FI ELDNAVE, VALUE, FI ELDNAME, VALUE, ...

RECORD- FI ELDS is a list of symbols, the permissable field names in the property list.
Access is done with i stceT, storing with vi steur.

Both assocrecorp and proerecorp are useful for defining data structures where many of the
fields are nL. createing one these record types only stores those fields that are non-nic.
Note, however, that with the record declaration (prorrecorRD FIE (H 1 J)) the expression
(create FIE) Would still construct (1 N1y, since a later operation of (replace J of X with v)
could not possibly change the instance of the record if it were ni L.

ARRAYRECORD [Record Type]

ARRAYRECORDs are stored as arrays. RECORD- FI ELDS is a list of field names that are
associated with the corresponding elements of an array. n L can be used as a place marker
for an unnamed field (element). Positive integers can be used as abbreviation for the
corresponding number of nLs. For example, (ARRAYRECORD (ORG DEST NIL 1D 3 TexT)) describes
an eight-element array, with orc corresponding to the first element, 1o to the fourth, and
TexT to the eighth.

ARRAYRECORD Only creates arrays of pointers. Other kinds of arrays must be implemented
with accessrns (see below).

HASHLI NK [Record Type]

The nasHLI Nk record type can be used with any type of data object: it specifies that the value
of a single field can be accessed by hashing the data object in a given hash array. Since the
HasHLI Nk record type describes an access method, rather than a data structure, create is
meaningless for HasHI Nk records.

RECORD- FI ELDS is either a symbol FI ELD- NAME, or a list (FI ELD- NAVE HARRAYNAME
HARRAYSI ZE). HARRAYNAME is a variable whose value is the hash array to be used; if
not given, svsHasHarray is used. If the value of the variable HARRAYNAME is not a hash array
(at the time of the record declaration), it will be set to a new hash array with a size of
HARRAYSI ZE. HARRAYSI ZE defaults to 100.

The masHL Nk record type is useful as a subdeclaration to other records to add additional
fields to already existing data structures (see the Optional Record Specifications section
below). For example, suppose that roo is a record declared with (recorp Foo (A B). TO
add a new field ear, without modifying the existing data strutures, redeclare Foo with:

(RECORD FOO (A B C) (HASHLINK FOD (BAR BARHARRAY)))

Now, (fetch BAR of x) Will translate into (cetHasH x BARHARRAY) , hashing off the existing list x.

ATOVRECORD [Record Type]

ATovRecorDS are stored on the property lists of symbols. RECORD- FI ELDS is a list of
property names. Accessing is performed with ceteroe, storing with purpror. The create
expression is not initially defined for aravrecoro records.

8-5

INTERLISP-D REFERENCE MANUAL

8-6

BLOCKRECORD [Record Type]

BLockrecorD 1S used in low-level system programming to “overlay” an organized structure
over an arbitrary piece of raw storage. RECORD- FI ELDS is interpreted exactly as with a
patatyPeE declaration, except that fields are not automatically rearranged to maximize
storage efficiency. Like an accessrns record, a sLackrecoro does not have concrete instances;
it merely provides a way of interpreting some existing block of storage. So you can’t
create an instance of a sLokrecorp (unless the declaration includes an explicit create
expression), nor is there a default type? expression for a BLockrecoRD.

Warning: Exercise caution in using sLockrecorp declarations, as they let you fetch and store
arbitrary data in arbitrary locations, thereby evading Medley’s normal type system.
Except in very specialized situations, a sLockrecoro should never contain pa NTER OF xPO NTER
fields, nor be used to overlay an area of storage that contains pointers. Such use could
compromise the garbage collector and storage allocation system. You are responsible for
ensuring that all FercH and repLAce expressions are performed only on suitable objects, as no
type testing is performed.

A typical use for a sLockrecorp in user code is to overlay a non-pointer portion of an existing
pATATYPE. For this use, the Loce macro is useful. (Locr (fetch FI ELD of DATUM) can be
used to refer to the storage that begins at the first word that contains FI ELD of DATUM
For example, to define a new kind of Ethernet packet, you could overlay the “body”
portion of the etHerrackeT datatype declaration as follows:
(ACCESSFNS MYPACKET
((MYBASE (LOCF (fetch (ETHERPACKET EPBCDY) of DATUM)))
(BLOCKRECORD MYBASE
((MYTYPE WORD) (MYLENGTH WORD) (MYSTATUS BYTE)
MYERRORCODE BYTE) (MYDATA | NTEGER)))
(TYPE? (type? ETHERPACKET DATUM))
With this declaration in effect, the expression (fetch wLENGTH of PAckeT) Would retrieve the

second 16-bit field beyond the place inside packer where the ersooy field starts.

ACCESSFNS [Record Type]

accessrns lets you specify arbitrary functions to fetch and store data. For each field name,
you specify how it is to be accessed and set. This lets you use arbitrary data structures,
with complex access methods. Most often, accessrns are useful when you can compute one
field’s value from other fields. If you're representing a time period by its start and
duration, you could add an accessens definition for the ending time that did the obvious
addition.

RECORD- FI ELDS is a list of elements of the form (FI ELD- NAME ACCESSDEF SETDEF).
ACCESSDEF should be a function of one argument, the datum, and will be used for
accessing the value of the field. SETDEF should be a function of two arguments, the
datum and the new value, and will be used for storing a new value in a field. SETDEF
may be omitted, in which case, no storing operations are allowed.

ACCESSDEF and/or SETDEF may also be a form written in terms of variables baruvand (in
SETDEF) newaLue. For example, given the declaration

[ACCESSFNS FCO
((FI'RSTCHAR (NTHCHAR DATUM 1) (RPLSTRING DATUM 1 NEW/ALUE)) (RESTCHARS (SUBSTRI NG DATUM 2]

RECORDS AND DATA STRUCTURES

(replace (FOO FIRSTCHAR) of X with Y) would translate to (rerLsTRING X 1 V). Since no SETDEF is
given for the restcrars field, attempting to perform (replace (FOO RESTCHARS) of X with Y)
would generate an error, rRepl ace undefined for field. NoOte that accessrns do not have a create
definition. However, you may supply one in the defaults or subdeclarations of the
declaration, as described below. Attempting to create an accessrns record without
specifying a create definition will cause an error create not defined for this record.

ACCESSDEF and SETDEF can also be a property list which specify rast, stanoaro and
unboreLE versions of the accessens forms, e.g.
[ACCESSFNS LI TATOM
((DEF (STANDARD GETD FAST FGETD)
(STANDARD PUTD UNDQABLE / PUTD]
means if rast declaration is in effect, use reerp for fetching, if uxooasLe, use /putp for saving
(see CLISP declarations, see Chapter 21).

SETDEF forms should be written so that they return the new value, to be consistant with
RePLACE Operations for other record types. The rerLace does not enforce this, though.

accessens let you use data structures not specified by one of the built-in record types. For
example, one possible representation of a data structure is to store the fields in parallel
arrays, especially if the number of instances required is known, and they needn’t be
garbage collected. To implement i nk with two fields Frovand o, you’d have two arrays
FrovarrRAY and ToarraY. The representation of an “instance” of Lin would be an integer, used
to index into the arrays. This can be accomplished with the declaration:
[ACCESSFNS LI NK
((FROM (ELT FROVARRAY DATUM)
(SETA FROVARRAY DATUM NEW/ALUE))
(TO (ELT TOARRAY DATUM
(SETA TOARRAY DATUM NEW/ALUE)))
(CREATE (PROGL (SETQ LI NKCNT (ADD1 LI NKCNT))
(SETA FROVARRAY LI NKCNT FROM)
(SETA TOARRAY LI NKCNT TO)))
(INI'T (PROGN
(SETQ FROVARRAY (ARRAY 100))
(SETQ TOARRAY (ARRAY 100))
(SETQ LI NKCNT 0)]
To create a new LI Nk, a counter is incremented and the new elements stored. (Note: The

creaTe form given the declaration probably should include a test for overflow.)

Optional Record Specifications

After the RECORD- FI ELDS item in a record declaration expression there can be an arbitrary number
of additional expressions in RECORD- TAI L. These expressions can be used to specify default values
for record fields, special create and Tyre2 forms, and subdeclarations. The following expressions are
permitted:

FI ELD- NAME - FORM Allows you to specify within the record declaration the default value
to be stored in FI ELD- NAME by a create (if no value is given within the
creaTe expression itself). Note that FORMis evaluated at create time, not
when the declaration is made.

(create FORM Defines the manner in which create of this record should be
performed. This provides a way of specifying how accessens should be
created or overriding the usual definition of create. If FORM contains
the field-names of the declaration as variables, the forms given in the

8-7

INTERLISP-D REFERENCE MANUAL

8-8

anTt FORM

(tvre? FORM

(suBrecorD NAMVE .
DEFAULTS)

a subdeclaration

(synonvm FI ELD

creaTe operation will be substituted in. If the word patumappears in the
create form, the original create definition is inserted. This effectively
allows you to “advise” the create.

Specifies that FORMshould be evaluated when the record is declared.
FORM will also be dumped by the i~ Trecoros file package command
(see Chapter 17).

For example, see the example of an accessras record declaration above.
In this example, Frovarray and Toarray are initialized with an 1w 1 form.

Defines the manner in which Tyre> expressions are to be translated.
FORMmay either be an expression in terms of parumor a function of one
argument.

NAME must be a field that appears in the current declaration and the
name of another record. This says that, for the purposes of translating
CREATE expressions, substitute the top-level declaration of NAME for the
susrecorp form, adding on any defaults specified.

For example: Given (REcoRD B (E F @), (RECORD A (B C D) (SUBRECCRD B))
would be treated like (rRecoro A (B ¢ D) (RecorD B (E F ¢)) for the
purposes of translating create expressions.

If a record declaration expression occurs among the record
specifications of another record declaration, it is known as a
“subdeclaration.” Subdeclarations are used to declare that fields of a
record are to be interpreted as another type of record, or that the
record data object is to be interpreted in more than one way.

The RECORD- NAME of a subdeclaration must be either the RECORD-
NANME of its immediately superior declaration or one of the superior’s
field-names. Instead of identifying the declaration as with top level
declarations, the record-name of a subdeclaration identifies the parent
field or record that is being described by the subdeclaration.
Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaration (recoro NAME; NAME,) is a simple way of

defining a synonym for the field NAME, .

It is possible for a given field to have more than one subdeclaration.
For example, in

(RECORD FOO (A B) (RECORD A (C D)) (RECORD A (QR)))

(@ B and (c p are “overlayed,” i.e. (fetch Q of x and (fetch C of X
would be equivalent. In such cases, the first subdeclaration is the one
used by creaTE.

RECORDS AND DATA STRUCTURES

(SYN, ... SYN,)) FIELD must be a field that appears in the current declaration. This
defines SYN, ... SYN, all as synonyms of FI ELD. If there is only one
synonym, this can be written as (synonym FI ELD SYN).

(system If (system is included in a record declaration, this indicates that the
record is a “system” record rather than a “user” record. The only
distinction between the two types of records is that “user” record
declarations take precedence over “system” record declarations, in
cases where an unqualified field name would be considered
ambiguous. All of the records defined in the standard Medley system
are defined as system records.

CREATE

You can create recoros by hand if you like, using cons, uist, etc. But that defeats the whole point of
hiding implementation details. So much easier to use:

(create RECORD- NAME . ASSI GNVENTS)

creaTe translates into an appropriate Interlisp form that uses cons, LI sT, PUTHASH, ARRAY, €tC., to create the
new datum with the its fields initialized to the values you specify. ASSI GNMENTS is optional and may
contain expressions of the following form:

FI ELD- NAME - FORM Specifies initial value for FI ELD- NAME.

usine FORM FORMis an existing instance of RECORD- NAME. If you don’t specify a value
for some field, the value of the corresponding field in FORMis to be used.

corvi ng FORM Like using, but the corresponding values are copied (with copvacl).

reusi N6 FORM Like using, but wherever possible, the corresponding structure in FORM is
used.

svasHi NG FORM A new instance of the record is not created at all; rather, new field values are
smashed into FORM which create then returns.

When it makes a difference, Medley goes to great pains to make its translation do things in the same
order as the original create expression. For example, given the declaration (recoro cons (car . coR)), the
eXpression (create CONS CDR—X CAR—Y) Will translate to (cons v x), but (create cons cor—(FoO car—(FIE)) Will
translate to ((LAvBDA ($$1) (CONS (PROGN (SETQ $$1 (FOO)) (FIE)) $$1))) because rco might set some variables
used by FiE.

How are usinc and reusi ne different? (create RECORD reusing FORM ...) doesn’t do any destructive
operations on the value of FORM but will incorporate as much as possible of the old data structure into
the new one. On the other hand, (create RECORD using FORM .. .) will create a completely new data
structure, with only the contents of the fields re-used. For example, reusi NG & PRoPRECORD just conses the
new property names and values onto the list, while usine copies the top level of the list. Another
example of this distinction occurs when a field is elaborated by a subdeclaration: usine will create a
new instance of the sub-record, while reusi N6 will use the old contents of the field (unless some field of
the subdeclaration is assigned in the create expression.)

89

INTERLISP-D REFERENCE MANUAL

If the value of a field is neither explicitly specified, nor implicitly specified via usi N, copyi NG OF REUSI NG,
the default value in the declaration is used, if any, otherwise niL. (For setveen fields in patatyre records,
Ny is used; for other non-pointer fields zero is used.) For example, following (Recorp A (B c D) D < 3)

(create AB < T) ==> (LIST T NL 3)

(create A B < T using X) ==> (LIST T (CADR X) (CADDR X))

(create A B < T copying X)) ==> [LIST T (COPYALL (CADR X)) (COPYALL (CADDR X]
(create A B < T reusing X) ==> (CONS T (CDR X))

TYPE?

The record package allows you to test if a given datum “looks like” an instance of a record. This can
be done via an expression of the form (type» RECORD- NAVE FORM .

Tyre? is mainly intended for records with a record type of patatype Or TyPERECORD. FOr DATATYPES, the TyPE?
check is exact; i.e. the Tvre2 expression will return non-n L only if the value of FORMis an instance of the
record named by RECORD- NAME. For Typerecoros, the Tyre? expression will check that the value of FORM
is a list beginning with RECORD- NAME. For arravrecorDs, it checks that the value is an array of the
correct size. For proprECORDS and AssocrecorDS, @ TYPE? expression will make sure that the value of FORMis
a property/association list with property names among the field-names of the declaration.

There is no built-in type test for records of type accessrns, HasHLI Nk OF Recorp. Type tests can be defined
for these kinds of records, or redefined for the other kinds, by including an expression of the form
(tvrez COM in the record declaration (see the Record Declarations section below). Attempting to

execute a tvype? expression for a record that has no type test causes an error, Type? not inpl emented for this
record.

WITH

8-10

Often one wants to write a complex expression that manipulates several fields of a single record. The
wTH construct can make it easier to write such expressions by allowing one to refer to the fields of a
record as if they were variables within a lexical scope:

(vi th RECORD- NAME RECORD- | NSTANCE FORM, ... FORM))

RECORD- NAME is the name of a record, and RECORD- | NSTANCE is an expression which evaluates to
an instance of that record. The expressions FORM; ... FORM\ are evaluated so that references to

variables which are field-names of RECORD- NAME are implemented via rerct and sergs of those
variables are implemented via repLACE.

For example, given

(RECORD RECN (FLDL FLD2))
(SETQ INST (create RECN FLDL < 10 FLD2 < 20))

Then the construct
(with RECN I NST (SETQ FLD2 (PLUS FLD1 FLD2]

is equivalent to
(replace FLD2 of INST with (PLUS (fetch FLDL of INST) (fetch FLD2 of | NST]
Warning: wrH is implemented by doing simple substitutions in the body of the forms, without

regard for how the record fields are used. This means, for example, if the record roo is defined by
(RECORD FOO (POl NTERL POl NTER?)), then the form

(with FOO X (SELECTQ Y (PO NTERL PO NTERL) NiL]

RECORDS AND DATA STRUCTURES

will be translated as
(SELECTQ Y ((CAR X) (CAR X)) NIL]

Be careful that record field names are not used except as variables in the w T forms.

Defining New Record Types

In addition to the built-in record types, you can declare your own record types by performing the
following steps:

1. Add the new record-type to the value of cLi sPrREcoROTYPES.
2. Perform (movb ' rRecoro RECORD- TYPE) .

3. Put the name of a function which will return the translation on the property list of RECORD-
TYPE, as the value of the property userrecorotyrE. Whenever a record declaration of type
RECORD- TYPE is encountered, this function will be passed the record declaration as its
argument, and should return a new record declaration which the record package will then use
in its place.

Manipulating Record Declarations

(EDI TRECNAME COM . .. COV [NLambda NoSpread Function]

eni Trec calls the editor on a copy of all declarations in which NAME is the record name or a
field name. On exit, it redeclares those that have changed and undeclares any that have
been deleted. If NAMVE is nii, all declarations are edited.

CQM ... COV,are (optional) edit commands.

When you redeclare a global record, the translations of all expressions involving that record or any of
its fields are automatically deleted from cuisearray, and thus will be recomputed using the new
information. If you change a local record declaration (see Chapter 21), or change some other CLISP
declaration (see Chapter 21), e.g., stanoarp to rast, and wish the new information to affect record
expressions already translated, you must make sure the corresponding translations are removed,
usually either by cLi spi rving or using the owedit macro.

(RECLOOK RECNAME —— [Function]

Returns the entire declaration for the record named RECNAME; niL if there is no record
declaration with name RECNAVE. Note that the record package maintains internal state
about current record declarations, so performing destructive operations (e.g. nconc) on the
value of recLax may leave the record package in an inconsistent state. To change a record
declaration, use eo TrRec.

(FI ELDLOXK FI ELDNANE) [Function]
Returns the list of declarations in which FI ELDNANME is the name of a field.

(RECORDFI ELDNAMES RECORDNAME —- [Function]

Returns the list of fields declared in record RECORDNAME. RECORDNANME may either be a
name or an entire declaration.

811

INTERLISP-D REFERENCE MANUAL

(RECORDACCESS FI ELD DATUMDEC TYPE NEW/ALUE) [Function]

TYPE is one of FercH, REPLACE, FFETCH, FREPLACE, /REPLACE Or their lowercase equivalents.
TYPE=nL means retcH. If TYPE corresponds to a fetch operation, i.e. is FeTcH, Or FFETCH,
recoroaccess performs (TYPE FIELD o DATUM. If TYPE corresponds to a replace,
rRecorpaccess performs (TYPE FI ELD of DATUM with NEW/ALUE). DEC is an optional
declaration; if given, FI ELDis interpreted as a field name of that declaration.

Note that recoroaccess is relatively inefficient, although it is better than constructing the
equivalent form and performing an evaL.
(RECORDACCESSFORMFI ELD DATUM TYPE NEW/AL UE) [Function]

Returns the form that would be compiled as a result of a record access. TYPE is one of
FETCH, REPLACE, FFETCH, FREPLACE, / REPLACE OF their lowercase equivalents. TYPE=n L means rercH.

