
1

Venue MEDLEY LANGUAGE REFERENCE

2

Address comments to:
Venue
User Documentation
1549 Industrial Road
San Carlos, CA 94070
415-508-9672

MEDLEY REFERENCE MANUAL

VOLUME I: LANGUAGE

April, 1993

Copyright 1985, 1991, 1993 by Venue.

All rights reserved.

Medley is a trademark of Venue.

InterPress is a trademark of Xerox Corporation.

PostScript is a registered trademark of Adobe Systems Inc.

Copyright protection includes material generated from the software
programs displayed on the screen, such as icons, screen display looks,
and the like.

The information in this document is subject to change without notice
and should not be construed as a commitment by Venue. While every
effort has been made to ensure the accuracy of this document, Venue
assumes no responsibility for any errors that may appear.

Text was written and produced with Venue text formatting tools;
PostScript printers were used to produce masters. The typeface is
Palatino.

1

TABLE of CONTENTS

Volume 1 - Lanuage Reference

1. Introduction ..1

2. Litatoms (Symbols) .. 2-1
Using Symbols as Variables ..2-1
Function Definition Cells...2-3
Property Lists ..2-4
Print Names...2-5
Characters and Character Codes ..2-9

3. Lists ... 3-1
Creating Lists...3-3
Building Lists from Left to Right..3-4
Copying Lists ..3-6
Extracting Tails of Lists..3-6
Counting List Cells ...3-8
Logical Operations ...3-9
Searching Lists ..3-10
Substitution Functions ...3-10
Association Lists and Property Lists..3-11
Sorting Lists ...3-13
Other List Functions...3-15

4. Strings .. 4-1

5. Arrays ... 5-1

6. Hash Arrays ... 6-1
Hash Overflow..6-3
User-Specified Hashing Functions...6-3

7. Numbers and Arithmetic Functions ... 7-1
Generic Arithmetic ...7-2
Integer Arithmetic ..7-3
Logical Arithmetic Functions..7-6
Floating-Point Arithmetic..7-8
Other Arithmetic Functions ..7-10

8. Record Package ... 8-1
FETCH and REPLACE...8-1

2

CREATE... 8-2
TYPE? ... 8-3
WITH.. 8-4
Record Declarations ... 8-4

Record Types... 8-5
Optional Record Specifications .. 8-10

Defining New Record Types .. 8-12
Record Manipulation Functions... 8-12
Changetran .. 8-13
Built-in and User Data Types ... 8-15

9. Conditionals and Iterative Statements .. 9-1
Data Type Predicates ... 9-1
Equality Predicates... 9-2
Logical Predicates... 9-3
COND Conditional Function.. 9-3
The IF Statement... 9-4
Selection Functions... 9-5
PROG and Associated Control Functions .. 9-6
The Iterative Statement.. 9-7

I.s. Types .. 9-8
Iterative Variable I.s.oprs .. 9-9
Condition I.s.oprs ... 9-12
Other I.s.oprs... 9-13
Miscellaneous Hints on I.s.oprs ... 9-13
Errors in Iterative Statements ... 9-15
Defining New Iterative Statement Operators .. 9-15

10. Function Definition, Manipulation, and Evaluation 10-1
Function Types ... 10-2

Lambda-Spread Functions .. 10-2
Nlambda-Spread Functions .. 10-3
Lambda-Nospread Functions... 10-4
Nlambda-Nospread Functions... 10-4
Compiled Functions... 10-5
Function Type Functions... 10-5

Defining Functions... 10-7
Function Evaluation... 10-1
Iterating and Mapping Functions .. 10-1
Function Arguments .. 10-1
Macros.. 10-1

DEFMACRO.. 10-15
Interpreting Macros ... 10-15

3

11. Variable Binds and the Interlisp Stack .. 11-1
Spaghetti Stack ..11-2
Stack Functions ...11-3

Searching the Stack...11-4
Variable Binds in Stack Frames ..11-5
Evaluating Expressions in Stack Frames...11-6
Altering Flow of Control ...11-6
Releasing and Reusing Stack Pointers ...11-7
Backtrace Functions..11-8
Other Stack Functions ..11-10

The Stack and the Interpreter..11-10
Generators..11-12
Coroutines..11-14
Possibilities Lists ...11-15

12. Miscellaneous ... 12-1
Greeting and Initialization Files ...12-1
Idle Mode...12-3
Saving Virtual Memory State..12-5
System Version Information ...12-9
Date and Time Functions...12-11
Timers and Duration Functions..12-13
Resources ...12-15

A Simple Example ..12-16
Trade-offs in More Complicated Cases ...12-18
Macros for Accessing Resources ..12-18
Saving Resources in a File ...12-19

Pattern Matching ..12-19
Pattern Elements ...12-20
Element Patterns ...12-20
Segment Patterns ..12-21
Assignments ..12-23
Place-Markers..12-23
Replacements...12-24
Reconstruction...12-24
Examples ..12-25

Volume 2 - Environment Reference

13. Interlisp Executive ... 13-1
Input Formats..13-3
Programmer’s Assistant Commands ...13-4

Event Specification ...13-4

4

Commands .. 13-6
P.A. Commands Applied to P.A. Commands.. 13-15

Changing the Programmer’s Assistant ... 13-16
Undoing ... 13-19

Undoing Out of Order ... 13-20
SAVESET ... 13-21
UNDONLSETQ and RESETUNDO... 13-22

Format and Use of the History List ... 13-23
Programmer’s Assistant Functions.. 13-26
The Editor and the Programmer’s Assistant .. 13-32

14. Errors and Breaks ... 14-1
Breaks ... 14-1
Break Windows... 14-2
Break Commands ... 14-3
Controlling When to Break ... 14-10
Break Window Variables... 14-11
Creating Breaks with BREAK1... 14-12
Signalling Errors ... 14-14
Catching Errors... 14-16
Changing and Restoring System State .. 14-18
Error List.. 14-20

15. Breaking, Tracing, and Advising .. 15-1
Breaking Functions and Debugging.. 15-1
Advising .. 15-7

Implementation of Advising... 15-7
Advise Functions.. 15-8

16. List Structure Editor .. 16-1
SEdit ... 16-1
Local Attention-Changing Commands ... 16-10
Commands That Search .. 16-14

Search Algorithm.. 16-15
Search Commands.. 16-16
Location Specification.. 16-18

Commands That Save and Restore the Edit Chain ... 16-21
Commands That Modify Structure.. 16-22

Implementation .. 16-23
The A, B, and : Commands ... 16-24
Form Oriented Editing and the Role of UP .. 16-26
Extract and Embed ... 16-26
The MOVE Command ... 16-28
Commands That Move Parentheses .. 16-30
TO and THRU... 16-31

5

The R Command...16-34
Commands That Print..16-35
Commands for Leaving the Editor...16-37
Nested Calls to Editor ..16-39
Manipulating the Characters of an Atom or String...16-39
Manipulating Predicates and Conditional Expressions....................................16-40
History Commands in the Editor ...16-41
Miscellaneous Commands ..16-41
Commands That Evaluate ...16-43
Commands That Test ...16-45
Edit Macros..16-46
Undo ...16-48
EDITDEFAULT...16-50
Editor Functions..16-51
Time Stamps ..16-57

17. File Package ... 17-1
Loading Files ...17-3
Storing Files ...17-8
Remaking a Symbolic File ...17-12
Loading Files in a Distributed Environment ..17-13
Marking Changes..17-13
Noticing Files...17-15
Distributing Change Information...17-16
File Package Types ...17-16

Functions for Manipulating Typed Definitions ...17-19
Defining New File Package Types ...17-23

File Package Commands..17-25
Functions and Macros ..17-26
Variables...17-27
Litatom Properties ..17-29
Miscellaneous File Package Commands ...17-30
DECLARE: ...17-31
Exporting Definitions...17-33
FileVars...17-34
Defining New File Package Commands ...17-35

Functions for Manipulating File Command Lists..17-37
Symbolic File Format..17-38

Copyright Notices...17-40
Functions Used Within Source Files ..17-42
File Maps..17-42

18. Compiler .. 18-1
Compiler Printout...18-2
Global Variables..18-3

6

Local Variables and Special Variables... 18-4
Constants ... 18-5
Compiling Function Calls ... 18-6
FUNCTION and Functional Arguments .. 18-7
Open Functions... 18-8
COMPILETYPELST ... 18-8
Compiling CLISP.. 18-9
Compiler Functions.. 18-9
Block Compiling ... 18-12

Block Declarations.. 18-13
Block Compiling Functions... 18-15

Compiler Error Messages.. 18-16

19. DWIM .. 20-1
Spelling Correction Protocol... 20-3
Parentheses Errors Protocol.. 20-4
Undefined Function T Errors.. 20-4
DWIM Operation.. 20-5

DWIM Correction: Unbound Atoms.. 20-6
Undefined CAR of Form ... 20-7
Undefined Function in APPLY... 20-8

DWIMUSERFORMS .. 20-8
DWIM Functions and Variables... 20-10
Spelling Correction... 20-11

Synonyms .. 20-12
Spelling Lists ... 20-12
Generators for Spelling Correction.. 20-14
Spelling Corrector Algorithm... 20-14
Spelling Corrector Functions and Variables... 20-15

20. CLISP .. 21-1
CLISP Interaction with User ... 21-4
CLISP Character Operators... 21-5
Declarations... 21-9
CLISP Operation... 21-10
CLISP Translations... 21-12
DWIMIFY .. 21-13
CLISPIFY ... 21-16
Miscellaneous Functions and Variables.. 21-18
CLISP Internal Conventions ... 21-20

21. Performance Issues .. 22-1
Storage Allocation and Garbage Collection ... 22-1
Variable Bindings ... 22-4
Performance Measuring .. 22-5

7

BREAKDOWN ..22-7
GAINSPACE ...22-9
Using Data Types Instead of Records..22-9
Using Incomplete File Names...22-10
Using "Fast" and "Destructive" Functions...22-10

22. Processes .. 23-1
Creating and Destroying Processes ...23-1
Process Control Constructs ...23-4
Events ...23-5
Monitors ...23-7
Global Resources...23-8
Typein and the TTY Process..23-9

Switing the TTY Process ..23-9
Handling of Interrupts...23-11

Keeping the Mouse Alive ..23-12
Process Status Window..23-12
Non-Process Compatibility ...23-14

Volume 3 - I/O Reference

23. Streams and Files ... 24-1
Opening and Closing File Streams...24-1
File Names ...24-4
Incomplete File Names ..24-7
Version Recognition ...24-9
Using File Names Instead of Streams ..24-10

File Name Efficiency Considerations...24-11
Obsolete File Opening Functions ...24-11
Converting Old Programs ...24-11

Using Files with Processes ..24-12
File Attributes..24-12
Closing and Reopening Files ..24-15
Local Hard Disk Device ...24-16
Floppy Disk Device ..24-18
I/O Operations To and From Strings ..24-22
Temporary Files and the CORE Device...24-23
NULL Device...24-24
Deleting, Copying, and Renaming Files..24-24
Searching File Directories ..24-24
Listing File Directories ...24-25
File Servers...24-28

PUP File Server Protocols ..24-28

8

Xerox NS File Server Protocols... 24-28
Operating System Designations... 24-29
Logging In ... 24-30
Abnormal Conditions .. 24-31

24. Input/Output Functions .. 25-1
Specifying Streams for Input/Output Functions .. 25-1
Input Functions... 25-2
Output Functions ... 25-6

PRINTLEVEL.. 25-8
Printing Numbers... 25-10
User Defined Printing.. 25-12
Printing Unusual Data Structures.. 25-13

Random Access File Operations... 25-14
Input/Output Operations with Characters and Bytes 25-17
PRINTOUT.. 25-17

Horizontal Spacing Commands ... 25-19
Vertical Spacing Commands .. 25-20
Special Formatting Controls ... 25-20
Printing Specifications ... 25-20
Paragraph Format .. 25-21
Right-Flushing .. 25-21
Centering ... 25-22
Numbering .. 25-22
Escaping to Lisp.. 25-23
User-Defined Commands ... 25-23
Special Printing Functions .. 25-24

READFILE and WRITEFILE... 25-25
Read Tables ... 25-25

Read Table Functions... 25-26
Syntax Classes... 25-26
Read Macros.. 25-29

25. User Input/Output Packages .. 26-1
Inspector .. 26-1

Calling the Inspector.. 26-1
Multiple Ways of Inspecting... 26-2
Inspect Windows.. 26-3
Inspect Window Commands .. 26-3
Interaction with Break Windows ... 26-4
Controlling the Amount Displayed During Inspection.............................. 26-4
Inspect Macros .. 26-4
INSPECTWs .. 26-5

PROMPTFORWORD... 26-7
ASKUSER .. 26-9

9

Format of KEYLST..26-10
Options ...26-12
Operation ...26-13
Completing a Key ...26-14
Special Keys...26-15
Startup Protocol and Typeahead..26-16

TTYIN Typein Editor ...26-17
Entering Input with TTYIN...26-17
Mouse Commands (Interlisp-D Only)...26-19
Display Editing Commands..26-19
Using TTYIN for Lisp Input..26-22
Useful Macros..26-23
Programming with TTYIN ..26-23
Using TTYIN as a General Editor...26-25
?= Handler ...26-26
Read Macros ..26-27
Assorted Flags ...26-28
Special Responses ...26-29
Display Types..26-30

Prettyprint..26-31
Comment Feature ...26-33
Comment Pointers ..26-34
Converting Comments to Lowercase ..26-35
Special Prettyprint Controls..26-36

26. Graphics Output Operations ... 27-1
Primitive Graphics Concepts ..27-1

Positions ...27-1
Regions ...27-1
Bitmaps...27-2
Textures..27-5

Opening Image Streams...27-6
Accessing Image Stream Fields ..27-8
Current Position of an Image Stream ..27-10
Moving Bits Between Bitmaps with BITBLT ..27-11
Drawing Lines...27-13
Drawing Curves..27-14
Miscellaneous Drawing and Printing Operations ...27-15
Drawing and Shading Grids ...27-17
Display Streams ..27-18
Fonts ...27-19
Font Files and Font Directories...27-24
Font Profiles...27-24
Image Objects ..27-27

IMAGEFNS Methods ...27-28

10

Registering Image Objects... 27-30
Reading and Writing Image Objects on Files... 27-31
Copying Image Objects Between Windows ... 27-31

Implementation of Image Streams... 27-32

27. Windows and Menus .. 28-1
Using the Window System.. 28-1
Changing the Window System... 28-6
Interactive Display Functions... 28-7
Windows.. 28-9

Window Properties .. 28-10
Creating Windows ... 28-10
Opening and Closing Windows... 28-11
Redisplaying Windows ... 28-12
Reshaping Windows.. 28-13
Moving Windows... 28-14
Exposing and Burying Windows ... 28-16
Shrinking Windows into Icons... 28-16
Coordinate Systems, Extents, and Scrolling... 28-18
Mouse Activity in Windows... 28-21
Terminal I/O and Page Holding.. 28-22
TTY Process and the Caret .. 28-23
Miscellaneous Window Functions... 28-24
Miscellaneous Window Properties .. 28-25
Example: A Scrollable Window ... 28-26

Menus... 28-28
Menu Fields... 28-29
Miscellaneous Menu Functions.. 28-32
Examples of Menu Use.. 28-32

Attached Windows .. 28-34
Attaching Menus to Windows.. 28-37
Attached Prompt Windows .. 28-38
Window Operations and Attached Windows.. 28-39
Window Properties of Attached Windows .. 28-41

28. Hardcopy Facilities .. 29-1
Hardcopy Functions .. 29-1
Low-Level Hardcopy Variables ... 29-4

29. Terminal Input/Output ... 30-1
Interrupt Characters... 30-1
Terminal Tables .. 30-4

Terminal Syntax Classes.. 30-4
Terminal Control Functions.. 30-5
Line-Buffering... 30-7

11

Dribble Files...30-10
Cursor and Mouse ..30-10

Changing the Cursor Image..30-11
Flashing Bars on the Cursor ..30-13
Cursor Position ...30-13
Mouse Button Testing ..30-14
Low-Level Mouse Functions...30-15

Keyboard Interpretation ..30-15
Display Screen...30-18
Miscellaneous Terminal I/O...30-19

30. Ethernet .. 31-1
Ethernet Protocols...31-1

Protocol Layering ...31-1
Level Zero Protocols...31-2
Level One Protocols..31-2
Higher Level Protocols ..31-3
Connecting Networks: Routers and Gateways ..31-3
Addressing Conflicts with Level Zero Mediums...31-3
References ..31-4

Higher-Level PUP Protocol Functions ..31-4
Higher-Level NS Protocol Functions ...31-5

Name and Address Conventions ...31-5
Clearinghouse Functions ...31-7
NS Printing ..31-9
SPP Stream Interface ..31-9
Courier Remote Procedure Call Protocol..31-11

Defining Courier Programs ...31-11
Courier Type Definitions ...31-12
Pre-defined Types ...31-13
Constructed Types ..31-13
User Extensions to the Type Language..31-15
Performing Courier Transactions ...31-16
Expedited Procedure Call ..31-17
Expanding Ring Broadcast...31-18
Using Bulk Data Transfer...31-18
Courier Subfunctions for Data Transfer...31-19

Level One Ether Packet Format ..31-20
PUP Level One Functions..31-21

Creating and Managing Pups ...31-21
Sockets ..31-22
Sending and Receiving Pups...31-23
Pup Routing Information ..31-23
Miscellaneous PUP Utilities ..31-24
PUP Debugging Aids ...31-24

12

NS Level One Functions.. 31-28
Creating and Managing XIPs.. 31-28
NS Sockets ... 31-28
Sending and Receiving XIPs ... 31-29
NS Debugging Aids ... 31-29

Support for Other Level One Protocols... 31-29
The SYSQUEUE Mechanism .. 31-31

Glossary ...GLOSSARY-1

Index ..INDEX-1

13

[This page intentionally left blank]

1-1

1. INTRODUCTION

Medley is a programming system that consists of a programming language, a large number of predefined
programs (or functions) that you can use directly or as subroutines, and an environment that supports
you with a variety of specialized programming tools. The language and predefined functions of Lisp
are rich, but similar to those of other modern programming languages. The Medley programming
environment, on the other hand, is very distinctive. Its main feature is an integrated set of
programming tools that know enough about Interlisp and Common Lisp to act as semi-autonomous,
intelligent "assistants" to you. This environment provides a completely self-contained world for
creating, debugging and maintaining Lisp programs.

This manual describes all three parts of Medley. There are discussions of the language, about the
pieces of the system that can be incorporated into your programs, and about the environment. The
line between your code and the environment is thin and changing. Most users extend the
environment with some special features of their own. Because Medley is so easily extended, the
system has grown over time to incorporate many different ideas about effective and useful ways to
program. This gradual accumulation over many years has resulted in a rich and diverse system. It is
also the reason this manual is so large.

The rest of this manual describes the individual pieces of Medley; this chapter describes system as a
whole—including the otherwise-unstated philosophies that tie it all together. It will give you a global
view of Medley.

Lisp as a Programming Language

This manual is not an introduction to programming in Lisp. This section highlights a few key points
about lisp that will make the rest of the manual clear.

In Lisp, large programs (or functions) are built up by composing the results of smaller ones. Although
Medley, like most modern Lisps, lets you program in almost any style you can imagine, the natural
style of Lisp is functional and recursive—each function computes its result by calling lower-level
“building-block” functions, then passing that result back to its caller (rather than by producing “side-
effects” on external data structures, for example).

Lisp is also a list-manipulation language. Like other languages, Lisp can process characters and
numbers. But you get more power if you program at a higher level. The primitive data objects of Lisp
are “atoms” (symbols or identifiers) and “lists” (sequences of atoms or lists), which you use to
represent information and relationships. Each Lisp dialect has a set of operations that act on atoms
and lists, and these operations comprise the core of the language.

Invisible in the programs, but essential to the Lisp style of programming, is an automatic memory
management system (an “allocator” and a “garbage collector”). New storage is allocated
automatically whenever a you create a new data object. And that storage is automatically reclaimed
for reuse when no other object refers to it. Automated memory management is essential for rapid,

1-2

INTERLISP-D REFERENCE MANUAL

large-scale program development because it frees you from the task of maintaining the details of
memory administration, which change constantly during rapid program evolution.

A key property of Lisp is that Lisp function definitions are just pieces of Lisp list data. Each
subfunction "call" (or function application) is written as a list with the function first, followed by its
arguments. Thus, (PLUS 1 2) represents the expression 1+2. A function’s definition, then, is just a
list of such function applications, to be evaluated in order. This representation of program as data lets
you use the same operations on programs that you use on data—making it very easy to write Lisp
programs that look at and change other Lisp programs. This, in turn, makes it easy to develop
programming tools and translators, which was essential to the development of the Medley
environment.

The most important benefit of this is that you can extend the Lisp programming language itself. Do
you miss some favorite programming idiom? Just define a function that translates the desired
expression into simpler Lisp. Now your idiom is part of the language. Medley has extensive facilities
for making this type of language extension. Using this ability to extend itself, Interlisp has
incorporated many of the constructs that have been developed in other modern programming
languages (e.g. if-then-else, do loops, etc.).

Medley as an Interactive Environment

Medley programs should not be thought of as simple files of source code. All Medley programming
takes place within the Medley environment, which is a completely self-sufficient environment for
developing and using Medley programs. Beyond the obvious programming facilities (e.g., program
editors, compilers, debuggers, etc.), the envionrment also contains a variety of tools that "keep track"
of what happens. For example, the Medley File Manager notices when programs or data have been
changed, so the system will know what needs to be saved at the end of a session. The "residential"
style, where you stay inside the environment throughout the development, is essential for these tools
to operate. Furthermore, this same environment is available to support the final production version,
some parts providing run time support and other parts being ignored until the need arises for further
debugging or development.

For terminal interaction, Medley provides a top level "Read-Eval-Print" executive, which reads
whatever you type in, evaluates it, and prints the result. (This interaction is also recorded, so you can
ask to do an action again, or even to undo the effects of a previous action.) Although Executives
understand some specialized commands, most of the interaction will consist of simple Lisp
expressions. So rather than special commands for operations like manipulating your files, you just
type the same expressions that you would use to accomplish them in a Lisp program. This creates a
very rich, simple, and uniform set of interactive commands, since any Lisp expression can be typed at
an executive and evaluated immediately.

In normal use, you write a program (or rather, "define a function") by typing in an expression that
invokes the "function defining" function (DEFINEQ), giving it the name of the function being defined
and its new definition. The newly-defined function can be executed immediately, simply by using it
in a Lisp expression.

1-3

INTRODUCTION

In addition to these basic programming tools, Medley also provides a wide variety of programming
support mechanisms:

List structure editor Since Lisp programs are represented as list structure, Medley
provides an editor which allows one to change the list structure of
a function’s definition directly. See Chapter 16.

Pretty-printer The pretty printer is a function that prints Lisp function
definitions so that their syntactic structure is displayed by the
indentation and fonts used. See page Chapter 26.

Debugger When errors occur, the debugger is called, allowing you to
examine and modify the context at the point of the error. Often,
this lets you continue execution without starting from the
beginning. Within a break, the full power of Interlisp is available
to you. Thus, the broken function can be edited, data structures
can be inspected and changed, other computations carried out,
and so on. All of this occurs in the context of the suspended
computation, which remains available to be resumed. See
Chapter 14.

DWIM The "Do What I Mean" package automatically fixes misspellings
and errors in typing. See Chapter 20.

Programmer’s Assistant Medley keeps track of your actions during a session and allows
each one to be replayed, undone, or altered. See Chapter 13.

Masterscope Masterscope is a program analysis and management tool which
can analyze users’ functions and build (and automatically
maintain) a data base of the results. This allows you to ask
questions like "WHO CALLS ARCTAN" or "WHO USES COEF1
FREELY" or to request systematic changes like "EDIT WHERE
ANY [function] FETCHES ANY FIELD OF [the data structure]
FOO". See Chapter 19.

Record/Datatype Package Medley allows you to define new data structures. This enables
one to separate the issues of data access from the details of how
the data is actually stored. See Chapter 8.

File Manager Source code files in Medley are managed by the system, removing
the problem of ensuring timely file updates from the user. The
file manager can be modified and extended to accomodate new
types of data. See Chapter 17.

Performance Analysis These tools allow statistics on program operation to be collected
and analyzed. See Chapter 22.

Multiple Processes Multiple and independent processes simplify problems which
require logically separate pieces of code to operate in parallel. See
Chapter 23.

1-4

INTERLISP-D REFERENCE MANUAL

Windows The ability to have multiple, independent windows on the display
allows many different processes or activities to be active on the
screen at once. See Chapter 28.

Inspector The inspector is a display tool for examining complex data
structures encountered during debugging. See Chapter 26.

These facilities are tightly integrated, so they know about and use each other, just as they can be used
by user programs. For example, Masterscope uses the structural editor to make systematic changes.
By combining the program analysis features of Masterscope with the features of the structural editor,
large scale system changes can be made with a single command. For example, when the lowest-level
interface of the Medley I/O system was changed to a new format, the entire edit was made by a single
call to Masterscope of the form EDIT WHERE ANY CALLS ’(BIN BOUT ...). [Burton et al., 1980]
This caused Masterscope to invoke the editor at each point in the system where any of the functions in
the list ’(BIN BOUT ...) were called. This ensured that no functions used in input or output were
overlooked during the modification.

Philosophy

Medley’s extensive environmental support has developed over the years to support a particular style
of programming called "exploratory programming" [Sheil, 1983]. For many complex programming
problems, the task of program creation is not simply one of writing a program to fulfill specifications.
Instead, it is a matter of exploring the problem (trying out various solutions expressed as partial
programs) until one finds a good solution (or sometimes, any solution at all!). Such programs are by
nature evolutionary; they are transformed over time from one realization to another in response to a
growing understanding of the problem. This point of view has lead to an emphasis on having the
tools available to analyze, alter, and test programs easily. One important aspect of this is that the tools
be designed to work together in an integrated fashion, so that knowledge about the user’s programs,
once gained, is available throughout the environment.

The development of programming tools to support exploratory programming is itself an exploration.
No one knows all the tools that will eventually be found useful, and not all programmers want all of
the tools to behave the same way. In response to this diversity, Interlisp has been shaped, by its
implementors and by its users, to be easily extensible in several different ways. First, there are many
places in the system where its behavior can be adjusted by the user. One way that this can be done is
by changing the value of various "flags" or variables whose values are examined by system code to
enable or suppress certain behavior. The other is where the user can provide functions or other
behavioral specifications of what is to happen in certain contexts. For example, the format used for
each type of list structure when it is printed by the pretty-printer is determined by specifications that
are found on the list PRETTYPRINTMACROS. Thus, this format can be changed for a given type simply
by putting a printing specification for it on that list.

Another way in which users can affect Medley’s behavior is by redefining or changing system
functions. The "Advise" capability, for instance, lets you modify the operation of virtually any
function in the system by wrapping code "around" the selected function. (This same philosophy
extends to breaking and tracing, so almost any function in the system can be broken or traced.) Since

1-5

INTRODUCTION

the entire system is implemented in Lisp, there are few places where the system’s behavior depends
on anything that you can’t modify (such as a low level system implementation language).

While these techniques provide a fair amount of tailorability, there’s a price: Medley is complex.
There are many flags, parameters, and controls that affect its behavior. Because of this complexity,
Interlisp tends to be more comfortable for experts, rather than casual users. Beginning users of
Interlisp should depend on the default settings of parameters until they learn what dimensions of
flexibility are available. At that point, they can begin to "tune" the system to their preferences.

Appropriately enough, even Medley’s underlying philosophy was itself discovered during Medley’s
development, rather than laid out beforehand. The Medley environment and its interactive style were
first analyzed in Sandewall’s excellent paper [Sandewall, 1978]. The notion of "exploratory
programming" and the genesis of the Interlisp programming tools in terms of the characteristic
demands of this style of programming was developed in [Sheil, 1983]. The evolution and structure of
the Interlisp programming environment are discussed in greater depth in [Teitelman & Masinter,
1981].

How to Use this Manual

This document is a reference manual, not a primer. We have tried to provide a manual that is
complete, and that lets you find particular items as easily as possible. Sometimes, these goals have
been achieved at the expense of simplicity. For example, many functions have a number of arguments
that are rarely used. In the interest of providing a complete reference, these arguments are fully
explained, even though you will normally let them default. There is a lot of information in this
manual that is of interest only to experts.

Do not try to read straight through this manual, like a novel. In general, the chapters are organized
with overview explanations and the most useful functions at the beginning of the chapter, and
implementation details towards the end. If you are interested in becoming acquainted with Medley,
we urge you to work through An Introduction to Medley before attempting this manual.

A few comments about the notational conventions used in this manual:

Lisp object notation: All Interlisp objects in this manual are printed in the same font:
Functions (AND, PLUS, DEFINEQ, LOAD); Variables
(MAX.INTEGER, FILELST, DFNFLG); and arbitrary Interlisp
expressions: (PLUS 2 3), (PROG ((A 1)) ...), etc.

Case is significant: In Interlisp, upper and lower case is significant. The variable FOO is
not the same as the variable foo or the variable Foo. By
convention, most Interlisp system functions and variables are all
uppercase, but users are free to use upper and lower case for their
own functions and variables as they wish.

One exception to the case-significance rule is provided by the
CLISP facility, which lets you type iterative statements and record
operations in either all uppercase or all lowercase letters: (for X

1-6

INTERLISP-D REFERENCE MANUAL

from 1 to 5 ...) is the same as (FOR X FROM 1 TO 5
...). The few situations where this is the case are explicitly
mentioned in the manual. Generally, assume that case is
significant.

This manual contains a large number of descriptions of functions, variables, commands, etc, which are
printed in the following standard format:

(FOO BAR BAZ) [Function]

This is a description for the function named FOO. FOO has two arguments,
BAR and BAZ. Some system functions have extra optional arguments that
are not documented and should not be used. These extra arguments are
indicated by "—".

The descriptor [Function] indicates that this is a function, rather than a
[Variable], [Macro], etc. For function definitions only, this can also indicate
whether the function takes a fixed or variable number of arguments, and
whether the arguments are evaluated or not. [Function] indicates a lambda
spread function (fixed number of arguments, evaluated), the most common
type.

References

[Burton, et al., 1980] Burton, R. R., L. M. Masinter, A. Bell, D. G. Bobrow, W. S.
Haugeland, R.M. Kaplan and B.A. Sheil, "Interlisp-D: Overview
and Status" — in [Sheil & Masinter, 1983].

[Sandewall, 1978] Sandewall, Erik, "Programming in the Interactive Environmnet:
The LISP Experience" — ACM Computing Surveys, vol 10, no 1,
pp 35-72, (March 1978).

[Sheil, 1983] Sheil, B.A., "Environments for Exploratory Programming" —
Datamation, (February, 1983) — also in [Sheil & Masinter, 1983].

[Sheil & Masinter, 1983] Sheil, B.A. and L. M. Masinter, "Papers on Interlisp-D", Xerox
PARC Technical Report CIS-5 (Revised), (January, 1983).

[Teitelman & Masinter, 1981] Teitelman, W. and L. M. Masinter, "The Interlisp Programming
Environment" — Computer, vol 14, no 4, pp 25-34, (April 1981) —
also in [Sheil & Masinter, 1983].

2-1

2. SYMBOLS (LITATOMS)

A litatom (for “literal atom”) is an object that conceptually consists of a print name, a value, a function
definition, and a property list. Litatoms are also known as “symbols” in Common Lisp. For clarity,
we will use the term “symbol”.

A symbol is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntactic characters that delimit symbols are called “separator” or “break” characters (see Chapter
25) and normally are space, end-of-line, line-feed, left parenthesis (, right parenthesis), double quote
", left square bracket [, and right square bracket]. However, any character may be included in a
symbol by preceding it with the character %. Here are some examples of symbols:

A wxyz 23SKIDDOO %]
Long% Litatom% With% Embedded% Spaces

(LITATOM X) [Function]

Returns T if X is a symbol, NIL otherwise. Note that a number is not a symbol.

(LITATOM NIL) = T

(ATOM X) [Function]

Returns T if X is an atom (i.e., a symbol or a number) or NIL (e.g. (ATOM NIL) = T);
otherwise returns NIL.

Warning: (ATOM X) is NIL if X is an array, string, etc. In Common Lisp, the function
CL:ATOM is defined equivalent to the Interlisp function NLISTP.

Each symbol has a print name, a string of characters that uniquely identifies that symbol: Those
characters that are output when the symbol is printed using PRIN1, e.g., the print name of the symbol
ABC%(D consists of the five characters ABC(D.

Symbols are unique: If two symbols print the same, they will always be EQ. Note that this is not true
for strings, large integers, floating-point numbers, etc.; they all can print the same without being EQ.
Thus, if PACK or MKATOM is given a list of characters corresponding to a symbol that already exists,
they return a pointer to that symbol, and do not make a new symbol. Similarly, if the read program is
given as input a sequence of characters for which a symbol already exists, it returns a pointer to that
symbol.

Symbol names are limited to 255 characters. Attempting to create a larger symbol will cause an error:
Atom too long.

Sometimes we’ll refer to a “PRIN2-name”. The PRIN2-name of a symbol is those characters output
when it is printed using PRIN2. So the PRIN2-name of the symbol ABC%(D is the six characters
ABC%(D. The PRIN2-name depends on what readtable is being used (see Chapter 25), since this
determines where %s will be inserted. Many of the functions below allow either print names or
PRIN2-names to be used, as specified by FLG and RDTBL arguments. If FLG is NIL, print names are
used. Otherwise, PRIN2-names are used, computed with respect to the readtable RDTBL (or the
current readtable, if RDTBL = NIL).

2-2

INTERLISP-D REFERENCE MANUAL

(MKATOM X) [Function]

Creates and returns a symbol whose print name is the name as that of the string X or, if X
is not a string, the same as that of (MKSTRING X). Examples:

(MKATOM ’(A B C)) => %(A% B% C%)
(MKATOM "1.5") => 1.5

Note that the last example returns a number, not a symbol. It is a deeply-ingrained
feature of Interlisp that no symbol can have the print name of a number.

(SUBATOM X N M) [Function]

Returns a symbol made from the Nth through Mth characters of the print name of X. If N or
M are negative, they specify positions counting backwards from the end of the print name.
Equivalent to (MKATOM (SUBSTRING X N M)). Examples:

(SUBATOM "FOO1.5BAR" 4 6) => 1.5
(SUBATOM ’(A B C) 2 -2) => A% B% C

(PACK X) [Function]

If X is a list of symbols, PACK returns a single symbol whose print name is the
concatenation of the print names of the symbols in X. If the concatenated print name is
the same as that of a number, PACK returns that number. For example:

(PACK ’(A BC DEF G)) => ABCDEFG
(PACK ’(1 3.4)) => 13.4
(PACK ’(1 E -2)) => .01

Although X is usually a list of symbols, it can be a list of arbitrary objects. The value of
PACK is still a single symbol whose print name is the concatenation of the print names of
all the elements of X, e.g.,

(PACK ’((A B) "CD")) => %(A% B%)CD

If X is not a list or NIL, PACK generates the error Illegal arg.

(PACK* X1 X2... XN) [NoSpread Function]

Version of PACK that takes an arbitrary number of arguments, instead of a list. Examples:

(PACK* ’A ’BC ’DEF ’G => ABCDEFG
(PACK* 1 3.4)) => 13.4

(GENSYM PREFIX — — — —) [Function]

Returns a symbol of the form Xnnnn, where X = PREFIX (or A if PREFIX is NIL) and
nnnn is an integer. Thus, the first one generated is A0001, the second A0002, etc. The
integer suffix is always at least four characters long, but it can grow beyond that. For
example, the next symbol produced after A9999 would be A10000. GENSYM provides a
way of generating symbols for various uses within the system .

Note: The Common Lisp function CL:GENSYM is not the same as Interlisp’s GENSYM.
Interlisp always creates interned symbols whereas CL:GENSYM creates uninterned
symbols.

2-3

SYMBOLS (LITATOMS)

GENNUM [Variable]

The value of GENNUM, initially 0, determines the next GENSYM, e.g., if GENNUM is set to 23,
(GENSYM) = A0024.

The term “gensym” is used to indicate a symbol that was produced by the function
GENSYM. Symbols generated by GENSYM are the same as any other symbols: they have
property lists, and can be given function definitions. The symbols are not guaranteed to
be new. For example, if the user has previously created A0012, either by typing it in, or
via PACK or GENSYM itself, then if GENNUM is set to 11, the next symbol returned by
GENSYM will be the A0012 already in existence.

(MAPATOMS FN) [Function]

Applies FN (a function or lambda expression) to every symbol in the system. Returns
NIL. For example:

(MAPATOMS (FUNCTION (LAMBDA(X) (if (GETD X) then (PRINTX)]

will print every symbol with a function definition.

Warning: Be careful if FN is a lambda expression or an interpreted function: since
NOBIND is a symbol, it will eventually be passed as an argument. The first reference to
that argument within the function will signal an error.

A way around this problem is to use a Common Lisp function, so that the Common Lisp
interpreter will be invoked. It will treat the argument as local, not special and no error
will be signaled. An alternative solution is to include the argument to the Interlisp
function in a LOCALVARS declaration and then compile the function before passing it to
MAPATOMS. This will significantly speed up MAPATOMS.

(APROPOS STRING ALLFLG QUITFLG OUTPUT) [Function]

APROPOS scans all symbols in the system for those which have STRING as a substring and
prints them on the terminal along with a line for each relevant item defined for each
selected symbol. Relevant items are:

• function definitions, for which only the arglist is printed

• dynamic variable values

• non-null property lists

PRINTLEVEL (see Chapter 25) is set to (3 . 5) when APROPOS is printing.

If ALLFLG is NIL, then symbols with no relevant items and “internal” symbols are
omitted (“internal” currently means those symbols whose print name begins with a \ or
those symbols produced by GENSYM). If ALLFLG is a function, it is used as a predicate on
symbols selected by the substring match, with value NIL meaning to omit the symbol. If
ALLFLG is any other non-NIL value, then no symbols are omitted.

Note: Unlike CL:APROPOS which lets you designate the package to search, APROPOS
searches all packages.

2-4

INTERLISP-D REFERENCE MANUAL

Using Symbols as Variables

Symbols are commonly used as variable names. Each symbol has a “top level” value, which can be an
arbitrary object. Symbols may also be given special variable bindings within PROGs or functions,
which only exist for the duration of the function. When a symbol is evaluated, the “current” variable
binding is returned. This is the most recent special variable binding, or the top-level binding if the
symbol hasn’t been rebound. SETQ is used to change the current binding. For more information on
variable bindings in Interlisp, see Chapter 11.

A symbol whose top-level value is the symbol NOBIND is considered to have no value. If a symbol has
no local bindings, and its top-level value is NOBIND, trying to evaluate it will cause an unbound-atom
error. In addition, if a symbol’s local binding is to NOBIND, trying to evaluate it will cause an error.

The symbols T and NIL always evaluate to themselves. Attempting to change the value of T or NIL
with the functions below will generate the error; Attempt to set T or Attempt to set NIL.

The following functions (except BOUNDP) will also generate the error Arg not litatom, if not given
a symbol.

(BOUNDP VAR) [Function]

Returns T if VAR has a special variable binding, or if VAR has a top-level value other than
NOBIND; otherwise NIL. That is, if X is a symbol, (EVAL X) will cause an Unbound
atom error if and only if (BOUNDP X) returns NIL.

Note: The Interlisp interpreter has been modified so that it will generate an Unbound
Variable error when it encounters any symbol bound to NOBIND. This is a change from
previous releases that only signaled an error when a symbol had a top-level binding of
NOBIND in addition to no dynamic binding.

(SET VAR VALUE) [NoSpread Function]

Sets the “current” value of VAR to VALUE, and returns VALUE.

SET is a normal function, so both VAR and VALUE are evaluated before it is called. Thus, if
the value of X is B, and value of Y is C, then (SET X Y) would result in B being set to C,
and C being returned as the value of SET.

(SETQ VAR VALUE) [NoSpread Function]

Like SET, but VAR is not evaluated, VALUE is. Thus, if the value of X is B and the value of
Y is C, (SETQ X Y) would result in X (not B) being set to C, and C being returned.

Actually, neither argument is evaluated during the calling process. However, SETQ itself
calls EVAL on its second argument. As a result, typing (SETQ VAR FORM) and SETQ
(VAR FORM) to the Interlisp Executive are equivalent: in both cases VAR is not
evaluated, and FORM is.

(SETQQ VAR VALUE) [NoSpread Function]

Like SETQ, but neither argument is evaluated, e.g., (SETQQ X (A B C)) sets X to (A B
C).

2-5

SYMBOLS (LITATOMS)

(PSETQ VAR1 VALUE1 ... VARN VALUEN) [Macro]

Does a SETQ in parallel of VAR1 (unevaluated) to VALUE1, VAR2 to VALUE2, etc. All of
the VALUEi terms are evaluated before any of the assignments. Therefore, (PSETQ A B
B A) can be used to swap the values of the variables A and B.

(GETTOPVAL VAR) [Function]

Returns the top level value of VAR (even if NOBIND), regardless of any intervening local
bindings.

(SETTOPVAL VAR VALUE) [Function]

Sets the top level value of VAR to VALUE, regardless of any intervening bindings, and
returns VALUE.

(GETATOMVAL VAR) [Function]

Same as (GETTOPVAL VAR).

(SETATOMVAL VAR VALUE) [Function]

Same as SETTOPVAL.

Note: The compiler (see Chapter 18) treats variables somewhat differently from the interpreter, and
you need to be aware of these differences when writing functions that will be compiled. For
example, variable references in compiled code are not checked for NOBIND, so compiled code
will not generate unbound-atom errors. In general, it is better to debug interpreted code,
before compiling it for speed. The compiler offers some facilities to increase the efficiency of
variable use in compiled functions: Global variables can be defined so that the entire stack is
not searched at each variable reference. Local variables have bindings that are not visible
outside the function, which reduces variable conflicts and makes variable lookup faster.

Function Definition Cells

Each symbol has a function-definition cell, which is accessed when that symbol is used as a function.
This is described in detail in Chapter 10.

Property Lists

Each symbol has an associated property list, which allows a set of named objects to be associated with
the symbol. A property list associates a name (known as a “property name” or “property”) with an
arbitrary object (the “property value” or “value”). Sometimes the phrase “to store on the property X”
is used, meaning to place the indicated information on a property list under the property name X.

Property names are usually symbols or numbers, although no checks are made. However, the
standard property list functions all use EQ to search for property names, so they may not work with
non-atomic property names. The same object can be used as both a property name and a property
value.

Many symbols in the system already have property lists, with properties used by the compiler, the
break package, DWIM, etc. Be careful not to clobber such system properties. The variable SYSPROPS
is a list of property names used by the system.

2-6

INTERLISP-D REFERENCE MANUAL

The functions below are used to manipulate the property lists of symbols. Except when indicated,
they generate the error ATM is not a SYMBOL, if given an object that is not a symbol.

(GETPROP ATM PROP) [Function]

Returns the property value for PROP from the property list of ATM. Returns NIL if ATM is
not a symbol, or PROP is not found. GETPROP also returns NIL if there is an occurrence of
PROP but the corresponding property value is NIL. This can be a source of program
errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PROP VAL) [Function]

Puts the property PROP with value VAL on the property list of ATM. VAL replaces any
previous value for the property PROP on this property list. Returns VAL.

(ADDPROP ATM PROP NEW FLG) [Function]

Adds the value NEW to the list which is the value of property PROP on the property list of
the ATM. If FLG is T, NEW is CONSed onto the front of the property value of PROP;
otherweise, it is NCONCed on the end (using NCONC1). If ATM does not have a property
PROP, or the value is not a list, then the effect is the same as (PUTPROP ATM PROP
(LIST NEW)). ADDPROP returns the (new) property value. Example:

←(PUTPROP ’POCKET ’CONTENTS NIL)
(NIL)

←(ADDPROP ’POCKET ’CONTENTS ’COMB)
(COMB)

←(ADDPROP ’POCKET ’CONTENTS ’WALLET)
(COMB WALLET)

(REMPROP ATM PROP) [Function]

Removes all occurrences of the property PROP (and its value) from the property list of
ATM. Returns PROP if any were found (T if PROP is NIL), otherwise NIL.

(CHANGEPROP X PROP1 PROP2) [Function]

Changes the property name of property PROP1 to PROP2 on the property list of X (but
does not affect the value of the property). Returns X, unless PROP1 is not found, in which
case it returns NIL.

(PROPNAMES ATM) [Function]

Returns a list of the property names on the property list of ATM.

(DEFLIST L PROP) [Function]

Used to put values under the same property name on the property lists of several
symbols. L is a list of two-element lists. The first element of each is a symbol, and the
second element is the property vqalue of the property PROP. Returns NIL. For example:

(DEFLIST ’((FOO MA)(BAR CA)(BAZ RI)) ’STATE)

2-7

SYMBOLS (LITATOMS)

puts MA on FOO’s STATE property, CA on BAR’s STATE property, and RI on BAZ’s STATE
property.

Property lists are conventionally implemented as lists of the form

(NAME1 VALUE1 NAME2 VALUE2...)

although the user can store anything as the property list of a symbol. However, thge functions which
manipulate property lists observe this convention by searching down the property lists two CDRs at a
time. Most of these functions also generate the error Arg not litatom if given an argument which
is not a symbol, so they cannot be used directly on lists. (LISTPUT, LISTPUT1, LISTGET, and
LISTGET1 are functions similar to PUTPROP and GETPROP that work directly on lists (see Chapter 3) .
The property lists of symbols can be directly accessed with the following functions.

(GETPROPLIST ATM) [Function]

Returns the property list of ATM.

(SETPROPLIST ATM LST) [Function]

If ATM is a symbol, sets the property list of ATM to be LST, and returns LST as its value.

(GETLIS X PROPS) [Function]

Searches the property list of X, and returns the property list as of the first property on
PROPS that it finds. For example:

←(GETPROPLIST ’X)
(PROP1 A PROP3 B A C)

←(GETLIS ’X ’(PROP2 PROP3))
(PROP3 B A C)

Returns NIL if no element on props is found. X can also be a list itself, in which case it is
searched as described above. If X is not a symbol or a list, returns NIL.

(REMPROPLIST ATM PROPS) [Function]

Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM. Returns NIL.

Print Names

The term “print name” has an extended meaning: The characters that are output when any object is
printed. In Medley, all objects have print names, although only symbols and strings have their print
names explicitly stored. Symbol print names are limited to 255 characters.

This section describes a set of functions that can be used to access and manipulate the print names of
any object, though they are primarily used with the print names of symbols. In Medley, print
functions qualify symbol names with a package prefix if the symbol is not accessible in the current
package. The exception is Interlisp’s PRIN1, which does not include a package prefix.

The print name of an object is those characters that are output when the object is printed using PRIN1,
e.g., the print name of the list (A B "C") consists of the seven characters (A B C) (two of the
characters are spaces).

2-8

INTERLISP-D REFERENCE MANUAL

The PRIN2-name of an object is those characters output when the object is printed using PRIN2. Thus
the PRIN2-name of the list (A B "C") is the 9 characters (A B "C") (including the two spaces).
The PRIN2-name depends on what readtable is being used (see Chapter 25), since this determines
where %s will be inserted. Many of the functions below allow either print names of PRIN2-names to
be used, as specified by FLG and RDTBL arguments. If FLG is NIL, print names are used. Otherwise,
PRIN2-names are used, computed with respect to the readtable RDTBL (or the current readtable, if
RDTBL = NIL).

The print name of an integer depends on the setting of RADIX (see Chapter 25). The functions
described in this section (UNPACK, NCHARS, etc.) define the print name of an integer as though the
radix was 10, so that (PACK (UNPACK ’X9)) will always be X9 (and not X11, if RADIX is set to 8).
However, integers will still be printed by PRIN1 using the current radix. The user can force these
functions to use print names in the current radix by changing the setting of the variable PRXFLG (see
Chapter 25).

(CL:SYMBOL-NAME SYM) [Common Lisp Function]

Returns a string displaced to the SYM print name. Strings returned from CL:SYMBOL-
NAME may be destructively modified without affecting SYM’s print name.

(NCHARS X FLG RDTBL) [Function]

Returns the number of characters in the print name of X. If FLG = T, the PRIN2-name is
used. Examples:

(NCHARS ’ABC) => 3
(NCHARS "ABC" T) => 5

NCHARS works most efficiently on symbols and strings, but can be given any object.

(NTHCHAR X N FLG RDTBL) [Function]

Returns X, if X is a tail of the list Y; otherwise NIL. X is a tail of Y if it is EQ to 0 or more
CDRs of Y.

(NTHCHAR ’ABC 2) => B
(NTHCHAR 15.6 2) => 5
(NTHCHAR ’ABC%(D -3 T) => %%
(NTHCHAR "ABC" 2) => B
(NTHCHAR "ABC" 2 T) => A

NTHCAR and NCHARS work much faster on objects that actually have an internal
representation of their print name, i.e., symbols and strings, than they do on numbers and
lists, since they don’t have to simulate printing.

(L-CASE X FLG) [Function]

Returns a lowercase version of X. If FLG is T, the first letter is capitalized. If X is a string,
the value of L-CASE is also a string. If X is a list, L-CASE returns a new list in which L-
CASE is computed for each corresponding element and non-NIL tail of the original list.
Examples:

(L-CASE ’FOO) => foo
(L-CASE ’FOO T) => Foo
(L-CASE "FILE NOT FOUND" T) => "File not found"

2-9

SYMBOLS (LITATOMS)

(L-CASE ’(JANUARY FEBRUARY (MARCH "APRIL")) T) =>
’(January February (March "April"))

(U-CASE X) [Function]

Like L-CASE, but returns the uppercase version of X.

(U-CASEP X) [Function]

Returns T if X contains no lowercase letters; NIL otherwise.

Characters and Character Codes

Characters are represented 3 different ways in Medley. In Interlisp they are single-character symbols
or integer character codes. In Common Lisp they are instances of the CHARACTER datatype. In
general Interlisp character functions don’t accept Common Lisp characters and vice versa. The only
exceptions are Interlisp string-manipulation functions that accept “string or symbol” types as
arguments.

You can convert between Interlisp and Common Lisp characaters by using the functions CL:CODE-
CHAR, CL:CHAR-CODE, and CHARCODE (see below).

Medley uses the 16-bit NS character set, described in the document Character Code Standard (Xerox
System Integration Standards, XSIS 058404, April 1984). Legal character codes range from 0 to 65535.
The NS (Network Systems) character encoding encompasses a much wider set of available characters
than the 8-bit character standards (such as ASCII), including characters comprising many foreign
alphabets and special symbols. For instance, Medley supports the display and printing of the
following:

• Le système d’information Medley est remarqueablement polyglotte

• Das Medley Kommunikationssystem bietet merkwürdige multilinguale Nutzmöglichkeiten

• M ⊆ ❑ [w] ⇔ ∀ v with Rwv: M ⊆ [v]

These characters can be used in strings, symbol print names, symbolic files, or anywhere else 8-bit
characters could be used. All of the standard string and print name functions (RPLSTRING, GNC,
NCHARS, STRPOS, etc.) accept symbols and strings containing NS characters. For example:

←(STRPOS "char""this is an 8-bit character string")
18

←(STRPOS "char""celui-ci comports des characteres NS")
23

In almost all cases, a program does not have to distinguish between NS characters or 8-bit characters.
The exception to this rule is the handling of input/output operations (see Chapter 25).

The function CHARCODE (see below) provides a simple way to create individual NS character codes.
The VirtualKeyboards library module provides a set of virtual keyboards that allows keyboard or
mouse entry of NS characters.

(PACKC X) [Function]

Like PACK except X is a list of character codes. For example,

(PACKC ’(70 79 79)) => FOO

2-10

INTERLISP-D REFERENCE MANUAL

(CHCON X FLG RDTBL) [Function]

Like UNPACK, but returns the print name of X as a list of character codes. If FLG = T, the
PRIN2-name is used. For example:

(CHCON ’FOO) => (70 79 79)

(DCHCON X SCRATCHLIST FLG RDTBL) [Function]

Like DUNPACK.

(NTHCHARCODE X N FLG RDTBL) [Function]

Like NTHCHAR, but returns the character code of the Nth character of the print name of X.
If N is negative, it is interpreted as a count backwards from the end of X. If the absolute
value of N is greater than the number of characters in X, or 0, then the value of
NTHCHARCODE is NIL.

If FLG is T, then the PRIN2-name of X is used, computed with respect to the readtable.

(CHCON1 X) [Function]

Returns the character code of the first character of the print name of X; equal to
(NTHCHARCODE X 1).

(CHARACTER N) [Function]

N is a character code. Returns the symbol having the corresponding single character as its
print name.

 (CHARACTER 70) => F

(FCHARACTER N) [Function]

Fast version of CHARACTER that compiles open.

The following function makes it possible to gain the efficiency that comes from dealinig with character
codes without losing the symbolic advantages of character symbols.

(CHARCODE CHAR) [Function]

Returns the character code specified by CHAR (unevaluated). If CHAR is a one-character
symbol or string, the corresponding character code is simply returned. Thus, (CHARCODE
A) is 65, (CHARCODE 0) is 48. If CHAR is a multi-character symbol or string, it specifies a
character code as described below. If CHAR is NIL, CHARCODE simply returns NIL.
Finally, if CHAR is a list structure, the value is a copy of CHAR with all the leaves replaced
by the corresponding character codes. For instance, (CHARCODE (A (B C))) => (65
(66 67)).

If a character is specified by a multi-character symbol or string, CHARCODE interprets it as
follows:

CR, SPACE, etc.

2-11

SYMBOLS (LITATOMS)

The variable CHARACTERNAMES contains an association list mapping special
symbols to character codes. Among the characters defined this way are CR
(13), LF (10), SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB
(9), NULL (0), and DEL (127). The symbol EOL maps into the appropriate
end-of-line character code in the different Interlisp implementations (31 in
Interlisp-10, 13 in Interlisp-D, 10 in Interlisp-VAX). Examples:

(CHARCODE SPACE) => 32
(CHARCODE CR) => 13

CHARSET, CHARNUM, CHARSET-CHARNUM

If the character specification is a symbol or string of the form CHARSET,
CHARNUM, or CHARSET-CHARNUM, the character code for the character number
CHARNUM in the character set CHARSET is returned.

The 16-bit NS character encoding is divided into a large number of “character
sets”. Each 16-bit character can be decoded into a character set (an integer
from 0 to 254 inclusive) and a character number (also an integer from 0 to 254
inclusive). CHARSET is either an octal number, or a symbol in the association
list CHARACTERSETNAMES (which defines the character sets for GREEK,
CYRILLIC, etc.).

CHARNUM is either an octal number, a single-character symbol, or a symbol
from the association list CHARACTERNAMES. If CHARNUM is a single-digit
number, it is interpreted as the character “2”, rather than as the octal number
2. Examples:

(CHARCODE 12,6) => 2566
(CHARCODE 12,SPACE) => 2592
(CHARCODE GREEK,A) => 9793

↑CHARSPEC (control chars)

If the character specification is a symbol or string of one of the forms above,
preceded by the character ↑, this indicates a “control character,” derived from
the normal character code by clearing the seventh bit of the character code
(normally set). Examples:

(CHARCODE ↑A) => 1
(CHARCODE ↑GREEK,A) => 9729

#CHARSPEC (meta chars)

If the character specification is a symbol or string of one of the forms above,
preceded by the charactger #, this indicates a meta character, derived from the
normal character code by setting the eighth bit of the character code (normally
cleared). ↑ and # can both be set at once. Examples:

(CHARCODE #A) => 193
(CHARCODE #↑GREEK,A) => 9857

A CHARCODE form can be used wherever a structure of character codes would be
appropriate. For example:

2-12

INTERLISP-D REFERENCE MANUAL

(FMEMB (NTHCHARCODE X 1)(CHARCODE (CR LF SPACE ↑A)))
(EQ (READCCODE FOO)(CHARCODE GREEK,A))

There is a macro for CHARCODE which causes the character-code structure to be
constructed at compile-time. Thus, the compiled code for these examples is exactly as
efficient as the less readable:

(FMEMB (NTHCHARCODE X 1)(QUOTE (13 10 32 1)))
(EQ (READCCODE FOO)9793)

(CL:CHAR-CODE CHAR) [Common Lisp Function]

Returns the Interlisp character code of CHAR. Use to convert a Common Lisp character to
an Interlisp character code.

(CL:CODE-CHAR N) [Common Lisp Function]

Returns a character with the given non-negative integer N code. Returns NIL if no
character is possible with N. Use to convert an Interlisp character code to a Common Lisp
character.

(SELCHARQ E CLAUSE1... CLAUSEN DEFAULT) [Function]

Lets you branch one of several ways, based on the character code E. The first item in each
CLAUSEN is a character code or list of character codes, given in the form CHARCODE would
accept. If the value of E is a character code or NIL, and it is EQ or MEMB to the result of
applying CHARCODE to the first element of a clause, the remaining forms of that clause are
evaluated. Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN FOO))
((SPACE TAB)(FUM))
((↑D NIL)(BAR))
(a (BAZ))
(ZIP)))

is exactly equivalent to

(SELECTQ (BIN FOO))
((32 9)(FUM))
((4 NIL)(BAR))
(97 (BAZ))
(ZIP)))

If (BIN FOO) returned 32 (the SPACE character), the function FUM would be called.

2-13

2-14

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

3-1

3. LISTS

One of the most useful datatypes in Lisp is the list cell, a data structure that contains pointers to two
other objects, called the CAR and the CDR of the list cell. You can build very complicated structures
out of list cells, including lattices and trees, but most often they’re used to represent simple linear lists
of objects.

The following functions are used to manipulate individual list cells:

(CONS X Y) [Function]

CONS is the primary list construction function. It creates and returns a new list cell
containing pointers to X and Y. If Y is a list, this returns a list with X added at the
beginning of Y.

(LISTP X) [Function]

Returns X if X is a list cell, e.g., something created by CONS; NIL otherwise.

(LISTP NIL) = NIL

(NLISTP X) [Function]

The same as (NOT (LISTP X)). Returns T if X is not a list cell, NIL otherwise.
However, (NLISTP NIL) = T

(CAR X) [Function]

Returns the first element of the list X. CAR of NIL is always NIL. For all other nonlists
(e.g., symbols, numbers, etc.), the value returned is controlled by CAR/CDRERR (below).

(CDR X) [Function]

Returns all but the first element of the list X. CDR of NIL is always NIL. The value of CDR
for other nonlists is controlled by CAR/CDRERR (below).

CAR/CDRERR [Variable]

The variable CAR/CDRERR controls the behavior of CAR and CDR when they are passed
non-lists (other than NIL).

If CAR/CDRERR = NIL (the current default), then CAR or CDR of a non-list (other than
NIL) return the string "{car of non-list}" or "{cdr of non-list}". If
CAR/CDRERR = T, then CAR and CDR of a non-list (other than NIL) causes an error.

If CAR/CDRERR = ONCE, then CAR or CDR of a string causes an error, but CAR or CDR of
anything else returns the string "{car of non-list}" or "{cdr of non-list}" as
above. This catches loops which repeatedly take CAR or CDR of an object, but it allows
one-time errors to pass undetected.

If CAR/CDRERR = CDR, then CAR of a non-list returns "{car of non-list}" as
above, but CDR of a non-list causes an error. This setting is based on the observation that

3-2

INTERLISP-D REFERENCE MANUAL

nearly all infinite loops involving non-lists occur from taking CDRs, but a fair amount of
careless code takes CAR of something it has not tested to be a list.

(CAAR X) (CADR X) (CDDR X) etc. [Function]

Often, combinations of CAR and CDR are used to extract parts of complex list structures.
Functions of the form C...R may be used for some of these combinations:

(CAAR X) ==> (CAR (CAR X))
(CADR X) ==> (CAR (CDR X))
(CDDDDR X) ==> (CDR (CDR (CDR (CDR X))))

All 30 combinations of nested CARs and CDRs up to 4 deep are included in the system.

(RPLACD X Y) [Function]

Replaces the CDR of the list cell X with Y. This physically changes the internal structure of
X, as opposed to CONS, which creates a new list cell. You can make a circular list by using
RPLACD to place a pointer to the beginning of a list at the end of the list.

The value of RPLACD is X. An attempt to RPLACD NIL will cause an error, Attempt to
RPLACD NIL (except for (RPLACD NIL NIL)). An attempt to RPLACD any other non-
list will cause an error, Arg not list.

(RPLACA X Y) [Function]

Like RPLACD, but replaces the CAR of X with Y. The value of RPLACA is X. An attempt to
RPLACA NIL will cause an error, Attempt to RPLACA NIL, (except for (RPLACA NIL
NIL)). An attempt to RPLACA any other non-list will cause an error, Arg not list.

(RPLNODE X A D) [Function]

Performs (RPLACA X A), (RPLACD X D), and returns X.

(RPLNODE2 X Y) [Function]

Performs (RPLACA X (CAR Y)), (RPLACD X (CDR Y)) and returns X.

(FRPLACD X Y) [Function]
(FRPLACA X Y) [Function]
(FRPLNODE X A D) [Function]
(FRPLNODE2 X Y) [Function]

Faster versions of RPLACD, etc.

Usually, you don’t use list cells alone, but in structures called “lists”. A list is represented by a list cell
whose CAR is the first element of the list, and whose CDR is the rest of the list. That’s normally another
list cell (with another element of the list) or the “empty list,” NIL, marking the list’s end. List elements
may be any Lisp objects, including other lists.

You type in a list as a sequence of Lisp data objects (symbols, numbers, other lists, etc.) enclosed in
parentheses or brackets. Note that () is read as the symbol NIL.

3-3

LISTS

Sometimes, you won’t want your list to end in NIL, but just with the final element. To indicate that,
type a period (with spaces on both sides) in front of the final element. This makes CDR of the list’s
final cell be the element immediately following the period, e.g. (A . B) or (A B C . D). Note that
a list needn’t end in NIL. It is simply a structure composed of one or more list cells. The input
sequence (A B C . NIL) is equivalent to (A B C), and (A B . (C D)) is equivalent to (A B C
D). Note, however, that (A B . C D) will create a list containing the five symbols A, B, %., C, and D.

Lists are printed by printing a left parenthesis, and then printing the first element of the list, a space,
the second element, etc., until the final list cell is reached. The individual elements of a list are printed
by PRIN1, if the list is being printed by PRIN1, and by PRIN2 if the list is being printed by PRINT or
PRIN2. Lists are considered to terminate when CDR of some node is not a list. If CDR of this terminal
node is NIL (the usual case), CAR of the last node is printed followed by a right parenthesis. If CDR of
the terminal node is not NIL, CAR of the last node is printed, followed by a space, a period, another
space, CDR of the last node, and the right parenthesis. A list input as (A B C . NIL) will print as
(A B C), and a list input as (A B . (C D)) will print as (A B C D). PRINTLEVEL affects the
printing of lists (see the PRINTLEVEL section of Chapter 25), and that carriage returns may be inserted
where dictated by LINELENGTH (see the Output Functions section of Chapter 25).

Note: Be careful when testing the equality of list structures. EQ will be true only when the
two lists are the exact same list. For example,

← (SETQ A ’(1 2))
(1 2)

← (SETQ B A)
(1 2)

← (EQ A B)
T

←(SETQ C ’(1 2))
(1 2)

←(EQ A C)
NIL

←(EQUAL A C)
T

In the example above, the values of A and B are the exact same list, so they are EQ.
However, the value of C is a totally different list, although it happens to have the same
elements. EQUAL should be used to compare the elements of two lists. In general, one
should notice whether list manipulation functions use EQ or EQUAL for comparing lists.
This is a frequent source of errors.

Creating Lists

(LIST X1 X2 ... XN) [NoSpread Function]

Returns a list of its arguments, e.g.

(LIST ’A ’B ’(C D)) => (A B (C D))

(LIST* X1 X2 ... XN) [NoSpread Function]

Returns a list of its arguments, using the last argument for the tail of the list. This is like
an iterated CONS: (LIST* A B C) == (CONS A (CONS B C)). For example,

3-4

INTERLISP-D REFERENCE MANUAL

(LIST* ’A ’B ’C) => (A B . C)
(LIST* ’A ’B ’(C D)) => (A B C D)

(APPEND X1 X2 ... XN) [NoSpread Function]

Copies the top level of the list X1 and appends this to a copy of the top level of the list X2
appended to ... appended to XN, e.g.,

(APPEND ’(A B) ’(C D E) ’(F G)) => (A B C D E F G)

Only the first N-1 lists are copied. However N = 1 is treated specially; (APPEND X)
copies the top level of a single list. To copy a list to all levels, use COPY.

The following examples illustrate the treatment of non-lists:

(APPEND ’(A B C) ’D) => (A B C . D)
(APPEND ’A ’(B C D)) => (B C D)
(APPEND ’(A B C . D) ’(E F G)) => (A B C E F G)
(APPEND ’(A B C . D)) => (A B C . D)

(NCONC X1 X2 ... XN) [NoSpread Function]

Returns the same value as APPEND, but modifies the list structure of X1 ... Xn-1.

NCONC cannot change NIL to a list:

←(SETQ FOO NIL)
NIL

←(NCONC FOO ’(A B C))
(A B C)

←FOO
NIL

Although the value of the NCONC is (A B C), FOO has not been changed. The “problem”
is that while it is possible to alter list structure with RPLACA and RPLACD, there is no way
to change the non-list NIL to a list.

(NCONC1 LST X) [Function]

Adds X to the end of LST: (NCONC LST (LIST X))

(ATTACH X L) [Function]

“Attaches” X to the front of L by doing a RPLACA and RPLACD. The value is EQUAL to
(CONS X L), but EQ to L, which it physically changes (except if L is NIL). (ATTACH X
NIL) is the same as (CONS X NIL). Otherwise, if L is not a list, an error is generated,
Arg not list.

(MKLIST X) [Function]

“Make List.” If X is a list or NIL, returns X; Otherwise, returns (LIST X).

3-5

LISTS

Building Lists From Left to Right

(TCONC PTR X) [Function]

TCONC is similar to NCONC1; it is useful for building a list by adding elements one at a
time at the end. Unlike NCONC1, TCONC does not have to search to the end of the list each
time it is called. Instead, it keeps a pointer to the end of the list being assembled, and
updates this pointer after each call. This can be considerably faster for long lists. The cost
is an extra list cell, PTR. (CAR PTR) is the list being assembled, (CDR PTR) is (LAST
(CAR PTR)). TCONC returns PTR, with its CAR and CDR appropriately modified.