Changetran

812

Often, you’ll want to assign a new value to some datum that is a function of its current value:
Incrementing a counter: (setQ x (I1PLUS X 1))

Pushing an item on the front of a list: (setQ x (cons v X))

Popping an item off a list: (ProGL (cAR %) (SETQ X (CDR %))

Those are simple when you’re working with a variable; it gets complicated when you’re working with
structured data. For example, if you want to modify (car x), the above examples would be:

(CAR (RPLACA X (1PLUS (CAR X) 1)))

(CAR (RPLACA X (CONS Y (CAR X)))

(PROGL (CAAR X) (RPLACA X (CDAR X)))
and if you’re changing an element in an array, (LT A N, the examples would be:

(SETA A N (1PLUS (ELT A N) 1)))

(SETA AN (CONS Y (ELT A N))))

(PROGL (CAR (ELT A N)) (SETA A N (CDR (ELT A N))))
Changetran is designed to provide a simpler way to express these common (but user-extensible)
structure modifications. Changetran defines a set of CLISP words that encode the kind of
modification to take place—pushing on a list, adding to a number, etc. More important, you only
indicate the item to be modified once. Thus, the “change word” aop is used to increase the value of a
datum by the sum of a set of numbers. Its arguments are the datum, and a set of numbers to be added
to it. The datum must be a variable or an accessing expression (envolving FeTcH, caR, LAsT, ELT, etc) that
can be translated to the appropriate setting expression.

For example, (aop x 1) is equivalent to:
(SETQ X (PLUS X 1))

and (App (cADDR X) (FOO)) IS equivalent to:
(CAR (RPLACA (CDDR X) (PLUS (FOO) (CADDR X)))

If the datum is a complicated form involving function calls, such as (LT (Foo x (FIE v))), Changetran
goes to some lengths to make sure that those subsidiary functions are evaluated only once, even
though they are used in both the setting and accessing parts of the translation. You can rely on the
fact that the forms will be evaluated only as often as they appear in your expression.

RECORDS AND DATA STRUCTURES

For ~op and all other changewords, the lowercase version (add, etc.) may also be specified. Like other
CLISP words, change words are translated using all CLISP declarations in effect (see Chapter 21).

The following is a list of those change words recognized by Changetran. Except for POP, the value of
all built-in changeword forms is defined to be the new value of the datum.

(ADD DATUMI TEM, | TEM, . . .) [Change Word]

Adds the specified items to the current value of the datum, stores the result back in the
datum location. The translation will use ipLus, pLus, Or FrLus according to the CLISP
declarations in effect (see Chapter 21).

(PUSH DATUMI TEM, | TEM, ...) [Change Word]

conses the items onto the front of the current value of the datum, and stores the result back
in the datum location. For example, (pust x A B) would translate as (setQ x (covs A (cons B
X)) -

(PUSHNEWDATUM | TEM [Change Word]

Like pust (with only one item) except that the item is not added if it is already rvens of the
datum’s value.

Note that, whereas (car (pusH x ' Fog) will always be Foo, (car (Pustnew x * Foo) might be
something else if rooalready existed in the middle of the list.

(PUSHLI ST DATUMI TEM | TEM, . . .) [Change Word]

Similar to pusH, except that the items are appenoed in front of the current value of the datum.
For example, (pusHLi sT x A B) translates as (SETQ x (APPEND A B X)) .

(POP DATUM [Change Word]

Returns car of the current value of the datum after storing its cor into the datum. The
current value is computed only once even though it is referenced twice. Note that this is
the only built-in changeword for which the value of the form is not the new value of the
datum.

(SWAP DATUM, DATUM,) [Change Word]
Sets DATUM, to DATUM, and vice versa.

(CHANGE DATUM FORM [Change Word]

This is the most flexible of all change words: You give an arbitrary form describing what
the new value should be. But it still highlights the fact that structure modification is
happening, and still lets the datum appear only once. cHanee sets DATUMto the value of
FORM, where FORM is constructed from FORMby substituting the datum expression for
every occurrence of the symbol patuw For example,

(CHANGE (CAR X) (I TIMES DATUM 5))

translates as

8-13

INTERLISP-D REFERENCE MANUAL

(CAR (RPLACA X (I TIMES (CAR X) 5))).

cHance is useful for expressing modifications that are not built-in and are not common
enough to justify defining a user-changeword.

You can define new change words. To define a change word, say sub, that subtracts items from the
current value of the datum, you must put the property cui spworp, value (cHanceTran . sub) on both the
upper- and lower-case versions of sub:

(PUTPROP ' SUB ’ CLI SPWORD ' (CHANGETRAN . sub))

(PUTPROP ' sub ’ CLI SPWORD ' (CHANGETRAN . sub))
Then, you must put (on the lower-case version of sub only) the property cianceworn, with value FN. FNis
a function that will be applied to a single argument, the whole sub form, and must return a form that
Changetran can translate into an appropriate expression. This form should be a list structure with the
symbol patum used whenever you want an accessing expression for the current value of the datum to
appear. The form (paruw- FORM (note that patum— is a single symbol) should occur once in the
expression; this specifies that an appropriate storing expression into the datum should occur at that
point. For example, sub could be defined as:

(PUTPROP * sub ’* CHANGEWORD
* (LAVBDA (FORM)
(LI'ST * DATUM—
(LI'ST | DI FFERENCE
' M

DATU
(CONS "I PLUS (CDDR FORM)))))

If the expression (sub (car x) A B) were encountered, the arguments to SUB would first be dwimified,
and then the crianceworo function would be passed the list (sub (car x A B, and return (patum—
(1Dl FFERENCE DATUM (1PLUS A B))), Which Changetran would convert to (car (RPLACA X (1Dl FFERENCE (CAR X)
(IPLUS A B)))).

Note: The sub changeword as defined above will always use 1 b Frerence and 1 pLus; add USes the correct
addition operation depending on the current CLISP declarations (see Chapter 21).

Built-In and User Data Types

8-14

Medley is a system for manipulating various kinds of data; it comes with a large set of built-in data
types, which you can use to represent a variety of abstract objects; you can also define additional “user
data types” that you can manipulate exactly like built-in data types.

Each data type in Medley has an associated “type name,” a symbol. Some of the type names of built-
in data types are: LiTATOM LI STP, STRINGP, ARRAYP, STACKP, SMALLP, FI xP, and FLoatp. For user data types, the
type name is specified when the data type is created.

(DATATYPES —) [Function]

Returns a list of all type names currently defined.

(USERDATATYPES) [Function]

Returns list of names of currently declared user data types.

(TYPENAME DATUM [Function]
Returns the type name for the data type of DATUM

RECORDS AND DATA STRUCTURES

(TYPENAMEP DATUMTYPE) [Function]
Returns 1 if DATUMis an object with type name equal to TYPE, otherwise ni L.

In addition to built-in data-types like symbols, lists, arrays, etc., Medley provides a way to define
completely new classes of objects, with a fixed number of fields determined by the definition of the
data type. To define a new class of objects, you must supply a name for the new data type and
specifications for each of its fields. Each field may contain either a pointer (i.e., any arbitrary Interlisp
datum), an integer, a floating point number, or an N-bit integer.

Note: The most convenient way to define new user data types is via paratyre record declarations (see
Chapter 8) which call the following functions.
(DECLAREDATATYPE TYPENAME FI ELDSPECS —) [Function]

Defines a new user data type, with the name TYPENAME. FI ELDSPECS is a list of “field
specifications.” Each field specification may be one of the following:

pa NTER Field may contain any Interlisp datum.
rxp Field contains an integer.
rLoatp Field contains a floating point number.
(sits Ny Field contains a non-negative integer less than 2N
svre Equivalent to (eiTs 8).
worp Equivalent to (BiTs 16).
siaxebworp Field contains a 16 bit signed integer.

DECLAREDATATYPE Feturns a list of “field descriptors,” one for each element
of FI ELDSPECS. A field descriptor contains information about where
within the datum the field is actually stored.

If FI ELDSPECS is nt, TYPENAME is “undeclared.” If TYPENAME is
already declared as a data type, it is undeclared, and then re-declared
with the new FI ELDSPECS. An instance of a data type that has been
undeclared has a type name of **peaLLac*.

(FETCHFI ELD DESCRI PTOR DATUM [Function]

Returns the contents of the field described by DESCRI PTOR from DATUM DESCRI PTOR
must be a “field descriptor” as returned by pecLARepaTATYPE OF ceToESCR PToRS. |f DATUMIS not
an instance of the datatype of which DESCRI PTOR is a descriptor, causes error patum of

incorrect type.

(REPLACEFI ELD DESCRI PTOR DATUM NEVWAL UE) [Function]

Store NEWVAL UE into the field of DATUMdescribed by DESCRI PTOR. DESCRI PTOR must
be a field descriptor as returned by oecarepatatyre. If DATUM is not an instance of the

8-15

INTERLISP-D REFERENCE MANUAL

8-16

datatype of which DESCRI PTOR is a descriptor, causes error patum of incorrect type. Value
is NEWVAL UE.
(NCREATE TYPE OLDOBJ) [Function]

Creates and returns a new instance of datatype TYPE.

If OLDOBJ is also a datum of datatype TYPE, the fields of the new object are initialized to
the values of the corresponding fields in OLDOBJ.

ncreaTe Will not work for built-in datatypes, such as arrave, strinee, etc. If TYPE is not the
type name of a previously declared user data type, generates an error, i11egal data type.
(GETFI ELDSPECS TYPENAME) [Function]
Returns a list which is equaL to the FI ELDSPECS argument given to pecLarepatatyre for
TYPENAME; if TYPENAME is not a currently declared data-type, returns ni L.
(GETDESCRI PTORS TYPENANME) [Function]

Returns a list of field descriptors, equa. to the value of pecLarepataryre for TYPENAME. If
TYPENAME is not an atom, (tvrenave TYPENANE) is used.

You can define how a user data type prints, using oerprinT (See Chapter 25), how they are to be
evaluated by the interpreter via oereval (See Chapter 10), and how they are to be compiled by the
compiler via covei LETYPELST (See Chapter 18).

8-17

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

8-18

9. LISTS AND ITERATIVE STATEMENTS

Medley gives you a large number of predicates, conditional functions, and control functions. Also,
there is a complex “iterative statement” facility which allows you to easily create complex loops and
iterative constructs.

Data Type Predicates

Medley provides separate functions for testing whether objects are of certain commonly-used types:
(LI TATOM X) [Function]

Returns T if X is a symbol; NI L otherwise. Note that a number is not a symbol.

(SMALLP X) [Function]
Returns X if X is a small integer; NI L otherwise. (The range of small integers is -65536 to
+65535.

(FI XP X) [Function]

Returns X if X is a small or large integer; NI L otherwise.

(FLOATP X) [Function]
Returns X if X is a floating point number; NI L otherwise.

(NUMBERP X) [Function]
Returns X if X is a number of any type, NI L otherwise.

(ATOM X) [Function]
Returns T if X is an atom (i.e. a symbol or a number); NI L otherwise.

(ATOM X) is NIL if X is an array, string, etc. In Common Lisp, CL: ATOM is defined
equivalent to the Interlisp function NLI STP.

(LI STP X) [Function]
Returns X if Xis a list cell (something created by CONS); NI L otherwise.

(NLI STP X) [Function]
(NOT (LI STP X)). Returns T if Xis not a list cell, NI L otherwise.

(STRINGP X) [Function]
Returns X if X is a string, NI L otherwise.

(ARRAYP X) [Function]
Returns Xif Xis an array, NI L otherwise.

(HARRAYP X) [Function]

Returns X if it is a hash array object; otherwise NI L.

9-1

INTERLISP-D REFERENCE MANUAL

HARRAYP returns NI L if X is a list whose CAR is an HARRAYP, even though this is accepted
by the hash array functions.

Note: The empty list, () or NI L, is considered to be a symbol, rather than a list.
Therefore, (LI TATOM NIL) = (ATOM NIL) = Tand (LISTP NIL) = N L. Take
care when using these functions if the object may be the empty list NI L.

Equality Predicates

9-2

Sometimes, there is more than one type of equality. For instance, given two lists, you can ask whether
they are exactly the same object, or whether they are two distinct lists that contain the same elements.
Confusion between these two types of equality is often the source of program errors.

(EQ XY) [Function]

Returns T if X and Y are identical pointers; NI L otherwise. EQ should not be used to
compare two numbers, unless they are small integers; use EQP instead.

(NEQ X) [Function]

The same as (NOT (EQ X Y))

(NULL X) [Function]
(NOT X) [Function]

The same as (EQ X NIL)

(EQP XY) [Function]

Returns T if X and Y are EQ or if X and Y are numbers and are equal in value; NI L
otherwise. For more discussion of EQP and other number functions, see Chapter 7.

EQP also can be used to compare stack pointers (Section 11) and compiled code (Chapter
10).

(EQUAL XY) [Function]

EQUAL returns T if Xand Y are one of the following:

1. EQ

2. EQP, i.e., numbers with equal value

3. STREQUAL, i.e., strings containing the same sequence of characters

4. Lists and CAR of X is EQUAL to CARof Y, and CDR of X is EQUAL to CDRof Y

EQUAL returns NI L otherwise. Note that EQUAL can be significantly slower than EQ

A loose description of EQUAL might be to say that X and Y are EQUAL if they print out the
same way.

(EQUALALL XY) [Function]

Like EQUAL, except it descends into the contents of arrays, hash arrays, user data types,
etc. Two non-EQarrays may be EQUALALL if their respective componants are EQUALALL.

CONDITIONALS AND ITERATIVE STATEMENTS

Note: In general, EQUALALL descends all the way into all datatypes, both those you’ve
defined and those built into the system. If you have a data structure with fonts and
pointers to windows, EQUALALL will descend those also. If the data structures are
circular, as windows are, EQUALALL can cause stack overflow.

Logical Predicates

(AND X; X5 ... X0 [NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that are evaluated in order. If
any argument evaluates to NI L, AND immediately returns NI L, without evaluating the
remaining arguments. If all of the arguments evaluate to non-NI L, the value of the last
argumentis returned. (AND) => T.

(OR X X ... XY [NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that are evaluated in order. If
any argument is non-Nl L, the value of that argument is returned by OR (without
evaluating the remaining arguments). If all of the arguments evaluate to NI L, NI L is
returned. (OR) => NI L.

AND and OR can be used as simple logical connectives, but note that they may not evaluate all of their
arguments. This makes a difference if some of the arguments cause side-effects. This also means you
can use AND and OR as simple conditional statements. For example: (AND (LI STP X) (CDR X))
returns the value of (CDR X) if X is a list cell; otherwise it returns NI L without evaluating (CDR X) .
In general, you should avoid this use of AND and OR in favor of more explicit conditional statements in
order to make programs more readable.

COND Conditional Function

(COND CLAUSE; CLAUSE, ... CLAUSE)) [NLambda NoSpread Function]

COND takes an indefinite number of arguments, called clauses. Each CLAUSE; is a list of
the form (P, G, ... G\, where P, is the predicate, and G, ... G are the
consequents. The operation of COND can be paraphrased as:

IFP, THENC, ... C\ ELSEIF P, THENGC,, ... Cy ELSEIF P, ...

The clauses are considered in sequence as follows: The predicate P, of the clause
CLAUSE; is evaluated. If the value of P; is “true” (non-NI L), the consequents G ;

G y are evaluated in order, and the value of the COND is the value of the last expression in
the clause. If P, is “false” (EQto NI L), then the remainder of CLAUSE; is ignored, and the
next clause, CLAUSE; ., is considered. If no P; is true for any clause, the value of the COND
isNI L.

If a clause has no consequents, and has the form (P,), then if P; evaluates to non-NI L, it is
returned as the value of the COND. It is only evaluated once.

Example:

«(DEFI NEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

9-3

INTERLISP-D REFERENCE MANUAL

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))

(T (PRINT "unknown") X)

((HORRI BLE- ERROR))]
(DOUBLE)

—(DOUBLE 5)
10

«—(DOUBLE "FOO')
" FOOFQO'

«—(DOUBLE ’ BAR)
BARBAR

<—(DOUBLE ' (A B Q)
"unknown"
(ABO

A few points about this example: Notice that 5 is both a number and an atom, but it is
“caught” by the NUMBERP clause before the ATOM clause. Also notice the predicate T,
which is always true. This is the normal way to indicate a COND clause which will always
be executed (if none of the preceeding clauses are true). (HORRI BLE- ERROR) will never
be executed.

The IF Statement

9-4

The | F statement lets you write conditional expressions that are easier to read than using COND
directly. CLISP translates expressions using | F, THEN, ELSEI F, or ELSE (or their lowercase versions)
into equivalent CONDs. In general, statements of the form:

(if AAA then BBB el seif CCC then DDD el se EEE)

are translated to:
(COND (AAA BBB)

The segment between | F or ELSEI F and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSEI F as the consequent(s). ELSE is the same
as ELSEI F T THEN. These words are spelling corrected using the spelling list CLI SPI FWORDSPLST.
You may also use lower-case versions (i f ,t hen, el sei f, el se).

If there is nothing following a THEN, or THEN is omitted entirely, the resulting COND clause has a
predicate but no consequent. For example, (i f X then elseif ...)and(if X elseif ...)
both translate to (COND (X) ...)—if Xisnot NI L, itis returned as the value of the COND.

Each predicate must be a single expression, but multiple expressions are allowed as the consequents
after THEN or ELSE. Multiple consequent expressions are implicitely wrapped in a PROGN, and the
value of the last one is returned as the value of the consequent. For example:

(if X then (PRINT "FOO') (PRINT "BAR') elseif Y then (PRI NT "BAZ"))

CONDITIONALS AND ITERATIVE STATEMENTS

Selection Functions

(SELECTQ X CLAUSE,; CLAUSE, . .. CLAUSE,

DEFAULT) [NLambda NoSpread Function]
Selects a form or sequence of forms based on the value of X. Each clause CLAUSE; is a list
oftheform (S, G, ... Gy whereS isthe selection key. Think of SELECTQas:

IF X=S THEN C,; ... Cy\ ELSEIF X =S,
THEN ... ELSE DEFAULT
If S; is a symbol, the value of X is tested to see if it is EQto S; (which is not evaluated). If
so, the expressions G ; ... G \are evaluated in sequence, and the value of the SELECTQ
is the value of the last expression.

If S; is a list, the value of X is compared with each element (not evaluated) of S, and if X is
EQto any one of them, then G, ... G ,are evaluated as above.

If CLAUSE; is not selected in one of the two ways described, CLAUSE,; ,, is tested, etc., until
all the clauses have been tested. If none is selected, DEFAULT is evaluated, and its value is
returned as the value of the SELECTQ DEFAULT must be present.

An example of the form of a SELECTQis:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 el se 28))
((SEPTEMBER APRI L JUNE NOVEMBER) 30) 31]

If the value of MONTH is the symbol FEBRUARY, the SELECTQreturns 28 or 29 (depending
on (LEAPYEARP)); otherwise if MONTH is APRI L, JUNE, SEPTEMBER, or NOVEMBER, the
SELECTQreturns 30; otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it will not work if the value
of X is a list, a large integer, or floating point number, since SELECTQ uses EQ for all
comparisons.

SEL CHARQ (Chapter 2) is a version of SELECTQthat recognizes CHARCODE symbols.

(SELECTC X CLAUSE; CLAUSE, . .. CLAUSE,
DEFAULT) [NLambda NoSpread Function]

“ SELECTQ-on-Constant.” Like SELECTQ but the selection keys are evaluated, and the
result used as a SELECTQstyle selection key.

SELECTC is compiled as a SELECTQ with the selection keys evaluated at compile-time.
Therefore, the selection keys act like compile-time constants (see Chapter 18).

For example:

[SELECTC NUM
((for X from1 to 9 collect (TIMES X X)) "SQUARE') "H P"]

compiles as:

(SELECTQ NUM
((1 479 16 25 36 49 64 81) "SQUARE") "HIP")

9-5

INTERLISP-D REFERENCE MANUAL

PROG and Associated Control Functions

(PROGL X; X5 ... Xy [NLambda NoSpread Function]

Evaluates its arguments in order, and returns the value of its first argument X;. For
example, (PROGL X (SETQ X Y)) sets Xto Y, and returns X’s original value.

(PRO& X; X, ... Xy [NoSpread Function]

Like PROGL. Evaluates its arguments in order, and returns the value of its second
argument X,.

(PROGN X; X5 ... XN [NLambda NoSpread Function]

PROGN evaluates each of its arguments in order, and returns the value of its last argument.
PROGN is used to specify more than one computation where the syntax allows only one,
e.g., (SELECTQ ... (PROGN ...)) allows evaluation of several expressions as the
default condition for a SELECTQ.

(PROG VARLSTE, E, ... E) [NLambda NoSpread Function]

Lets you bind some variables while you execute a series of expressions. VARLST is a list of
local variables (must be NI L if no variables are used). Each symbol in VARLST is treated
as the name of a local variable and bound to NI L. VARLST can also contain lists of the
form (NAME FORM . In this case, NAME is the name of the variable and is bound to the
value of FORM The evaluation takes place before any of the bindings are performed, e.g.,
(PROG ((X Y) (Y X)) ...) will bind local variable X to the value of Y (evaluated
outside the PROG) and local variable Y to the value of X (outside the PROG). An attempt to
use anything other than a symbol as a PROG variable will cause an error, Arg not
symbol. An attempt to use NI L or T as a PROG variable will cause an error, Att empt to
bind NIL or T.

The rest of the PROGis a sequence of forms and symbols (labels). The forms are evaluated
sequentially; the labels serve only as markers. The two special functions, GOand RETURN,
alter this flow of control as described below. The value of the PROGis usually specified by
the function RETURN. If no RETURN is executed before the PROG “falls off the end,” the
value of the PROGis NI L.

(G0L) [NLambda NoSpread Function]

0O is used to cause a transfer in a PROG (GO L) will cause the PROG to evaluate forms
starting at the label L (GO does not evaluate its argument). A GOcan be used at any level
in a PROG If the label is not found, GO will search higher progs within the same function,

eg.,(PROG ... A... (PROG ... (GO A))). Ifthe label is not found in the function
in which the PROGappears, an error is generated, Undefi ned or illegal GO
(RETURN X) [Function]

A RETURN is the normal exit for a PROG Its argument is evaluated and is immediately
returned the value of the PROGin which it appears.

9-6

CONDITIONALS AND ITERATIVE STATEMENTS

Note: If a GOor RETURN is executed in an interpreted function which is not a PROG the
GO or RETURN will be executed in the last interpreted PROG entered if any, otherwise
cause an error.

@O or RETURN inside of a compiled function that is not a PROG is not allowed, and will
cause an error at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to SORT, will not work
compiled. Also, since NLSETQs and ERSETQs compile as separate functions, a GO or
RETURN cannot be used inside of a compiled NLSETQ or ERSETQ if the corresponding
PROGis outside, i.e., above, the NLSETQor ERSETQ.

(LET VARLSTE, E,... Ey [Macro]

LET is essentially a PROG that can’t contain GO's or RETURN's, and whose last form is the
returned value.

(LET* VARLSTE, E,... Ey [Macro]
(PROG* VARLSTE, E, ... E) [Macro]

LET* and PROG* differ from LET and PROG only in that the binding of the bound
variables is done “sequentially.” Thus

(LET* ((A (LIST 5))
(B (LIST A'A)))
(EQ A (CADR B)))

would evaluate to T; whereas the same form with LET might find A an unbound variable
when evaluating (LI ST A A).

The Iterative Statement

The various forms of the iterative statement (i.s.) let you write complex loops easily. Rather than
writing PROG MAPC, MAPCAR etc., let Medley do it for you.

An iterative statement is a form consisting of a number of special words (known as i.s. operators or
i.s.oprs), followed by operands. Many is.oprs (FOR, DO, WH LE, etc.) act like loops in other
programming languages; others (COLLECT, JO N, | N, etc.) do things useful in Lisp. You can also use
lower-case versions of i.s.oprs (do, col | ect , etc.).

<~ (for Xfrom1l to 5 do (PRINT 'FOO))
FOO
FOO
FOO
FOO
FOO
NI L

<—(for Xfrom2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100)

—(for Xin'(AB1C®6.5NL (45)) count (NUVBERP X))
2

Iterative statements are implemented using CLISP, which translates them into the appropriate PROGs,
MAPCARS, etc. They’re are translated using all CLISP declarations in effect (standard/fast/undoable/

9-7

INTERLISP-D REFERENCE MANUAL

9-8

etc.); see Chapter 21. Misspelled i.s.oprs are recognized and corrected using the spelling list
CLI SPFORWORDSPLST. Operators can appear in any order; CLISP scans the entire statement before it
begins to translate.

If you define a function with the same name as an i.s.opr (WHI LE, TQ, et c.), that i.s.opr will no longer
cause looping when it appears as CAR of a form, although it will continue to be treated as an i.s.opr if
it appears in the interior of an iterative statement. To alert you, a warning message is printed, e.g.,
(Whil e defined, therefore disabled in CLISP).

I.S. Types
Every iterative statement must have exactly one of the following operators in it (its “is.stype”), to
specify what happens on each iteration. Its operand is called the “body” of the iterative statement.

DO FORMB [I.S. Operator]

Evaluate FORMS at each iteration. DOwith no other operator specifies an infinite loop. If
some explicit or implicit terminating condition is specified, the value of the loop is NI L.
Translates to MAPC or MAP whenever possible.

COLLECT FORM [I.S. Operator]

The value of FORMat each iteration is collected in a list, which is returned as the value of
the loop when it terminates. Translates to MAPCAR, MAPLI ST or SUBSET whenever
possible.

When COLLECT translates to a PROG (if UNTI L, WHI LE, etc. appear in the loop), the
translation employs an open TCONC using two pointers similar to that used by the
compiler for compiling MAPCAR. To disable this translation, perform (CLDI SABLE
" FCOLLECT) .

JO N FORM [I.S. Operator]

FORM returns a list; the lists from each iteration are concatenated using NCONC, forming
one long list. Translates to MAPCONC or MAPCON whenever possible. / NCONC, / MAPCONC,
and / MAPCON are used when the CLISP declaration UNDOABLE is in effect.

SUMFORM [I.S. Operator]

The values of FORMfrom each iteration are added together and returned as the value of
the loop, e.g., (for | from 1 to 5 sum (TIMES | 1)) returns 1+4+9+16+25 =
55. 1 PLUS, FPLUS, or PLUS will be used in the translation depending on the CLISP
declarations in effect.

COUNT FORM [I.S. Operator]

Counts the number of times that FORMis true, and returns that count as the loop’s value.

ALVAYS FORM [I.S. Operator]

Returns T if the value of FORMis non-NI L for all iterations. Note: Returns NI L as soon as
the value of FORMis NI L).

CONDITIONALS AND ITERATIVE STATEMENTS

NEVER FORM [I.S. Operator]

Like ALWAYS, but returns T if the value of FORMis never true. Note: Returns NI L as soon
as the value of FORMis non-NI L.

Often, you’ll want to set a variable each time through the loop; that’s called the “iteration variable”, or
i.v. for short. The following i.s.types explicitly refer to the i.v. This is explained below under FOR

THEREI S FORM [I.S. Operator]

Returns the first value of the i.v. for which FORMis non-NI L, e.g.,, (for X in Y
therei s (NUMBERP X)) returns the first numberin Y.

Note: Returns the value of the i.v. as soon as the value of FORMis non-NI L.
LARGEST FORM [I.S. Operator]
SVALLEST FORM [I.S. Operator]

Returns the value of the i.v. that provides the largest/smallest value of FORM
$SEXTREME is always bound to the current greatest/smallest value, $$VAL to the value of
the i.v. from which it came.

Iteration Variable I.s.oprs
You’ll want to bind variables to use during the loop. Rather than putting the loop inside a PROG or
LET, you can specify bindings like so:
Bl ND VAR [I.S. Operator]
Bl ND VARS [I.S. Operator]
Used to specify dummy variables, which are bound locally within the i.s.
Note: You can initialize a variable VAR by saying VAR<—FORM
(bind HEIGHT <= O VEIGHT < 0 for SOLDIER in ...)

To specify iteration variables, use these operators:

FOR VAR [I.S. Operator]

Specifies the iteration variable (i.v.) that is used in conjunction with | N, ON, FROM TQO and
BY. The variable is rebound within the loop, so the value of the variable outside the loop
is not affected. Example:

—(SETQ X 55)
55

<—(for Xfrom1l to 5 collect (TIMES X X))
(1 49 16 25)

X
55

FOR OLD VAR [I.S. Operator]

Like FOR, but VAR s not rebound, so its value outside the loop is changed. Example:
< (SETQ X 55)
55

9-9

INTERLISP-D REFERENCE MANUAL

<—(for old X from1l to 5 collect (TIMES X X))
(149 16 25)

X
6

FOR VARS [I.S. Operator]

VARS a list of variables, e.g., (for (X Y Z) in ...). The first variable is the i.v., the
rest are dummy variables. See Bl ND above.

I NFORM [I.S. Operator]

FORM must evaluate to a list. The i.v. is set to successive elements of the list, one per
iteration. For example, (for X in Y do ...) correspondsto (MAPC Y (FUNCTI ON
(LAMBDA (X) ...))). Ifnoi.v. has been specified, a dummy is supplied, e.g., (in Y
col I ect CADR) isequivalentto (MAPCAR Y (FUNCTI ON CADR)) .

ON FORM [I.S. Operator]

Same as | N, but the i.v. is reset to the corresponding tail at each iteration. Thus | N
corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to MAP, MAPLI ST,
and MAPCON.

<—(for Xon '(ABC do (PRINT X))

(ABCO

(B Q)

(9

NI L
Note: For both | Nand ON, FORMis evaluated before the main part of the i.s. is entered, i.e.
outside of the scope of any of the bound variables of the i.s. For example, (for X bi nd
(Y<=" (1 2 3)) in Y ...) will map down the list which is the value of Y evaluated
outside of thei.s.,, not (1 2 3).

IN OLD VAR [I.S. Operator]
Specifies that the i.s. is to iterate down VAR with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (for X in old L do ... wuntil

.. .) finishes, L will be some tail of its original value.

IN OLD (VAR<-FORM [I.S. Operator]
Same as | NOLD VAR, except VAR is first set to value of FORM

ON OLD VAR [I.S. Operator]

Same as | N OLD VAR except the i.v. is reset to the current value of VAR at each iteration,
instead of to (CAR VAR) .

ON OLD (VAR<FORM [I.S. Operator]
Same as ON OLD VAR, except VAR is first set to value of FORM

9-10

CONDITIONALS AND ITERATIVE STATEMENTS

I NSI DE FORM [I.S. Operator]

Like I N, but treats first non-list, non-NI L tail as the last element of the iteration, e.g.,
INSIDE ' (A B C D . E) iterates five times with the i.v. set to E on the last iteration.
I NSI DE ' Ais equivalentto | NSI DE ' (A), which will iterate once.

FROM FORM [I.S. Operator]

Specifies the initial value for a numerical i.v. The i.v. is automatically incremented by 1
after each iteration (unless BY is specified). If no i.v. has been specified, a dummy i.v. is
supplied and initialized, e.g.,, (from 2 to 5 col |l ect SQRT) returns (1.414 1.732
2.0 2.236).

TOFORM [I.S. Operator]

Specifies the final value for a numerical i.v. If FROMis not specified, the i.v. is initialized
to 1. If no i.v. has been specified, a dummy i.v. is supplied and initialized. If BY is not
specified, the i.v. is automatically incremented by 1 after each iteration. When the i.v. is
definitely being incremented, i.e., either BY is not specified, or its operand is a positive
number, the i.s. terminates when the i.v. exceeds the value of FORM Similarly, when the
i.v. is definitely being decremented the i.s. terminates when the i.v. becomes less than the
value of FORM(see description of BY).

FORM is evaluated only once, when the i.s. is first entered, and its value bound to a
temporary variable against which the i.v. is checked each interation. If the user wishes to
specify an i.s. in which the value of the boundary condition is recomputed each iteration,
he should use WHI LE or UNTI L instead of TO.

When both the operands to TO and FROM are numbers, and TOs operand is less than
FROMs operand, the i.v. is decremented by 1 after each iteration. In this case, the i.s.
terminates when the i.v. becomes less than the value of FORM For example, (from 10
to 1 do PRI NT) prints the numbers from 10 down to 1.

BY FORM (without | Nor ON) [I.S. Operator]

If you aren’t using | N or ON, BY specifies how the i.v. itself is reset at each iteration. If
you’re using FROMor TG, the i.v. is known to be numerical, so the new i.v. is computed by
adding the value of FORM(which is reevaluated each iteration) to the current value of the
iv,eg., (for Nfrom1l to 10 by 2 collect N makes a list of the first five odd
numbers.

If FORM s a positive number (FORM itself, not its value, which in general CLISP would
have no way of knowing in advance), the loop stops when the value of the i.v. exceeds the
value of TOs operand. If FORMis a negative number, the loop stops when the value of the
i.v. becomes less than TOs operand, e.g., (for | from N to M by -2 until

(LESSP I M ...). Otherwise, the terminating condition for each iteration depends on
the value of FORMfor that iteration: if FORMKO, the test is whether the i.v. is less than TO's
operand, if FORM>0 the test is whether the i.v. exceeds TOs operand; if FORM = 0, the
loop terminates unconditionally.

9-11

INTERLISP-D REFERENCE MANUAL

9-12

If you didn’t use FROMor TOand FORMis not a number, the i.v. is simply reset to the value
of FORMafter each iteration, e.g., (for | from N by (FOO ...) sets| to the value
of (FOO) on each loop after the first.

BY FORM (with | Nor ON) [I.S. Operator]

If you did use | N or ON, FORMs value determines the tail for the next iteration, which in
turn determines the value for the i.v. as described earlier, i.e., the new i.v. is CAR of the tail
for I N, the tail itself for ON. In conjunction with | N, you can refer to the current tail within
FORMby using the i.v. or the operand for | NV ON, e.g., (for Z in L by (CDDR 2)
...)yor(for Z in L by (CDDR L) ...).Attranslation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout FORM For example, (for X in Y by (CDR (MEMB 'FOO (CDR X)))
col | ect X) specifies that after each iteration, CDR of the current tail is to be searched for
the atom FOO, and (CDR of) this latter tail to be used for the next iteration.

AS VAR [I.S. Operator]

Lets you have more than one i.v. for a single loop, e.g.,, (for X in Y as U in V do
...) moves through the lisps Y and V in parallel (see MAP2C). The loop ends when any of
the terminating conditions is met, e.g.,, (for X in Y as | from1 to 10 coll ect
X) makes a list of the first ten elements of Y, or however many elements there are on Y if
less than 10.

The operand to AS, VAR, specifies the new i.v. For the remainder of the i.s., or until
another AS is encountered, all operators refer to the new i.v. For example, (for | from
1toN as Jfromlto N, by 2 as KfromN; to 1 by -1 ...) terminates
when | exceeds N,;, or J exceeds N,, or K becomes less than 1. After each iteration, | is
incremented by 1,J by 2, and Kby - 1.

QUTCOF FORM [I.S. Operator]
For use with generators. On each iteration, the i.v. is set to successive values returned by
the generator. The loop ends when the generator runs out.

Condition I.S. Oprs

What if you want to do things only on certain times through the loop? You could make the loop body
a big COND, but it’s much more readable to use one of these:

VWHEN FORM [I.S. Operator]

Only run the loop body when FORMs value is non-NI L. For example, (for X in Y
col l ect X when (NUMBERP X)) collects only the elements of Y that are numbers.

UNLESS FORM [I.S. Operator]
Opposite of WHEN: WHEN Z is the same as UNLESS (NOT Z) .

VWH LE FORM [I.S. Operator]
VWHI LE FORMevaluates FORMbefore each iteration, and if the value is NI L, exits.

CONDITIONALS AND ITERATIVE STATEMENTS

UNTI L FORM [I.S. Operator]
Opposite of WHI LE: Evaluates FORMbefore each iteration, and if the value is not NI L, exits.

REPEATWHI LE FORM [I.S. Operator]

Same as WHI LE except the test is performed after the loop body, but before the i.v. is reset
for the next iteration.

REPEATUNTI L FORM [I.S. Operator]
Same as UNTI L, except the test is performed after the loop body.

Other I.S. Operators
FI RST FORM [I.S. Operator]

FORMis evaluated once before the first iteration, e.g., (for X Y Z in L first (FOO
Y Z) ...),and FOOcould be used to initialize Y and Z.

FI NALLY FORM [I.S. Operator]

FORMis evaluated after the loop terminates. For example, (for X in L bind Y_O do
(if (ATOM X) then (SETQ Y (PLUS Y 1))) finally (RETURN Y)) will return
the number of atoms in L.

EACHTI ME FORM [I.S. Operator]

FORMis evaluated at the beginning of each iteration before, and regardless of, any testing.
For example, consider,
(for I froml to N

do (... (FOO1) ...

unless (... (FOO 1) ...)

until (... (FOO1) ...))
You might want to set a temporary variable to the value of (FOO 1) in order to avoid
computing it three times each iteration. However, without knowing the translation, you
can’t know whether to put the assignment in the operand to DO, UNLESS, or UNTI L. You
can avoid this problem by simply writing EACHTI ME (SETQ J (FOO 1)).

DECLARE: DECL [I.S. Operator]

Inserts the form (DECLARE DECL) immediately following the PROG variable list in the
translation, or, in the case that the translation is a mapping function rather than a PROG,
immediately following the argument list of the lambda expression in the translation. This
can be used to declare variables bound in the iterative statement to be compiled as local or

special variables. For example (for X in Y declare: (LOCALVARS X) ...).
Several DECLARE: s can apppear in the same i.s.; the declarations are inserted in the order
they appear.

DECLARE DECL [I.S. Operator]

Same as DECLARE: .

9-13

INTERLISP-D REFERENCE MANUAL

9-14

Since DECLARE is also the name of a function, DECLARE cannot be used as an i.s. operator
when it appears as CAR of a form, i.e. as the first i.s. operator in an iterative statement.
However, decl ar e (lowercase version) can be the first i.s. operator.

ORI G NAL |.S. OPR OPERAND [1.S. Operator]

I . S. OPR will be translated using its original, built-in interpretation, independent of any
user defined i.s. operators.

There are also a number of i.s.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See timers, Chapter 12.

Miscellaneous Hints For Using 1.S.0prs

Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g., (for X in Y ...) is
equivalentto(FOR X IN'Y ...).

Each i.s. operator is of lower precedence than all Interlisp forms, so parentheses around the operands
can be omitted, and will be supplied where necessary, e.g., BIND (X Y Z) can be written BIND X Y
Z, OLD (X_FORM asOLD X_FORM etc.

RETURN or GO may be used in any operand. (In this case, the translation of the iterative statement will
always be in the form of a PROG never a mapping function.) RETURN means return from the loop
(with the indicated value), not from the function in which the loop appears. GO refers to a label
elsewhere in the function in which the loop. appears, except for the labels $$LP, $$1 TERATE, and
$$OUT which are reserved, as described below.