PTR can be initialized in two ways. If PTR is NIL, TCONC will create and return a PTR. In
this case, the program must set some variable to the value of the first call to TCONC. After
that, it is unnecessary to reset the variable, since TCONC physically changes its value.
Example:

←(SETQ FOO (TCONC NIL 1))
((1) 1)

←(for I from 2 to 5 do (TCONC FOO I))
NIL

←FOO
((1 2 3 4 5) 5)

If PTR is initially (NIL), the value of TCONC is the same as for PTR = NIL. but TCONC
changes PTR. This method allows the program to initialize the TCONC variable before
adding any elements to the list. Example:

←(SETQ FOO (CONS))
(NIL)

←(for I from 1 to 5 do (TCONC FOO I))
NIL

←FOO
((1 2 3 4 5) 5)

(LCONC PTR X) [Function]

Where TCONC is used to add elements at the end of a list, LCONC is used for building a list
by adding lists at the end, i.e., it is similar to NCONC instead of NCONC1. Example:

←(SETQ FOO (CONS))
(NIL)

←(LCONC FOO ’(1 2))
((1 2) 2)

←(LCONC FOO ’(3 4 5))
((1 2 3 4 5) 5)

←(LCONC FOO NIL)
((1 2 3 4 5) 5)

LCONC uses the same pointer conventions as TCONC for eliminating searching to the end
of the list, so that the same pointer can be given to TCONC and LCONC interchangeably.
Therefore, continuing from above,

←(TCONC FOO NIL)
((1 2 3 4 5 NIL) NIL)

3-6

INTERLISP-D REFERENCE MANUAL

←(TCONC FOO ’(3 4 5))
((1 2 3 4 5 NIL (3 4 5)) (3 4 5))

The functions DOCOLLECT and ENDCOLLECT also let you build lists from left-to-right like TCONC, but
without the overhead of an extra list cell. The listis kept as a circular list. DOCOLLECT adds items;
ENDCOLLECT replaces the tail with its second argument, and returns the full list.

(DOCOLLECT ITEM LST) [Function]

“Adds” ITEM to the end of LST. Returns the new circular list. Note that LST is modified,
but it is not EQ to the new list. The new list should be stored and used as LST to the next
call to DOCOLLECT.

(ENDCOLLECT LST TAIL) [Function]

Takes LST, a list returned by DOCOLLECT, and returns it as a non-circular list, adding
TAIL as the terminating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRINT is used to print the
results because they are circular lists. Notice that FOO has to be set to the value of
DOCOLLECT as each element is added.

←(SETQ FOO NIL]
NIL

←(HPRINT (SETQ FOO (DOCOLLECT 1 FOO]
↑(1 . {1})

←(HPRINT (SETQ FOO (DOCOLLECT 2 FOO]
↑(2 1 . {1})

←(HPRINT (SETQ FOO (DOCOLLECT 3 FOO]
↑(3 1 2 . {1})

←(HPRINT (SETQ FOO (DOCOLLECT 4 FOO]
↑(4 1 2 3 . {1})

←(SETQ FOO (ENDCOLLECT FOO 5]
(1 2 3 4 . 5)

The following two functions are useful when writing programs that reuse a scratch list to collect
together some result(s) (both of these compile open):

(SCRATCHLIST LST X1 X2 ... XN) [NLambda NoSpread Function]

SCRATCHLIST sets up a context in which the value of LST is used as a “scratch” list. The
expressions X1, X2, ... XN are evaluated in turn. During the course of evaluation, any
value passed to ADDTOSCRATCHLIST will be saved, reusing CONS cells from the value of
LST. If the value of LST is not long enough, new CONS cells will be added onto its end. If
the value of LST is NIL, the entire value of SCRATCHLIST will be “new” (i.e., no CONS
cells will be reused).

(ADDTOSCRATCHLIST VALUE) [Function]

For use under calls to SCRATCHLIST. VALUE is added on to the end of the list of things
being collected by SCRATCHLIST. When SCRATCHLIST returns, its value is a list
containing all of the things added by ADDTOSCRATCHLIST.

3-7

LISTS

Copying Lists

(COPY X) [Function]

Creates and returns a copy of the list X. All levels of X are copied down to non-lists, so
that if X contains arrays and strings, the copy of X will contain the same arrays and strings,
not copies. COPY is recursive in the CAR direction only, so very long lists can be copied.

To copy just the top level of X, do (APPEND X).

(COPYALL X) [Function]

Like COPY, but it copies down to atoms. Arrays, hash-arrays, strings, user data types, etc.,
are all copied. Analagous to EQUALALL (see the Equality Predicates section of Chapter 9).
This will not work if given a data structure with circular pointers; in this case, use
HCOPYALL.

(HCOPYALL X) [Function]

Like COPYALL, but it will work even if the data structure contains circular pointers.

Extracting Tails of Lists

(NTH X N) [Function]

Returns the tail of X beginning with the Nth element. Returns NIL if X has fewer than N
elements. This is different from Common Lisp’s NTH. Examples:

(NTH ’(A B C D) 1) => (A B C D)
(NTH ’(A B C D) 3) => (C D)
(NTH ’(A B C D) 9) => NIL
(NTH ’(A . B) 2) => B

For consistency, if N = 0, NTH returns (CONS NIL X):

(NTH ’(A B) 0) => (NIL A B)

(FNTH X N) [Function]

Faster version of NTH that terminates on a null-check.

(LAST X) [Function]

Returns the last list cell in the list X. Returns NIL if X is not a list. Examples:

(LAST ’(A B C)) => (C)
(LAST ’(A B . C)) => (B . C)
(LAST ’A) => NIL

(FLAST X) [Function]

Faster version of LAST that terminates on a null-check.

(NLEFT L N TAIL) [Function]

NLEFT returns the tail of L that contains N more elements than TAIL. If L does not contain
N more elements than TAIL, NLEFT returns NIL. If TAIL is NIL or not a tail of L, NLEFT

3-8

INTERLISP-D REFERENCE MANUAL

returns the last N list cells in L. NLEFT can be used to work backwards through a list.
Example:

←(SETQ FOO ’(A B C D E))
(A B C D E)

←(NLEFT FOO 2)
(D E)

←(NLEFT FOO 1 (CDDR FOO))
(B C D E)

←(NLEFT FOO 3 (CDDR FOO))
NIL

(LASTN L N) [Function]

Returns (CONS X Y), where Y is the last N elements of L, and X is the initial segment, e.g.,

(LASTN ’(A B C D E) 2) => ((A B C) D E)
(LASTN ’(A B) 2) => (NIL A B)

Returns NIL if L is not a list containing at least N elements.

(TAILP X Y) [Function]

Returns X, if X is a tail of the list Y; otherwise NIL. X is a tail of Y if it is EQ to 0 or more
CDRs of Y.

Note: If X is EQ to 1 or more CDRs of Y, X is called a “proper tail.”

Counting List Cells

(LENGTH X) [Function]

Returns the length of the list X, where “length” is defined as the number of CDRs required
to reach a non-list. Examples:

(LENGTH ’(A B C)) => 3
(LENGTH ’(A B C . D)) => 3
(LENGTH ’A) => 0

(FLENGTH X) [Function]

Faster version of LENGTH that terminates on a null-check.

(EQLENGTH X N) [Function]

Equivalent to (EQUAL (LENGTH X) N), but more efficient, because EQLENGTH stops as
soon as it knows that X is longer than N. EQLENGTH is safe to use on (possibly) circular
lists, since it is “bounded” by N.

(COUNT X) [Function]

Returns the number of list cells in the list X. Thus, COUNT is like a LENGTH that goes to all
levels. COUNT of a non-list is 0. Examples:

(COUNT ’(A)) => 1
(COUNT ’(A . B)) => 1
(COUNT ’(A (B) C)) => 4

3-9

LISTS

In this last example, the value is 4 because the list (A X C) uses three list cells for any
object X, and (B) uses another list cell.

(COUNTDOWN X N) [Function]

Counts the number of list cells in X, decrementing N for each one. Stops and returns N
when it finishes counting, or when N reaches 0. COUNTDOWN can be used on circular
structures since it is “bounded” by N. Examples:

(COUNTDOWN ’(A) 100) => 99
(COUNTDOWN ’(A . B) 100) => 99
(COUNTDOWN ’(A (B) C) 100) => 96
(COUNTDOWN (DOCOLLECT 1 NIL) 100) => 0

(EQUALN X Y DEPTH) [Function]

Like EQUAL, for use with (possibly) circular structures. Whenever the depth of CAR
recursion plus the depth of CDR recursion exceeds DEPTH, EQUALN does not search further
along that chain, and returns the symbol ?. If recursion never exceeds DEPTH, EQUALN
returns T if the expressions X and Y are EQUAL; otherwise NIL.

(EQUALN ’(((A)) B) ’(((Z)) B) 2) => ?
(EQUALN ’(((A)) B) ’(((Z)) B) 3) => NIL
(EQUALN ’(((A)) B) ’(((A)) B) 3) => T

Set Operations

(INTERSECTION X Y) [Function]

Returns a list whose elements are members of both lists X and Y (using EQUAL to do
compares).

Note that (INTERSECTION X X) gives a list of all members of X without duplicates.

(UNION X Y) [Function]

Returns a (new) list consisting of all elements included on either of the two original lists
(using EQUAL to compare elements). It is more efficient for X to be the shorter list.

The value of UNION is Y with all elements of X not in Y CONSed on the front of it.
Therefore, if an element appears twice in Y, it will appear twice in (UNION X Y). Since
(UNION ’(A) ’(A A)) = (A A), while (UNION ’(A A) ’(A)) = (A), UNION is
non-commutative.

(LDIFFERENCE X Y) [Function]

“List Difference.” Returns a list of the elements in X that are not members of Y (using
EQUAL to compare elements).

Note: If X and Y share no elements, LDIFFERENCE returns a copy of X.

(LDIFF LST TAIL ADD) [Function]

TAIL must be a tail of LST, i.e., EQ to the result of applying some number of CDRs to LST.
(LDIFF LST TAIL) returns a list of all elements in LST up to TAIL.

3-10

INTERLISP-D REFERENCE MANUAL

If ADD is not NIL, the value of LDIFF is effectively (NCONC ADD (LDIFF LST TAIL)),
i.e., the list difference is added at the end of ADD.

If TAIL is not a tail of LST, LDIFF generates an error, LDIFF: not a tail. LDIFF
terminates on a null-check, so it will go into an infinite loop if LST is a circular list and
TAIL is not a tail.

Example:

←(SETQ FOO ’(A B C D E F))
(A B C D E F)

←(CDDR FOO)
(C D E F)

←(LDIFF FOO (CDDR FOO))
(A B)

←(LDIFF FOO (CDDR FOO) ’(1 2))
(1 2 A B)

←(LDIFF FOO ’(C D E F))
LDIFF: not a tail
(C D E F)

Note that the value of LDIFF is always new list structure unless TAIL = NIL, in which
case the value is LST itself.

Searching Lists

(MEMB X Y) [Function]

Determines if X is a member of the list Y. If there is an element of Y EQ to X, returns the
tail of Y starting with that element. Otherwise, returns NIL. Examples:

(MEMB ’A ’(A (W) C D)) => (A (W) C D)
(MEMB ’C ’(A (W) C D)) => (C D)
(MEMB ’W ’(A (W) C D)) => NIL
(MEMB ’(W) ’(A (W) C D)) => NIL

(FMEMB X Y) [Function]

Faster version of MEMB that terminates on a null-check.

(MEMBER X Y) [Function]

Identical to MEMB except that it uses EQUAL instead of EQ to check membership of X in Y.
Examples:

(MEMBER ’C ’(A (W) C D)) => (C D)
(MEMBER ’W ’(A (W) C D)) => NIL
(MEMBER ’(W) ’(A (W) C D)) => ((W) C D)

(EQMEMB X Y) [Function]

Returns T if either X is EQ to Y, or else Y is a list and X is an FMEMB of Y.

3-11

LISTS

Substitution Functions

(SUBST NEW OLD EXPR) [Function]

Returns the result of substituting NEW for all occurrences of OLD in the expression EXPR.
Substitution occurs whenever OLD is EQUAL to CAR of some subexpression of EXPR, or
when OLD is atomic and EQ to a non-NIL CDR of some subexpression of EXPR. For
example:

(SUBST ’A ’B ’(C B (X . B))) => (C A (X . A))
(SUBST ’A ’(B C) ’((B C) D B C)) => (A D B C) not (A D . A)

SUBST returns a copy of EXPR with the appropriate changes. Furthermore, if NEW is a list,
it is copied at each substitution.

(DSUBST NEW OLD EXPR) [Function]

Like SUBST, but it does not copy EXPR, but changes the list structure EXPR itself. Like
SUBST, DSUBST substitutes with a copy of NEW. More efficient than SUBST.

(LSUBST NEW OLD EXPR) [Function]

Like SUBST, but NEW is substituted as a segment of the list EXPR rather than as an
element. For instance,

(LSUBST ’(A B) ’Y ’(X Y Z)) => (X A B Z)

If NEW is not a list, LSUBST returns a copy of EXPR with all OLD’s deleted:

(LSUBST NIL ’Y ’(X Y Z)) => (X Z)

(SUBLIS ALST EXPR FLG) [Function]

ALST is a list of pairs:

((OLD1 . NEW1) (OLD2 . NEW2) ... (OLDN . NEWN))

Each OLDi is an atom. SUBLIS returns the result of substituting each NEWi for the
corresponding OLDi in EXPR, e.g.,

(SUBLIS ’((A . X) (C . Y)) ’(A B C D)) => (X B Y D)

If FLG = NIL, new structure is created only if needed, so if there are no substitutions, the
value is EQ to EXPR. If FLG = T, the value is always a copy of EXPR.

(DSUBLIS ALST EXPR FLG) [Function]

Like SUBLIS, but it changes the list structure EXPR itself instead of copying it.

(SUBPAIR OLD NEW EXPR FLG) [Function]

Like SUBLIS, but elements of NEW are substituted for corresponding atoms of OLD in
EXPR, e.g.,

(SUBPAIR ’(A C) ’(X Y) ’(A B C D)) => (X B Y D)

3-12

INTERLISP-D REFERENCE MANUAL

As with SUBLIS, new structure is created only if needed, or if FLG = T, e.g., if FLG =
NIL and there are no substitutions, the value is EQ to EXPR.

If OLD ends in an atom other than NIL, the rest of the elements on NEW are substituted for
that atom. For example, if OLD = (A B . C) and NEW = (U V X Y Z), U is
substituted for A, V for B, and (X Y Z) for C. Similarly, if OLD itself is an atom (other
than NIL), the entire list NEW is substituted for it. Examples:

(SUBPAIR ’(A B . C) ’(W X Y Z) ’(C A B B Y)) => ((Y Z) W X X
Y)

SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression, whereas SUBLIS,
and DSUBLIS, and SUBPAIR substitute the identical structure (unless FLG = T). For example:

← (SETQ FOO ’(A B))
(A B)

← (SETQ BAR ’(X Y Z))
(X Y Z)

← (DSUBLIS (LIST (CONS ’X FOO)) BAR)
((A B) Y Z)

← (DSUBLIS (LIST (CONS ’Y FOO)) BAR T)
((A B) (A B) Z)

← (EQ (CAR BAR) FOO)
T

← (EQ (CADR BAR) FOO)
NIL

Association Lists and Property Lists

It is often useful to associate a set of property names (NAME1, NAME2, etc.), with a set of property
values (VALUE1, VALUE2, etc.). Two list structures commonly used to store such associations are
called “property lists” and “association lists.” A list in “association list” format is a list where each
element is a call whose CAR is a property name, and whose CDR is the value:

((NAME1 . VALUE1) (NAME2 . VALUE2) ...)

A list in “property list” format is a list where the first, third, etc. elements are the property names, and
the second, forth, etc. elements are the associated values:

(NAME1 VALUE1 NAME2 VALUE2 ...)

Another data structure that offers some of the advantages of association lists and property lists is the
hash array (see the first page of Chapter 6).

The functions below provide facilities for searching and changing lists in property list or association
list format.

Note: Property lists are used in many Medley system datatypes. There are special functions that can
be used to set and retrieve values from the property lists of symbols (see the Property Lists section of
Chapter 2), from properties of windows (see the Window Properties section of Chapter 28), etc.

(ASSOC KEY ALST) [Function]

ALST is a list of lists. ASSOC returns the first sublist of ALST whose CAR is EQ to KEY. If
such a list is not found, ASSOC returns NIL. Example:

3-13

LISTS

(ASSOC ’B ’((A . 1) (B . 2) (C . 3))) => (B . 2)

(FASSOC KEY ALST) [Function]

Faster version of ASSOC that terminates on a null-check.

(SASSOC KEY ALST) [Function]

Same as ASSOC, but uses EQUAL instead of EQ when searching for KEY.

(PUTASSOC KEY VAL ALST) [Function]

Searches ALST for a sublist CAR of which is EQ to KEY. If one is found, the CDR is replaced
(using RPLACD) with VAL. If no such sublist is found, (CONS KEY VAL) is added at the
end of ALST. Returns VAL. If ALST is not a list, generates an error, Arg not list.

The argument order for ASSOC, PUTASSOC, etc. is different from that of LISTGET, LISTPUT, etc.

(LISTGET LST PROP) [Function]

Searches LST two elements at a time, by CDDR, looking for an element EQ to PROP. If one
is found, returns the next element of LST, otherwise NIL. Returns NIL if LST is not a list.
Example:

(LISTGET ’(A 1 B 2 C 3) ’B) => 2
(LISTGET ’(A 1 B 2 C 3) ’W) => NIL

(LISTPUT LST PROP VAL) [Function]

Searches LST two elements at a time, by CDDR, looking for an element EQ to PROP. If
PROP is found, replaces the next element of LST with VAL. Otherwise, PROP and VAL are
added to the end of LST. If LST is a list with an odd number of elements, or ends in a
non-list other than NIL, PROP and VAL are added at its beginning. Returns VAL. If LST is
not a list, generates an error, Arg not list.

(LISTGET1 LST PROP) [Function]

Like LISTGET, but searches LST one CDR at a time, i.e., looks at each element. Returns the
next element after PROP. Examples:

(LISTGET1 ’(A 1 B 2 C 3) ’B) => 2
(LISTGET1 ’(A 1 B 2 C 3) ’1) => B
(LISTGET1 ’(A 1 B 2 C 3) ’W) => NIL

(LISTPUT1 LST PROP VAL) [Function]

Like LISTPUT, but searches LST one CDR at a time. Returns the modified LST. Example:

←(SETQ FOO ’(A 1 B 2))
(A 1 B 2)

←(LISTPUT1 FOO ’B 3)
(A 1 B 3)

←(LISTPUT1 FOO ’C 4)
(A 1 B 3 C 4)

←(LISTPUT1 FOO 1 ’W)
(A 1 W 3 C 4)

←FOO

3-14

INTERLISP-D REFERENCE MANUAL

(A 1 W 3 C 4)

If LST is not a list, no error is generated. However, since a non-list cannot be changed into
a list, LST is not modified. In this case, the value of LISTPUT1 should be saved.
Example:

←(SETQ FOO NIL)
NIL

←(LISTPUT1 FOO ’A 5)
(A 5)

←FOO
NIL

Sorting Lists

(SORT DATA COMPAREFN) [Function]

DATA is a list of items to be sorted using COMPAREFN, a predicate function of two
arguments which can compare any two items on DATA and return T if the first one
belongs before the second. If COMPAREFN is NIL, ALPHORDER is used; thus (SORT
DATA) will alphabetize a list. If COMPAREFN is T, CAR’s of items that are lists are given to
ALPHORDER, otherwise the items themselves; thus (SORT A-LIST T) will alphabetize
an assoc list by the CAR of each item. (SORT X ’ILESSP) will sort a list of integers.

The value of SORT is the sorted list. The sort is destructive and uses no extra storage. The
value returned is EQ to DATA but elements have been switched around. There is no safe
way to interrupt SORT. If you abort a call to SORT by any means, you may loose elements
from the list beeing sorted. The algorithm used by SORT is such that the maximum
number of compares is N*log2N, where N is (LENGTH DATA).

Note: If (COMPAREFN A B) = (COMPAREFN B A), then the ordering of A and B
may or may not be preserved.

For example, if (FOO . FIE) appears before (FOO . FUM) in X, (SORT X T) may or
may not reverse the order of these two elements.

(MERGE A B COMPAREFN) [Function]

A and B are lists which have previously been sorted using SORT and COMPAREFN. Value is
a destructive merging of the two lists. It does not matter which list is longer. After
merging both A and B are equal to the merged list. (In fact, (CDR A) is EQ to (CDR B)).

(ALPHORDER A B CASEARRAY) [Function]

A predicate function of two arguments, for alphabetizing. Returns a non-NIL value if its
arguments are in lexicographic order, i.e., if B does not belong before A. Numbers come
before literal atoms, and are ordered by magnitude (using GREATERP). Literal atoms and
strings are ordered by comparing the character codes in their print names. Thus
(ALPHORDER 23 123) is T, whereas (ALPHORDER ’A23 ’A123) is NIL, because the
character code for the digit 2 is greater than the code for 1.

3-15

LISTS

Atoms and strings are ordered before all other data types. If neither A nor B are atoms or
strings, the value of ALPHORDER is always T.

If CASEARRAY is non-NIL, it is a casearray (see the Random Access File Operations section
of Chapter 25) that the characters of A and B are translated through before being
compared. Numbers are not passed through CASEARRAY.

Note: If either A or B is a number, the value returned in the “true” case is T. Otherwise,
ALPHORDER returns either EQUAL or LESSP to discriminate the cases of A and B being
equal or unequal strings/atoms.

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or NTHCHARs. It is several times
faster for alphabetizing than anything that can be written using these other functions.

(UALPHORDER A B) [Function]

Defined as (ALPHORDER A B UPPERCASEARRAY). UPPERCASEARRAY maps every
lowercase character into the corresponding uppercase character. For more information on
UPPERCASEARRAY see Chapter 25.

(MERGEINSERT NEW LST ONEFLG) [Function]

LST is NIL or a list of partially sorted items. MERGEINSERT tries to find the “best” place to
(destructively) insert NEW, e.g.,

(MERGEINSERT ’FIE2 ’(FOO FOO1 FIE FUM)) => (FOO FOO1 FIE
FIE2 FUM)

Returns LST. MERGEINSERT is undoable.

If ONEFLG = T and NEW is already a member of LST, MERGEINSERT does nothing and
returns LST.

MERGEINSERT is used by ADDTOFILE (see the Functions for Manipulating File Command Lists
section of Chapter 17) to insert the name of a new function into a list of functions. The algorithm is
essentially to look for the item with the longest common leading sequence of characters with respect
to NEW, and then merge NEW in starting at that point.

Other List Functions

(REMOVE X L) [Function]

Removes all top-level occurrences of X from list L, returning a copy of L with all elements
EQUAL to X removed. Example:

(REMOVE ’A ’(A B C (A) A)) => (B C (A))
(REMOVE ’(A) ’(A B C (A) A)) => (A B C A)

(DREMOVE X L) [Function]

Like REMOVE, but uses EQ instead of EQUAL, and actually modifies the list L when
removing X, and thus does not use any additional storage. More efficient than REMOVE.

DREMOVE cannot change a list to NIL:

←(SETQ FOO ’(A))

3-16

INTERLISP-D REFERENCE MANUAL

(A)
←(DREMOVE ’A FOO)

NIL
←FOO

(A)

The DREMOVE above returns NIL, and does not perform any CONSes, but the value of FOO
is still (A), because there is no way to change a list to a non-list. See NCONC.

(REVERSE L) [Function]

Reverses (and copies) the top level of a list, e.g.,

(REVERSE ’(A B (C D))) => ((C D) B A)

If L is not a list, REVERSE just returns L.

(DREVERSE L) [Function]

Value is the same as that of REVERSE, but DREVERSE destroys the original list L and thus
does not use any additional storage. More efficient than REVERSE.

(COMPARELISTS X Y) [Function]

Compares the list structures X and Y and prints a description of any differences to the
terminal. If X and Y are EQUAL lists, COMPARELISTS simply prints out SAME. Returns
NIL.

COMPARELISTS prints a terse description of the differences between the two list
structures, highlighting the items that have changed. This printout is not a complete and
perfect comparison. If X and Y are radically different list structures, the printout will not
be very useful. COMPARELISTS is meant to be used as a tool to help users isolate
differences between similar structures.

When a single element has been changed for another, COMPARELISTS prints out items
such as (A -> B), for example:

←(COMPARELISTS ’(A B C D) ’(X B E D))
(A -> X) (C -> E)
NIL

When there are more complex differences between the two lists, COMPARELISTS prints X
and Y, highlighting differences and abbreviating similar elements as much as possible.
“&” is used to signal a single element that is present in the same place in the two lists; “--
” signals an arbitrary number of elements in one list but not in the other; “-2-,” “-3-”,
etc. signal a sequence of two, three, etc. elements that are the same in both lists. Examples:

(COMPARELISTS ’(A B C D) ’(A D))
(A B C --)
(A D)

←(COMPARELISTS ’(A B C D E F G H) ’(A B C D X))
(A -3- E F --)
(A -3- X)

←(COMPARELISTS ’(A B C (D E F (G) H) I) ’(A B (G) C (D E F
H) I))
(A & & (D -2- (G) &) &)

3-17

LISTS

(A & (G) & (D -2- &) &)

(NEGATE X) [Function]

For a form X, returns a form which computes the negation of X . For example:

(NEGATE ’(MEMBER X Y)) => (NOT (MEMBER X Y))
(NEGATE ’(EQ X Y)) => (NEQ X Y)
(NEGATE ’(AND X (NLISTP X))) => (OR (NULL X) (LISTP X))
(NEGATE NIL) => T

3-18

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

4-1

4. STRINGS

A string represents a sequence of characters. Interlisp strings are a subtype of Common Lisp strings.
Medley provides functions for creating strings, concatenating strings, and creating sub-strings of a
string; all accepting or producing Common Lisp-acceptable strings.

A string is typed as a double quote ("), followed by a sequence of any characters except double quote
and %, terminated by a double quote. To include % or " in a string, type % in front of them:

"A string"
"A string with %" in it, and a %%."
"" ; an empty string

Strings are printed by PRINT and PRIN2 with initial and final double quotes, and %s inserted where
necessary for it to read back in properly. Strings are printed by PRIN1 without the double quotes and
extra %s. The null string is printed by PRINT and PRIN2 as "". (PRIN1 "") doesn’t print anything.

Internally, a string is stored in two parts: a “string header” and the sequence of characters. Several
string headers may refer to the the same character sequence, so a substring can be made by creating a
new string header, without copying any characters. Functions that refer to “strings” actually
manipulate string headers. Some functions take an “old string” argument, and re-use the string
pointer.

(STRINGP X) [Function]

Returns X if X is a string, NIL otherwise.

(STREQUAL X Y) [Function]

Returns T if X and Y are both strings and they contain the same sequence of characters,
otherwise NIL. EQUAL uses STREQUAL. Note that strings may be STREQUAL without
being EQ. For instance,

(STREQUAL "ABC" "ABC") => T
(EQ "ABC" "ABC") => NIL

STREQUAL returns T if X and Y are the same string pointer, or two different string pointers
which point to the same character sequence, or two string pointers which point to
different character sequences which contain the same characters. Only in the first case
would X and Y be EQ.

(STRING-EQUAL X Y) [Function]

Returns T if X and Y are either strings or symbols, and they contain the same sequence of
characters, ignoring case. For instance,

(STRING-EQUAL "FOO" "Foo") => T
(STRING-EQUAL "FOO" ’Foo) => T

This is useful for comparing things that might want to be considered “equal” even though
they’re not both symbols in a consistent case, such as file names and user names.

4-2

 INTERLISP-D REFERENCE MANUAL

(STRING.EQUAL X Y) [Function]

Returns T if the print names of X and Y contain the same sequence of characters, ignoring
case. For instance,

(STRING-EQUAL "320" 320) => T
(STRING-EQUAL "FOO" ’Foo) => T

This is like STRING-EQUAL, but handles numbers, etc., where STRING-EQUAL doesn’t.

(ALLOCSTRING N INITCHAR OLD FATFLG) [Function]

Creates a string of length N characters of INITCHAR (which can be either a character code
or something coercible to a character). If INITCHAR is NIL, it defaults to character code 0.
if OLD is supplied, it must be a string pointer, which is modified and returned.

If FATFLG is non-NIL, the string is allocated using full 16-bit NS characters (see Chapter 2)
instead of 8-bit characters. This can speed up some string operations if NS characters are
later inserted into the string. This has no other effect on the operation of the string
functions.

(MKSTRING X FLG RDTBL) [Function]

If X is a string, returns X. Otherwise, creates and returns a string containing the print
name of X. Examples:

(MKSTRING "ABC") => "ABC"
(MKSTRING ’(A B C)) => "(A B C)"
(MKSTRING NIL) => "NIL"

Note that the last example returns the string "NIL", not the symbol NIL.

If FLG is T, then the PRIN2-name of X is used, computed with respect to the readtable
RDTBL. For example,

(MKSTRING "ABC" T) => "%"ABC%""

(NCHARS X FLG RDTBL) [Function]

Returns the number of characters in the print name of X. If FLG=T, the PRIN2-name is
used. For example,

(NCHARS ’ABC) => 3
(NCHARS "ABC" T) => 5

Note: NCHARS works most efficiently on symbols and strings, but can be given any object.

(SUBSTRING X N M OLDPTR) [Function]

Returns the substring of X consisting of the Nth through Mth characters of X. If M is NIL,
the substring contains the Nth character thru the end of X. N and M can be negative
numbers, which are interpreted as counts back from the end of the string, as with
NTHCHAR (Chapter 2). SUBSTRING returns NIL if the substring is not well defined, (e.g., N
or M specify character positions outside of X, or N corresponds to a character in X to the
right of the character indicated by M). Examples:

4-3

STRINGS

(SUBSTRING "ABCDEFG" 4 6) => "DEF"
(SUBSTRING "ABCDEFG" 3 3) => "C"
(SUBSTRING "ABCDEFG" 3 NIL) => "CDEFG"
(SUBSTRING "ABCDEFG" 4 -2) => "DEF"
(SUBSTRING "ABCDEFG" 6 4) => NIL
(SUBSTRING "ABCDEFG" 4 9) => NIL

If X is not a string, it is converted to one. For example,

(SUBSTRING ’(A B C) 4 6) => "B C"

SUBSTRING does not actually copy any characters, but simply creates a new string pointer
to the characters in X. If OLDPTR is a string pointer, it is modified and returned.

(GNC X) [Function]

“Get Next Character.” Returns the next character of the string X (as a symbol); also
removes the character from the string, by changing the string pointer. Returns NIL if X is
the null string. If X isn’t a string, a string is made. Used for sequential access to characters
of a string. Example:

←(SETQ FOO "ABCDEFG")
"ABCDEFG"

←(GNC FOO)
A

←(GNC FOO)
B

←FOO
"CDEFG"

Note that if A is a substring of B, (GNC A) does not remove the character from B.

(GLC X) [Function]

“Get Last Character.” Returns the last character of the string X (as a symbol); also
removes the character from the string. Similar to GNC. Example:

←(SETQ FOO "ABCDEFG")
"ABCDEFG"

←(GLC FOO)
G

←(GLC FOO)
F

←FOO
"ABCDE"

(CONCAT X1 X2 ... XN) [NoSpread Function]

Returns a new string which is the concatenation of (copies of) its arguments. Any
arguments which are not strings are transformed to strings. Examples:

(CONCAT "ABC" ’DEF "GHI") => "ABCDEFGHI"
(CONCAT ’(A B C) "ABC") => "(A B C)ABC"
(CONCAT) returns the null string, ""

4-4

 INTERLISP-D REFERENCE MANUAL

(CONCATLIST L) [Function]

L is a list of strings and/or other objects. The objects are transformed to strings if they
aren’t strings. Returns a new string which is the concatenation of the strings. Example:

(CONCATLIST ’(A B (C D) "EF")) => "AB(C D)EF"

(RPLSTRING X N Y) [Function]

Replaces the characters of string X beginning at character position N with string Y. X and Y
are converted to strings if they aren’t already. N may be positive or negative, as with
SUBSTRING. Characters are smashed into (converted) X. Returns the string X. Examples:

(RPLSTRING "ABCDEF" -3 "END") => "ABCEND"
(RPLSTRING "ABCDEFGHIJK" 4 ’(A B C)) => "ABC(A B C)K"

Generates an error if there is not enough room in X for Y, i.e., the new string would be
longer than the original. If Y was not a string, X will already have been modified since
RPLSTRING does not know whether Y will “fit” without actually attempting the transfer.

Warning: In some implementations of Interlisp, if X is a substring of Z, Z will also be
modified by the action of RPLSTRING or RPLCHARCODE. However, this is not guaranteed
to be true in all cases, so programmers should not rely on RPLSTRING or RPLCHARCODE
altering the characters of any string other than the one directly passed as argument to
those functions.

(RPLCHARCODE X N CHAR) [Function]

Replaces the Nth character of the string X with the character code CHAR. N may be positive
or negative. Returns the new X. Similar to RPLSTRING. Example:

(RPLCHARCODE "ABCDE" 3 (CHARCODE F)) => "ABFDE"

(STRPOS PAT STRING START SKIP ANCHOR TAIL CASEARRAY BACKWARDSFLG) [Function]

STRPOS is a function for searching one string looking for another. PAT and STRING are
both strings (or else they are converted automatically). STRPOS searches STRING
beginning at character number START, (or 1 if START is NIL) and looks for a sequence of
characters equal to PAT. If a match is found, the character position of the first matching
character in STRING is returned, otherwise NIL. Examples:

(STRPOS "ABC" "XYZABCDEF") => 4
(STRPOS "ABC" "XYZABCDEF" 5) => NIL
(STRPOS "ABC" "XYZABCDEFABC" 5) => 10

SKIP can be used to specify a character in PAT that matches any character in STRING.
Examples:

(STRPOS "A&C&" "XYZABCDEF" NIL ’&) => 4
(STRPOS "DEF&" "XYZABCDEF" NIL ’&) => NIL

If ANCHOR is T, STRPOS compares PAT with the characters beginning at position START
(or 1 if START is NIL). If that comparison fails, STRPOS returns NIL without searching
any further down STRING. Thus it can be used to compare one string with some portion
of another string. Examples:

(STRPOS "ABC" "XYZABCDEF" NIL NIL T) => NIL

4-5

STRINGS

(STRPOS "ABC" "XYZABCDEF" 4 NIL T) => 4

If TAIL is T, the value returned by STRPOS if successful is not the starting position of the
sequence of characters corresponding to PAT, but the position of the first character after
that, i.e., the starting position plus (NCHARS PAT). Examples:

(STRPOS "ABC" "XYZABCDEFABC" NIL NIL NIL T) => 7
(STRPOS "A" "A" NIL NIL NIL T) => 2

If TAIL = NIL, STRPOS returns NIL, or a character position within STRING which can be
passed to SUBSTRING. In particular, (STRPOS "" "") => NIL. However, if TAIL
= T, STRPOS may return a character position outside of STRING. For instance, note that
the second example above returns 2, even though “A” has only one character.

If CASEARRAY is non-NIL, this should be a casearray like that given to FILEPOS (Chapter
25). The casearray is used to map the string characters before comparing them to the
search string.

If BACKWARDSFLG is non-NIL, the search is done backwards from the end of the string.

(STRPOSL A STRING START NEG BACKWARDSFLG) [Function]

STRING is a string (or is converted automatically to a string), A is a list of characters or
character codes. STRPOSL searches STRING beginning at character number START (or 1 if
START = NIL) for one of the characters in A. If one is found, STRPOSL returns as its
value the corresponding character position, otherwise NIL. Example:

(STRPOSL ’(A B C) "XYZBCD") => 4

If NEG = T, STRPOSL searches for a character not on A. Example:

(STRPOSL ’(A B C) "ABCDEF" NIL T) => 4

If any element of A is a number, it is assumed to be a character code. Otherwise, it is
converted to a character code via CHCON1. Therefore, it is more efficient to call STRPOSL
with A a list of character codes.

If A is a bit table, it is used to specify the characters (see MAKEBITTABLE below)

If BACKWARDSFLG is non-NIL, the search is done backwards from the end of the string.

STRPOSL uses a “bit table” data structure to search efficiently. If A is not a bit table, it is
converted to a bit table using MAKEBITTABLE. If STRPOSL is to be called frequently with
the same list of characters, a considerable savings can be achieved by converting the list to
a bit table once, and then passing the bit table to STRPOSL as its first argument.

(MAKEBITTABLE L NEG A) [Function]

Returns a bit table suitable for use by STRPOSL. L is a list of characters or character codes,
NEG is the same as described for STRPOSL. If A is a bit table, MAKEBITTABLE modifies
and returns it. Otherwise, it will create a new bit table.

4-6

 INTERLISP-D REFERENCE MANUAL

Note: If NEG = T, STRPOSL must call MAKEBITTABLE whether A is a list or a bit table.
To obtain bit table efficiency with NEG=T, MAKEBITTABLE should be called with NEG=T,
and the resulting “inverted” bit table should be given to STRPOSL with NEG=NIL.

4-7

4-8

 INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

5-1

5. ARRAYS

An Interlisp array is a one-dimensional vector of objects. Arrays are generally created by the function
ARRAY. By contrast, Common Lisp arrays can be multi-dimensional.

Note: Interlisp arrays and Common Lisp arrays are not the same types. Interlisp functions only
accept Interlisp arrays and vice versa. There are no functions to convert between the two types.

(ARRAY SIZE TYPE INIT ORIG —) [Function]

Creates and returns a new array that holds SIZE objects of type TYPE. If TYPE is NIL, the
array can contain any arbitrary Lisp datum. In general, TYPE may be any of the various
field specifications that are legal in DATATYPE declarations (see Chapter 8): POINTER,
FIXP, FLOATP, (BITS N), etc. Medley will, if necessary, choose an “enclosing” type if
the given one is not supported; for example, an array of (BITS 3) may be represented by
an array of (BITS 8).

INIT is the initial value for each element of the new array. If not specified, the array
elements will be initialized with 0 (for number arrays) or NIL (all other types).

Arrays can have either 0-origin or 1-origin indexing, as specified by the ORIG argument; if
ORIG is not specified, the default is 1.

Arrays of type FLOATP are stored unboxed. This increases the space and time efficiency
of FLOATP arrays. If you want to use boxed floating point numbers, use an array of type
POINTER instead of FLOATP.

(ARRAYP X) [Function]

Returns X if X is an array, NIL otherwise.

(ELT ARRAY N) [Function]

Returns the Nth element of the array ARRAY.

Causes the error, Arg not array, if ARRAY is not an array. Causes the error, Illegal
Arg, if N is out of bounds.

(SETA ARRAY N VAL) [Function]

Sets the Nth element of ARRAY to VAL, and returns VAL.

Causes the error, Arg not array, if ARRAY is not an array. the error, Illegal Arg, if
N is out of bounds. Can cause the error, Non-numeric arg, if ARRAY is an array whose
ARRAYTYP is FIXP or FLOATP and VAL is non-numeric.

(ARRAYTYP ARRAY) [Function]

Returns the type of the elements in ARRAY, a value corresponding to the second argument
to ARRAY.

5-2

INTERLISP-D REFERENCE MANUAL

If ARRAY coerced the array type as described above, ARRAYTYP returns the new type. For
example, (ARRAYTYP (ARRAY 10 ’(BITS 3))) returns BYTE.

(ARRAYSIZE ARRAY) [Function]

Returns the size of ARRAY. Generates the error, Arg not array, if ARRAY is not an array.

(ARRAYORIG ARRAY) [Function]

Returns the origin of ARRAY, which may be 0 or 1. Generates an error, Arg not array,
if ARRAY is not an array.

(COPYARRAY ARRAY) [Function]

Returns a new array of the same size and type as ARRAY, and with the same contents as
ARRAY. Generates an error, Arg not array, if ARRAY is not an array.

5-3

5-4

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

6-1

6. HASHARRAYS

Hash arrays let you associate arbitrary Lisp objects (“hash keys”) with other objects (“hash values”),
so you can get from key to value quickly. There are functions for creating hash arrays, putting a hash
key/value pair in a hash array, and quickly retrieving the hash value associated with a given hash
key.

By default, the hash array functions use EQ for comparing hash keys. This means that if non-symbols
are used as hash keys, the exact same object (not a copy) must be used to retrieve the hash value.
However, you can specify the function used to compare hash keys and to “hash” a hash key to a
number. You can, for example, create hash arrays where EQUAL but non-EQ strings will hash to the
same value. Specifying alternative hashing algorithms is described below.

In the description of the functions below, the argument HARRAY should be a hasharray created by
HASHARRAY. For convenience in interactive program development, it may also be NIL, in which case
a hash array (SYSHASHARRAY) provided by the system is used; you must watch out for confusions if
this form is used to associate more than one kind of value with the same key.

Note: For backwards compatibility, the hash array functions will accept a list whose CAR is a hash
array, and whose CDR is the “overflow method” for the hash array (see below). However, hash array
functions are guaranteed to perform with maximum efficiency only if a direct value of HASHARRAY is
given.

Note: Interlisp hash arrays and Common Lisp hash tables are the same data type, so functions from
both may be intermixed. The only difference between the functions may be argument order, as in
MAPHASH and CL:MAPHASH (see below).

(HASHARRAY MINKEYS OVERFLOW HASHBITSFN EQUIVFN RECLAIMABLE REHASH-
THRESHOLD) [Function]

Creates a hash array with space for at least MINKEYS hash keys, with overflow method
OVERFLOW. See discussion of overflow behavior below.

If HASHBITSFN and EQUIVFN are non-NIL, they specify the hashing function and
comparison function used to interpret hash keys. This is described in the section on user-
specified hashing functions below. If HASHBITSFN and EQUIVFN are NIL, the default is
to hash EQ hash keys to the same value.

If RECLAIMABLE is T the entries in the hash table will be removed if the key has a
reference count of one and the table is about to be rehashed. This allows the system, in
some cases, to reuse keys instead of expanding the table.

Note: CL:MAKE-HASH-TABLE does not allow you to specify your own hashing functions
but does provide three built-in types specified by Common Lisp, the Language.

(HARRAY MINKEYS) [Function]

Provided for backward compatibility, this is equivalent to (HASHARRAY MINKEYS
’ERROR), i.e. if the resulting hasarray gets full, an error occurs.

6-2

INTERLISP-D REFERENCE MANUAL

(HARRAYP X) [Function]

Returns X if it is a hash array; otherwise NIL.

HARRAYP returns NIL if X is a list whose CAR is an HARRAYP, even though this is accepted
by the hash array functions (see below).

(PUTHASH KEY VAL HARRAY) [Function]

Associates the hash value VAL with the hash key KEY in HARRAY. Replaces the previous
hash value, if any. If VAL is NIL, any old association is removed (hence a hash value of
NIL is not allowed). If HARRAY is full when PUTHASH is called with a key not already in
the hash array, the function HASHOVERFLOW is called, and the PUTHASH is applied to the
value returned (see below). Returns VAL.

(GETHASH KEY HARRAY) [Function]

Returns the hash value associated with the hash key KEY in HARRAY. Returns NIL, if KEY
is not found.

(CLRHASH HARRAY) [Function]

Clears all hash keys/values from HARRAY. Returns HARRAY.

(HARRAYPROP HARRAY PROP NEWVALUE) [NoSpread Function]

Returns the property PROP of HARRAY; PROP can have the system-defined values SIZE
(the maximum occupancy of HARRAY), NUMKEYS (number of occupied slots), OVERFLOW
(overflow method), HASHBITSFN (hashing function) and EQUIVFN (comparison function).
Except for SIZE and NUMKEYS, a new value may be specified as NEWVALUE.

By using other values for PROP, the user may also set and get arbitrary property values, to
associate additional information with a hash array.

The HASHBITSFN or EQUIVFN properties can only be changed if the hash array is empty.

(HARRAYSIZE HARRAY) [Function]

Returns the number of slots in HARRAY. It’s equivalent to (HARRAYPROP HARRAY
’SIZE).

(REHASH OLDHARRAY NEWHARRAY) [Function]

Hashes all hash keys and values in OLDHARRAY into NEWHARRAY. The two hash arrays do
not have to be (and usually aren’t) the same size. Returns NEWHARRAY.

(MAPHASH HARRAY MAPHFN) [Function]

MAPHFN is a function of two arguments. For each hash key in HARRAY, MAPHFN will be
applied to the hash value, and the hash key. For example:

[MAPHASH A
 (FUNCTION (LAMBDA (VAL KEY)
 (if (LISTP KEY) then (PRINT VAL)]

will print the hash value for all hash keys that are lists. MAPHASH returns HARRAY.

6-3

HASHARRAYS

Note: the argument order for CL:MAPHASH is MAPHFN HARRAY.

(DMPHASH HARRAY1 HARRAY2 ... HARRAYN) [NLambda NoSpread Function]

Prints on the primary output file LOADable forms which will restore the hash-arrays
contained as the values of the atoms HARRAY1, HARRAY2, ... HARRAYN. Example:
(DMPHASH SYSHASHARRAY) will dump the system hash-array.

All EQ identities except symbols and small integers are lost by dumping and loading
because READ will create new structure for each item. Thus if two lists contain an EQ
substructure, when they are dumped and loaded back in, the corresponding substructures
while EQUAL are no longer EQ. The HORRIBLEVARS file package command (Chapter 17)
provides a way of dumping hash tables such that these identities are preserved.

Hash Overflow

When a hash array becomes full, trying to add another hash key will cause the function
HASHOVERFLOW to be called. This either enlarges the hash array, or causes the error Hash table
full. How hash overflow is handled is determined by the value of the OVERFLOW property of the
hash array (which can be accessed by HARRAYPROP). The possibilities for the overflow method are:

the symbol ERROR The error Hash array full is generated when the hash
array overflows. This is the default overflow behavior for
hash arrays returned by HARRAY.

NIL The array is automatically enlarged by at least a factor 1.5
every time it overflows. This is the default overflow behavior
for hash arrays returned by HASHARRAY.

a positive integer N The array is enlarged to include at least N more slots than it
currently has.

a floating point number F The array is changed to include F times the number of
current slots.

a function or lambda expression FN Upon hash overflow, FN is called with the hash array as its
argument. If FN returns a number, that will become the size
of the array. Otherwise, the new size defaults to 1.5 times its
previous size. FN could be used to print a message, or
perform some monitor function.

Note: For backwards compatibility, the hash array functions accept a list whose CAR is the hash array,
and whose CDR is the overflow method. In this case, the overflow method specified in the list
overrides the overflow method set in the hash array. Hash array functions perform with maximum
efficiency only if a direct value of HASHARRAY is given.

Specifying Your Own Hashing Functions

In general terms, when a key is looked up in a hash array, it is converted to an integer, which is used
to index into a linear array. If the key is not the same as the one found at that index, other indices are

6-4

INTERLISP-D REFERENCE MANUAL

tried until it the desired key is found. The value stored with that key is then returned (from GETHASH)
or replaced (from PUTHASH).

To customize hash arrays, you’ll need to supply the “hashing function” used to convert a key to an
integer and the comparison function used to compare the key found in the array with the key being
looked up. For hash arrays to work correctly, any two objects which are equal according to the
comparison function must “hash” to equal integers.

By default, Medley uses a hashing function that computes an integer from the internal address of a
key, and use EQ for comparing keys. This means that if non-atoms are used as hash keys, the exact
same object (not a copy) must be used to retrieve the hash value.

There are some applications for which the EQ constraint is too restrictive. For example, it may be
useful to use strings as hash keys, without the restriction that EQUAL but not EQ strings are considered
to be different hash keys.

The user can override this default behavior for any hash array by specifying the functions used to
compare keys and to “hash” a key to a number. This can be done by giving the HASHBITSFN and
EQUIVFN arguments to HASHARRAY (see above).

The EQUIVFN argument is a function of two arguments that returns non-NIL when its arguments are
considered equal. The HASHBITSFN argument is a function of one argument that produces a positive
small integer (in the range [0..216 - 1]) with the property that objects that are considered equal by the
EQUIVFN produce the same hash bits.

For an existing hash array, the function HARRAYPROP (see above) can be used to examine the hashing
and equivalence functions as the HASHBITSFN and EQUIVFN hash array properties. These properties
are read-only for non-empty hash arrays, as it makes no sense to change the equivalence relationship
once some keys have been hashed.

The following function is useful for creating hash arrays that take strings as hash keys:

(STRINGHASHBITS STRING) [Function]

Hashes the string STRING into an integer that can be used as a HASHBITSFN for a hash
array. Strings which are STREQUAL hash to the same integer.

Example:

(HASHARRAY MINKEYS OVERFLOW ’STRINGHASHBITS ’STREQUAL)

creates a hash array where you can use strings as hash keys.

6-5

6-6

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

7-1

7. NUMBERS AND ARITHMETIC FUNCTIONS

There are four different types of numbers in Interlisp: small integers, large integers, bignums
(arbitrary-size integers), and floating-point numbers. Small integers are in the range -65536 to 65535.
Large integers and floating-point numbers are 32-bit quantities that are stored by “boxing” the
number (see below). Bignums are “boxed” as a series of words.

Large integers and floating-point numbers can be any full word quantity. To distinguish among the
various kinds of numbers, and other Interlisp pointers, these numbers are “boxed” When a large
integer or floating-point number is created (by an arithmetic operation or by READ), Interlisp gets a
new word from “number storage” and puts the number into that word. Interlisp then passes around
the pointer to that word, i.e., the “boxed number”, rather than the actual quantity itself. When a
numeric function needs the actual numeric quantity, it performs the extra level of addressing to obtain
the “value” of the number. This latter process is called “unboxing”. Unboxing does not use any
storage, but each boxing operation uses one new word of number storage. If a computation creates
many large integers or floating-point numbers, i.e., does lots of boxes, it may cause a garbage
collection of large integer space, or of floating-point number space.

The following functions can be used to distinguish the different types of numbers:

(SMALLP X) [Function]

Returns X, if X is a small integer; NIL otherwise. Does not generate an error if X is not a
number.

(FIXP X) [Function]

Returns X, if X is an integer; NIL otherwise. Note that FIXP is true for small integers,
large integers, and bignums. Does not generate an error if X is not a number.

(FLOATP X) [Function]

Returns X if X is a floating-point number; NIL otherwise. Does not give an error if X is
not a number.

(NUMBERP X) [Function]

Returns X, if X is a number of any type; NIL otherwise. Does not generate an error if X is
not a number.

Note: In previous releases, NUMBERP was true only if (FLOATP X) or (FIXP X) were true.
With the additon of Common Lisp ratios and complex numbers, NUMBERP now returns T
for all number types . Code relying on the "old" behavior should be modified.

Each small integer has a unique representation, so EQ may be used to check equality. EQ should not
be used for large integers, bignums, or floating-point numbers, EQP, IEQP, or EQUAL must be used
instead.

(EQP X Y) [Function]

Returns T, if X and Y are equal numbers; NIL otherwise. EQ may be used if X and Y are
known to be small integers. EQP does not convert X and Y to integers, e.g., (EQP 2000

7-2

INTERLISP-D REFERENCE MANUAL

2000.3) => NIL, but it can be used to compare an integer and a floating-point number,
e.g., (EQP 2000 2000.0) => T. EQP does not generate an error if X or Y are not
numbers.

EQP can also be used to compare stack pointers (see Chapter 11) and compiled code
objects (see Chapter 10).

The action taken on division by zero and floating-point overflow is determined with the following
function:

(OVERFLOW FLG) [Function]

Sets a flag that determines the system response to arithmetic overflow (for floating-point
arithmetic) and division by zero; returns the previous setting.

For integer arithmetic: If FLG = T, an error occurs on division by zero. If FLG = NIL
or 0, integer division by zero returns zero. Integer overflow cannot occur, because small
integers are converted to bignums (see the beginning of this chapter).

For floating-point arithmetic: If FLG = T, an error occurs on floating overflow or floating
division by zero. If FLG = NIL or 0, the largest (or smallest) floating-point number is
returned as the result of the overflowed computation or floating division by zero.

The default value for OVERFLOW is T, meaning an error is generated on division by zero or
floating overflow.

Generic Arithmetic

The functions in this section are “generic” arithmetic functions. If any of the arguments are floating-
point numbers (see the Floating-Point Arithmetic section below), they act exactly like floating-point
functions, floating all arguments and returning a floating-point number as their value. Otherwise,
they act like the integer functions (see the Integer Arithmetic section below). If given a non-numeric
argument, they generate an error, Non-numeric arg. The results of division by zero and floating-
point overflow is determined by the function OVERFLOW (see the section above).

(PLUS X1 X2 ... XN) [NoSpread Function]

X1 + X2 + ... + XN.

(MINUS X) [Function]

- X

(DIFFERENCE X Y) [Function]

X - Y

(TIMES X1 X2 ... XN) [NoSpread Function]

X1 * X2 * ... * XN

7-3

NUMBERS AND ARITHMETIC FUNCTIONS

(QUOTIENT X Y) [Function]

If X and Y are both integers, returns the integer division of X and Y. Otherwise, converts
both X and Y to floating-point numbers, and does a floating-point division.

(REMAINDER X Y) [Function]

If X and Y are both integers, returns (IREMAINDER X Y), otherwise (FREMAINDER X Y).

(GREATERP X Y) [Function]

T, if X > Y, NIL otherwise.

(LESSP X Y) [Function]

T if X < Y, NIL otherwise.

(GEQ X Y) [Function]

T, if X >= Y, NIL otherwise.

(LEQ X Y) [Function]

T, if X <= Y, NIL otherwise.

(ZEROP X) [Function]

The same as (EQP X 0).

(MINUSP X) [Function]

T, if X is negative; NIL otherwise. Works for both integers and floating-point numbers.

(MIN X1 X2 ... XN) [NoSpread Function]

Returns the minimum of X1, X2, ..., XN. (MIN) returns the value of MAX.INTEGER (see
the Integer Arithmetic section below).

(MAX X1 X2 ... XN) [NoSpread Function]

Returns the maximum of X1, X2, ..., XN. (MAX) returns the value of MIN.INTEGER (see the
Integer Arithmetic section below).

(ABS X) [Function]

X if X > 0, otherwise -X. ABS uses GREATERP and MINUS (not IGREATERP and IMINUS).

Integer Arithmetic

The input syntax for an integer is an optional sign (+ or -) followed by a sequence of decimal digits,
and terminated by a delimiting character. Integers entered with this syntax are interpreted as decimal
integers. Integers in other radices can be entered as follows:

123Q
#o123 If an integer is followed by the letter Q, or preceeded by a pound sign and the letter “o”,

the digits are interpreted as an octal (base 8) integer.

7-4

INTERLISP-D REFERENCE MANUAL

#b10101 If an integer is preceeded by a pound sign and the letter “b”, the digits are interpreted as a
binary (base 2) integer.

#x1A90 If an integer is preceeded by a pound sign and the letter “x”, the digits are interpreted as a
hexadecimal (base 16) integer.

#5r1243 If an integer is preceeded by a pound sign, a positive decimal integer BASE, and the letter
“r”, the digits are interpreted as an integer in the base BASE. For example, #8r123 =
123Q, and #16r12A3 = #x12A3. When typing a number in a radix above ten, the
uppercase letters A through Z can be used as the digits after 9 (but there is no digit above
Z, so it is not possible to type all base-99 digits).

Medley keeps no record of how you typed a number, so 77Q and 63 both correspond to the same
integer, and are indistinguishable internally. The function RADIX (see Chapter 25), sets the radix used
to print integers.

PACK and MKATOM create numbers when given a sequence of characters observing the above syntax,
e.g. (PACK ’(1 2 Q)) => 10. Integers are also created as a result of arithmetic operations.

The range of integers of various types is implementation-dependent. This information is accessible to
you through the following variables:

MIN.SMALLP [Variable]
MAX.SMALLP [Variable]

The smallest/largest possible small integer.

MIN.FIXP [Variable]
MAX.FIXP [Variable]

The smallest/largest possible large integer.

MIN.INTEGER [Variable]
MAX.INTEGER [Variable]

The value of MAX.INTEGER and MIN.INTEGER are two special system datatypes. For
some algorithms, it is useful to have an integer that is larger than any other integer.
Therefore, the values of MAX.INTEGER and MIN.INTEGER are two special data types; the
value of MAX.INTEGER is GREATERP than any other integer, and the value of
MIN.INTEGER is LESSP than any other integer. Trying to do arithmetic using these
special bignums, other than comparison, will cause an error.

All of the functions described below work on integers. Unless specified otherwise, if given a floating-
point number, they first convert the number to an integer by truncating the fractional bits, e.g.,
(IPLUS 2.3 3.8) = 5; if given a non-numeric argument, they generate an error, Non-numeric
arg.

(IPLUS X1 X2 ... XN) [NoSpread Function]

Returns the sum X1 + X2 + ... + XN. (IPLUS) = 0.

(IMINUS X) [Function]

-X

7-5

NUMBERS AND ARITHMETIC FUNCTIONS

(IDIFFERENCE X Y) [Function]

X - Y

(ADD1 X) [Function]

X + 1

(SUB1 X) [Function]

X - 1

(ITIMES X1 X2 ... XN) [NoSpread Function]

Returns the product X1 * X2 * ... * XN. (ITIMES) = 1.

(IQUOTIENT X Y) [Function]

X / Y truncated. Examples:

(IQUOTIENT 3 2) => 1
(IQUOTIENT -3 2) => -1

If Y is zero, the result is determined by the function OVERFLOW .

(IREMAINDER X Y) [Function]

Returns the remainder when X is divided by Y. Example:

(IREMAINDER 5 2) => 1

(IMOD X N) [Function]

Computes the integer modulus of X mod N; this differs from IREMAINDER in that the
result is always a non-negative integer in the range [0,N).

(IGREATERP X Y) [Function]

T, if X > Y; NIL otherwise.

(ILESSP X Y) [Function]

T, if X < Y; NIL otherwise.

(IGEQ X Y) [Function]

T, if X >= Y; NIL otherwise.

(ILEQ X Y) [Function]

T, if X <= Y; NIL otherwise.

(IMIN X1 X2 ... XN) [NoSpread Function]

Returns the minimum of X1, X2, ..., XN. (IMIN) returns the largest possible large
integer, the value of MAX.INTEGER.

7-6

INTERLISP-D REFERENCE MANUAL

(IMAX X1 X2 ... XN) [NoSpread Function]

Returns the maximum of X1, X2, ..., XN. (IMAX) returns the smallest possible large
integer, the value of MIN.INTEGER.

(IEQP X Y) [Function]

Returns T if X and Y are equal integers; NIL otherwise. Note that EQ may be used if X and
Y are known to be small integers. IEQP converts X and Y to integers, e.g., (IEQP 2000
2000.3) => T.

(FIX N) [Function]

If N is an integer, returns N. Otherwise, converts N to an integer by truncating fractional
bits For example, (FIX 2.3) => 2, (FIX -1.7) => -1.

Since FIX is also a programmer’s assistant command (see Chapter 13), typing FIX directly
to a Medley executive will not cause the function FIX to be called.

(FIXR N) [Function]

If N is an integer, returns N. Otherwise, converts N to an integer by rounding. FIXR will
round towards the even number if N is exactly half way between two integers. For
example, (FIXR 2.3) => 2, (FIXR -1.7) => -2, (FIXR 3.5) => 4).

(GCD N1 N2) [Function]

Returns the greatest common divisor of N1 and N2, (GCD 72 64)=8.

Logical Arithmetic Functions

(LOGAND X1 X2 ... XN) [NoSpread Function]

Returns the logical AND of all its arguments, as an integer. Example:

(LOGAND 7 5 6) => 4

(LOGOR X1 X2 ... XN) [NoSpread Function]

Returns the logical OR of all its arguments, as an integer. Example:

(LOGOR 1 3 9) => 11

(LOGXOR X1 X2 ... XN) [NoSpread Function]

Returns the logical exclusive OR of its arguments, as an integer. Example:

(LOGXOR 11 5) => 14
(LOGXOR 11 5 9) = (LOGXOR 14 9) => 7

(LSH X N) [Function]

(Arithmetic) “Left Shift.” Returns X shifted left N places, with the sign bit unaffected. X
can be positive or negative. If N is negative, X is shifted right -N places.

7-7

NUMBERS AND ARITHMETIC FUNCTIONS

(RSH X N) [Function]

(Arithmetic) “Right Shift.” Returns X shifted right N places, with the sign bit unaffected,
and copies of the sign bit shifted into the leftmost bit. X can be positive or negative. If N is
negative, X is shifted left -N places.

Warning: Be careful if using RSH to simulate division; RSHing a negative number isn’t the
same as dividing by a power of two.

(LLSH X N) [Function]
(LRSH X N) [Function]

“Logical Left Shift” and “Logical Right Shift”. The difference between a logical and
arithmetic right shift lies in the treatment of the sign bit. Logical shifting treats it just like
any other bit; arithmetic shifting will not change it, and will “propagate” rightward when
actually shifting rightwards. Note that shifting (arithmetic) a negative number “all the
way” to the right yields -1, not 0.

Note: LLSH and LRSH always operate mod-232 arithmetic. Passing a bignum to either of
these will cause an error. LRSH of negative numbers will shift 0s into the high bits.

(INTEGERLENGTH X) [Function]

Returns the number of bits needed to represent X. This is equivalent to:
1+floor[log2[abs[X]]]. (INTEGERLENGTH 0) = 0.

(POWEROFTWOP X) [Function]

Returns non-NIL if X (coerced to an integer) is a power of two.

(EVENP X Y) [NoSpread Function]

If Y is not given, equivalent to (ZEROP (IMOD X 2)); otherwise equivalent to (ZEROP
(IMOD X Y)).

(ODDP N MODULUS) [NoSpread Function]

Equivalent to (NOT (EVENP N MODULUS)). MODULUS defaults to 2.

(LOGNOT N) [Macro]

Logical negation of the bits in N. Equivalent to (LOGXOR N -1).

(BITTEST N MASK) [Macro]

Returns T if any of the bits in MASK are on in the number N. Equivalent to (NOT (ZEROP
(LOGAND N MASK))).

(BITCLEAR N MASK) [Macro]

Turns off bits from MASK in N. Equivalent to (LOGAND N (LOGNOT MASK)).

(BITSET N MASK) [Macro]

Turns on the bits from MASK in N. Equivalent to (LOGOR N MASK).

7-8

INTERLISP-D REFERENCE MANUAL

(MASK.1’S POSITION SIZE) [Macro]

Returns a bit-mask with SIZE one-bits starting with the bit at POSITION. Equivalent to
(LLSH (SUB1 (EXPT 2 SIZE)) POSITION).

(MASK.0’S POSITION SIZE) [Macro]

Returns a bit-mask with all one bits, except for SIZE bits starting at POSITION.
Equivalent to (LOGNOT (MASK.1’S POSITION SIZE)).

(LOADBYTE N POS SIZE) [Function]

Extracts SIZE bits from N, starting at position POS. Equivalent to (LOGAND (RSH N POS)
(MASK.1’S 0 SIZE)).

(DEPOSITBYTE N POS SIZE VAL) [Function]

Insert SIZE bits of VAL at position POS into N, returning the result. Equivalent to

(LOGOR (BITCLEAR N (MASK.1’S POS SIZE))
 (LSH (LOGAND VAL (MASK.1’S 0 SIZE))
 POS))

(ROT X N FIELDSIZE) [Function]

“Rotate bits in field”. It performs a bitwise left-rotation of the integer X, by N places,
within a field of FIELDSIZE bits wide. Bits being shifted out of the position selected by
(EXPT 2 (SUB1 FIELDSIZE)) will flow into the “units” position.

The notions of position and size can be combined to make up a “byte specifier”, which is constructed
by the macro BYTE [note reversal of arguments as compared with the above functions]:

(BYTE SIZE POSITION) [Macro]

Constructs and returns a “byte specifier” containing SIZE and POSITION.

(BYTESIZE BYTESPEC) [Macro]

Returns the SIZE componant of the “byte specifier” BYTESPEC.

(BYTEPOSITION BYTESPEC) [Macro]

Returns the POSITION componant of the “byte specifier” BYTESPEC.

(LDB BYTESPEC VAL) [Macro]

Equivalent to

(LOADBYTE VAL (BYTEPOSITION BYTESPEC)(BYTESIZE BYTESPEC))

(DPB N BYTESPEC VAL) [Macro]

Equivalent to

(DEPOSITBYTE VAL (BYTEPOSITION BYTESPEC)(BYTESIZE BYTESPEC) N)

7-9

NUMBERS AND ARITHMETIC FUNCTIONS

Floating-Point Arithmetic

A floating-point number is input as a signed integer, followed by a decimal point, and another
sequence of digits called the fraction, followed by an exponent (represented by E followed by a signed
integer) and terminated by a delimiter.

Both signs are optional, and either the fraction following the decimal point, or the integer preceding
the decimal point may be omitted. One or the other of the decimal point or exponent may also be
omitted, but at least one of them must be present to distinguish a floating-point number from an
integer. For example, the following will be recognized as floating-point numbers:

5. 5.00 5.01 .3

5E2 5.1E2 5E-3 -5.2E+6

Floating-point numbers are printed using the format control specified by the function FLTFMT (see
Chapter 25). FLTFMT is initialized to T, or free format. For example, the above floating-point numbers
would be printed free format as:

5.0 5.0 5.01 .3

500.0 510.0 .005 -5.2E6

Floating-point numbers are created by the reader when a “.” or an E appears in a number, e.g., 1000
is an integer, 1000. a floating-point number, as are 1E3 and 1.E3. Note that 1000D, 1000F, and
1E3D are perfectly legal literal atoms. Floating-point numbers are also created by PACK and MKATOM,
and as a result of arithmetic operations.

PRINTNUM (see Chapter 25) permits greater control over the printed appearance of floating-point
numbers, allowing such things as left-justification, suppression of trailing decimals, etc.

The floating-point number range is stored in the following variables:

MIN.FLOAT [Variable]

The smallest possible floating-point number.

MAX.FLOAT [Variable]

The largest possible floating-point number.

All of the functions described below work on floating-point numbers. Unless specified otherwise, if
given an integer, they first convert the number to a floating-point number, e.g., (FPLUS 1 2.3)
<=> (FPLUS 1.0 2.3) => 3.3; if given a non-numeric argument, they generate an error, Non-
numeric arg.

(FPLUS X1 X2 ... XN) [NoSpread Function]

X1 + X2 + ... + XN

(FMINUS X) [Function]

- X

(FDIFFERENCE X Y) [Function]

X - Y

7-10

INTERLISP-D REFERENCE MANUAL

(FTIMES X1 X2 ... XN) [NoSpread Function]

X1 * X2 * ... * XN

(FQUOTIENT X Y) [Function]

X / Y.