In the case of FI RST, FI NALLY, EACHTI ME, DECLARE: or one of the i.s.types, e.g., DO, COLLECT, SUM
etc., the operand can consist of more than one form, e.g., COLLECT (PRI NT (CAR X)) (CDR X), in
which case a PROGN is supplied.

Each operand can be the name of a function, in which case it is applied to the (last) i.v., e.g., (for X
in Y do PRINT when NUMBERP) isthe sameas (for X in Y do (PRINT X) when
(NUMBERP X)) . Note that the i.v. need not be explicitly specified, e.g., (in Y do PRI NT when
NUMBERP) will work.

For i.s.types, e.g., DO, COLLECT, JA N, the function is always applied to the firsti.v. in the i.s., whether
explicity named or not. Forexample, (in Y as | from 1 to 10 do PRI NT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, Bl ND, | N, or ON, since they “operate”
before the loop starts, when the i.v. may not even be bound.

In the case of BY in conjunction with I N, the function is applied to the current taile.g., (for X in Y
by CDDR ...) isthesameas(for X in Y by (CODDR X) ...).

While the exact translation of a loop depends on which operators are present, a PROG will always be
used whenever the loop specifies dummy variables—if Bl ND appears, or there is more than one
variable specified by a FOR, or a GO, RETURN, or a reference to the variable $$VAL appears in any of
the operands. When PROG s used, the form of the translation is:

(PROG VARI ABLES
{initialize}

CONDITIONALS AND ITERATIVE STATEMENTS

$SLP {eachti e}
{test}
{ body}

$$| TERATE
{aftertest}
{updat e}
(GO 3LP)

$$OUT {finalize}
(RETURN $$VAL))
where {t est} corresponds to that part of the loop that tests for termination and also for those
iterations for which { body} is not going to be executed, (as indicated by a WHEN or UNLESS); { body}
corresponds to the operand of the i.s.type, e.g., DO, COLLECT, etc.; { af t er t est } corresponds to those
tests for termination specified by REPEATWHI LE or REPEATUNTI L; and {updat e} corresponds to
that part that resets the tail, increments the counter, etc. in preparation for the next iteration.
{initialize}, {finalize}, and {eachti ne} correspond to the operands of FI RST, FI NALLY,
and EACHTI ME, if any.

Since { body} always appears at the top level of the PROG, you can insert labels in { body}, and GOto
them from within { body} or from other i.s. operands, e.g., (for X in Y first (GO A) do
(FOO A (FIE)). However, since { body} is dwimified as a list of forms, the label(s) should be
added to the dummy variables for the iterative statement in order to prevent their being dwimified
and possibly “corrected”, e.g., (for X in Y bind A first (GO A do (FOO A (FIE)).You
can also GOto $$LP, $$! TERATE, or $$OUT, or explicitly set $$VAL.

Errors in Iterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions
hold:

1. Operator with null operand, i.e., two adjacent operators, asin (for X in Y until do ...)

2. Operand consisting of more than one form (except as operand to FI RST, FI NALLY, or one of the
i.s.types),e.g.,(for Xin Y (PRINT X) collect ...).

3. I N, O\, FROM TO, or BY appear twice in same i.s.

4. Both | Nand ONused on same i.v.

5. FROMor TOused with | Nor ON on same i.v.

6. More than one i.s.type, e.g., a DOand a SUM

In 3, 4, or 5, an error is not generated if an intervening AS occurs.
If an error occurs, the i.s. is left unchanged.

If no DO, COLLECT, JA Nor any of the other i.s.types are specified, CLISP will first attempt to find an
operand consisting of more than one form, e.g., (for X in Y (PRINT X) when ATOM X ...),
and in this case will insert a DO after the first form. (In this case, condition 2 is not considered to be
met, and an error is not generated.) If CLISP cannot find such an operand, and no WHI LE or UNTI L
appears in the i.s., a warning message is printed: NODO, COLLECT, ORJO N: followed by the i.s.

9-15

INTERLISP-D REFERENCE MANUAL

9-16

Similarly, if no terminating condition is detected, i.e.,, no I N, ON, WHI LE, UNTI L, TO or a RETURN or
GO a warning message is printed: Possible non-termnating iterative statement:
followed by the iterative statement. However, since the user may be planning to terminate the i.s. via
an error, Control-E, or a RETFROMfrom a lower function, the i.s. is still translated.

Note: The error message is not printed if the value of CLI SPI . S. GAGis T (initially NI L).

Defining New lterative Statement Operators

The following function is available for defining new or redefining existing iterative statement
operators:

(1.S. OPR NAME FORMOTHERS EVALFLG) [Function]

NAME is the name of the new i.s.opr. If FORMis a list, NAME will be a new i.s.type, and
FORMits body.

OTHERS is an (optional) list of additional i.s. operators and operands which will be added
to the i.s. at the place where NAME appears. If FORMis NI L, NAME is a new i.s.opr defined
entirely by OTHERS.

In both FORM and OTHERS, the atom $$VAL can be used to reference the value to be
returned by the i.s., |. V. to reference the current i.v., and BODY to reference NAME's
operand. In other words, the current i.v. will be substituted for all instances of | . V. and
NAME's operand will be substituted for all instances of BODY throughout FORM and
OTHERS.

If EVALFLG is T, FORM and OTHERS are evaluated at translation time, and their values
used as described above. A dummy variable for use in translation that does not clash
with a dummy variable already used by some other i.s. operators can be obtained by
calling (GETDUMWVAR) . (GETDUMWVAR T) will return a dummy variable and also
insure that it is bound as a PROG variable in the translation.

If NAME was previously an i.s.opr and is being redefined, the message (NAME
REDEFI NED) will be printed (unless DFNFLG=T), and all expressions using the i.s.opr
NAME that have been translated will have their translations discarded.

The following are some examples of how | . S. OPR could be called to define some existing
i.s.0prs, and create some new ones:

COLLECT (1.S.OPR ' COLLECT
" (SETQ $$VAL (NCONC1 $$VAL BODY)))

SUM (1.S.OPR’ SUM
" (SETQ $$VAL_(PLUS $$VAL BODY)
" (FIRST (SETQ $$VALO))

NEVER (1.S. OPR ' NEVER
"(if BODY then
(SETQ $$VAL NI'L) (GO $$0UT))

Note: (if BODY then (RETURN NI L)) would exit from the
i.s. immediately and therefore not execute the operations specified
viaa FI NALLY (if any).

THEREI S

RCOLLECT

TCOLLECT

PRODUCT

UPTO

TO

CONDITIONALS AND ITERATIVE STATEMENTS

(I.S. OPR ' THEREI S
(i f BODY then
(SETQ $$VAL 1.V.) (GO sQUT)))

To define RCOLLECT, a version of COLLECT which uses CONS
instead of NCONC1 and then reverses the list of values:

(1.S. OPR ' RCOLLECT
" (FINALLY (RETURN
(DREVERSE $$VAL)))]

To define TCOLLECT, a version of COLLECT which uses TCONC:

(1.S. OPR ' TCOLLECT
' (TCONC $$VAL BODY)
" (FIRST (SETQ $$VAL (CONS))
FI NALLY (RETURN
(CAR $$VAL)))]

(1.S. OPR * PRODUCT
' (SETQ $$VAL SVAL* BODY)
"(FIRST ($$VAL 1))]

To define UPTQ, a version of TOwhose operand is evaluated only
once:

(1.S.OPR’ UPTO
NI L
" (BI ND $$FOO—BODY TO $$FO0) |

To redefine TO so that instead of recomputing FORM each
iteration, a variable is bound to the value of FORM and then that
variable is used:

(1.S.0PR’ TO
NI L
" (BI ND $$END FI RST
(SETQ $$END BQDY)
ORI G NALTO $$END)]

Note the use of ORI G NAL to redefine TO in terms of its original
definition. ORI A NAL is intended for use in redefining built-in
operators, since their definitions are not accessible, and hence not
directly modifiable. Thus if the operator had been defined by the
user via |.S. OPR, ORI G NAL would not obtain its original
definition. In this case, one presumably would simply modify the
i.s.opr definition.

I . S. OPRcan also be used to define synonyms for already defined i.s. operators by calling | . S. OPR
with FORMan atom, e.g., (1. S. OPR ' WHERE ' WHEN) makes WHERE be the same as WHEN. Similarly,

following (I .S. OPR ' | STHERE

" THEREI S), one can write (I STHERE ATOM IN YY), and

following (1. S. OPR " FIND ' FOR) and (| . S. OPR ' SUCHTHAT ' THEREI S), one can write (fi nd

X in Y suchthat X nenber

Z) . In the current system, WHERE is synonymous with WHEN,

SUCHTHAT and | STHERE with THEREI S, FI NDwith FOR, and THRU with TO.

9-17

INTERLISP-D REFERENCE MANUAL

9-18

If FORMis the atom MODI Fl ER, then NAME is defined as an i.s.opr which can immediately follow
another i.s. operator (i.e., an error will not be generated, as described previously). NAME will not
terminate the scope of the previous operator, and will be stripped off when DW M FY is called on its
operand. OLDis an example of a MODI Fl ER type of operator. The MODI Fl ER feature allows the user
to define i.s. operators similar to OLD, for use in conjunction with some other user defined i.s.opr
which will produce the appropriate translation.

The file package command | . S. OPRS (Chapter 17) will dump the definition of i.s.oprs. (I.S. OPRS
PRODUCT UPTO) as a file package command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.

9-19

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

9-20

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Medley is designed to help you define and debug functions. Developing an applications program
with Medley involves defining a number of functions in terms of the system primitives and other
user-defined functions. Once defined, your functions may be used exactly like Interlisp primitive
functions, so the programming process can be viewed as extending the Interlisp language to include
the required functionality.

A function’s definition specifies if the function has a fixed or variable number of arguments, whether
these arguments are evaluated or not, the function argument names, and a series of forms which
define the behavior of the function. For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

This function has two evaluated arguments, x and v, and it will execute (prNT x) and (priNT v) When
evaluated. Other types of function definitions are described below.

A function is defined by putting an expr definition in the function definition cell of a symbol. There
are a number of functions for accessing and setting function definition cells, but one usually defines a
function with oeri neg (see the Defining Functions section below). For example:

<« (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))(FOO

The expression above will define the function roo to have the expr definition (Laveba (x v) (PRINT X)
(PRINT V)). After being defined, this function may be evaluated just like any system function:
< (FQO 3 (IPLUS 3 4))

7

7
Not all function definition cells contain expr definitions. The compiler (see the first page of Chapter
18) translates expr definitions into compiled code objects, which execute much faster. Interlisp
provides a number of “function type functions” which determine how a given function is defined, the
number and names of function arguments, etc. See the Function Type Functions section below.

Usually, functions are evaluated automatically when they appear within another function or when
typed into Interlisp. However, sometimes it is useful to envoke the Interlisp interpreter explicitly to
apply a given “functional argument” to some data. There are a number of functions which will apply
a given function repeatedly. For example, mpcar will apply a function (or an expr definition) to all of
the elements of a list, and return the values returned by the function:
<~ (MAPCAR ' (1 2 3 4 5) '(LAMBDA (X) (ITIMES X X))
(1 49 16 25)

When using functional arguments, there are a number of problems which can arise, related to
accessing free variables from within a function argument. Many times these problems can be solved
using the function Funcri on to create a Funars Object.

The macro facility provides another way of specifying the behavior of a function (see the Macros
section below). Macros are very useful when developing code which should run very quickly, which
should be compiled differently than when it is interpreted, or which should run differently in
different implementations of Interlisp.

10-1

INTERLISP-D REFERENCE MANUAL

Function Types

10-2

Interlisp functions are defined using list expressions called “expr definitions.” An expr definition is a
list of the form (LAMBDA- WORD ARG LI ST FORM, ... FORM). LAMBDA- WORD determines whether
the arguments to this function will be evaluated or not. ARG LI ST determines the number and
names of arguments. FORM, ... FORM,are a series of forms to be evaluated after the arguments are
bound to the local variables in ARG LI ST.

If LAMBDA- WORD is the symbol Lawveoa, then the arguments to the function are evaluated. If LAVBDA-
WORD is the symbol navepa, then the arguments to the function are not evaluated. Functions which
evaluate or don’t evaluate their arguments are therefore known as “lambda” or “nlambda” functions,
respectively.

If ARG LI ST is nL or a list of symbols, this indicates a function with a fixed number of arguments.
Each symbol is the name of an argument for the function defined by this expression. The process of
binding these symbols to the individual arguments is called “spreading” the arguments, and the
function is called a “spread” function. If the argument list is any symbol other than wt, this
indicates a function with a variable number of arguments, known as a “nospread” function.

If ARG LI ST is anything other than a symbol or a list of symbols, such as (Laveba “Foor ...), attempting
to use this expr definition will generate an arg not symbol error. In addition, if nc or 7is used as an
argument name, the error attenpt to bind NiL or TiS generated.

These two parameters (lambda/nlambda and spread/nospread) may be specified independently, so
there are four nain function types, known as lambda-spread, nlanbda-spread, lanbda-nospread, and
nlambda-nospread functions. Each one has a different form and is used for a different purpose.
These four function types are described more fully below.

For lambda-spread, lanbda-nospread, or nlambda-spread functions, there is an upper limit to the
number of arguments that a function can have, based on the number of arguments that can be stored
on the stack on any one function call. Currently, the limit is 80 arguments. If a function is called with
more than that many arguments, the error too mny arguments occurs. However, nlambda-nospread
functions can be called with an arbitrary number of arguments, since the arguments are not
individually saved on the stack.

Lambda-Spread Functions

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common
function type. A lambda-spread expr definition has the form:

(Laveba (ARG, ... ARG, FORM, ... FORMW)

The argument list (ARG, ... ARG, is a list of symbols that gives the number and names of the

formal arguments to the function. If the argument list is () or ~, this indicates that the function
takes no arguments. When a lambda-spread function is applied to some arguments, the arguments
are evaluated, and bound to the local variables ARG, ... ARG, Then, FORM, ... FORM, are

evaluated in order, and the value of the function is the value of FORM,.
< (DEFI NEQ (FOO (LAMBDA (X Y) (LIST X VY))))
(FOO

— (FOO 99 (PLUS 3 4))
(99 7)

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

In the above example, the function roo defined by (Laveba (x v) (LisT x v)) is applied to the arguments
99 and (rLus 3 4). These arguments are evaluated (giving 99 and 7), the local variable x is bound to 99
and vy to 7, (LisT x v) is evaluated, returning (99 7), and this is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many argumnents, the extra arguments
are evaluated but ignored. If a function is called with too few arguments, the unsupplied ones will be
delivered as n L. In fact, a spread function cannot distinguish between being given n L as an argument,
and not being given that argument, e.g., (Fog and (rFoo niL) are exactly the same for spread functions.
If it is necessary to distinguish between these two cases, use an nlambda function and explicitly
evaluate the arguments with the eva. function.

Nlambda-Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread expr
definition has the form:

(naveba (ARG, ... ARG, FORM ... FORMy

Nlambda-spread functions are evaluated similarly to lanbda-spread functions, except that the
arguments are not evaluated before being bound to the variables ARG, ... ARG,

<~ (DEFI NEQ (FOO (NLAMBDA (X Y) (LIST X Y))))
(FOO)

«~ (FOO 99 (PLUS 3 4))
(99 (PLUS 3 4))
In the above example, the function roo defined by (nLaveba (x v) (LIsT x v)) is applied to the arguments
99 and (pLus 3 4). These arguments are unevaluated to x and v. (LisT x vy is evaluated, returning (99
(pLUS 3 4)), and this is returned as the value of the function.

Functions can be defined so that all of their arguments are evaluated (lambda functions) or none are
evaluated (nlambda functions). If it is desirable to write a function which only evaluates some of its
arguments (e.g., serQ), the functions should be defined as an nlambda, with some arguments explicitly
evaluated using the function evaL. If this is done, the user should put the symbol evaL on the property
list of the function under the property inro. This informs various system packages, such as DWIM,
CLISP, and Masterscope, that this function in fact does evaluate its arguments, even though it is an
nlambda.

Warning: A frequent problem that occurs when evaluating arguments to nlambda functions with evac
is that the form being evaluated may reference variables that are not accessible within the nlambda
function. This is usually not a problem when interpreting code, but when the code is compiled, the
values of “local” variables may not be accessible on the stack (see Chapter 18). The system nlambda
functions that evaluate their arguments (such as serq) are expanded in-line by the compiler, so this is
not a problem. Using the macro facility is recommended in cases where it is necessary to evaluate
some arguments to an nlambda function.

Lambda-Nospread Functions

Lambda-nospread functions take a variable number of evaluated arguments. A lambda-nospread
expr definition has the form:

(Lavea VAR FORM, ... FORMy

10-3

INTERLISP-D REFERENCE MANUAL

10-4

VAR may be any symbol, except n. and 1. When a lambda-nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the stack. VAR is then
bound to the number of arguments which have been evaluated. For example, if Foo is defined by
(LavBDA X ...), when (Foo A B ¢ is evaluated, , B, and c are evaluated and x is bound to 3. VAR should
never be reset

The following functions are used for accessing the arguments of lambda-nospread functions.

(ARGVAR M [NLambda Function]

Returns the Mh argument for the lambda-nospread function whose argument list is VAR
VAR is the name of the atomic argument list to a lambda-nospread function, and is not
evaluated. Mis the number of the desired argument, and is evaluated. The value of arc is
undefined for Mless than or equal to 0 or greater than the value of VAR

(SETARG VAR M X) [NLambda Function]

Sets the Mh argument for the lambda-nospread function whose argument list is VAR to X.
VAR s not evaluated; Mand X are evaluated. Mshould be between 1 and the value of VAR

In the example below, the function roo is defined to collect and return a list of all of the evaluated
arguments it is given (the value of the for statement).

<« (DEFI NEQ (FOO
(LAMBDA X (for ARGNUM from 1l to X collect (ARG X ARGNUM]
(FOO

< (FOD 99 (PLUS 3 4))
(99 7)

< (FOO 99 (PLUS 3 4)(TINES 3 4)))
(99 7 12)

NLambda-Nospread Functions

Nlambda-nospread functions take a variable number of unevaluated arguments. An nlambda-
nospread expr definition has the form:

(naveba VAR FORM, ... FORMy

VAR may be any symbol, except nL and 1. Though similar in form to lambda-nospread expr
definitions, an nlambda-nospread is evaluated quite differently. When an nlambda-nospread function
is applied to some arguments, VAR is simply bound to a list of the unevaluated arguments. The user
may pick apart this list, and evaluate different arguments.

In the example below, roo is defined to return the reverse of the list of arguments it is given
(unevaluated):
<« (DEFI NEQ (FOO (NLAMBDA X (REVERSE X))))
(FOO
< (FOO 99 (PLUS 3 4))
((PLUS 3 4) 99)
«— (FOO 99 (PLUS 3 4)(TIMES 3 4))
(TINES 3 4)(PLUS 3 4) 99)
The warning about evaluating arguments to nlambda functions also applies to nlambda-nospread
function.

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Compiled Functions

Functions defined by expr definitions can be compiled by the Interlisp compiler (see Chapter 18). The
compiler produces compiled code objects (of data type ccoer) which execute more quickly than the
corresponding expr definition code. Functions defined by compiled code objects may have the same
four types as expr definitions (lambda/nlambda, spread/nospread). Functions created by the
compiler are referred to as compiled functions.

Function Type Functions

There are a variety of functions used for examining the type, argument list, etc. of functions. These
functions may be given either a symbol (in which case they obtain the function definition from the
definition cell), or a function definition itself.

(FNTYP FN) [Function]

Returns ni L if FNis not a function definition or the name of a defined function. Otherwise,
rnryp returns one of the following symbols, depending on the type of function definition.
exrR Lambda-spread expr definition
cexpr Lambda-spread compiled definition
rexrr Nlambda-spread expr definition
crexeRr Nlambda-spread compiled definition
exrr- Lambda-nospread expr definition
cexpre Lambda-nospread compiled definition
rexrrr Nlambda-nospread expr definition
crexpre Nlambda-nospread compiled definition
FUNARG FNTYP returns the symbol runars if FNis a Funare expression.

EXP, FEXPR, EXPR:, and rexpr: indicate that FN is defined by an expr definition. cexer, crExPr,
cexpre, and crexpre indicate that FN is defined by a compiled definition, as indicated by the
prefix c. The suffix = indicates that FN has an indefinite number of arguments, i.e., is a
nospread function. The prefix r indicates unevaluated arguments. Thus, for example, a
crexpre IS a compiled nospread nlambda function.

(EXPRP FN [Function]

Returns T it (enTYP FN) IS ExPr, FEXPR, EXPR*, OF FEXPR*; NI L Otherwise. However, (exrrr FN) is
also true if FN is (has) a list definition, even if it does not begin with Lavepa or navepa. In
other words, exere is Not quite as selective as Fnrvp.

(CCODEP FN [Function]

Returns 1 if (entyr FN) is either cexpr, crexPr, cexPr*, OF cFEXPR:; NI L Otherwise.

(ARGTYPE FN [Function]

FNis the name of a function or its definition. arcryre returnso, 1, 2, or 3, or nL if FNis not a
function. arcryre corresponds to the rows of rnryps. The interpretation of this value is as
follows:

o Lambda-spread function (exrr cexer)

1 Nlambda-spread function (Fexrr, crexPR)

10-5

INTERLISP-D REFERENCE MANUAL

2 Lambda-nospread function (expr-, cexprr)
3 Nlambda-nospread function (rexer:, crexPrr)

(NARGS FN [Function]

Returns the number of arguments of FN, or n L if FNis not a function. If FNis a nospread
function, the value of nares S 1.

(ARGLI ST FN) [Function]

Returns the “argument list” for FN. Note that the “argument list” is a symbol for
nospread functions. Since niL is a possible value for araLi st, the error args not available IS
generated if FNis not a function.

If FN is a compiled function, the argument list is constructed, i.e., each call to araisrt
requires making a new list. For functions defined by expr definitions, lists beginning with
LAMBDA OF NLAVBDA, the argument list is simply caor of cero. If FN has an expr definition, and
car of the definition is not Laveba or nLaveDa, AraLl sT Will check to see if car of the definition is
a member of LaveoaspLst (see Chapter 20). If it is, araLi sT presumes this is a function object
the user is defining via owwserrorvs, and simply returns caor of the definition as its
argument list. Otherwise araLi sT generates an error as described above.

(SMARTARGLI ST FN EXPLAI NFLG TAI L) [Function]

A “smart” version of araLi st that tries various strategies to get the arglist of FN.

First smrraraLl st checks the property list of FN under the property arenanves. For spread
functions, the argument list itself is stored. For nospread functions, the form is (nL
ARGLI STy . ARGLI ST,), Where araLi sT4 IS the value swrtaraLl sT should return when EXPLAI NFLG
= 1, and AraisT, the value when EXPLAI NFLG = nit. For example, (GeTProP DEFI NEQ
"ARGNAMES) = (NIL (X1 X ... xN . x . This allows the user to specify special argument lists.

Second, if FN is not defined as a function, smartaraLl st attempts spelling correction on FN
by calling rncreck (see Chapter 20), passing TAI L to be used for the call to Fixspece. |If
unsuccessful, the eN not a function error will be generated.

Third, if FN is known to the file package (see Chapter 17) but not loaded in, swvarTARGLI ST
will obtain the arglist information from the file.

Otherwise, swartaraLl st Simply returns (araui st FN.

swarTARGLI ST IS used by ereak (see Chapter 15) and sovise with EXPLAI NFLG = nio for
constructing equivalent expr definitions, and by the t1vin in-line command »= (see Chapter
26), with EXPLAI NFLG=T.

Defining Functions

10-6

Function definitions are stored in a “function definition cell” associated with each symbol. This cell is
directly accessible via the two functions purp and cetp (See below), but it is usually easier to define
functions with peri Neq:

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(DEFINEQX; X, . .. Xy [NLambda NoSpread Function]

per NEQ IS the function normally used for defining functions. It takes an indefinite number
of arguments which are not evaluated. Each X; must be a list defining one function, of the
form (nave eI N TIQN) . FOr example:

(DEFI NEQ (DOUBLE (LAMBDA (X) (1PLUS X X))))

The above expression will define the function pousLe with the expr definition (Laveba (x)
(1PLUs X x)). X may also have the form (nave Ares . DeF- Bopy), in which case an appropriate

lambda expr definition will be constructed. Therefore, the above expression is exactly the
same as:

(DEFI NEQ (DOUBLE (X) (I1PLUS X X)))

Note that this alternate form can only be used for lambda functions. The first form must
be used to define an nlambda function.

peFl NeQ returns a list of the names of the functions defined.

(DEFI NE X —- [Function]

Lambda-spread version of oerineq. Each element of the list X is itself a list either of the
form (NavE DEFINITION) OF (NAME ARGS . DEF-BODY). DeEFINE Will generate an error, incorrect
defining formoOn encountering an atom where a defining list is expected.

oeri Ne and peri NeQ Operate correctly if the function is already defined and BRoKeN, ADVI SED, OF BROKEN- I N.

For expressions involving type-in only, if the time stamp facility is enabled (see the Time Stamps
section of Chapter 16), both peri ne and peri Neq stamp the definition with your initials and date.

UNSAFE. TO MODI FY. FNS [Variable]

Value is a list of functions that should not be redefined, because doing so may cause
unusual bugs (or crash the system!). If you try to modify a function on this list (using
DEFI NEQ, TRACE, etc), the system prints warning: Xxx may be unsafe to nodify -- continue? If you
type ves, the function is modified, otherwise an error occurs. This provides a measure of
safety for novices who may accidently redefine important system functions. You can add
your own functions onto this list.

By convention, all functions starting with the character backslash (“\”’) are system internal
functions, which you should never redefine or modify. Backslash functions are not on
UNSAFE. TO. MODI FY. FNs, SO trying to redefine them will not cause a warning.

DFNFLG [Variable]

oFNFLG IS a global variable that affects the operation of perineq and oerine. If DENFLG=NIL, an
attempt to redefine a function £~ will cause oeri Ne to print the message (Fn reperi Nep) and to
save the old definition of rn using saveper (Ssee the Functions for Manipulating Typed
Definitions section of Chapter 17) before redefining it (except if the old and new
definitions are equaL, in which case the effect is simply a no-op). If ornrLeT, the function is
simply redefined. If ornFLa=PrRoP OF ALLPROP, the new definition is stored on the property list
under the property exer. ALLProp also affects the operation of reage and reag (see the
Functions Used Within Source Files section of Chapter 17). orneLcis initially niL.

10-7

INTERLISP-D REFERENCE MANUAL

DFNFLG IS reset by Loap (see the Loading Files section of Chapter 17) to enable various ways
of handling the defining of functions and setting of variables when loading a file. For
most applications, the user will not reset ornrLG directly.

Note: The compiler does not respect the value of orneLe when it redefines functions to their
compiled definitions (see the first page of Chapter 18). Therefore, if you set orneLG tO PrRoP
to completely avoid inadvertantly redefining something in your running system, you must
use compile mode r, not sr.

Note that the functions saveoer and unsaveoer (see the Functions for Manipulating Typed
Definitions section of Chapter 17) can be useful for “saving” and restoring function
definitions from property lists.

(GETDFN [Function]

Returns the function definition of FN. Returns ~nv if FN is not a symbol, or has no
definition.

eeTo of a compiled function constructs a pointer to the definition, with the result that two
successive calls do not necessarily produce eqresults. egr or equa. must be used to compare
compiled definitions.

(PUTD FN DEF o [Function]

Puts DEF into FN's function cell, and returns DEF. Generates an error, Arg not symbol , if FNiS
not a symbol. Generates an error, 111egal arg, if DEF is a string, number, or a symbol other
than niL.

(MOVD FROM TO CCPYFLG - [Function]

Moves the definition of FROMto TQ i.e., redefines TO. If COPYFLG = 71, a copy of the
definition of FROMis used. COPYFLG =t is only meaningful for expr definitions, although
vovb works for compiled functions as well. movo returns TO.

corvoer (see the Functions for Manipulating Typed Definitions section of Chapter 17) is a
higher-level function that not only moves expr definitions, but works also for variables,
records, etc.

(MOVD? FROM TO COPYFLG o [Function]
If TOis not defined, same as (vovo FROM TO COPYFLG. Otherwise, does nothing and
returns ni L.

Function Evaluation

10-8

Usually, function application is done automatically by the Interlisp interpreter. If a form is typed into
Interlisp whose car is a function, this function is applied to the arguments in the cor of the form. These
arguments are evaluated or not, and bound to the funcion parameters, as determined by the type of
the function, and the body of the function is evaluated. This sequence is repeated as each form in the
body of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this. These functions take “functional arguments,” which may either

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

be symbols with function definitions, or expr definition forms such as (Laveba (x...), OF FUNARG
expressions.

(APPLY FN ARGLI ST — [Function]

Applies the function FN to the arguments in the list ARGLI ST, and returns its value. aepLy
is a lambda function, so its arguments are evaluated, but the individual elements of
ARGLI ST are not evaluated. Therefore, lambda and nlambda functions are treated the
same by aprLy—lambda functions take their arguments from ARGLI ST without evaluating
them. For example:

< (APPLY * APPEND ' ((PLUS 1 2 3)(4 5 6)))
(PLUS 1 2 3 4 5 6)

Note that FN may explicitly evaluate one or more of its arguments itself. For example, the
system function serq is an nlambda function that explicitly evaluates its second argument.
Therefore, (appLy * sETQ ' (Foo (ADDL 3))) Will set Foo to 4, instead of setting it to the expression
(ADDL 3).

appLY can be used for manipulating expr definitions. For example:
- (A|>1|>2|_Y " (LAMBDA (X V) (ITIMES X Y)) ' (3 4)))

(APPLY* FN ARG, ARG, . .. ARG) [NoSpread Function]

Nospread version of apeLy. Applies the function FN to the arguments ARG, ARG, . ..
ARG,. Forexample:

< (APPLY * APPEND * (PLUS 1 2 3)(4 5 6))
(PLUS 123 45 6)

(EVAL X—- [Function]

evaL evaluates the expression X and returns this value, i.e., evaL provides a way of calling
the Interlisp interpreter. Note that evaL is itself a lambda function, so its argument is first
evaluated, e.g.:

— (SETQ F(I))' ADDL 3)))

(ADDL 3
~(EVAL FOO)
4
<(EVAL ’ FOO)
(ADDL 3)
(QUOTE X [Nlambda NoSpread Function]
Quote prevents its arguments from being evaluated. Its value is X itself, e.g., (uote Foo is

FQO.

Interlisp functions can either evaluate or not evaluate their arguments. quore can be used
in those cases where it is desirable to specify arguments unevaluated.

The single-quote character () is defined with a read macro so it returns the next
expression, wrapped in a call to qore (see Chapter 25). For example, ' oo reads as
(Quote Foo . This is the form used for examples in this manual.

Since giving quote more than one argument is almost always a parenthese error, and one
that would otherewise go undetected, quore itself generates an error in this case, parent hesi s

error.

10-9

INTERLISP-D REFERENCE MANUAL

10-10

(KWOTE X) [Function]

Value is an expression which, when evaluated, yields X. If X is nL or a number, this is X
itself. Otherwise (LisT (Quote Quote) x) . For example:

(KWOTE 5) => 5
(KWOTE (CONS * A’ B)) => (QUOTE (A B))

(NLAMBDA. ARGS X) [Function]

This function interprets its argument as a list of unevaluated nlambda arguments. If any
of the elements in this list are of the form (quore. . .), the enclosing quore is stripped off.
Actually, naveoa Ares stops processing the list after the first non-quoted argument.

Therefore, whereas (NLAVBDA ARGS ' ((QUOTE FOO) BAR)) -> (FOO BAR), (NLAVBDA. ARGS ' (FOO (QUOTE
BAR))) -> (FOO (QUOTE BAR)).

NLAMVBDA. ARGs IS alled by a number of nlambda functions in the system, to interpret their
arguments. For instance, the function sreak calls nLavBDA. ARGs SO that (Break ' Fag will break
the function roo, rather than the function quore.

(EVALA X A [Function]

Simulates association list variable lookup. Xis aform, Ais a list of the form:
((NAMVE; . VALp; (NAME, . VAL,y... (NAME, . VALy)
The variable names and values in A are “spread” on the stack, and then X is evaluated.

Therefore, any variables appearing free in X that also appears as car of an element of A will
be given the value on the cor of that element.

(DEFEVAL TYPE FN [Function]

Specifies how a datum of a particular type is to be evaluated. Intended primarily for user-
defined data types, but works for all data types except lists, literal atoms, and numbers.
TYPE is a type name. FN is a function object, i.e., name of a function or a lambda
expression. Whenever the interpreter encounters a datum of the indicated type, FN is
applied to the datum and its value returned as the result of the evaluation. oerevaL returns
the previous evaling function for this type. If FN = n v, erevaL returns the current evaling
function without changing it. If FN = 7, the evaling functions is set back to the system
default (which for all data types except lists is to return the datum itself).

cowl LETYPELST (See Chapter 18) permits the user to specify how a datum of a particular type
is to be compiled.

(EVALHOOK FORM EVALHOOKFN [Function]

evaLHook evaluates the expression FORM and returns its value. While evaluating FORM the
function evaL behaves in a special way. Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to eva,, EVALHOOKFN is invoked (it
should be a function), with the form to be evaluated as its argument. EVALHOOKFN is then
responsible for evaluating the form. Whatever is returned is assume to be the result of
evaluating the form. During the execution of EVALHOOKFN, this special evaluation is
turned off. (Note that evaLHox does not affect the evaluations of variables, only of lists).

Here is an example of a simple tracing routine that uses the eva.Hox feature:

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

«—(DEFI NEQ (PRI NTHOOK (FORM)
(printout T "eval: "FORMT)
(EVALHOOK FORM (FUNCTI ON PRI NTHOOK
(PRI NTHOOK)

Using pri NTHOK, One might see the following interaction:

—(EVALHOOK * (LI ST (CONS 1 2)(CONS 3 4)) ’ PRI NTHOOK)
eval : (CONS 1 2)

eval | (CONS 3 4)
((1.2)(3.4))

Iterating and Mapping Functions

The functions below are used to evaluate a form or apply a function repeatedly. rer, reTQ, and rreTQ
evaluate an expression a specified number of time. wap, mpcar, mapLi sT, etc., apply a given function
repeatedly to different elements of a list, possibly constructing another list.

These functions allow efficient iterative computations, but they are difficult to use. For programming
iterative computations, it is usually better to use the CLISP Iterative Statement facility (see Chapter 9),
which provides a more general and complete facility for expressing iterative statements. Whenever
possible, CLISP transltes iterative statements into expressions using the functions below, so there is no
efficiency loss.

(RPT N FORM [Function]

Evaluates the expression FORM N times. Returns the value of the last evaluation. If Nis
less than or equal to 0, FORMis not evaluated, and ret returns ni L.

Before each evaluation, the local variable retn is bound to the number of evaluations yet to
take place. This variable can be referenced within FORM For example, (reT 10 ' (PRINT
rerTN)) Will print the numbers 10, 9...1, and return 1.

(RPTQ N FORM, FORM,. .. FORM) [NLambda NoSpread Function]

Nlambda-nospread version of rer: N is evaluated, FORM are not. Returns the value of the
last evaluation of FORM,

(FRPTQN FORM, FORM,. .. FORMy [NLambda NoSpread Function]
Faster version of rerq. Does not bind retn.
(MAP VAP, MAPFN,; MAPFN,) [Function]

If MAPFN, is ni L, map applies the function MAPFN; to successive tails of the list MAPy. That is,
first it computes (MAPFN, MAP,, and then (MAPFN; (cor MAPy)), etc., until MAP, becomes
a non-list. If MAPFN, is provided, (MAPFN, MAP,) is used instead of (cor MAPy) for the
next call for MAPFN,, e.g., if MAPFN, were coor, alternate elements of the list would be
skipped. wap returns niL.

(MAPC MAP, MAPFN, MAPFN,) [Function]

Identical to wp, except that (MAPFN; (car MAPy)) is computed at each iteration instead of
(MAPFEN; MAPy) , i.e., maec works on elements, e on tails. mpec returns nic.

10-11

INTERLISP-D REFERENCE MANUAL

(MAPL| ST MAP, MAPFN, MAPFN,) [Function]

Successively computes the same values that v would compute, and returns a list
consisting of those values.

(MAPCAR MAP, MAPFN, MAPFN, [Function]

Computes the same values that mec would compute, and returns a list consisting of those
values, e.g., (mpPcar x * FNTYP) IS @ list of entyes for each element on x.

(MAPCON MAP, MAPFN, MAPFN,) [Function]
Computes the same values that wap and meeLi sT but ncones these values to form a list which
it returns.

(MAPCONC MAP, MAPFN;, MAPFN,) [Function]

Computes the same values that mrc and marcar, but ncones the values to form a list which it
returns.

Note that mprcar creates a new list which is a mapping of the old list in that each element of the new list
is the result of applying a function to the corresponding element on the original list. mpoonc is used
when there are a variable number of elements (including none) to be inserted at each iteration.

Examples:
(MAPCONC ' (A B C NIL D NIL) ' (LAVBDA (Y)(if (NULL Y) then NIL
else (LIST V)))) = > (ABCD)

This mapcone returns a list consisting of mapy with all nLs removed.

(MAPCONC ' ((A B) C(DE F)(G H1) '(LAVMBDA (Y)(if (LISPY) then Y
else NIL))) => (ABDEFQ

This mapcone returns a linear list consisting of all the lists on MAP;.

Since mapcone USes Noone to string the corresponding lists together, in this example the original list will
be alteredtobe (ABcDEF Q@ c(DEF (9 HI). Ifthisisan undesirable side effect, the functional
argument to mecone should return instead a top level copy of the lists, i.e., (LAvBDA (Y) (if (LISTP V) then
(APPERND Y) else NIL))).

(MAP2C MAP, MAP, MAPFN, NAPFN,) [Function]

Identical to mrc except MAPFN,; is a function of two arguments, and (MAPFN; (car
MAPy) (car MAP,)) is computed at each iteration. Terminates when either MAP, or MAP, is a
non-list.

MAPFEN, is still a function of one argument, and is applied twice on each iteration;
(MAPEN, MAP,) gives the new MAPy, (MAPEN, MAP,) the new MAP,. coris used if MAPFN,
is not supplied, i.e., isn L.

(MAP2CAR MAP, MAP, MAPFN, MAPFN,) [Function]

Identical to mpcar except MAPFN,; is a function of two arguments, and (MAPFN; (car
MAPy) (car MAP,)) is used to assemble the new list. Terminates when either MAPy or VAP,
is a non-list.