The results of division by zero and floating-point overflow is determined by the function
OVERFLOW.

(FREMAINDER X Y) [Function]

Returns the remainder when X is divided by Y. Equivalent to:

(FDIFFERENCE X (FTIMES Y (FIX (FQUOTIENT X Y))))

Example:

(FREMAINDER 7.5 2.3) => 0.6

(FGREATERP X Y) [Function]

T, if X > Y, NIL otherwise.

(FLESSP X Y) [Function]

T, if X < Y, NIL otherwise.

(FEQP X Y) [Function]

Returns T if X and Y are equal floating-point numbers; NIL otherwise. FEQP converts X
and Y to floating-point numbers.

(FMIN X1 X2 ... XN) [NoSpread Function]

Returns the minimum of X1, X2, ..., XN. (FMIN) returns the largest possible floating-
point number, the value of MAX.FLOAT.

(FMAX X1 X2 ... XN) [NoSpread Function]

Returns the maximum of X1, X2, ..., XN. (FMAX) returns the smallest possible floating-
point number, the value of MIN.FLOAT.

(FLOAT X) [Function]

Converts X to a floating-point number. Example:

(FLOAT 0) => 0.0

Transcendental Arithmetic Functions

(EXPT A N) [Function]

Returns AN. If A is an integer and N is a positive integer, returns an integer, e.g, (EXPT 3
4) => 81, otherwise returns a floating-point number. If A is negative and N fractional,

7-11

NUMBERS AND ARITHMETIC FUNCTIONS

generates the error, Illegal exponentiation. If N is floating and either too large or
too small, generates the error, Value out of range expt.

(SQRT N) [Function]

Returns the square root of N as a floating-point number. N may be fixed or floating-point.
Generates an error if N is negative.

(LOG X) [Function]

Returns the natural logarithm of X as a floating-point number. X can be integer or
floating-point.

(ANTILOG X) [Function]

Returns the floating-point number whose logarithm is X. X can be integer or floating-
point. Example:

(ANTILOG 1) = e => 2.71828...

(SIN X RADIANSFLG) [Function]

Returns the sine of X as a floating-point number. X is in degrees unless RADIANSFLG =
T.

(COS X RADIANSFLG) [Function]

Similar to SIN.

(TAN X RADIANSFLG) [Function]

Similar to SIN.

(ARCSIN X RADIANSFLG) [Function]

The value of ARCSIN is a floating-point number, and is in degrees unless RADIANSFLG =
T. In other words, if (ARCSIN X RADIANSFLG) = Z then (SIN Z RADIANSFLG) =
X. The range of the value of ARCSIN is -90 to +90 for degrees, -π/2 to π/2 for radians. X
must be a number between -1 and 1.

(ARCCOS X RADIANSFLG) [Function]

Similar to ARCSIN. Range is 0 to 180, 0 to π.

(ARCTAN X RADIANSFLG) [Function]

Similar to ARCSIN. Range is 0 to 180, 0 to π.

(ARCTAN2 Y X RADIANSFLG) [Function]

Computes (ARCTAN (FQUOTIENT Y X) RADIANSFLG), and returns a corresponding
value in the range -180 to 180 (or -π to π), i.e. the result is in the proper quadrant as
determined by the signs of X and Y.

7-12

INTERLISP-D REFERENCE MANUAL

Generating Random Numbers

(RAND LOWER UPPER) [Function]

Returns a pseudo-random number between LOWER and UPPER inclusive, i.e., RAND can be
used to generate a sequence of random numbers. If both limits are integers, the value of
RAND is an integer, otherwise it is a floating-point number. The algorithm is completely
deterministic, i.e., given the same initial state, RAND produces the same sequence of
values. The internal state of RAND is initialized using the function RANDSET.

(RANDSET X) [Function]

Returns the internal state of RAND. If X = NIL, just returns the current state. If X = T,
RAND is initialized using the clocks, and RANDSET returns the new state. Otherwise, X is
interpreted as a previous internal state, i.e., a value of RANDSET, and is used to reset RAND.
For example,

←(SETQ OLDSTATE (RANDSET))
...

←(for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL

←(RANDSET OLDSTATE)
...

←(for X from 1 to 10 do (PRIN1 (RAND 1 10)))
2847592748NIL

7-13

7-14

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

8-1

RECORDS AND DATA STRUCTURES

Hiding the details of your code makes it more readable, and lets you program more efficiently. Data
structures are a good example: You’re better off if you can say “Fetch me the SPEED field from this
AIRPLANE” rather than having to say (CAR (CDDDR (CADR AIRPLANE))). You can declare data structures used by
your programs, then work with field names rather than access details. Using the declarations, Medley
performs the access/storage operations you request. If you change a data structure’s declaration,
your programs automatically adjust.

You describe the format of a data structure (record) by making a “record declaration” (see the Record
Declarations section below). The record declaration is a description of the record, associating names
with its various parts, or “fields”. For example, the record declaration

(RECORD MSG (FROM TO TEXT))

describes a data structure called MSG, that has three fields: FROM, TO, and TEXT. You can refer to these fields
by name, to get their values or to store new values into them, by using FETCH and REPLACE:

(fetch (MSG FROM)of MYMSG)
(replace (MSG TO) of MYMSG with “John Doe”)

 You create new MSGs with CREATE:
(SETQ MYMSG (create MSG))

 and TYPE? tells you whether some object is a MSG:
(IF (TYPE? MSG THIS-THING) then (SEND-MSG THIS-THING))

So far we’ve said nothing about how your MSG is represented—when you’re writing FETCHes and REPLACEs,
it doesn’t matter. But you can control the representation: The symbol RECORD in the declaration above
causes each MSG to be represented as a list. There are a number of options, up to creating a completely
new Lisp data type; each has its own specifier symbol, and they’re described in detail below.

The record package is implemented using DWIM and CLISP, so it will do spelling correction on field
names, record types, etc. Record operations are translated using all CLISP declarations in effect
(standard/fast/undoable).

The file manager’s RECORDS command lets you give record declarations (see Chapter 17), and FILES? and
CLEANUP will tell you about record declarations that need to be dumped.

FETCH and REPLACE

The fields of a record are accessed and changed with FETCH and REPLACE. If X is a MSG data structure, (fetch
FROM of X) will return the value of the FROM field of X, and (replace FROM of X with Y) will replace this field
with the value of Y. In general, the value of a REPLACE operation is the same as the value stored into the
field.

Note that (fetch FROM of X) assumes that X is an instance of the record MSG—the interpretation of (fetch
FROM of X) never depends on the value of X. If X is not a MSG, this may produce incorrect results.

If there is another record declaration, (RECORD REPLY (TEXT RESPONSE)), then (fetch TEXT of X) is ambiguous,
because X could be either a MSG or a REPLY record. In this case, an error will occur, Ambiguous record field.
To clarify this, give FETCH and REPLACE a list for their “field” argument: (fetch (MSG TEXT) of X) will fetch
the TEXT field of a MSG record. If a field has an identical interpretation in two declarations, e.g., if the field

8-2

INTERLISP-D REFERENCE MANUAL

TEXT occurred in the same location within the declarations of MSG and REPLY, then (fetch TEXT of X) would
not be ambiguous.

If there’s a conflict, “user” record declarations take precedence over “system” record declarations.
System records are declared by including (SYSTEM) in the declaration (see the Record Declarations
section below). All of the records defined in the standard Medley system are system records.

Another complication can occur if the fields of a record are themselves records. The fields of a record
can be further broken down into sub-fields by a “subdeclaration” within the record declaration. For
example,

(RECORD NODE (POSITION . LABEL) (RECORD POSITION (XLOC . YLOC)))

lets you access the POSITION field with (fetch POSITION of X), or its subfield XLOC with (fetch XLOC of X).

You may also declare that field name in a separate record declaration. For instance, the TEXT field in the
MSG and REPLY records above may be subdivided with the seperate record declaration (RECORD TEXT (HEADER
TXT)). You get to fields of subfields (to any level of nesting) by specifying the “data path” as a list of
record/field names, where there is some path from each record to the next in the list. For instance,

(fetch (MSG TEXT HEADER) of X)

treats X as a MSG record, fetches its TEXT field, and fetches its HEADER field. You only need to give enough
of the data path to disambiguate it. In this case, (fetch (MSG HEADER) of X) is sufficient: Medley searches
among all current record declarations for a path from each name to the next, considering first local
declarations (see Chapter 21) and then global ones. Of course, if you had two records with HEADER
fields, you get an Ambiguous data path error.

FETCH and REPLACE are translated using the CLISP declarations in effect (see Chapter 21). FFETCH and
FREPLACE are fast versions that don’t do any type checking. /REPLACE insures undoable declarations.

Record Declarations

You define records by evaluating declarations of the form:

(RECORD-TYPE RECORD-NAME RECORD-FIELDS . RECORD-TAIL)

RECORD-TYPE specifies the “type” of data you’re declaring, and controls how instances will be stored
internally. The different record types are described below.

RECORD-NAME is a symbol used to identify the record declaration for CREATE, TYPE?, FETCH and REPLACE,
and dumping to files (see Chapter 17). DATATYPE and TYPERECORD declarations also use RECORD-NAME to
identify the data structure (as described below).

RECORD-FIELDS describes the structure of the record. Its exact interpretation varies with RECORD-TYPE.
Generally, it names the fields within the record that can be accessed with FETCH and REPLACE.

RECORD-TAIL is an optional list where you can specify default values for record fields, special CREATE
and TYPE? forms, and subdeclarations (described below).

Record declarations are Lisp programs, and could be included in functions, changing a record
declaration at run-time. Don’t do it. You risk creating a structure with one declaration, and trying to
fetch from it with another—complete chaos results. If you need to change record declarations
dynamically, consider using association lists or property lists.

Record Types

8-3

RECORDS AND DATA STRUCTURES

The RECORD-TYPE field of the record declaration specifies how the data object is created, and how the
various record fields are accessed. Depending on the record type, the record fields may be stored in a
list, or in an array, or on a symbol’s property list. The following record types are defined:

RECORD [Record Type]

The fields of a RECORD are kept in a list. RECORD-FIELDS is a list; each non-NIL symbol is a
field-name to be associated with the corresponding element or tail of a list structure. For
example, with the declaration (RECORD MSG (FROM TO . TEXT)), (fetch FROM of X) translates as (CAR
X).

NIL can be used as a place marker for an unnamed field, e.g., (A NIL B) describes a three
element list, with B corresponding to the third element. A number may be used to indicate
a sequence of NILs, e.g. (A 4 B) is interpreted as (A NIL NIL NIL NIL B).

DATATYPE [Record Type]

Defines a new user data type with type name RECORD-NAME. Unlike other record types,
the instances of a DATATYPE are represented with a completely new Lisp type, and not in
terms of other existing types.

RECORD-FIELDS is a list of field specifications, where each specification is either a list
(FIELDNAME FIELDTYPE), or an symbol FIELDNAME. If FIELDTYPE is omitted, it
defaults to POINTER. Possible values for FIELDTYPE are:

POINTER Field contains a pointer to any arbitrary Interlisp object.

INTEGER

FIXP Field contains a signed integer. Caution: An INTEGER field is not capable of
holding everything that satisfies FIXP, such as bignums.

FLOATING

FLOATP Field contains a floating point number.

SIGNEDWORD Field contains a 16-bit signed integer.

FLAG Field is a one bit field that “contains” T or NIL.

BITS N Field contains an N-bit unsigned integer.

BYTE Equivalent to BITS 8.

WORD Equivalent to BITS 16.

XPOINTER Field contains a pointer like POINTER, but the field is not reference counted
by the garbage collector. XPOINTER fields are useful for implementing back-
pointers in structures that would be circular and not otherwise collected
by the reference-counting garbage collector.

Warning: Use XPOINTER fields with great care. You can damage the
integrity of the storage allocation system by using pointers to objects that
have been garbage collected. Code that uses XPOINTER fields should be sure
that the objects pointed to have not been garbage collected. This can be
done in two ways: The first is to maintain the object in a global structure,

8-4

INTERLISP-D REFERENCE MANUAL

so that it is never garbage collected until explicitly deleted from the
structure, at which point the program must invalidate all the XPOINTER
fields of other objects pointing at it. The second is to declare the object as
a DATATYPE beginning with a POINTER field that the program maintains as a
pointer to an object of another type (e.g., the object containing the XPOINTER
pointing back at it), and test that field for reasonableness whenever using
the contents of the XPOINTER field.

For example, the declaration
(DATATYPE FOO

((FLG BITS 12) TEXT HEAD (DATE BITS 18)
 (PRIO FLOATP) (READ? FLAG)))

would define a data type FOO with two pointer fields, a floating point number, and fields
for a 12 and 18 bit unsigned integers, and a flag (one bit). Fields are allocated in such a
way as to optimize the storage used and not necessarily in the order specified. Generally,
a DATATYPE record is much more storage compact than the corresponding RECORD structure
would be; in addition, access is faster.

Since the user data type must be set up at run-time, the RECORDS file package command will
dump a DECLAREDATATYPE expression as well as the DATATYPE declaration itself. If the record
declaration is otherwise not needed at runtime, it can be kept out of the compiled file by
using a (DECLARE: DONTCOPY --) expression (see Chapter 17), but it is still necessary to ensure
that the datatype is properly initialized. For this, one can use the INITRECORDS file package
command (see Chapter 17), which will dump only the DECLAREDATATYPE expression.

Note: When defining a new data type, it is sometimes useful to call the function DEFPRINT
(see Chapter 25) to specify how instances of the new data type should be printed. This
can be specified in the record declaration by including an INIT record specification (see the
Optional Record Specifications section below), e.g. (DATATYPE QV.TYPE ... (INIT (DEFPRINT

’QV.TYPE (FUNCTION PRINT.QV.TYPE)))).

DATATYPE declarations cannot be used within local record declarations (see Chapter 21).

TYPERECORD [Record Type]

Similar to RECORD, but the record name is added to the front of the list structure to signify
what “type” of record it is. This type field is used in the translation of TYPE? expressions.
CREATE will insert an extra field containing RECORD-NAME at the beginning of the structure,
and the translation of the access and storage functions will take this extra field into
account. For example, for (TYPERECORD MSG (FROM TO . TEXT)), (fetch FROM of X) translates as
(CADR X), not (CAR X).

ASSOCRECORD [Record Type]

Describes lists where the fields are stored in association list format:

((FIELDNAME1 . VALUE1) (FIELDNAME2 . VALUE2) ...)

RECORD-FIELDS is a list of symbols, the permissable field names in the association list.
Access is done with ASSOC (or FASSOC, if the current CLISP declarations are FAST, see Chapter
21), storing with PUTASSOC.

8-5

RECORDS AND DATA STRUCTURES

PROPRECORD [Record Type]

Describes lists where the fields are stored in property list format:

(FIELDNAME1 VALUE1 FIELDNAME2 VALUE2 ...)

RECORD-FIELDS is a list of symbols, the permissable field names in the property list.
Access is done with LISTGET, storing with LISTPUT.

Both ASSOCRECORD and PROPRECORD are useful for defining data structures where many of the
fields are NIL. CREATEing one these record types only stores those fields that are non-NIL.
Note, however, that with the record declaration (PROPRECORD FIE (H I J)) the expression
(create FIE) would still construct (H NIL), since a later operation of (replace J of X with Y)
could not possibly change the instance of the record if it were NIL.

ARRAYRECORD [Record Type]

ARRAYRECORDs are stored as arrays. RECORD-FIELDS is a list of field names that are
associated with the corresponding elements of an array. NIL can be used as a place marker
for an unnamed field (element). Positive integers can be used as abbreviation for the
corresponding number of NILs. For example, (ARRAYRECORD (ORG DEST NIL ID 3 TEXT)) describes
an eight-element array, with ORG corresponding to the first element, ID to the fourth, and
TEXT to the eighth.

ARRAYRECORD only creates arrays of pointers. Other kinds of arrays must be implemented
with ACCESSFNS (see below).

HASHLINK [Record Type]

The HASHLINK record type can be used with any type of data object: it specifies that the value
of a single field can be accessed by hashing the data object in a given hash array. Since the
HASHLINK record type describes an access method, rather than a data structure, CREATE is
meaningless for HASHLINK records.

RECORD-FIELDS is either a symbol FIELD-NAME, or a list (FIELD-NAME HARRAYNAME
HARRAYSIZE). HARRAYNAME is a variable whose value is the hash array to be used; if
not given, SYSHASHARRAY is used. If the value of the variable HARRAYNAME is not a hash array
(at the time of the record declaration), it will be set to a new hash array with a size of
HARRAYSIZE. HARRAYSIZE defaults to 100.

The HASHLINK record type is useful as a subdeclaration to other records to add additional
fields to already existing data structures (see the Optional Record Specifications section
below). For example, suppose that FOO is a record declared with (RECORD FOO (A B C)). To
add a new field BAR, without modifying the existing data strutures, redeclare FOO with:

(RECORD FOO (A B C) (HASHLINK FOO (BAR BARHARRAY)))

Now, (fetch BAR of X) will translate into (GETHASH X BARHARRAY), hashing off the existing list X.

ATOMRECORD [Record Type]

ATOMRECORDs are stored on the property lists of symbols. RECORD-FIELDS is a list of
property names. Accessing is performed with GETPROP, storing with PUTPROP. The CREATE
expression is not initially defined for ATOMRECORD records.

8-6

INTERLISP-D REFERENCE MANUAL

BLOCKRECORD [Record Type]

BLOCKRECORD is used in low-level system programming to “overlay” an organized structure
over an arbitrary piece of raw storage. RECORD-FIELDS is interpreted exactly as with a
DATATYPE declaration, except that fields are not automatically rearranged to maximize
storage efficiency. Like an ACCESSFNS record, a BLOCKRECORD does not have concrete instances;
it merely provides a way of interpreting some existing block of storage. So you can’t
create an instance of a BLOCKRECORD (unless the declaration includes an explicit CREATE

expression), nor is there a default type? expression for a BLOCKRECORD.

Warning: Exercise caution in using BLOCKRECORD declarations, as they let you fetch and store
arbitrary data in arbitrary locations, thereby evading Medley’s normal type system.
Except in very specialized situations, a BLOCKRECORD should never contain POINTER or XPOINTER
fields, nor be used to overlay an area of storage that contains pointers. Such use could
compromise the garbage collector and storage allocation system. You are responsible for
ensuring that all FETCH and REPLACE expressions are performed only on suitable objects, as no
type testing is performed.

A typical use for a BLOCKRECORD in user code is to overlay a non-pointer portion of an existing
DATATYPE. For this use, the LOCF macro is useful. (LOCF (fetch FIELD of DATUM)) can be
used to refer to the storage that begins at the first word that contains FIELD of DATUM.
For example, to define a new kind of Ethernet packet, you could overlay the “body”
portion of the ETHERPACKET datatype declaration as follows:

(ACCESSFNS MYPACKET
((MYBASE (LOCF (fetch (ETHERPACKET EPBODY) of DATUM))))
 (BLOCKRECORD MYBASE
 ((MYTYPE WORD) (MYLENGTH WORD) (MYSTATUS BYTE)
 (MYERRORCODE BYTE) (MYDATA INTEGER)))
 (TYPE? (type? ETHERPACKET DATUM)))

With this declaration in effect, the expression (fetch MYLENGTH of PACKET) would retrieve the
second 16-bit field beyond the place inside PACKET where the EPBODY field starts.

ACCESSFNS [Record Type]

ACCESSFNS lets you specify arbitrary functions to fetch and store data. For each field name,
you specify how it is to be accessed and set. This lets you use arbitrary data structures,
with complex access methods. Most often, ACCESSFNS are useful when you can compute one
field’s value from other fields. If you’re representing a time period by its start and
duration, you could add an ACCESSFNS definition for the ending time that did the obvious
addition.

RECORD-FIELDS is a list of elements of the form (FIELD-NAME ACCESSDEF SETDEF).
ACCESSDEF should be a function of one argument, the datum, and will be used for
accessing the value of the field. SETDEF should be a function of two arguments, the
datum and the new value, and will be used for storing a new value in a field. SETDEF
may be omitted, in which case, no storing operations are allowed.

ACCESSDEF and/or SETDEF may also be a form written in terms of variables DATUM and (in
SETDEF) NEWVALUE. For example, given the declaration

[ACCESSFNS FOO
((FIRSTCHAR (NTHCHAR DATUM 1) (RPLSTRING DATUM 1 NEWVALUE)) (RESTCHARS (SUBSTRING DATUM 2]

8-7

RECORDS AND DATA STRUCTURES

(replace (FOO FIRSTCHAR) of X with Y) would translate to (RPLSTRING X 1 Y). Since no SETDEF is
given for the RESTCHARS field, attempting to perform (replace (FOO RESTCHARS) of X with Y)

would generate an error, Replace undefined for field. Note that ACCESSFNS do not have a CREATE
definition. However, you may supply one in the defaults or subdeclarations of the
declaration, as described below. Attempting to CREATE an ACCESSFNS record without
specifying a create definition will cause an error Create not defined for this record.

ACCESSDEF and SETDEF can also be a property list which specify FAST, STANDARD and
UNDOABLE versions of the ACCESSFNS forms, e.g.

[ACCESSFNS LITATOM
 ((DEF (STANDARD GETD FAST FGETD)
 (STANDARD PUTD UNDOABLE /PUTD]

means if FAST declaration is in effect, use FGETD for fetching, if UNDOABLE, use /PUTD for saving
(see CLISP declarations, see Chapter 21).

SETDEF forms should be written so that they return the new value, to be consistant with
REPLACE operations for other record types. The REPLACE does not enforce this, though.

ACCESSFNS let you use data structures not specified by one of the built-in record types. For
example, one possible representation of a data structure is to store the fields in parallel
arrays, especially if the number of instances required is known, and they needn’t be
garbage collected. To implement LINK with two fields FROM and TO, you’d have two arrays
FROMARRAY and TOARRAY. The representation of an “instance” of LINK would be an integer, used
to index into the arrays. This can be accomplished with the declaration:

[ACCESSFNS LINK
 ((FROM (ELT FROMARRAY DATUM)
 (SETA FROMARRAY DATUM NEWVALUE))
 (TO (ELT TOARRAY DATUM)
 (SETA TOARRAY DATUM NEWVALUE)))
 (CREATE (PROG1 (SETQ LINKCNT (ADD1 LINKCNT))
 (SETA FROMARRAY LINKCNT FROM)
 (SETA TOARRAY LINKCNT TO)))
 (INIT (PROGN
 (SETQ FROMARRAY (ARRAY 100))
 (SETQ TOARRAY (ARRAY 100))
 (SETQ LINKCNT 0)]

To create a new LINK, a counter is incremented and the new elements stored. (Note: The
CREATE form given the declaration probably should include a test for overflow.)

Optional Record Specifications

After the RECORD-FIELDS item in a record declaration expression there can be an arbitrary number
of additional expressions in RECORD-TAIL. These expressions can be used to specify default values
for record fields, special CREATE and TYPE? forms, and subdeclarations. The following expressions are
permitted:

FIELD-NAME ← FORM Allows you to specify within the record declaration the default value
to be stored in FIELD-NAME by a CREATE (if no value is given within the
CREATE expression itself). Note that FORM is evaluated at CREATE time, not
when the declaration is made.

(CREATE FORM) Defines the manner in which CREATE of this record should be
performed. This provides a way of specifying how ACCESSFNS should be
created or overriding the usual definition of CREATE. If FORM contains
the field-names of the declaration as variables, the forms given in the

8-8

INTERLISP-D REFERENCE MANUAL

CREATE operation will be substituted in. If the word DATUM appears in the
create form, the original CREATE definition is inserted. This effectively
allows you to “advise” the create.

(INIT FORM) Specifies that FORM should be evaluated when the record is declared.
FORM will also be dumped by the INITRECORDS file package command
(see Chapter 17).

For example, see the example of an ACCESSFNS record declaration above.
In this example, FROMARRAY and TOARRAY are initialized with an INIT form.

(TYPE? FORM) Defines the manner in which TYPE? expressions are to be translated.
FORM may either be an expression in terms of DATUM or a function of one
argument.

(SUBRECORD NAME .
 DEFAULTS) NAME must be a field that appears in the current declaration and the

name of another record. This says that, for the purposes of translating
CREATE expressions, substitute the top-level declaration of NAME for the
SUBRECORD form, adding on any defaults specified.

For example: Given (RECORD B (E F G)), (RECORD A (B C D) (SUBRECORD B))
would be treated like (RECORD A (B C D) (RECORD B (E F G))) for the
purposes of translating CREATE expressions.

a subdeclaration If a record declaration expression occurs among the record
specifications of another record declaration, it is known as a
“subdeclaration.” Subdeclarations are used to declare that fields of a
record are to be interpreted as another type of record, or that the
record data object is to be interpreted in more than one way.

The RECORD-NAME of a subdeclaration must be either the RECORD-
NAME of its immediately superior declaration or one of the superior’s
field-names. Instead of identifying the declaration as with top level
declarations, the record-name of a subdeclaration identifies the parent
field or record that is being described by the subdeclaration.
Subdeclarations can be nested to an arbitrary depth.

Giving a subdeclaration (RECORD NAME1 NAME2) is a simple way of
defining a synonym for the field NAME1.

It is possible for a given field to have more than one subdeclaration.
For example, in

(RECORD FOO (A B) (RECORD A (C D)) (RECORD A (Q R)))

(Q R) and (C D) are “overlayed,” i.e. (fetch Q of X) and (fetch C of X)
would be equivalent. In such cases, the first subdeclaration is the one
used by CREATE.

(SYNONYM FIELD

8-9

RECORDS AND DATA STRUCTURES

(SYN1 ... SYNN)) FIELD must be a field that appears in the current declaration. This

defines SYN1 ... SYNN all as synonyms of FIELD. If there is only one
synonym, this can be written as (SYNONYM FIELD SYN).

(SYSTEM) If (SYSTEM) is included in a record declaration, this indicates that the
record is a “system” record rather than a “user” record. The only
distinction between the two types of records is that “user” record
declarations take precedence over “system” record declarations, in
cases where an unqualified field name would be considered
ambiguous. All of the records defined in the standard Medley system
are defined as system records.

CREATE

You can create RECORDs by hand if you like, using CONS, LIST, etc. But that defeats the whole point of
hiding implementation details. So much easier to use:

(create RECORD-NAME . ASSIGNMENTS)

CREATE translates into an appropriate Interlisp form that uses CONS, LIST, PUTHASH, ARRAY, etc., to create the
new datum with the its fields initialized to the values you specify. ASSIGNMENTS is optional and may
contain expressions of the following form:

FIELD-NAME ← FORM Specifies initial value for FIELD-NAME.

USING FORM FORM is an existing instance of RECORD-NAME. If you don’t specify a value
for some field, the value of the corresponding field in FORM is to be used.

COPYING FORM Like USING, but the corresponding values are copied (with COPYALL).

REUSING FORM Like USING, but wherever possible, the corresponding structure in FORM is
used.

SMASHING FORM A new instance of the record is not created at all; rather, new field values are
smashed into FORM, which CREATE then returns.

When it makes a difference, Medley goes to great pains to make its translation do things in the same
order as the original CREATE expression. For example, given the declaration (RECORD CONS (CAR . CDR)), the
expression (create CONS CDR←X CAR←Y) will translate to (CONS Y X), but (create CONS CDR←(FOO) CAR←(FIE)) will
translate to ((LAMBDA ($$1) (CONS (PROGN (SETQ $$1 (FOO)) (FIE)) $$1))) because FOO might set some variables
used by FIE.

How are USING and REUSING different? (create RECORD reusing FORM ...) doesn’t do any destructive
operations on the value of FORM, but will incorporate as much as possible of the old data structure into
the new one. On the other hand, (create RECORD using FORM ...) will create a completely new data
structure, with only the contents of the fields re-used. For example, REUSING a PROPRECORD just CONSes the
new property names and values onto the list, while USING copies the top level of the list. Another
example of this distinction occurs when a field is elaborated by a subdeclaration: USING will create a
new instance of the sub-record, while REUSING will use the old contents of the field (unless some field of
the subdeclaration is assigned in the CREATE expression.)

8-10

INTERLISP-D REFERENCE MANUAL

If the value of a field is neither explicitly specified, nor implicitly specified via USING, COPYING or REUSING,
the default value in the declaration is used, if any, otherwise NIL. (For BETWEEN fields in DATATYPE records,
N1 is used; for other non-pointer fields zero is used.) For example, following (RECORD A (B C D) D ← 3)

(create A B ← T) ==> (LIST T NIL 3)

(create A B ← T using X) ==> (LIST T (CADR X) (CADDR X))

(create A B ← T copying X)) ==> [LIST T (COPYALL (CADR X)) (COPYALL (CADDR X]

(create A B ← T reusing X) ==> (CONS T (CDR X))

TYPE?

The record package allows you to test if a given datum “looks like” an instance of a record. This can
be done via an expression of the form (type? RECORD-NAME FORM).

TYPE? is mainly intended for records with a record type of DATATYPE or TYPERECORD. For DATATYPEs, the TYPE?
check is exact; i.e. the TYPE? expression will return non-NIL only if the value of FORM is an instance of the
record named by RECORD-NAME. For TYPERECORDs, the TYPE? expression will check that the value of FORM
is a list beginning with RECORD-NAME. For ARRAYRECORDs, it checks that the value is an array of the
correct size. For PROPRECORDs and ASSOCRECORDs, a TYPE? expression will make sure that the value of FORM is
a property/association list with property names among the field-names of the declaration.

There is no built-in type test for records of type ACCESSFNS, HASHLINK or RECORD. Type tests can be defined
for these kinds of records, or redefined for the other kinds, by including an expression of the form
(TYPE? COM) in the record declaration (see the Record Declarations section below). Attempting to
execute a TYPE? expression for a record that has no type test causes an error, Type? not implemented for this
record.

WITH

Often one wants to write a complex expression that manipulates several fields of a single record. The
WITH construct can make it easier to write such expressions by allowing one to refer to the fields of a
record as if they were variables within a lexical scope:

(with RECORD-NAME RECORD-INSTANCE FORM1 ... FORMN)

RECORD-NAME is the name of a record, and RECORD-INSTANCE is an expression which evaluates to
an instance of that record. The expressions FORM1 ... FORMN are evaluated so that references to

variables which are field-names of RECORD-NAME are implemented via FETCH and SETQs of those
variables are implemented via REPLACE.

For example, given
(RECORD RECN (FLD1 FLD2))
(SETQ INST (create RECN FLD1 ← 10 FLD2 ← 20))

Then the construct
(with RECN INST (SETQ FLD2 (PLUS FLD1 FLD2]

is equivalent to
(replace FLD2 of INST with (PLUS (fetch FLD1 of INST) (fetch FLD2 of INST]

Warning: WITH is implemented by doing simple substitutions in the body of the forms, without
regard for how the record fields are used. This means, for example, if the record FOO is defined by
(RECORD FOO (POINTER1 POINTER2)), then the form

(with FOO X (SELECTQ Y (POINTER1 POINTER1) NIL]

8-11

RECORDS AND DATA STRUCTURES

will be translated as
(SELECTQ Y ((CAR X) (CAR X)) NIL]

Be careful that record field names are not used except as variables in the WITH forms.

Defining New Record Types

In addition to the built-in record types, you can declare your own record types by performing the
following steps:

1. Add the new record-type to the value of CLISPRECORDTYPES.

2. Perform (MOVD ’RECORD RECORD-TYPE).

3. Put the name of a function which will return the translation on the property list of RECORD-
TYPE, as the value of the property USERRECORDTYPE. Whenever a record declaration of type
RECORD-TYPE is encountered, this function will be passed the record declaration as its
argument, and should return a new record declaration which the record package will then use
in its place.

Manipulating Record Declarations

(EDITREC NAME COM1 ... COMN) [NLambda NoSpread Function]

EDITREC calls the editor on a copy of all declarations in which NAME is the record name or a
field name. On exit, it redeclares those that have changed and undeclares any that have
been deleted. If NAME is NIL, all declarations are edited.

COM1 ... COMN are (optional) edit commands.

When you redeclare a global record, the translations of all expressions involving that record or any of
its fields are automatically deleted from CLISPARRAY, and thus will be recomputed using the new
information. If you change a local record declaration (see Chapter 21), or change some other CLISP
declaration (see Chapter 21), e.g., STANDARD to FAST, and wish the new information to affect record
expressions already translated, you must make sure the corresponding translations are removed,
usually either by CLISPIFYing or using the DW edit macro.

(RECLOOK RECNAME — — — —) [Function]

Returns the entire declaration for the record named RECNAME; NIL if there is no record
declaration with name RECNAME. Note that the record package maintains internal state
about current record declarations, so performing destructive operations (e.g. NCONC) on the
value of RECLOOK may leave the record package in an inconsistent state. To change a record
declaration, use EDITREC.

(FIELDLOOK FIELDNAME) [Function]

Returns the list of declarations in which FIELDNAME is the name of a field.

(RECORDFIELDNAMES RECORDNAME —) [Function]

Returns the list of fields declared in record RECORDNAME. RECORDNAME may either be a
name or an entire declaration.

8-12

INTERLISP-D REFERENCE MANUAL

(RECORDACCESS FIELD DATUM DEC TYPE NEWVALUE) [Function]

TYPE is one of FETCH, REPLACE, FFETCH, FREPLACE, /REPLACE or their lowercase equivalents.
TYPE=NIL means FETCH. If TYPE corresponds to a fetch operation, i.e. is FETCH, or FFETCH,
RECORDACCESS performs (TYPE FIELD of DATUM). If TYPE corresponds to a replace,
RECORDACCESS performs (TYPE FIELD of DATUM with NEWVALUE). DEC is an optional
declaration; if given, FIELD is interpreted as a field name of that declaration.

Note that RECORDACCESS is relatively inefficient, although it is better than constructing the
equivalent form and performing an EVAL.

(RECORDACCESSFORM FIELD DATUM TYPE NEWVALUE) [Function]

Returns the form that would be compiled as a result of a record access. TYPE is one of
FETCH, REPLACE, FFETCH, FREPLACE, /REPLACE or their lowercase equivalents. TYPE=NIL means FETCH.

Changetran

Often, you’ll want to assign a new value to some datum that is a function of its current value:

Incrementing a counter: (SETQ X (IPLUS X 1))

Pushing an item on the front of a list: (SETQ X (CONS Y X))

Popping an item off a list: (PROG1 (CAR X) (SETQ X (CDR X)))

Those are simple when you’re working with a variable; it gets complicated when you’re working with
structured data. For example, if you want to modify (CAR X), the above examples would be:

(CAR (RPLACA X (IPLUS (CAR X) 1)))
(CAR (RPLACA X (CONS Y (CAR X)))
(PROG1 (CAAR X) (RPLACA X (CDAR X)))

and if you’re changing an element in an array, (ELT A N), the examples would be:
(SETA A N (IPLUS (ELT A N) 1)))
(SETA A N (CONS Y (ELT A N))))
(PROG1 (CAR (ELT A N)) (SETA A N (CDR (ELT A N))))

Changetran is designed to provide a simpler way to express these common (but user-extensible)
structure modifications. Changetran defines a set of CLISP words that encode the kind of
modification to take place—pushing on a list, adding to a number, etc. More important, you only
indicate the item to be modified once. Thus, the “change word” ADD is used to increase the value of a
datum by the sum of a set of numbers. Its arguments are the datum, and a set of numbers to be added
to it. The datum must be a variable or an accessing expression (envolving FETCH, CAR, LAST, ELT, etc) that
can be translated to the appropriate setting expression.

For example, (ADD X 1) is equivalent to:
(SETQ X (PLUS X 1))

and (ADD (CADDR X) (FOO)) is equivalent to:
(CAR (RPLACA (CDDR X) (PLUS (FOO) (CADDR X)))

If the datum is a complicated form involving function calls, such as (ELT (FOO X) (FIE Y))), Changetran
goes to some lengths to make sure that those subsidiary functions are evaluated only once, even
though they are used in both the setting and accessing parts of the translation. You can rely on the
fact that the forms will be evaluated only as often as they appear in your expression.

8-13

RECORDS AND DATA STRUCTURES

For ADD and all other changewords, the lowercase version (add, etc.) may also be specified. Like other
CLISP words, change words are translated using all CLISP declarations in effect (see Chapter 21).

The following is a list of those change words recognized by Changetran. Except for POP, the value of
all built-in changeword forms is defined to be the new value of the datum.

(ADD DATUM ITEM1 ITEM2 ...) [Change Word]

Adds the specified items to the current value of the datum, stores the result back in the
datum location. The translation will use IPLUS, PLUS, or FPLUS according to the CLISP
declarations in effect (see Chapter 21).

(PUSH DATUM ITEM1 ITEM2 ...) [Change Word]

CONSes the items onto the front of the current value of the datum, and stores the result back
in the datum location. For example, (PUSH X A B) would translate as (SETQ X (CONS A (CONS B
X))).

(PUSHNEW DATUM ITEM) [Change Word]

Like PUSH (with only one item) except that the item is not added if it is already FMEMB of the
datum’s value.

Note that, whereas (CAR (PUSH X ’FOO)) will always be FOO, (CAR (PUSHNEW X ’FOO)) might be
something else if FOO already existed in the middle of the list.

(PUSHLIST DATUM ITEM1 ITEM2 ...) [Change Word]

Similar to PUSH, except that the items are APPENDed in front of the current value of the datum.
For example, (PUSHLIST X A B) translates as (SETQ X (APPEND A B X)).

(POP DATUM) [Change Word]

Returns CAR of the current value of the datum after storing its CDR into the datum. The
current value is computed only once even though it is referenced twice. Note that this is
the only built-in changeword for which the value of the form is not the new value of the
datum.

(SWAP DATUM1 DATUM2) [Change Word]

Sets DATUM1 to DATUM2 and vice versa.

(CHANGE DATUM FORM) [Change Word]

This is the most flexible of all change words: You give an arbitrary form describing what
the new value should be. But it still highlights the fact that structure modification is
happening, and still lets the datum appear only once. CHANGE sets DATUM to the value of
FORM*, where FORM* is constructed from FORM by substituting the datum expression for
every occurrence of the symbol DATUM. For example,

(CHANGE (CAR X) (ITIMES DATUM 5))

translates as

8-14

INTERLISP-D REFERENCE MANUAL

(CAR (RPLACA X (ITIMES (CAR X) 5))).

CHANGE is useful for expressing modifications that are not built-in and are not common
enough to justify defining a user-changeword.

You can define new change words. To define a change word, say sub, that subtracts items from the
current value of the datum, you must put the property CLISPWORD, value (CHANGETRAN . sub) on both the
upper- and lower-case versions of sub:

(PUTPROP ’SUB ’CLISPWORD ’(CHANGETRAN . sub))
(PUTPROP ’sub ’CLISPWORD ’(CHANGETRAN . sub))

Then, you must put (on the lower-case version of sub only) the property CHANGEWORD, with value FN. FN is
a function that will be applied to a single argument, the whole sub form, and must return a form that
Changetran can translate into an appropriate expression. This form should be a list structure with the
symbol DATUM used whenever you want an accessing expression for the current value of the datum to
appear. The form (DATUM← FORM) (note that DATUM← is a single symbol) should occur once in the
expression; this specifies that an appropriate storing expression into the datum should occur at that
point. For example, sub could be defined as:

(PUTPROP ’sub ’CHANGEWORD
 ’(LAMBDA (FORM)
 (LIST ’DATUM←
 (LIST ’IDIFFERENCE
 ’DATUM
 (CONS ’IPLUS (CDDR FORM))))))

If the expression (sub (CAR X) A B) were encountered, the arguments to SUB would first be dwimified,
and then the CHANGEWORD function would be passed the list (sub (CAR X) A B), and return (DATUM←
(IDIFFERENCE DATUM (IPLUS A B))), which Changetran would convert to (CAR (RPLACA X (IDIFFERENCE (CAR X)
(IPLUS A B)))).

Note: The sub changeword as defined above will always use IDIFFERENCE and IPLUS; add uses the correct
addition operation depending on the current CLISP declarations (see Chapter 21).

Built-In and User Data Types

Medley is a system for manipulating various kinds of data; it comes with a large set of built-in data
types, which you can use to represent a variety of abstract objects; you can also define additional “user
data types” that you can manipulate exactly like built-in data types.

Each data type in Medley has an associated “type name,” a symbol. Some of the type names of built-
in data types are: LITATOM, LISTP, STRINGP, ARRAYP, STACKP, SMALLP, FIXP, and FLOATP. For user data types, the
type name is specified when the data type is created.

(DATATYPES —) [Function]

Returns a list of all type names currently defined.

(USERDATATYPES) [Function]

Returns list of names of currently declared user data types.

(TYPENAME DATUM) [Function]

Returns the type name for the data type of DATUM.

8-15

RECORDS AND DATA STRUCTURES

(TYPENAMEP DATUM TYPE) [Function]

Returns T if DATUM is an object with type name equal to TYPE, otherwise NIL.

In addition to built-in data-types like symbols, lists, arrays, etc., Medley provides a way to define
completely new classes of objects, with a fixed number of fields determined by the definition of the
data type. To define a new class of objects, you must supply a name for the new data type and
specifications for each of its fields. Each field may contain either a pointer (i.e., any arbitrary Interlisp
datum), an integer, a floating point number, or an N-bit integer.

Note: The most convenient way to define new user data types is via DATATYPE record declarations (see
Chapter 8) which call the following functions.

(DECLAREDATATYPE TYPENAME FIELDSPECS — —) [Function]

Defines a new user data type, with the name TYPENAME. FIELDSPECS is a list of “field
specifications.” Each field specification may be one of the following:

POINTER Field may contain any Interlisp datum.

FIXP Field contains an integer.

FLOATP Field contains a floating point number.

(BITS N) Field contains a non-negative integer less than 2N.

BYTE Equivalent to (BITS 8).

WORD Equivalent to (BITS 16).

SIGNEDWORD Field contains a 16 bit signed integer.

DECLAREDATATYPE returns a list of “field descriptors,” one for each element
of FIELDSPECS. A field descriptor contains information about where
within the datum the field is actually stored.

If FIELDSPECS is NIL, TYPENAME is “undeclared.” If TYPENAME is
already declared as a data type, it is undeclared, and then re-declared
with the new FIELDSPECS. An instance of a data type that has been
undeclared has a type name of **DEALLOC**.

(FETCHFIELD DESCRIPTOR DATUM) [Function]

Returns the contents of the field described by DESCRIPTOR from DATUM. DESCRIPTOR
must be a “field descriptor” as returned by DECLAREDATATYPE or GETDESCRIPTORS. If DATUM is not
an instance of the datatype of which DESCRIPTOR is a descriptor, causes error Datum of

incorrect type.

(REPLACEFIELD DESCRIPTOR DATUM NEWVALUE) [Function]

Store NEWVALUE into the field of DATUM described by DESCRIPTOR. DESCRIPTOR must
be a field descriptor as returned by DECLAREDATATYPE. If DATUM is not an instance of the

8-16

INTERLISP-D REFERENCE MANUAL

datatype of which DESCRIPTOR is a descriptor, causes error Datum of incorrect type. Value
is NEWVALUE.

(NCREATE TYPE OLDOBJ) [Function]

Creates and returns a new instance of datatype TYPE.

If OLDOBJ is also a datum of datatype TYPE, the fields of the new object are initialized to
the values of the corresponding fields in OLDOBJ.

NCREATE will not work for built-in datatypes, such as ARRAYP, STRINGP, etc. If TYPE is not the
type name of a previously declared user data type, generates an error, Illegal data type.

(GETFIELDSPECS TYPENAME) [Function]

Returns a list which is EQUAL to the FIELDSPECS argument given to DECLAREDATATYPE for
TYPENAME; if TYPENAME is not a currently declared data-type, returns NIL.

(GETDESCRIPTORS TYPENAME) [Function]

Returns a list of field descriptors, EQUAL to the value of DECLAREDATATYPE for TYPENAME. If
TYPENAME is not an atom, (TYPENAME TYPENAME) is used.

You can define how a user data type prints, using DEFPRINT (see Chapter 25), how they are to be
evaluated by the interpreter via DEFEVAL (see Chapter 10), and how they are to be compiled by the
compiler via COMPILETYPELST (see Chapter 18).

8-17

8-18

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

9-1

9. LISTS AND ITERATIVE STATEMENTS

Medley gives you a large number of predicates, conditional functions, and control functions. Also,
there is a complex “iterative statement” facility which allows you to easily create complex loops and
iterative constructs.

Data Type Predicates

Medley provides separate functions for testing whether objects are of certain commonly-used types:

(LITATOM X) [Function]

Returns T if X is a symbol; NIL otherwise. Note that a number is not a symbol.

(SMALLP X) [Function]

Returns X if X is a small integer; NIL otherwise. (The range of small integers is -65536 to
+65535.

(FIXP X) [Function]

Returns X if X is a small or large integer; NIL otherwise.

(FLOATP X) [Function]

Returns X if X is a floating point number; NIL otherwise.

(NUMBERP X) [Function]

Returns X if X is a number of any type, NIL otherwise.

(ATOM X) [Function]

Returns T if X is an atom (i.e. a symbol or a number); NIL otherwise.

(ATOM X) is NIL if X is an array, string, etc. In Common Lisp, CL:ATOM is defined
equivalent to the Interlisp function NLISTP.

(LISTP X) [Function]

Returns X if X is a list cell (something created by CONS); NIL otherwise.

(NLISTP X) [Function]

(NOT (LISTP X)). Returns T if X is not a list cell, NIL otherwise.

(STRINGP X) [Function]

Returns X if X is a string, NIL otherwise.

(ARRAYP X) [Function]

Returns X if X is an array, NIL otherwise.

(HARRAYP X) [Function]

Returns X if it is a hash array object; otherwise NIL.

9-2

 INTERLISP-D REFERENCE MANUAL

HARRAYP returns NIL if X is a list whose CAR is an HARRAYP, even though this is accepted
by the hash array functions.

Note: The empty list, () or NIL, is considered to be a symbol, rather than a list.
Therefore, (LITATOM NIL) = (ATOM NIL) = T and (LISTP NIL) = NIL. Take
care when using these functions if the object may be the empty list NIL.

Equality Predicates

Sometimes, there is more than one type of equality. For instance, given two lists, you can ask whether
they are exactly the same object, or whether they are two distinct lists that contain the same elements.
Confusion between these two types of equality is often the source of program errors.

(EQ X Y) [Function]

Returns T if X and Y are identical pointers; NIL otherwise. EQ should not be used to
compare two numbers, unless they are small integers; use EQP instead.

(NEQ X Y) [Function]

The same as (NOT (EQ X Y))

(NULL X) [Function]
(NOT X) [Function]

The same as (EQ X NIL)

(EQP X Y) [Function]

Returns T if X and Y are EQ, or if X and Y are numbers and are equal in value; NIL
otherwise. For more discussion of EQP and other number functions, see Chapter 7.

EQP also can be used to compare stack pointers (Section 11) and compiled code (Chapter
10).

(EQUAL X Y) [Function]

EQUAL returns T if X and Y are one of the following:

1. EQ
2. EQP, i.e., numbers with equal value
3. STREQUAL, i.e., strings containing the same sequence of characters
4. Lists and CAR of X is EQUAL to CAR of Y, and CDR of X is EQUAL to CDR of Y

EQUAL returns NIL otherwise. Note that EQUAL can be significantly slower than EQ.

A loose description of EQUAL might be to say that X and Y are EQUAL if they print out the
same way.

(EQUALALL X Y) [Function]

Like EQUAL, except it descends into the contents of arrays, hash arrays, user data types,
etc. Two non-EQ arrays may be EQUALALL if their respective componants are EQUALALL.

9-3

CONDITIONALS AND ITERATIVE STATEMENTS

Note: In general, EQUALALL descends all the way into all datatypes, both those you’ve
defined and those built into the system. If you have a data structure with fonts and
pointers to windows, EQUALALL will descend those also. If the data structures are
circular, as windows are, EQUALALL can cause stack overflow.

Logical Predicates

(AND X1 X2 ... XN) [NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that are evaluated in order. If
any argument evaluates to NIL, AND immediately returns NIL, without evaluating the
remaining arguments. If all of the arguments evaluate to non-NIL, the value of the last
argument is returned. (AND) => T.

(OR X1 X2 ... XN) [NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that are evaluated in order. If
any argument is non-NIL, the value of that argument is returned by OR (without
evaluating the remaining arguments). If all of the arguments evaluate to NIL, NIL is
returned. (OR) => NIL.

AND and OR can be used as simple logical connectives, but note that they may not evaluate all of their
arguments. This makes a difference if some of the arguments cause side-effects. This also means you
can use AND and OR as simple conditional statements. For example: (AND (LISTP X) (CDR X))
returns the value of (CDR X) if X is a list cell; otherwise it returns NIL without evaluating (CDR X).
In general, you should avoid this use of AND and OR in favor of more explicit conditional statements in
order to make programs more readable.

COND Conditional Function

(COND CLAUSE1 CLAUSE2 ... CLAUSEK) [NLambda NoSpread Function]

COND takes an indefinite number of arguments, called clauses. Each CLAUSEi is a list of
the form (Pi Ci1 ... CiN), where Pi is the predicate, and Ci1 ... CiN are the
consequents. The operation of COND can be paraphrased as:

IF P1 THEN C11 ... C1N ELSEIF P2 THEN C21 ... C2N ELSEIF P3 ...

The clauses are considered in sequence as follows: The predicate P1 of the clause
CLAUSEi is evaluated. If the value of P1 is “true” (non-NIL), the consequents Ci1 ...
CiN are evaluated in order, and the value of the COND is the value of the last expression in
the clause. If P1 is “false” (EQ to NIL), then the remainder of CLAUSEi is ignored, and the
next clause, CLAUSEi+1, is considered. If no Pi is true for any clause, the value of the COND
is NIL.

If a clause has no consequents, and has the form (Pi), then if Pi evaluates to non-NIL, it is
returned as the value of the COND. It is only evaluated once.

Example:

←(DEFINEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

9-4

 INTERLISP-D REFERENCE MANUAL

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))
(T (PRINT "unknown") X)
((HORRIBLE-ERROR))]

(DOUBLE)

←(DOUBLE 5)
10

←(DOUBLE "FOO")
"FOOFOO"

←(DOUBLE ’BAR)
BARBAR

←(DOUBLE ’(A B C))
"unknown"
(A B C)

A few points about this example: Notice that 5 is both a number and an atom, but it is
“caught” by the NUMBERP clause before the ATOM clause. Also notice the predicate T,
which is always true. This is the normal way to indicate a COND clause which will always
be executed (if none of the preceeding clauses are true). (HORRIBLE-ERROR) will never
be executed.

The IF Statement

The IF statement lets you write conditional expressions that are easier to read than using COND
directly. CLISP translates expressions using IF, THEN, ELSEIF, or ELSE (or their lowercase versions)
into equivalent CONDs. In general, statements of the form:

(if AAA then BBB elseif CCC then DDD else EEE)

are translated to:

(COND (AAA BBB)
 (CCC DDD)
 (T EEE))

The segment between IF or ELSEIF and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSEIF as the consequent(s). ELSE is the same
as ELSEIF T THEN. These words are spelling corrected using the spelling list CLISPIFWORDSPLST.
You may also use lower-case versions (if, then, elseif, else).

If there is nothing following a THEN, or THEN is omitted entirely, the resulting COND clause has a
predicate but no consequent. For example, (if X then elseif ...) and (if X elseif ...)
both translate to (COND (X) ...)—if X is not NIL, it is returned as the value of the COND.

Each predicate must be a single expression, but multiple expressions are allowed as the consequents
after THEN or ELSE. Multiple consequent expressions are implicitely wrapped in a PROGN, and the
value of the last one is returned as the value of the consequent. For example:

(if X then (PRINT "FOO") (PRINT "BAR") elseif Y then (PRINT "BAZ"))

9-5

CONDITIONALS AND ITERATIVE STATEMENTS

Selection Functions

(SELECTQ X CLAUSE1 CLAUSE2 ... CLAUSEK
DEFAULT) [NLambda NoSpread Function]

Selects a form or sequence of forms based on the value of X. Each clause CLAUSEi is a list
of the form (Si Ci1 ... CiN) where Si is the selection key. Think of SELECTQ as:

IF X = S1 THEN C11 ... C1N ELSEIF X = S2
THEN ... ELSE DEFAULT

If Si is a symbol, the value of X is tested to see if it is EQ to Si (which is not evaluated). If
so, the expressions Ci1 ... CiN are evaluated in sequence, and the value of the SELECTQ
is the value of the last expression.

If Si is a list, the value of X is compared with each element (not evaluated) of Si, and if X is
EQ to any one of them, then Ci1 ... CiN are evaluated as above.

If CLAUSEi is not selected in one of the two ways described, CLAUSEi+1 is tested, etc., until
all the clauses have been tested. If none is selected, DEFAULT is evaluated, and its value is
returned as the value of the SELECTQ. DEFAULT must be present.

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))

((SEPTEMBER APRIL JUNE NOVEMBER) 30) 31]

If the value of MONTH is the symbol FEBRUARY, the SELECTQ returns 28 or 29 (depending
on (LEAPYEARP)); otherwise if MONTH is APRIL, JUNE, SEPTEMBER, or NOVEMBER, the
SELECTQ returns 30; otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it will not work if the value
of X is a list, a large integer, or floating point number, since SELECTQ uses EQ for all
comparisons.

SELCHARQ (Chapter 2) is a version of SELECTQ that recognizes CHARCODE symbols.

(SELECTC X CLAUSE1 CLAUSE2 ... CLAUSEK
DEFAULT) [NLambda NoSpread Function]

“SELECTQ-on-Constant.” Like SELECTQ, but the selection keys are evaluated, and the
result used as a SELECTQ-style selection key.

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compile-time.
Therefore, the selection keys act like compile-time constants (see Chapter 18).

For example:

[SELECTC NUM
 ((for X from 1 to 9 collect (TIMES X X)) "SQUARE") "HIP"]

compiles as:

(SELECTQ NUM
 ((1 4 9 16 25 36 49 64 81) "SQUARE") "HIP")

9-6

 INTERLISP-D REFERENCE MANUAL

PROG and Associated Control Functions

(PROG1 X1 X2 ... XN) [NLambda NoSpread Function]

Evaluates its arguments in order, and returns the value of its first argument X1. For
example, (PROG1 X (SETQ X Y)) sets X to Y, and returns X’s original value.

(PROG2 X1 X2 ... XN) [NoSpread Function]

Like PROG1. Evaluates its arguments in order, and returns the value of its second
argument X2.

(PROGN X1 X2 ... XN) [NLambda NoSpread Function]

PROGN evaluates each of its arguments in order, and returns the value of its last argument.
PROGN is used to specify more than one computation where the syntax allows only one,
e.g., (SELECTQ ... (PROGN ...)) allows evaluation of several expressions as the
default condition for a SELECTQ.

(PROG VARLST E1 E2 ... EN) [NLambda NoSpread Function]

Lets you bind some variables while you execute a series of expressions. VARLST is a list of
local variables (must be NIL if no variables are used). Each symbol in VARLST is treated
as the name of a local variable and bound to NIL. VARLST can also contain lists of the
form (NAME FORM). In this case, NAME is the name of the variable and is bound to the
value of FORM. The evaluation takes place before any of the bindings are performed, e.g.,
(PROG ((X Y) (Y X)) ...) will bind local variable X to the value of Y (evaluated
outside the PROG) and local variable Y to the value of X (outside the PROG). An attempt to
use anything other than a symbol as a PROG variable will cause an error, Arg not
symbol. An attempt to use NIL or T as a PROG variable will cause an error, Attempt to
bind NIL or T.

The rest of the PROG is a sequence of forms and symbols (labels). The forms are evaluated
sequentially; the labels serve only as markers. The two special functions, GO and RETURN,
alter this flow of control as described below. The value of the PROG is usually specified by
the function RETURN. If no RETURN is executed before the PROG “falls off the end,” the
value of the PROG is NIL.

(GO L) [NLambda NoSpread Function]

GO is used to cause a transfer in a PROG. (GO L) will cause the PROG to evaluate forms
starting at the label L (GO does not evaluate its argument). A GO can be used at any level
in a PROG. If the label is not found, GO will search higher progs within the same function,
e.g., (PROG ... A ... (PROG ... (GO A))). If the label is not found in the function
in which the PROG appears, an error is generated, Undefined or illegal GO.

(RETURN X) [Function]

A RETURN is the normal exit for a PROG. Its argument is evaluated and is immediately
returned the value of the PROG in which it appears.

9-7

CONDITIONALS AND ITERATIVE STATEMENTS

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG, the
GO or RETURN will be executed in the last interpreted PROG entered if any, otherwise
cause an error.

GO or RETURN inside of a compiled function that is not a PROG is not allowed, and will
cause an error at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to SORT, will not work
compiled. Also, since NLSETQ’s and ERSETQ’s compile as separate functions, a GO or
RETURN cannot be used inside of a compiled NLSETQ or ERSETQ if the corresponding
PROG is outside, i.e., above, the NLSETQ or ERSETQ.

(LET VARLST E1 E2 ... EN) [Macro]

LET is essentially a PROG that can’t contain GO’s or RETURN’s, and whose last form is the
returned value.

(LET* VARLST E1 E2 ... EN) [Macro]
(PROG* VARLST E1 E2 ... EN) [Macro]

LET* and PROG* differ from LET and PROG only in that the binding of the bound
variables is done “sequentially.” Thus

(LET* ((A (LIST 5))
(B (LIST A A)))

 (EQ A (CADR B)))

would evaluate to T; whereas the same form with LET might find A an unbound variable
when evaluating (LIST A A).

The Iterative Statement

The various forms of the iterative statement (i.s.) let you write complex loops easily. Rather than
writing PROG, MAPC, MAPCAR, etc., let Medley do it for you.

An iterative statement is a form consisting of a number of special words (known as i.s. operators or
i.s.oprs), followed by operands. Many i.s.oprs (FOR, DO, WHILE, etc.) act like loops in other
programming languages; others (COLLECT, JOIN, IN, etc.) do things useful in Lisp. You can also use
lower-case versions of i.s.oprs (do, collect, etc.).

← (for X from 1 to 5 do (PRINT ’FOO))
FOO
FOO
FOO
FOO
FOO
NIL

←(for X from 2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100)

←(for X in ’(A B 1 C 6.5 NIL (45)) count (NUMBERP X))
2

Iterative statements are implemented using CLISP, which translates them into the appropriate PROGs,
MAPCARs, etc. They’re are translated using all CLISP declarations in effect (standard/fast/undoable/

9-8

 INTERLISP-D REFERENCE MANUAL

etc.); see Chapter 21. Misspelled i.s.oprs are recognized and corrected using the spelling list
CLISPFORWORDSPLST. Operators can appear in any order; CLISP scans the entire statement before it
begins to translate.

If you define a function with the same name as an i.s.opr (WHILE, TO, etc.), that i.s.opr will no longer
cause looping when it appears as CAR of a form, although it will continue to be treated as an i.s.opr if
it appears in the interior of an iterative statement. To alert you, a warning message is printed, e.g.,
(While defined, therefore disabled in CLISP).

I.S. Types

Every iterative statement must have exactly one of the following operators in it (its “is.stype”), to
specify what happens on each iteration. Its operand is called the “body” of the iterative statement.

DO FORMS [I.S. Operator]

Evaluate FORMS at each iteration. DO with no other operator specifies an infinite loop. If
some explicit or implicit terminating condition is specified, the value of the loop is NIL.
Translates to MAPC or MAP whenever possible.

COLLECT FORM [I.S. Operator]

The value of FORM at each iteration is collected in a list, which is returned as the value of
the loop when it terminates. Translates to MAPCAR, MAPLIST or SUBSET whenever
possible.

When COLLECT translates to a PROG (if UNTIL, WHILE, etc. appear in the loop), the
translation employs an open TCONC using two pointers similar to that used by the
compiler for compiling MAPCAR. To disable this translation, perform (CLDISABLE
’FCOLLECT).

JOIN FORM [I.S. Operator]

FORM returns a list; the lists from each iteration are concatenated using NCONC, forming
one long list. Translates to MAPCONC or MAPCON whenever possible. /NCONC, /MAPCONC,
and /MAPCON are used when the CLISP declaration UNDOABLE is in effect.

SUM FORM [I.S. Operator]

The values of FORM from each iteration are added together and returned as the value of
the loop, e.g., (for I from 1 to 5 sum (TIMES I I)) returns 1+4+9+16+25 =
55. IPLUS, FPLUS, or PLUS will be used in the translation depending on the CLISP
declarations in effect.

COUNT FORM [I.S. Operator]

Counts the number of times that FORM is true, and returns that count as the loop’s value.

ALWAYS FORM [I.S. Operator]

Returns T if the value of FORM is non-NIL for all iterations. Note: Returns NIL as soon as
the value of FORM is NIL).

9-9

CONDITIONALS AND ITERATIVE STATEMENTS

NEVER FORM [I.S. Operator]

Like ALWAYS, but returns T if the value of FORM is never true. Note: Returns NIL as soon
as the value of FORM is non-NIL.

Often, you’ll want to set a variable each time through the loop; that’s called the “iteration variable”, or
i.v. for short. The following i.s.types explicitly refer to the i.v. This is explained below under FOR.

THEREIS FORM [I.S. Operator]

Returns the first value of the i.v. for which FORM is non-NIL, e.g., (for X in Y
thereis (NUMBERP X)) returns the first number in Y.

Note: Returns the value of the i.v. as soon as the value of FORM is non-NIL.

LARGEST FORM [I.S. Operator]
SMALLEST FORM [I.S. Operator]

Returns the value of the i.v. that provides the largest/smallest value of FORM.
$$EXTREME is always bound to the current greatest/smallest value, $$VAL to the value of
the i.v. from which it came.

Iteration Variable I.s.oprs

You’ll want to bind variables to use during the loop. Rather than putting the loop inside a PROG or
LET, you can specify bindings like so:

BIND VAR [I.S. Operator]
BIND VARS [I.S. Operator]

Used to specify dummy variables, which are bound locally within the i.s.

Note: You can initialize a variable VAR by saying VAR←FORM:

(bind HEIGHT ← 0 WEIGHT ← 0 for SOLDIER in ...)

To specify iteration variables, use these operators:

FOR VAR [I.S. Operator]

Specifies the iteration variable (i.v.) that is used in conjunction with IN, ON, FROM, TO, and
BY. The variable is rebound within the loop, so the value of the variable outside the loop
is not affected. Example:

←(SETQ X 55)
55

←(for X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

←X
55

FOR OLD VAR [I.S. Operator]

Like FOR, but VAR is not rebound, so its value outside the loop is changed. Example:

←(SETQ X 55)
55

9-10

 INTERLISP-D REFERENCE MANUAL

←(for old X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

←X
6

FOR VARS [I.S. Operator]

VARS a list of variables, e.g., (for (X Y Z) in ...). The first variable is the i.v., the
rest are dummy variables. See BIND above.

IN FORM [I.S. Operator]

FORM must evaluate to a list. The i.v. is set to successive elements of the list, one per
iteration. For example, (for X in Y do ...) corresponds to (MAPC Y (FUNCTION
(LAMBDA (X) ...))). If no i.v. has been specified, a dummy is supplied, e.g., (in Y
collect CADR) is equivalent to (MAPCAR Y (FUNCTION CADR)).

ON FORM [I.S. Operator]

Same as IN, but the i.v. is reset to the corresponding tail at each iteration. Thus IN
corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to MAP, MAPLIST,
and MAPCON.

←(for X on ’(A B C) do (PRINT X))
(A B C)
(B C)
(C)
NIL

Note: For both IN and ON, FORM is evaluated before the main part of the i.s. is entered, i.e.
outside of the scope of any of the bound variables of the i.s. For example, (for X bind
(Y←’(1 2 3)) in Y ...) will map down the list which is the value of Y evaluated
outside of the i.s., not (1 2 3).

IN OLD VAR [I.S. Operator]

Specifies that the i.s. is to iterate down VAR, with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (for X in old L do ... until
...) finishes, L will be some tail of its original value.

IN OLD (VAR←FORM) [I.S. Operator]

Same as IN OLD VAR, except VAR is first set to value of FORM.

ON OLD VAR [I.S. Operator]

Same as IN OLD VAR except the i.v. is reset to the current value of VAR at each iteration,
instead of to (CAR VAR).

ON OLD (VAR←FORM) [I.S. Operator]

Same as ON OLD VAR, except VAR is first set to value of FORM.

9-11

CONDITIONALS AND ITERATIVE STATEMENTS

INSIDE FORM [I.S. Operator]

Like IN, but treats first non-list, non-NIL tail as the last element of the iteration, e.g.,
INSIDE ’(A B C D . E) iterates five times with the i.v. set to E on the last iteration.
INSIDE ’A is equivalent to INSIDE ’(A), which will iterate once.

FROM FORM [I.S. Operator]

Specifies the initial value for a numerical i.v. The i.v. is automatically incremented by 1
after each iteration (unless BY is specified). If no i.v. has been specified, a dummy i.v. is
supplied and initialized, e.g., (from 2 to 5 collect SQRT) returns (1.414 1.732
2.0 2.236).

TO FORM [I.S. Operator]

Specifies the final value for a numerical i.v. If FROM is not specified, the i.v. is initialized
to 1. If no i.v. has been specified, a dummy i.v. is supplied and initialized. If BY is not
specified, the i.v. is automatically incremented by 1 after each iteration. When the i.v. is
definitely being incremented, i.e., either BY is not specified, or its operand is a positive
number, the i.s. terminates when the i.v. exceeds the value of FORM. Similarly, when the
i.v. is definitely being decremented the i.s. terminates when the i.v. becomes less than the
value of FORM (see description of BY).

FORM is evaluated only once, when the i.s. is first entered, and its value bound to a
temporary variable against which the i.v. is checked each interation. If the user wishes to
specify an i.s. in which the value of the boundary condition is recomputed each iteration,
he should use WHILE or UNTIL instead of TO.

When both the operands to TO and FROM are numbers, and TO’s operand is less than
FROM’s operand, the i.v. is decremented by 1 after each iteration. In this case, the i.s.
terminates when the i.v. becomes less than the value of FORM. For example, (from 10
to 1 do PRINT) prints the numbers from 10 down to 1.