10-12

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(SUBSET MAP, MAPFN, MAPFN,) [Function]

Applies MAPFN,; to elements of MAPy and returns a list of those elements for which this
application is non-nL, €.9.:
(SUBSET ' (A B 3 C 4) 'NUMBERP) = (3 4)

MAPFN, plays the same role as with mp, mrc, et al.

(EVERY EVERY, EVERYFN, EVERYFN,) [Function]

Returns T if the result of applying EVERYFN; to each element in EVERYj is true, otherwise
NnL. For example, (EvERY ' (X ¥ 2) " ATQY => T.

Every operates by evaluating (EVERYFN, (car EVERYy) EVERYy . The second argument is
passed to EVERYFN; so that it can look at the next element on EVERYy if necessary. If
EVERYFN, vields ni L, every immediately returns nL. Otherwise, every computes (EVERYFN,
EVERYy), or (cor EVERYy) if EVERYFN, = niL, and uses this as the “new” EVERYy, and the

process continues. For example (every x ' ATam * cobr) is true if every other element of X is
atomic.

(SOMVE SOME, SOVEFN, SOMEFN,) [Function]

Returns the tail of SOVE, beginning with the first element that satisfies SOMVEFN,, i.e., for
which SOVEFN,; applied to that element is true. Value is n L if no such element exists.

(SOME X ' (LAMBDA (2) (EQUAL Z Y))) IS equivalent to (vemBer Y x). sove operates analogously to
every. At each stage, (SOVEFN,; (car SOVE,) SQOVE,) is computed, and if this not ni L, SOVEy

is returned as the value of sove. Otherwise, (SOVEFN, SOMVE,) is computed, or (cor SOVEy)
it SOVEFN, = nit, and used for the next SOVE.

(NOTANY SOME, SOVEFN, SOVEFN,) [Function]

(noT (save SOME, SOMEFN; SOMVEFN,)).

(NOTEVERY EVERYy EVERYFN, EVERYFN,) [Function]

(nor (every EVERYy EVERYFN; EVERYFN,)).

(MAPRI NT LST FI LE LEFT RI GHT SEP PFN LI SPXPRI NTFLG) [Function]

A general printing function. For each element of the list LST, applies PFN to the element,
and FI LE. If PENis nL, prine is used. Between each application mapri Nt performs prine of
SEP (or »+ if SEP = ~i1). If LEFT is given, it is printed (using pr n) initially; if RI GHT is
given, it is printed (using pri n1) at the end.

For example, (vPRINT X NL % %) iS equivalent to print for lists. To print a list with
commas between each element and a final «. ” one could use (MAPRINT X T NIL "% " %).

If LI SPXPRI NTFLG= T, LI spxpri N1 (See Chapter 13) is used instead of pri n1.

10-13

INTERLISP-D REFERENCE MANUAL

Functional Arguments

The functions that call the Interlisp-D evaluator take “functional arguments,” which may be symbols
with function definitions, or expr definition forms such as (Laveba (x ...).

The following functions are useful when one wants to supply a functional argument which wiill
always return n i, 7, or o. Note that the arguments X; ... X to these functions are evaluated,

though they are not used.

(NILL X, ... Xy) [NoSpread Function]
Returns nic.

(TRUE X; ... Xy) [NoSpread Function]
Returns .

(ZEROX; ... Xy) [NoSpread Function]
Returns o.

When using expr definitions as function arguments, they should be enclosed within the function
FUNCTI oN rather than quorg, so that they will be compiled as separate functions.

(FUNCTI ON FN ENV) [NLambda Function]

If ENV = N, Funcrion is the same as quorg, except that it is treated differently when
compiled. Consider the function definition:
(DEFI NEQ (FOO (LST) (FIE LST (FUNCTION (LAMBDA (2) (I TIMES Z 2))]

roo calls the function ri e with the value of Lst and the expr definition (Laveba (z)(LisT (carR
2))).

If Foo is run interpreted, it does not make any difference whether runcri ov or quore is used.
However, when roo is compiled, if runcri ovis used the compiler will define and compile the
expr definition as an auxiliary function (see Chapter 18). The compiled expr definition
will run considerably faster, which can make a big difference if it is applied repeatedly.

Compiling runcti ov will not create an auxiliary function if it is a functional argument to a
function that compiles open, such as most of the mapping functions (m,car, mapL sT, etc.).

If ENV is not niL, it can be a list of variables that are (presumably) used freely by FN. ENV
can also be an atom, in which case it is evaluated, and the value interpreted as described
above.

Macros

10-14

Macros provide an alternative way of specifying the action of a function. Whereas function
definitions are evaluated with a “function call”, which involves binding variables and other
housekeeping tasks, macros are evaluated by translating one Interlisp form into another, which is then
evaluated.

A symbol may have both a function definition and a macro definition. When a form is evaluated by
the interpreter, if the car has a function definition, it is used (with a function call), otherwise if it has a

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

macro definition, then that is used. However, when a form is compiled, the car is checked for a macro
definition first, and only if there isn’t one is the function definition compiled. This allows functions
that behave differently when compiled and interpreted. For example, it is possible to define a
function that, when interpreted, has a function definition that is slow and has a lot of error checks, for
use when debugging a system. This function could also have a macro definition that defines a fast
version of the function, which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the property list of a symbol. Macros are
often used for functions that should be compiled differently in different Interlisp implementations,
and the exact property name a macro definition is stored under determines whether it should be used
in a particular implementation. The global variable mcrorrors contains a list of all possible macro
property names which should be saved by the mcres file package command. Typical macro property
names are pbwvacro for Interlisp-D, 1omcro for Interlisp-10, vaxwacro for Interlisp-VAX, smcro for Interlisp-
Jerico, and macro for “implementation independent” macros. The global variable cowi LErRvacroPRePs IS @
list of macro property names. Interlisp determines whether a symbol has a macro definition by
checking these property names, in order, and using the first non-n L property value as the macro
definition. In Interlisp-D this list contains ovacro and macro in that order so that owvacros will override the
implementation-independent wmacro properties. In general, use a owacro property for macros that are to
be used only in Interlisp-D, use 1omacro for macros that are to be used only in Interlisp-10, and use macro
for macros that are to affect both systems.

Macro definitions can take the following forms:

(LAMBDA .. .)

(NLAMBDA ...) A function can be made to compile open by giving it a macro definition
of the form (Lavepa ...) Or (NLAMBDA .. .), €.0., (LAMBDA (X) (COND ((GREATERP X
0) X (T (MNUs X)))) for ass. The effect is as if the macro definition were
written in place of the function wherever it appears in a function being
compiled, i.e., it compiles as a lambda or nlambda expression. This
saves the time necessary to call the function at the price of more
compiled code generated in-line.

(NI L EXPRESSI ON
(LI ST EXPRESSI OV “Substitution” macro. Each argument in the form being evaluated or
compiled is substituted for the corresponding atom in usr, and the
result of the substitution is used instead of the form. For example, if the
macro definition of aobt is ((x (1pLus x 1)), then, (aobr (car v)) iS
compiled as (1PLus (CarR V) 1).

Note that ass could be defined by the substitution macro ((x (cono
((GREATERP X 0) X) (T (MNUS X)))). In this case, however, (ass (Foo x))
would compile as
(COND ((GREATERP (FQO X) 0)
FQO X
(T (MNUS (FOO X))))

and (roo x) would be evaluated two times. (Code to evaluate (Foo %)
would be generated three times.)

(OPENLAMBDA ARGS BODY) This is a cross between substitution and Laveoa macros. When the
compiler processes an orenLamveDa, it attempts to substitute the actual
arguments for the formals wherever this preserves the frequency and

10-15

INTERLISP-D REFERENCE MANUAL

10-16

(= . OTHER- FUNCTI ON

(LI TATOMEXPRESSI ON

order of evaluation that would have resulted from a Lavepa expression,
and produces a Lavepba binding only for those that require it.

Note: orencaveDA assumes that it can substitute literally the actual
arguments for the formal arguments in the body of the macro if the
actual is side-effect free or a constant. Thus, you should be careful to use
names in ARGS which don’t occur in BODY (except as variable
references). For example, if Foo has a macro definition of

(OPENLAMBDA (ENV) (FETCH (MY- RECORD- TYPE ENV) OF BAR))

then (roo Ny will expand to
(FETCH (MY- RECORD- TYPE NI L) OF BAR)

When a macro definition is the atom T, it means that the compiler
should ignore the macro, and compile the function definition; this is a
simple way of turning off other macros. For example, the user may
have a function that runs in both Interlisp-D and Interlisp-10, but has a
macro definition that should only be used when compiling in Interlisp-
10. If the macro property has the macro specification, a ovacro of T will
cause it to be ignored by the Interlisp-D compiler. This omacrowould not
be necessary if the macro were specified by a 1omcroinstead of a mcro.

A simple way to tell the compiler to compile one function exactly as it
would compile another. For example, when compiling in Interlisp-D,
FRPLACAS are treated as reLacas. This is achieved by having rreLaca have a
DMACRO Of (= . RPLACA) .

If a macro definition begins with a symbol other than those given above,
this allows computation of the Interlisp expression to be evaluated or
compiled in place of the form. viTtatowis bound to the cor of the calling
form, EXPRESS| ON is evaluated, and the result of this evaluation is
evaluated or compiled in place of the form. For example, ui st could be
compiled using the computed macro:

[X (LIST ' CONS (CAR X) (AND (CDR X) (CONS ' LI ST (CDR X]

This would cause (LisT x vy z) to compile as (cons x (CoNs Y (CONS Z NIL))).
Note the recursion in the macro expansion.

If the result of the evaluation is the symbol | axorevacro, the macro is
ignored and the compilation of the expression proceeds as if there were
no macro definition. If the symbol in question is normally treated
specially by the compiler (car, cor, conp, anp, etc.), and also has a macro, if
the macro expansion returns 1 anoremacro, the symbol will still be treated
specially.

In Interlisp-10, if the result of the evaluation is the atom i nsTRucTI ons, NO
code will be generated by the compiler. It is then assumed the
evaluation was done for effect and the necessary code, if any, has been
added. This is a way of giving direct instructions to the compiler if you
understand it.

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

It is often useful, when constructing complex macro expressions, to use
the squore facility (see the Read Macros section of Chapter 25).

The following function is quite useful for debugging macro definitions:

(EXPANDMACRO EXP QUI ETFLG —o [Function]

Takes a form whose car has a macro definition and expands the form as it would be
compiled. The result is prettyprinted, unless QUI ETFLG=T, in which case the result is
simply returned.

Note: expanomacro only works on Interlisp macros. Use oL: macroexpand- 1 to expand Interlisp
macros visible to the Common Lisp interpreter and compliler.

DEFMACRO

Macros defined with the function oervacro are much like “computed” macros (see the above section), in
that they are defined with a form that is evaluated, and the result of the evaluation is used (evaluated
or compiled) in place of the macro call. However, pervacro macros support complex argument lists
with optional arguments, default values, and keyword arguments as well as argument list
destructuring.

(DEFMACRONAME ARGS FORM [NLambda NoSpread Function]

Defines NAME as a macro with the arguments ARGS and the definition form FORM (NAME,
ARGS, and FORM are unevaluated). If an expression starting with NAME is evaluated or
compiled, arguments are bound according to ARGS, FORM is evaluated, and the value of
FORMis evaluated or compiled instead. The interpretation of ARGS is described below.

Note: Like the function cermcro in Common Lisp, this function currently removes any
function definition for NAME.

ARGS is a list that defines how the argument list passed to the macro NAME is interpreted.
Specifically, ARGS defines a set of variables that are set to various arguments in the macro
call (unevaluated), that FORMcan reference to construct the macro form.

In the simplest case, ARGS is a simple list of variable names that are set to the
corresponding elements of the macro call (unevaluated). For example, given:
(DEFMACRO FQO (A B) (LIST 'PLUS A B B))

The macro call (Foo x (BaR v 2)) will expand to (pLus x (BAR Y 2) (BAR Y 2)).

&-keywords” (beginning with the character «&”") that are used to set variables to particular
items from the macro call form, as follows:

&OPTI ONAL Used to define optional arguments, possibly with default values. Each
element on ARGS after soemi ovaL until the next e-keyword or the end of
the list defines an optional argument, which can either be a symbol or a
list, interpreted as follows:

VAR

If an optional argument is specified as a symbol, that variable is set to
the corresponding element of the macro call (unevaluated).

10-17

INTERLISP-D REFERENCE MANUAL

10-18

&REST
&BODY

&KEY

(VAR DEFAULT)

If an optional argument is specified as a two element list, VAR is the
variable to be set, and DEFAULT is a form that is evaluated and used as
the default if there is no corresponding element in the macro call.

(VAR DEFAULT VARSETP)

If an optional argument is specified as a three element list, VAR and
DEFAULT are the variable to be set and the default form, and VARSETP
is a variable that is set to 7 if the optional argument is given in the macro
call, n L otherwise. This can be used to determine whether the argument
was not given, or whether it was specified with the default value.

For example, after (DEFMACRO FOO (&OPTIONAL A (B 5) (C 6 CSET)) FORM
expanding the macro call (rao would cause rorvto be evaluated with A
settonL, BSettos, csettos, and cser settonL. (Foo 4 5 6) would be the
same, except that A would be set to 4 and cser would be set to 7.

Used to get a list of all additional arguments from the macro call. Either
&resT Or gsooy should be followed by a single symbol, which is set to a list
of all arguments to the macro after the position of the s-keyword. For
example, given

(DEFMACRO FQO (A B &REST C) FORM

expanding the macro call (Foo 1 2 3 4 5 would cause rForv to be
evaluated with asetto 1, ssetto 2, and csetto (3 4 5).

If the macro calling form contains keyword arguments (see exey below),
these are included in the grest list.

Used to define keyword arguments, that are specified in the macro call
by including a “keyword” (a symbol starting with the character “:”)
followed by a value.

Each element on arcs after sxev until the next e-keyword or the end of the
list defines a keyword argument, which can either be a symbol or a list,
interpreted as follows:

VAR

(VAR
((KEYWORD VAR)

If a keyword argument is specified by a single symbol VAR, or a one-
element list containing VAR, it is set to the value of a keyword
argument, where the keyword used is created by adding the character
“” to the front of VAR If a keyword argument is specified by a single-
element list containing a two-element list, KEYWORD is interpreted as the
keyword (which should start with the letter “:”’), and VAR is the variable
to set.

(VAR DEFAULT)
((KEYWORD VAR) DEFAULT)

&ALLOW OTHER- KEYS

&WHCOLE

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(VAR DEFAULT VARSETP)
(KEYWORD VAR DEFAULT VARSETP

If a keyword argument is specified by a two- or three-element list, the
first element of the list specifies the keyword and variable to set as
above. Similar to eoemionaL (above), the second element DEFAULT is a
form that is evaluated and used as the default if there is no
corresponding element in the macro call, and the third element
VARSETP is a variable that is set to 7 if the optional argument is given in
the macro call, n L otherwise.

For example, the form
(DEFMACRO FOO (&KEY A (B 5 BSET) ((:BAR C) 6 CSET)) FORV

Defines a macro with keys : 4, : 8 (defaulting to s), and : ear. Expanding
the macro call (rFoo :BaR 2 : A 1) would cause Formto be evaluated with A
set to 1, B set to 5, Bser set to n L, cset to 2, and cser set to T.

It is an error for any keywords to be supplied in a macro call that are
not defined as keywords in the macro argument list, unless either the &-
keyword gaLLow otHER- KEYS appears in ARGS, or the keyword : aLLow oTHER-

kevs (with a non-ni L value) appears in the macro call.

Used to bind and initialize auxiliary varables, using a syntax similar to
PRoG (See the pros and Associated Control Functions section of Chapter 9).
Any elements after eaux should be either symbols or lists, interpreted as
follows:

VAR

Single symbols are interpreted as auxiliary variables that are initially
bound toniL.

(VAR EXP)

If an auxiliary variable is specified as a two element list, VAR is a
variable initially bound to the result of evaluating the form EXP.

For example, given
(DEFMACRO FOO (A B &AUX C (D 5)) FORM

cwill be bound to n L and b to s when FORMis evaluated.

Used to get the whole macro calling form. Should be the first element
of ARGS, and should be followed by a single symbol, which is set to the
entire macro calling form. Other e-keywords or arguments can follow.
For example, given

(DEFMACRO FOO (&WHOLE X A B) FORV)

Expanding the macro call (Foo 1 2) would cause Forv to be evaluated
with x setto (Foo 1 2), Aset to 1, and B set to 2.

DEFMACRO MAcros also support argument list “destructuring,” a facility for
accessing the structure of individual arguments to a macro. Any place

10-19

INTERLISP-D REFERENCE MANUAL

10-20

Interpreting Macros

in an argument list where a symbol is expected, an argument list (in the
form described above) can appear instead. Such an embedded
argument list is used to match the corresponding parts of that particular
argument, which should be a list structure in the same form. In the
simplest case, where the embedded argument list does not include &-
keywords, this provides a simple way of picking apart list structures
passed as arguments to a macro. For example, given

(DEFMACRO FOO (A (B (C . D)) E) FORM)

Expanding the macro call (roo 1 (2 (3 4 5)) 6 would cause Formto be
evaluated with with A set to 1, B set to 2, cset to 3, pset to (4 5), and e set
to 6. Note that the embedded argument list (8 (¢ . p)) has an embedded
argument list (c . p. Also notice that if an argument list ends in a
dotted pair, that the final symbol matches the rest of the arguments in
the macro call.

An embedded argument list can also include e-keywords, for
interpreting parts of embedded list structures as if they appeared in a
top-level macro call. For example, given
(DEFMACRO FOO (A (B &OPTIONAL (C 6)) D) FORM

Expanding the macro call (Foo 1 (2) 3) would cause Forwto be evaluated
with with aset to 1, B set to 2, c set to 6 (because of the default value), and
psetto s.

Warning: Embedded argument lists can only appear in positions in an
argument list where a list is otherwise not accepted. In the above
example, it would not be possible to specify an embedded argument list
after the sopmional keyword, because it would be interpreted as an
optional argument specification (with variable name, default value, set
variable). However, it would be possible to specify an embedded
argument list as the first element of an optional argument specification
list, as so:

(DEFMACRO FOO (A (B &PTIONAL ((X (V) 2)
"(1(2) 3))) D FORY

In this case, x, v, and z default to 1, 2, and 3, respectively. Note that the

“default” value has to be an appropriate list structure. Also, in this case

either the whole structure (x (v) 2z can be supplied, or it can be

defaulted (i.e., is not possible to specify x while letting v default).

When the interpreter encounters a form car of which is an undefined function, it tries interpreting it as
a macro. If car of the form has a macro definition, the macro is expanded, and the result of this
expansion is evaluated in place of the original form. c.isptran (see the Miscellaneous Functions and
Variables section of Chapter 21) is used to save the result of this expansion so that the expansion only
has to be done once. On subsequent occasions, the translation (expansion) is retrieved from cLi sparraY
the same as for other cLi sp constructs.

Note: Because of the way that the evaluator processes macros, if you have a macro on roo, then typing
(roo ' A ' B) Will work, but Fooa B) will not work.

10-21

11. VARIABLE BINDINGS AND THE STACK

Medley uses “deep binding.” Every time a function is entered, a basic frame containing the new
variables is put on top of the stack. Therefore, any variable reference requires searching the stack for
the first instance of that variable, which makes free variable use somewhat more expensive than in a
shallow binding scheme. On the other hand, spaghetti stack operations are considerably faster. Some
other tricks involving copying freely-referenced variables to higher frames on the stack are also used
to speed up the search.