BY FORM (without IN or ON) [I.S. Operator]

If you aren’t using IN or ON, BY specifies how the i.v. itself is reset at each iteration. If
you’re using FROM or TO, the i.v. is known to be numerical, so the new i.v. is computed by
adding the value of FORM (which is reevaluated each iteration) to the current value of the
i.v., e.g., (for N from 1 to 10 by 2 collect N) makes a list of the first five odd
numbers.

If FORM is a positive number (FORM itself, not its value, which in general CLISP would
have no way of knowing in advance), the loop stops when the value of the i.v. exceeds the
value of TO’s operand. If FORM is a negative number, the loop stops when the value of the
i.v. becomes less than TO’s operand, e.g., (for I from N to M by -2 until
(LESSP I M) ...). Otherwise, the terminating condition for each iteration depends on
the value of FORM for that iteration: if FORM<0, the test is whether the i.v. is less than TO’s
operand, if FORM>0 the test is whether the i.v. exceeds TO’s operand; if FORM = 0, the
loop terminates unconditionally.

9-12

 INTERLISP-D REFERENCE MANUAL

If you didn’t use FROM or TO and FORM is not a number, the i.v. is simply reset to the value
of FORM after each iteration, e.g., (for I from N by (FOO) ...) sets I to the value
of (FOO) on each loop after the first.

BY FORM (with IN or ON) [I.S. Operator]

If you did use IN or ON, FORM’s value determines the tail for the next iteration, which in
turn determines the value for the i.v. as described earlier, i.e., the new i.v. is CAR of the tail
for IN, the tail itself for ON. In conjunction with IN, you can refer to the current tail within
FORM by using the i.v. or the operand for IN/ON, e.g., (for Z in L by (CDDR Z)
...) or (for Z in L by (CDDR L) ...). At translation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout FORM. For example, (for X in Y by (CDR (MEMB ’FOO (CDR X)))
collect X) specifies that after each iteration, CDR of the current tail is to be searched for
the atom FOO, and (CDR of) this latter tail to be used for the next iteration.

AS VAR [I.S. Operator]

Lets you have more than one i.v. for a single loop, e.g., (for X in Y as U in V do
...) moves through the lisps Y and V in parallel (see MAP2C). The loop ends when any of
the terminating conditions is met, e.g., (for X in Y as I from 1 to 10 collect
X) makes a list of the first ten elements of Y, or however many elements there are on Y if
less than 10.

The operand to AS, VAR, specifies the new i.v. For the remainder of the i.s., or until
another AS is encountered, all operators refer to the new i.v. For example, (for I from
1 to N1 as J from 1 to N2 by 2 as K from N3 to 1 by -1 ...) terminates
when I exceeds N1, or J exceeds N2, or K becomes less than 1. After each iteration, I is
incremented by 1, J by 2, and K by -1.

OUTOF FORM [I.S. Operator]

For use with generators. On each iteration, the i.v. is set to successive values returned by
the generator. The loop ends when the generator runs out.

Condition I.S. Oprs

What if you want to do things only on certain times through the loop? You could make the loop body
a big COND, but it’s much more readable to use one of these:

WHEN FORM [I.S. Operator]

Only run the loop body when FORM’s value is non-NIL. For example, (for X in Y
collect X when (NUMBERP X)) collects only the elements of Y that are numbers.

UNLESS FORM [I.S. Operator]

Opposite of WHEN: WHEN Z is the same as UNLESS (NOT Z).

WHILE FORM [I.S. Operator]

WHILE FORM evaluates FORM before each iteration, and if the value is NIL, exits.

9-13

CONDITIONALS AND ITERATIVE STATEMENTS

UNTIL FORM [I.S. Operator]

Opposite of WHILE: Evaluates FORM before each iteration, and if the value is not NIL, exits.

REPEATWHILE FORM [I.S. Operator]

Same as WHILE except the test is performed after the loop body, but before the i.v. is reset
for the next iteration.

REPEATUNTIL FORM [I.S. Operator]

Same as UNTIL, except the test is performed after the loop body.

Other I.S. Operators

FIRST FORM [I.S. Operator]

FORM is evaluated once before the first iteration, e.g., (for X Y Z in L first (FOO
Y Z) ...), and FOO could be used to initialize Y and Z.

FINALLY FORM [I.S. Operator]

FORM is evaluated after the loop terminates. For example, (for X in L bind Y_0 do
(if (ATOM X) then (SETQ Y (PLUS Y 1))) finally (RETURN Y)) will return
the number of atoms in L.

EACHTIME FORM [I.S. Operator]

FORM is evaluated at the beginning of each iteration before, and regardless of, any testing.
For example, consider,

(for I from 1 to N
do (... (FOO I) ...)
unless (... (FOO I) ...)
until (... (FOO I) ...))

You might want to set a temporary variable to the value of (FOO I) in order to avoid
computing it three times each iteration. However, without knowing the translation, you
can’t know whether to put the assignment in the operand to DO, UNLESS, or UNTIL. You
can avoid this problem by simply writing EACHTIME (SETQ J (FOO I)).

DECLARE: DECL [I.S. Operator]

Inserts the form (DECLARE DECL) immediately following the PROG variable list in the
translation, or, in the case that the translation is a mapping function rather than a PROG,
immediately following the argument list of the lambda expression in the translation. This
can be used to declare variables bound in the iterative statement to be compiled as local or
special variables. For example (for X in Y declare: (LOCALVARS X) ...).
Several DECLARE:s can apppear in the same i.s.; the declarations are inserted in the order
they appear.

DECLARE DECL [I.S. Operator]

Same as DECLARE:.

9-14

 INTERLISP-D REFERENCE MANUAL

Since DECLARE is also the name of a function, DECLARE cannot be used as an i.s. operator
when it appears as CAR of a form, i.e. as the first i.s. operator in an iterative statement.
However, declare (lowercase version) can be the first i.s. operator.

ORIGINAL I.S.OPR OPERAND [I.S. Operator]

I.S.OPR will be translated using its original, built-in interpretation, independent of any
user defined i.s. operators.

There are also a number of i.s.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See timers, Chapter 12.

Miscellaneous Hints For Using I.S.Oprs

Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g., (for X in Y ...) is
equivalent to (FOR X IN Y ...).

Each i.s. operator is of lower precedence than all Interlisp forms, so parentheses around the operands
can be omitted, and will be supplied where necessary, e.g., BIND (X Y Z) can be written BIND X Y
Z, OLD (X_FORM) as OLD X_FORM, etc.

RETURN or GO may be used in any operand. (In this case, the translation of the iterative statement will
always be in the form of a PROG, never a mapping function.) RETURN means return from the loop
(with the indicated value), not from the function in which the loop appears. GO refers to a label
elsewhere in the function in which the loop. appears, except for the labels $$LP, $$ITERATE, and
$$OUT which are reserved, as described below.

In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the i.s.types, e.g., DO, COLLECT, SUM,
etc., the operand can consist of more than one form, e.g., COLLECT (PRINT (CAR X)) (CDR X), in
which case a PROGN is supplied.

Each operand can be the name of a function, in which case it is applied to the (last) i.v., e.g., (for X
in Y do PRINT when NUMBERP) is the same as (for X in Y do (PRINT X) when
(NUMBERP X)). Note that the i.v. need not be explicitly specified, e.g., (in Y do PRINT when
NUMBERP) will work.

For i.s.types, e.g., DO, COLLECT, JOIN, the function is always applied to the first i.v. in the i.s., whether
explicity named or not. For example, (in Y as I from 1 to 10 do PRINT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON, since they “operate”
before the loop starts, when the i.v. may not even be bound.

In the case of BY in conjunction with IN, the function is applied to the current tail e.g., (for X in Y
by CDDR ...) is the same as (for X in Y by (CDDR X) ...).

While the exact translation of a loop depends on which operators are present, a PROG will always be
used whenever the loop specifies dummy variables—if BIND appears, or there is more than one
variable specified by a FOR, or a GO, RETURN, or a reference to the variable $$VAL appears in any of
the operands. When PROG is used, the form of the translation is:

(PROG VARIABLES
{initialize}

9-15

CONDITIONALS AND ITERATIVE STATEMENTS

$$LP {eachtime}
{test}
{body}

$$ITERATE
{aftertest}
{update}
(GO $$LP)

$$OUT {finalize}
(RETURN $$VAL))

where {test} corresponds to that part of the loop that tests for termination and also for those
iterations for which {body} is not going to be executed, (as indicated by a WHEN or UNLESS); {body}
corresponds to the operand of the i.s.type, e.g., DO, COLLECT, etc.; {aftertest} corresponds to those
tests for termination specified by REPEATWHILE or REPEATUNTIL; and {update} corresponds to
that part that resets the tail, increments the counter, etc. in preparation for the next iteration.
{initialize}, {finalize}, and {eachtime} correspond to the operands of FIRST, FINALLY,
and EACHTIME, if any.

Since {body} always appears at the top level of the PROG, you can insert labels in {body}, and GO to
them from within {body} or from other i.s. operands, e.g., (for X in Y first (GO A) do
(FOO) A (FIE)). However, since {body} is dwimified as a list of forms, the label(s) should be
added to the dummy variables for the iterative statement in order to prevent their being dwimified
and possibly “corrected”, e.g., (for X in Y bind A first (GO A) do (FOO) A (FIE)). You
can also GO to $$LP, $$ITERATE, or $$OUT, or explicitly set $$VAL.

Errors in Iterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions
hold:

1. Operator with null operand, i.e., two adjacent operators, as in (for X in Y until do ...)

2. Operand consisting of more than one form (except as operand to FIRST, FINALLY, or one of the
i.s.types), e.g., (for X in Y (PRINT X) collect ...).

3. IN, ON, FROM, TO, or BY appear twice in same i.s.

4. Both IN and ON used on same i.v.

5. FROM or TO used with IN or ON on same i.v.

6. More than one i.s.type, e.g., a DO and a SUM.

In 3, 4, or 5, an error is not generated if an intervening AS occurs.

If an error occurs, the i.s. is left unchanged.

If no DO, COLLECT, JOIN or any of the other i.s.types are specified, CLISP will first attempt to find an
operand consisting of more than one form, e.g., (for X in Y (PRINT X) when ATOM X ...),
and in this case will insert a DO after the first form. (In this case, condition 2 is not considered to be
met, and an error is not generated.) If CLISP cannot find such an operand, and no WHILE or UNTIL
appears in the i.s., a warning message is printed: NO DO, COLLECT, OR JOIN: followed by the i.s.

9-16

 INTERLISP-D REFERENCE MANUAL

Similarly, if no terminating condition is detected, i.e., no IN, ON, WHILE, UNTIL, TO, or a RETURN or
GO, a warning message is printed: Possible non-terminating iterative statement:
followed by the iterative statement. However, since the user may be planning to terminate the i.s. via
an error, Control-E, or a RETFROM from a lower function, the i.s. is still translated.

Note: The error message is not printed if the value of CLISPI.S.GAG is T (initially NIL).

Defining New Iterative Statement Operators

The following function is available for defining new or redefining existing iterative statement
operators:

(I.S.OPR NAME FORM OTHERS EVALFLG) [Function]

NAME is the name of the new i.s.opr. If FORM is a list, NAME will be a new i.s.type, and
FORM its body.

OTHERS is an (optional) list of additional i.s. operators and operands which will be added
to the i.s. at the place where NAME appears. If FORM is NIL, NAME is a new i.s.opr defined
entirely by OTHERS.

In both FORM and OTHERS, the atom $$VAL can be used to reference the value to be
returned by the i.s., I.V. to reference the current i.v., and BODY to reference NAME’s
operand. In other words, the current i.v. will be substituted for all instances of I.V. and
NAME’s operand will be substituted for all instances of BODY throughout FORM and
OTHERS.

If EVALFLG is T, FORM and OTHERS are evaluated at translation time, and their values
used as described above. A dummy variable for use in translation that does not clash
with a dummy variable already used by some other i.s. operators can be obtained by
calling (GETDUMMYVAR). (GETDUMMYVAR T) will return a dummy variable and also
insure that it is bound as a PROG variable in the translation.

If NAME was previously an i.s.opr and is being redefined, the message (NAME
REDEFINED) will be printed (unless DFNFLG=T), and all expressions using the i.s.opr
NAME that have been translated will have their translations discarded.

The following are some examples of how I.S.OPR could be called to define some existing
i.s.oprs, and create some new ones:

COLLECT (I.S.OPR ’COLLECT
’(SETQ $$VAL (NCONC1 $$VAL BODY)))

SUM (I.S.OPR ’SUM
’(SETQ $$VAL_(PLUS $$VAL BODY)

’(FIRST (SETQ $$VAL0))

NEVER (I.S.OPR ’NEVER
’(if BODY then

(SETQ $$VAL NIL) (GO $$OUT))

Note: (if BODY then (RETURN NIL)) would exit from the
i.s. immediately and therefore not execute the operations specified
via a FINALLY (if any).

9-17

CONDITIONALS AND ITERATIVE STATEMENTS

THEREIS (I.S.OPR ’THEREIS
’(if BODY then

(SETQ $$VAL I.V.) (GO $$OUT)))

RCOLLECT To define RCOLLECT, a version of COLLECT which uses CONS
instead of NCONC1 and then reverses the list of values:

(I.S.OPR ’RCOLLECT
 ’(FINALLY (RETURN

(DREVERSE $$VAL)))]

TCOLLECT To define TCOLLECT, a version of COLLECT which uses TCONC:

(I.S.OPR ’TCOLLECT
’(TCONC $$VAL BODY)

’(FIRST (SETQ $$VAL (CONS))
FINALLY (RETURN

(CAR $$VAL)))]

PRODUCT (I.S.OPR ’PRODUCT
’(SETQ $$VAL $$VAL*BODY)

 ’(FIRST ($$VAL 1))]

UPTO To define UPTO, a version of TO whose operand is evaluated only
once:

(I.S.OPR ’UPTO
NIL
’(BIND $$FOO←BODY TO $$FOO)]

TO To redefine TO so that instead of recomputing FORM each
iteration, a variable is bound to the value of FORM, and then that
variable is used:

(I.S.OPR ’TO
 NIL

 ’(BIND $$END FIRST
(SETQ $$END BODY)

ORIGINALTO $$END)]

Note the use of ORIGINAL to redefine TO in terms of its original
definition. ORIGINAL is intended for use in redefining built-in
operators, since their definitions are not accessible, and hence not
directly modifiable. Thus if the operator had been defined by the
user via I.S.OPR, ORIGINAL would not obtain its original
definition. In this case, one presumably would simply modify the
i.s.opr definition.

I.S.OPR can also be used to define synonyms for already defined i.s. operators by calling I.S.OPR
with FORM an atom, e.g., (I.S.OPR ’WHERE ’WHEN) makes WHERE be the same as WHEN. Similarly,
following (I.S.OPR ’ISTHERE ’THEREIS), one can write (ISTHERE ATOM IN Y), and
following (I.S.OPR ’FIND ’FOR) and (I.S.OPR ’SUCHTHAT ’THEREIS), one can write (find
X in Y suchthat X member Z) . In the current system, WHERE is synonymous with WHEN,
SUCHTHAT and ISTHERE with THEREIS, FIND with FOR, and THRU with TO.

9-18

 INTERLISP-D REFERENCE MANUAL

If FORM is the atom MODIFIER, then NAME is defined as an i.s.opr which can immediately follow
another i.s. operator (i.e., an error will not be generated, as described previously). NAME will not
terminate the scope of the previous operator, and will be stripped off when DWIMIFY is called on its
operand. OLD is an example of a MODIFIER type of operator. The MODIFIER feature allows the user
to define i.s. operators similar to OLD, for use in conjunction with some other user defined i.s.opr
which will produce the appropriate translation.

The file package command I.S.OPRS (Chapter 17) will dump the definition of i.s.oprs. (I.S.OPRS
PRODUCT UPTO) as a file package command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.

9-19

9-20

 INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

10-1

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Medley is designed to help you define and debug functions. Developing an applications program
with Medley involves defining a number of functions in terms of the system primitives and other
user-defined functions. Once defined, your functions may be used exactly like Interlisp primitive
functions, so the programming process can be viewed as extending the Interlisp language to include
the required functionality.

A function’s definition specifies if the function has a fixed or variable number of arguments, whether
these arguments are evaluated or not, the function argument names, and a series of forms which
define the behavior of the function. For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

This function has two evaluated arguments, X and Y, and it will execute (PRINT X) and (PRINT Y) when
evaluated. Other types of function definitions are described below.

A function is defined by putting an expr definition in the function definition cell of a symbol. There
are a number of functions for accessing and setting function definition cells, but one usually defines a
function with DEFINEQ (see the Defining Functions section below). For example:

← (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))(FOO)

The expression above will define the function FOO to have the expr definition (LAMBDA (X Y) (PRINT X)
(PRINT Y)). After being defined, this function may be evaluated just like any system function:

← (FOO 3 (IPLUS 3 4))
3
7
7

Not all function definition cells contain expr definitions. The compiler (see the first page of Chapter
18) translates expr definitions into compiled code objects, which execute much faster. Interlisp
provides a number of “function type functions” which determine how a given function is defined, the
number and names of function arguments, etc. See the Function Type Functions section below.

Usually, functions are evaluated automatically when they appear within another function or when
typed into Interlisp. However, sometimes it is useful to envoke the Interlisp interpreter explicitly to
apply a given “functional argument” to some data. There are a number of functions which will apply
a given function repeatedly. For example, MAPCAR will apply a function (or an expr definition) to all of
the elements of a list, and return the values returned by the function:

← (MAPCAR ’(1 2 3 4 5) ’(LAMBDA (X) (ITIMES X X))
(1 4 9 16 25)

When using functional arguments, there are a number of problems which can arise, related to
accessing free variables from within a function argument. Many times these problems can be solved
using the function FUNCTION to create a FUNARG object.

The macro facility provides another way of specifying the behavior of a function (see the Macros
section below). Macros are very useful when developing code which should run very quickly, which
should be compiled differently than when it is interpreted, or which should run differently in
different implementations of Interlisp.

10-2

INTERLISP-D REFERENCE MANUAL

Function Types

Interlisp functions are defined using list expressions called “expr definitions.” An expr definition is a
list of the form (LAMBDA-WORD ARG-LIST FORM1 ... FORMN). LAMBDA-WORD determines whether
the arguments to this function will be evaluated or not. ARG-LIST determines the number and
names of arguments. FORM1 ... FORMN are a series of forms to be evaluated after the arguments are
bound to the local variables in ARG-LIST.

If LAMBDA-WORD is the symbol LAMBDA, then the arguments to the function are evaluated. If LAMBDA-
WORD is the symbol NLAMBDA, then the arguments to the function are not evaluated. Functions which
evaluate or don’t evaluate their arguments are therefore known as “lambda” or “nlambda” functions,
respectively.

If ARG-LIST is NIL or a list of symbols, this indicates a function with a fixed number of arguments.
Each symbol is the name of an argument for the function defined by this expression. The process of
binding these symbols to the individual arguments is called “spreading” the arguments, and the
function is called a “spread” function. If the argument list is any symbol other than NIL, this
indicates a function with a variable number of arguments, known as a “nospread” function.

If ARG-LIST is anything other than a symbol or a list of symbols, such as (LAMBDA "FOO" ...), attempting
to use this expr definition will generate an Arg not symbol error. In addition, if NIL or T is used as an
argument name, the error Attempt to bind NIL or T is generated.

These two parameters (lambda/nlambda and spread/nospread) may be specified independently, so
there are four nain function types, known as lambda-spread, nlanbda-spread, lanbda-nospread, and
nlambda-nospread functions. Each one has a different form and is used for a different purpose.
These four function types are described more fully below.

For lambda-spread, lanbda-nospread, or nlambda-spread functions, there is an upper limit to the
number of arguments that a function can have, based on the number of arguments that can be stored
on the stack on any one function call. Currently, the limit is 80 arguments. If a function is called with
more than that many arguments, the error Too many arguments occurs. However, nlambda-nospread
functions can be called with an arbitrary number of arguments, since the arguments are not
individually saved on the stack.

Lambda-Spread Functions

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common
function type. A lambda-spread expr definition has the form:

(LAMBDA (ARG1 ... ARGM) FORM1 ... FORMN)

The argument list (ARG1 ... ARGM) is a list of symbols that gives the number and names of the
formal arguments to the function. If the argument list is () or NIL, this indicates that the function
takes no arguments. When a lambda-spread function is applied to some arguments, the arguments
are evaluated, and bound to the local variables ARG1 ... ARGM. Then, FORM1 ... FORMN are
evaluated in order, and the value of the function is the value of FORMN.

← (DEFINEQ (FOO (LAMBDA (X Y) (LIST X Y))))
(FOO)

← (FOO 99 (PLUS 3 4))
(99 7)

10-3

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

In the above example, the function FOO defined by (LAMBDA (X Y) (LIST X Y)) is applied to the arguments
99 and (PLUS 3 4). These arguments are evaluated (giving 99 and 7), the local variable X is bound to 99
and Y to 7, (LIST X Y) is evaluated, returning (99 7), and this is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many argumnents, the extra arguments
are evaluated but ignored. If a function is called with too few arguments, the unsupplied ones will be
delivered as NIL. In fact, a spread function cannot distinguish between being given NIL as an argument,
and not being given that argument, e.g., (FOO) and (FOO NIL) are exactly the same for spread functions.
If it is necessary to distinguish between these two cases, use an nlambda function and explicitly
evaluate the arguments with the EVAL function.

Nlambda-Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread expr
definition has the form:

(NLAMBDA (ARG1 ... ARGM) FORM1 ... FORMN)

Nlambda-spread functions are evaluated similarly to lanbda-spread functions, except that the
arguments are not evaluated before being bound to the variables ARG1 ... ARGM.

← (DEFINEQ (FOO (NLAMBDA (X Y) (LIST X Y))))
(FOO)

← (FOO 99 (PLUS 3 4))
(99 (PLUS 3 4))

In the above example, the function FOO defined by (NLAMBDA (X Y) (LIST X Y)) is applied to the arguments
99 and (PLUS 3 4). These arguments are unevaluated to X and Y. (LIST X Y) is evaluated, returning (99
(PLUS 3 4)), and this is returned as the value of the function.

Functions can be defined so that all of their arguments are evaluated (lambda functions) or none are
evaluated (nlambda functions). If it is desirable to write a function which only evaluates some of its
arguments (e.g., SETQ), the functions should be defined as an nlambda, with some arguments explicitly
evaluated using the function EVAL. If this is done, the user should put the symbol EVAL on the property
list of the function under the property INFO. This informs various system packages, such as DWIM,
CLISP, and Masterscope, that this function in fact does evaluate its arguments, even though it is an
nlambda.

Warning: A frequent problem that occurs when evaluating arguments to nlambda functions with EVAL
is that the form being evaluated may reference variables that are not accessible within the nlambda
function. This is usually not a problem when interpreting code, but when the code is compiled, the
values of “local” variables may not be accessible on the stack (see Chapter 18). The system nlambda
functions that evaluate their arguments (such as SETQ) are expanded in-line by the compiler, so this is
not a problem. Using the macro facility is recommended in cases where it is necessary to evaluate
some arguments to an nlambda function.

Lambda-Nospread Functions

Lambda-nospread functions take a variable number of evaluated arguments. A lambda-nospread
expr definition has the form:

(LAMBDA VAR FORM1 ... FORMN)

10-4

INTERLISP-D REFERENCE MANUAL

VAR may be any symbol, except NIL and T. When a lambda-nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the stack. VAR is then
bound to the number of arguments which have been evaluated. For example, if FOO is defined by
(LAMBDA X ...), when (FOO A B C) is evaluated, A, B, and C are evaluated and X is bound to 3. VAR should
never be reset

The following functions are used for accessing the arguments of lambda-nospread functions.

(ARG VAR M) [NLambda Function]

Returns the Mth argument for the lambda-nospread function whose argument list is VAR.
VAR is the name of the atomic argument list to a lambda-nospread function, and is not
evaluated. M is the number of the desired argument, and is evaluated. The value of ARG is
undefined for M less than or equal to 0 or greater than the value of VAR.

(SETARG VAR M X) [NLambda Function]

Sets the Mth argument for the lambda-nospread function whose argument list is VAR to X.
VAR is not evaluated; M and X are evaluated. M should be between 1 and the value of VAR.

In the example below, the function FOO is defined to collect and return a list of all of the evaluated
arguments it is given (the value of the for statement).

← (DEFINEQ (FOO
 (LAMBDA X (for ARGNUM from 1 to X collect (ARG X ARGNUM)]

(FOO)

← (FOO 99 (PLUS 3 4))
(99 7)

← (FOO 99 (PLUS 3 4)(TIMES 3 4)))
(99 7 12)

NLambda-Nospread Functions

Nlambda-nospread functions take a variable number of unevaluated arguments. An nlambda-
nospread expr definition has the form:

(NLAMBDA VAR FORM1 ... FORMN)

VAR may be any symbol, except NIL and T. Though similar in form to lambda-nospread expr
definitions, an nlambda-nospread is evaluated quite differently. When an nlambda-nospread function
is applied to some arguments, VAR is simply bound to a list of the unevaluated arguments. The user
may pick apart this list, and evaluate different arguments.

In the example below, FOO is defined to return the reverse of the list of arguments it is given
(unevaluated):

← (DEFINEQ (FOO (NLAMBDA X (REVERSE X))))
(FOO)

← (FOO 99 (PLUS 3 4))
((PLUS 3 4) 99)

← (FOO 99 (PLUS 3 4)(TIMES 3 4))
(TIMES 3 4)(PLUS 3 4) 99)

The warning about evaluating arguments to nlambda functions also applies to nlambda-nospread
function.

10-5

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Compiled Functions

Functions defined by expr definitions can be compiled by the Interlisp compiler (see Chapter 18). The
compiler produces compiled code objects (of data type CCODEP) which execute more quickly than the
corresponding expr definition code. Functions defined by compiled code objects may have the same
four types as expr definitions (lambda/nlambda, spread/nospread). Functions created by the
compiler are referred to as compiled functions.

Function Type Functions

There are a variety of functions used for examining the type, argument list, etc. of functions. These
functions may be given either a symbol (in which case they obtain the function definition from the
definition cell), or a function definition itself.

(FNTYP FN) [Function]

Returns NIL if FN is not a function definition or the name of a defined function. Otherwise,
FNTYP returns one of the following symbols, depending on the type of function definition.

EXPR Lambda-spread expr definition
CEXPR Lambda-spread compiled definition
FEXPR Nlambda-spread expr definition

CFEXPR Nlambda-spread compiled definition
EXPR* Lambda-nospread expr definition

CEXPR* Lambda-nospread compiled definition
FEXPR* Nlambda-nospread expr definition
CFEXPR* Nlambda-nospread compiled definition
FUNARG FNTYP returns the symbol FUNARG if FN is a FUNARG expression.

EXP, FEXPR, EXPR*, and FEXPR* indicate that FN is defined by an expr definition. CEXPR, CFEXPR,
CEXPR*, and CFEXPR* indicate that FN is defined by a compiled definition, as indicated by the
prefix C. The suffix * indicates that FN has an indefinite number of arguments, i.e., is a
nospread function. The prefix F indicates unevaluated arguments. Thus, for example, a
CFEXPR* is a compiled nospread nlambda function.

(EXPRP FN) [Function]

Returns T if (FNTYP FN) is EXPR, FEXPR, EXPR*, or FEXPR*; NIL otherwise. However, (EXPRP FN) is
also true if FN is (has) a list definition, even if it does not begin with LAMBDA or NLAMBDA. In
other words, EXPRP is not quite as selective as FNTYP.

(CCODEP FN) [Function]

Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR*, or CFEXPR*; NIL otherwise.

(ARGTYPE FN) [Function]

FN is the name of a function or its definition. ARGTYPE returns 0, 1, 2, or 3, or NIL if FN is not a
function. ARGTYPE corresponds to the rows of FNTYPs. The interpretation of this value is as
follows:

0 Lambda-spread function (EXPR, CEXPR)
1 Nlambda-spread function (FEXPR, CFEXPR)

10-6

INTERLISP-D REFERENCE MANUAL

2 Lambda-nospread function (EXPR*, CEXPR*)
3 Nlambda-nospread function (FEXPR*, CFEXPR*)

(NARGS FN) [Function]

Returns the number of arguments of FN, or NIL if FN is not a function. If FN is a nospread
function, the value of NARGS is 1.

(ARGLIST FN) [Function]

Returns the “argument list” for FN. Note that the “argument list” is a symbol for
nospread functions. Since NIL is a possible value for ARGLIST, the error Args not available is
generated if FN is not a function.

If FN is a compiled function, the argument list is constructed, i.e., each call to ARGLIST
requires making a new list. For functions defined by expr definitions, lists beginning with
LAMBDA or NLAMBDA, the argument list is simply CADR of GETD. If FN has an expr definition, and
CAR of the definition is not LAMBDA or NLAMBDA, ARGLIST will check to see if CAR of the definition is
a member of LAMBDASPLST (see Chapter 20). If it is, ARGLIST presumes this is a function object
the user is defining via DWIMUSERFORMS, and simply returns CADR of the definition as its
argument list. Otherwise ARGLIST generates an error as described above.

(SMARTARGLIST FN EXPLAINFLG TAIL) [Function]

A “smart” version of ARGLIST that tries various strategies to get the arglist of FN.

First SMARTARGLIST checks the property list of FN under the property ARGNAMES. For spread
functions, the argument list itself is stored. For nospread functions, the form is (NIL
ARGLIST1 . ARGLIST2), where ARGLIST1 is the value SMARTARGLIST should return when EXPLAINFLG

= T, and ARGLIST2 the value when EXPLAINFLG = NIL. For example, (GETPROP ’DEFINEQ

’ARGNAMES) = (NIL (X1 Xl ... XN) . X). This allows the user to specify special argument lists.

Second, if FN is not defined as a function, SMARTARGLIST attempts spelling correction on FN
by calling FNCHECK (see Chapter 20), passing TAIL to be used for the call to FIXSPELL. If
unsuccessful, the FN Not a function error will be generated.

Third, if FN is known to the file package (see Chapter 17) but not loaded in, SMARTARGLIST
will obtain the arglist information from the file.

Otherwise, SMARTARGLIST simply returns (ARGLIST FN).

SMARTARGLIST is used by BREAK (see Chapter 15) and ADVISE with EXPLAINFLG = NIL for
constructing equivalent expr definitions, and by the TTYIN in-line command ?= (see Chapter
26), with EXPLAINFLG = T.

Defining Functions

Function definitions are stored in a “function definition cell” associated with each symbol. This cell is
directly accessible via the two functions PUTD and GETD (see below), but it is usually easier to define
functions with DEFINEQ:

10-7

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(DEFINEQ X1 X2 ... XN) [NLambda NoSpread Function]

DEFINEQ is the function normally used for defining functions. It takes an indefinite number
of arguments which are not evaluated. Each Xi must be a list defining one function, of the
form (NAME DEFINITION). For example:

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X))))

The above expression will define the function DOUBLE with the expr definition (LAMBDA (X)

(IPLUS X X)). Xi may also have the form (NAME ARGS . DEF-BODY), in which case an appropriate
lambda expr definition will be constructed. Therefore, the above expression is exactly the
same as:

(DEFINEQ (DOUBLE (X) (IPLUS X X)))

Note that this alternate form can only be used for lambda functions. The first form must
be used to define an nlambda function.

DEFINEQ returns a list of the names of the functions defined.

(DEFINE X —) [Function]

Lambda-spread version of DEFINEQ. Each element of the list X is itself a list either of the
form (NAME DEFINITION) or (NAME ARGS . DEF-BODY). DEFINE will generate an error, Incorrect

defining form on encountering an atom where a defining list is expected.

DEFINE and DEFINEQ operate correctly if the function is already defined and BROKEN, ADVISED, or BROKEN-IN.

For expressions involving type-in only, if the time stamp facility is enabled (see the Time Stamps
section of Chapter 16), both DEFINE and DEFINEQ stamp the definition with your initials and date.

UNSAFE.TO.MODIFY.FNS [Variable]

Value is a list of functions that should not be redefined, because doing so may cause
unusual bugs (or crash the system!). If you try to modify a function on this list (using
DEFINEQ, TRACE, etc), the system prints Warning: XXX may be unsafe to modify -- continue? If you
type Yes, the function is modified, otherwise an error occurs. This provides a measure of
safety for novices who may accidently redefine important system functions. You can add
your own functions onto this list.

By convention, all functions starting with the character backslash (“\”) are system internal
functions, which you should never redefine or modify. Backslash functions are not on
UNSAFE.TO.MODIFY.FNS, so trying to redefine them will not cause a warning.

DFNFLG [Variable]

DFNFLG is a global variable that affects the operation of DEFINEQ and DEFINE. If DFNFLG=NIL, an
attempt to redefine a function FN will cause DEFINE to print the message (FN REDEFINED) and to
save the old definition of FN using SAVEDEF (see the Functions for Manipulating Typed
Definitions section of Chapter 17) before redefining it (except if the old and new
definitions are EQUAL, in which case the effect is simply a no-op). If DFNFLG=T, the function is
simply redefined. If DFNFLG=PROP or ALLPROP, the new definition is stored on the property list
under the property EXPR. ALLPROP also affects the operation of RPAQQ and RPAQ (see the
Functions Used Within Source Files section of Chapter 17). DFNFLG is initially NIL.

10-8

INTERLISP-D REFERENCE MANUAL

DFNFLG is reset by LOAD (see the Loading Files section of Chapter 17) to enable various ways
of handling the defining of functions and setting of variables when loading a file. For
most applications, the user will not reset DFNFLG directly.

Note: The compiler does not respect the value of DFNFLG when it redefines functions to their
compiled definitions (see the first page of Chapter 18). Therefore, if you set DFNFLG to PROP
to completely avoid inadvertantly redefining something in your running system, you must
use compile mode F, not ST.

Note that the functions SAVEDEF and UNSAVEDEF (see the Functions for Manipulating Typed
Definitions section of Chapter 17) can be useful for “saving” and restoring function
definitions from property lists.

(GETD FN) [Function]

Returns the function definition of FN. Returns NIL if FN is not a symbol, or has no
definition.

GETD of a compiled function constructs a pointer to the definition, with the result that two
successive calls do not necessarily produce EQ results. EQP or EQUAL must be used to compare
compiled definitions.

(PUTD FN DEF —) [Function]

Puts DEF into FN’s function cell, and returns DEF. Generates an error, Arg not symbol, if FN is
not a symbol. Generates an error, Illegal arg, if DEF is a string, number, or a symbol other
than NIL.

(MOVD FROM TO COPYFLG —) [Function]

Moves the definition of FROM to TO, i.e., redefines TO. If COPYFLG = T, a COPY of the
definition of FROM is used. COPYFLG =T is only meaningful for expr definitions, although
MOVD works for compiled functions as well. MOVD returns TO.

COPYDEF (see the Functions for Manipulating Typed Definitions section of Chapter 17) is a
higher-level function that not only moves expr definitions, but works also for variables,
records, etc.

(MOVD? FROM TO COPYFLG —) [Function]

If TO is not defined, same as (MOVD FROM TO COPYFLG). Otherwise, does nothing and
returns NIL.

Function Evaluation

Usually, function application is done automatically by the Interlisp interpreter. If a form is typed into
Interlisp whose CAR is a function, this function is applied to the arguments in the CDR of the form. These
arguments are evaluated or not, and bound to the funcion parameters, as determined by the type of
the function, and the body of the function is evaluated. This sequence is repeated as each form in the
body of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this. These functions take “functional arguments,” which may either

10-9

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

be symbols with function definitions, or expr definition forms such as (LAMBDA (X)...), or FUNARG
expressions.

(APPLY FN ARGLIST —) [Function]

Applies the function FN to the arguments in the list ARGLIST, and returns its value. APPLY
is a lambda function, so its arguments are evaluated, but the individual elements of
ARGLIST are not evaluated. Therefore, lambda and nlambda functions are treated the
same by APPLY—lambda functions take their arguments from ARGLIST without evaluating
them. For example:

← (APPLY ’APPEND ’((PLUS 1 2 3)(4 5 6)))
(PLUS 1 2 3 4 5 6)

Note that FN may explicitly evaluate one or more of its arguments itself. For example, the
system function SETQ is an nlambda function that explicitly evaluates its second argument.
Therefore, (APPLY ’SETQ ’(FOO (ADD1 3)))will set FOO to 4, instead of setting it to the expression
(ADD1 3).

APPLY can be used for manipulating expr definitions. For example:
← (APPLY ’(LAMBDA (X Y)(ITIMES X Y)) ’(3 4)))

12

(APPLY* FN ARG1 ARG2 ... ARGN) [NoSpread Function]

Nospread version of APPLY. Applies the function FN to the arguments ARG1 ARG2 ...
ARGN. For example:

← (APPLY ’APPEND ’(PLUS 1 2 3)(4 5 6))
(PLUS 1 2 3 4 5 6)

(EVAL X—) [Function]

EVAL evaluates the expression X and returns this value, i.e., EVAL provides a way of calling
the Interlisp interpreter. Note that EVAL is itself a lambda function, so its argument is first
evaluated, e.g.:

← (SETQ FOO ’ADD1 3)))
(ADD1 3)

←(EVAL FOO)
4

←(EVAL ’FOO)
(ADD1 3)

(QUOTE X) [Nlambda NoSpread Function]

QUOTE prevents its arguments from being evaluated. Its value is X itself, e.g., (QUOTE FOO) is
FOO.

Interlisp functions can either evaluate or not evaluate their arguments. QUOTE can be used
in those cases where it is desirable to specify arguments unevaluated.

The single-quote character (’) is defined with a read macro so it returns the next
expression, wrapped in a call to QUOTE (see Chapter 25). For example, ’FOO reads as
(QUOTE FOO). This is the form used for examples in this manual.

Since giving QUOTE more than one argument is almost always a parenthese error, and one
that would otherewise go undetected, QUOTE itself generates an error in this case, Parenthesis
error.

10-10

INTERLISP-D REFERENCE MANUAL

(KWOTE X) [Function]

Value is an expression which, when evaluated, yields X. If X is NIL or a number, this is X
itself. Otherwise (LIST (QUOTE QUOTE) X). For example:

(KWOTE 5) => 5
(KWOTE (CONS ’A ’B)) => (QUOTE (A.B))

(NLAMBDA.ARGS X) [Function]

This function interprets its argument as a list of unevaluated nlambda arguments. If any
of the elements in this list are of the form (QUOTE...), the enclosing QUOTE is stripped off.
Actually, NLAMBDA.ARGS stops processing the list after the first non-quoted argument.
Therefore, whereas (NLAMBDA.ARGS ’((QUOTE FOO) BAR)) -> (FOO BAR), (NLAMBDA.ARGS ’(FOO (QUOTE
BAR))) -> (FOO (QUOTE BAR)).

NLAMBDA.ARGS is alled by a number of nlambda functions in the system, to interpret their
arguments. For instance, the function BREAK calls NLAMBDA.ARGS so that (BREAK ’FOO) will break
the function FOO, rather than the function QUOTE.

(EVALA X A) [Function]

Simulates association list variable lookup. X is a form, A is a list of the form:

((NAME1 . VAL1) (NAME2 . VAL2)... (NAMEN . VALN))

The variable names and values in A are “spread” on the stack, and then X is evaluated.
Therefore, any variables appearing free in X that also appears as CAR of an element of A will
be given the value on the CDR of that element.

(DEFEVAL TYPE FN) [Function]

Specifies how a datum of a particular type is to be evaluated. Intended primarily for user-
defined data types, but works for all data types except lists, literal atoms, and numbers.
TYPE is a type name. FN is a function object, i.e., name of a function or a lambda
expression. Whenever the interpreter encounters a datum of the indicated type, FN is
applied to the datum and its value returned as the result of the evaluation. DEFEVAL returns
the previous evaling function for this type. If FN = NIL, DEFEVAL returns the current evaling
function without changing it. If FN = T, the evaling functions is set back to the system
default (which for all data types except lists is to return the datum itself).

COMPILETYPELST (see Chapter 18) permits the user to specify how a datum of a particular type
is to be compiled.

(EVALHOOK FORM EVALHOOKFN) [Function]

EVALHOOK evaluates the expression FORM, and returns its value. While evaluating FORM, the
function EVAL behaves in a special way. Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to EVAL, EVALHOOKFN is invoked (it
should be a function), with the form to be evaluated as its argument. EVALHOOKFN is then
responsible for evaluating the form. Whatever is returned is assume to be the result of
evaluating the form. During the execution of EVALHOOKFN, this special evaluation is
turned off. (Note that EVALHOOK does not affect the evaluations of variables, only of lists).

Here is an example of a simple tracing routine that uses the EVALHOOK feature:

10-11

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

←(DEFINEQ (PRINTHOOK (FORM)
(printout T "eval: "FORM T)
(EVALHOOK FORM (FUNCTION PRINTHOOK
(PRINTHOOK)

Using PRINTHOOK, one might see the following interaction:
←(EVALHOOK ’(LIST (CONS 1 2)(CONS 3 4)) ’PRINTHOOK)

eval: (CONS 1 2)
eval: (CONS 3 4)
((1.2)(3.4))

Iterating and Mapping Functions

The functions below are used to evaluate a form or apply a function repeatedly. RPT, RPTQ, and FRPTQ
evaluate an expression a specified number of time. MAP, MAPCAR, MAPLIST, etc., apply a given function
repeatedly to different elements of a list, possibly constructing another list.

These functions allow efficient iterative computations, but they are difficult to use. For programming
iterative computations, it is usually better to use the CLISP Iterative Statement facility (see Chapter 9),
which provides a more general and complete facility for expressing iterative statements. Whenever
possible, CLISP transltes iterative statements into expressions using the functions below, so there is no
efficiency loss.

(RPT N FORM) [Function]

Evaluates the expression FORM, N times. Returns the value of the last evaluation. If N is
less than or equal to 0, FORM is not evaluated, and RPT returns NIL.

Before each evaluation, the local variable RPTN is bound to the number of evaluations yet to
take place. This variable can be referenced within FORM. For example, (RPT 10 ’(PRINT

RPTN)) will print the numbers 10, 9...1, and return 1.

(RPTQ N FORM1 FORM2... FORMN) [NLambda NoSpread Function]

Nlambda-nospread version of RPT: N is evaluated, FORMi are not. Returns the value of the
last evaluation of FORMN.

(FRPTQ N FORM1 FORM2... FORMN) [NLambda NoSpread Function]

Faster version of RPTQ. Does not bind RPTN.

(MAP MAPX MAPFN1 MAPFN2) [Function]

If MAPFN2 is NIL, MAP applies the function MAPFN1 to successive tails of the list MAPX. That is,
first it computes (MAPFN1 MAPX), and then (MAPFN1 (CDR MAPX)), etc., until MAPX becomes
a non-list. If MAPFN2 is provided, (MAPFN2 MAPX) is used instead of (CDR MAPX) for the
next call for MAPFN1, e.g., if MAPFN2 were CDDR, alternate elements of the list would be
skipped. MAP returns NIL.

(MAPC MAPX MAPFN1 MAPFN2) [Function]

Identical to MAP, except that (MAPFN1 (CAR MAPX)) is computed at each iteration instead of
(MAPFN1 MAPX), i.e., MAPC works on elements, MAP on tails. MAPC returns NIL.

10-12

INTERLISP-D REFERENCE MANUAL

(MAPLIST MAPX MAPFN1 MAPFN2) [Function]

Successively computes the same values that MAP would compute, and returns a list
consisting of those values.

(MAPCAR MAPX MAPFN1 MAPFN2) [Function]

Computes the same values that MAPC would compute, and returns a list consisting of those
values, e.g., (MAPCAR X ’FNTYP) is a list of FNTYPs for each element on X.

(MAPCON MAPX MAPFN1 MAPFN2) [Function]

Computes the same values that MAP and MAPLIST but NCONCs these values to form a list which
it returns.

(MAPCONC MAPX MAPFN1 MAPFN2) [Function]

Computes the same values that MAPC and MAPCAR, but NCONCs the values to form a list which it
returns.

Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the new list
is the result of applying a function to the corresponding element on the original list. MAPCONC is used
when there are a variable number of elements (including none) to be inserted at each iteration.
Examples:
(MAPCONC ’(A B C NIL D NIL) ’(LAMBDA (Y)(if (NULL Y) then NIL

else (LIST Y)))) = > (A B C D)

This MAPCONC returns a list consisting of MAPX with all NILs removed.

(MAPCONC ’((A B) C (D E F)(G) H I) ’(LAMBDA (Y)(if (LISP Y) then Y
else NIL))) = > (A B D E F G)

This MAPCONC returns a linear list consisting of all the lists on MAPX.

Since MAPCONC uses NCONC to string the corresponding lists together, in this example the original list will
be altered to be ((A B C D E F G) C (D E F G)(G) H I). If this is an undesirable side effect, the functional
argument to MAPCONC should return instead a top level copy of the lists, i.e., (LAMBDA (Y) (if (LISTP Y) then
(APPERND Y) else NIL))).

(MAP2C MAPX MAPY MAPFN1 MAPFN2) [Function]

Identical to MAPC except MAPFN1 is a function of two arguments, and (MAPFN1 (CAR

MAPX)(CAR MAPY)) is computed at each iteration. Terminates when either MAPX or MAPY is a
non-list.

MAPFN2 is still a function of one argument, and is applied twice on each iteration;
(MAPFN2 MAPX) gives the new MAPX, (MAPFN2 MAPY) the new MAPY. CDR is used if MAPFN2
is not supplied, i.e., is NIL.

(MAP2CAR MAPX MAPY MAPFN1 MAPFN2) [Function]

Identical to MAPCAR except MAPFN1 is a function of two arguments, and (MAPFN1 (CAR

MAPX)(CAR MAPY)) is used to assemble the new list. Terminates when either MAPX or MAPY
is a non-list.

10-13

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(SUBSET MAPX MAPFN1 MAPFN2) [Function]

Applies MAPFN1 to elements of MAPX and returns a list of those elements for which this
application is non-NIL, e.g.:

(SUBSET ’(A B 3 C 4) ’NUMBERP) = (3 4)

MAPFN2 plays the same role as with MAP, MAPC, et al.

(EVERY EVERYX EVERYFN1 EVERYFN2) [Function]

Returns T if the result of applying EVERYFN1 to each element in EVERYX is true, otherwise
NIL. For example, (EVERY ’(X Y Z) ’ATOM) => T.

EVERY operates by evaluating (EVERYFN1 (CAR EVERYX) EVERYX). The second argument is
passed to EVERYFN1 so that it can look at the next element on EVERYX if necessary. If
EVERYFN1 yields NIL, EVERY immediately returns NIL. Otherwise, EVERY computes (EVERYFN2
EVERYX), or (CDR EVERYX) if EVERYFN2 = NIL, and uses this as the “new” EVERYX, and the
process continues. For example (EVERY X ’ATOM ’CDDR) is true if every other element of X is
atomic.

(SOME SOMEX SOMEFN1 SOMEFN2) [Function]

Returns the tail of SOMEX beginning with the first element that satisfies SOMEFN1, i.e., for
which SOMEFN1 applied to that element is true. Value is NIL if no such element exists.
(SOME X ’(LAMBDA (Z) (EQUAL Z Y))) is equivalent to (MEMBER Y X). SOME operates analogously to
EVERY. At each stage, (SOMEFN1 (CAR SOMEX) SOMEX) is computed, and if this not NIL, SOMEX
is returned as the value of SOME. Otherwise, (SOMEFN2 SOMEX) is computed, or (CDR SOMEX)
if SOMEFN2 = NIL, and used for the next SOMEX.

(NOTANY SOMEX SOMEFN1 SOMEFN2) [Function]

(NOT (SOME SOMEX SOMEFN1 SOMEFN2)).

(NOTEVERY EVERYX EVERYFN1 EVERYFN2) [Function]

(NOT (EVERY EVERYX EVERYFN1 EVERYFN2)).

(MAPRINT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFLG) [Function]

A general printing function. For each element of the list LST, applies PFN to the element,
and FILE. If PFN is NIL, PRIN1 is used. Between each application MAPRINT performs PRIN1 of
SEP (or "" if SEP = NIL). If LEFT is given, it is printed (using PRIN1) initially; if RIGHT is
given, it is printed (using PRIN1) at the end.

For example, (MAPRINT X NIL ’%(’%)) is equivalent to PRIN1 for lists. To print a list with
commas between each element and a final “.” one could use (MAPRINT X T NIL ’%. ’%,).

If LISPXPRINTFLG = T, LISPXPRIN1 (see Chapter 13) is used instead of PRIN1.

10-14

INTERLISP-D REFERENCE MANUAL

Functional Arguments

The functions that call the Interlisp-D evaluator take “functional arguments,” which may be symbols
with function definitions, or expr definition forms such as (LAMBDA (X) ...).

The following functions are useful when one wants to supply a functional argument which will
always return NIL, T, or 0. Note that the arguments X1 ... XN to these functions are evaluated,

though they are not used.

(NILL X1 ... XN) [NoSpread Function]

Returns NIL.

(TRUE X1 ... XN) [NoSpread Function]

Returns T.

(ZERO X1 ... XN) [NoSpread Function]

Returns 0.

When using expr definitions as function arguments, they should be enclosed within the function
FUNCTION rather than QUOTE, so that they will be compiled as separate functions.

(FUNCTION FN ENV) [NLambda Function]

If ENV = NIL, FUNCTION is the same as QUOTE, except that it is treated differently when
compiled. Consider the function definition:
(DEFINEQ (FOO (LST)(FIE LST (FUNCTION (LAMBDA (Z)(ITIMES Z Z))]

FOO calls the function FIE with the value of LST and the expr definition (LAMBDA (Z)(LIST (CAR
Z))).

If FOO is run interpreted, it does not make any difference whether FUNCTION or QUOTE is used.
However, when FOO is compiled, if FUNCTION is used the compiler will define and compile the
expr definition as an auxiliary function (see Chapter 18). The compiled expr definition
will run considerably faster, which can make a big difference if it is applied repeatedly.

Compiling FUNCTION will not create an auxiliary function if it is a functional argument to a
function that compiles open, such as most of the mapping functions (MAPCAR, MAPLIST, etc.).

If ENV is not NIL, it can be a list of variables that are (presumably) used freely by FN. ENV
can also be an atom, in which case it is evaluated, and the value interpreted as described
above.

Macros

Macros provide an alternative way of specifying the action of a function. Whereas function
definitions are evaluated with a “function call”, which involves binding variables and other
housekeeping tasks, macros are evaluated by translating one Interlisp form into another, which is then
evaluated.

A symbol may have both a function definition and a macro definition. When a form is evaluated by
the interpreter, if the CAR has a function definition, it is used (with a function call), otherwise if it has a

10-15

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

macro definition, then that is used. However, when a form is compiled, the CAR is checked for a macro
definition first, and only if there isn’t one is the function definition compiled. This allows functions
that behave differently when compiled and interpreted. For example, it is possible to define a
function that, when interpreted, has a function definition that is slow and has a lot of error checks, for
use when debugging a system. This function could also have a macro definition that defines a fast
version of the function, which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the property list of a symbol. Macros are
often used for functions that should be compiled differently in different Interlisp implementations,
and the exact property name a macro definition is stored under determines whether it should be used
in a particular implementation. The global variable MACROPROPS contains a list of all possible macro
property names which should be saved by the MACROS file package command. Typical macro property
names are DMACRO for Interlisp-D, 10MACRO for Interlisp-10, VAXMACRO for Interlisp-VAX, JMACRO for Interlisp-
Jerico, and MACRO for “implementation independent” macros. The global variable COMPILERMACROPROPS is a
list of macro property names. Interlisp determines whether a symbol has a macro definition by
checking these property names, in order, and using the first non-NIL property value as the macro
definition. In Interlisp-D this list contains DMACRO and MACRO in that order so that DMACROs will override the
implementation-independent MACRO properties. In general, use a DMACRO property for macros that are to
be used only in Interlisp-D, use 10MACRO for macros that are to be used only in Interlisp-10, and use MACRO
for macros that are to affect both systems.

Macro definitions can take the following forms:

(LAMBDA ...)
(NLAMBDA ...) A function can be made to compile open by giving it a macro definition

of the form (LAMBDA ...) or (NLAMBDA ...), e.g., (LAMBDA (X) (COND ((GREATERP X
0) X) (T (MINUS X)))) for ABS. The effect is as if the macro definition were
written in place of the function wherever it appears in a function being
compiled, i.e., it compiles as a lambda or nlambda expression. This
saves the time necessary to call the function at the price of more
compiled code generated in-line.

(NIL EXPRESSION)
(LIST EXPRESSION) “Substitution” macro. Each argument in the form being evaluated or

compiled is substituted for the corresponding atom in LIST, and the
result of the substitution is used instead of the form. For example, if the
macro definition of ADD1 is ((X) (IPLUS X 1)), then, (ADD1 (CAR Y)) is
compiled as (IPLUS (CAR Y) 1).

Note that ABS could be defined by the substitution macro ((X) (COND

((GREATERP X 0) X) (T (MINUS X)))). In this case, however, (ABS (FOO X))

would compile as
(COND ((GREATERP (FOO X) 0)
 (FOO X))
 (T (MINUS (FOO X))))

and (FOO X) would be evaluated two times. (Code to evaluate (FOO X)

would be generated three times.)

(OPENLAMBDA ARGS BODY) This is a cross between substitution and LAMBDA macros. When the
compiler processes an OPENLAMBDA, it attempts to substitute the actual
arguments for the formals wherever this preserves the frequency and

10-16

INTERLISP-D REFERENCE MANUAL

order of evaluation that would have resulted from a LAMBDA expression,
and produces a LAMBDA binding only for those that require it.

Note: OPENLAMBDA assumes that it can substitute literally the actual
arguments for the formal arguments in the body of the macro if the
actual is side-effect free or a constant. Thus, you should be careful to use
names in ARGS which don’t occur in BODY (except as variable
references). For example, if FOO has a macro definition of
(OPENLAMBDA (ENV) (FETCH (MY-RECORD-TYPE ENV) OF BAR))

then (FOO NIL) will expand to
(FETCH (MY-RECORD-TYPE NIL) OF BAR)

T When a macro definition is the atom T, it means that the compiler
should ignore the macro, and compile the function definition; this is a
simple way of turning off other macros. For example, the user may
have a function that runs in both Interlisp-D and Interlisp-10, but has a
macro definition that should only be used when compiling in Interlisp-
10. If the MACRO property has the macro specification, a DMACRO of T will
cause it to be ignored by the Interlisp-D compiler. This DMACRO would not
be necessary if the macro were specified by a 10MACRO instead of a MACRO.

(= . OTHER-FUNCTION) A simple way to tell the compiler to compile one function exactly as it
would compile another. For example, when compiling in Interlisp-D,
FRPLACAs are treated as RPLACAs. This is achieved by having FRPLACA have a
DMACRO of (= . RPLACA).

(LITATOM EXPRESSION) If a macro definition begins with a symbol other than those given above,
this allows computation of the Interlisp expression to be evaluated or
compiled in place of the form. LITATOM is bound to the CDR of the calling
form, EXPRESSION is evaluated, and the result of this evaluation is
evaluated or compiled in place of the form. For example, LIST could be
compiled using the computed macro:
[X (LIST ’CONS (CAR X)(AND (CDR X)(CONS ’LIST (CDR X]

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y (CONS Z NIL))).
Note the recursion in the macro expansion.

If the result of the evaluation is the symbol IGNOREMACRO, the macro is
ignored and the compilation of the expression proceeds as if there were
no macro definition. If the symbol in question is normally treated
specially by the compiler (CAR, CDR, COND, AND, etc.), and also has a macro, if
the macro expansion returns IGNOREMACRO, the symbol will still be treated
specially.

In Interlisp-10, if the result of the evaluation is the atom INSTRUCTIONS, no
code will be generated by the compiler. It is then assumed the
evaluation was done for effect and the necessary code, if any, has been
added. This is a way of giving direct instructions to the compiler if you
understand it.

10-17

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

It is often useful, when constructing complex macro expressions, to use
the BQUOTE facility (see the Read Macros section of Chapter 25).

The following function is quite useful for debugging macro definitions:

(EXPANDMACRO EXP QUIETFLG — —) [Function]

Takes a form whose CAR has a macro definition and expands the form as it would be
compiled. The result is prettyprinted, unless QUIETFLG=T, in which case the result is
simply returned.

Note: EXPANDMACRO only works on Interlisp macros. Use CL:MACROEXPAND-1 to expand Interlisp
macros visible to the Common Lisp interpreter and compliler.

DEFMACRO

Macros defined with the function DEFMACRO are much like “computed” macros (see the above section), in
that they are defined with a form that is evaluated, and the result of the evaluation is used (evaluated
or compiled) in place of the macro call. However, DEFMACRO macros support complex argument lists
with optional arguments, default values, and keyword arguments as well as argument list
destructuring.

(DEFMACRO NAME ARGS FORM) [NLambda NoSpread Function]

Defines NAME as a macro with the arguments ARGS and the definition form FORM (NAME,
ARGS, and FORM are unevaluated). If an expression starting with NAME is evaluated or
compiled, arguments are bound according to ARGS, FORM is evaluated, and the value of
FORM is evaluated or compiled instead. The interpretation of ARGS is described below.

Note: Like the function DEFMACRO in Common Lisp, this function currently removes any
function definition for NAME.

ARGS is a list that defines how the argument list passed to the macro NAME is interpreted.
Specifically, ARGS defines a set of variables that are set to various arguments in the macro
call (unevaluated), that FORM can reference to construct the macro form.

In the simplest case, ARGS is a simple list of variable names that are set to the
corresponding elements of the macro call (unevaluated). For example, given:

(DEFMACRO FOO (A B) (LIST ’PLUS A B B))

The macro call (FOO X (BAR Y Z)) will expand to (PLUS X (BAR Y Z) (BAR Y Z)).

“&-keywords” (beginning with the character “&”) that are used to set variables to particular
items from the macro call form, as follows:

&OPTIONAL Used to define optional arguments, possibly with default values. Each
element on ARGS after &OPTIONAL until the next &-keyword or the end of
the list defines an optional argument, which can either be a symbol or a
list, interpreted as follows:

VAR

If an optional argument is specified as a symbol, that variable is set to
the corresponding element of the macro call (unevaluated).

10-18

INTERLISP-D REFERENCE MANUAL

(VAR DEFAULT)

If an optional argument is specified as a two element list, VAR is the
variable to be set, and DEFAULT is a form that is evaluated and used as
the default if there is no corresponding element in the macro call.

(VAR DEFAULT VARSETP)

If an optional argument is specified as a three element list, VAR and
DEFAULT are the variable to be set and the default form, and VARSETP
is a variable that is set to T if the optional argument is given in the macro
call, NIL otherwise. This can be used to determine whether the argument
was not given, or whether it was specified with the default value.

For example, after (DEFMACRO FOO (&OPTIONAL A (B 5) (C 6 CSET)) FORM)

expanding the macro call (FOO) would cause FORM to be evaluated with A
set to NIL, B set to 5, C set to 6, and CSET set to NIL. (FOO 4 5 6) would be the
same, except that A would be set to 4 and CSET would be set to T.

&REST
&BODY Used to get a list of all additional arguments from the macro call. Either

&REST or &BODY should be followed by a single symbol, which is set to a list
of all arguments to the macro after the position of the &-keyword. For
example, given
(DEFMACRO FOO (A B &REST C) FORM)

expanding the macro call (FOO 1 2 3 4 5) would cause FORM to be
evaluated with A set to 1, B set to 2, and C set to (3 4 5).

If the macro calling form contains keyword arguments (see &KEY below),
these are included in the &REST list.

&KEY Used to define keyword arguments, that are specified in the macro call
by including a “keyword” (a symbol starting with the character “:”)
followed by a value.

Each element on ARGS after &KEY until the next &-keyword or the end of the
list defines a keyword argument, which can either be a symbol or a list,
interpreted as follows:

VAR
(VAR)
((KEYWORD VAR))

If a keyword argument is specified by a single symbol VAR, or a one-
element list containing VAR, it is set to the value of a keyword
argument, where the keyword used is created by adding the character
“:” to the front of VAR. If a keyword argument is specified by a single-
element list containing a two-element list, KEYWORD is interpreted as the
keyword (which should start with the letter “:”), and VAR is the variable
to set.

(VAR DEFAULT)
((KEYWORD VAR) DEFAULT)

10-19

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(VAR DEFAULT VARSETP)
((KEYWORD VAR) DEFAULT VARSETP)

If a keyword argument is specified by a two- or three-element list, the
first element of the list specifies the keyword and variable to set as
above. Similar to &OPTIONAL (above), the second element DEFAULT is a
form that is evaluated and used as the default if there is no
corresponding element in the macro call, and the third element
VARSETP is a variable that is set to T if the optional argument is given in
the macro call, NIL otherwise.

For example, the form
(DEFMACRO FOO (&KEY A (B 5 BSET) ((:BAR C) 6 CSET)) FORM)

Defines a macro with keys :A, :B (defaulting to 5), and :BAR. Expanding
the macro call (FOO :BAR 2 :A 1) would cause FORM to be evaluated with A
set to 1, B set to 5, BSET set to NIL, C set to 2, and CSET set to T.

&ALLOW-OTHER-KEYS It is an error for any keywords to be supplied in a macro call that are
not defined as keywords in the macro argument list, unless either the &-
keyword &ALLOW-OTHER-KEYS appears in ARGS, or the keyword :ALLOW-OTHER-
KEYS (with a non-NIL value) appears in the macro call.

&AUX Used to bind and initialize auxiliary varables, using a syntax similar to
PROG (see the PROG and Associated Control Functions section of Chapter 9).
Any elements after &AUX should be either symbols or lists, interpreted as
follows:

VAR

Single symbols are interpreted as auxiliary variables that are initially
bound to NIL.

(VAR EXP)

If an auxiliary variable is specified as a two element list, VAR is a
variable initially bound to the result of evaluating the form EXP.

For example, given
(DEFMACRO FOO (A B &AUX C (D 5)) FORM)

C will be bound to NIL and D to 5 when FORM is evaluated.

&WHOLE Used to get the whole macro calling form. Should be the first element
of ARGS, and should be followed by a single symbol, which is set to the
entire macro calling form. Other &-keywords or arguments can follow.
For example, given
(DEFMACRO FOO (&WHOLE X A B) FORM)

Expanding the macro call (FOO 1 2) would cause FORM to be evaluated
with X set to (FOO 1 2), A set to 1, and B set to 2.

DEFMACRO macros also support argument list “destructuring,” a facility for
accessing the structure of individual arguments to a macro. Any place

10-20

INTERLISP-D REFERENCE MANUAL

in an argument list where a symbol is expected, an argument list (in the
form described above) can appear instead. Such an embedded
argument list is used to match the corresponding parts of that particular
argument, which should be a list structure in the same form. In the
simplest case, where the embedded argument list does not include &-
keywords, this provides a simple way of picking apart list structures
passed as arguments to a macro. For example, given
(DEFMACRO FOO (A (B (C . D)) E) FORM)

Expanding the macro call (FOO 1 (2 (3 4 5)) 6) would cause FORM to be
evaluated with with A set to 1, B set to 2, C set to 3, D set to (4 5), and E set
to 6. Note that the embedded argument list (B (C . D)) has an embedded
argument list (C . D). Also notice that if an argument list ends in a
dotted pair, that the final symbol matches the rest of the arguments in
the macro call.

An embedded argument list can also include &-keywords, for
interpreting parts of embedded list structures as if they appeared in a
top-level macro call. For example, given
(DEFMACRO FOO (A (B &OPTIONAL (C 6)) D) FORM)

Expanding the macro call (FOO 1 (2) 3) would cause FORM to be evaluated
with with A set to 1, B set to 2, C set to 6 (because of the default value), and
D set to 3.

Warning: Embedded argument lists can only appear in positions in an
argument list where a list is otherwise not accepted. In the above
example, it would not be possible to specify an embedded argument list
after the &OPTIONAL keyword, because it would be interpreted as an
optional argument specification (with variable name, default value, set
variable). However, it would be possible to specify an embedded
argument list as the first element of an optional argument specification
list, as so:
(DEFMACRO FOO (A (B &OPTIONAL ((X (Y) Z)

’(1 (2) 3))) D) FORM)

In this case, X, Y, and Z default to 1, 2, and 3, respectively. Note that the
“default” value has to be an appropriate list structure. Also, in this case
either the whole structure (X (Y) Z) can be supplied, or it can be
defaulted (i.e., is not possible to specify X while letting Y default).

Interpreting Macros

When the interpreter encounters a form CAR of which is an undefined function, it tries interpreting it as
a macro. If CAR of the form has a macro definition, the macro is expanded, and the result of this
expansion is evaluated in place of the original form. CLISPTRAN (see the Miscellaneous Functions and
Variables section of Chapter 21) is used to save the result of this expansion so that the expansion only
has to be done once. On subsequent occasions, the translation (expansion) is retrieved from CLISPARRAY
the same as for other CLISP constructs.

Note: Because of the way that the evaluator processes macros, if you have a macro on FOO, then typing
(FOO ’A ’B) will work, but FOO(A B) will not work.

10-21

11-1

11. VARIABLE BINDINGS AND THE STACK

Medley uses “deep binding.” Every time a function is entered, a basic frame containing the new
variables is put on top of the stack. Therefore, any variable reference requires searching the stack for
the first instance of that variable, which makes free variable use somewhat more expensive than in a
shallow binding scheme. On the other hand, spaghetti stack operations are considerably faster. Some
other tricks involving copying freely-referenced variables to higher frames on the stack are also used
to speed up the search.

The basic frames are allocated on a stack; for most user purposes, these frames should be thought of as
containing the variable names associated with the function call, and the current values for that frame.
The descriptions of the stack functions in below are presented from this viewpoint. Both interpreted
and compiled functions store both the names and values of variables so that interpreted and compiled
functions are compatible and can be freely intermixed, i.e., free variables can be used with no
SPECVAR declarations necessary. However, it is possible to suppress storing of names in compiled
functions, either for efficiency or to avoid a clash, via a LOCALVAR declaration (see the Local Variables
and Special Variables section of Chapter 18). The names are also very useful in debugging, for they
make possible a complete symbolic backtrace in case of error.

In addition to the binding information, additional information is associated with each function call:
access information indicating the path to search the basic frames for variable bindings, control
information, and temporary results are also stored on the stack in a block called the frame extension.
The interpreter also stores information about partially evaluated expressions as described in the Stack
and Interpreter section of Chapter 11.

Spaghetti Stack

The Bobrow/Wegbreit paper, “A Model and Stack Implementation for Multiple Environments”
(Communications of the ACM, Vol. 16, 10, October 1973.), describes an access and control mechanism
more general than a simple linear stack. The access and control mechanism used by Interlisp is a
slightly modified version of the one proposed by Bobrow and Wegbreit. This mechanism is called the
“spaghetti stack.”

The spaghetti system presents the access and control stack as a data structure composed of “frames.”
The functions described below operate on this structure. These primitives allow user functions to
manipulate the stack in a machine independent way. Backtracking, coroutines, and more
sophisticated control schemes can be easily implemented with these primitives.

The evaluation of a function requires the allocation of storage to hold the values of its local variables
during the computation. In addition to variable bindings, an activation of a function requires a return
link (indicating where control is to go after the completion of the computation) and room for
temporaries needed during the computation. In the spaghetti system, one “stack” is used for storing
all this information, but it is best to view this stack as a tree of linked objects called frame extensions
(or simply frames).

A frame extension is a variable sized block of storage containing a frame name, a pointer to some
variable bindings (the BLINK), and two pointers to other frame extensions (the ALINK and CLINK). In
addition to these components, a frame extension contains other information (such as temporaries and
reference counts) that does not interest us here.

11-2

INTERLISP-D REFERENCE MANUAL

The block of storage holding the variable bindings is called a basic frame. A basic frame is essentially
an array of pairs, each of which contains a variable name and its value. The reason frame extensions
point to basic frames (rather than just having them “built in”) is so that two frame extensions can
share a common basic frame. This allows two processes to communicate via shared variable bindings.

The chain of frame extensions which can be reached via the successive ALINKs from a given frame is
called the “access chain” of the frame. The first frame in the access chain is the starting frame. The
chain through successive CLINKs is called the “control chain”.

A frame extension completely specifies the variable bindings and control information necessary for
the evaluation of a function. Whenever a function (or in fact, any form which generally binds local
variables) is evaluated, it is associated with some frame extension.

In the beginning there is precisely one frame extension in existence. This is the frame in which the
top-level call to the interpreter is being run. This frame is called the “top-level” frame.

Since precisely one function is being executed at any instant, exactly one frame is distinguished as
having the “control bubble” in it. This frame is called the active frame. Initially, the top-level frame
is the active frame. If the computation in the active frame invokes another function, a new basic frame
and frame extension are built. The frame name of this basic frame will be the name of the function
being called. The ALINK, BLINK, and CLINK of the new frame all depend on precisely how the
function is invoked. The new function is then run in this new frame by passing control to that frame,
i.e., it is made the active frame.

Once the active computation has been completed, control normally returns to the frame pointed to by
the CLINK of the active frame. That is, the frame in the CLINK becomes the active frame.

In most cases, the storage associated with the basic frame and frame extension just abandoned can be
reclaimed. However, it is possible to obtain a pointer to a frame extension and to “hold on” to this
frame even after it has been exited. This pointer can be used later to run another computation in that
environment, or even “continue” the exited computation.

A separate data type, called a stack pointer, is used for this purpose. A stack pointer is just a cell that
literally points to a frame extension. Stack pointers print as #ADR/FRAMENAME, e.g.,
#1,13636/COND. Stack pointers are returned by many of the stack manipulating functions described
below. Except for certain abbreviations (such as “the frame with such-and-such a name”), stack
pointers are the only way you can reference a frame extension. As long as you have a stack pointer
which references a frame extension, that frame extension (and all those that can be reached from it)
will not be garbage collected.

Two stack pointers referencing the same frame extension are not necessarily EQ, i.e., (EQ (STKPOS
’FOO) (STKPOS ’FOO)) = NIL. However, EQP can be used to test if two different stack pointers
reference the same frame extension (see the Equality Predicates section of Chapter 9).

It is possible to evaluate a form with respect to an access chain other than the current one by using a
stack pointer to refer to the head of the access chain desired. Note, however, that this can be very
expensive when using a shallow binding scheme such as that in Interlisp-10. When evaluating the
form, since all references to variables under the shallow binding scheme go through the variable’s
value cell, the values in the value cells must be adjusted to reflect the values appropriate to the desired
access chain. This is done by changing all the bindings on the current access chain (all the name-value
pairs) so that they contain the value current at the time of the call. Then along the new access path, all

11-3

VARIABLE BINDINGS AND THE STACK

bindings are made to contain the previous value of the variable, and the current value is placed in the
value cell. For that part of the access path which is shared by the old and new chain, no work has to
be done. The context switching time, i.e. the overhead in switching from the current, active, access
chain to another one, is directly proportional to the size of the two branches that are not shared
between the access contexts. This cost should be remembered in using generators and coroutines (see
the Generators section below).

Stack Functions

In the descriptions of the stack functions below, when we refer to an argument as a stack descriptor,
we mean that it is one of the following:

A stack pointer An object that points to a frame on the stack. Stack pointers are returned by
many of the stack manipulating functions described below.

NIL Specifies the active frame; that is, the frame of the stack function itself.

T Specifies the top-level frame.

A symbol Specifies the first frame (along the control chain from the active frame) that
has the frame name LITATOM. Equivalent to (STKPOS LITATOM -1).

A list of symbols Specifies the first frame (along the control chain from the active frame)
whose frame name is included in the list.

A number N Specifies the Nth frame back from the active frame. If N is negative, the
control chain is followed, otherwise the access chain is followed. Equivalent
to (STKNTH N).

In the stack functions described below, the following errors can occur: The error Illegal stack
arg occurs when a stack descriptor is expected and the supplied argument is either not a legal stack
descriptor (i.e., not a stack pointer, symbol, or number), or is a symbol or number for which there is
no corresponding stack frame, e.g., (STKNTH -1 ’FOO) where there is no frame named FOO in the
active control chain or (STKNTH -10 ’EVALQT). The error Stack pointer has been
released occurs whenever a released stack pointer is supplied as a stack descriptor argument for
any purpose other than as a stack pointer to re-use.

Note: The creation of a single stack pointer can result in the retention of a large amount of stack
space. Therefore, one should try to release stack pointers when they are no longer needed (see the
Releasing and Reusing Stack Pointers section below).

In Lisp there is a fixed ammount of space allocated for the stack. When most of this space is
exhausted, the STACK OVERFLOW error occurs and the debugger will be invoked. You will still have a
little room on the stack to use inside the debugger. If you use up this last little bit of stack you will
encounter a “hard” stack overflow. A “hard” stack overflow will put you into URaid (see the
documentation on URaid).

11-4

INTERLISP-D REFERENCE MANUAL

Searching the Stack

(STKPOS FRAMENAME N POS OLDPOS) [Function]

Returns a stack pointer to the Nth frame with frame name FRAMENAME. The search begins
with (and includes) the frame specified by the stack descriptor POS. The search proceeds
along the control chain from POS if N is negative, or along the access chain if N is positive.
If N is NIL, -1 is used. Returns a stack pointer to the frame if such a frame exists,
otherwise returns NIL. If OLDPOS is supplied and is a stack pointer, it is reused. If
OLDPOS is supplied and is a stack pointer and STKPOS returns NIL, OLDPOS is released.
If OLDPOS is not a stack pointer it is ignored.

(STKNTH N POS OLDPOS) [Function]

Returns a stack pointer to the Nth frame back from the frame specified by the stack
descriptor POS. If N is negative, the control chain from POS is followed. If N is positive the
access chain is followed. If N equals 0, STKNTH returns a stack pointer to POS (this
provides a way to copy a stack pointer). Returns NIL if there are fewer than N frames in
the appropriate chain. If OLDPOS is supplied and is a stack pointer, it is reused. If
OLDPOS is not a stack pointer it is ignored.

Note: (STKNTH 0) causes an error, Illegal stack arg; it is not possible to create a
stack pointer to the active frame.

(STKNAME POS) [Function]

Returns the frame name of the frame specified by the stack descriptor POS.

(SETSTKNAME POS NAME) [Function]

Changes the frame name of the frame specified by POS to be NAME. Returns NAME.

(STKNTHNAME N POS) [Function]

Returns the frame name of the Nth frame back from POS. Equivalent to (STKNAME
(STKNTH N POS)) but avoids creation of a stack pointer.

In summary, STKPOS converts function names to stack pointers, STKNTH converts numbers to stack
pointers, STKNAME converts stack pointers to function names, and STKNTHNAME converts numbers to
function names.

Variable Bindings in Stack Frames

The following functions are used for accessing and changing bindings. Some of functions take an
argument, N, which specifies a particular binding in the basic frame. If N is a literal atom, it is
assumed to be the name of a variable bound in the basic frame. If N is a number, it is assumed to
reference the Nth binding in the basic frame. The first binding is 1. If the basic frame contains no
binding with the given name or if the number is too large or too small, the error Illegal arg
occurs.

11-5

VARIABLE BINDINGS AND THE STACK

(STKSCAN VAR IPOS OPOS) [Function]

Searches beginning at IPOS for a frame in which a variable named VAR is bound. The
search follows the access chain. Returns a stack pointer to the frame if found, otherwise
returns NIL. If OPOS is a stack pointer it is reused, otherwise it is ignored.

(FRAMESCAN ATOM POS) [Function]

Returns the relative position of the binding of ATOM in the basic frame of POS. Returns
NIL if ATOM is not found.

(STKARG N POS —) [Function]

Returns the value of the binding specified by N in the basic frame of the frame specified by
the stack descriptor POS. N can be a literal atom or number.

(STKARGNAME N POS) [Function]

Returns the name of the binding specified by N, in the basic frame of the frame specified
by the stack descriptor POS. N can be a literal atom or number.

(SETSTKARG N POS VAL) [Function]

Sets the value of the binding specified by N in the basic frame of the frame specified by the
stack descriptor POS. N can be a literal atom or a number. Returns VAL.

(SETSTKARGNAME N POS NAME) [Function]

Sets the variable name to NAME of the binding specified by N in the basic frame of the
frame specified by the stack descriptor POS. N can be a literal atom or a number. Returns
NAME. This function does not work for interpreted frames.

(STKNARGS POS —) [Function]

Returns the number of arguments bound in the basic frame of the frame specified by the
stack descriptor POS.

(VARIABLES POS) [Function]

Returns a list of the variables bound at POS.

(STKARGS POS —) [Function]

Returns a list of the values of the variables bound at POS.

Evaluating Expressions in Stack Frames

The following functions are used to evaluate an expression in a different environment:

(ENVEVAL FORM APOS CPOS AFLG CFLG) [Function]

Evaluates FORM in the environment specified by APOS and CPOS. That is, a new active
frame is created with the frame specified by the stack descriptor APOS as its ALINK, and
the frame specified by the stack descriptor CPOS as its CLINK. Then FORM is evaluated. If

11-6

INTERLISP-D REFERENCE MANUAL

AFLG is not NIL, and APOS is a stack pointer, then APOS will be released. Similarly, if
CFLG is not NIL, and CPOS is a stack pointer, then CPOS will be released.

(ENVAPPLY FN ARGS APOS CPOS AFLG CFLG) [Function]

APPLYs FN to ARGS in the environment specified by APOS and CPOS. AFLG and CFLG
have the same interpretation as with ENVEVAL.

(EVALV VAR POS RELFLG) [Function]

Evaluates VAR, where VAR is assumed to be a symbol, in the access environment specifed
by the stack descriptor POS. If VAR is unbound, EVALV returns NOBIND and does not
generate an error. If RELFLG is non-NIL and POS is a stack pointer, it will be released
after the variable is looked up. While EVALV could be defined as (ENVEVAL VAR POS
NIL RELFLG) it is in fact somewhat faster.

(STKEVAL POS FORM FLG —) [Function]

Evaluates FORM in the access environment of the frame specified by the stack descriptor
POS. If FLG is not NIL and POS is a stack pointer, releases POS. The definition of
STKEVAL is (ENVEVAL FORM POS NIL FLG).

(STKAPPLY POS FN ARGS FLG) [Function]

Like STKEVAL but applies FN to ARGS.

Altering Flow of Control

The following functions are used to alter the normal flow of control, possibly jumping to a different
frame on the stack. RETEVAL and RETAPPLY allow evaluating an expression in the specified
environment first.

(RETFROM POS VAL FLG) [Function]

Return from the frame specified by the stack descriptor POS, with the value VAL. If FLG is
not NIL, and POS is a stack pointer, then POS is released. An attempt to RETFROM the top
level (e.g., (RETFROM T)) causes an error, Illegal stack arg. RETFROM can be
written in terms of ENVEVAL as follows:

(RETFROM
 (LAMBDA (POS VAL FLG)
 (ENVEVAL (LIST ’QUOTE VAL)
 NIL
 (if (STKNTH -1 POS

(if FLG then POS))
 else (ERRORX (LIST 19 POS)))
 NIL
 T)))

(RETTO POS VAL FLG) [Function]

Like RETFROM, but returns to the frame specified by POS.

11-7

VARIABLE BINDINGS AND THE STACK

(RETEVAL POS FORM FLG —) [Function]

Evaluates FORM in the access environment of the frame specified by the stack descriptor
POS, and then returns from POS with that value. If FLG is not NIL and POS is a stack
pointer, then POS is released. The definition of RETEVAL is equivalent to (ENVEVAL
FORM POS (STKNTH -1 POS) FLG T), but RETEVAL does not create a stack pointer.

(RETAPPLY POS FN ARGS FLG) [Function]

Like RETEVAL but applies FN to ARGS.

Releasing and Reusing Stack Pointers

The following functions and variables are used for manipulating stack pointers:

(STACKP X) [Function]

Returns X if X is a stack pointer, otherwise returns NIL.

(RELSTK POS) [Function]

Release the stack pointer POS (see below). If POS is not a stack pointer, does nothing.
Returns POS.

(RELSTKP X) [Function]

Returns T is X is a released stack pointer, NIL otherwise.

(CLEARSTK FLG) [Function]

If FLG is T, returns a list of all the active (unreleased) stack pointers. If FLG is NIL, this
call is a no-op. The abillity to clear all stack pointers is inconsistent with the modularity
implicit in a multi processing environment.

CLEARSTKLST [Variable]

A variable used by the top-level executive. Every time the top-level executive is re-
entered (e.g., following errors, or Control-D), CLEARSTKLST is checked. If its value is T,
all active stack pointers are released using CLEARSTK. If its value is a list, then all stack
pointers on that list are released. If its value is NIL, nothing is released. CLEARSTKLST is
initially T.

NOCLEARSTKLST [Variable]

A variable used by the top-level executive. If CLEARSTKLST is T (see above) all active
stack pointers except those on NOCLEARSTKLST are released. NOCLEARSTKLST is initially
NIL.

Creating a single stack pointer can cause the retention of a large amount of stack space. Furthermore,
this space will not be freed until the next garbage collection, even if the stack pointer is no longer being
used, unless the stack pointer is explicitly released or reused. If there is sufficient amount of stack
space tied up in this fashion, a STACK OVERFLOW condition can occur, even in the simplest of
computations. For this reason, you should consider releasing a stack pointer when the environment
referenced by the stack pointer is no longer needed.

11-8

INTERLISP-D REFERENCE MANUAL

The effects of releasing a stack pointer are:

1. The link between the stack pointer and the stack is broken by setting the contents of the stack
pointer to the “released mark”. A released stack pointer prints as #ADR/#0.

2. If this stack pointer was the last remaining reference to a frame extension; that is, if no other stack
pointer references the frame extension and the extension is not contained in the active control or
access chain, then the extension may be reclaimed, and is reclaimed immediately. The process
repeats for the access and control chains of the reclaimed extension so that all stack space that was
reachable only from the released stack pointer is reclaimed.

A stack pointer may be released using the function RELSTK, but there are some cases for which
RELSTK is not sufficient. For example, if a function contains a call to RETFROM in which a stack
pointer was used to specify where to return to, it would not be possible to simultaneously release the
stack pointer. (A RELSTK appearing in the function following the call to RETFROM would not be
executed!) To permit release of a stack pointer in this situation, the stack functions that relinquish
control have optional flag arguments to denote whether or not a stack pointer is to be released (AFLG
and CFLG). Note that in this case releasing the stack pointer will not cause the stack space to be
reclaimed immediately because the frame referenced by the stack pointer will have become part of the
active environment.

Another way to avoid creating new stack pointers is to reuse stack pointers that are no longer needed.
The stack functions that create stack pointers (STKPOS, STKNTH, and STKSCAN) have an optional
argument that is a stack pointer to reuse. When a stack pointer is reused, two things happen. First the
stack pointer is released (see above). Then the pointer to the new frame extension is deposited in the
stack pointer. The old stack pointer (with its new contents) is returned as the value of the function.
Note that the reused stack pointer will be released even if the function does not find the specified
frame.

Even if stack pointers are explicitly being released, creating many stack pointers can cause a garbage
collection of stack pointer space. Thus, if your application requires creating many stack pointers, you
definitely should take advantage of reusing stack pointers.

Backtrace Functions

The following functions perform a “backtrace,” printing information about every frame on the stack.
Arguments allow only backtracing a selected range of the stack, skipping selected frames, and
printing different amounts of information about each frame.

(BACKTRACE IPOS EPOS FLAGS FILE PRINTFN) [Function]

Performs a backtrace beginning at the frame specified by the stack descriptor IPOS, and
ending with the frame specified by the stack descriptor EPOS. FLAGS is a number in
which the options of the BACKTRACE are encoded. If a bit is set, the corresponding
information is included in the backtrace.
1Q - print arguments of non-SUBRs
2Q - print temporaries of the interpreter
4Q - print SUBR arguments and local variables
10Q - omit printing of UNTRACE: and function names
20Q - follow access chain instead of control chain

11-9

VARIABLE BINDINGS AND THE STACK

40Q - print temporaries, i.e. the blips (see the stack and interpreter section below)

For example: If FLAGS = 47Q, everything is printed. If FLAGS = 21Q, follows the
access chain, prints arguments.

FILE is the file that the backtrace is printed to. FILE must be open. PRINTFN is used
when printing the values of variables, temporaries, blips, etc. PRINTFN = NIL defaults
to PRINT.

(BAKTRACE IPOS EPOS SKIPFNS FLAGS FILE) [Function]

Prints a backtrace from IPOS to EPOS onto FILE. FLAGS specifies the options of the
backtrace, e.g., do/don’t print arguments, do/don’t print temporaries of the interpreter,
etc., and is the same as for BACKTRACE.

SKIPFNS is a list of functions. As BAKTRACE scans down the stack, the stack name of
each frame is passed to each function in SKIPFNS, and if any of them returnS non-NIL,
POS is skipped (including all variables).

BAKTRACE collapses the sequence of several function calls corresponding to a call to a
system package into a single “function” using BAKTRACELST as described below. For
example, any call to the editor is printed as **EDITOR**, a break is printed as
BREAK, etc.

BAKTRACE is used by the BT, BTV, BTV+, BTV*, and BTV! break commands, with FLAGS
= 0, 1, 5, 7, and 47Q respectively.

If SYSPRETTYFLG = T, the values arguments and local variables will be prettyprinted.

BAKTRACELST [Variable]

Used to tell BAKTRACE (therefore, the BT, BTV, etc. commands) to abbreviate various
sequences of function calls on the stack by a single key, e.g. **BREAK**, **EDITOR**,
etc.

Each entry on BAKTRACELST is a list of the form (FRAMENAME KEY . PATTERN) or
(FRAMENAME (KEY1 . PATTERN1) ... (KEYN . PATTERNN)), where a pattern is a
list of elements that are either atoms, which match a single frame, or lists, which are
interpreted as a list of alternative patterns, e.g. (PROGN **BREAK** EVAL ((ERRORSET
BREAK1A BREAK1) (BREAK1)))

BAKTRACE operates by scanning up the stack and, at each point, comparing the current frame name,
with the frame names on BAKTRACELST, i.e. it does an ASSOC. If the frame name does appear,
BAKTRACE attempts to match the stack as of that point with (one of) the patterns. If the match is
successful, BAKTRACE prints the corresponding key, and continues with where the match left off. If
the frame name does not appear, or the match fails, BAKTRACE simply prints the frame name and
continues with the next higher frame (unless the SKIPFNS applied to the frame name are non-NIL as
described above).

Matching is performed by comparing symbols in the pattern with the current frame name, and
matching lists as patterns, i.e. sequences of function calls, always working up the stack. For example,
either of the sequence of function calls “... BREAK1 BREAK1A ERRORSET EVAL PROGN ...”

11-10

INTERLISP-D REFERENCE MANUAL

or “... BREAK1 EVAL PROGN ...” would match with the sample entry given above, causing
BREAK to be printed.

Special features:

• The symbol & can be used to match any frame.

• The pattern “-” can be used to match nothing. - is useful for specifying an optional match, e.g. the
example above could also have been written as (PROGN **BREAK** EVAL ((ERRORSET
BREAK1A) -) BREAK1).

• It is not necessary to provide in the pattern for matching dummy frames, i.e. frames for which
DUMMYFRAMEP (see below) is true. When working on a match, the matcher automatically skips
over these frames when they do not match.

• If a match succeeds and the KEY is NIL, nothing is printed. For example, (*PROG*LAM NIL
EVALA *ENV). This sequence will occur following an error which then causes a break if some of
the function’s arguments are LOCALVARS.

Other Stack Functions

(DUMMYFRAMEP POS) [Function]

Returns T if you never wrote a call to the function at POS, e.g. in Interlisp-10,
DUMMYFRAMEP is T for *PROG*LAM, *ENV*, and FOOBLOCK frames (see the Block
Compiling section of Chapter 18).

REALFRAMEP and REALSTKNTH can be used to write functions which manipulate the stack and work
on either interpreted or compiled code:

(REALFRAMEP POS INTERPFLG) [Function]

Returns POS if POS is a “real” frame, i.e. if POS is not a dummy frame and POS is a frame
that does not disappear when compiled (such as COND); otherwise NIL. If INTERPFLG =
T, returns T if POS is not a dummy frame. For example, if (STKNAME POS) = COND,
(REALFRAMEP POS) is NIL, but (REALFRAMEP POS T) is T.

(REALSTKNTH N POS INTERPFLG OLDPOS) [Function]

Returns a stack pointer to the Nth (or -Nth) frames for which (REALFRAMEP POS
INTERPFLG) is POS.

(MAPDL MAPDLFN MAPDLPOS) [Function]

Starts at MAPDLPOS and applies the function MAPDLFN to two arguments (the frame name
and a stack pointer to the frame), for each frame until the top of the stack is reached.
Returns NIL. For example,

[MAPDL (FUNCTION (LAMBDA (X POS)
(if (IGREATERP (STKNARGS POS) 2) then (PRINT X)]

will print all functions of more than two arguments.

11-11

VARIABLE BINDINGS AND THE STACK

(SEARCHPDL SRCHFN SRCHPOS) [Function]

Like MAPDL, but searches the stack starting at position SRCHPOS until it finds a frame for
which SRCHFN, a function of two arguments applied to the name of the frame and the
frame itself, is not NIL. Returns (NAME . FRAME) if such a frame is found, otherwise
NIL.

The Stack and the Interpreter

In addition to the names and values of arguments for functions, information regarding partially-
evaluated expressions is kept on the push-down list. For example, consider the following definition of
the function FACT (intentionally faulty):

(FACT
[LAMBDA (N)

(COND
 ((ZEROP N)
 L)
 (T (ITIMES N (FACT (SUB1 N])

In evaluating the form (FACT 1), as soon as FACT is entered, the interpreter begins evaluating the
implicit PROGN following the LAMBDA. The first function entered in this process is COND. COND begins
to process its list of clauses. After calling ZEROP and getting a NIL value, COND proceeds to the next
clause and evaluates T. Since T is true, the evaluation of the implicit PROGN that is the consequent of
the T clause is begun. This requires calling the function ITIMES. However before ITIMES can be
called, its arguments must be evaluated. The first argument is evaluated by retrieving the current
binding of N from its value cell; the second involves a recursive call to FACT, and another implicit
PROGN, etc.

At each stage of this process, some portion of an expression has been evaluated, and another is
awaiting evaluation. The output below (from Interlisp-10) illustrates this by showing the state of the
push-down list at the point in the computation of (FACT 1) when the unbound atom L is reached.

← FACT(1)
u.b.a. L {in FACT} in ((ZEROP NO L)
(L broken)
:BTV!
 TAIL (L)
 *ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND
 FORM (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
 TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))))
 N 0
FACT
 FORM (FACT (SUB1 N))
 FN ITIMES
 TAIL ((FACT (SUB1 N)))
 ARGVAL 1
 FORM (ITIMES N (FACT (SUB1 N)))
 TAIL ((ITIMES N (FACT (SUB1 N))))
 *ARG1 (((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
COND
 FORM (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)))))
 TAIL ((COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N))))))
 N 1
FACT

11-12

INTERLISP-D REFERENCE MANUAL

TOP

Internal calls to EVAL, e.g., from COND and the interpreter, are marked on the push-down list by a
special mark or blip which the backtrace prints as *FORM*. The genealogy of *FORM*’s is thus a
history of the computation. Other temporary information stored on the stack by the interpreter
includes the tail of a partially evaluated implicit PROGN (e.g., a cond clause or lambda expression) and
the tail of a partially evaluated form (i.e., those arguments not yet evaluated), both indicated on the
backtrace by *TAIL*, the values of arguments that have already been evaluated, indicated by
ARGVAL, and the names of functions waiting to be called, indicated by *FN*. *ARG1, ...,
*ARGn are used by the backtrace to indicate the (unnamed) arguments to SUBRs.

Note that a function is not actually entered and does not appear on the stack, until its arguments have
been evaluated (except for nlambda functions, of course). Also note that the *ARG1, *FORM*,
TAIL, etc. “bindings” comprise the actual working storage. In other words, in the above example,
if a (lower) function changed the value of the *ARG1 binding, the COND would continue interpreting
the new binding as a list of COND clauses. Similarly, if the *ARGVAL* binding were changed, the new
value would be given to ITIMES as its first argument after its second argument had been evaluated,
and ITIMES was actually called.

FORM, *TAIL*, *ARGVAL*, etc., do not actually appear as variables on the stack, i.e., evaluating
FORM or calling STKSCAN to search for it will not work. However, the functions BLIPVAL,
SETBLIPVAL, and BLIPSCAN described below are available for accessing these internal blips. These
functions currently know about four different types of blips:

FN The name of a function about to be called

ARGVAL An argument for a function about to be called

FORM A form in the process of evaluation

TAIL The tail of a COND clause, implicit PROGN, PROG, etc.

(BLIPVAL BLIPTYP IPOS FLG) [Function]

Returns the value of the specified blip of type BLIPTYP. If FLG is a number N, finds the
Nth blip of the desired type, searching the control chain beginning at the frame specified
by the stack descriptor IPOS. If FLG is NIL, 1 is used. If FLG is T, returns the number of
blips of the specified type at IPOS.

(SETBLIPVAL BLIPTYP IPOS N VAL) [Function]

Sets the value of the specified blip of type BLIPTYP. Searches for the Nth blip of the
desired type, beginning with the frame specified by the stack descriptor IPOS, and
following the control chain.

(BLIPSCAN BLIPTYP IPOS) [Function]

Returns a stack pointer to the frame in which a blip of type BLIPTYP is located. Search
begins at the frame specified by the stack descriptor IPOS and follows the control chain.

11-13

VARIABLE BINDINGS AND THE STACK

Generators

A generator is like a subroutine except that it retains information about previous times it has been
called. Some of this state may be data (for example, the seed in a random number generator), and
some may be in program state (as in a recursive generator which finds all the atoms in a list structure).
For example, if LISTGEN is defined by:

(DEFINEQ (LISTGEN (L)
 (if L then (PRODUCE (CAR L))
 (LISTGEN (CDR L))))

we can use the function GENERATOR (described below) to create a generator that uses LISTGEN to
produce the elements of a list one at a time, e.g.,

(SETQ GR (GENERATOR (LISTGEN ’(A B C))))

creates a generator, which can be called by

(GENERATE GR)

to produce as values on successive calls, A, B, C. When GENERATE (not GENERATOR) is called the first
time, it simply starts evaluating (LISTGEN ’(A B C)). PRODUCE gets called from LISTGEN, and
pops back up to GENERATE with the indicated value after saving the state. When GENERATE gets
called again, it continues from where the last PRODUCE left off. This process continues until finally
LISTGEN completes and returns a value (it doesn’t matter what it is). GENERATE then returns GR
itself as its value, so that the program that called GENERATE can tell that it is finished, i.e., there are no
more values to be generated.

(GENERATOR FORM COMVAR) [NLambda Function]

An nlambda function that creates a generator which uses FORM to compute values.
GENERATOR returns a generator handle which is represented by a dotted pair of stack
pointers.

COMVAR is optional. If its value (EVAL of) is a generator handle, the list structure and
stack pointers will be reused. Otherwise, a new generator handle will be constructed.

GENERATOR compiles open.

(PRODUCE VAL) [Function]

Used from within a generator to return VAL as the value of the corresponding call to
GENERATE.

(GENERATE HANDLE VAL) [Function]

Restarts the generator represented by HANDLE. VAL is returned as the value of the
PRODUCE which last suspended the operation of the generator. When the generator runs
out of values, GENERATE returns HANDLE itself.

Examples:

The following function will go down recursively through a list structure and produce the atoms in the
list structure one at a time.

(DEFINEQ (LEAVESG (L)
(if (ATOM L)

11-14

INTERLISP-D REFERENCE MANUAL

 then (PRODUCE L)
 else (LEAVESG (CAR L))
 (if (CDR L)
 then (LEAVESG (CDR L)]

The following function prints each of these atoms as it appears. It illustrates how a loop can be set up
to use a generator.

(DEFINEQ (PLEAVESG1 (L)
(PROG (X LHANDLE)
 (SETQ LHANDLE (GENERATOR (LEAVESG L)))
 LP (SETQ X (GENERATE LHANDLE))
 (if (EQ X LHANDLE)
 then (RETURN NIL))
 (PRINT X)
 (GO LP))]

The loop terminates when the value of the generator is EQ to the dotted pair which is the value
produced by the call to GENERATOR. A CLISP iterative operator, OUTOF, is provided which makes it
much easier to write the loop in PLEAVESG1. OUTOF (or outof) can precede a form which is to be
used as a generator. On each iteration, the iteration variable will be set to successive values returned
by the generator; the loop will be terminated automatically when the generator runs out. Therefore,
the following is equivalent to the above program PLEAVESG1:

(DEFINEQ (PLEAVESG2 (L) (for X outof (LEAVESG L) do (PRINT X))]

Here is another example; the following form will print the first N atoms.

(for X outof (MAPATOMS (FUNCTION PRODUCE)) as I from 1 to N do (PRINT X))

Coroutines

This package provides facilities for the creation and use of fully general coroutine structures. It uses a
stack pointer to preserve the state of a coroutine, and allows arbitrary switching between N different
coroutines, rather than just a call to a generator and return. This package is slightly more efficient
than the generator package described above, and allows more flexibility on specification of what to do
when a coroutine terminates.

(COROUTINE CALLPTR COROUTPTR COROUTFORM ENDFORM) [NLambda Function]

This nlambda function is used to create a coroutine and initialize the linkage. CALLPTR
and COROUTPTR are the names of two variables, which will be set to appropriate stack
pointers. If the values of CALLPTR or COROUTPTR are already stack pointers, the stack
pointers will be reused. COROUTFORM is the form which is evaluated to start the
coroutine; ENDFORM is a form to be evaluated if COROUTFORM actually returns when it
runs out of values.

COROUTINE compiles open.

(RESUME FROMPTR TOPTR VAL) [Function]

Used to transfer control from one coroutine to another. FROMPTR should be the stack
pointer for the current coroutine, which will be smashed to preserve the current state.
TOPTR should be the stack pointer which has preserved the state of the coroutine to be
transferred to, and VAL is the value that is to be returned to the latter coroutine as the
value of the RESUME which suspended the operation of that coroutine.

11-15

VARIABLE BINDINGS AND THE STACK

For example, the following is the way one might write the LEAVES program using the coroutine
package:

(DEFINEQ (LEAVESC (L COROUTPTR CALLPTR)
 (if (ATOM L)
 then (RESUME COROUTPTR CALLPTR L)
 else (LEAVESC (CAR L) COROUTPTR CALLPTR)
 (if (CDR L) then (LEAVESC (CDR L) COROUTPTR CALLPTR))))]

A function PLEAVESC which uses LEAVESC can be defined as follows:

(DEFINEQ (PLEAVESC (L)
 (bind PLHANDLE LHANDLE
 first (COROUTINE PLHANDLE LHANDLE
 (LEAVESC L LHANDLE PLHANDLE)
 (RETFROM ’PLEAVESC))
 do (PRINT (RESUME PLHANDLE LHANDLE))))]

By RESUMEing LEAVESC repeatedly, this function will print all the leaves of list L and then return out
of PLEAVESC via the RETFROM. The RETFROM is necessary to break out of the non-terminating do-
loop. This was done to illustrate the additional flexibility allowed through the use of ENDFORM.

We use two coroutines working on two trees in the example EQLEAVES, defined below. EQLEAVES
tests to see whether two trees have the same leaf set in the same order, e.g., (EQLEAVES ’(A B C)
’(A B (C))) is true.

(DEFINEQ (EQLEAVES (L1 L2)
 (bind LHANDLE1 LHANDLE2 PE EL1 EL2
 first (COROUTINE PE LHANDLE1 (LEAVESC L1 LHANDLE1 PE) ’NO-MORE)
 (COROUTINE PE LHANDLE2 (LEAVESC L2 LHANDLE2 PE) ’NO-MORE)
 do (SETQ EL1 (RESUME PE LHANDLE1))
 (SETQ EL2 (RESUME PE LHANDLE2))
 (if (NEQ EL1 EL2)
 then (RETURN NIL))
 repeatuntil (EQ EL1 ’NO-MORE)
 finally (RETURN T)))]

Possibilities Lists

A possibilities list is the interface between a generator and a consumer. The possibilities list is
initialized by a call to POSSIBILITIES, and elements are obtained from it by using TRYNEXT. By
using the spaghetti stack to maintain separate environments, this package allows a regime in which a
generator can put a few items in a possibilities list, suspend itself until they have been consumed, and
be subsequently aroused and generate some more.

(POSSIBILITIES FORM) [NLambda Function]

This nlambda function is used for the initial creation of a possibilities list. FORM will be
evaluated to create the list. It should use the functions NOTE and AU-REVOIR described
below to generate possibilities. Normally, one would set some variable to the possibilities
list which is returned, so it can be used later, e.g.:

(SETQ PLIST (POSSIBILITIES (GENERFN V1 V2))).

POSSIBILITIES compiles open.

11-16

INTERLISP-D REFERENCE MANUAL

(NOTE VAL LSTFLG) [Function]

Used within a generator to put items on the possibilities list being generated. If LSTFLG is
equal to NIL, VAL is treated as a single item. If LSTFLG is non-NIL, then the list VAL is
NCONCed on the end of the possibilities list. Note that it is perfectly reasonable to create a
possibilities list using a second generator, and NOTE that list as possibilities for the current
generator with LSTFLG equal to T. The lower generator will be resumed at the
appropriate point.

(AU-REVOIR VAL) [NoSpread Function]

Puts VAL on the possibilities list if it is given, and then suspends the generator and returns
to the consumer in such a fashion that control will return to the generator at the AU-
REVOIR if the consumer exhausts the possibilities list.

NIL is not put on the possibilities list unless it is explicitly given as an argument to AU-
REVOIR, i.e., (AU-REVOIR) and (AU-REVOIR NIL) are not the same. AU-REVOIR and
ADIEU are lambda nospreads to enable them to distinguish these two cases.

(ADIEU VAL) [NoSpread Function]

Like AU-REVOIR but releases the generator instead of suspending it.

(TRYNEXT PLST ENDFORM VAL) [NLambda Function]

This nlambda function allows a consumer to use a possibilities list. It removes the first
item from the possibilities list named by PLST (i.e. PLST must be an atom whose value is
a possiblities list), and returns that item, provided it is not a generator handle. If a
generator handle is encountered, the generator is reawakened. When it returns a
possibilities list, this list is added to the front of the current list. When a call to TRYNEXT
causes a generator to be awakened, VAL is returned as the value of the AU-REVOIR which
put that generator to sleep. If PLST is empty, it evaluates ENDFORM in the caller’s
environment.

TRYNEXT compiles open.

(CLEANPOSLST PLST) [Function]

This function is provided to release any stack pointers which may be left in the PLST
which was not used to exhaustion.

For example, FIB is a generator for fibonnaci numbers. It starts out by NOTEing its two arguments,
then suspends itself. Thereafter, on being re-awakened, it will NOTE two more terms in the series and
suspends again. PRINTFIB uses FIB to print the first N fibonacci numbers.

(DEFINEQ (FIB (F1 F2)
 (do (NOTE F1)
 (NOTE F2)
 (SETQ F1 (IPLUS F1 F2))
 (SETQ F2 (IPLUS F1 F2))
 (AU-REVOIR)]

Note that this AU-REVOIR just suspends the generator and adds nothing to the possibilities list except
the generator.

11-17

VARIABLE BINDINGS AND THE STACK

 (DEFINEQ (PRINTFIB (N)
 (PROG ((FL (POSSIBILITIES (FIB 0 1))))
 (RPTQ N (PRINT (TRYNEXT FL)))
 (CLEANPOSLST FL)]

Note that FIB itself will never terminate.

11-18

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

12-1

12. MISCELLANEOUS

Greeting and Initialization Files

Many of the features of Medley are controlled by variables that you can adjust to your own taste. In
addition, you can modify the action of system functions in ways not specifically provided for by using
ADVISE (see the Advise Functions section of Chapter 15). To encourage customizing Medley’s
environment, it includes a facility for automatically loading initialization files (or “init files”) when it
is first started. Each user can have a separate “user init file” that customizes Medley’s environment to
his/her tastes. In addition, there can be a “site init file” that applies to all users at a given physical
site, setting system variables that are the same for all users such as the name of the nearest printer, etc.

The process of loading init files, also known as “greeting”, occurs when a Medley system created by
MAKESYS (see the Saving Virtual Memory State section below) is started for the first time. The user
can also explicitly invoke the greeting operation at any time via the function GREET (below). The
process of greeting includes the following steps:

1. Any previous greeting operation is undone. The side effects of the greeting operation are stored on
a global variable as well as on the history list, thus enabling the previous greeting to be undone
even if it has dropped off of the bottom of the history list.

2. All of the items on the list PREGREETFORMS are evaluated.

3. The site init file is loaded. GREET looks for a file by the name {DSK}INIT.LISP. If this is found,
it is loaded. If it is not found, the system prints Please enter name of system init file
(e.g. {server}<directory>INIT.extension): and waits for you to type a file name,
followed by a carriage return. If you just type a carriage return without typing a file name, no site
init file is loaded. Note: The site init file is loaded with LDFLG set to SYSLOAD, so that no file
package information is saved, and nothing is printed out.

4. The user init file is loaded. The user init file is found by using the variable USERGREETFILES
(described below), which is normally set in the site init file. The user init file is loaded with normal
file package settings, but under errorset protection and with PRETTYHEADER set to NIL to suppress
the File created message.

5. All of the items on the list POSTGREETFORMS are evaluated.

6. The greeting “Hello, XXX.” is printed, where XXX is the value of the variable FIRSTNAME (if
non-NIL). The variable GREETDATES (below) can be set to modify this greeting for particular
dates.

(GREET NAME —) [Function]

Performs the greeting for person whose username is NAME (if NAME = NIL, uses the login
name). When Medley first starts up, it performs (GREET).

12-2

MEDLEY REFERENCE MANUAL

(GREETFILENAME USER) [Function]

If USER is T, GREETFILENAME returns the file name of the site init file. If the file name
doesn’t exist, you are prompted for it. Otherwise, USER is interpreted to be a user’s
system name, and GREETFILENAME returns the file name for the user init file (if it exists).

USERGREETFILES [Variable]

USERGREETFILES specifies a series of file names to try as the user init file. The value of
USERGREETFILES is a list, where each element is a list of symbols. For each item in
USERGREETFILES, the user name is substituted for the symbol USER and the value of
COMPILE.EXT (see the Cimpiler Functions section of Chapter 18) is substituted for the
symbol COM, and the symbols are packed into a single file name. The first such file that is
found is the user init file.

For example, suppose that the value of USERGREETFILES was

(({ERIS}< USER >LISP>INIT. COM)
 ({ERIS}< USER >LISP>INIT)
 ({ERIS}< USER >INIT. COM)
 ({ERIS}< USER >INIT))

If the user name was JONES, and the value of COMPILE.EXT was DCOM, then this would
search for the files {ERIS}<JONES>LISP>INIT.DCOM, {ERIS}<JONES>LISP>INIT,
{ERIS}<JONES>INIT.DCOM, and {ERIS}<JONES>INIT.

Note: The file name “specifications” in USERGREETFILES should be fully qualified,
including all host and directory information. The directory search path (the value of
DIRECTORIES, see the Searching File Directories section of Chapter 24) is not used to find
the user greet files.

GREETDATES [Variable]

The value of GREETDATES can be used to specify special greeting messages for various
dates. GREETDATES is a list of elements of the form (DATESTRING . STRING), e.g.
("25-DEC" . "Merry Christmas"). The user can add entries to this list in his/her
INIT.LISP file by using a ADDVARS file package command like (ADDVARS
(GREETDATES ("8-FEB" . "Happy Birthday"))). On the specified date, the
GREET will use the indicated salutation.

It is impossible to give a complete list of all of the variables and functions you may want
to set in your init files. The default values for system variables are chosen in the hope that
they will be correct for the majority of users, so many users get along with very small init
files. The following describes some of the variables that users may want to reset in their
init files:

Directories The variables DIRECTORIES and LISPUSERSDIRECTORIES (see the
Searching File Directories section of Chapter 24) contain lists of directories
used when searching for files. LOGINHOST/DIR (see the Incomplete File
Names section of Chapter 24) determines the default directory used when
you call CONN with no argument.

12-3

MISCELLANEOUS

Fonts and Printing The variables DISPLAYFONTDIRECTORIES, DISPLAYFONTEXTENSIONS,
INTERPRESSFONTDIRECTORIES, and PRESSFONTWIDTHSFILES (see the
Font Files and Font Directories section of Chapter 27) must be set before
fonts can be automatically loaded from files. DEFAULTPRINTINGHOST (see
Chapter 29) should be set before attempting to generate hardcopy to a
printer.

Network Systems CH.DEFAULT.ORGANIZATION and CH.DEFAULT.DOMAIN (see the Name
and Address Conventions section of Chapter 31) should be set to the default
NS organization and domain, when using NS network communications. If
CH.NET.HINT (see the Clearinghouse Functions section of Chapter 31) is
set, it can reduce the amount of time spent searching for a clearinghouse.

Medley Executive The variable PROMPT#FLG (see the Changing the Programmer’s Assistant
section of Chapter 13) determines whether an “event number” is printed at
the beginning of every input line. The function CHANGESLICE (see the
Changing the Programmer’s Assistant section of Chapter 13) can be used to
change the number of events that are remembered on the history list.

Copyright Notices COPYRIGHTFLG, COPYRIGHTOWNERS, and DEFAULTCOPYRIGHTOWNER (see
the Copyright Notices section of Chapter 17) control the inclusion of
copyright notices on source files.

Printing Functions **COMMENT**FLG (see the Comment Feature section of Chapter 26)
determines how program comments are printed. FIRSTCOL, PRETTYFLG,
and CLISPIFYPRETTYFLG (see the Special Prettyprint Controls section of
Chapter 26) are among the many variables controlling how functions are
pretty printed.

List Structure Editor The variable INITIALSLST (see the Time Stamps section of Chapter 16) is
used when “time-stamps” are inserted in a function when it is edited.
EDITCHARACTERS (see the Time Stamps section of Chapter 16) is used to set
the read macros used in the teletype editor.

Idle Mode

The Medley environment runs on small single-user computers, usually located in users’ offices.
Often, users leave their computers up and running for days, which can cause several problems. First,
the phosphor in the video display screen can be permanently marked if the same pattern is displayed
for a long time (weeks). Second, if you go away, leaving a Medley system running, another person
could possibly walk up and use the environment, taking advantage of any passwords that have been
entered. To solve these problems, Medley implements the concept of “idle mode.”

If no keyboard or mouse action has occurred for a specified time, Medley automatically enters idle
mode. While idle mode is on, the display screen is blacked out, to protect the phosphor. Idle mode
also runs a program to display some moving pattern on the black screen, so the screen does not
appear to be broken. Usually, idle mode can be exited by pressing any key on the keyboard or mouse.
However, you can optionally specify that idle mode should erase the current password cache when it
is entered., and require the next user to supply a password to exit idle mode.

12-4

MEDLEY REFERENCE MANUAL

If either shift key is pressed while Medley is in idle mode, the current user name and the amount of
time spent idling are displayed in the prompt window while the key is depressed.

Idle mode can also be entered by calling the function IDLE , or by selecting the Idle menu command
from the background menu (see Chapter 28). The Idle menu command has subitems that allow you to
interactively set the idle options (display program, erasing password, etc.) specified by the variable
IDLE.PROFILE.

IDLE.PROFILE [Variable]

The value of this variable is a property list (see Chapter 3) which controls most aspects of
idle mode. The following properties are recognized:

TIMEOUT Value is a number that determines how long (in minutes) Medley
will wait before automatically entering idle mode. If NIL, idle
mode will never be entered automatically. Default is 10 minutes.

FORGET If this is the symbol FIRST, your password will be erased when
idle mode is entered. If non-NIL, your password will be erased
when idle mode is exited. Initial value is T (erase password on
exit).

If the password is erased on entry to idle mode (value FIRST),
any programs left running when idle mode is entered will fail if
they try doing anything requiring passwords (such as accessing
file servers).

ALLOWED.LOGINS The value of this property can either be a list or a non-list. If the
value is NIL or any other non-list, idle mode is exited without
requesting login.

If the value is a list the members of the list should be interpreted
as follows:

* If the value is a list containing * as it’s element, login is
required but anyone can exit idle mode. This will overwrite
the previous user’s user name and password each time idle
mode is exited.

T Let the previous user (as determined by USERNAME) exit idle
mode. If the username has not been set, this is equivalent to *

user name Let this specific user exit idle mode.

group name Let any member of this group (an NS clearinghouse group) exit
idle mode.

AUTHENTICATE The value of this property determines the method used for
logging in. The value can be one of the following:

T or NS Use the NS authentication protocol. This requires that you have
an NS authentication server accessible on your net.

12-5

MISCELLANEOUS

GV Authenticate the login via the GrapeVine protocol.

UNIX Use the unix login mechanism.

Note: Unix is case sensitive. If you try to login but fail, you may
have typed the password with the caps-lock on.

LOGIN.TIMEOUT This is the number of seconds idle will wait for a login before
resuming idle mode again.

DISPLAYFN The value of this property, which should be a function name or
lambda expression, is called to display a moving pattern on the
screen while in idle mode. This function is called with one
argument, a window covering the whole screen. The default is
IDLE.BOUNCING.BOX (below).

Any function used as a DISPLAYFN should call BLOCK (see
Chapter 23) frequently, so other programs can run during idle
mode.

SAVEVM Value is a number that determines how long (in minutes) after
idle mode is entered that SAVEVM will be called to save the virtual
memory. If NIL, SAVEVM is never called automatically from idle
mode. Default is 10 minutes.

 SUSPEND.PROCESS.NAMES Value is a list of names. For each name on this list, if a process by
that name is found, it will be suspended upon entering idle mode
and woken upon exiting idle mode.

IDLE.RESETVARS [Variable]

The value of this variable is a list of two-element lists: ((VAR1 EXP1)(VAR2 EXP2)...).
On entering idle mode, each variable VARN is bound to the value of the corresponding
expression EXPN. When idle mode is exited, each variable VARN is reset to its original
value.

IDLE.SUSPEND.PROCESS.NAMES [Variable]

Value is a list of names. For each name on this list, if a process by that name is found, it
will be suspended upon entering idle mode and woken upon exiting idle mode.

IDLE.PROFILE [Variable]

The value of this variable determines the menu raised by selecting the Display subitem of
the Idle background menu command. It should be in the format used for the ITEMS field
of a menu (see Chapter 28), with the selection of an item returning the appropriate display
function.

(IDLE.BOUNCING.BOX WINDOW BOX WAIT) [Variable]

This is the default display function used for idle mode. BOX is bounded about WINDOW,
with bounces taking place every WAIT milliseconds. BOX can be a string, a bitmap, a
window (whose image will be bounced about), or a list containing any number of these

12-6

MEDLEY REFERENCE MANUAL

(which will be cycled through). BOX defaults to the value of the variable
IDLE.BOUNCING.BOX, which is initially a bitmap of the Venue logo. WAIT defaults to
1000 (one second).

Saving Virtual Memory State

Medley storage allocation occurs within a virtual memory space that is usually much larger than the
physical memory on the computer. The virtual memory is stored as a large file on the computer’s
hard disk, called the virtual memory file. Medley controls the swapping of pages between this file
and the real memory, swapping in virtual memory pages as they are accessed, and swapping out
pages that have been modified. At any moment, the total state of the Medley virtual memory is stored
partially in the virtual memory file, and partially in the real physical memory.

Medley provides facilities for saving the total state of the virtual memory, either on the virtual
memory file, or in a file on an arbitrary file device. The function LOGOUT is used to write all altered
(dirty) pages from the real memory to the virtual memory file and stop Medley, so that Medley can be
restarted from the state of the LOGOUT. SAVEVM updates the virtual memory file without stopping
Medley, which puts the virtual memory file into a consistant state (temporarily), so it could be
restarted if the system crashes. SYSOUT and MAKESYS are used to save a copy of the total virtual
memory state on a file, which can be loaded into another machine to restore Medley’s state.
VMEM.PURE.STATE can be used to “freeze” the current state of the virtual memory, so that Medley
will come up in that state if it is restarted.

(LOGOUT FAST) [Function]

Stops Medley, and returns control to the operating system. If Medley is restarted, it
should come up in the same state as when the LOGOUT was called. LOGOUT will not affect
the state of open files.

LOGOUT writes out all altered pages from real memory to the virtual memory file. If FAST
is T, Medley is stopped without updating the virtual memory file. Note that after doing
(LOGOUT T) it will not be possible to restart Medley from the point of the LOGOUT, and it
may not be possible to restart it at all. Typing (LOGOUT T) is preferable to just booting
the machine, because it also does other cleanup operations (closing network connections,
etc.).

If FAST is the symbol ?, LOGOUT acts like FLG = T if the virtual memory file is
consistant, otherwise it acts like FLG = NIL. This insures that the virtual memory image
can be restarted as of some previous state, not necessarily as of the LOGOUT.

(SAVEVM —) [Function]

This function is similar to logging out and continuing, but faster. It takes about as long as
a logout, which can be as brief as 10 seconds or so if you have already written out most of
your dirty pages by virtue of being idle a while. After the SAVEVM, and until the
pagefault handler is next forced to write out a dirty page, your virtual memory image will
be continuable (as of the SAVEVM) should there be a system crash or other disaster.

If the system has been idle long enough (no keyboard or mouse activity), there are dirty
pages to be written, and there are few enough dirty pages left to write that a SAVEVM
would be quick, SAVEVM is automatically called. When SAVEVM is called automatically,

12-7

MISCELLANEOUS

the cursor is changed to a special cursor: , stored in the variable SAVINGCURSOR. You
can control how often SAVEVM is automatically called by setting the following two global
variables:

SAVEVMWAIT [Variable]
SAVEVMMAX [Variable]

The system will call SAVEVM after being idle for SAVEVMWAIT seconds (initially 300) if
there are fewer than SAVEVMMAX pages dirty (initially 600). These values are fairly
conservative. If you want to be extremely wary, you can set SAVEVMWAIT = 0 and
SAVEVMMAX = 10000, in which case SAVEVM will be called the first chance available
after the first dirty page has been written.

The function SYSOUT saves the current state of Medley’s virtual memory on a file, known
as a “sysout file”, or simply a “sysout”. The file package can be used to save particular
function definitions and other arbitrary objects on files, but SYSOUT saves the total state of
the system. This capability can be useful in many situations: for creating customized
systems for other people to use, or to save a particular system state for debugging
purposes. Note that a sysout file can be very large (thousands of pages), and can take a
long time to create, so it is not to be done lightly. The file produced by SYSOUT can be
loaded into Medley’s virtual memory and restarted to restore the virtual memory to the
exact state that it had when the sysout file was made. The exact method of loading a
sysout depend on the implementation. For more information on loading sysout files, see
the users guide for your computer.

(SYSOUT FILE) [Function]

Saves the current state of Medley’s virtual memory on the file FILE, in a form that can be
subsequently restarted. The current state of program execution is saved in the sysout file,
so (PROGN (SYSOUT ’FOO) (PRINT ’HELLO)) will cause HELLO to be printed after
the sysout file is restarted.

SYSOUT can take a very long time (ten or fifteen minutes), particularly when storing a file
on a remote file server. To display some indication that something is happening, the
cursor is changed to: . Also, as the sysout file is being written, the cursor is inverted line
by line, to show that activity is taking place, and how much of the sysout has completed.
For example, after the SYSOUT is about two-thirds done, the cursor would look like: .
The SYSOUT cursor is stored in the variable SYSOUTCURSOR.

If FILE is non-NIL, the variable SYSOUTFILE is set to the body of FILE. If FILE is NIL,
then the value of SYSOUTFILE instead. Therefore, (SYSOUT) will save the current state
on the next higher version of a file with the same name as the previous SYSOUT. Also, if
the extension for FILE is not specified, the value of SYSOUT.EXT is used. SYSOUT sets
SYSOUTDATE (see the System Version Information section below) to (DATE), the time and
date that the SYSOUT was performed.

If SYSOUT was not able to create the sysout file, because of disk or computer error, or
because there was not enough space on the directory, SYSOUT returns NIL. Otherwise it
returns the full file name of FILE.

12-8

MEDLEY REFERENCE MANUAL

Actually, SYSOUT “returns” twice; when the sysout file is first created, and when it is
subsequently restarted. In the latter case, SYSOUT returns a list whose CAR is the full file
name of FILE. For example, (if (LISTP (SYSOUT ’FOO)) then (PRINT
’HELLO)) will cause HELLO to be printed when the sysout file is restarted, but not when
SYSOUT is initially performed.

Note: SYSOUT does not save the state of any open files. Use WHENCLOSE (see the Closing
and Reopening Files section in Chapter 24) to associate certain operations with open files
so that when a SYSOUT is started up, these files will be reopened, and file pointers
repositioned.

SYSOUT evaluates the expressions on BEFORESYSOUTFORMS (see also AROUNDEXITFNS)
before creating the sysout file. This variable initially includes expressions to:

1. Set the variables SYSOUTDATE and SYSOUTFILE as described above

2. Default the sysout file name FILE according to the values of the variables
SYSOUTFILE and SYSOUT.EXT, as described above

3. Perform any necessary operations on open files as specified by calls to WHENCLOSE.

After a sysout file is restarted (but not when it is initially created), SYSOUT evaluates the
expressions on AFTERSYSOUTFORMS (see also AROUNDEXITFNS). This initially includes
expressions to:

1. Perform any necessary operations on previously-opened files as specified by calls to
WHENCLOSE

2. Possibly print a message, as determined by the value of SYSOUTGAG (see below)

3. Call SETINITIALS to reset the initials used for time-stamping (see the Time Stamps
section of Chapter 16).

AROUNDEXITFNS [Variable]

This variable provides a way to “advise” the system on cleanup and restoration activities
to perform around LOGOUT, SYSOUT, MAKESYS and SAVEVM; It subsumes the
functionality of BEFORESYSOUTFORMS, AFTERLOGOUTFORMS, etc. It’s value is a list of
functions (names) to call around every “exit” of the system. Each function is called with
one argument, a symbol indicating which particular event is occuring. The symbols are:

BEFORLOGOUT The system is about to perform a LOGOUT.

BEFORESYSOUT
BEFOREMAKESYS

BEFORESAVEVM The system is about to perform a SYSOUT, MAKESYS or a SAVEVM.

AFTERLOGOUT
AFTERSYSOUT

AFTERMAKESYS
AFTERSAVEVM The system is starting up am image that was saved by performing a

LOGOUT, SYSOUT, etc.

AFTERDOSYSOUT

12-9

MISCELLANEOUS

AFTERDOMAKESYS
AFTERDOSAVEVM The system just made a copy of the virtual memory and saved it to

disk. The image continues to run. These events only exist to allow
you to negate the effects of saveing a copy of the virtual memory.

SYSOUTGAG [Variable]

The value of SYSOUTGAG determines what is printed when a sysout file is restarted. If the
value of SYSOUTGAG is a list, the list is evaluated, and no additional message is printed.
This allows you to print a message. If SYSOUTGAG is non-NIL and not a list, no message
is printed. Finally, if SYSOUTGAG is NIL (its initial value), and the sysout file is being
restarted by the same user that made the sysout originally, you are greeted by printing the
value of HERALDSTRING (see below) followed by a greeting message. If the sysout file
was made by a different user, a message is printed, warning that the currently-loaded
user init file may be incorrect for the current user (see the Greeting and Initialization Files
section above).

(MAKESYS FILE NAME) [Function]

Used to store a new Medley system on the “makesys file” FILE. Like SYSOUT, but before
the file is made, the system is “initialized” by undoing the greet history, and clearing the
display.

When the system is first started up, a “herald” is printed identifying the system, typically
“Medley-XX DATE ...”. If NAME is non-NIL, MAKESYS will use it instead of Medley-
XX in the herald. MAKESYS sets HERALDSTRING to the herald string printed out.

MAKESYS also sets the variable MAKESYSDATE (see the next section below) to (DATE), i.e.
the time and date the system was made.

Medley contains a routine that writes out dirty pages of the virtual memory during I/O wait,
assuming that swapping has caused at least one dirty page to be written back into the virtual memory
file (making it non-continuable). The frequency with which this routine runs is determined by:

BACKGROUNDPAGEFREQ [Variable]

This variable determines how often the routine that writes out dirty pages is run. The
higher BACKGROUNDPAGEFREQ is set, the greater the time between running the dirty page
writing routine. Initially it is set to 4. The lower BACKGROUNDPAGEFREQ is set, the less
responsiveness you get at typein, so it may not be desirable to set it all the way down to 1.

(VMEM.PURE.STATE X) [NoSpread Function]

VMEM.PURE.STATE modifies the swapper’s page replacement algorithm so that dirty
pages are only written at the end of the virtual memory backing file. This “freezes” a
given virtual memory state, so that Medley will come up in that state whenever it is
restarted. This can be used to set up a “clean” environment on a pool machine, allowing
each user to initialize the system simply by rebooting the computer.

The way to use VMEM.PURE.STATE is to set up the environment as you wish it to be
“frozen,” evaluate (VMEM.PURE.STATE T), and then call any function that saves the
virtual memory state (LOGOUT, SAVEVM, SYSOUT, or MAKESYS). From that point on,

12-10

MEDLEY REFERENCE MANUAL

whenever the system is restarted, it will return to the state as of the saving operation.
Future LOGOUT, SAVEVM, etc. operations will not reset this state.

Note: When the system is running in “pure state” mode, it uses a significant amount of
the virtual memory backing file to save the “frozen” memory image, so this will reduce
the amount of virtual memory space available for use.

(VMEM.PURE.STATE) returns T if the system is running in “pure state” mode, NIL
otherwise.

(REALMEMORYSIZE) [Function]

Returns the number of real memory pages in the computer.

(VMEMSIZE) [Function]

Returns the number of pages in use in the virtual memory. This is the roughly the same
as the number of pages required to make a sysout file on the local disk (see SYSOUT,
above).

\LASTVMEMFILEPAGE [Variable]

Value is the total size of the virtual memory backing file. This variable is set when the
system is started. You should not set it..

Note: When the virtual memory expands to the point where the virtual memory backing
file is almost full, a break will occur with the warning message “Your virtual memory
backing file is almost full. Save your work & reload asap.” When this happens, it is
strongly suggested that you save any important work and reload the system. If you
continue working past this point, the system will start slowing down considerably, and it
will eventually stop working.

System Version Information

Medley runs on a number of different machines, with many possible hardware configurations. There
have been a number of different releases of the Medley software. These facts make it difficult to
answer the important question “what software/hardware environment are you running?” when
reporting bugs. The following functions allow the novice to collect this information.

(PRINT-LISP-INFORMATION STREAM FILESTRING) [NoSpread Function]

Prints out a summary of the software and hardware environment that Medley is running
in, and a list of all loaded patch files:

Venue Medley version
Medley 2.0 sysout of 7-Oct-92 15:18:52 on mips,
Emulator created: 20-Nov-92, memory size: 0,
machine d022899 mo
based on Envos Medley version Medley 2.0 sysout of 7-Oct-
92 15:18:52,
Make-init dates: 7-Oct-92 11:07:17, 7-Oct-92 11:26:22
Patch files: NIL

STREAM is the stream used to print the summary. If not given, it defaults to T.

12-11

MISCELLANEOUS

FILESTRING is a string used to determine what loaded files should be listed as “patch
files.” All file names on LOADEDFILELST (see the Noticing Files section of Chapter 17)
that have FILESTRING as a substring as listed. If FILESTRING is not given, it defaults to
the string “PATCH”.

(CL:LISP-IMPLEMENTATION-TYPE) [Function]

Returns a string identifying the type of implementation that is running, e.g., “Medley”.

(CL:LISP-IMPLEMENTATION-VERSION) [Function]

Returns a string identifying the version that is running. Currently gives the system name
and date, e.g., “KOTO of 10-Sep-85 08:25:46”.

This uses the variables MAKESYSNAME and MAKESYSDATE (below), so it will change if you
use MAKESYS (see the Saving Virtual Memory State section above) to create a custom
sysout file, or explicitly changes these variables.

(CL:SOFTWARE-TYPE) [Function]

Returns a string identifying the operating system that Interlisp is running under.
Currently returns the string “Envos Medley”.

(CL:SOFTWARE-VERSION) [Function]

Returns a string identifying the version of the operating system that Interlisp is running
under. Currently, this returns the date that the Medley release was originally created, so
it doesn’t change over MAKESYS or SYSOUT.

(CL:MACHINE-TYPE) [Function]

Returns a string identifying the type of computer hardware that Medley is running on,
i.e., “1108”, “1132”, “1186”, “mips”, etc.

(CL:MACHINE-VERSION) [Function]

Returns a string identifying the version of the computer hardware that Medley is running
on. Currently returns the microcode version and real memory size.

(CL:MACHINE-INSTANCE) [Function]

Returns a string identifying the particular machine that Medley is running on. Currently
returns the machine’s NS address.

(CL:SHORT-SITE-NAME) [Function]

Returns a short string identifying the site where the machine is located. Currently returns
(ETHERHOSTNAME) (if non-NIL) or the string “unknown”.

(CL:LONG-SITE-NAME) [Function]

Returns a long string identifying the site where the machine is located. Currently returns
the same as SHORT-SITE-NAME.

12-12

MEDLEY REFERENCE MANUAL

SYSOUTDATE [Variable]

Value is set by SYSOUT (see the Saving Virtual Memory State section above) to the date
before generating a virtual memory image file.

MAKESYSDATE [Variable]

Value is set by MAKESYS (see the Saving Virtual Memory State section above) to the date
before generating a virtual memory image file.

MAKESYSNAME [Variable]

Value is a symbol identifying the release name of the current Medley system, e.g.,
:MEDLEY.

(SYSTEMTYPE) [Function]

Allows programmers to write system-dependent code. SYSTEMTYPE returns a symbol
corresponding to the implementation of Interlisp: D (for Medley), TOPS-20, TENEX,
JERICO, or VAX.

In Medley, (SELECTQ (SYSTEMTYPE) ...) expressions are expanded at compile time
so that this is an effective way to perform conditional compilation.

(MACHINETYPE) [Function]

Returns the type of machine that Medley is running on: either DORADO (for the Xerox
1132), DOLPHIN (for the Xerox 1100), DANDELION (for the Xerox 1108), DOVE (for the
Xerox 1186), or MAIKO (for Unix, DOS, etc).

Date And Time Functions

(DATE FORMAT) [Function]

Returns the current date and time as a string with format “DD-MM-YY HH:MMM:SS”,
where DD is day, MM is month, YY year, HH hours, MMM minutes, SS seconds, e.g., “7-Jun-
85 15:49:34”.

If FORMAT is a date format as returned by DATEFORMAT (below), it is used to modify the
format of the date string returned by DATE.

(IDATE STR) [Function]

STR is a date and time string. IDATE returns STR converted to a number such that if
DATE1 is before (earlier than) DATE2, then (IDATE DATE1) < (IDATE DATE2). If STR
is NIL, the current date and time is used.

Different Interlisp implementations can have different internal date formats. However,
IDATE always has the essential property that (IDATE X) is less than (IDATE Y) if X is
before Y, and (IDATE (GDATE N)) equals N. Programs which do arithmetic other than
numerical comparisons between IDATE numbers may not work when moved from one
implementation to another.

12-13

MISCELLANEOUS

Generally, it is possible to increment an IDATE number by an integral number of days by
computing a “1 day” constant, the difference between two convenient IDATEs, e.g.
(IDIFFERENCE (IDATE “2-JAN-80 12:00") (IDATE "1-JAN-80 12:00")).
This “1 day” constant can be evaluated at compile time.

IDATE is guaranteed to accept as input the dates that DATE will output. It will ignore the
parenthesized day of the week (if any). IDATE also correctly handles time zone
specifications for those time zones registered in the list TIME.ZONES (below).

(GDATE DATE FORMAT —) [Function]

Like DATE, except that DATE can be a number in internal date and time format as returned
by IDATE. If DATE is NIL, the current time and date is used.

(DATEFORMAT KEY1 ... KEYN) [NLambda NoSpread Function]

DATEFORMAT returns a date format suitable as a parameter to DATE and GDATE. KEY1
... KEYN are a set of keywords (unevaluated). Each keyword affects the format of the
date independently (except for SLASHES and SPACES). If the date returned by (DATE)
with the default formatting was 7-Jun-85 15:49:34, the keywords would affect the
formatting as follows:

NO.DATE Doesn’t include the date information, e.g. “15:49:34”.

NUMBER.OF.MONTH Shows the month as a number instead of a name, e.g. “7-06-
85 15:49:34”.

YEAR.LONG Prints the year using four digits, e.g. “7-Jun-1985
15:49:34”.

SLASHES Separates the day, month, and year fields with slashes, e.g.
“7/Jun/85 15:49:34”.

SPACES Separates the day, month, and year fields with spaces, e.g. “7
Jun 85 15:49:34”.

NO.LEADING.SPACES By default, the day field will always be two characters long. If
NO.LEADING.SPACES is specified, the day field will be one
character for dates earlier than the 10th, e.g. “7-Jun-85
15:49:34” instead of “7-Jun-85 15:49:34”.