The basic frames are allocated on a stack; for most user purposes, these frames should be thought of as
containing the variable names associated with the function call, and the current values for that frame.
The descriptions of the stack functions in below are presented from this viewpoint. Both interpreted
and compiled functions store both the names and values of variables so that interpreted and compiled
functions are compatible and can be freely intermixed, i.e., free variables can be used with no
SPECVAR declarations necessary. However, it is possible to suppress storing of names in compiled
functions, either for efficiency or to avoid a clash, via a LOCALVAR declaration (see the Local Variables
and Special Variables section of Chapter 18). The names are also very useful in debugging, for they
make possible a complete symbolic backtrace in case of error.

In addition to the binding information, additional information is associated with each function call:
access information indicating the path to search the basic frames for variable bindings, control
information, and temporary results are also stored on the stack in a block called the frame extension.
The interpreter also stores information about partially evaluated expressions as described in the Stack
and Interpreter section of Chapter 11.

Spaghetti Stack

The Bobrow/Wegbreit paper, “A Model and Stack Implementation for Multiple Environments”
(Communications of the ACM, Vol. 16, 10, October 1973.), describes an access and control mechanism
more general than a simple linear stack. The access and control mechanism used by Interlisp is a
slightly modified version of the one proposed by Bobrow and Wegbreit. This mechanism is called the
“spaghetti stack.”

The spaghetti system presents the access and control stack as a data structure composed of “frames.”
The functions described below operate on this structure. These primitives allow user functions to
manipulate the stack in a machine independent way. Backtracking, coroutines, and more
sophisticated control schemes can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to hold the values of its local variables
during the computation. In addition to variable bindings, an activation of a function requires a return
link (indicating where control is to go after the completion of the computation) and room for
temporaries needed during the computation. In the spaghetti system, one “stack” is used for storing
all this information, but it is best to view this stack as a tree of linked objects called frame extensions
(or simply frames).

A frame extension is a variable sized block of storage containing a frame name, a pointer to some
variable bindings (the BLI NK), and two pointers to other frame extensions (the ALI NKand CLI NK). In
addition to these components, a frame extension contains other information (such as temporaries and
reference counts) that does not interest us here.

11-1

INTERLISP-D REFERENCE MANUAL

11-2

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially
an array of pairs, each of which contains a variable name and its value. The reason frame extensions
point to basic frames (rather than just having them “built in”) is so that two frame extensions can
share a common basic frame. This allows two processes to communicate via shared variable bindings.

The chain of frame extensions which can be reached via the successive ALI NKs from a given frame is
called the “access chain” of the frame. The first frame in the access chain is the starting frame. The
chain through successive CLI NKs is called the “control chain”.

A frame extension completely specifies the variable bindings and control information necessary for
the evaluation of a function. Whenever a function (or in fact, any form which generally binds local
variables) is evaluated, it is associated with some frame extension.

In the beginning there is precisely one frame extension in existence. This is the frame in which the
top-level call to the interpreter is being run. This frame is called the “top-level” frame.

Since precisely one function is being executed at any instant, exactly one frame is distinguished as
having the “control bubble” in it. This frame is called the active frame. Initially, the top-level frame
is the active frame. If the computation in the active frame invokes another function, a new basic frame
and frame extension are built. The frame name of this basic frame will be the name of the function
being called. The ALI NK, BLI NK, and CLI NK of the new frame all depend on precisely how the
function is invoked. The new function is then run in this new frame by passing control to that frame,
i.e., it is made the active frame.

Once the active computation has been completed, control normally returns to the frame pointed to by
the CLI NK of the active frame. That is, the frame in the CLI NK becomes the active frame.

In most cases, the storage associated with the basic frame and frame extension just abandoned can be
reclaimed. However, it is possible to obtain a pointer to a frame extension and to “hold on” to this
frame even after it has been exited. This pointer can be used later to run another computation in that
environment, or even “continue” the exited computation.

A separate data type, called a stack pointer, is used for this purpose. A stack pointer is just a cell that
literally points to a frame extension. Stack pointers print as #ADR/ FRAMENAME, e.g.,
#1, 13636/ COND. Stack pointers are returned by many of the stack manipulating functions described
below. Except for certain abbreviations (such as “the frame with such-and-such a name”), stack
pointers are the only way you can reference a frame extension. As long as you have a stack pointer
which references a frame extension, that frame extension (and all those that can be reached from it)
will not be garbage collected.

Two stack pointers referencing the same frame extension are not necessarily EQ i.e., (EQ (STKPGOS
"FOO) (STKPCS 'FOO)) = N L. However, EQP can be used to test if two different stack pointers
reference the same frame extension (see the Equality Predicates section of Chapter 9).

It is possible to evaluate a form with respect to an access chain other than the current one by using a
stack pointer to refer to the head of the access chain desired. Note, however, that this can be very
expensive when using a shallow binding scheme such as that in Interlisp-10. When evaluating the
form, since all references to variables under the shallow binding scheme go through the variable’s
value cell, the values in the value cells must be adjusted to reflect the values appropriate to the desired
access chain. This is done by changing all the bindings on the current access chain (all the name-value
pairs) so that they contain the value current at the time of the call. Then along the new access path, all

VARIABLE BINDINGS AND THE STACK

bindings are made to contain the previous value of the variable, and the current value is placed in the
value cell. For that part of the access path which is shared by the old and new chain, no work has to
be done. The context switching time, i.e. the overhead in switching from the current, active, access
chain to another one, is directly proportional to the size of the two branches that are not shared
between the access contexts. This cost should be remembered in using generators and coroutines (see
the Generators section below).

Stack Functions

In the descriptions of the stack functions below, when we refer to an argument as a stack descriptor,
we mean that it is one of the following:

A stack pointer An object that points to a frame on the stack. Stack pointers are returned by
many of the stack manipulating functions described below.

NI L Specifies the active frame; that is, the frame of the stack function itself.
T Specifies the top-level frame.

A symbol Specifies the first frame (along the control chain from the active frame) that
has the frame name LI TATOM Equivalent to (STKPOS LI TATOM -1).

A list of symbols Specifies the first frame (along the control chain from the active frame)
whose frame name is included in the list.

A number N Specifies the Nth frame back from the active frame. If N is negative, the
control chain is followed, otherwise the access chain is followed. Equivalent
to (STKNTH N) .

In the stack functions described below, the following errors can occur: The error I | | egal stack
ar g occurs when a stack descriptor is expected and the supplied argument is either not a legal stack
descriptor (i.e., not a stack pointer, symbol, or number), or is a symbol or number for which there is
no corresponding stack frame, e.g., (STKNTH -1 ' FOO where there is no frame named FOOin the
active control chain or (STKNTH -10 ’'EVALQT). The error Stack pointer has been
r el eased occurs whenever a released stack pointer is supplied as a stack descriptor argument for
any purpose other than as a stack pointer to re-use.

Note: The creation of a single stack pointer can result in the retention of a large amount of stack
space. Therefore, one should try to release stack pointers when they are no longer needed (see the
Releasing and Reusing Stack Pointers section below).

In Lisp there is a fixed ammount of space allocated for the stack. When most of this space is
exhausted, the STACK OVERFLOWerror occurs and the debugger will be invoked. You will still have a
little room on the stack to use inside the debugger. If you use up this last little bit of stack you will
encounter a “hard” stack overflow. A “hard” stack overflow will put you into URaid (see the
documentation on URaid).

11-3

INTERLISP-D REFERENCE MANUAL

Searching the Stack

(STKPCS FRAMENAME N PGS OLDPOS) [Function]

Returns a stack pointer to the Nth frame with frame name FRAMENAME. The search begins
with (and includes) the frame specified by the stack descriptor POS. The search proceeds
along the control chain from PGS if N is negative, or along the access chain if N is positive.
If Nis NI'L, -1 is used. Returns a stack pointer to the frame if such a frame exists,
otherwise returns NI L. If OLDPCS is supplied and is a stack pointer, it is reused. If
OLDPCS is supplied and is a stack pointer and STKPGS returns NI L, OLDPCS is released.
If OLDPCS is not a stack pointer it is ignored.

(STKNTH N PCS OLDPOS) [Function]

Returns a stack pointer to the Nth frame back from the frame specified by the stack
descriptor PCS. If Nis negative, the control chain from PCS is followed. If Nis positive the
access chain is followed. If N equals 0, STKNTH returns a stack pointer to PCS (this
provides a way to copy a stack pointer). Returns NI L if there are fewer than N frames in
the appropriate chain. If OLDPGOS is supplied and is a stack pointer, it is reused. If
OLDPCS is not a stack pointer it is ignored.

Note: (STKNTH 0) causes an error, | | | egal stack ar g;itis not possible to create a
stack pointer to the active frame.

(STKNANE PCS) [Function]

Returns the frame name of the frame specified by the stack descriptor PCS.

(SETSTKNAME PCS NAME) [Function]
Changes the frame name of the frame specified by POS to be NAMVE. Returns NAME.

(STKNTHNAME N POS) [Function]

Returns the frame name of the Nth frame back from POS. Equivalent to (STKNAMVE
(STKNTH N PQCS)) but avoids creation of a stack pointer.

In summary, STKPOS converts function names to stack pointers, STKNTH converts numbers to stack
pointers, STKNAME converts stack pointers to function names, and STKNTHNAME converts numbers to
function names.

Variable Bindings in Stack Frames

11-4

The following functions are used for accessing and changing bindings. Some of functions take an
argument, N, which specifies a particular binding in the basic frame. If N is a literal atom, it is
assumed to be the name of a variable bound in the basic frame. If Nis a number, it is assumed to
reference the Nth binding in the basic frame. The first binding is 1. If the basic frame contains no
binding with the given name or if the number is too large or too small, the error I | | egal arg
occurs.

VARIABLE BINDINGS AND THE STACK

(STKSCAN VAR | PGS OPCS) [Function]

Searches beginning at | PCS for a frame in which a variable named VAR is bound. The
search follows the access chain. Returns a stack pointer to the frame if found, otherwise
returns NI L. If OPCS is a stack pointer it is reused, otherwise it is ignored.

(FRAMESCAN ATOM PCS) [Function]

Returns the relative position of the binding of ATOMin the basic frame of POS. Returns
NI L if ATOMis not found.

(STKARG N PCS — [Function]

Returns the value of the binding specified by Nin the basic frame of the frame specified by
the stack descriptor POS. Ncan be a literal atom or number.

(STKARGNAME N POS) [Function]

Returns the name of the binding specified by N, in the basic frame of the frame specified
by the stack descriptor POS. Ncan be a literal atom or number.

(SETSTKARG N PGS VAL) [Function]

Sets the value of the binding specified by Nin the basic frame of the frame specified by the
stack descriptor POS. Ncan be a literal atom or a number. Returns VAL.

(SETSTKARGNANE N POS NANE) [Function]

Sets the variable name to NAME of the binding specified by N in the basic frame of the
frame specified by the stack descriptor POS. N can be a literal atom or a number. Returns
NANE. This function does not work for interpreted frames.

(STKNARGS PCS - [Function]

Returns the number of arguments bound in the basic frame of the frame specified by the
stack descriptor PCS.

(VARI ABLES POS) [Function]

Returns a list of the variables bound at PCS.

(STKARGS PCSs [Function]

Returns a list of the values of the variables bound at PCS.

Evaluating Expressions in Stack Frames

The following functions are used to evaluate an expression in a different environment:

(ENVEVAL FORMAPGCS CPCS AFLG CFLG) [Function]

Evaluates FORMin the environment specified by APCS and CPCS. That is, a new active
frame is created with the frame specified by the stack descriptor APCS as its ALI NK, and
the frame specified by the stack descriptor CPOS as its CLI NK. Then FORMis evaluated. If

11-5

INTERLISP-D REFERENCE MANUAL

AFLG is not NI L, and APGCS is a stack pointer, then APCS will be released. Similarly, if
CFLGis not NI L, and CPCS is a stack pointer, then CPOS will be released.

(ENVAPPLY FN ARGS APCS CPOS AFLG CFLG) [Function]

APPLYs FN to ARGS in the environment specified by APOS and CPOS. AFLG and CFLG
have the same interpretation as with ENVEVAL.

(EVALV VAR POS RELFLG) [Function]

Evaluates VAR, where VAR is assumed to be a symbol, in the access environment specifed
by the stack descriptor PCS. If VAR is unbound, EVALV returns NOBI ND and does not
generate an error. If RELFLG is non-NI L and PCS is a stack pointer, it will be released
after the variable is looked up. While EVALV could be defined as (ENVEVAL VAR POS
NI L RELFLGQ itis in fact somewhat faster.

(STKEVAL POS FORMFLG —} [Function]

Evaluates FORMin the access environment of the frame specified by the stack descriptor
PCS. If FLGis not NIL and PGS is a stack pointer, releases POS. The definition of
STKEVAL is (ENVEVAL FORM PGS NI L FLG).

(STKAPPLY PCS FN ARGS FLG) [Function]
Like STKEVAL but applies FNto ARGS.

Altering Flow of Control

The following functions are used to alter the normal flow of control, possibly jumping to a different
frame on the stack. RETEVAL and RETAPPLY allow evaluating an expression in the specified
environment first.

(RETFROMPOS VAL FLG) [Function]

Return from the frame specified by the stack descriptor PGS, with the value VAL. If FLGis
not NI L, and PGS is a stack pointer, then PCS is released. An attempt to RETFROMthe top
level (e.g., (RETFROM T)) causes an error, I | | egal stack arg. RETFROMcan be
written in terms of ENVEVAL as follows:

(RETFROM
(LAVBDA (POS VAL FLG
(ENVEVAL (LI ST ’ QUOTE VAL)
NI L
(if (STKNTH -1 POS
(if FLG then PCS))

el se (ERRORX (LI ST 19 POS)))
NI L

)
(RETTOPGCS VAL FLG [Function]
Like RETFROM but returns to the frame specified by PCS.

11-6

VARIABLE BINDINGS AND THE STACK

(RETEVAL POS FORMFLG -} [Function]

Evaluates FORMin the access environment of the frame specified by the stack descriptor
PGS, and then returns from PCS with that value. If FLGis not NI L and PCS is a stack
pointer, then PCS is released. The definition of RETEVAL is equivalent to (ENVEVAL
FORM POS (STKNTH -1 POS) FLG T), but RETEVAL does not create a stack pointer.

(RETAPPLY PCS FN ARGS FLG) [Function]
Like RETEVAL but applies FNto ARGS.

Releasing and Reusing Stack Pointers

The following functions and variables are used for manipulating stack pointers:

(STACKP X) [Function]

Returns X if X is a stack pointer, otherwise returns NI L.

(RELSTK POS) [Function]
Release the stack pointer POS (see below). If POS is not a stack pointer, does nothing.
Returns PCS.

(RELSTKP X) [Function]

Returns T is X is a released stack pointer, NI L otherwise.

(CLEARSTK FLG [Function]

If FLGis T, returns a list of all the active (unreleased) stack pointers. If FLGis NI L, this
call is a no-op. The abillity to clear all stack pointers is inconsistent with the modularity
implicit in a multi processing environment.

CLEARSTKLST [Variable]

A variable used by the top-level executive. Every time the top-level executive is re-
entered (e.g., following errors, or Control-D), CLEARSTKLST is checked. If its value is T,
all active stack pointers are released using CLEARSTK. If its value is a list, then all stack
pointers on that list are released. If its value is NI L, nothing is released. CLEARSTKLST is
initially T.

NOCLEARSTKLST [Variable]

A variable used by the top-level executive. If CLEARSTKLST is T (see above) all active
stack pointers except those on NOCLEARSTKLST are released. NOCLEARSTKLST is initially
NI L.

Creating a single stack pointer can cause the retention of a large amount of stack space. Furthermore,
this space will not be freed until the next garbage collection, even if the stack pointer is no longer being
used, unless the stack pointer is explicitly released or reused. If there is sufficient amount of stack
space tied up in this fashion, a STACK OVERFLOW condition can occur, even in the simplest of
computations. For this reason, you should consider releasing a stack pointer when the environment
referenced by the stack pointer is no longer needed.

11-7

INTERLISP-D REFERENCE MANUAL

The effects of releasing a stack pointer are:

1. The link between the stack pointer and the stack is broken by setting the contents of the stack
pointer to the “released mark”. A released stack pointer prints as #ADR/ #0.

2. If this stack pointer was the last remaining reference to a frame extension; that is, if no other stack
pointer references the frame extension and the extension is not contained in the active control or
access chain, then the extension may be reclaimed, and is reclaimed immediately. The process
repeats for the access and control chains of the reclaimed extension so that all stack space that was
reachable only from the released stack pointer is reclaimed.

A stack pointer may be released using the function RELSTK, but there are some cases for which
RELSTK is not sufficient. For example, if a function contains a call to RETFROM in which a stack
pointer was used to specify where to return to, it would not be possible to simultaneously release the
stack pointer. (A RELSTK appearing in the function following the call to RETFROM would not be
executed!) To permit release of a stack pointer in this situation, the stack functions that relinquish
control have optional flag arguments to denote whether or not a stack pointer is to be released (AFLG
and CFLG). Note that in this case releasing the stack pointer will not cause the stack space to be
reclaimed immediately because the frame referenced by the stack pointer will have become part of the
active environment.

Another way to avoid creating new stack pointers is to reuse stack pointers that are no longer needed.
The stack functions that create stack pointers (STKPCOS, STKNTH, and STKSCAN) have an optional
argument that is a stack pointer to reuse. When a stack pointer is reused, two things happen. First the
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the
stack pointer. The old stack pointer (with its new contents) is returned as the value of the function.
Note that the reused stack pointer will be released even if the function does not find the specified
frame.

Even if stack pointers are explicitly being released, creating many stack pointers can cause a garbage
collection of stack pointer space. Thus, if your application requires creating many stack pointers, you
definitely should take advantage of reusing stack pointers.

Backtrace Functions

11-8

The following functions perform a “backtrace,” printing information about every frame on the stack.
Arguments allow only backtracing a selected range of the stack, skipping selected frames, and
printing different amounts of information about each frame.

(BACKTRACE | PCS EPCS FLAGS FI LE PRI NTFN) [Function]

Performs a backtrace beginning at the frame specified by the stack descriptor | PCS, and
ending with the frame specified by the stack descriptor EPOS. FLAGS is a number in
which the options of the BACKTRACE are encoded. If a bit is set, the corresponding
information is included in the backtrace.

1Q - print arguments of non-SUBRs

2Q - print temporaries of the interpreter

4Q - print SUBRarguments and local variables

10Q - omit printing of UNTRACE: and function names
20Q - follow access chain instead of control chain

VARIABLE BINDINGS AND THE STACK

40Q - print temporaries, i.e. the blips (see the stack and interpreter section below)

For example: If FLAGS = 47Q everything is printed. If FLAGS = 21Q follows the
access chain, prints arguments.

FI LE is the file that the backtrace is printed to. FI LE must be open. PRI NTFN is used
when printing the values of variables, temporaries, blips, etc. PRI NTFN = NI L defaults
to PRI NT.

(BAKTRACE | POS EPCS SKI PFNS FLAGS FI LE) [Function]

Prints a backtrace from | POS to EPCS onto FI LE. FLAGS specifies the options of the
backtrace, e.g., do/don’t print arguments, do/don’t print temporaries of the interpreter,
etc., and is the same as for BACKTRACE.

SKI PFNS is a list of functions. As BAKTRACE scans down the stack, the stack name of
each frame is passed to each function in SKI PFNS, and if any of them returnS non-NI L,
PGS is skipped (including all variables).

BAKTRACE collapses the sequence of several function calls corresponding to a call to a
system package into a single “function” using BAKTRACELST as described below. For
example, any call to the editor is printed as **EDI TOR**, a break is printed as
** BREAK* * | etc.

BAKTRACE is used by the BT, BTV, BTV+, BTV*, and BTV! break commands, with FLAGS
= 0,1,5,7,and 47Qrespectively.

If SYSPRETTYFLG = T, the values arguments and local variables will be prettyprinted.

BAKTRACELST [Variable]

Used to tell BAKTRACE (therefore, the BT, BTV, etc. commands) to abbreviate various
sequences of function calls on the stack by a single key, e.g. ** BREAK**, ** ED| TOR* *,
etc.

Each entry on BAKTRACELST is a list of the form (FRAMENAME KEY . PATTERN) or
(FRAMENAME (KEY, . PATTERN,) ... (KEYy . PATTERN,)), where a pattern is a
list of elements that are either atoms, which match a single frame, or lists, which are
interpreted as a list of alternative patterns, e.g. (PROGN ** BREAK** EVAL ((ERRORSET
BREAK1A BREAK1) (BREAK1)))

BAKTRACE operates by scanning up the stack and, at each point, comparing the current frame name,
with the frame names on BAKTRACELST, i.e. it does an ASSOC. If the frame name does appear,
BAKTRACE attempts to match the stack as of that point with (one of) the patterns. If the match is
successful, BAKTRACE prints the corresponding key, and continues with where the match left off. If
the frame name does not appear, or the match fails, BAKTRACE simply prints the frame name and
continues with the next higher frame (unless the SKI PFNS applied to the frame name are non-NI L as
described above).

Matching is performed by comparing symbols in the pattern with the current frame name, and
matching lists as patterns, i.e. sequences of function calls, always working up the stack. For example,
either of the sequence of function calls “. .. BREAK1 BREAK1A ERRORSET EVAL PROGN ...~

11-9

INTERLISP-D REFERENCE MANUAL

or “... BREAK1 EVAL PROGN ...” would match with the sample entry given above, causing
** BREAK* * to be printed.

Special features:
= The symbol & can be used to match any frame.

= The pattern “ - ” can be used to match nothing. - is useful for specifying an optional match, e.g. the
example above could also have been written as (PROGN **BREAK** EVAL ((ERRORSET
BREAK1A) -) BREAK1).

= It is not necessary to provide in the pattern for matching dummy frames, i.e. frames for which
DUMMYFRAMEP (see below) is true. When working on a match, the matcher automatically skips
over these frames when they do not match.

< If a match succeeds and the KEY is NI L, nothing is printed. For example, (* PROG*LAM NI L
EVALA *ENV). This sequence will occur following an error which then causes a break if some of
the function’s arguments are LOCALVARS.

Other Stack Functions

(DUMWFRANMEP POS) [Function]

Returns T if you never wrote a call to the function at PCS, e.g. in Interlisp-10,
DUMMYFRAMEP is T for *PROG*LAM *ENV*, and FOOBLOCK frames (see the Block
Compiling section of Chapter 18).

REALFRAMEP and REALSTKNTH can be used to write functions which manipulate the stack and work
on either interpreted or compiled code:
(REALFRANEP PCS | NTERPFLG) [Function]

Returns PCS if POS is a “real” frame, i.e. if POS is not a dummy frame and PCS is a frame
that does not disappear when compiled (such as COND); otherwise NI L. If | NTERPFLG =
T, returns T if PCS is not a dummy frame. For example, if (STKNAME POS) = COND,
(REALFRAMEP POS) isNI L, but (REALFRAMEP PCS T) isT.

(REALSTKNTH N PGS | NTERPFLG OLDPQS) [Function]
Returns a stack pointer to the Nth (or - Nth) frames for which (REALFRAMEP PGCS
I NTERPFLG) is PCS.

(MAPDL MAPDLFN MAPDL PCS) [Function]

Starts at MAPDLPOS and applies the function MAPDLFN to two arguments (the frame name
and a stack pointer to the frame), for each frame until the top of the stack is reached.
Returns NI L. For example,

[MAPDL (FUNCTI ON (LAVBDA (X POS)
(if (1 GREATERP (STKNARGS PCS) 2) then (PRINT X)]

will print all functions of more than two arguments.

11-10

VARIABLE BINDINGS AND THE STACK

(SEARCHPDL SRCHFN SRCHPCS) [Function]

Like MAPDL, but searches the stack starting at position SRCHPGS until it finds a frame for
which SRCHFN, a function of two arguments applied to the name of the frame and the
frame itself, is not Nl L. Returns (NAME . FRAME) if such a frame is found, otherwise
NI L.

The Stack and the Interpreter

In addition to the names and values of arguments for functions, information regarding partially-
evaluated expressions is kept on the push-down list. For example, consider the following definition of
the function FACT (intentionally faulty):

(FACT
[LAVBDA (N)
(COND
((ZEROP N)
L
(T %ITI MES N (FACT (SUBL N)

In evaluating the form (FACT 1), as soon as FACT is entered, the interpreter begins evaluating the
implicit PROGN following the LAMBDA. The first function entered in this process is COND. COND begins
to process its list of clauses. After calling ZEROP and getting a NI L value, COND proceeds to the next
clause and evaluates T. Since T is true, the evaluation of the implicit PROGN that is the consequent of
the T clause is begun. This requires calling the function | TI MES. However before | TI MES can be
called, its arguments must be evaluated. The first argument is evaluated by retrieving the current
binding of N from its value cell; the second involves a recursive call to FACT, and another implicit
PROGN, etc.

At each stage of this process, some portion of an expression has been evaluated, and another is
awaiting evaluation. The output below (from Interlisp-10) illustrates this by showing the state of the
push-down list at the point in the computation of (FACT 1) when the unbound atom L is reached.

< FACT(1)

u.b.a. L {in FACT} in ((ZEROP NO L)

(L broken)

: BTV
TAI L (L)
*ARGL (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
D

*FORMF (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBL N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBL N))))))
N O

FACT
*FORMF (FACT (SUBL N))
EN | TI MES
TAI L ((FACT (SUBL N)))
* ARGVAL* 1
*FORMF (I TIMES N (FACT (SUBL N)))
TAIL ((ITIMES N (FACT (SUBL N))))
*ARGL (((ZEROP N) L) (T (ITIMES N (FACT (SUBL N)))))

COND
*FORMF (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBL N)))))
TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUBL N))))))
N 1

FACT

11-11

INTERLISP-D REFERENCE MANUAL

11-12

* % TOP* *

Internal calls to EVAL, e.g., from COND and the interpreter, are marked on the push-down list by a
special mark or blip which the backtrace prints as * FORMr. The genealogy of * FORM ’s is thus a
history of the computation. Other temporary information stored on the stack by the interpreter
includes the tail of a partially evaluated implicit PROGN (e.g., a cond clause or lambda expression) and
the tail of a partially evaluated form (i.e., those arguments not yet evaluated), both indicated on the
backtrace by *TAI L*, the values of arguments that have already been evaluated, indicated by
* ARGVAL*, and the names of functions waiting to be called, indicated by *FN*. *ARGL, ...,
* ARGn are used by the backtrace to indicate the (unnamed) arguments to SUBRs.

Note that a function is not actually entered and does not appear on the stack, until its arguments have
been evaluated (except for nlambda functions, of course). Also note that the * ARGL, * FORM,
TAl L, etc. “bindings” comprise the actual working storage. In other words, in the above example,
if a (lower) function changed the value of the * ARGL binding, the COND would continue interpreting
the new binding as a list of COND clauses. Similarly, if the * ARGVAL* binding were changed, the new
value would be given to | TI MES as its first argument after its second argument had been evaluated,
and | TI MES was actually called.

*FORMF, *TAI L*, * ARGVAL*, etc., do not actually appear as variables on the stack, i.e., evaluating
*FORM or calling STKSCAN to search for it will not work. However, the functions BLI PVAL,
SETBLI PVAL, and BLI PSCAN described below are available for accessing these internal blips. These
functions currently know about four different types of blips:

FEN The name of a function about to be called
* ARGVAL* An argument for a function about to be called
*FORM A form in the process of evaluation

TAl L The tail of a COND clause, implicit PROGN, PROG etc.

(BLI PVAL BLI PTYP | PCS FLG) [Function]

Returns the value of the specified blip of type BLI PTYP. If FLGis a number N, finds the
Nth blip of the desired type, searching the control chain beginning at the frame specified
by the stack descriptor | PCS. If FLGis NI L, 1 is used. If FLGis T, returns the number of
blips of the specified type at | PCS.

(SETBLI PVAL BLI PTYP | POS N VAL) [Function]

Sets the value of the specified blip of type BLI PTYP. Searches for the Nth blip of the
desired type, beginning with the frame specified by the stack descriptor | PCS, and
following the control chain.

(BLI PSCANBLI PTYP | PCS) [Function]

Returns a stack pointer to the frame in which a blip of type BLI PTYP is located. Search
begins at the frame specified by the stack descriptor | POS and follows the control chain.

VARIABLE BINDINGS AND THE STACK

Generators

A generator is like a subroutine except that it retains information about previous times it has been
called. Some of this state may be data (for example, the seed in a random number generator), and
some may be in program state (as in a recursive generator which finds all the atoms in a list structure).
For example, if LI STGEN s defined by:

(DEFI NEQ (LI STGEN (L)
(1f L then (PRODUCE (CAR L))
(LI'STGEN (CDR L))))
we can use the function GENERATOR (described below) to create a generator that uses LI STGEN to
produce the elements of a list one at a time, e.g.,

(SETQ GR (GENERATOR (LISTGEN ’ (A B Q))))

creates a generator, which can be called by
(GENERATE GR)

to produce as values on successive calls, A, B, C. When GENERATE (not GENERATOR) is called the first
time, it simply starts evaluating (LI STGEN ' (A B C)). PRODUCE gets called from LI STGEN, and
pops back up to GENERATE with the indicated value after saving the state. When GENERATE gets
called again, it continues from where the last PRODUCE left off. This process continues until finally
LI STGEN completes and returns a value (it doesn’t matter what it is). GENERATE then returns GR
itself as its value, so that the program that called GENERATE can tell that it is finished, i.e., there are no
more values to be generated.

(GENERATOR FORM COWAR) [NLambda Function]

An nlambda function that creates a generator which uses FORM to compute values.
GENERATOR returns a generator handle which is represented by a dotted pair of stack
pointers.

COWAR is optional. If its value (EVAL of) is a generator handle, the list structure and
stack pointers will be reused. Otherwise, a new generator handle will be constructed.

GENERATOR compiles open.

(PRODUCE VAL) [Function]
Used from within a generator to return VAL as the value of the corresponding call to
GENERATE.

(GENERATE HANDLE VAL) [Function]

Restarts the generator represented by HANDLE. VAL is returned as the value of the
PRODUCE which last suspended the operation of the generator. When the generator runs
out of values, GENERATE returns HANDLE itself.

Examples:

The following function will go down recursively through a list structure and produce the atoms in the
list structure one at a time.
(DEFI NEQ (LEAVESG (L)
(if (ATOM L)

11-13

INTERLISP-D REFERENCE MANUAL

t hen (PRODUCE L)
el se (LEAVESG (CAR L))
(if (CDR L)
then (LEAVESG (CDR L)]
The following function prints each of these atoms as it appears. It illustrates how a loop can be set up
to use a generator.
(DEFI NEQ (PLEAVESGL (L)
(PROG (X LHANDLE)
(SETQ LHANDLE (GENERATOR (LEAVESG L)))
LP (SETQ X (GENERATE LHANDLE))
(if (EQ X LHANDLE)
then (RETURN NI L))

(PRI NT X)
(GO LP))]

The loop terminates when the value of the generator is EQ to the dotted pair which is the value
produced by the call to GENERATOR. A CLISP iterative operator, OUTCF, is provided which makes it
much easier to write the loop in PLEAVESGL. OUTOF (or out of) can precede a form which is to be
used as a generator. On each iteration, the iteration variable will be set to successive values returned
by the generator; the loop will be terminated automatically when the generator runs out. Therefore,
the following is equivalent to the above program PLEAVESGL:

(DEFI NEQ (PLEAVES® (L) (for X outof (LEAVESG L) do (PRINT X))]
Here is another example; the following form will print the first Natoms.
(for X outof (MAPATOMS (FUNCTION PRODUCE)) as | from1l to N do (PRI NT X))

Coroutines

11-14

This package provides facilities for the creation and use of fully general coroutine structures. It uses a
stack pointer to preserve the state of a coroutine, and allows arbitrary switching between N different
coroutines, rather than just a call to a generator and return. This package is slightly more efficient
than the generator package described above, and allows more flexibility on specification of what to do
when a coroutine terminates.

(CORQUTI NE CALLPTR COROUTPTR COROUTFORM ENDFCRM [NLambda Function]

This nlambda function is used to create a coroutine and initialize the linkage. CALLPTR
and COROUTPTR are the names of two variables, which will be set to appropriate stack
pointers. If the values of CALLPTR or COROUTPTR are already stack pointers, the stack
pointers will be reused. COROUTFORM is the form which is evaluated to start the
coroutine; ENDFORM is a form to be evaluated if COROUTFORM actually returns when it
runs out of values.

CORQUTI NE compiles open.

(RESUME FROVPTR TOPTR VAL) [Function]

Used to transfer control from one coroutine to another. FROVPTR should be the stack
pointer for the current coroutine, which will be smashed to preserve the current state.
TOPTR should be the stack pointer which has preserved the state of the coroutine to be
transferred to, and VAL is the value that is to be returned to the latter coroutine as the
value of the RESUVE which suspended the operation of that coroutine.

VARIABLE BINDINGS AND THE STACK

For example, the following is the way one might write the LEAVES program using the coroutine
package:

(DEFI NEQ (LEAVESC (L COROUTPTR CALLPTR)
(if (ATOM L)
then (RESUME COROUTPTR CALLPTR L)
el se (LEAVESC (CAR L) COROUTPTR CALLPTR)
(if (CDR L) then (LEAVESC (CDR L) COROUTPTR CALLPTR))))]

A function PLEAVESC which uses LEAVESC can be defined as follows:

(DEFI NEQ (PLEAVESC (L)
(bi nd PLHANDLE LHANDLE
first (COROUTI NE PLHANDLE LHANDLE
(LEAVESC L LHANDLE PLHANDLE)
(RETFROM ’ PLEAVESC))
do (PRI NT (RESUME PLHANDLE LHANDLE))))]

By RESUMEiIng LEAVESC repeatedly, this function will print all the leaves of list L and then return out
of PLEAVESC via the RETFROM The RETFROMis necessary to break out of the non-terminating do-
loop. This was done to illustrate the additional flexibility allowed through the use of ENDFORM

We use two coroutines working on two trees in the example EQLEAVES, defined below. EQLEAVES
tests to see whether two trees have the same leaf set in the same order, e.g., (EQLEAVES ' (A B O
"(A B (Q)) istrue.

(DEFI NEQ (EQLEAVES (L1 L2)
(bind LHANDLE1 LHANDLE2 PE EL1 EL2
first (COROUTI NE PE LHANDLE1 (LEAVESC L1 LHANDLEl1 PE) ' NO
(CORQUTI NE PE LHANDLE2 (LEAVESC L2 LHANDLE2 PE) ' NO- MORE)
do (SETQ EL1 (RESUME PE LHANDLE1L))
(SETQ EL2 (RESUME PE LHANDLE2))
(if (NEQ EL1 EL2)
then (RETURN NI L))
repeatuntil (EQ EL1 ' NO MORE)
finally (RETURN T)))]

Possibilities Lists

A possibilities list is the interface between a generator and a consumer. The possibilities list is
initialized by a call to POSSI BI LI Tl ES, and elements are obtained from it by using TRYNEXT. By
using the spaghetti stack to maintain separate environments, this package allows a regime in which a
generator can put a few items in a possibilities list, suspend itself until they have been consumed, and
be subsequently aroused and generate some more.

(PGCsSI BI LI TI ES FORM [NLambda Function]

This nlambda function is used for the initial creation of a possibilities list. FORMwill be
evaluated to create the list. It should use the functions NOTE and AU- REVO R described
below to generate possibilities. Normally, one would set some variable to the possibilities
list which is returned, so it can be used later, e.g.:

(SETQ PLI ST (PCsSI BI LI TI ES (GENERFN V1 V2))).
PGSSI BI LI TI ES compiles open.

11-15

INTERLISP-D REFERENCE MANUAL

11-16

(NOTE VAL LSTFLG) [Function]

Used within a generator to put items on the possibilities list being generated. If LSTFLGis
equal to NI L, VAL is treated as a single item. If LSTFLG s non-NI L, then the list VAL is
NCONCed on the end of the possibilities list. Note that it is perfectly reasonable to create a
possibilities list using a second generator, and NOTE that list as possibilities for the current
generator with LSTFLG equal to T. The lower generator will be resumed at the
appropriate point.

(AU- REVO R VAL) [NoSpread Function]

Puts VAL on the possibilities list if it is given, and then suspends the generator and returns
to the consumer in such a fashion that control will return to the generator at the AU-
REVO Rif the consumer exhausts the possibilities list.

NI L is not put on the possibilities list unless it is explicitly given as an argument to AU-
REVO R, i.e., (AU- REVAO R) and (AU- REVO R NI L) are not the same. AU- REVO R and
ADI EU are lambda nospreads to enable them to distinguish these two cases.

(ADI EU VAL) [NoSpread Function]
Like AU- REVO R but releases the generator instead of suspending it.

(TRYNEXT PLST ENDFORMVAL) [NLambda Function]

This nlambda function allows a consumer to use a possibilities list. It removes the first
item from the possibilities list named by PLST (i.e. PLST must be an atom whose value is
a possiblities list), and returns that item, provided it is not a generator handle. If a
generator handle is encountered, the generator is reawakened. When it returns a
possibilities list, this list is added to the front of the current list. When a call to TRYNEXT
causes a generator to be awakened, VAL is returned as the value of the AU- REVO Rwhich
put that generator to sleep. If PLST is empty, it evaluates ENDFORM in the caller’s
environment.

TRYNEXT compiles open.

(CLEANPCSLST PLST) [Function]

This function is provided to release any stack pointers which may be left in the PLST
which was not used to exhaustion.

For example, FI B is a generator for fibonnaci numbers. It starts out by NOTEing its two arguments,
then suspends itself. Thereafter, on being re-awakened, it will NOTE two more terms in the series and
suspends again. PRI NTFI B uses FI B to print the first N fibonacci numbers.
(DEFINEQ (FIB (F1 F2)
(do (NOTE F1)
(NOTE F2)
(SETQ F1 (IPLUS F1 F2))

(SETQ F2 (1PLUS F1 F2))
(AU-REVO R)]

Note that this AU- REVA R just suspends the generator and adds nothing to the possibilities list except
the generator.

VARIABLE BINDINGS AND THE STACK

(DEFI NEQ (PRI NTFI B (N)
(PROG ((FL (PCSSIBILITIES (FIB 0 1))))
(RPTQ N (PRINT (TRYNEXT FL)))
(CLEANPCSLST FL)]

Note that FI B itself will never terminate.

11-17

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

11-18

12. MISCELLANEOUS

Greeting and In