NO.TIME Doesn’t include the time information, e.g. “7-Jun-85”.

TIME.ZONE Includes the time zone in the time specification, e.g. “7-Jun-
85”.

NO.SECONDS Doesn’t include the seconds, e.g. “7-Jun-85 15:49”.

DAY.OF.WEEK Includes the day of the week in the time specification, e.g. “7-
Jun-85 15:49:34 PDT (Friday)”.

12-14

MEDLEY REFERENCE MANUAL

DAY.SHORT If DAY.OF.WEEK is specified to include the day of the week, the
week day is shortened to the first three letters, e.g. “7-Jun-85
15:49:34 PDT (Fri)”. Note that DAY.SHORT has no effect
unless DAY.OF.WEEK is also specified.

(CLOCK N —) [Function]

If N = 0, CLOCK returns the current value of the time of day clock i.e., the number of
milliseconds since last system start up.

If N = 1, returns the value of the time of day clock when you started up this Interlisp, i.e.,
difference between (CLOCK 0) and (CLOCK 1) is number of milliseconds (real time)
since this Interlisp system was started.

If N = 2, returns the number of milliseconds of compute time since user started up this
Interlisp (garbage collection time is subtracted off).

If N = 3, returns the number of milliseconds of compute time spent in garbage collections
(all types).

(SETTIME DT) [Function]

Sets the internal time-of-day clock. If DT = NIL, SETTIME attempts to get the time from
the communications net; if it fails, you are prompted for the time. If DT is a string in a
form that IDATE recognizes, it is used to set the time.

The following variables are used to interpret times in different time zones. \TimeZoneComp,
\BeginDST, and \EndDST are normally set automatically if your machine is connected to a network
with a time server. For standalone machines, it may be necessary to set them by hand (or in your init
file, see the first section of this chapter) if you are not in the Pacific time zone.

TIME.ZONES [Variable]

Value is an association list that associates time zone specifications (PDT, EST, GMT, etc.)
with the number of hours west of Greenwich (negative if east). If the time zone
specification is a single letter, it is appended to “DT” or “ST” depending on whether
daylight saving time is in effect. Initially set to:

((8 . P) (7 . M) (6 . C) (5 . E) (0 . GMT))

This list is used by DATE and GDATE when generating a date with the TIME.ZONE format
is specified, and by IDATE when parsing dates.

\TimeZoneComp [Variable]

This variable should be initialized to the number of hours west of Greenwich (negative if
east). For the U.S. west coast it is 8. For the east coast it is 5.

\BeginDST [Variable]
\EndDST [Variable]

\BeginDST is the day of the year on or before which Daylight Savings Time takes effect
(i.e., the Sunday on or immediately preceding this day); \EndDST is the day on or before
which Daylight Savings Time ends. Days are numbered with 1 being January 1, and

12-15

MISCELLANEOUS

counting the days as for a leap year. In the USA where Daylight Savings Time is
observed, \BeginDST = 121 and \EndDST = 305. In a region where Daylight Savings
Time is not observed at all, set \BeginDST to 367.

Timers and Duration Functions

Often one needs to loop over some code, stopping when a certain interval of time has passed. Some
systems provide an “alarm clock” facility, which provides an asynchronous interrupt when a time
interval runs out. This is not particularly feasible in the current Medley environment, so the following
facilities are supplied for efficiently testing for the expiration of a time interval in a loop context.

Three functions are provided: SETUPTIMER, SETUPTIMER.DATE, and TIMEREXPIRED?. There are
also several new i.s.oprs: forDuration, during, untilDate, timerUnits, usingTimer, and
resourceName (reasonable variations on upper/lower case are permissible).

These functions use an object called a timer, which encodes a future clock time at which a signal is
desired. A timer is constructed by the functions SETUPTIMER and SETUPTIMER.DATE, and is created
with a basic clock “unit” selected from among SECONDS, MILLISECONDS, or TICKS. The first two
timer units provide a machine/system independent interface, and the latter provides access to the
“real”, basic strobe unit of the machine’s clock on which the program is running. The default unit is
MILLISECONDS.

Currently, the TICKS unit depends on what machine Medley is running on. The Xerox 1132 has about
1680 ticks per millisecond; the Xerox 1108 has about 34.746 ticks per millisecond; the Xerox 1185 and
1186 have about 62.5 ticks per millisecond. The advantage of using TICKS rather than one of the
uniform interfaces is primarily speed; e.g., it may take over 400 microseconds to read the milliseconds
clock (a software facility that uses the real clock), whereas reading the real clock itself may take less
than ten microseconds. The disadvantage of the TICKS unit is its short roll-over interval (about 20
minutes) compared to the MILLISECONDS roll-over interval (about two weeks), and also the
dependency on particular machine parameters.

(SETUPTIMER INTERVAL OldTimer? timerUnits intervalUnits) [Function]

SETUPTIMER returns a timer that will “go off” (as tested by TIMEREXPIRED?) after a
specified time-interval measured from the current clock time. SETUPTIMER has one
required and three optional arguments:

INTERVAL must be a integer specifying how long an interval is desired. timerUnits
specifies the units of measure for the interval (defaults to MILLISECONDS).

If OldTimer? is a timer, it will be reused and returned, rather than allocating a new
timer. intervalUnits specifies the units in which the OldTimer? is expressed
(defaults to the value of timerUnits.

(SETUPTIMER.DATE DTS OldTimer?) [Function]

SETUPTIMER.DATE returns a timer (using the SECONDS time unit) that will “go off” at a
specified date and time. DTS is a Date/Time string such as IDATE accepts (see the above
section). If OldTimer? is a timer, it will be reused and returned, rather than allocating a
new timer.

12-16

MEDLEY REFERENCE MANUAL

SETUPTIMER.DATE operates by first subtracting (IDATE) from (IDATE DTS), so there
may be some large integer creation involved, even if OLDTIMER? is given.

(TIMEREXPIRED? TIMER ClockValue.or.timerUnits) [Function]

If TIMER is a timer, and ClockValue.or.timerUnits is the time-unit of TIMER,
TIMEREXPIRED? returns true if TIMER has “gone off”.

ClockValue.or.timerUnits can also be a timer, in which case TIMEREXPIRED?
compares the two timers (which must be in the same timer units). If X and Y are timers,
then (TIMEREXPIRED? X Y) is true if X is set for an earlier time than Y.

There are a number of i.s.oprs that make it easier to use timers in iterative statements (see the
Interative Statement section of Chapter 9). These i.s.oprs are given below in the “canonical” form,
with the second “word” capitalized, but the all-caps and all-lower-case versions are also acceptable.

forDuration INTERVAL [I.S. Operator]
during INTERVAL [I.S. Operator]

INTERVAL is an integer specifying an interval of time during which the iterative
statement will loop.

timerUnits UNITS [I.S. Operator]

UNITS specifies the time units of the INTERVAL specified in forDuration.

untilDate DTS [I.S. Operator]

DTS is a Date/Time string (such as IDATE accepts) specifying when the iterative
statement should stop looping.

usingTimer TIMER [I.S. Operator]

If usingTimer is given, TIMER is reused as the timer for forDuration or untilDate,
rather than creating a new timer. This can reduce allocation if one of these i.s.oprs is used
within another loop.

resourceName RESOURCE [I.S. Operator]

RESOURCE specifies a resource name to be used as the timer storage (see the File Package
Types section of Chapter 17). If RESOURCE = T, it will be converted to an internal name.

Some examples:

(during 6MONTHS timerUnits ’SECONDS
 until (TENANT-VACATED? HouseHolder)
 do (DISMISS <for-about-a-day>)
 (HARRASS HouseHolder)
 finally (if (NOT (TENANT-VACATED? HouseHolder))
 then (EVICT-TENANT HouseHolder)))

This example shows that how is is possible to have two termination condition: when the time interval
of 6MONTHS has elapsed, or when the predicate (TENANT-VACATED? HouseHolder) becomes true.
Note that the “finally” clause is executed regardless of which termination condition caused it.

12-17

MISCELLANEOUS

Also note that since the millisecond clock will “roll over” about every two weeks, “6MONTHS”
wouldn’t be an appropriate interval if the timer units were the default case, namely MILLISECONDS.

(do (forDuration (CONSTANT (ITIMES 10 24 60 60 1000))
 do (CARRY.ON.AS.USUAL)
 finally (PROMPTPRINT "Have you had your 10-day check-up?")))

This infinite loop breaks out with a warning message every 10 days. One could question whether the
millisecond clock, which is used by default, is appropriate for this loop, since it rolls-over about every
two weeks.

(SETQ \RandomTimer (SETUPTIMER 0))
(untilDate "31-DEC-83 23:59:59" usingTimer \RandomTimer
 when (WINNING?) do (RETURN)
 finally (ERROR "You’ve been losing this whole year!"))

Here is a usage of an explicit date for the time interval; also, some stsorage has been squirreled away
(as the value of \RandomTimer) for use by the call to SETUPTIMER in this loop.

(forDuration SOMEINTERVAL
 resourceName \INNERLOOPBOX
 timerunits ’TICKS
 do (CRITICAL.INNER.LOOP))

For this loop, you don’t want any CONSing to take place, so \INNERLOOPBOX is defined as a resource
which “caches” a timer cell (if it isn’t already so defined), and wraps the entire statement in a WITH-
RESOURCES call. Furthermore, a time unit of TICKS is specified, for lower overhead in this critical
inner loop. In fact specifying a resourceName of T is the same as specifying it to be
\ForDurationOfBox; this is just a simpler way to specify that a resource is wanted, without having
to think up a name.

Resources

Medley is based on the use of a storage-management system which allocates memory space for new
data objects, and automatically reclaims the space when no longer in use. More generally, Medley
manages shared “resources”, such as files, semaphors for processes, etc. The protocols for allocating
and freeing such resources resemble those of ordinary storage management.

Sometimes you need to explicitly manage the allocation of resources. You may want the efficiency of
explicit reclamation of certain temporary data; or it may be expensive to initialize a complex data
object; or there may be an application that must not allocate new cells during some critical section of
code.

The file manager type RESOURCES is available to help with the definition and usage of such classes of
data; the definition of a RESOURCE specifies prototype code to do the basic management operations.
The file manager command RESOURCES is used to save such definitions on files, and
INITRESOURCES (see the Miscellaneous File Manager Commands section of Chapter 17) causes the
initialization code to be output.

The basic needs of resource management are:

1. Obtaining a data item from the Lisp memory management system and configuring it to be a totally
new instance of the resource in question

2. Freeing up an instance which is no longer needed

12-18

MEDLEY REFERENCE MANUAL

3. Getting an instance of the resource for temporary usage (whether “fresh” or a formerly freed-up
instance)

4. Setting up any prerequisite global data structures and variables

A resources definition consists of four “methods”: INIT, NEW, GET, and FREE; each “method” is a
form that will specialize the definition for four corresponding user-level macros INITRESOURCE,
NEWRESOURCE, GETRESOURCE, and FREERESOURCE. PUTDEF is used to make a resources definition,
and the four components are specified in a proplist:

(PUTDEF
 ’RESOURCENAME
 ’RESOURCES
 ’(NEW NEW-INSTANCE-GENERATION-CODE
 FREE FREEING-UP-CODE
 GET GET-INSTANCE-CODE
 INIT INITIALIZATION-CODE))

Each of the xxx-CODE forms is a form that will appear as if it were the body of a substitution macro
definition for the corresponding macro (see the discussion on the macros below).

A Simple Example

Suppose one has several pieces of code which use a 256-character string as a scratch string. One could
simply generate a new string each time, but that would be inefficient if done repeatedly. If you can
guarantee that there are no re-entrant uses of the scratch string, then it could simply be stored in a
global variable. However, if the code might be re-entrant on occasion, the program has to take
precautions that two programs do not use the same scratch string at the same time. (This
consideration becomes very important in a multi-process environment. It is hard to guarantee that
two processes won’t be running the same code at the same time, without using elaborate locks.) A
typical tactic would be to store the scratch string in a global variable, and set the variable to NIL
whenever the string is in use (so that re-entrant usages would know to get a “new” instance). For
example, assuming the global variable TEMPSTRINGBUFFER is initialized to NIL:

[DEFINEQ (WITHSTRING NIL
 (PROG ((BUF (OR (PROG1 TEMPSTRINGBUFFER
 (SETQ TEMPSTRINGBUFFER NIL))
 (ALLOCSTRING 256))))

... use the scratch string in the variable BUF ...

 (SETQ TEMPSTRINGBUFFER BUF)
 (RETURN]

Here, the basic elements of a “resource” usage may be seen:

1. A call (ALLOCSTRING 256) allocates fresh instances of “buffer”

2. After usage is completed the instance is returned to the “free” state, by putting it back in the global
variable TEMPSTRINGBUFFER where a subsequent call will find it

3. The prog-binding of BUF will get an existing instance of a string buffer if there is one -- otherwise it
will get a new instance which will later be available for reuse

4. Some initialization is performed before usage of the resource (in this case, it is the setting of the
global variable TEMPSTRINGBUFFER).

12-19

MISCELLANEOUS

Given the following resources definition:

(PUTDEF
 ’STRINGBUFFER
 ’RESOURCES
 ’(NEW (ALLOCSTRING 256)
 FREE (SETQ TEMPSTRINGBUFFER (PROG1 . ARGS))
 GET (OR (PROG1 TEMPSTRINGBUFFER
 (SETQ TEMPSTRINGBUFFER NIL))
 (NEWRESOURCE TEMPSTRINGBUFFER)))
 INIT (SETQ TEMPSTRINGBUFFER NIL)))

we could then redo the example above as

(DEFINEQ (WITHSTRING NIL
 (PROG ((BUF (GETRESOURCE STRINGBUFFER)))

... use the string in the variable BUF ...

 (FREERESOURCE STRINGBUFFER BUF)
 (RETURN]

The advantage of doing the coding this way is that the resource management part of WITHSTRING is
fully contained in the expansions of GETRESOURCE and FREERESOURCE, and thus there is no
confusion between what is WITHSTRING code and what is resource management code. This particuar
advantage will be multiplied if there are other functions which need a “temporary” string buffer; and
of course, the resultant modularity makes it much easier to contemplate minor variations on, as well
as multiple clients of, the STRINGBUFFER resource.

In fact, the scenario just shown above in the WITHSTRING example is so commonly useful that an
abbreviation has been added; if a resources definition is made with *only* a NEW method, then
appropriate FREE, GET, and INIT methods will be inferred, along with a coordinated globalvar, to be
parallel to the above definition. So the above definition could be more simply written

(PUTDEF ’STRINGBUFFER
 ’RESOURCES
 ’(NEW (ALLOCSTRING 256)))

and everything would work the same.

The macro WITH-RESOURCES simplifies the common scoping case, where at the beginning of some
piece of code, there are one or more GETRESOURCE calls the results of which are each bound to a
lambda variable; and at the ending of that code a FREERESOURCE call is done on each instance. Since
the resources are locally bound to variables with the same name as the resource itself, the definition
for WITHSTRING then simplifies to

(DEFINEQ (WITHSTRING NIL
 (WITH-RESOURCES (STRINGBUFFER)

 ... use the string in the variable STRINGBUFFER ...]

Trade-offs in More Complicated Cases

This simple example presumes that the various functions which use the resource are generally not re-
entrant. While an occasional re-entrant use will be handled correctly (another example of the resource
will simply be created), if this were to happen too often, then many of the resource requests will create
and throw away new objects, which defeats one of the major purposes of using resources. A slightly
more complex GET and FREE method can be of much benefit in maintaining a pool of available

12-20

MEDLEY REFERENCE MANUAL

resources; if the resource were defined to maintain a list of “free” instances, then the GET method
could simply take one off the list and the FREE method could just push it back onto the list. In this
simple example, the SETQ in the FREE method defined above would just become a “push”, and the
first clause of the GET method would just be (pop TEMPSTRINGBUFFER)

A word of caution: if the datatype of the resource is something very small that Medley is “good” at
allocating and reclaiming, then explicit user storage management will probably not do much better
than the combination of cons/createcell and the garbage collector. This would especially be so if more
complicated GET and FREE methods were to be used, since their overhead would be closer to that of
the built-in system facilities. Finally, it must be considered whether retaining multiple instances of the
resource is a net gain; if the re-entrant case is truly rare, it may be more worthwhile to retain at most
one instance, and simply let the instances created by the rarely-used case be reclaimed in the normal
course of garbage collection.

Macros for Accessing Resources

Four user-level macros are defined for accessing resources:

(NEWRESOURCE RESOURCENAME . ARGS) [Macro]
(FREERESOURCE RESOURCENAME . ARGS) [Macro]
(GETRESOURCE RESOURCENAME . ARGS) [Macro]
(INITRESOURCE RESOURCENAME . ARGS) [Macro]

Each of these macros behave as if they were defined as a substitution macro of the form

((RESOURCENAME . ARGS) MACROBODY)

where the expression MACROBODY is selected by using the “code” supplied by the corresponding
method from the RESOURCENAME definition.

Note that it is possible to pass “arguments” to your resource allocation macros. For example, if the
GET method for the resource FOO is (GETFOO . ARGS), then (GETRESOURCE FOO X Y) is
transformed into (GETFOO X Y). This form was used in the FREE method of the STRINGBUFFER
resource described above, to pass the old STRINGBUFFER object to be freed.

(WITH-RESOURCES (RESOURCE1 RESOURCE2 ...) FORM1 FORM2 ...) [Macro]

The WITH-RESOURCES macro binds lambda variables of the same name as the resources
(for each of the resources RESOURCE1, RESOURCE2, etc.) to the result of the GETRESOURCE
macro; then executes the forms FORM1, FORM2, etc., does a FREERESOURCE on each
instance, and returns the value of the last form (evaluated and saved before the
FREERESOURCEs).

Note: (WITH-RESOURCES RESOURCE ...) is interpreted the same as (WITH-
RESOURCES (RESOURCE) ...). Also, the singular name WITH-RESOURCE is accepted
as a synonym for WITH-RESOURCES.

Saving Resources in a File

Resources definitions may be saved on files using the RESOURCES file package command (see the
Miscellaneous File Package Commands section of Chapter 17). Typically, one only needs the full
definition available when compiling or interpreting the code, so it is appropriate to put the file
package command in a (DECLARE: EVAL@COMPILE DONTCOPY ...) declaration, just as one might

12-21

MISCELLANEOUS

do for a RECORDS declaration. But just as certain record declarations need *some* initialization in the
run-time environment, so do most resources. This initialization is specified by the resource’s INIT
method, which is executed automatically when the resource is defined by the PUTDEF output by the
RESOURCES command. However, if the RESOURCES command is in a DONTCOPY expression and
thus is not included in the compiled file, then it is necessary to include a separate INITRESOURCES
command (see the Miscellaneous File Manager Commands section of Chapter 17) in the filecoms to
insure that the resource is properly initialized.

12-22

MEDLEY REFERENCE MANUAL

[This page intentionally left blank]

12-23

13-1

13. MEDLEY EXECUTIVES

In most Common Lisp implementations, there is a “top-level read-eval-print loop,” which reads an
expression, evaluates it, and prints the results. In Medley, the Exec acts as the top-level loop, but does
much more.

The Exec traps all THROWS, and recovers gracefully. It prints all values resulting from evaluation, on
separate lines. (When zero values are returned, nothing is printed).

The Exec keeps track of your previous inputs, in the history list. Each entry you type creates a history
event, which sotres the input and its values.

It’s easy to use the results of earlier events, redo and event, or recall an earlier input, edit it, and run it.
This makes it much easier to get your work done.

Multiple Execs and the Exec’s Type

Sometimes you need more than one Exec open at a time. It’s easy to open as many as you need by
using the right button background menu and selecting the kind of Exec you need. The Execs are
differentiated from one another by their "names" in their title bars and by their prompts. For example,
the second Exec you open may have a prompt like 2/50> if it’s the second Common Lisp Exec you’ve
opened. Events in each Exec are placed on the global history list with their Exec number so the system
can tell them apart.

Several variables are very important to an Exec since they control the format of reading and printing.
Together these variables describe a type of exec, or its mode. Some standard bindings for the
variables have been named to make mode setting easy. The names provide you with an Exec of the
Common Lisp (LISP), Interlisp or Old Interlisp (IL), or Medley (XCL) type. An Exec’s type is
displayed in the title bar of its window:

A Brief Example of Exec Interactions

The following dialogue contains examples and gives the flavor of the use of an Exec. The commands
are described in greater detail in the following sections. For now, be sure to type these examples to an
Exec whose *PACKAGE* is set to the XCL-USER package. The Exec that Medley starts up with is set to
the XCL-USER package. Each prompt consists of an Exec number, an event number and a prompt
character (“>” for Common Lisp and “←” for Interlisp).

13-2

MEDLEY REFERENCE MANUAL

You have instructed the Exec to UNDO the previous event.

The Exec accepts input both in APPLY format (the SET) and EVAL format (the SETQ). In event 1196,
you added a property MYPROP to the symbols A, B, and C.

You told the Exec to go back to event 1196, substitute LST2 for LST1, and then re-execute the
expression.

If STRING were computationally expensive (it isn’t), you might be caching its value for later use.

You now decide you would like to redo the SETF with a different value. You can specify the event
using any symbol in the expression.

13-3

MEDLEY EXECUTIVES

Here you ask the Exec (using the ?? command) what it has on its history list for the last input. Since
the event corresponds to a command, the Exec displays both the original command and the generated
input.

You’ll usually deal with the Exec at top level or in the debugger, where you type in expressions for
evaluation, and see the values printed out. An Exec acts much like a standard Lisp top-level loop, but
before it evaluates an input, it first adds it to the history list. If the operation is aborted or causes an
error, the input is still available for you to modify or re-execute.

After updating the history list, the Exec executes the computation (i.e., evaluates the form or applies
the function to its arguments), saves the value in the history-list entry for that input, and prints the
result. Finally the Exec displays a prompt to show it’s again ready for input.

Input Formats

The Exec accepts three forms of input: an expression to be evaluated (EVAL-format), a function-name
and arguments to apply it to (APPLY-format), and Exec commands, as follows:

EVAL-format input If you type a single expression, either followed by a carriage-return, or, in the case
of a list, terminated with balanced parenthesis, the expression is evaluated and the
value is returned. For example, if the value of FOO is the list (A B C):

Similarly, if you type a Lisp expression, beginning with a left parenthesis and
terminated by a matching right parenthesis, the form is simply passed to EVAL for
evaluation. Notice that it is not necessary to type a carriage return at the end of
such a form; the reader will supply one automatically. If a carriage-return is typed
before the final matching right parenthesis or bracket, it is treated the same as a
space, and input continues. The following examples are interpreted identically:

APPLY-format input Often, you call functions with constant argument values, which would have to be
quoted if you typed them in EVAL-format. For convenience, if you type a symbol
immediately followed by a list, the symbol is APPLYed to the elements within the
list, unevaluated. The input is terminated by the matching right parenthesis. For
example, typing LOAD(FOO) is equivalent to typing (LOAD ’FOO), and GET(X

13-4

MEDLEY REFERENCE MANUAL

COLOR) is equivalent to (GET ’X ’COLOR). As a simple special case, a single
right parenthesis is treated as a balanced set of parentheses, e.g. UNBREAK) is
equivalent to UNBREAK()

The reader will only supply the “carriage return” automatically if no space
appears between the initial symbol and the list that follows; if there is a space after
the initial symbol on the line and the list that follows, the input is not terminated
until you type a carriage return.

The Exec will not consider unparenthesized input with more than one argument to
be in apply format, e.g.:

LIST(1) is apply format (executes after closing parenthesis is typed)

LIST (1) is apply format (second argument is a list, no trailing arguments
given)

LIST ’(1) 2 3 is NOT apply format, arguments are evaluated

LIST 1 2 3 is NOT apply format, arguments are evaluated

LIST 1not legal input: second argument is not a list

Note that APPLY-format input cannot be used for macros or special forms.

Exec commands The Exec recognizes a number of commands, which usually refer to past events on
the history list. These commands are treated specially; for example, they may not
be put on the history list. The format of a command is always a line beginning
with the command name. (The Exec looks up the command name independent of
package.) The remainder of the line, if any, is treated as “arguments” to the
command. For example,

128> UNDO
mapc undone

129> UNDO (FOO --)
foo undone

are both valid command inputs.

Event Specification

Exec commands, like UNDO, frequently refer to previous events in the session’s history. All Exec
commands use the same conventions and syntax for indicating which event(s) the command refers to.
This section shows you the syntax used to specify previous events.

An event address identifies one event on the history list. For example, the event address 42 refers to
the event with event number 42, and -2 refers to two events back in the current Exec. Usually, an
event address will contain only one or two commands.

Event addresses can be concatenated. For example, if FOO refers to event N, FOO FIE will refer to the
first event before event N which contains FIE.

The symbols used in event addresses (such as AND, F, etc.) are compared with STRING-EQUAL, so
that it does not matter what the current package is when you type an event address symbol to an
Exec.

13-5

MEDLEY EXECUTIVES

Specifications used below of the form EventAddress refer to event addresses, as described above.
Since an event address may contain multiple words, the event address is parsed by searching for the
words which delimit it. For example, in EventAddress1 AND EventAddress2, the notation
EventAddress1 corresponds to all words up to the AND in the event specification, and
EventAddress2 to all words after the AND in the event specification.

Event addresses are interpreted as follows:

N (an integer) If N is positive, it refers to the event with event number N (no matter which Exec
the event occurred in.) If N is negative, it always refers to the event -N events
backwards, counting only events belonging to the current Exec.

F Specifies that the next object in the event address is to be searched for, regardless
of what it is. For example, F -2 looks for an event containing -2.

FROM EventAddress

All events since EventAddress, inclusive. For example, if there is a single Exec
and the current event is number 53, then FROM 49 specifies events 49, 50, 51, and
52. FROM includes events from all Execs.

 ALL EventAddress

Specifies all events satisfying EventAddress. For example, ALL LOAD, ALL
SUCHTHAT FOO-P.

empty If nothing is specified, it is the same as specifying -1, i.e., the last event in the
current Exec.

EventSpec1 AND EventSpec2 AND . . . AND EventSpecN

Each of the is an event specification. The lists of events are concatenated. For
example, REDO ALL MAPC AND ALL STRING AND 32 redoes all events
containing MAPC, all containing STRING, and also event 32. Duplicate events are
removed.

Exec Commands

You enter an Exec commands by typing the name of the command at the prompt. The name of an
Exec command is not a symbol and therefore is not sensitive to the setting of the current package (the
value of *PACKAGE*).

EventSpec is used to denote an event specification which in most cases will be either a specific event
address (e.g., 42) or a relative one (e.g., -3). Unless specified otherwise, omitting EventSpec is the
same as specifying EventSpec = -1. For example, REDO and REDO -1 are the same.

REDO EventSpec [Exec command]

Redoes the event or events specified by EventSpec. For example, REDO 123 redoes the
event numbered 123.

13-6

MEDLEY REFERENCE MANUAL

RETRY EventSpec [Exec command]

Like REDO but sets the debugger parameters so that any errors that occur while executing
EventSpec will cause breaks.

USE NEW [FOR OLD] [IN EventSpec] [Exec command]

Substitutes NEW for OLD in the events specified by EventSpec, and redoes the result.
NEW and OLD can include lists or symbols, etc.

For example, USE SIN (- X) FOR COS X IN -2 AND -1 will substitute SIN for
every occurrence of COS in the previous two events, and substitute (- X) for every
occurrence of X, and reexecute them. (The substitutions do not change the previous
information saved about these events on the history list.)

If IN EventSpec is omitted, the first member of OLD is used to search for the appropriate
event. For example, USE DEFAULTFONT FOR DEFLATFONT is equivalent to USE
DEFAULTFONT FOR DEFLATFONT IN F DEFLATFONT. The F is inserted to handle the
case where the first member of OLD could be interpreted as an event address command.

If OLD is omitted, substitution is for the “operator” in that command. For example
FBOUNDP(FF) followed by USE CALLS is equivalent to USE CALLS FOR FBOUNDP IN
-1.

If OLD is not found, USE will print a question mark, several spaces and the pattern that
was not found. For example, if you specified USE Y FOR X IN 104 and X was not
found, “X ?” is printed to the Exec.

You can also specify more than one substitution simultaneously as follows:

USE NEW1 FOR OLD1 AND ... AND NEWN FOR OLDN [IN EventSpec] [Exec command]

[The USE command is parsed by a small finite state parser to distinguish the expressions
and arguments. For example, USE FOR FOR AND AND AND FOR FOR will be parsed
correctly.]

Every USE command involves three pieces of information: the expressions to be
substituted, the arguments to be substituted for, and an event specification that defines
the input expression in which the substitution takes place. If the USE command has the
same number of expressions as arguments, the substitution procedure is straightforward.
For example, USE X Y FOR U V means substitute X for U and Y for V, and is equivalent
to USE X FOR U AND Y FOR V.

However, the USE command also permits distributive substitutions for substituting
several expressions for the same argument. For example, USE A B C FOR X means first
substitute A for X then substitute B for X (in a new copy of the expression), then substitute
C for X. The effect is the same as three separate USE commands.

Similarly, USE A B C FOR D AND X Y Z FOR W is equivalent to USE A FOR D AND
X FOR W, followed by USE B FOR D AND Y FOR W, followed by USE C FOR D AND
Z FOR W. USE A B C FOR D AND X FOR Y also corresponds to three substitutions,
the first with A for D and X for Y, the second with B for D, and X for Y, and the third with C

13-7

MEDLEY EXECUTIVES

for D, and again X for Y. However, USE A B C FOR D AND X Y FOR Z is ambiguous
and will cause an error.

Essentially, the USE command operates by proceeding from left to right handling each
AND separately. Whenever the number of expressions exceeds the available expressions,
multiple USE expressions are generated. Thus USE A B C D FOR E F means substitute
A for E at the same time substituting B for F, then in another copy of the indicated
expression, substitute C for E and D for F. This is also equivalent to USE A C FOR E
AND B D FOR F.

The USE command correctly handles the situation where one of the old expressions is the
same as one of the new ones, USE X Y FOR Y X, or USE X FOR Y AND Y FOR X.

? NAME [Exec command]

If NAME is not provided describes all available Exec commands by printing the name,
argument list, and description of each. With NAME, only that command is described.

?? EventSpec [Exec command]

Prints the most recent event matching the given EventSpec. Without EventSpec, lists
all entries on the history list from all execs, not necessarily in the order in which they
occured (since the list is in allocation order). If you haven’t completed typing a command
it will be listed as "<in progress>" .

Note: Event nubmers are allocated at the time the prompt is printed, except in the Old
Interlisp exec where they are assigned at the end of type-in. This means that if activity
occurs in another exec, the number printed next to the command is not necessarily the
number associated with the event.

CONN DIRECTORY [Exec command]

Changes default pathname to DIRECTORY.

DA [Exec command]

Returns current date and time.

DIR PATHNAME KEYWORDS [Exec command]

Shows a directory listing for PATHNAME or the connected directory. If provided,
KEYWORDS indicate information to be displayed for each file. Some keywords are:
AUTHOR, AU, CREATIONDATE, DA, etc.

DO-EVENTS INPUTS ENV [Exec command]

DO-EVENTS is intended as a way of putting together several different events, which can
include commands. It executes the multiple INPUTS as a single event. The values
returned by the DO-EVENTS event are the concatenation of the values of the inputs. An
input is not an EventSpec, but a call to a function or command. If ENV is provided it is a
lexical environment in which all evaluations (functions and commands) will take place.
Event specification in the INPUTS should be explicit, not relative, since referring to the
last event will reinvoke the executing DO-EVENTS command.

13-8

MEDLEY REFERENCE MANUAL

FIX EventSpec [Exec command]

Edits the specified event prior to re-executing it. If the number of characters in the fixed
line is less than the variable TTYINFIXLIMIT then it will be edited using TTYIN,
otherwise the Lisp editor is called via EDITE.

FORGET EventSpec [Exec command]

Erases UNDO information for the specified events.

NAME COMMAND-NAME ARGUMENTS EVENT-SPEC [Exec command]

Defines a new command, COMMAND-NAME, and its ARGUMENTS, containing the events in
EVENT-SPEC.

NDIR PATHNAME KEYWORDS [Exec command]

Shows a directory listing for PATHNAME or the connected directory in abbreviated format.
If provided, KEYWORDS indicate information to be displayed for each file. Some keywords
are: AUTHOR, AU, CREATIONDATE, DA, etc.

PL SYMBOL [Exec command]

Prints the property list of SYMBOL in an easy to read format.

REMEMBER &REST EVENT-SPEC [Exec command]

Tells File Manager to remember type-in from specified event(s), EVENT-SPEC, as
expressions to save.

SHH LINE [Exec command]

Executes LINE without history list processing.

UNDO EventSpec [Exec command]

Undoes the side effects of the specified event (see below under “Undoing”).

PP NAME TYPES [Exec command]

Shows (prettyprinted) the definitions for NAME specified by TYPES.

SEE FILES [Exec command]

Prints the contents of FILES in the Exec window, hiding comments.

SEE* FILES [Exec command]

Prints the contents of FILES in the Exec window, showing comments.

TIME FORM &KEY REPEAT &ENVIRONMENT ENV [Exec command]

Times the evaluation of FORM in the lexical environment ENV, repeating REPEAT number
of times. Information is displayed in the Exec window.

TY FILES [Exec command]

Exactly like the TYPE Exec command.

13-9

MEDLEY EXECUTIVES

TYPE FILES [Exec command]

Prints the contents of FILES in the Exec window, hiding comments.

Variables

A number of variables are provided for convenience in the Exec.

IL:IT [Variable]

Whenever an event is completed, the global value of the variable IT is reset to the event’s
value. For example,

Following a ?? command, IL:IT is set to the value of the last event printed. The
inspector has an option for setting the variable IL:IT to the current selection or inspected
object, as well. The variable IL:IT is global, and is shared among all Execs. IL:IT is a
convenient mechanism for passing values from one process to another.

Note: IT is in the Interlisp package and these examples are intended for an Exec whose
PACKAGE is set to XCL-USER. Thus, IT must be package qualified (the IL:).

The following variables are maintained independently by each Exec. (When a new Exec is started, the
initial values are NIL, or, for a nested Exec, the value for the “parent” Exec. However, events
executed under a nested Exec will not affect the parent values.)

CL:- [Variable]
CL:+ [Variable]
CL:++ [Variable]
CL:+++ [Variable]

While a form is being evaluated by the Exec, the variable CL:- is bound to the form, CL:+
is bound to the previous form, CL:++ the one before, etc. If the input is in apply-format
rather than eval-format, the value of the respective variable is just the function name.

CL:* [Variable]
CL:** [Variable]
CL:*** [Variable]

While a form is being evaluated by the Exec, the variable CL:* is bound to the (first) value
returned by the last event, CL:** to the event before that, etc. The variable CL:* differs
from IT in that IT is global while each separate Exec maintains its own copy of CL:*,
CL:** and CL:***. In addition, the history commands change IT, but only inputs that
are retained on the history list can change CL:*.

13-10

MEDLEY REFERENCE MANUAL

CL:/ [Variable]
CL:// [Variable]
CL:/// [Variable]

While a form is being evaluated by an Exec, the variable CL:/ is bound to a list of the
results of the last event in that Exec, CL:// to the values of the event before that, etc.

Fonts in the Exec

The Exec can use different fonts for displaying the prompt, user’s input, intermediate printout, and
the values returned by evaluation. The following variables control the Exec’s font use:

PROMPTFONT [Variable]

Font used for printing the event prompt.

INPUTFONT [Variable]

Font used for echoing your type-in.

PRINTOUTFONT [Variable]

Font used for any intermediate printing caused by execution of a command or evaluation
of a form. Initially the same as DEFAULTFONT.

VALUEFONT [Variable]

Font used to print the values returned by evaluation of a form. Initially the same as
DEFAULTFONT.

Modifying an Exec

(CHANGESLICE N HISTORY —) [Function]

Changes the maximum number of events saved on the history list HISTORY to N. If NIL,
HISTORY defaults to the top level history LISPXHISTORY.

The effect of increasing the time-slice is gradual: the history list is simply allowed to grow
to the corresponding length before any events are forgotten. Decreasing the time-slice will
immediately remove a sufficient number of the older events to bring the history list down
to the proper size. However, CHANGESLICE is undoable, so that these events are
(temporarily) recoverable. Therefore, if you want to recover the storage associated with
these events without waiting N more events until the CHANGESLICE event drops off the
history list, you must perform a FORGET command.

Defining New Commands

You can define new Exec commands using the XCL:DEFCOMMAND macro.

(XCL:DEFCOMMAND NAME ARGUMENT-LIST &REST BODY) [Macro]

XCL:DEFCOMMAND is like XCL:DEFMACRO, but defines new Exec commands. The
ARGUMENT-LIST can have keywords, and use all of the features of macro argument lists.
When NAME is subsequently typed to the Exec, the rest of the line is processed like the
arguments to a macro, and the BODY is executed. XCL:DEFCOMMAND is a definer; the

13-11

MEDLEY EXECUTIVES

File Manager will remember typed-in definitions and allow them to be saved, edited with
EDITDEF, etc.

There are three kinds of commands that can be defined, :EVAL, :QUIET, and :INPUT.
Commands can also be marked as only for the debugger, in which case they are labelled
as :DEBUGGER. The command type is noted by supplying a list for the NAME argument to
XCL:DEFCOMMAND, where the first element of the list is the command name, and the other
elements are keyword(s) for the command type and, optionally :DEBUGGER.

The documentation string in user defined Exec commands is automatically added to the
documentation descriptions by the CL:DOCUMENTATION function under the COMMANDS
type and can be shown using the ? Exec command.

:EVAL This is the default. The body of the command just gets executed, and its
value is the value of the event. For example (in an XCL Exec),

would define the LS command to print out all file names that match the
input NAMESTRING. The (VALUES) means that no value will be printed by
the event, only the intermediate output from the FORMAT.

:QUIET These commands are evaluated, but neither your input nor the results of the
command are stored on the history list. For example, the ?? and SHH
commands are quiet.

:INPUT These commands work more like macros, in that the result of evaluating the
command is treated as a new line of input. The FIX command is an input
command. The result is treated as a line; a single expression in EVAL-format
should be returned as a list of the expression to EVAL.

Undoing

Note: This discussion only applies to undoing under the Exec or Debugger, and within the UNDOABLY
macro; text and structure editors handle undoing differently.

The UNDO facility allows recording of destructive changes such that they can be played back to restore
a previous state. There are two kinds of UNDOing: one is done by the Exec, the other is available for
use in your code. Both methods share information about what kind of operations can be undone and
where the changes are recorded.

13-12

MEDLEY REFERENCE MANUAL

Undoing in the Exec

UNDO EventSpec [Exec command]

The Exec’s UNDO command is implemented by watching the evaluation of forms and
requiring undoable operations in that evaluation to save enough information on the
history list to reverse their side effects. The Exec simply executes operations, and any
undoable changes that occur are automatically saved on the history list by the responsible
functions. The UNDO command works on itself the same way: it recovers the saved
information and performs the corresponding inverses. Thus, UNDO is effective on itself, so
that you can UNDO an UNDO, and UNDO that, etc.

Only when you attempt to undo an operation does the Exec check to see whether any
information has been saved. If none has been saved, and you have specifically named the
event you want undone, the Exec types nothing saved. (When you just type UNDO, the
Exec only tries to undo the last operation.)

UNDO watches evaluation using CL:EVALHOOK (thus, calling CL:EVALHOOK cannot be
undone). Each form given to EVAL is examined against the list LISPXFNS to see if it has a
corresponding undoable version. If an undoable version of a call is found, it is called with
the same arguments instead of the original. Therefore, before evaluating all subforms of
your input, the Exec substitutes the corresponding undoable call for any destructive
operation. For example, if you type (DEFUN FOO ...), undoable versions of the forms
that set the definition into the symbol function cell are evaluated. FOO’s function
definition itself is not made undoable.

Undoing in Programs

There are two ways to make a program undoable. The simplest method is to wrap the program’s
form in the UNDOABLY macro. The other is to call undoable versions of destructive operations
directly.

(XCL:UNDOABLY &REST FORMS) [Macro]

Executes the forms in FORMS using undoable versions of all destructive operations. This
is done by “walking” (see WALKFORM) all of the FORMS and rewriting them to use the
undoable versions of destructive operations (LISPXFNS makes the association).

(STOP-UNDOABLY &REST FORMS) [Macro]

Normally executes as PROGN; however, within an UNDOABLY form, explicitly causes
FORMS not to be done undoably. Turns off rewriting of the FORMS to be undoable inside
an UNDOABLY macro.

Undoable Versions of Common Functions

When efficiencyis a serious concern, you may need more control over the saving of undo information
than that provided by the UNDOABLY macro.

To make a function undoable, you can simply substitute the corresponding undoable function in your
program. When the undoable function is called, it will save the undo information in the current event
on the history list.

13-13

MEDLEY EXECUTIVES

Various operations, most notably SETF, have undoable versions. The following undoable macros are
initially available:

UNDOABLY-POP UNDOABLY-SET-SYMBOL
UNDOABLY-PUSH UNDOABLY-MAKUNBOUND
UNDOABLY-PUSHNEW UNDOABLY-FMAKUNBOUND
UNDOABLY-REMF UNDOABLY-SETQ
UNDOABLY-ROTATEF XCL:UNDOABLY-SETF
UNDOABLY-SHIFTF UNDOABLY-PSETF
UNDOABLY-DECF UNDOABLY-SETF-SYMBOL-FUNCTION
UNDOABLY-INCF UNDOABLY-SETF-MACRO-FUNCTION

Note: Many destructive Common Lisp functions do not have undoable versions, e.g., CL:NREVERSE,
CL:SORT, etc. You can see the current list of undoable functions on the association list LISPXFNS.

Modifying the UNDO Facility

You may want to extend the UNDO facility after creating a form whose side effects might be undoable,
for instance a file renaming function.

You need to write an undoable version of the function. You can do this by explicitly saving previous
state information, or by renaming calls in the function to their undoable equivalent. Undo
information should be saved on the history list using IL:UNDOSAVE.

You must then hook the undoable version of the function into the undo facility. You do this by either
using the IL:LISPXFNS association list, or in the case of a SETF modifier, on the IL:UNDOABLE-
SETF-INVERSE property of the SETF function.

LISPXFNS [Variable]

Contains an association list that maps from destructive operations to their undoable form.
Initially this list contains:

((CL:POP . UNDOABLY-POP)
(CL:PSETF . NDOABLY-PSETF)
(CL:PUSH . UNDOABLY-PUSH)
(CL:PUSHNEW . UNDOABLY-PUSHNEW)
((CL:REMF) . UNDOABLY-REMF)
(CL:ROTATEF . UNDOABLY-ROTATEF)
(CL:SHIFTF . UNDOABLY-SHIFTF)
(CL:DECF . UNDOABLY-DECF)
(CL:INCF . UNDOABLY-INCF)
(CL:SET . UNDOABLY-SET-SYMBOL)
(CL:MAKUNBOUND . UNDOABLY-MAKUNBOUND)
(CL:FMAKUNBOUND . UNDOABLY-FMAKUNBOUND)
. . . plus the original Interlisp undo associations)

(XCL:UNDOABLY-SETF PLACE VALUE ...) [Macro]

Like CL:SETF but saves information so it may be undone. UNDOABLY-SETF uses
undoable versions of the SETF function located on the UNDOABLE-SETF-INVERSE
property of the function being SETFed. Initially these SETF names have such a property:

CL:SYMBOL-FUNCTION - UNDOABLY-SETF-SYMBOL-FUNCTION
CL:MACRO-FUNCTION - UNDOABLY-SETF-MACRO-FUNCTION

13-14

MEDLEY REFERENCE MANUAL

(UNDOABLY-SETQ &REST FORMS) [Function]

Typed-in SETQs (and SETFs on symbols) are made undoable by substituting a call to
UNDOABLY-SETQ. UNDOABLY-SETQ operates like SETQ on lexical variables or those
with dynamic bindings; it only saves information on the history list for changes to global,
“top-level” values.

(UNDOSAVE UNDOFORM HISTENTRY) [Function]

Adds the undo information UNDOFORM to the SIDE property of the history event
HISTENTRY. If there is no SIDE property, one is created. If the value of the SIDE
property is NOSAVE, the information is not saved. HISTENTRY specifies an event. If
HISTENTRY=NIL, the value of LISPXHIST is used. If both HISTENTRY and LISPXHIST
are NIL, UNDOSAVE is a no-op.

The form of UNDOFORM is (FN . ARGS). Undoing is done by performing (APPLY (CAR
UNDOFORM) (CDR UNDOFORM)).

\#UNDOSAVES [Variable]

The maximum number of UNDOFORMs to be saved for a single event. When the count of
UNDOFORMs reaches this number, UNDOSAVE prints the message CONTINUE SAVING?,
asking if you want to continue saving. If you answer NO or default, UNDOSAVE discards
the previously saved information for this event, and makes NOSAVE be the value of the
property SIDE, which disables any further saving for this event. If you answer YES,
UNDOSAVE changes the count to -1, which is then never incremented, and continues
saving. The purpose of this feature is to avoid tying up large quantities of storage for
operations that will never need to be undone.

If \#UNDOSAVES is negative, then when the count reaches (ABS \#UNDOSAVES),
UNDOSAVE simply stops saving without printing any messages or other interactions.
\#UNDOSAVES = NIL is equivalent to \#UNDOSAVES = infinity. \#UNDOSAVES is initially
NIL.

The configuration described here is very satisfactory. You pay a very small price for the
ability to undo what you type in, since the interpreted evaluation is simply watched for
destructive operations, or if you wish to protect yourself from malfunctioning in your
own programs, you can explicitly call, or rewrite your program to explicitly call, undoable
functions.

Undoing Out of Order

UNDOABLY-SETF operates undoably by saving (on the history list) the cell that is to be changed and
its original contents. Undoing an UNDOABLY-SETF restores the saved contents.

This implementation can produce unexpected results when multiple modifications are made to the
same piece of storage and then undone out of order. For example, if you type (SETF (CAR FOO)
1), followed by (SETF (CAR FOO) 2), then undo both events by undoing the most recent event
first, then undoing the older event, FOO will be restored to its state before either event operated.
However if you undo the first event, then the second event, (CAR FOO) will be 1, since this is what
was in CAR of FOO before (UNDOABLY-SETF (CAR FOO) 2) was executed. Similarly, if you type

13-15

MEDLEY EXECUTIVES

(NCONC FOO ’(1)), followed by (NCONC FOO ’(2)), undoing just (NCONC FOO ’(1)) will
remove both 1 and 2 from FOO. The problem in both cases is that the two operations are not
independent.

In general, operations are always independent if they affect different lists or different sublists of the
same list. Undoing in reverse order of execution, or undoing independent operations, is always
guaranteed to do the right thing. However, undoing dependent operations out of order may not
always have the predicted effect.

Format and Use of the History List

LISPXHISTORY [Variable]

The Exec currently uses one primary history list, LISPXHISTORY for the storing events.

The history list is in the form (EVENTS EVENT# SIZE MOD), where EVENTS is a list of
events with the most recent event first, EVENT# is the event number for the most recent
event on EVENTS, SIZE is the the maximum length EVENTS is allowed to grow. MOD is
is the maximum event number to use, after which event numbers roll over.
LISPXHISTORY is initialized to (NIL 0 100 1000).

The history list has a maximum length, called its time-slice. As new events occur, existing
events are aged, and the oldest events are forgotten. The time-slice can be changed with
the function CHANGESLICE. Larger time-slices enable longer memory spans, but tie up
correspondingly greater amounts of storage. Since you seldom need really ancient
history, a relatively small time-slice such as 30 events is usually adequate, although some
users prefer to set the time-slice as large as 200 events.

Each individual event on EVENTS is a list of the form (INPUT ID VALUE . PROPS).
For Exec events, ID is a list (EVENT-NUMBER EXEC-ID). The EVENT-NUMBER is the
number of the event, while the EXEC-ID is a string that uniquely identifies the Exec. (The
EXEC-ID is used to identify which events belong to the “same” Exec.) VALUE is the (first)
value of the event. PROPS is a property list used to associate other information with the
event (described below).

INPUT is the input sequence for the event. Normally, this is just the input that you type
in. For an APPLY-format input this is a list consisting of two expressions; for an EVAL-
format input, this is a list of just one expression; for an input entered as list of atoms,
INPUT is simply that list. For example,

User Input INPUT is:

LIST(1 2) (LIST (1 2))
(LIST 1 1) ((LIST 1 1))
DIR "{DSK}<LISPFILES>"cr (DIR "{DSK}<LISPFILES>")

If you type in an Exec command that executes other events (REDO, USE, etc.), several
events might result. When there is more than one input, they are wrapped together into
one invocation of the DO-EVENTS command.

The same convention is used for representing multiple inputs when a USE command
involves sequential substitutions. For example, if you type FBOUNDP(FOO) and then USE

13-16

MEDLEY REFERENCE MANUAL

FIE FUM FOR FOO, the input sequence that will be constructed is DO-EVENTS (EVENT
FBOUNDP (FIE)) (EVENT FBOUNDP (FUM)), which is the result of substituting FIE
for FOO in (FBOUNDP (FOO)) concatenated with the result of substituting FUM for FOO in
(FBOUNDP (FOO)).

PROPS is a property list of the form (PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...),
that can be used to associate arbitrary information with a particular event. Currently, the
following properties are used by the Exec:

SIDE

A list of the side effects of the event. See UNDOSAVE.

LISPXPRINT

Used to record calls to EXEC-FORMAT, and printed by the ?? command.

Making or Changing an Exec

(XCL:ADD-EXEC &KEY PROFILE REGION TTY ID) [Function]

Creates a new process and window with an Exec running in it. PROFILE is the type of the
Exec to be created (see below under XCL:SET-EXEC-TYPE). REGION optionally gives the
shape and location of the window to be used. If not provided you will be prompted. TTY
is a flag, which, if true, causes the tty to be given to the new Exec process. ID is a string
identifier to use for events generated in this exec. ID defaults to the number given to the
Exec process created.

(XCL:EXEC &KEY WINDOW PROMPT COMMAND-TABLES ENVIRONMENT PROFILE TOP-
LEVEL-P TITLE FUNCTION ID) [Function]

This is the main entry to the Exec. The arguments are:

WINDOW defaults to the current TTY display stream, or can be provided a window in
which the Exec will run.

PROMPT is the prompt to print.

COMMAND-TABLES is a list of hash-tables for looking up commands (e.g., *EXEC-
COMMAND-TABLE* or *DEBUGGER-COMMAND-TABLE*).

ENVIRONMENT is a lexical environment used to evaluate things in.

READTABLE is the default readtable to use (defaults to the “Common Lisp” readtable).

PROFILE is a way to set the Exec’s type (see above, “Multiple Execs and the Exec’s
Type”).

TOP-LEVEL-P is a boolean, which should be true if this Exec is at the top level (it’s NIL
for debugger windows, etc).

TITLE is an identifying title for the window title of the Exec.

FUNCTION is a function used to actually evaluate events, default is EVAL-INPUT.

13-17

MEDLEY EXECUTIVES

ID is a string identifier to use for events generated in this Exec. ID defaults to the
number given to the Exec process.

XCL:*PER-EXEC-VARIABLES* [Variable]

A list of pairs of the form (VAR INIT). Each time an Exec is entered, the variables in
PER-EXEC-VARIABLES are rebound to the value returned by evaluating INIT. The
initial value of *PER-EXEC-VARIABLES* is:

((*PACKAGE* *PACKAGE*)
 (* *)
 (** **)
 (*** ***)
 (+ +)
 (++ ++)
 (+++ +++)
 (- -)
 (/ /)
 (// //)
 (/// ///)
 (HELPFLAG T)
 (*EVALHOOK* NIL)
 (*APPLYHOOK* nil)
 (*ERROR-OUPUT* *TERMINAL-IO*)
 (*READTABLE* *READTABLE*)
 (*package* *package*)
 (*eval-function* *eval-function*)
 (*exec-prompt* *exec-prompt*)
 (*debugger-prompt* *debugger-prompt*))

Most of these cause the values to be (re)bound to their current value in any inferior Exec,
or to NIL, their value at the “top level”.

XCL:*EVAL-FUNCTION* [Variable]

Bound to the function used by the Exec to evaluate input. Typically in an Interlisp Exec
this is IL:EVAL, and in a Common Lisp Exec, CL:EVAL.

XCL:*EXEC-PROMPT* [Variable]

Bound to the string printed by the Exec as a prompt for input. Typically in an Interlisp
Exec this is “ ← ”, and in a Common Lisp Exec, “> ”.

XCL:*DEBUGGER-PROMPT* [Variable]

Bound to the string printed by the debugger Exec as a prompt for input. Typically in an
Interlisp Exec this is “ ← : ”, and in a Common Lisp Exec, “: ”.

(XCL:EXEC-EVAL FORM &OPTIONAL ENVIRONMENT) [Function]

Evaluates FORM (using EVAL) in the lexical environment ENVIRONMENT the same as
though it were typed in to EXEC, i.e., the event is recorded, and the evaluation is made
undoable by substituting the UNDOABLE-functions for the corresponding destructive
functions. XCL:EXEC-EVAL returns the value(s) of the form, but does not print it, and
does not reset the variables *, **, ***, etc.

13-18

MEDLEY REFERENCE MANUAL

(XCL:EXEC-FORMAT CONTROL-STRING &REST ARGUMENTS) [Function]

In addition to saving inputs and values, the Exec saves many system messages on the
history list. For example, FILE CREATED ..., FN redefined, VAR reset, output of
TIME, BREAKDOWN, ROOM, save their output on the history list, so that when ?? prints the
event, the output is also printed. The function XCL:EXEC-FORMAT can be used in your
code similarly. XCL:EXEC-FORMAT performs (APPLY #’CL:FORMAT *TERMINAL-
IO* CONTROL-STRING ARGUMENTS) and also saves the format string and arguments
on the history list associated with the current event.

(XCL:SET-EXEC-TYPE NAME) [Function]

Sets the type of the current Exec to that indicated by NAME. This can be used to set up the
Exec to your liking. NAME may be an atom or string. Possible names are:

INTERLISP, IL *READTABLE* INTERLISP
PACKAGE INTERLISP
XCL:*DEBUGGER-PROMPT* "←: "
XCL:*EXEC-PROMPT* "←"
XCL:*EVAL-FUNCTION* IL:EVAL

XEROX-COMMON-LISP, XCL *READTABLE* XCL
PACKAGE XCL-USER
XCL:*DEBUGGER-PROMPT* ": "
XCL:*EXEC-PROMPT* "> "
XCL:*EVAL-FUNCTION* CL:EVAL

COMMON-LISP, CL *READTABLE* LISP
PACKAGE USER
XCL:*DEBUGGER-PROMPT* ": "
XCL:*EXEC-PROMPT* "> "
XCL:*EVAL-FUNCTION* CL:EVAL

OLD-INTERLISP-T *READTABLE* OLD-INTERLISP-T
PACKAGE INTERLISP
XCL:*DEBUGGER-PROMPT* “←: "
XCL:*EXEC-PROMPT* ": "
XCL:*EVAL-FUNCTION* IL:EVAL

(XCL:SET-DEFAULT-EXEC-TYPE NAME) [Function]

Like XCL:SET-EXEC-TYPE, but sets the type of Execs created by default, as from the
background menu. Initially XCL. This can be used in your greet file to set default Execs to
your liking.

Editing Exec Input

The Exec features an input editorwhich provides completion, spelling correction, help facility, and
character-level editing. The implementation is borrowed from the Interlisp module TTYIN. This
section describes the use of the TTYIN editor from the perspective of the Exec.

Editing Your Input

Some editing operations can be performed using any of several characters; characters that are
interrupts will, of course, not be read, so several alternatives are given. The following characters may
be used to edit your input:

CONTROL-A

13-19

MEDLEY EXECUTIVES

BACKSPACEDeletes a character. At the start of the second or subsequent lines of your input, deletes the last
character of the previous line.

CONTROL-W Deletes a “word”. Generally this means back to the last space or parenthesis.
CONTROL-Q Deletes the current line, or if the current line is blank, deletes the previous line.
CONTROL-R Refreshes the current line. Two in a row refreshes the whole buffer (when doing

multiline input).
ESCAPE Tries to complete the current word from the spelling list USERWORDS. In the case

of ambiguity, completes as far as is uniquely determined, or beeps.
UNDO key Retrieves characters from the previous non-empty buffer when it is able to; e.g.,

when typed at the beginning of the line this command restores the previous line
you typed; when typed in the middle of a line fills in the remaining text from the
old line; when typed following CONTROL-Q or CONTROL-W restores what those
commands erased.

CONTROL-X Goes to the end of your input (or end of expression if there is an excess right
parenthesis) and returns if parentheses are balanced.

If you are already at the end of the input and the expression is balanced except for lacking one or
more right parentheses, CONTROL-X adds the required right parentheses to balance and returns.

During most kinds of input, lines are broken, if possible, so that no word straddles the end of the line.
The pseudo-carriage return ending the line is still read as a space, however; i.e., the program keeps
track of whether a line ends in a carriage return or is merely broken at some convenient point. You
will not get carriage returns in your strings unless you explicitly type them.

Using the Mouse

Editing with the mouse during TTYIN input is slightly different than with other modules. The mouse
buttons are interpreted as follows during TTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold down LEFT, the caret
moves around with the cursor; after you let up, any type-in will be inserted at the
new position.

MIDDLE
 LEFT+RIGHT Like LEFT, but moves only to word boundaries.

RIGHT Deletes text from the caret to the cursor, either forward or backward. While you hold
down RIGHT, the text to be deleted is inverted; when you let up, the text goes away.
If you let up outside the scope of the text, nothing is deleted (this is how to cancel this
operation).

If you hold down MOVE, COPY, SHIFT or CTRL while pressing the mouse buttons, you
instead get secondary selection, move selection or delete selection. The selection is
made by holding the appropriate key down while pressing the mouse buttons LEFT
(to select a character) or MIDDLE (to select a word), and optionally extend the
selection either left or right using RIGHT. While you are doing this, the caret does not
move, but the selected text is highlighted in a manner indicating what is about to
happen. When the selection is complete, release the mouse buttons and then lift up
on MOVE/COPY/CTRL/SHIFT and the appropriate action will occur:

13-20

MEDLEY REFERENCE MANUAL

COPY
 SHIFT The selected text is inserted as if it were typed. The text is highlighted with a broken

underline during selection.

CTRL The selected text is deleted. The text is complemented during selection.

MOVE
 CTRL+SHIFT Combines copy and delete. The selected text is moved to the caret.

You can cancel a selection in progress by pressing LEFT or MIDDLE as if to select, and moving outside
the range of the text.

The most recent text deleted by mouse command can be inserted at the caret by typing the UNDO key.
This is the same key that retrieves the previous buffer when issued at the end of a line.

Editing Commands

A number of characters have special effects while typing to the Exec. Some of them merely move the
caret inside the input stream. While caret positioning can often be done more conveniently with the
mouse, some of the commands, such as the case changing commands, can be useful for modifying the
input.

In the descriptions below, current word means the word the cursor is under, or if under a space, the
previous word. Currently, parentheses are treated as spaces, which is usually what you want, but
can occasionally cause confusion in the word deletion commands.

Most commands can be preceded by a numeric argument. A numeric argument can be a number or
an escape. You enter the numeric argument by holding down the meta key and entering a number.
You only need to hold down the meta key for the firs digit of the argument. Entering escape as a
numeric argument means infinity.

Some commands also accept negative arguments, but some only look at the magnitude of the
argument. Most of these commands are confined to work within one line of text unless otherwise
noted.

Cursor Movement Commands

Meta-BACKSPACE Backs up one (or n) characters.

Meta-SPACE Moves forward one (or n) characters.

Meta-^ Moves up one (or n) lines.

Meta-LINEFEED Moves down one (or n) lines.

Meta-(Moves back one (or n) words.

Meta-) Moves ahead one (or n) words.

Meta-tab Moves to end of line; with an argument moves to nth end of line; Meta-
Control-tab goes to end of buffer.

Meta-Control-L Moves to start of line (or nth previous, or start of buffer).

Meta-{ Goes to start of buffer.

Meta-} Goes to end of buffer.

13-21

MEDLEY EXECUTIVES

Meta-[Moves to beginning of the current list, where cursor is currently under an
element of that list or its closing paren. (See also the auto-parenthesis-matching
feature below under “Assorted Flags”.)

Meta-] Moves to end of current list.

Meta-Sx Skips ahead to next (or nth) occurrence of character x, or rings the bell.

Meta-Bx Backward search.

Buffer Modification Commands

Meta-Zx Zaps characters from cursor to next (or nth) occurrence of x. There is no unzap
command.

Meta-A
Meta-R Repeats the last S, B, or Z command, regardless of any intervening input.

Meta-K Kills the character under the cursor, or n chars starting at the cursor.

Meta-CR When the buffer is empty is the same as undo i.e. restores buffer’s previous
contents. Otherwise is just like a <cr> (except that it also terminates an insert).
Thus, Meta-CR Meta-CR will repeat the previous input (as will undo<cr>
without the meta key).

Meta-O Does “Open line”, inserting a crlf after the cursor, i.e., it breaks the line but leaves
the cursor where it is.

Meta-T Transposes the characters before and after the cursor. When typed at the end of
a line, transposes the previous two characters. Refuses to handle odd cases, such
as tabs.

Meta-G Grabs the contents of the previous line from the cursor position onward. Meta-
n Meta-G grabs the nth previous line.

Meta-L Puts the current word, or n words on line, in lower case. Meta-<escape>
Meta-L puts the rest of the linein lower case; or if given at the end of line puts
the entire line in lower case.

Meta-U Analogous to Meta-L, for putting word, line, or portion of line in upper case.

Meta-C Capitalizes. If you give it an argument, only the first word is capitalized; the rest
are just lowercased.

Meta-Control-Q Deletes the current line. Meta-<escape> Meta-Control-Q deletes from the
current cursor position to the end of the buffer. No other arguments are
handled.

Meta-Control-W Deletes the current word, or the previous word if sitting on a space.

Miscellaneous Commands

Meta-P Prettyprints buffer. Clears the buffer and reprints it using prettyprint. If there
are not enough right parentheses, it will supply more; if there are too many, any
excess remains unprettyprinted at the end of the buffer. May refuse to do
anything if there is an unclosed string or other error trying to read the buffer.

13-22

MEDLEY REFERENCE MANUAL

Meta-N Refreshes line. Same as Control-R. Meta-<escape> Meta-N refreshes the whole
buffer; Meta-n Meta-N refreshes n lines. Cursor movement in TTYIN depends
on TTYIN being the only source of output to the window; in some circumstances,
you may need to refresh the line for best results.

Meta-Control-Y Gets an Interlisp Exec. Meta-<escape> Meta-Control-YGets an Interlisp
Exec, but first unreads the contents of the buffer from the cursor onward. Thus if
you typed at TTYIN something destined for Interlisp, you can do Meta-
Control-L Meta-<escape> Meta-Control-Y and give it to Lisp.

Meta-_ Adds the current word to the spelling list USERWORDS. With zero argument,
removes word. See TTYINCOMPLETEFLG .

Useful Macros

If the event is considered short enough, the Exec command FIX will load the buffer with the event’s
input, rather than calling the structure editor. If you really wanted the Lisp editor for your fix, you
can say FIX EVENT - |TTY:|.

?= Handler

Typing the characters ?=<cr> displays the arguments to the function currently in progress. Since
TTYIN wants you to be able to continue editing the buffer after a ?=, it prints the arguments below
your type-in and then puts the cursor back where it was when ?= was typed.

Assorted Flags

These flags control aspects of TTYIN’s behavior. Some have already been mentioned. All are initially
set to T.

?ACTIVATEFLG [Variable]

If true, enables the feature whereby ? lists alternative completions from the current
spelling list.

SHOWPARENFLG [Variable]

If true, then whenever you are typing Lisp input and type a right parenthesis, TTYIN will
briefly move the cursor to the matching parenthesis, assuming it is still on the screen. The
cursor stays there for about 1 second, or until you type another character (i.e., if you type
fast you will never notice it).

USERWORDS [Variable]

USERWORDS contains words you mentioned recently: functions you have defined or
edited, variables you have set or evaluated at the executive level, etc. This happens to be a
very convenient list for context-free escape completion; if you have recently edited a
function, chances are good you may want to edit it again (typing “ED(xx$)”) or type a
call to it. If there is no completion for the current word from USERWORDS, or there is more
than one possible completion, TTYIN beeps. If typed when not inside a word, Escape
completes to the value of LASTWORD, i.e., the last thing you typed that the Exec noticed,

13-23

MEDLEY EXECUTIVES

except that Escape at the beginning of the line is left alone (it is an Old Interlisp Exec
command).

If you really wanted to enter an escape, you can, of course, just quote it with a CONTROL-
V, like you can other control characters.

You may explicitly add words to USERWORDS yourself that would not get there otherwise.
To make this convenient online the edit command [←] means “add the current atom to
USERWORDS” (you might think of the command as pointing out this atom). For example,
you might be entering a function definition and want to point to one or more of its
arguments or prog variables. Giving an argument of zero to this command will instead
remove the indicated atom from USERWORDS.

Note that this feature loses some of its value if the spelling list is too long, if there are too
many alternative completions for you to get by with typing a few characters followed by
escape. Lisp’s maintenance of the spelling list USERWORDS keeps the temporary section
(which is where everything goes initially unless you say otherwise) limited to
\#USERWORDS atoms, initially 100. Words fall off the end if they haven’t been used (they
are used if FIXSPELL corrects to one, or you use <escape> to complete one).

 Old Interlisp T compatibility

The Old Interlisp exec contains a few extra Exec commands not listed above. They are explained here.

In addition to the normal Event addresses you can also specify the following Event addresses:

= Specifies that the next object is to be searched for in the values of events, instead of
the inputs

SUCHTHAT PRED Specifies an event for which the function PRED returns true. PRED should be a
function of two arguments, the input portion of the event, and the event itself.

PAT Any other event address command specifies an event whose input contains an
expression that matches PAT. When multiple Execs are active, all events are
searched, no matter which Exec they belong to. The pattern can be a simple
symbol, or a more complex search pattern.

 Significant Changes in MEDLEY Rele ase

There are two major differences between the Medley release and older versions of the system:

• SETQ does not interact with the File Manager. In older releases (Koto, etc.), when you typed in
(SETQ FOO some-new-value) the executive responded with (FOO reset) and the file
manager was told that FOO’s value had changed. Files containing FOO were marked for cleanup, if
none existed you were prompted for one when you typed (FILES?).

This is still the case in the Old Interlisp executive but not in any of the others. If you are setting a
variable that is significant to a program and you want to save it on a file, you should use the
Common Lisp macro CL:DEFPARAMETER instead of SETQ. This will give the symbol a definition
of type VARIABLES (instead of VARS), and it will be noticed by the File Manager. Subseqent

13-24

MEDLEY REFERENCE MANUAL

changes to the variable must be done by another call to CL:DEFPARAMETER or by editing it using
ED (not DV).

• The following functions and variables are only available in the Old Interlisp Exec: LISPX,
USEREXEC, LISPXEVAL, READBUF, (READLINE), (LISPXREAD), (LISPXREADP),
(LISPXUNREAD), (PROMPTCHAR), (HISTORYSAVE), (LISPXSTOREVALUE), (LISPXFIND),
(HISTORYFIND), (HISROTYMATCH), (ENTRY), (UNDOSAVE), #UNDOSAVES, (NEW/FN),
(LISPX/), (UNDOLISPX), (UNDOLISPX1), and (PRINTHISTORY).

The function USEREXEC invokes an old-style executive, but uses the package and readtable of its
caller. Callers of LISPXEVAL should use EXEC-EVAL instead.

13-25

14-1

14. ERRORS AND DEBUGGING

Occasionally, while a program is running, an error occurs which stops the computation. Errors can be
caused in different ways. A coding mistake may have caused the wrong arguments to be passed to a
function, or caused the function to attempt something illegal. For example, PLUS will cause an error if
its arguments are not numbers. It is also possible to interrupt a computation by typing one of the
“interrupt characters,” such as Control-D or Control-E (Medley interrupt characters are listed in
Chapter 30). Finally, you can specify that certain functions automatically cause an error whenever
they are entered (see Chapter 15). This facilitates debugging by allowing you to examine the context
within the computation.

When an error occurs, the system can either reset and unwind the stack, or go into a “break”, and
attempt to debug the program. You can modify the mechanism that decides whether to unwind the
stack or break, and is described in the Controlling When to Break section in this chapter. Within a
break, Medley offers an extensive set of “break commands”.

This chapter explains what happens when errors occur. It also tells you how to handle program errors
using breaks and break commands. The debugging capabilities of the break window facility are
described, as well as the variables that control its operation. Finally, advanced facilities for modifying
and extending the error mechanism are presented.

Breaks

One of the most useful debugging facilities in Medley is the ability to put the system into a “break”,
stopping a computation at any point, allowing you to interrogate the state of the world and affect the
course of the computation. When a break occurs, a “break window” (see the Break Windows section
below) is brought up near the TTY window of the broken process. The break window looks like a top-
level executive window, except that the prompt character is “:” instead of “←” as in the top-level
executive. A break saves the environment where the break occurred, so that you may evaluate
variables and expressions in the borken environment. In addition, the break program recognizes a
number of useful “break commands”, providing an easy way to interrogate the state of the broken
computation.

Breaks may be entered in several ways. Some interrupt characters (Chapter 30) automatically cause a
break whenever you type them. Function errors may also cause a break, depending on the depth of
the computation (see Controlling When to Break below). Finally, Medley provides facilities which
make it easy to “break” suspect functions so that they always cause a break whenever they are
entered.

Within a break you have access to all of the power of Medley; you can do anything you can do at the
top-level executive. For example, you can evaluate an expression, call the editor, change the function,
and evaluate the expression again, all without leaving the break. You can also type in commands like
REDO, and UNDO (Chapter 13), to redo or undo previously executed events, including break
commands.

Similarly, you can prettyprint functions, define new functions or redefine old ones, load a file, compile
functions, time a computation, etc. In addition, you can examine the stack (see Chapter 11), and even
force a return back to some higher function via the functions RETFROM or RETEVAL.

Once a break occurs, you are in complete control of the flow of the computation, and the computation
will not proceed without specific instruction from you. If you type in an expression whose evaluation

14-2

MEDLEY REFERENCE MANUAL

causes an error, the break is maintained. Similarly if you abort a computation initiated from within
the break (by typing Control-E), the break is maintained. Only if you give one of the commands that
exits from the break, or evaluates a form which does a RETFROM or RETEVAL out of BREAK1, will the
computation continue. Also, BREAK1 does not “turn off” Control-D, so a Control-D will force an
immediate return to the top level.

Break Windows

When a break occurs, a break window is brought up near the TTY window of the borken process and
the terminal stream switched to it. The title of the break window is changed to the name of the broken
function and the reason for the break. If a break occurs under a previous break, a new break window
is created.

If a break is caused by a storage full error, the display break package will not try to open a new break
window, since this would cause an infinite loop.

While in a break window, clicking the middle button brings up a menu of break commands: EVAL,
EDIT, revert, ↑, OK, BT, BT!, and ?=. Clicking on these commands is equivalent to typing the
corresponding break commandm, except BT and BT! which behave differently from the typed-in
commands (see Break Commands below).

The BT and BT! menu commands bring up a backtrace menu beside the break window showing the
frames on the stack. BT shows frames for which REALFRAMEP is T; BT! shows all frames. When one
of the frames is selected from the backtrace menu, it is grayed and the function name and the variables
bound in that frame (including local variables and PROG variables) are printed in the “backtrace frame
window.” If the left button is used for the selection, only named variables are printed. If the middle
button is used, all variables are printed (variables without names appear as *var* N). The
“backtrace frame” window is an inspect window (see Chapter 26). In this window, the left button is
used to select the name of the function, the names of the variables or the values of the variables. For
example, below is a picture of a break window with a backtrace menu created by BT. The
OPENSTREAM stack frame has been selected, so its variables are shown in an inspect window on top of
the break window:

After selecting an item, the middle button brings up a menu of commands that apply to the selected
item. If the function name is selected, you are given a choice of editing the function or seeing the
compiled code with INSPECTCODE (Chapter 26). If you edit the function in this way, the editor is
called in the broken process, so variables evaluated in the editor are in the broken process.

14-3

ERRORS AND DEBUGGING

If a variable name is selected, the command SET is offered. Selecting SET will READ a value and set
the selected to the value read.

Note: The inspector will only allow the setting of named variables. Even with this restriction it is still
possible to crash the system by setting variables inside system frames. Exercise caution in setting
variables in other than your own code.

If a value is selected, the inspector is called on the selected value.

The internal break variable LASTPOS (see the section below) is set to the selected backtrace menu
frame so that the normal break commands EDIT, revert, and ?= work on the currently selected
frame. The commands EVAL, revert, ↑, OK, and ?= in the break menu cause the corresponding
commands to be “typed in.” This means that these break commands will not have the intended effect
if characters have already been typed in. The typed-in break commands BT, BTV, etc. use the value of
LASTPOS to determine where to start listing the stack, so selecting a stack frame name in the backtrace
menu affects these commands.

Break Commands

The basic function of the break package is BREAK1. BREAK1 is just another Interlisp function, not a
special system feature like the interpreter or the garbage collector. It has arguments, and returns a
value, the same as any other function. For more information on the function BREAK1, see Creating
Breaks with BREAK1 below.

The value returned by BREAK1 is called “the value of the break.” You can specify this value explicitly
by using the RETURN break command (see below). But in most cases, the value of a break is given
implicitly, via a GO or OK command, and is the result of evaluating “the break expression.” The break
expression, stored in the variable BRKEXP, is an expression equivalent to the computation that would
have taken place had no break occurred. For example, if you break on the function FOO, the break
expression is the body of the definition of FOO. When you type OK or GO, the body of FOO is
evaluated, and its value returned as the value of the break, i.e., to whatever function called FOO.
BRKEXP is set up by the function that created the call to BREAK1. For functions broken with BREAK or
TRACE, BRKEXP is equivalent to the body of the definition of the broken function (see Chapter 15).
For functions broken with BREAKIN, using BEFORE or AFTER, BRKEXP is NIL. For BREAKIN
AROUND, BRKEXP is the indicated expression (see Chapter 15).

BREAK1 recognizes a large set of break commands. These are typed in without parentheses. In order
to facilitate debugging of programs that perform input operations, the carriage return that is typed to
complete the GO, OK, EVAL, etc. commands is discarded by BREAK1, so that it will not be part of the
input stream after the break.

GO [Break Command]

Evaluates BRKEXP, prints its value, and returns it as the value of the break. Releases the
break and allows the computation to proceed.

OK [Break Command]

Same as GO except that the value of BRKEXP is not printed.

14-4

MEDLEY REFERENCE MANUAL

EVAL [Break Command]

Same as OK except that the break is maintained after the evaluation. The value of EVAL is
bound to the local variable !VALUE, which you can interrogate. Typing GO or OK
following EVAL will not cause BRKEXP to be reevaluated, but simply returns the value of
!VALUE as the value of the break. Typing another EVAL will cause reevaluation. EVAL is
useful when you are not sure whether the break will produce the correct value and want
to examine it before continuing with the computation.

RETURN FORM [Break Command]

FORM is evaluated, and returned as the value of the break. For example, one could use the
EVAL command and follow this with RETURN (REVERSE !VALUE).

↑ [Break Command]

Calls ERROR! and aborts the break, making it “go away” without returning a value. This
is a useful way to unwind to a higher level break. All other errors, including those
encountered while executing the GO, OK, EVAL, and RETURN commands, maintain the
break.

The following four commands refer to “the broken function”, whose name is stored in the BREAK1
argument BRKFN.

!GO [Break Command]

The broken function is unbroken, the break expression is evaluated, the function is
rebroken, and then the break is exited with the value printed.

!OK [Break Command]

The broken function is unbroken, the break expression is evaluated, the function is
rebroken, and then the break is exited without the value printed.

UB [Break Command]

Unbreaks the broken function.

@ [Break Command]

Resets the variable LASTPOS, which establishes a context for the commands ?=, ARGS, BT,
BTV, BTV*, EDIT, and IN? described below. LASTPOS is the position of a function call on
the stack. It is initialized to the function just before the call to BREAK1, i.e., (STKNTH -1
’BREAK1).

When control passes from BREAK1, e.g. as a result of an EVAL, OK, GO, REVERT, ↑
command, or via a RETFROM or RETEVAL you type in, (RELSTK LASTPOS) is executed to
release this stack pointer.

@ treats the rest of the teletype line as its argument(s). It first resets LASTPOS to (STKNTH
-1 ’BREAK1) and then for each atom on the line, @ searches down the stack for a call to
that atom. The following atoms are treated specially:

14-5

ERRORS AND DEBUGGING

@ Do not reset LASTPOS to (STKNTH -1 ’BREAK1) but leave it as it
was, and continue searching from that point.

a number N If negative, move LASTPOS down the stack N frames. If positive, move
LASTPOS up the stack N frames.

/ The next atom on the line (which should be a number) specifies that the
previous atom should be searched for that many times. For example, “@
FOO / 3” is equivalent to “@ FOO FOO FOO”.

= Resets LASTPOS to the value of the next expression, e.g., if the value of
FOO is a stack pointer, “@ = FOO FIE” will search for FIE in the
environment specified by (the value of) FOO.

For example, if the push-down stack looks like:

[9] BREAK1
[8] FOO
[7] COND
[6] FIE
[5] COND
[4] FIE
[3] COND
[2] FIE
[1] FUM

then “@ FIE COND” will set LASTPOS to the position corresponding to
[5]; “@ @ COND” will then set LASTPOS to [3]; and “@ FIE / 3 -
1” to [1].

If @ cannot successfully complete a search for function FN, it searches the stack again from
that point looking for a call to a function whose name is a possible misspelling of FN (see
spelling correction in Chapter 20). If the search is still unsuccessful, @ types (FN NOT
FOUND), and then aborts.

When @ finishes, it types the name of the function at LASTPOS, i.e., (STKNAME
LASTPOS).

@ can be used on BRKCOMS (see Creating Breaks with BREAK1 below). In this case, the
next command on BRKCOMS is treated the same as the rest of the teletype line.

?= [Break Command]

This is a multi-purpose command. Its most common use is to interrogate the value(s) of
the arguments of the broken function. For example, if FOO has three arguments (X Y Z),
then typing ?= to a break on FOO will produce:

:?=
X = value of X
Y = value of Y
Z = value of Z
:

14-6

MEDLEY REFERENCE MANUAL

?= operates on the rest of the teletype line as its arguments. If the line is empty, as in the
above case, it operates on all of the arguments of the broken function. If the you type ?=
X (CAR Y), you will see the value of X, and the value of (CAR Y). The difference
between using ?= and typing X and (CAR Y) directly to BREAK1 is that ?= evaluates its
inputs as of the stack frame LASTPOS, i.e., it uses STKEVAL. This provides a way of
examining variables or performing computations as of a particular point on the stack. For
example, @ FOO / 2 followed by ?= X will allow you to examine the value of X in the
previous call to FOO, etc.

?= also recognizes numbers as referring to the correspondingly numbered argument, i.e.,
it uses STKARG in this case. Thus

:@ FIE
FIE
:?= 2

will print the name and value of the second argument of FIE.

?= can also be used on BRKCOMS (see Creating Breaks with BREAK1 below), in which case
the next command on BRKCOMS is treated as the rest of the teletype line. For example, if
BRKCOMS is (EVAL ?= (X Y) GO), BRKEXP is evaluated, the values of X and Y printed,
and then the function exited with its value being printed.

?= prints variable values using the function SHOWPRINT (see Chapter 25), so that if
SYSPRETTYFLG = T, the value is prettyprinted.

?= is a universal mnemonic for displaying argument names and their corresponding
values. In addition to being a break command, ?= is an edit macro that prints the
argument names and values for the current expression (see Chapter 16), and a read macro
(actually ? is the read macro character) which does the same for the current level list being
read.

PB [Break Command]

Prints the bindings of a given variable. Similar to ?=, except ascends the stack starting
from LASTPOS, and, for each frame in which the given variable is bound, prints the frame
name and value of the variable (with PRINTLEVEL reset to (2 . 3)), e.g.

:PB FOO
@ FN1: 3
@ FN2: 10
@ TOP: NOBIND

PB is also a programmer’s assistant command (see Chapter 13) that can be used when not
in a break. PB is implemented via the function PRINTBINDINGS.

BT [Break Command]

Prints a backtrace of function names starting at LASTPOS. The value of LASTPOS is
changed by selecting an item from the backtrace menu (see the Break Window Variables
section below) or by the @ command. The several nested calls in system packages such as
break, edit, and the top level executive appear as the single entries **BREAK**,
EDITOR, and **TOP** respectively.

14-7

ERRORS AND DEBUGGING

BTV [Break Command]

Prints a backtrace of function names with variables beginning at LASTPOS.

The value of each variable is printed with the function SHOWPRINT (see Chapter 25), so
that if SYSPRETTYFLG = T, the value is prettyprinted.

BTV+ [Break Command]

Same as BTV except also prints local variables and arguments to SUBRs.

BTV* [Break Command]

Same as BTV except prints arguments to local variables.

BTV! [Break Command]

Same as BTV except prints everything on the stack.

BT, BTV, BTV+, BTV*, and BTV! all take optional functional arguments. Use these arguments to
choose functions to be skipped on the backtrace. As the backtrace scans down the stack, the name of
each stack frame is passed to each of the arguments of the backtrace command. If any of these
functions returns a non-NIL value, then that frame is skipped, and not shown in the backtrace. For
example, BT EXPRP will skip all functions definied by expr definitions, BTV (LAMBDA (X) (NOT
(MEMB X FOOFNS))) will skip all but those functions on FOOFNS. If used on BRKCOMS (see Creating
Breaks with BREAK1 below) the functional argument is no longer optional, i.e., the next element on
BRKCOMS must either be a list of functional arguments, or NIL if no functional argument is to be
applied.

For BT, BTV, BTV+, BTV*, and BTV!, if Control-P is used to change a printlevel during the backtrace,
the printlevel is restored after the backtrace is completed.

The value of BREAKDELIMITER, initially the carriage return character, is printed to delimit the output
of ?= and backtrace commands. You can reset it (e.g. to a comma) for more linear output.

ARGS [Break Command]

Prints the names of the variables bound at LASTPOS, i.e., (VARIABLES LASTPOS) (see
Chapter 11). For most cases, these are the arguments to the function entered at that
position, i.e., (ARGLIST (STKNAME LASTPOS)).

REVERT [Break Command]

Goes back to position LASTPOS on stack and reenters the function called at that point with
the arguments found on the stack. If the function is not already broken, REVERT first
breaks it, and then unbreaks it after it is reentered.

REVERT can be given the position using the conventions described for @, e.g., REVERT
FOO -1 is equivalent to @ FOO -1 followed by REVERT.

REVERT is useful for restarting a computation in the situation where a bug is discovered
at some point below where the problem actually occurred. REVERT essentially says “go
back there and start over in a break.” REVERT will work correctly if the names or
arguments to the function, or even its function type, have been changed.

14-8

MEDLEY REFERENCE MANUAL

ORIGINAL [Break Command]

For use in conjunction with BREAKMACROS (see Creating Breaks with BREAK1 below).
Form is (ORIGINAL . COMS). COMS are executed without regard for BREAKMACROS.
Useful for redefining a break command in terms of itself.

EDIT [Break Command]

Designed for use in conjunction with breaks caused by errors. Facilitates editing the
expression causing the break:

NON-NUMERIC ARG
NIL
(IPLUS BROKEN)
:EDIT
IN FOO...
(IPLUS X Z)
EDIT
*(3 Y)
*OK
FOO
:

and you can continue by typing OK, EVAL, etc.

This command is very simple conceptually, but its implementation is complicated by all of
the exceptional cases involving interactions with compiled functions, breaks on user
functions, error breaks, breaks within breaks, et al. Therefore, we shall give the following
simplified explanation which will account for 90% of the situations arising in actual usage.
For those others, EDIT will print an appropriate failure message and return to the break.

EDIT begins by searching up the stack beginning at LASTPOS (set by @ command, initially
position of the break) looking for a form, i.e., an internal call to EVAL. Then EDIT
continues from that point looking for a call to an interpreted function, or to EVAL. It then
calls the editor on either the EXPR or the argument to EVAL in such a way as to look for an
expression EQ to the form that it first found. It then prints the form, and permits
interactive editing to begin. You can then type successive 0’s to the editor to see the chain
of superforms for this computation.

If you exit from the edit with an OK, the break expression is reset, if possible, so that you
can continue with the computation by simply typing OK. (Evaluating the new BRKEXP
will involve reevaluating the form that causes the break, so that if (PUTD (QUOTE
(FOO)) BIG-COMPUTATION) were handled by EDIT, BIG-COMPUTATION would be
reevaluated.) However, in some situations, the break expression cannot be reset. For
example, if a compiled function FOO incorrectly called PUTD and caused the error Arg
not atom followed by a break on PUTD, EDIT might be able to find the form headed by
FOO, and also find that form in some higher interpreted function. But after you corrected
the problem in the FOO-form, if any, you would still not have informed EDIT what to do
about the immediate problem, i.e., the incorrect call to PUTD. However, if FOO were
interpreted, EDIT would find the PUTD form itself, so that when you corrected that form,
EDIT could use the new corrected form to reset the break expression.

14-9

ERRORS AND DEBUGGING

IN? [Break Command]

Similar to EDIT, but just prints parent form, and superform, but does not call the editor,
e.g.,

ATTEMPT TO RPLAC NIL
T
(RPLACD BROKEN)
:IN?
FOO: (RPLACD X Z)

Although EDIT and IN? were designed for error breaks, they can also be useful for user
breaks. For example, if upon reaching a break on his function FOO, you determine that
there is a problem in the call to FOO, you can edit the calling form and reset the break
expression with one operation by using EDIT.

Controlling When to Break

When an error occurs, the system has to decide whether to reset and unwind the stack, or go into a
break. In the middle of a complex computation, it is usually helpful to go into a break, so that you
may examine the state of the computation. However, if the computation has only proceeded a little
when the error occurs, such as when you mistype a function name, you would normally just terminate
a break, and it would be more convenient for the system to simply cause an error and unwind the
stack in this situatuation. The decision over whether or not to induce a break depends on the depth of
computation, and the amount of time invested in the computation. The actual algorithm is described
in detail below; suffice it to say that the parameters affecting this decision have been adjusted
empirically so that trivial type-in errors do not cause breaks, but deep errors do.

(BREAKCHECK ERRORPOS ERXN) [Function]

BREAKCHECK is called by the error routine to decide whether or not to induce a break
when a error occurs. ERRORPOS is the stack position at which the error occurred; ERXN is
the error number. Returns T if a break should occur; NIL otherwise.

BREAKCHECK returns T (and a break occurs) if the “computation depth” is greater than or
equal to HELPDEPTH. HELPDEPTH is initially set to 7, arrived at empirically by taking into
account the overhead due to LISPX or BREAK.

If the depth of the computation is less than HELPDEPTH, BREAKCHECK next calculates the
length of time spent in the computation. If this time is greater than HELPTIME
milliseconds, initially set to 1000, then BREAKCHECK returns T (and a break occurs),
otherwise NIL.

BREAKCHECK determines the “computation depth” by searching back up the stack looking
for an ERRORSET frame (ERRORSETs indicate how far back unwinding is to take place
when an error occurs, see the Catching Errors section below). At the same time, it counts
the number of internal calls to EVAL. As soon as the number of calls to EVAL exceeds
HELPDEPTH, BREAKCHECK immediately stops searching for an ERRORSET and returns T.
Otherwise, BREAKCHECK continues searching until either an ERRORSET is found or the
top of the stack is reached. (If the second argument to ERRORSET is INTERNAL, the
ERRORSET is ignored by BREAKCHECK during this search.) BREAKCHECK then counts the
number of function calls between the error and the last ERRORSET, or the top of the stack.

14-10

MEDLEY REFERENCE MANUAL

The number of function calls plus the number of calls to EVAL (already counted) is used as
the “computation depth”.

BREAKCHECK determines the computation time by subtracting the value of the variable
HELPCLOCK from the value of (CLOCK 2), the number of milliseconds of compute time
(see Chapter 12). HELPCLOCK is rebound to the current value of (CLOCK 2) for each
computation typed in to LISPX or to a break. The time criterion for breaking can be
suppressed by setting HELPTIME to NIL (or a very big number), or by setting HELPCLOCK
to NIL. Setting HELPCLOCK to NIL will not have any effect beyond the current
computation, because HELPCLOCK is rebound for each computation typed in to LISPX
and BREAK.

You can suppress all error breaks by setting the top level binding of the variable
HELPFLAG to NIL using SETTOPVAL (HELPFLAG is bound as a local variable in LISPX,
and reset to the global value of HELPFLAG on every LISPX line, so just SETQing it will not
work.) If HELPFLAG = T (the initial value), the decision whether to cause an error or
break is decided based on the computation time and the computation depth, as described
above. Finally, if HELPFLAG = BREAK!, a break will always occur following an error.

Break Window Variables

The appearance and use of break windows is controlled by the following variables:

(WBREAK ONFLG) [Function]

If ONFLG is non-NIL, break windows and trace windows are enabled. If ONFLG is NIL,
break windows are disabled (break windows do not appear, but the executive prompt is
changed to “:” to indicate that the system is in a break). WBREAK returns T if break
windows are currently enabled; NIL otherwise.

MaxBkMenuWidth [Variable]
MaxBkMenuHeight [Variable]

The variables MaxBkMenuWidth (default 125) and MaxBkMenuHeight (default 300)
control the maximum size of the backtrace menu. If this menu is too small to contain all of
the frames in the backtrace, it is made scrollable in both vertical and horizontal directions.

AUTOBACKTRACEFLG [Variable]

This variable controls when and what kind of backtrace menu is automatically brought
up. The value of AUTOBACKTRACEFLG can be one of the following:

NIL The backtrace menu is not automatically brought up (the default).

T On error breaks the BT menu is brought up.

BT! On error breaks the BT! menu is brought up.

ALWAYS The BT menu is brought up on both error breaks and user breaks (calls to
functions broken by BREAK).

ALWAYS! On both error breaks and user breaks the BT! menu is brought up.

14-11

ERRORS AND DEBUGGING

BACKTRACEFONT [Variable]

The backtrace menu is printed in the font BACKTRACEFONT.

CLOSEBREAKWINDOWFLG [Variable]

The system normally closes break windows after the break is exited. If
CLOSEBREAKWINDOWFLG is NIL, break windows will not be closed on exit. In this case,
you must close all break windows.

BREAKREGIONSPEC [Variable]

Break windows are positioned near the TTY window of the broken process, as determined
by the variable BREAKREGIONSPEC. The value of this variable is a region (see Chapter 27)
whose LEFT and BOTTOM fields are an offset from the LEFT and BOTTOM of the TTY
window. The WIDTH and HEIGHT fields of BREAKREGIONSPEC determine the size of the
break window.

TRACEWINDOW [Variable]

The trace window, TRACEWINDOW, is used for tracing functions. It is brought up when the
first tracing occurs and stays up until you close it. TRACEWINDOW can be set to a
particular window to cause the tracing formation to print there.

TRACEREGION [Variable]

The trace window is first created in the region TRACEREGION.

Creating Breaks with BREAK1

The basic function of the break package is BREAK1, which creates a break. A break appears to be a
regular executive, with the prompt “:”, but BREAK1 also detects and interpretes break commands (see
the Break Commands section above).

(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE ERRORN) [NLambda Function]

If BRKWHEN (evaluated) is non-NIL, a break occurs and commands are then taken from
BRKCOMS or the terminal and interpreted. All inputs not recognized by BREAK1 are
simply passed on to the programmer’s assistant.

If BRKWHEN is NIL, BRKEXP is evaluated and returned as the value of BREAK1, without
causing a break.

When a break occurs, if ERRORN is a list whose CAR is a number, ERRORMESS (see the
Signalling Errors section below) is called to print an identifying message. If ERRORN is a
list whose CAR is not a number, ERRORMESS1 (see the Signalling Errors section below) is
called. Otherwise, no preliminary message is printed. Following this, the message
(BRKFN broken) is printed.

Since BREAK1 itself calls functions, when one of these is broken, an infinite loop would
occur. BREAK1 detects this situation, and prints Break within a break on FN, and
then simply calls the function without going into a break.

14-12

MEDLEY REFERENCE MANUAL

The commands GO, !GO, OK, !OK, RETURN and ↑ are the only ways to leave BREAK1. The
command EVAL causes BRKEXP to be evaluated, and saves the value on the variable
!VALUE. Other commands can be defined for BREAK1 via BREAKMACROS (below).

BRKTYPE is NIL for user breaks, INTERRUPT for Control-H breaks, and ERRORX for error
breaks. For breaks when BRKTYPE is not NIL, BREAK1 will clear and save the input
buffer. If the break returns a value (i.e., is not aborted via ↑ or Control-D) the input buffer
is restored.

The fourth argument to BREAK1 is BRKCOMS, a list of break commands that BREAK1
interprets and executes as though they were keyboard input. One can think of BRKCOMS
as another input file which always has priority over the keyboard. Whenever BRKCOMS =
NIL, BREAK1 reads its next command from the keyboard. Whenever BRKCOMS is non-
NIL, BREAK1 takes (CAR BRKCOMS) as its next command and sets BRKCOMS to (CDR
BRKCOMS). For example, suppose you wished to see the value of the variable X after a
function was evaluated. You could set up a break with BRKCOMS = (EVAL (PRINT X)
OK), which would have the desired effect. If BRKCOMS is non-NIL, the value of a break
command is not printed. If you desire to see a value, you must print it yourself, as in the
above example. The function TRACE (see Chapter 15) uses BRKCOMS: it sets up a break
with two commands; the first one prints the arguments of the function, or whatever you
specify, and the second is the command GO, which causes the function to be evaluated and
its value printed.

Note: If an error occurs while interpreting the BRKCOMS commands, BRKCOMS is set to
NIL, and a full interactive break occurs.

The break package has a facility for redirecting ouput to a file. All output resulting from
BRKCOMS is output to the value of the variable BRKFILE, which should be the name of an
open file. Output due to user type-in is not affected, and will always go to the terminal.
BRKFILE is initially T.

BREAKMACROS [Variable]

BREAKMACROS is a list of the form ((NAME1 COM11 ... COM1n)(NAME2 COM21 ...
COM2n)...). Whenever an atomic command is given to BREAK1, it first searches the list
BREAKMACROS for the command. If the command is equal to NAMEi, BREAK1 simply
appends the corresponding commands to the front of BRKCOMS, and goes on. If the
command is not found on BREAKMACROS, BREAK1 then checks to see if it is one of the
built in commands, and finally, treats it as a function or variable as before.

If the command is not the name of a defined function, bound variable, or LISPX
command, BREAK1 will attempt spelling correction using BREAKCOMSLST as a spelling
list. If spelling correction is unsuccessful, BREAK1 will go ahead and call LISPX anyway,
since the atom may also be a misspelled history command.

For example, the command ARGS could be defined by including on BREAKMACROS the
form:

(ARGS (PRINT (VARIABLES LASTPOS T)))

14-13

ERRORS AND DEBUGGING

(BREAKREAD TYPE) [Function]

Useful within BREAKMACROS for reading arguments. If BRKCOMS is non-NIL (the
command in which the call to BREAKREAD appears was not typed in), returns the next
break command from BRKCOMS, and sets BRKCOMS to (CDR BRKCOMS).

If BRKCOMS is NIL (the command was typed in), then BREAKREAD returns either the rest
of the commands on the line as a list (if TYPE = LINE) or just the next command on the
line (if TYPE is not LINE).

For example, the BT command is defined as (BAKTRACE LASTPOS NIL (BREAKREAD
’LINE) 0 T). Thus, if you type BT, the third argument to BAKTRACE is NIL. If you
type BT SUBRP, the third argument is (SUBRP).

BREAKRESETFORMS [Variable]

If you are developing programs that change the way a user and Medley normally interact
(e.g., change or disable the interrupt or line-editing characters, turn off echoing, etc.),
debugging them by breaking or tracing may be difficult, because Medley might be in a
“funny” state at the time of the break. BREAKRESETFORMS is designed to solve this
problem. You put in BREAKRESETFORMS expressions suitable for use in conjunction with
RESETFORM or RESETSAVE (see Changing and Restoring System State below). When a
break occurs, BREAK1 evaluates each expression on BREAKRESETFORMS before any
interaction with the terminal, and saves the values. When the break expression is
evaluated via an EVAL, OK, or GO, BREAK1 first restores the state of the system with
respect to the various expressions on BREAKRESETFORMS. When control returns to
BREAK1, the expressions on BREAKRESETFORMS are again evaluated, and their values
saved. When the break is exited with an OK, GO, RETURN, or ↑ command, by typing
Control-D, or by a RETFROM or RETEVAL you type in, BREAK1 again restores state. Thus
the net effect is to make the break invisible with respect to your programs, but
nevertheless allow you to interact in the break in the normal fashion.

All user type-in is scanned to make the operations undoable, as described in Chapter 13.
At this point, RETFROMs and RETEVALs are also noticed. However, if you type in an
expression which calls a function that then does a RETFROM, this RETFROM will not be
noticed, and the effects of BREAKRESETFORMS will not be reversed.

As mentioned earlier, BREAK1 detects “Break within a break” situations, and avoids
infinite loops. If the loop occurs because of an error, BREAK1 simply rebinds
BREAKRESETFORMS to NIL, and calls HELP. This situation most frequently occurs when
there is a bug in a function called by BREAKRESETFORMS.

SETQ expressions can also be included on BREAKRESETFORMS for saving and restoring
system parameters, e.g. (SETQ LISPXHISTORY NIL), (SETQ DWIMFLG NIL), etc.
These are handled specially by BREAK1 in that the current value of the variable is saved
before the SETQ is executed, and upon restoration, the variable is set back to this value.

14-14

MEDLEY REFERENCE MANUAL

Signalling Errors

With the Medley release, Interlisp errors use the Xerox Common Lisp (XCL) error system. Most of the
functions still exist for compatibility with previous releases, but the underlying machinery has
changed. There are some incompatible differences, especially with respect to error numbers. All
errors are now handled by signalling an object of type XCL:CONDITION. This means the error
numbers generated are different from the old Interlisp method of registered numbers for well-known
errors and error messages for all other errors. The mapping from Interlisp erors to Lisp error
conditions is listed in the Error List sections below. The obsolete error numbers still generate error
messages, but they are useless.

(ERRORX ERXM) [Function]

Calls CL:ERROR after first converting ERXM into a condition. If ERXM is NIL the value of
LAST-CONDITION is used. If ERXM is an Interlisp error descriptor, it is first converted
to a condition. If ERXM is already a condition, it is passed along unchanged. ERRORX also
sets a proceed case for XCL:PROCEED, which will attempt to re-evaluate the caller of
ERRORX, much as OK did in older versions of the break package.

(ERROR MESS1 MESS2 NOBREAK) [Function]

Prints MESS1 (using PRIN1), followed by a space if MESS1 is an atom, otherwise a carriage
return. Then MESS2 is printed (using PRIN1 if MESS2 is a string; otherwise PRINT). For
example, (ERROR “NON-NUMERIC ARG” T) prints

NON-NUMERIC ARG
T

and (ERROR ’FOO "NOT A FUNCTION") prints FOO NOT A FUNCTION. If both MESS1
and MESS2 are NIL, the message printed is simply ERROR.

If NOBREAK = T, ERROR prints its message and then calls ERROR! (below). Otherwise it
calls (ERRORX ’(17 (MESS1 . MESS2))), i.e., generates error number 17, in which
case the decision as to whether to break, and whether to print a message, is handled as
any other error.

If the value of HELPFLAG (see the Controlling When to Break section above) is BREAK!, a
break will always occur, irregardless of the value of NOBREAK.

If ERROR causes a break, the “break expression“ is (ERROR MESS1 MESS2 NOBREAK).
Using the GO, OK, , or EVAL break commands (see the Break Commands section above)
will simply call ERROR again. It is sometimes helpful to design programs that call ERROR
such that if the call to ERROR returns (as the result of using the RETURN break command),
the operation is tried again. This lrts you fix any problems within the break environment,
and try to continue the operation.

(HELP MESS1 MESS2 BRKTYPE) [Function]

Prints MESS1 and MESS2 similar to ERROR, and then calls BREAK1 passing BRKTYPE as the
BRKTYPE argument. If both MESS1 and MESS2 are NIL, Help! is used for the message.
HELP is a convenient way to program a default condition, or to terminate some portion of
a program which the computation is theoretically never supposed to reach.

14-15

ERRORS AND DEBUGGING

(SHOULDNT MESS) [Function]

Useful in situations when a program detects a condition that should never occur. Calls
HELP with the message arguments MESS and “Shouldn’t happen!” and a BRKTYPE
argument of ’ERRORX.

(ERROR!) [Function]

Equivalent to XCL:ABORT, except that if no ERRORSET or XCL:CATCH-ABORT isa found,
it unwinds to the top of the process.

(RESET) [Function]

Programmable Control-D; immediately returns to the top level.

LAST-CONDITION [Variable]

Value is the condition object most recently signaled.

(SETERRORN NUM MESS) [Function]

Converts its arguments into a condition, then sets the value of *LAST-CONDITION* to the
result.

(ERRORMESS U) [Function]

Prints message corresponding to its first argument. For example, (ERRORMESS ’(17
T)) would print: T is not a LIST

(ERRORMESS1 MESS1 MESS2 MESS3) [Function]

Prints the message corresponding to a HELP or ERROR break.

(ERRORSTRING X) [Function]

Returns as a new string the message corresponding to error number X, e.g.,
(ERRORSTRING 10) = “NON-NUMERIC ARG”.

Catching Errors

All error conditions are not caused by program bugs. For some programs, it is reasonable for some
errors to occur (such as file not found errors) and it is possible for the program to handle the error
itself. There are a number of functions that allow a program to “catch” errors, rather than abort the
computation or cause a break.

(ERRORSET FORM FLAG) [Function]

Performs (EVAL FORM). If no error occurs in the evaluation of FORM, the value of
ERRORSET is a list containing one element, the value of (EVAL FORM). If an error did
occur, the value of ERRORSET is NIL.

ERRORSET is a lambda function, so its arguments are evaluated before it is entered, i.e.,
(ERRORSET X) means EVAL is called with the value of X. In most cases, ERSETQ and
NLSETQ (below) are more useful.

14-16

MEDLEY REFERENCE MANUAL

Note: Beginning with the Medley release, there are no longer frames named ERRORSET
on the stack and any programs that explicity look for them must be changed.

Performance Note: When a call to ERSETQ or NLSETQ is compiled, the form to be
evaluated is compiled as a separate function. However, compiling a call to ERRORSET
does not compile FORM. Therefore, if FORM performs a lengthy computation, using
ERSETQ or NLSETQ can be much more efficient than using ERRORSET.

The argument FLAG controls the printing of error messages if an error occurs. If a break
occurs below an ERRORSET, the message is printed regardless of the value of FLAG.

If FLAG = T, the error message is printed; if FLAG = NIL, the error message is not
printed (unless NLSETQGAG is NIL, see below).

If FLAG = INTERNAL, this ERRORSET is ignored for the purpose of deciding whether or
not to break or print a message (see the Controlling When to Break section above).
However, the ERRORSET is in effect for the purpose of flow of control, i.e., if an error
occurs, this ERRORSET returns NIL.

If FLAG = NOBREAK, no break will occur, even if the time criterion for breaking is met
(the Controlling When to Break section above). FLAG = NOBREAK will not prevent a
break from occurring if the error occurs more than HELPDEPTH function calls below the
errorset, since BREAKCHECK will stop searching before it reaches the ERRORSET. To
guarantee that no break occurs, you would also either have to reset HELPDEPTH or
HELPFLAG.

(ERSETQ FORM) [NLambda Function]

Evaluates FORM, letting a break happen if an error occurs, but 9^ brings you back to the
ERSETQ. Performs (ERRORSET ’FORM T), printing error messages.

(NLSETQ FORM) [NLambda Function]

Evaluates FORM, witout breaking, returning NIL if an error occurs or a list containing
FORM if no error occurs. Performs (ERRORSET ’FORM NIL), without printing error
messages.

NLSETQGAG [Variable]

If NLSETQGAG is NIL, error messages will print, regardless of the FLAG argument of
ERRORSET. NLSETQGAG effectively changes all NLSETQs to ERSETQs. NLSETQGAG is
initially T.

Changing and Restoring System State

In Medley, a computation can be interrupted/aborted at any point due to an error, or more forcefully,
because a Control-D was typed, causing return to the top level. This situation creates problems for
programs that need to perform a computation with the system in a “different state”, e.g., different
radix, input file, readtable, etc. but want to be able to restore the state when the computation has
completed. While program errors and Control-E are “caught” by ERRORSETs, Control-D is not. The
program could redefine Control-D as a user interrupt (see Chapter 30), check for it, reenable it, and

14-17

ERRORS AND DEBUGGING

call RESET or something similar. Thus the system may be left in its changed state as a result of the
computation being aborted. The following functions address this problem.

These functions cannot handle the situation where their environment is exited via anything other than
a normal return, an error, or a reset. Therefore, a RETEVAL, RETFROM, RESUME, etc., will never be seen.

(RESETLST FORM1 ... FORMN) [NLambda NoSpread Function]

RESETLST evaluates its arguments in order, after setting up an ERRORSET so that any
reset operations performed by RESETSAVE (see below) are restored when the forms have
been evaluated (or an error occurs, or a Control-D is typed). If no error occurs, the value
of RESETLST is the value of FORMN, otherwise RESETLST generates an error (after
performing the necessary restorations).

RESETLST compiles open.

(RESETSAVE X Y) [NLambda NoSpread Function]

RESETSAVE is used within a call to RESETLST to change the system state by calling a
function or setting a variable, while specifying how to restore the original system state
when the RESETLST is exited (normally, or with an error or Control-D).

If X is atomic, resets the top level value of X to the value of Y. For example, (RESETSAVE
LISPXHISTORY EDITHISTORY) resets the value of LISPXHISTORY to the value of
EDITHISTORY, and provides for the original value of LISPXHISTORY to be restored
when the RESETLST completes operation, (or an error occurs, or a Control-D is typed).

Note: If the variable is simply rebound, the RESETSAVE will not affect the most recent
binding but will change only the top level value, and therefore probably not have the
intended effect.

If X is not atomic, it is a form that is evaluated. If Y is NIL, X must return as its value its
“former state”, so that the effect of evaluating the form can be reversed, and the system
state can be restored, by applying CAR of X to the value of X. For example, (RESETSAVE
(RADIX 8)) performs (RADIX 8), and provides for RADIX to be reset to its original
value when the RESETLST completes by applying RADIX to the value returned by
(RADIX 8).

In the special case that CAR of X is SETQ, the SETQ is transparent for the purposes of
RESETSAVE, i.e. you could also have written (RESETSAVE (SETQ X (RADIX 8))),
and restoration would be performed by applying RADIX, not SETQ, to the previous value
of RADIX.

If Y is not NIL, it is evaluated (before X), and its value is used as the restoring expression.
This is useful for functions which do not return their “previous setting”. For example,

[RESETSAVE (SETBRK ...) (LIST ’SETBRK (GETBRK]

will restore the break characters by applying SETBRK to the value returned by (GETBRK),
which was computed before the (SETBRK ...) expression was evaluated. The
restoration expression is “evaluated” by applying its CAR to its CDR. This insures that the
“arguments” in the CDR are not evaluated again.

14-18

MEDLEY REFERENCE MANUAL

If X is NIL, Y is still treated as a restoration expression. Therefore,

(RESETSAVE NIL (LIST ’CLOSEF FILE))

will cause FILE to be closed when the RESETLST that the RESETSAVE is under completes
(or an error occurs or a Control-D is typed).

RESETSAVE can be called when not under a RESETLST. In this case, the restoration is
performed at the next RESET, i.e., Control-D or call to RESET. In other words, there is an
“implicit” RESETLST at the top-level executive.

RESETSAVE compiles open. Its value is not a “useful” quantity.

(RESETVAR VAR NEWVALUE FORM) [NLambda Function]

Simplified form of RESETLST and RESETSAVE for resetting and restoring global
variables. Equivalent to (RESETLST (RESETSAVE VAR NEWVALUE) FORM). For
example, (RESETVAR LISPXHISTORY EDITHISTORY (FOO)) resets LISPXHISTORY to
the value of EDITHISTORY while evaluating (FOO). RESETVAR compiles open. If no
error occurs, its value is the value of FORM.

(RESETVARS VARSLST E1 E2 ... EN) [NLambda NoSpread Function]

Similar to PROG, except that the variables in VARSLST are global variables. In a deep
bound system (like Medley), each variable is “rebound” using RESETSAVE.

In a shallow bound system (like Interlisp-10) RESETVARS and PROG are identical, except
that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS
(see Chapter 18).

RESETVARS, like GETATOMVAL and SETATOMVAL (see Chapter 2), is provided to permit
compatibility (i.e. transportablility) between a shallow bound and deep bound system
with respect to conceptually global variables.

Note: Like PROG, RESETVARS returns NIL unless a RETURN statement is executed.

 (RESETFORM RESETFORM FORM1 FORM2 ... FORMN) [NLambda NoSpread Function]

Simplified form of RESETLST and RESETSAVE for resetting a system state when the
corresponding function returns as its value the “previous setting.” Equivalent to
(RESETLST (RESETSAVE RESETFORM) FORM1 FORM2 ... FORMN). For example,
(RESETFORM (RADIX 8) (FOO)). RESETFORM compiles open. If no error occurs, it
returns the value returned by FORMN.

For some applications, the restoration operation must be different depending on whether the
computation completed successfully or was aborted somehow (e.g., by an error or by typing Control-
D). To facilitate this, while the restoration operation is being performed, the value of RESETSTATE is
bound to NIL, ERROR, RESET, or HARDRESET depending on whether the exit was normal, due to an
error, due to a reset (i.e., Control-D), or due to call to HARDRESET (see Chapter 23). As an example of
the use of RESETSTATE,

(RESETLST
(RESETSAVE (INFILE X)

14-19

ERRORS AND DEBUGGING

(LIST ’[LAMBDA (FL)
(COND ((EQ RESETSTATE ’RESET)

 (CLOSEF FL)
 DELFILE FL]
 X))

FORMS)

will cause X to be closed and deleted only if a Control-D was typed during the execution of FORMS.

When specifying complicated restoring expressions, it is often necessary to use the old value of the
saving expression. For example, the following expression will set the primary input file (to FL) and
execute some forms, but reset the primary input file only if an error or Control-D occurs.

(RESETLST
(SETQ TEM (INPUT FL))
(RESETSAVE NIL
 (LIST ’(LAMBDA (X) (AND RESETSTATE (INPUT X)))
 TEM))
FORMS)

So that you will not have to explicitely save the old value, the variable OLDVALUE is bound at the time
the restoring operation is performed to the value of the saving expression. Using this, the previous
example could be recoded as:

(RESETLST
(RESETSAVE (INPUT FL)
 ’(AND RESETSTATE (INPUT OLDVALUE)))
FORMS)

As mentioned earlier, restoring is performed by applying CAR of the restoring expression to the CDR,
so RESETSTATE and (INPUT OLDVALUE) will not be evaluated by the APPLY. This particular
example works because AND is an nlambda function that explicitly evaluates its arguments, so
APPLYing AND to (RESETSTATE (INPUT OLDVALUE)) is the same as EVALing (AND RESETSTATE
(INPUT OLDVALUE)). PROGN also has this property, so you can use a lambda function as a restoring
form by enclosing it within a PROGN.

The function RESETUNDO (see Chapter 13) can be used in conjunction with RESETLST and
RESETSAVE to provide a way of specifying that the system be restored to its prior state by undoing the
side effects of the computations performed under the RESETLST.

Error List

There are currently fifty-plus types of errors in Medley. Some of these errors are implementation
dependent, i.e., appear in Medley but may not appear in other Interlisp systems. The error number is
set internally by the code that detects the error before it calls the error handling functions, and is used
by ERRORMESS for printing error messages.

Most errors will print the offending expression as part of the error message. Error number 18
(Control-B) always causes a break (unless HELPFLAG is NIL). All other errors cause breaks if
BREAKCHECK returns T (see Controlling When to Break above).

The folloing error messages are arranged numerically with the printed message next to the error
number. X is the offending expression in each error message. The obsolete error numbers still
generate error messags, but they aren’t particularly useful. For information on how to use the
Common Lisp error conditions in your own programs, see Common Lisp: the Language by Steele.

14-20

MEDLEY REFERENCE MANUAL

0 Obsolete.

1 Obsolete.

2 Stack Overflow

Occurs when computation is too deep, either with respect to number of function calls, or number
of variable bindings. Usually because of a non-terminating recursive computation, i.e., a bug.
Condition type: STACK-OVERFLOW.

3 RETURN to nonexistant block: X

Call to RETURN when not inside of an interpreted PROG. Condition type: ILLEGAL-RETURN.

4 X is not a LIST

RPLACA called on a non-list. Condition type: XCL:SIMPLE-TYPE-ERROR culprit
:EXPECTED-TYPE ’LIST

5 Device error: X

An error with the local disk drive. Condition type: XCL:SIMPLE-DEVICE-ERROR message

6 Serious condition XCL:ATTEMPT-TO-CHANGE-CONSTANT occured.

Via SET or SETQ. Condition type: XCL:ATTEMPT-TO-CHANGE-CONSTANT

7 Attempt to rplac NIL with X

Attempt either to RPLACA or to RPLACD NIL with something other than NIL. Condition type:
XCL:ATTEMPT-TO-RPLAC-NIL message

8 GO to a nonexistant tag: X.

GO when not inside of a PROG, or GO to nonexistent label. Condition type: ILLEGAL-GO tag

9 File won’t open: X

From OPENSTREAM (see Chapter 24). Condition type: XCL:FILE-WONT-OPEN pathname

10 X is not a NUMBER

A numeric function e.g., PLUS, TIMES, GREATERP, expected a number and didn’t get one.
Condition type: XCL:SIMPLE-TYPE-ERROR culprit :EXPECTED TYPE ’CL:NUMBER

11 Symbol name too long

Attempted to create a symbol (via PACK, or typing one in, or reading from a file) with too many
characters. In Medley, the maximum number of characters in a symbol is 255. Condition type:
XCL:SYMBOL-NAME-TOO-LONG

12 Symbol hash table full

No room for any more (new) atoms. Condition type: XCL:SYMBOL-HT-FULL

13 Stream not open: X

From an I/O function, e.g., READ, PRINT, CLOSEF. Condition type: XCL:STREAM-NOT-OPEN
stream

14 X is not a SYMBOL.

SETQ, PUTPROP, GETTOPVAL, etc., given a non-atomic argument. Condition type: XCL:SMPLE-
TYPE-ERROR culprit :EXPECTED-TYPE ’CL:SYMBOL

14-21

ERRORS AND DEBUGGING

15 Obsolete

16 End of file X

From an input function, e.g., READ, READC, RATOM. After the error occurs, the file will still be left
open. Condition type: END-OF-FILE stream

17 X varying messages.

Call to ERROR (see Signalling Errors above). Condition type: INTERLISP-ERROR MESSAGE

18 Obsolete

19 Illegal stack arg: X

A stack function expected a stack position and was given something else. This might occur if the
arguments to a stack function are reversed. Also occurs if you specified a stack position with a
function name, and that function was not found on the stack (see Chapter 11). Condition type:
ILLEGAL-STACK-ARG arg.

20 Obsolete

21 Array space full

System will first initiate a garbage collection of array space, and if no array space is reclaimed,
will then generate this error. Condition type: XCL:ARRAY-SPACE-FULL.

22 File system resources exceeded: X

Includes no more disk space, disk quota exceeded, directory full, etc. Condition type: XCL:FS-
RESOURCE-EXCEEDED

23 File not found

File name does not correspond to a file in the corresponding directory. Can also occur if file name
is ambiguous. Condition type: XCL:FILE-NOT-FOUND pathname

24 Obsolete

25 Invalid argument: X

A form ends in a non-list other than NIL, e.g., (CONS T . 3). Condition type: INVALID-
ARGUMENT-LIST argument

26 Hash table full: X

See hash array functions, Chapter 6. Condition type: XCL:HASH-TABLE-FULL table

27 Invalid argument: X

Catch-all error. Currently used by PUTD, EVALA, ARG, FUNARG, etc. Condition type: INVALID-
ARGUMENT-LIST argument

28 X is not a ARRAYP.

ELT or SETA given an argument that is not a legal array (see Chapter 5). Condition type:
XCL:SIMPLE-TYPE-ERROR culprit :EXPECTED-TYPE ’ARRAYP

29 Obsolete

30 Stack ptr ahs been released NOBIND

A released stack pointer was supplied as a stack descriptor for a purpose other than as a stack
pointer to be re-used (see Chapter 11). Condition type: STACK-POINTER-REALEASED name

14-22

MEDLEY REFERENCE MANUAL

31 Serious condition XCL:STORAGE-EXHAUSTED occured.

Following a garbage collection, if not enough words have been collected, and there is no un-
allocated space left in the system, this error is generated. Condition type: XCL:STORAGE-
EXHAUSTED

32 Obsolete

33 Obsolete

34 No more data types available

All available user data types have been allocated (see Chapter 8). Condition type: XCL:DATA-
TYPES-EXHAUSTED

35 Serious condition XCL:ATTEMPT-TO-CHANGE-CONSTANT occured.

In a PROG or LAMBDA expression. Condition type: XCL:ATTEMPT-TO-CHANGE-CONSTANT

36 Obsolete

37 Obsolete

38 X is not a READTABLEP.

The argument was expected to be a valid read table (see Chapter 25). Condition type:
XCL:SIMPLE-TYPE-ERROR culprit :EXPECTED-TYPE ’READTABLEP

39 X is not a TERMTABLEP.

The argument was expected to be a valid terminal table (see Chapter 30). Condition type:
XCL:SIMPLE-TYPE-ERROR culprit :EXPECTED-TYPE ’TERMTABLEP

40 Obsolete

41 Protection violation: X

Attempt to open a file that you do not have access to. Also reference to unassigned device.
Condition type: XCL:FS-PROTECTION-VIOLATION

42 Invalid pathname: X

Illegal character in file specification, illegal syntax, e.g. two ;’s etc. Condition type:
XCL:INVALID-PATHNAME pathname

43 Obsolete

44 X is an unbound variable

This occurs when a variable (symbol) was used which had neither a stack binding (wasn’t an
argument to a function nor a PROG variable) nor a top level value. The “culprit” ((CADR
ERRORMESS)) is the symbol. If DWIM corrects the error, no error occurs and the error number is
not set. However, if an error is going to occur, whether or not it will cause a break, the error
number will be set. Condition type: UNBOUND-VARIABLE name

45 Serious condition UNDEFINED-CAR-OF-FORM occured.

Undefined function error. This occurs when a form is evaluated whose function position (CAR)
does not have a definition as a function. Condition type: UNDEFINE-CAR-OF FORM function

14-23

ERRORS AND DEBUGGING

46 X varying messages.

This error is generated if APPLY is given an undefined function. Culprit is (LIST FN ARGS)
Condition type: UNDEFINED-FUNCTION-IN-APPLY

47 CONTROL E

Control-E was typed. Condition type: XCL:CONTROL-E-INTERRUPT

48 Floating point underflow.

Underflow during floating-point operation. Condition type: XCL:FLOATING-UNDERFLOW

49 Floating point overflow.

Overflow during floating-point operation. Condition type: XCL:OVERFLOW

50 Obsolete

51 X is not a HASH-TABLE

Hash array operations given an argument that is not a hash array. Condition type:
XCL:SIMPLE-TYPE-ERROR culprit :EXPECTED-TYPE ’CL:HASH-TABLE

52 Too many arguments to X

Too many arguments given to a lambda-spread, lambda-nospread, or nlambda-spread function.

Medley does not cause an error if more arguments are passed to a function than it is defined with.
This argument occurs when more individual arguments are passed to a function than Medley can
store on the stack at once. The limit is currently 80 arguments.

In addition, many system functions, e.g., DEFINE, ARGLIST, ADVISE, LOG, EXPT, etc, also
generate errors with appropriate messages by calling ERROR (see Signalling Errors above) which
causes error number 17. Condition type: TOO-MANY-ARGUMENTS callee :MAXIMUM
CL:CALL-ARGUMENTS-LIMIT

14-24

MEDLEY REFERENCE MANUAL

[This page intentionally left blank]

15-1

15. BREAKING, TRACING, AND ADVISING

Medley provides several different facilities for modifing the behavior of a function without actually
editing its definition. By “breaking” a function, you can cause breaks to occur at various times in the
running of an incomplete program, so that the program state can be inspected. “Tracing” a function
causes information to be printed every time the function is entered or exited.

“Advising” is a facility for specifying longer-term function modifications. Even system functions can
be changed through advising.

Breaking Functions and Debugging

Debugging a collection of Lisp functions involves isolating problems within particular functions
and/or determining when and where incorrect data are being generated and transmitted. In the
Medley, there are three facilities which allow you to (temporarily) modify selected function
definitions so that you can follow the flow of control in your programs, and obtain this debugging
information. All three redefine functions in terms of a system function, BREAK1 (see Chapter 14).

BREAK modifies the definition of a function FN, so that whenever FN is called and a break condition
(user-defined) is satisfied, a function break occurs. You can then interrogate the state of the machine,
perform any computation, and continue or return from the call.

TRACE modifies a definition of a function FN so that whenever FN is called, its arguments (or some
other user-specified values) are printed. When the value of FN is computed it is printed also. TRACE
is a special case of BREAK.

BREAKIN allows you to insert a breakpoint inside an expression defining a function. When the
breakpoint is reached and if a break condition (defined by you) is satisfied, a temporary halt occurs
and you can again investigate the state of the computation.

The following two examples illustrate these facilities. In the first example, the function FACTORIAL is
traced. TRACE redefines FACTORIAL so that it print its arguments and value, and then goes on with
the computation. When an error occurs on the fifth recursion, a full interactive break occurs. The
situation is then the same as though (BREAK FACTORIAL) had been performed instead of (TRACE
FACTORIAL), now you can evaluate various Interlisp forms and direct the course of the computation.
In this case, the variable N is examined, and BREAK1 is instructed to return 1 as the value of this cell to
FACTORIAL. The rest of the tracing proceeds without incident. Presumably, FACTORIAL would be
edited to change L to 1.

←PP FACTORIAL
(FACTORIAL

[LAMBDA (N)
(COND

 ((ZEROP N)
 L)
 (T (ITIMES N (FACTORIAL (SUB1 N])
FACTORIAL
←(TRACE FACTORIAL)
(FACTORIAL)
←(FACTORIAL 4)
FACTORIAL:
N = 4

15-2

MEDLEY REFERENCE MANUAL

 FACTORIAL:
 N = 3
 FACTORIAL:
 N = 2
 FACTORIAL:
 N = 1
 FACTORIAL:
 N = 0
UNBOUND ATOM
L
(FACTORIAL BROKEN)
:N
0
:RETURN 1
 FACTORIAL = 1
 FACTORIAL = 1
 FACTORIAL = 2
 FACTORIAL = 6
FACTORIAL = 24
24
←

In the second example, a non-recursive definition of FACTORIAL has been constructed. BREAKIN is
used to insert a call to BREAK1 just after the PROG label LOOP. This break is to occur only on the last
two iterations, when N is less than 2. When the break occurs, in trying to look at the value of N, NN is
mistakenly typed. The break is maintained, however, and no damage is done. After examining N and
M the computation is allowed to continue by typing OK. A second break occurs after the next
iteration, this time with N = 0. When this break is released, the function FACTORIAL returns its
value of 120.

←PP FACTORIAL
(FACTORIAL
 [LAMBDA (N)
 (PROG ((M 1))
 LOOP (COND
 ((ZEROP N)
 (RETURN M)))
 (SETQ M (ITIMES M N))
 (SETQ N (SUB1 N))
 (GO LOOP])
FACTORIAL

←(BREAKIN FACTORIAL (AFTER LOOP) (ILESSP N 2]
SEARCHING...
FACTORIAL

←((FACTORIAL 5)
((FACTORIAL) BROKEN)
:NN
U.B.A.
NN
(FACTORIAL BROKEN AFTER LOOP)
:N
1
:M
120
:OK
(FACTORIAL)

15-3

BREAKING, TRACING, AND ADVISING

((FACTORIAL) BROKEN)
:N
0
:OK
(FACTORIAL)
120
←

Note: BREAK and TRACE can also be used on CLISP words which appear as CAR of form, e.g. FETCH,
REPLACE, IF, FOR, DO, etc., even though these are not implemented as functions. For conditional
breaking, you can refer to the entire expression via the variable EXP, e.g. (BREAK (FOR (MEMB
’UNTIL EXP))).

(BREAK0 FN WHEN COMS — —) [Function]

Sets up a break on the function FN; returns FN. If FN is not defined, returns (FN NOT
DEFINED).

The value of WHEN, if non-NIL, should be an expression that is evaluated whenever FN is
entered. If the value of the expression is non-NIL, a break is entered, otherwise the
function simply called and returns without causing a break. This provides the means of
conditionally breaking a function.

The value of COMS, if non-NIL, should be a list of break commands, that are interpreted
and executed if a break occurs. (See the BRKCOMS argument to BREAK1, Chapter 14.)

BREAK0 sets up a break by doing the following:

Redefines FN as a call to BREAK1 (Chapter 14), passing an equivalent
definition of FN, WHEN, FN, and COMS as the BRKEXP, BRKWHEN, BRKFN, and
BRKCOMS arguments to BREAK1

Defines a GENSYM (Chapter 2) with the original definition of FN, and puts it on
the property list of FN under the property BROKEN

Puts the form (BREAK0 WHEN COMS) on the property list of FN under the
property BRKINFO (for use in conjunction with REBREAK)

Adds FN to the front of the list BROKENFNS.

If FN is non-atomic and of the form (FN1 IN FN2), BREAK0 breaks every call to FN1 from
within FN2. This is useful for breaking on a function that is called from many places, but
where one is only interested in the call from a specific function, e.g., (RPLACA IN FOO),
(PRINT IN FIE), etc. It is similar to BREAKIN described below, but can be performed
even when FN2 is compiled or blockcompiled, whereas BREAKIN only works on
interpreted functions. If FN1 is not found in FN2, BREAK0 returns the value (FN1 NOT
FOUND IN FN2).

BREAK0 breaks one function inside another by first calling a function which changes the
name of FN1 wherever it appears inside of FN2 to that of a new function, FN1-IN-FN2,
which is initially given the same function definition as FN1. Then BREAK0 proceeds to

15-4

MEDLEY REFERENCE MANUAL

break on FN1-IN-FN2 exactly as described above. In addition to breaking FN1-IN-FN2
and adding FN1-IN-FN2 to the list BROKENFNS, BREAK0 adds FN1 to the property value
for the property NAMESCHANGED on the property list of FN2 and puts (FN2 . FN1) on the
property list of FN1-IN-FN2 under the property ALIAS. This will enable UNBREAK to
recognize what changes have been made and restore the function FN2 to its original state.

If FN is nonatomic and not of the above form, BREAK0 is called for each member of FN
using the same values for WHEN, COMS, and FILE. This distributivity permits you to
specify complicated break conditions on several functions. For example,

(BREAK0 ’(FOO1 ((PRINT PRIN1) IN (FOO2 FOO3)))
 ’(NEQ X T)
 ’(EVAL ?= (Y Z) OK))

will break on FOO1, PRINT-IN-FOO2, PRINT-IN-FOO3, PRIN1-IN-FOO2 and PRIN1-
IN-FOO3.

If FN is non-atomic, the value of BREAK0 is a list of the functions broken.

(BREAK X) [NLambda NoSpread Function]

For each atomic argument, it performs (BREAK0 ATOM T). For each list, it performs
(APPLY ’BREAK0 LIST). For example, (BREAK FOO1 (FOO2 (GREATERP N 5)
(EVAL))) is equivalent to (BREAK0 ’FOO1 T) and (BREAK0 ’FOO2 ’(GREATERP N
5) ’(EVAL)).

(TRACE X) [NLambda NoSpread Function]

For each atomic argument, it performs (BREAK0 ATOM T ’(TRACE ?= NIL GO)).
The flag TRACE is checked for in BREAK1 and causes the message “FUNCTION :” to be
printed instead of (FUNCTION BROKEN).

For each list argument, CAR is the function to be traced, and CDR the forms to be viewed,
i.e., TRACE performs:

(BREAK0 (CAR LIST) T (LIST ’TRACE ’?= (CDR LIST) ’GO))

For example, (TRACE FOO1 (FOO2 Y)) causes both FOO1 and FOO2 to be traced. All
the arguments of FOO1 are printed; only the value of Y is printed for FOO2. In the special
case when you want to see only the value, you can perform (TRACE (FUNCTION)). This
sets up a break with commands (TRACE ?= (NIL) GO).

Note: You can always call BREAK0 to obtain combination of options of BREAK1 not
directly available with BREAK and TRACE. These two functions merely provide
convenient ways of calling BREAK0, and will serve for most uses.

Note: BREAK0, BREAK, and TRACE print a warning if you try to modify a function on the
list UNSAFE.TO.MODIFY.FNS (Chapter 10).

(BREAKIN FN WHERE WHEN COMS) [NLambda Function]

BREAKIN enables you to insert a break, i.e., a call to BREAK1 (Chapter 14), at a specified
location in the interpreted function FN. BREAKIN can be used to insert breaks before or
after PROG labels, particular SETQ expressions, or even the evaluation of a variable. This

15-5

BREAKING, TRACING, AND ADVISING

is because BREAKIN operates by calling the editor and actually inserting a call to BREAK1
at a specified point inside of the function. If FN is a compiled function, BREAKIN returns
(FN UNBREAKABLE) as its value.

WHEN should be an expression that is evaluated whenever the break is entered. If the
value of the expression is non-NIL, a break is entered, otherwise the function simply
called and returns without causing a break. This provides the means of creating a
conditional break. For BREAKIN, unlike BREAK0, if WHEN is NIL, it defaults to T.

COMS, if non-NIL, should be a list of break commands, that are interpreted and executed if
a break occurs. (See the BRKCONMS argument to BREAK1, Chapter 14.)

WHERE specifies where in the definition of FN the call to BREAK1 is to be inserted. WHERE
should be a list of the form (BEFORE ...), (AFTER ...), or (AROUND ...). You
specify where the break is to be inserted by a sequence of editor commands, preceded by
one of the symbols BEFORE, AFTER, or AROUND, which BREAKIN uses to determine what
to do once the editor has found the specified point, i.e., put the call to BREAK1 BEFORE
that point, AFTER that point, or AROUND that point. For example, (BEFORE COND) will
insert a break before the first occurrence of COND, (AFTER COND 2 1) will insert a break
after the predicate in the first COND clause, (AFTER BF (SETQ X &)) after the last place
X is set. Note that (BEFORE TTY:) or (AFTER TTY:) permit you to type in commands
to the editor, locate the correct point, and verify it, and exit from the editor with OK.
BREAKIN then inserts the break BEFORE, AFTER, or AROUND that point.

Note: A STOP command typed to TTY: produces the same effect as an unsuccessful edit
command in the original specification, e.g., (BEFORE CONDD). In both cases, the editor
aborts, and BREAKIN types (NOT FOUND).

If WHERE is (BEFORE ...) or (AFTER ...), the break expression is NIL, since the
value of the break is irrelevant. For (AROUND ...), the break expression will be the
indicated form. In this case, you can use the EVAL command to evaluate that form, and
examine its value, before allowing the computation to proceed. For example, if you
inserted a break after a COND predicate, e.g., (AFTER (EQUAL X Y)), you would be
powerless to alter the flow of computation if the predicate were not true, since the break
would not be reached. However, by breaking (AROUND (EQUAL X Y)), you can
evaluate the break expression, i.e., (EQUAL X Y), look at its value, and return something
else if desired.

If FN is interpreted, BREAKIN types SEARCHING... while it calls the editor. If the location
specified by WHERE is not found, BREAKIN types (NOT FOUND) and exits. If it is found,
BREAKIN puts T under the property BROKEN-IN and (WHERE WHEN COMS) under the the
property BRKINFO on the property list of FN, and adds FN to the front of the list
BROKENFNS.

Multiple break points, can be inserted with a single call to BREAKIN by using a list of the
form ((BEFORE ...) ... (AROUND ...)) for WHERE. It is also possible to call
BREAK or TRACE on a function which has been modified by BREAKIN, and conversely to
BREAKIN a function which has been redefined by a call to BREAK or TRACE.

15-6

MEDLEY REFERENCE MANUAL

The message typed for a BREAKIN break is ((FN) BROKEN), where FN is the name of the
function inside of which the break was inserted. Any error, or typing control-E, will cause
the full identifying message to be printed, e.g., (FOO BROKEN AFTER COND 2 1).

A special check is made to avoid inserting a break inside of an expression headed by any
member of the list NOBREAKS, initialized to (GO QUOTE *), since this break would never
be activated. For example, if (GO L) appears before the label L, BREAKIN (AFTER L)
will not insert the break inside of the GO expression, but skip this occurrence of L and go
on to the next L, in this case the label L. Similarly, for BEFORE or AFTER breaks, BREAKIN
checks to make sure that the break is being inserted at a “safe” place. For example, if you
request a break (AFTER X) in (PROG ... (SETQ X &) ...), the break will actually
be inserted after (SETQ X &), and a message printed to this effect, e.g., BREAK
INSERTED AFTER (SETQ X &).

(UNBREAK X) [NLambda NoSpread Function]

UNBREAK takes an indefinite number of functions modified by BREAK, TRACE, or
BREAKIN and restores them to their original state by calling UNBREAK0. Returns list of
values of UNBREAK0.

(UNBREAK) will unbreak all functions on BROKENFNS, in reverse order. It first sets
BRKINFOLST to NIL.

(UNBREAK T) unbreaks just the first function on BROKENFNS, i.e., the most recently
broken function.

(UNBREAK0 FN —) [Function]

Restores FN to its original state. If FN was not broken, value is (NOT BROKEN) and no
changes are made. If FN was modified by BREAKIN, UNBREAKIN is called to edit it back to
its original state. If FN was created from (FN1 IN FN2), (i.e., if it has a property ALIAS),
the function in which FN appears is restored to its original state. All dummy functions that
were created by the break are eliminated. Adds property value of BRKINFO to the front of
BRKINFOLST.

Note: (UNBREAK0 ’(FN1 IN FN2)) is allowed: UNBREAK0 will operate on (FN1-IN-
FN2) instead.

(UNBREAKIN FN) [Function]

Performs the appropriate editing operations to eliminate all changes made by BREAKIN.
FN may be either the name or definition of a function. Value is FN.

UNBREAKIN is automatically called by UNBREAK if FN has property BROKEN-IN with
value T on its property list.

(REBREAK X) [NLambda NoSpread Function]

Nlambda nospread function for rebreaking functions that were previously broken
without having to respecify the break information. For each function on X, REBREAK
searches BRKINFOLST for break(s) and performs the corresponding operation. Value is a

15-7

BREAKING, TRACING, AND ADVISING

list of values corresponding to calls to BREAK0 or BREAKIN. If no information is found for
a particular function, returns (FN - NO BREAK INFORMATION SAVED).

(REBREAK) rebreaks everything on BRKINFOLST, so (REBREAK) is the inverse of
(UNBREAK).

(REBREAK T) rebreaks just the first break on BRKINFOLST, i.e., the function most
recently unbroken.

(CHANGENAME FN FROM TO) [Function]

Replaces all occurrences of FROM by TO in the definition of FN. If FN is defined by an expr
definition, CHANGENAME performs (ESUBST TO FROM (GETD FN)) (see Chapter 16). If FN
is compiled, CHANGENAME searches the literals of FN (and all of its compiler generated
subfunctions), replacing each occurrence of FROM with TO.

Note that FROM and TO do not have to be functions, e.g., they can be names of variables, or
any other literals.

CHANGENAME returns FN if at least one instance of FROM was found, otherwise NIL.

(VIRGINFN FN FLG) [Function]

The function that knows how to restore functions to their original state regardless of any
amount of breaks, breakins, advising, compiling and saving exprs, etc. It is used by
PRETTYPRINT, DEFINE, and the compiler.

If FLG = NIL, as for PRETTYPRINT, it does not modify the definition of FN in the process
of producing a “clean” version of the definition; it works on a copy.

If FLG = T, as for the compiler and DEFINE, it physically restores the function to its
original state, and prints the changes it is making, e.g., FOO UNBROKEN, FOO UNADVISED,
FOO NAMES RESTORED, etc.

Returns the virgin function definition.

Advising

The operation of advising gives you a way of modifying a function without necessarily knowing how
the function works or even what it does. Advising consists of modifying the interface between
functions as opposed to modifying the function definition itself, as in editing. BREAK, TRACE, and
BREAKDOWN, are examples of the use of this technique: they each modify user functions by placing
relevant computations between the function and the rest of the programming environment.

The principal advantage of advising, aside from its convenience, is that it allows you to treat anyone’s
functions as “black boxes,” and to modify them without concern for their contents or details of
operations. For example, you could modify SYSOUT to set SYSDATE to the time and date of creation
by (ADVISE ’SYSOUT ’(SETQ SYSDATE (DATE))).

As with BREAK, advising works equally well on compiled and interpreted functions. Similarly, it is
possible to make a change which only operates when a function is called from some other specified
function. For example, you can modify the interface between two particular functions, instead of the

15-8

MEDLEY REFERENCE MANUAL

interface between one function and the rest of the world. This latter feature is especially useful for
changing the internal workings of a system function.

For example, suppose you wanted TIME (Chapter 22) to print the results of your measurements to the
file FOO instead of the terminal. You can accomplish this by (ADVISE ’((PRIN1 PRINT SPACES)
IN TIME) ’BEFORE ’(SETQQ U FOO)).

Advising PRIN1, PRINT, or SPACES directly would have affected all calls to these frequently used
functions, whereas advising ((PRIN1 PRINT SPACES) IN TIME) affects just those calls to PRIN1,
PRINT, and SPACES from TIME.

Advice can also be specified to operate after a function has been evaluated. The value of the body of
the original function can be obtained from the variable !VALUE, as with BREAK1.

Implementation of Advising

After a function has been modified several times by ADVISE, it will look like:

(LAMBDA arguments
 (PROG (!VALUE)
 (SETQ !VALUE
 (PROG NIL
 advice1
 .
 . advice before
 .
 advicen
 (RETURN BODY)))
 advice1
 .
 . advice after
 .
 advicem
 (RETURN !VALUE)))

where BODY is equivalent to the original definition. If FN was originally an expr definition, BODY is
the body of the definition, otherwise a form using a GENSYM which is defined with the original
definition.

The structure of a function modified by ADVISE allows a piece of advice to bypass the original
definition by using the function RETURN. For example, if (COND ((ATOM X) (RETURN Y))) were
one of the pieces of advice before a function, and this function was entered with X atomic, Y would be
returned as the value of the inner PROG, !VALUE would be set to Y, and control passed to the advice, if
any, to be executed AFTER the function. If this same piece of advice appeared after the function, Y
would be returned as the value of the entire advised function.

The advice (COND ((ATOM X) (SETQ !VALUE Y))) after the function would have a similar effect,
but the rest of the advice after the function would still be executed.

Note: Actually, ADVISE uses its own versions of PROG, SETQ, and RETURN, (called ADV-PROG, ADV-
SETQ, and ADV-RETURN) to enable advising these functions.

15-9

BREAKING, TRACING, AND ADVISING

Advise Functions

ADVISE is a function of four arguments: FN, WHEN, WHERE, and WHAT. FN is the function to be
modified by advising, WHAT is the modification, or piece of advice. WHEN is either BEFORE, AFTER, or
AROUND, and indicates whether the advice is to operate BEFORE, AFTER, or AROUND the body of the
function definition. WHERE specifies exactly where in the list of advice the new advice is to be placed,
e.g., FIRST, or (BEFORE PRINT) meaning before the advice containing PRINT, or (AFTER 3)
meaning after the third piece of advice, or even (: TTY:). If WHERE is specified, ADVISE first checks
to see if it is one of LAST, BOTTOM, END, FIRST, or TOP, and operates accordingly. Otherwise, it
constructs an appropriate edit command and calls the editor to insert the advice at the corresponding
location.

Both WHEN and WHERE are optional arguments, in the sense that they can be omitted in the call to
ADVISE. In other words, ADVISE can be thought of as a function of two arguments (ADVISE FN
WHAT), or a function of three arguments: (ADVISE FN WHEN WHAT), or a function of four arguments:
(ADVISE FN WHEN WHERE WHAT). Note that the advice is always the last argument. If WHEN = NIL,
BEFORE is used. If WHERE = NIL, LAST is used.

(ADVISE FN WHEN WHERE WHAT) [Function]

FN is the function to be advised, WHEN = BEFORE, AFTER, or AROUND, WHERE specifies
where in the advice list the advice is to be inserted, and WHAT is the piece of advice.

If FN is of the form (FN1 IN FN2), FN1 is changed to FN1-IN-FN2 throughout FN2, as with
break, and then FN1-IN-FN2 is used in place of FN. If FN1 and/or FN2 are lists, they are
distributed as with BREAK0.

If FN is broken, it is unbroken before advising.

If FN is not defined, an error is generated, NOT A FUNCTION.

If FN is being advised for the first time, i.e., if (GETP FN ’ADVISED) = NIL, a GENSYM
is generated and stored on the property list of FN under the property ADVISED, and the
GENSYM is defined with the original definition of FN. An appropriate expr definition is
then created for FN, using private versions of PROG, SETQ, and RETURN, so that these
functions can also be advised. Finally, FN is added to the (front of) ADVISEDFNS, so that
(UNADVISE T) always unadvises the last function advised.

If FN has been advised before, it is moved to the front of ADVISEDFNS.

If WHEN = BEFORE or AFTER, the advice is inserted in FN’s definition either BEFORE or
AFTER the original body of the function. Within that context, its position is determined by
WHERE. If WHERE = LAST, BOTTOM, END, or NIL, the advice is added following all other
advice, if any. If WHERE = FIRST or TOP, the advice is inserted as the first piece of
advice. Otherwise, WHERE is treated as a command for the editor, similar to BREAKIN,
e.g., (BEFORE 3), (AFTER PRINT).

If WHEN = AROUND, the body is substituted for * in the advice, and the result becomes the
new body, e.g., (ADVISE ’FOO ’AROUND ’(RESETFORM (OUTPUT T) *)). Note that
if several pieces of AROUND advice are specified, earlier ones will be embedded inside later
ones. The value of WHERE is ignored.

15-10

MEDLEY REFERENCE MANUAL

Finally (LIST WHEN WHERE WHAT) is added (by ADDPROP) to the value of property
ADVICE on the property list of FN, so that a record of all the changes is available for
subsequent use in readvising. Note that this property value is a list of the advice in order
of calls to ADVISE, not necessarily in order of appearance of the advice in the definition of
FN.

The value of ADVISE is FN.

If FN is non-atomic, every function in FN is advised with the same values (but copies) for
WHEN, WHERE, and WHAT. In this case, ADVISE returns a list of individual functions.

Note: Advised functions can be broken. However if a function is broken at the time it is
advised, it is first unbroken. Similarly, advised functions can be edited, including their
advice. UNADVISE will still restore the function to its unadvised state, but any changes to
the body of the definition will survive. Since the advice stored on the property list is the
same structure as the advice inserted in the function, editing of advice can be performed
on either the function’s definition or its property list.

(UNADVISE X) [NLambda NoSpread Function]

An nlambda nospread like UNBREAK. It takes an indefinite number of functions and
restores them to their original unadvised state, including removing the properties added
by ADVISE. UNADVISE saves on the list ADVINFOLST enough information to allow
restoring a function to its advised state using READVISE. ADVINFOLST and READVISE
thus correspond to BRKINFOLST and REBREAK. If a function contains the property
READVICE, UNADVISE moves the current value of the property ADVICE to READVICE.

(UNADVISE) unadvises all functions on ADVISEDFNS in reverse order, so that the most
recently advised function is unadvised last. It first sets ADVINFOLST to NIL.

(UNADVISE T) unadvises the first function of ADVISEDFNS, i.e., the most recently
advised function.

(READVISE X) [NLambda NoSpread Function]

An nlambda nospread like REBREAK for restoring a function to its advised state without
having to specify all the advise information. For each function on X, READVISE retrieves
the advise information either from the property READVICE for that function, or from
ADVINFOLST, and performs the corresponding advise operation(s). It also stores this
information on the property READVICE if not already there. If no information is found for
a particular function, value is (FN - NO ADVICE SAVED).

(READVISE) readvises everything on ADVINFOLST.

(READVISE T) readvises the first function on ADVINFOLST, i.e., the function most
recently unadvised.

A difference between ADVISE, UNADVISE, and READVISE versus BREAK, UNBREAK, and
REBREAK, is that if a function is not rebroken between successive (UNBREAK)s, its break
information is forgotten. However, once READVISE is called on a function, that function’s
advice is permanently saved on its property list (under READVICE); subsequent calls to

15-11

BREAKING, TRACING, AND ADVISING

UNADVISE will not remove it. In fact, calls to UNADVISE update the property READVICE
with the current value of the property ADVICE, so that the sequence READVISE, ADVISE,
UNADVISE causes the augmented advice to become permanent. The sequence READVISE,
ADVISE, READVISE removes the “intermediate advice” by restoring the function to its
earlier state.

(ADVISEDUMP X FLG) [Function]

Used by PRETTYDEF when given a command of the form (ADVISE ...) or (ADVICE
...). If FLG = T, ADVISEDUMP writes both a DEFLIST and a READVISE; this
corresponds to (ADVISE ...). If FLG = NIL, only the DEFLIST is written; this
corresponds to (ADVICE ...). In either case, ADVISEDUMP copies the advise
information to the property READVICE, thereby making it “permanent” as described
above.

16-1

SEDIT - The EDITOR

16. SEdit - The Structure Editor

Medley’s code editors are “structure” editors—they know how to take advantage of Lisp code being
represented as lists. One is a display editor named SEdit and the other is a TTY-based editor.

Starting the Editor
The editor is normally called using the following functions:

(DF FN) [NLambda NoSpread Function]

Edit the definition of the function FN. DF handles exceptional cases (the function is broken or
advised, the definition is on the property list, the function needs to be loaded from a file, etc.)
the same as EDITF (see below).

If you call DF with a name that has no function definition, you are prompted with a choise of
definers to use.

(DV VAR) [NLambda NoSpread Function]

Edit the value of the variable VAR.

(DP NAME PROP) [NLambda NoSpread Function]

Edit property PROP of the symbol NAME. If PROP is not given, the whole property list of
NAME is edited.

(DC FILE) [NLambda NoSpread Function]

Edit the file package commands (or “filecoms,” see Chapter 17) for the file FILE.

(ED NAME OPTIONS) [Function]

This function finds out what kind of definiton NAME has and lets you edit it. If NAME has
more than one definition (e.g., it’s both a function and a macro), you will be prompted for the
right one. If NAME has no definition, you’ll be asked what kind of definition to create.

Choosing Your Editor
The default editor may be set with EDITMODE:

16-2

INTERLISP-D REFERENCE MANUAL

(EDITMODE NEWMODE) [Function]

If NEWMODE is DISPLAY, sets the default editor to be SEdit; or the teletype editor (if NEWMODE
is TELETYPE). Returns the previous setting. If NEWMODE is NIL, returns the previous setting
without setting a new editor.

SEdit - The Structure Editor

SEdit is a structure editor. You use a structure editor when you want to edit objects instead of text.
SEdit is a part of the environment and operates directly on objects in the system you are running.
SEdit behaves differently depending on the type of objects you are editing.

Common Lisp definitions: SEdit always edits a copy of a Common Lisp definition. The
changes made while you edit a function will not be installed
until the edit session is complete.

For example, when you edit a Common Lisp function, you edit
the definition of the function and not the executable version of
the function. When you end the session the comments will be
stripped of the definition and the definition will be installed as
the executable version of the function.

Interlisp functions and macros: SEdit edits the actual structure that will be run, except editing
the source for a compiled function. In this case, changes are
made and the function is unsaved when you complete the edit
session.

All other structures: Variables, property lists and other structures are edited
directly in place, i.e. SEdit installs all changes as they are made.

If you make a severe editing error, you can abort the edit session with an Abort command (see
Command Keys, below). This command undoes all changes from the beginning of the edit session
and exits from SEdit without changing your environment.

If you change the definition of an object that is being edited in an SEdit window, Medley will ask you
if you want to throw away the changes made there.

SEdit supports the standard Copy-Select mechanism in Medley.

 An SEdit Session

Whenever you call SEdit, a new SEdit window is created. This SEdit window has its own process.
You can make edits in the window, shrink it while you do something else, expand it and edit some
more, and finally close the window when you are done.

16-3

Throughout an edit session, SEdit remembers everything that you do IN a change history. You can
undo and redo edits sequentially. When you end the edit session, SEdit forgets this information and
installs the changes in the system.

You signal the end of the session in the following ways:

• Close the window.

• Shrink the window. If you expand the window again, you can continue editing.

• Issue a Completion Command, see below.

SEdit Carets

There are two carets in SEdit, the edit caret and the structure caret. The edit caret appears when
characters are edited within a single symbol, string, or comment. Anything you type will appear at
the edit caret as part of the item it’s in. The edit caret looks like this:

The structure caret appears when the edit point is between symbols (or strings or comments), so that
anything you type will go into a new one. It looks like this:

SEdit changes the caret frequently, depending on where the caret is positioned. The left mouse
button positions the edit caret. The middle mouse button positions the structure caret.

 The Mouse

The left mouse button selects parts of Lisp structures. The middle mouse button selects whole Lisp
structures.

For example; select the Q in LEQ below by pressing the left mouse button when the pointer is over the
Q.

16-4

INTERLISP-D REFERENCE MANUAL

Any characters you type in now will be appended to the symbol LEQ.

Selecting the same letter with the middle mouse button selects the whole symbol (this matches TEdit’s
character/word selection convention), and sets a structure caret between the LEQ and the n:

Any characters you type in now will form a new symbol between the LEQ and the n.

Larger structures can be selected in two ways. Use the middle mouse button to position the mouse
cursor on the parenthesis of the list you want to edit. Press the mouse button multiple times, without
moving the mouse, extends the selection. In the previous example, if the middle button was pressed
twice, the list (LEQ ...) would be selected:

Press the button a third time and you will select the list containing the (LEQ n 1) to be selected.

The right mouse button positions the mouse cursor for selecting sequences of structures or
substructures. Extended selections are indicated by a box enclosing the structures selected. The
selection extends in the same mode as the original selection. That is, if the original selection was a
character selection, the right button will be used to select more characters in the same atom. Extended
selections also have the property of being marked for pending deletion. That is, the selection takes the
place of the caret, and anything typed in is inserted in place of the selection.

For example, selecting the E by pressing the left mouse button and selecting the Q by pressing the
right mouse button will produce:

Similarly, pressing the middle mouse button and then selecting with the right mouse button extends
the selection by whole structures. In our example, pressing the middle mouse button to select LEQ
and pressing the right mouse button to select the 1 will produce:

This is not the same as selecting the entire list, as above. Instead, the elements in the list are
collectively selected, but the list itself is not.

16-5

 Gaps

SEdit requires that everything edited must have an underlying Lisp structure at all times. Some
characters, such as single quote “’” have no meaning by themselves, but must be followed by
something more. Whenyou type such a character, SEdit puts a “gap” where the rest of the input
should go. When you type, the gap is automatically replaced.

A gap looks like:

After you type a quote, the gap looks like this: with the gap marked for pending deletion.

Broken Atoms

When you type an atom (a symbol or a number), SEdit saves the characters you type until you are
finished. Typing any character that cannot belong to an atom, like a space or open parenthesis, ends
the atom. SEdit then tries to create an atom with the characters you just typed, just as if they were
read by the Lisp reader. The atom then becomes part of the structure you’re editing.

If an error occurs when SEdit reads the atom, SEdit creates a structure called a Broken-Atom. A
Broken-Atom looks and behaves just like a normal atom, but is printed in italics to tell you that
something is wrong.

SEdit creates a Broken-Atom when the characters typed don’t make a legal atom. For example, the
characters "DECLARE:" can’t be a symbol because the colon is a package specifier, but the form is not
correct for a package-qualified symbol. Similarly, the characters "#b123" cannot represent an integer
in base two, because 2 and 3 aren’t legal digits in base two, so SEdit would make a Broken-Atom that
looks like #b123.

You can edit Broken-Atoms just like real atoms. Whenever you finish editing a Broken-Atom, SEdit
again tries to create an atom from the characters. If SEdit succeeds, it reprints the atom in SEdit’s
default font, rather than in italics. Be sure to correct any Broken-Atoms you create before exiting
SEdit, since Broken-Atoms do not behave in any useful way outside SEdit.

Special Characters

Some characters have special meanings in Lisp, and are therefor treated specially by SEdit. SEdit
must always have a complete structure to work on at any level of the edit. This means that SEdit
needs a special way to type in structures such as lists, strings, and quoted objects. In most
instances these structures can be typed in just as they would be to a regular Exec, but in the
following cases this is not possible.

16-6

INTERLISP-D REFERENCE MANUAL

Lists: () Lists begin with an open parenthesis character "(". Typing
an open parenthesis gives a balanced list. SEdit inserts
both an open and a close parenthesis. The structure caret is
placed between the two parentheses. List elements can be
typed in at the structure caret. When a close parenthesis, ")"
is typed, the caret will be moved outside the list, effectively
finishing the list. Square bracket characters, "[" and "]",
have no special meaning in SEdit, as they have no special
meaning in Common Lisp.

Single Quote: ’
Backquote: ‘

Comma: ,
At Sign: ,@

Dot: ,.
Hash Quote: #’ All these characters are special macro characters in

Common Lisp. When you type one, SEdit will echo the
character followed by a gap, which you should then fill in.

Dotted Lists: (.) Use period to enter dotted pairs. After you type a dot,
SEdit prints a dot and a gap to fill in for the tail of the list.
To dot an existing list, point the cursor between the last and
second to last elements, and type a dot. To undot a list,
select the tail of the list before the dot while holding down
the SHIFT key.

Single escape: \ or % Use the single escape characters to make symbols with
special characters. The single escape character for Interlisp
is "%". The single escape character for Common Lisp is "\".

When you want to create a symbol with a special character
in it you have to type a single escape character before you
type the character itself. SEdit does not echo the single
escape character until you type the following character.

For example; create the Common Lisp symbol APAREN-(.
Since SEdit normally will treat the "(" as the start of a new
list you have to tell SEdit to treat it as an ordinary character.
You do this by typing a "\" before you type the "(".

Multiple Escape: | Use the multiple escape character when you enter symbols
with many special characters. SEdit always balances
multiple escape characters. When you type one, SEdit adds
another, with the caret between them. If you type a second
vertical bar, the caret moves after it, but is still inthe same
symbol, so you can add more unescaped characters.

16-7

Comment: ; A semicolon starts a comment. When you type a semicolon,
an empty comment is inserted with the caret in position to
type the comment. Comments can be edited like strings.

There are three levels of comments supported by SEdit:
single-, double-, and triple-semicolon. Single-semicolon
comments are formatted at the comment column, about
three-quarters of the way across the window. Double-
semicolon comments are formatted at the current
indentation of the code they are in. Triple semicolon
comments are formatted against the left margin. The level
of a comment can be increased or decreased by pointing
after the semicolon, and either typing another semicolon, or
backspacing over the preceding semicolon. Comments can
be placed anywhere in your Common Lisp code. However,
in Interlisp code, they must follow the placement rules for
Interlisp comments.

String: " Enter strings in SEdit by typing a double quote. SEdit
balances the double quotes: When one is typed, SEdit
produces a second, with the caret between the two. If you
type a double-quote in the middle of a string, SEdit breaks
the string in two, leaving the caret between them.

SEdit Commands

Enter SEdit commands either from the keyboard or from the SEdit menu. When possible, SEdit uses a
named key on the keyboard, e.g., the DELETE key. Other commands are combinations of Meta,
Control, and alphabetic keys. For the alphabetic command keys, either uppercase or lowercase will
work.

There are two menus available, as an alternative means of invoking commands. They are the middle
button popup menu, and the attached command menu. These menus are described in more detail
below.

Meta-A Abort the session. Throw away the changes made to the form.

Meta-B Change the Print Base. Prompts for entry of the desired Print Base, in decimal.
SEdit redisplays fixed point numbers in this new base.

Control-C Tell SEdit that this session is complete and compiles the definition being edited.
The variable *COMPILE-FN* determines which function to use as compiler. See
the Options section below.

Control-Meta-C Signals the system that this edit is complete, compiles the definition being
editing, and closes the window.

DELETE Deletes the current selection.

16-8

INTERLISP-D REFERENCE MANUAL

Meta-E Evaluate the current selection. If the result is a structure, the inspector is called
on it, allowing the user to choose how to look at the result. Otherwise, the result
is printed in the SEdit prompt window. The evaluation is done in the process
from which the edit session was started. Thus, while editing a function from a
break window, evaluations are done in the context of the break.

FIND
Meta-F Find a specified structure, or sequence of structures. If there is a current

selection, SEdit looks for the next occurrence of the selected structure. If there is
no selection, SEdit prompts for the structure to find, and searches forward from
the position of the caret. The found structure will be selected, so the Find
command can be used to easily find the same structure again.

If a sequence of structures are selected, SEdit will look for the next occurrence of
the same sequence. Similarly, when SEdit prompts for the structure to find, you
can type a sequence of structures to look for.

The variable *WRAP-SEARCH* controls whether or not SEdit wraps around from
the end of the structure being edited and continues searching from the
beginning.

Control-Meta-F Find a specified structure, searching in reverse from the position of the caret.

HELP
Meta-H Show the argument list for the function currently selected, or currently being

typed in, in the SEdit prompt window. If the argument list will not fit in the
SEdit prompt window, it is displayed in the main Prompt Window.

Meta-I Inspect the current selection.

Meta-J Join any number of sequential Lisp objects of the same type into a single object of
that type. Join is supported for atoms, strings, lists, and comments. In addition,
SEdit permits joining of a sequence of atoms and strings, since either type can
easily be coerced into the other. In this case, the result of the Join will be an atom
if the first object in the selection is an atom, otherwise the result will be a string.

Control-L Redisplay the structure being edited.

SKIP-NEXT
Meta-N Select next gap in the structure.

Meta-O Edit the definition of the current selection. If the selected name has more than
one type of definition, SEdit asks for the type to edit. If the selection has no
definition, a menu pops up. This menu lets you specify the type of definition to
create.

Control-Meta-O Perform a fast edit by calling ED with the CURRENT option.

Meta-P Change the current package for this edit. Prompt the user for a new package
name. SEdit will redisplay atoms with respect to that package.

AGAIN
Meta-R Redo the edit change that was just undone. Redo only works directly following

an Undo. Any number of Undo commands can be sequentially redone.

SHIFT-FIND

16-9

Meta-S Substitute a structure, or sequence of structures within the current selection.
SEdit prompts you in the SEdit prompt window for the structures to replace, and
the structures to replace with. The selection to substitute within must be a
structure selection.

Control-Meta-S Remove all occurences of a structure or sequence of structures within the current
selection. SEdit prompts you for the structures to delete.

UNDO
Meta-U Undo the last edit. All changes in the the edit session are remembered, and can

be undone sequentially.

Control-W Delete the previous atom or structure. If the caret is in the middle of an atom,
deletes backward to the beginning of the atom only.

Control-X Tell SEdit that this session is complete. The SEdit window remains open.

EXPAND
Meta-X Replaces the current selection with its definition. This command can be used to

expand macros and translate CLISP.

Control-Meta-X Tell SEdit that this session is complete Close the SEdit window.

Meta-Z Mutate. Prompt for a function and call this function with the current selection as
the argument. The result is inserted into SEdit and made the current selection.

For example, you can replace a structure with its value by selecting it and
mutating by EVAL.

Meta-; Convert old style comments in the selected structure to new style comments.
The converter notices any list that begins with the symbol IL:* as an old style
comment. Section 16.1.18, Options, describes the converter options .

Control-Meta-; Put the contents of a structure selection into a comment. This provides an easy
way to "comment out" a chunk of code. The Extract command can be used to
reverse this process, returning the comment to the structures contained therein.

Meta-/ Extract one level of structure from the current selection. If there is no selection,
but there is a structure caret, the list containing the caret is used. This command
can be used to strip the parentheses off a list, or to unquote a quoted structure,
or to replace a comment with the contained structures.

Meta-’
Meta-‘
Meta-,
Meta-.

Meta-@ or Meta-2
Meta-# or Meta-3

Meta-. Quote the current selection with the specified kind of quote.

Meta-Space
Meta-Return Scroll the current selection to the center of the window. Similarly, the Space or

Return key can be used to normalize the caret.

Meta-)
Meta-0 Parenthesize the current selection, position the caret after the new list.

16-10

INTERLISP-D REFERENCE MANUAL

Meta-(
Meta-9 ParenthesizE the current selection, position the caret at the beginning of the new

list.

Meta-M Attach a menu of common commands to the top of the SEdit window. Each
SEdit window can have its own menu.

SEdit Command Mnemonics

Abort Meta-A
Change Print Base Meta-B

Complete Control-X
Compile & Complete Control-C

Close, Compile & Complete Control-Meta-C
Convert Comment Meta-;

Make Selection Comment Control-Meta-;
Previous Delete Control-W
Selection Delete DELETE

Selection Dot Comma Meta-.
Selection At Comma Meta-@

Edit Meta-O
Fast Edit Control-Meta-O

Selection Eval Meta-E
Macro Expand Meta-X
Forward Find Meta-F
Reverse Find Control-Meta-F

Next Gap Meta-N
Arglist Help Meta-H

Inspect Meta-I
Join Meta-J

Attach Menu Meta-M
Expression Mutate Meat-Z

Change Package Meta-P
Selection Left Parenthesize Meta-(

Selection Right Parenthesize Meta-)
Selection Pop Meta-/

Selection Back Quote Meta-‘
Selection Hash Quote Meta-#

Selection Quote Meta-’
Redisplay Control-L

 Redo Meta-R
Remove Control-Meta-S

Substitute Meta-S
Undo Meta-U

SEdit Command Menu

When the mouse cursor is in the SEdit title bar and you press middle mouse button, a
Help Menu of commands pops up. The menu looks like this:

16-11

The Help Menu lists each command and its corresponding Command Key. (C- stands for
Control, M- for Meta.) The menu pops up with the mouse cursor next to the last
command you used from the menu. This makes it easy to repeat a command.

SEdit Attached Menu

SEdit’s Attached Command Menu contains the commonly used commands. Use the Meta-
M keyboard command to bring up this menu. The menu can be closed, independently of
the SEdit window. The menu looks like:

Menu commands work like the corresponding keyboard commands, except for Find and
Substitute.

16-12

INTERLISP-D REFERENCE MANUAL

For Find, SEdit prompts in the menu window, next to the Find button, for the structures
to find. Type in the structures then select Find again. The search begins from the caret
position in the SEdit window.

Similarly, Substitute prompts next to the Find button for the structures to find, and next
to the Substitute button for the structures to replace them with. After both have been
typed in, selecting Substitute replaces all occurrences of the Find structures with the
Substitute structures, within the current selection.

To selectively substitute, use Find to find the next potential substitution target. If you
want to replace it, select Substitute. Otherwise, select Find again to go on.

Selecting either Find or Substitute with the right mouse button erases the old structure to
find or substitute from the menu, and prompts for a new one.

SEdit Programmer’s Interface

The following sections describe SEdit’s programmer’s interface. All symbols are external
in the package SEDIT.

SEdit Window Region Manager

SEdit provides user redefinable functions which control how SEdit chooses the region for
a new edit window. In the follwin thext there are a few concepts that you will have to be
familliar with. They are:

The region stack. This is a stack of old used regions. The reason to keep these around is
that the user probably was comfortable with the old position of the window, so when he
starts a new SEdit it is a good bet that he will be happy with the old placement.

SEdit uses the respective value of the symbols SEDIT::DEFAULT-FONT,
SEDIT::ITALIC-FONT, SEDIT::KEYWORD-FONT, SEDIT::COMMENT-FONT, and
SEDIT::BROKEN-ATOM-FONT when displaying an expression. The value of these
symbols have to be font descriptors.

(GET-WINDOW-REGION context reason name type) [Function]

This function is called when SEdit wants to know where to place a window it is about to
open. This happens whenever the user starts a new SEdit or expands an Sedit icon. The
default behavior is to pop a window region off SEdit’s stack of regions that have been
used in the past. If the stack is empty, SEdit prompts for a new region.

context is the current editor context.

reason is one of :CREATE or :EXPAND depending on what action prompted the call to
GET-WINDOW-REGION

name is the name of the structure to be edited.

16-13

type is the edit type of the calling context.

(SAVE-WINDOW-REGION context reason name type region) [Function]

This function is called whenever SEdit is finished with a region and wants to make the
region available for other SEdits. This happens whenever an SEdit window is closed or
shrunk, or when an SEdit Icon is closed. The default behavior is simply to push the region
onto SEdit’s stack of regions.

context is the current editor context.

reason is one of :CLOSE, :SHRINK, or :CLOSE-ICON or depending on what action
prompted the call to SAVE-WINDOW-REGION

name is the name of the structure to be edited.

type is the edit type of the calling context.

region is the region to be pushed onto the region stack. If region is NIL the old region of
the SEdit will be pushed top the region stack.

KEEP-WINDOW-REGION [Variable]

Default T. This flag determines the behavior of the default SEdit region manager,
explained above, for shrinking and expanding windows. When set to T, shrinking an
SEdit window will not give up that window’s region; the icon will always expand back
into the same region. When set to NIL, the window’s region is made available for other
SEdits when the window is shrunk. Then when an SEdit icon is expanded, the window
will be reshaped to the next available region.

This variable is only used by the default implementations of the functions get-window-
region and save-window-region. If these functions are redefined, this flag is no longer
used.

Options

The following parameters can be set as desired.

WRAP-PARENS [Variable]

This SEdit pretty printer flag determines whether or not trailing close parenthesis
characters,), are forced to be visible in the window without scrolling. By default it is set
to NIL, meaning that close parens are allowed to "fall off" the right edge of the window. If
set to T, the pretty printer will start a new line before the structure preceding the close
parens, so that all the parens will be visible.

WRAP-SEARCH [Variable]

This flag determines whether or not SEdit find will wrap around to the top of the
structure when it reaches the end, or vice versa in the case of reverse find. The default is
NIL.

16-14

INTERLISP-D REFERENCE MANUAL

CLEAR-LINEAR-ON-COMPLETION [Variable]

This flag determines whether or not SEdit completely re-pretty prints the structure being
edited when you complete the edit. The default value is NIL, meaning that SEdit reuses
the pretty printing.

IGNORE-CHANGES-ON-COMPLETION [Variable]

Sometimes the structure that you are editing is changed by the system upon completion.
Editdates are an example of this behavior. When this flag is NIL, the default, SEdit will
redisplay the new structure, capturing the changes. When T, SEdit will ignore the fact
that changes were made by the system and keep the old structure.

CONVERT-UPGRADE [Variable]

Default 100. When using Meta-; to convert old-style single- asterisk comments, if the
length of the comment exceeds convert-upgrade characters, the comment is converted into
a double semicolon comment. Otherwise, the comment is converted into a single
semicolon comment.

Old-style double-asterisk comments are always converted into new-style triple-semicolon
comments.

Control Functions

(RESET) [Function]

This function recomputes the SEdit edit environment. Any changes made in the font
profile, or any changes made to SEdit’s commands are captured by resetting. Close all
SEdit windows before calling this function.

(ADD-COMMAND key-code form &optional scroll? key-name command-name
help-string) [Function]

This function allows you to write your own SEdit keyboard commands. You can add
commands to new keys, or you can redefine keys that SEdit already uses as command
keys. If you mistakenly redefine an SEdit command, the funtion Reset-Commands will
remove all user-added commands, leaving SEdit with its default set of commands.

key-code can be a character code, or any form acceptible to il:charcode.

form determines the function to be called when the key command is typed. It can be a
symbol naming a function, or a list, whose first element is a symbol naming a function
and the rest of the elements are extra arguments to the function. When the command is
invoked, SEdit will apply the function to the edit context (SEdit’s main data structure), the
charcode that was typed, and any extra arguments supplied in form. The extra arguments
do not get evaluated, but are useful as keywords or flags, depending on how the
command was invoked. The command function must return T if it handled the
command. If the function returns NIL, SEdit will ignore the command and insert the
character typed.

16-15

The first optional argument, scroll?, determines whether or not SEdit scrolls the
window after running the command. This argument defaults to NIL, meaning don’t
scroll. If the value of scroll? is T, SEdit will scroll the window to ensure that the caret
is visible.

The rest of the optional arguments are used to add this command to SEdit’s middle button
menu. When the item is selected from the menu, the command function will be called as
described above, with the charcode argument set to NIL.

key-name is a string to identify the key (combination) to be typed to invoke the
command. For example "M-A" to represent the Meta-A key combination, and "C-M-A" for
Control-Meta-A.

command-name is a string to identify the command function, and will appear in the menu
next to the key-name.

help-string is a string to be printed in the prompt window when a mouse button is held
down over the menu item.

After adding all the commands that you want, you must call Reset-Commands to install
them.

For example:

(ADD-COMMAND "^U" (MY-CHANGE-CASE T))

(ADD-COMMAND "^Y" (MY-CHANGE-CASE NIL))

(ADD-COMMAND "1,R" MY-REMOVE-NIL
 "M-R" "REMOVE NIL"
 "REMOVE NIL FROM THE SELECTED STRUCTURE"))

(RESET-COMMANDS)

will add three commands.

Suppose MY-CHANGE-CASE takes the arguments context, charcode, and upper-case?. upper-
case? will be set to T when MY-CHANGE-CASE is called from Control-U, and NIL when
called from Control-Y. MY-REMOVE-NIL will be called with only context and charcode
arguments when you type Meta-R.

(RESET-COMMANDS) [Function]

This function installs all commands added by add-command. SEdits which are open at
the time of the reset-commands will not see the new commands; only new SEdits will
have the new commands available.

(DEFAULT-COMMANDS) [Function]

This function removes all commands added by add-command, leaving SEdit with its
default set of commands. As in reset-commands, open SEdits will not be changed; only
new SEdits will have the user commands removed.

16-16

INTERLISP-D REFERENCE MANUAL

(GET-PROMPT-WINDOW context) [Function]

Returns the attached prompt window for a particular SEdit.

(GET-SELECTION context) [Function]

This function returns two values: the selected structure, and the type of selection, one of
NIL, T, or :SUB-LIST. The selection type NIL means there is not a valid selection (in
this case the structure is meaningless). T means the selection is one complete structure.
:SUB-LIST means a series of elements in a list is selected, in which case the structure
returned is a list of the elements selected.

(REPLACE-SELECTION context structure selection-type) [Function]

This function replaces the current selection with a new structure, or multiple structures,
by deleting the selection and then inserting the new structure(s). The selection-type
argument must be one of T or :SUB-LIST. If T, the structure is inserted as one complete
structure. If :SUB-LIST, the structure is treated as a list of elements, each of which is
insertd.

EDIT-FN [Variable]

This function is called with the selected structure and the edit specified as arguments to
Sedit options as its arguments from the Edit (M-O) command. It should start the editor as
appropriate, or generate an error if the selection is not editable.

COMPILE-FN [Variable]

This function is called with the arguments name, type, and body, from the
compile/completion commands. It should compile the definition, body, and install the
code as appropriate.

(SEDIT structure props options) [Function]

This function provides a means of starting SEdit directly. structure is the structure to
be edited.

props is a property list, which may specify the following properties:

:NAME - the name of the object being edited

:TYPE - the file manager type of the object being edited. If NIL, SEdit will not call the file
manager when it tries to refetch the definition it is editing. Instead, it will just continue to
use the structure that it has.

:COMPLETION-FN - the function to be called when the edit session is completed. This
function is called with the context, structure, and changed? arguments. context is
SEdits main data structure. structure is the structure being edited. changed?
specifies if any changes have been made, and is one of NIL, T, or :ABORT, where :ABORT
means the user is aborting the edit and throwing away any changes made. If the value of
this property is a list, the first element is treated as the function, and the rest of the
elements are extra arguments for the function.

16-17

:ROOT-CHANGED-FN - the function to be called when the entire structure being edited is
replaced with a new structure. This function is called with the new structure as its
argument. If the value of this property is a list, the first element is treated as the function,
and the rest of the elements are extra arguments that the function is applied to following
the structure argument.

options is one or a list of any number of the followng keywords:

:CLOSE-ON-COMPLETION - This option specifies that SEdit cannot remain active for
multiple completions. That is, the SEdit window cannot be shrunk, and the completion
commands that normally leave the window open will in this case close the window and
terminate the edit.

:COMPILE-ON-COMPLETION - This option specifies that SEdit should call the
COMPILE-FN to compile the definition being edited upon completion, regardless of the
completion command used.

The TTY Editor

This editor the main code editor in pre-window-system versions of Interlisp. For that task, it has been
replaced by SEdit.

However, the TTY Editor provides an excellent language for manipulating list structure and making
large-scale code changes. For example, several tools for cleaning up code are written using TTY
Editor calls to do the actual work.

TTY Editor Local Attention-Changing Commands

This section describes commands that change the current expression (i.e., change the edit chain)
thereby "shifting the editor’s attention." These commands depend only on the structure of the edit
chain, as compared to the search commands (presented later), which search the contents of the
structure.

UP [Editor Command]

UP modifies the edit chain so that the old current expression (i.e., the one at the time UP was
called) is the first element in the new current expression. If the current expression is the first
element in the next higher expression UP simply does a 0. Otherwise UP adds the
corresponding tail to the edit chain.

If a P command would cause the editor to type ... before typing the current expression, ie.,
the current expression is a tail of the next higher expression, UP has no effect.

For example:

16-18

INTERLISP-D REFERENCE MANUAL

*PP
(COND ((NULL X) (RETURN Y)))
*1 P
COND
*UP P
(COND (& &))
*-1 P
((NULL X) (RETURN Y))
*UP P
... ((NULL X) (RETURN Y))
*UP P
... ((NULL X) (RETURN Y)))
*F NULL P
(NULL X)
*UP P
((NULL X) (RETURN Y))
*UP P
... ((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current expression
appears more than once in the next higher expression. For example, if the current expression
is (A NIL B NIL C NIL) and you perform 4 followed by UP, the current expression
should then be ... NIL C NIL). UP can determine which tail is the correct one because
the commands that descend save the last tail on an internal editor variable, LASTAIL. Thus
after the 4 command is executed, LASTAIL is (NIL C NIL). When UP is called, it first
determines if the current expression is a tail of the next higher expression. If it is, UP is
finished. Otherwise, UP computes (MEMB CURRENT-EXPRESSION NEXT-HIGHER-
EXPRESSION) to obtain a tail beginning with the current expression. The current expression
should always be either a tail or an element of the next higher expression. If it is neither, for
example yopu have directly (and incorrectly) manipulated the edit chain, UP generates an
error. If there are no other instances of the current expression in the next higher expression,
this tail is the correct one. Otherwise UP uses LASTAIL to select the correct tail.

Occasionally you can get the edit chain into a state where LASTAIL cannot resolve the
ambiguity, for example if there were two non-atomic structures in the same expression that
were EQ, and you descended more than one level into one of them and then tried to come
back out using UP. In this case, UP prints LOCATION UNCERTAIN and generates an error. Of
course, we could have solved this problem completely in our implementation by saving at
each descent both elements and tails. However, this would be a costly solution to a situation
that arises infrequently, and when it does, has no detrimental effects. The LASTAIL solution
is cheap and resolves almost all of the ambiguities.

N (N> = 1) [Editor Command]

Adds the Nth element of the current expression to the front of the edit chain, thereby making
it be the new current expression. Sets LASTAIL for use by UP. Generates an error if the
current expression is not a list that contains at least N elements.

16-19

-N (N> = 1) [Editor Command]

Adds the Nth element from the end of the current expression to the front of the edit chain,
thereby making it be the new current expression. Sets LASTAIL for use by UP. Generates an
error if the current expression is not a list that contains at least N elements.

0 [Editor Command]

Sets the edit chain to CDR of the edit chain, thereby making the next higher expression be the
new current expression. Generates an error if there is no higher expression, i.e., CDR of edit
chain is NIL.

Note that 0 usually corresponds to going back to the next higher left parenthesis, but not
always. For example:

*P
(A B C D E F B)
*3 UP P
... C D E F G)
*3 UP P
... E F G)
*0 P
... C D E F G)

If the intention is to go back to the next higher left parenthesis, regardless of any intervening
tails, the command !0 can be used.

!0 [Editor Command]

Does repeated 0’s until it reaches a point where the current expression is not a tail of the next
higher expression, i.e., always goes back to the next higher left parenthesis.

↑ [Editor Command]

Sets the edit chain to LAST of edit chain, thereby making the top level expression be the
current expression. Never generates an error.

NX [Editor Command]

Effectively does an UP followed by a 2, thereby making the current expression be the next
expression. Generates an error if the current expression is the last one in a list. (However,
!NX described below will handle this case.)

BK [Editor Command]

Makes the current expression be the previous expression in the next higher expression.
Generates an error if the current expression is the first expression in a list.

16-20

INTERLISP-D REFERENCE MANUAL

For example:

*PP
(COND ((NULL X) (RETURN Y)))
*F RETURN P
(RETURN Y)
*BK P
(NULL X)

Both NX and BK operate by performing a !0 followed by an appropriate number, i.e., there won’t be
an extra tail above the new current expression, as there would be if NX operated by performing an UP
followed by a 2.

(NX N) [Editor Command]

(N >= 1) Equivalent to N NX commands, except if an error occurs, the edit chain is not
changed.

(BK N) [Editor Command]

(N >= 1) Equivalent to N BK commands, except if an error occurs, the edit chain is not
changed.

Note: (NX -N) is equivalent to (BK N), and vice versa.

!NX [Editor Command]

Makes the current expression be the next expression at a higher level, i.e., goes through any
number of right parentheses to get to the next expression. For example:

*PP
(PROG ((L L)
 (UF L))
 LP (COND
 ((NULL (SETQ L (CDR L)))
 (ERROR!))
 ([NULL (CDR (FMEMB (CAR L) (CADR L]
 (GO LP)))
 (EDITCOM (QUOTE NX))
 (SETQ UNFIND UF)
 (RETURN L))
*F CDR P
(CDR L)
*NX

NX ?
*!NX P
(ERROR!)
*!NX P
((NULL &) (GO LP))
*!NX P
(EDITCOM (QUOTE NX))
*

16-21

!NX operates by doing 0’s until it reaches a stage where the current expression is not the last
expression in the next higher expression, and then does a NX. Thus !NX always goes through
at least one unmatched right parenthesis, and the new current expression is always on a
different level, i.e., !NX and NX always produce different results. For example using the
previous current expression:

*F CAR P
(CAR L)
*!NX P
(GO LP)
*\P P
(CAR L)
*NX P
(CADR L)
*

(NTH N) [Editor Command]

(N ~= 0) Equivalent to N followed by UP, i.e., causes the list starting with the Nth element
of the current expression (or Nth from the end if N < 0) to become the current expression.
Causes an error if current expression does not have at least N elements.

(NTH 1) is a no-op, as is (NTH -L) where L is the length of the current expression.

line-feed [Editor Command]

Moves to the "next" expression and prints it, i.e. performs a NX if possible, otherwise
performs a !NX. (The latter case is indcated by first printing ">".)

Control-X [Editor Command]

Control-X moves to the "previous" thing and then prints it, i.e. performs a BK if possible,
otherwise a !0 followed by a BK.

Control-Z [Editor Command]

Control-Z moves to the last expression and prints it, i.e. does -1 followed by P.

Line-feed, Control-X, and Control-Z are implemented as immediate read macros; as soon as they are
read, they abort the current printout. They thus provide a convenient way of moving around in the
editor. To facilitate using different control characters for those macros, the function SETTERMCHARS is
provided (see below).

16-22

INTERLISP-D REFERENCE MANUAL

Commands That Search

All of the editor commands that search use the same pattern matching routine (the function EDIT4E,
below). We will therefore begin our discussion of searching by describing the pattern match
mechanism. A pattern PAT matches with X if any of the following conditions are true:

1. If PAT is EQ to X

2. If PAT is &

3. If PAT is a number and EQP to X

4. If PAT is a string and (STREQUAL PAT X) is true

5. If (CAR PAT) is the atom *ANY*, (CDR PAT) is a list of patterns, and one of the patterns on
(CDR PAT) matches X.

6. If PAT is a literal atom or string containing one or more $s (escapes), each $ can match an
indefinite number (including 0) of contiguous characters in the atom or string X, e.g., VER$
matches both VERYLONGATOM and "VERYLONGSTRING" as do $LONG$ (but not $LONG), and
VLT. Note: the litatom $ (escape) matches only with itself.

7. If PAT is a literal atom or string ending in $$ (escape, escape), PAT matches with the atom
or string X if it is "close" to PAT, in the sense used by the spelling corrector (see Chapter 20).
For example, CONSS$$ matches with CONS, CNONC$$ with NCONC or NCONC1.

The pattern matching routine always types a message of the form =MATCHING-ITEM to inform you of
the object matched by a pattern of the above two types, unless EDITQUIETFLG = T. For example, if
VER$ matches VERYLONGATOM, the editor would print =VERYLONGATOM.

8. If (CAR PAT) is the atom --, PAT matches X if (CDR PAT) matches with some tail of X. For
example, (A -- (&)) will match with (A B C (D)), but not (A B C D), or (A B C (D)
E). However, note that (A -- (&) --) will match with (A B C (D) E). In other words,
-- can match any interior segment of a list.

If (CDR PAT)= NIL, i.e., PAT = (--), then it matches any tail of a list. Therefore, (A --
) matches (A), (A B C) and (A . B).

9. If (CAR PAT) is the atom ==, PAT matches X if and only if (CDR PAT) is EQ to X.

This pattern is for use by programs that call the editor as a subroutine, since any non-
atomic expression in a command typed in by you obviously cannot be EQ to already existing
structure.

10. If (CADR PAT) is the atom .. (two periods), PAT matches X if (CAR PAT) matches (CAR X)
and (CDDR PAT) is contained in X, as described below.

11. Otherwise if X is a list, PAT matches X if (CAR PAT) matches (CAR X), and (CDR PAT)
matches (CDR X).

16-23

When the editor is searching, the pattern matching routine is called to match with elements in the
structure, unless the pattern begins with ... (three periods), in which case CDR of the pattern is
matched against proper tails in the structure. Thus,

*P
(A B C (B C))
*F (B --)
*P
(B C)
*0 F (... B --)
*P
... B C (B C))

Matching is also attempted with atomic tails (except for NIL). Thus,

*P
(A (B . C))
*F C
*P
... . C)

Although the current expression is the atom C after the final command, it is printed as C) to
alert you to the fact that C is a tail, not an element. Note that the pattern C will match with either
instance of C in (A C (B . C)), whereas (... . C) will match only the second C. The pattern
NIL will only match with NIL as an element, i.e., it will not match in (A B), even though CDDR of (A
B) is NIL. However, (... . NIL) (or equivalently (...)) may be used to specify a NIL tail, e.g.,
(... . NIL) will match with CDR of the third subexpression of ((A . B) (C . D) (E)).

Search Algorithm

Searching begins with the current expression and proceeds in print order. Searching usually means
find the next instance of this pattern, and consequently a match is not attempted that would leave the
edit chain unchanged. At each step, the pattern is matched against the next element in the expression
currently being searched, unless the pattern begins with ... (three periods) in which case it is
matched against the next tail of the expression.

If the match is not successful, the search operation is recursive first in the CAR direction, and then in
the CDR direction, i.e., if the element under examination is a list, the search descends into that list
before attempting to match with other elements (or tails) at the same level. Note: A find command of
the form (F PATTERN NIL) will only attempts matches at the top level of the current expression, i.e.,
it does not descend into elements, or ascend to higher expressions.

However, at no point is the total recursive depth of the search (sum of number of CARs and CDRs
descended into) allowed to exceed the value of the variable MAXLEVEL. At that point, the search of
that element or tail is abandoned, exactly as though the element or tail had been completely searched
without finding a match, and the search continues with the element or tail for which the recursive
depth is below MAXLEVEL. This feature is designed to enable you to search circular list structures (by
setting MAXLEVEL small), as well as protecting him from accidentally encountering a circular list

16-24

INTERLISP-D REFERENCE MANUAL

structure in the course of normal editing. MAXLEVEL can also be set to NIL, which is equivalent to
infinity. MAXLEVEL is initially set to 300.

If a successful match is not found in the current expression, the search automatically ascends to the
next higher expression, and continues searching there on the next expression after the expression it
just finished searching. If there is none, it ascends again, etc. This process continues until the entire
edit chain has been searched, at which point the search fails, and an error is generated. If the search
fails (or is aborted by Control-E), the edit chain is not changed (nor are any CONSes performed).

If the search is successful, i.e., an expression is found that the pattern matches, the edit chain is set to
the value it would have had had you reached that expression via a sequence of integer commands.

If the expression that matched was a list, it will be the final link in the edit chain, i.e., the new current
expression. If the expression that matched is not a list, e.g., is an atom, the current expression will be
the tail beginning with that atom, unless the atom is a tail, e.g., B in (A . B). In this case, the current
expression will be B, but will print as B). In other words, the search effectively does an UP
(unless UPFINDFLG = NIL (initially T). See "Form Oriented Editing" in this chapter).

Search Commands

All of the commands below set LASTAIL for use by UP, set UNFIND for use by \ (below), and do not
change the edit chain or perform any CONSes if they are unsuccessful or aborted.

F PATTERN [Editor Command]

Actually two commands: the F informs the editor that the next command is to be interpreted
as a pattern. This is the most common and useful form of the find command. If successful,
the edit chain always changes, i.e., F PATTERN means find the next instance of PATTERN.

If (MEMB PATTERN CURRENT-EXPRESSION) is true, F does not proceed with a full
recursive search. If the value of the MEMB is NIL, F invokes the search algorithm described
above.

If the current expression is (PROG NIL LP (COND (-- (GO LP1))) ... LP1 ...),
then F LP1 will find the PROG label, not the LP1 inside of the GO expression, even though
the latter appears first (in print order) in the current expression. Typing 1 (making the atom
PROG be the current expression) followed by F LP1 would find the first LP1.

F PATTERN N [Editor Command]

Same as F PATTERN, i.e., Finds the Next instance of PATTERN, except that the MEMB check of F
PATTERN is not performed.

16-25

F PATTERN T [Editor Command]

Similar to F PATTERN, except that it may succeed without changing the edit chain, and it
does not perform the MEMB check. For example, if the current expression is (COND ...), F
COND will look for the next COND, but (F COND T) will "stay here".

(F PATTERN N) [Editor Command]

(N >= 1) Finds the Nth place that PATTERN matches. Equivalent to (F PATTERN T)
followed by (F PATTERN N) repeated N-1 times. Each time PATTERN successfully matches, N
is decremented by 1, and the search continues, until N reaches 0. Note that PATTERN does
not have to match with N identical expressions; it just has to match N times. Thus if the
current expression is (FOO1 FOO2 FOO3), (F FOO$ 3) will find FOO3.

If PATTERN does not match successfully N times, an error is generated and the edit chain is
unchanged (even if PATTERN matched N-1 times).

(F PATTERN) [Editor Command]
F PATTERN NIL [Editor Command]

Similar to F PATTERN, except that it only matches with elements at the top level of the
current expression, i.e., the search will not descend into the current expression, nor will it go
outside of the current expression. May succeed without changing the edit chain.

For example, if the current expression is (PROG NIL (SETQ X (COND & &)) (COND &)
...), the command F COND will find the COND inside the SETQ, whereas (F (COND --))
will find the top level COND, i.e., the second one.

(FS PATTERN1 ... PATTERNN) [Editor Command]

Equivalent to F PATTERN1 followed by F PATTERN2 ... followed by F PATTERNN, so that

if F PATTERNM fails, the edit chain is left at the place PATTERNM-1 matched.

(F= EXPRESSION X) [Editor Command]

Equivalent to (F (== . EXPRESSION) X), i.e., searches for a structure EQ to EXPRESSION
(see above).

(ORF PATTERN1 ... PATTERNN) [Editor Command]

Equivalent to (F (*ANY*PATTERN1 ... PATTERNN) N), i.e., searches for an expression

that is matched by either PATTERN1, PATTERN2, ... or PATTERNN (see above).

16-26

INTERLISP-D REFERENCE MANUAL

BF PATTERN [Editor Command]

"Backwards Find". Searches in reverse print order, beginning with the expression
immediately before the current expression (unless the current expression is the top level
expression, in which case BF searches the entire expression, in reverse order).

BF uses the same pattern match routine as F, and MAXLEVEL and UPFINDFLG have the same
effect, but the searching begins at the end of each list, and descends into each element before
attempting to match that element. If unsuccessful, the search continues with the next
previous element, etc., until the front of the list is reached, at which point BF ascends and
backs up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) --)) --),

the command F LIST followed by BF SETQ will leave the current expression as (SETQ Y
(LIST Z)), as will F COND followed by BF SETQ.

BF PATTERN T [Editor Command]

Similar to BF PATTERN, except that the search always includes the current expression, i.e.,
starts at the end of current expression and works backward, then ascends and backs up, etc.

Thus in the previous example, where F COND followed by BF SETQ found (SETQ Y (LIST
Z)), F COND followed by (BF SETQ T) would find the (SETQ W --) expression.

(BF PATTERN) [Editor Command]
BF PATTERN NIL [Editor Command]

Same as BF PATTERN.

(GO LABEL) [Editor Command]

Makes the current expression be the first thing after the PROG label LABEL, i.e. goes where an
executed GO would go.

Location Specification

Many of the more sophisticated commands described later in this chapter use a more general method
of specifying position called a "location specification." A location specification is a list of edit
commands that are executed in the normal fashion with two exceptions. First, all commands not
recognized by the editor are interpreted as though they had been preceded by F; normally such
commands would cause errors. For example, the location specification (COND 2 3) specifies the 3rd
element in the first clause of the next COND. Note that you could always write F COND followed by 2

16-27

and 3 for (COND 2 3) if you were not sure whether or not COND was the name of an atomic
command.

Secondly, if an error occurs while evaluating one of the commands in the location specification, and
the edit chain had been changed, i.e., was not the same as it was at the beginning of that execution of
the location specification, the location operation will continue. In other words, the location operation
keeps going unless it reaches a state where it detects that it is "looping", at which point it gives up.
Thus, if (COND 2 3) is being located, and the first clause of the next COND contained only two
elements, the execution of the command 3 would cause an error. The search would then continue by
looking for the next COND. However, if a point were reached where there were no further CONDs, then
the first command, COND, would cause the error; the edit chain would not have been changed, and so
the entire location operation would fail, and cause an error.

The IF command (see above) in conjunction with the ## function (see below) provide a way of using
arbitrary predicates applied to elements in the current expression. IF and ## will be described in
detail later in the chapter, along with examples illustrating their use in location specifications.

Throughout this chapter, the meta-symbol @ is used to denote a location specification. Thus @ is a list
of commands interpreted as described above. @ can also be atomic, in which case it is interpreted as
(LIST @).

(LC . @) [Editor Command]

Provides a way of explicitly invoking the location operation, e.g., (LC COND 2 3) will
perform the the search described above.

(LCL . @) [Editor Command]

Same as LC except the search is confined to the current expression, i.e., the edit chain is
rebound during the search so that it looks as though the editor were called on just the current
expression. For example, to find a COND containing a RETURN, one might use the location
specification (COND (LCL RETURN) \) where the \ would reverse the effects of the LCL
command, and make the final current expression be the COND.

(2ND . @) [Editor Command]

Same as (LC . @) followed by another (LC . @) except that if the first succeeds and
second fails, no change is made to the edit chain.

(3ND . @) [Editor Command]

Similar to 2ND.

(← PATTERN) [Editor Command]

Ascends the edit chain looking for a link which matches PATTERN. In other words, it keeps
doing 0’s until it gets to a specified point. If PATTERN is atomic, it is matched with the first

16-28

INTERLISP-D REFERENCE MANUAL

element of each link, otherwise with the entire link. If no match is found, an error is
generated, and the edit chain is unchanged.

If PATTERN is of the form (IF EXPRESSION), EXPRESSION is evaluated at each link, and if
its value is NIL, or the evaluation causes an error, the ascent continues.

For example:

*PP
[PROG NIL
 (COND
 [(NULL (SETQ L (CDR L)))
 (COND
 (FLG (RETURN L]
 ([NULL (CDR (FMEMB (CAR L)
 (CADR L]]
*F CADR
*(← COND)
*P
(COND (& &) (& &))
*

Note that this command differs from BF in that it does not search inside of each link, it simply
ascends. Thus in the above example, F CADR followed by BF COND would find (COND
(FLG (RETURN L))), not the higher COND.

(BELOW COM X) [Editor Command]

Ascends the edit chain looking for a link specified by COM, and stops X links below that (only
links that are elements are counted, not tails). In other words BELOW keeps doing 0’s until it
gets to a specified point, and then backs off X 0’s.

Note that X is evaluated, so one can type (BELOW COM (IPLUS X Y)).

(BELOW COM) [Editor Command]

Same as (BELOW COM 1).

For example, (BELOW COND) will cause the COND clause containing the current expression
to become the new current expression. Thus if the current expression is as shown above, F
CADR followed by (BELOW COND) will make the new expression be ([NULL (CDR (FMEMB
(CAR L) (CADR L] (GO LP)), and is therefore equivalent to 0 0 0 0.

The BELOW command is useful for locating a substructure by specifying something it
contains. For example, suppose you are editing a list of lists, and want to find a sublist that
contains a FOO (at any depth). He simply executes F FOO (BELOW \).

16-29

(NEX COM) [Editor Command]

Same as (BELOW COM) followed by NX.

For example, if you are deep inside of a SELECTQ clause, you can advance to the next clause
with (NEX SELECTQ).

NEX [Editor Command]

Same as (NEX ←).

The atomic form of NEX is useful if you will be performing repeated executions of (NEX
COM). By simply MARKing (see the next section) the chain corresponding to COM, you can use
NEX to step through the sublists.

(NTH COM) [Editor Command]

Generalized NTH command. Effectively performs (LCL . COM), followed by (BELOW \),
followed by UP.

If the search is unsuccessful, NTH generates an error and the edit chain is not changed.

Note that (NTH NUMBER) is just a special case of (NTH COM), and in fact, no special check is
made for COM a number; both commands are executed identically.

In other words, NTH locates COM, using a search restricted to the current expression, and then
backs up to the current level, where the new current expression is the tail whose first element
contains, however deeply, the expression that was the terminus of the location operation.
For example:

*P
(PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND
UF) (RETURN L))
*(NTH UF)
*P
... (SETQ UNFIND UF) (RETURN L))
*

PATTERN .. @ [Editor Command]

For example, (COND .. RETURN). Finds a COND that contains a RETURN, at any depth.
Equivalent to (but more efficient than) (F PATTERN N), (LCL . @) followed by (←
PATTERN).

16-30

INTERLISP-D REFERENCE MANUAL

An infix command, ".." is not a meta-symbol, it is the name of the command. @ is CDDR of
the command. Note that (PATTERN .. @) can also be used directly as an edit pattern as
described above, e.g. F (PATTERN .. @).

For example, if the current expression is

(PROG NIL [COND ((NULL L) (COND (FLG (RETURN L] --),

then (COND .. RETURN) will make (COND (FLG (RETURN L))) be the current
expression. Note that it is the innermost COND that is found, because this is the first COND
encountered when ascending from the RETURN. In other words, (PATTERN .. @) is not
always equivalent to (F PATTERN N), followed by (LCL . @) followed by \.

Note that @ is a location specification, not just a pattern. Thus (RETURN .. COND 2 3) can
be used to find the RETURN which contains a COND whose first clause contains (at least) three
elements. Note also that since @ permits any edit command, you can write commands of the
form (COND .. (RETURN .. COND)), which will locate the first COND that contains a
RETURN that contains a COND.

Commands That Save and Restore the Edit Chain

Several facilities are available for saving the current edit chain and later retrieving it: MARK, which
marks the current chain for future reference, ←, which returns to the last mark without destroying it,
and ←←, which returns to the last mark and also erases it.

MARK [Editor Command]

Adds the current edit chain to the front of the list MARKLST.

← [Editor Command]

Makes the new edit chain be (CAR MARKLST). Generates an error if MARKLST is NIL, i.e.,
no MARKs have been performed, or all have been erased.

This is an atomic command; do not confuse it with the list command (← PATTERN).

←← [Editor Command]

Similar to ← but also erases the last MARK, i.e., performs (SETQ MARKLST (CDR
MARKLST)).

If you have two chains marked, and wish to return to the first chain, you must perform ←←,
which removes the second mark, and then ←. However, the second mark is then no longer

16-31

accessible. If you want to be able to return to either of two (or more) chains, you can use the
following generalized MARK:

(MARK SYMBOL) [Editor Command]

Sets SYMBOL to the current edit chain,

(\ SYMBOL) [Editor Command]

Makes the current edit chain become the value of SYMBOL.

If you did not prepare in advance for returning to a particular edit chain, you may still be
able to return to that chain with a single command by using \ or \P.

\ [Editor Command]

Makes the edit chain be the value of UNFIND. Generates an error if UNFIND = NIL.

UNFIND is set to the current edit chain by each command that makes a "big jump", i.e., a
command that usually performs more than a single ascent or descent, namely ↑, ←, ←←,
!NX, all commands that involve a search, e.g., F, LC, .., BELOW, et al and \ and \P themselves.
One exception is that UNFIND is not reset when the current edit chain is the top level
expression, since this could always be returned to via the ↑ command.

For example, if you type F COND, and then F CAR, \ would take you back to the COND.
Another \ would take you back to the CAR, etc.

\P [Editor Command]

Restores the edit chain to its state as of the last print operation, i.e., P, ?, or PP. If the edit
chain has not changed since the last printing, \P restores it to its state as of the printing
before that one, i.e., two chains are always saved.

For example, if you type P followed by 3 2 1 P, \P returns to the first P, i.e., would be
equivalent to 0 0 0. Another \P would then take you back to the second P, i.e., you could
use \P to flip back and forth between the two edit chains.

If you had typed P followed by F COND, you could use either \ or \P to return to the P, i.e.,
the action of \ and \P are independent.

S SYMBOL @ [Editor Command]

Sets SYMBOL (using SETQ) to the current expression after performing (LC . @). The edit
chain is not changed.

16-32

INTERLISP-D REFERENCE MANUAL

Thus (S FOO) will set FOO to the current expression, and (S FOO -1 1) will set FOO to the
first element in the last element of the current expression.

Commands That Modify Structure

The basic structure modification commands in the editor are:

(N) (N >= 1) [Editor Command]

Deletes the corresponding element from the current expression.

(N E1 ... EM) (N >= 1) [Editor Command]

Replaces the Nth element in the current expression with E1 ... EM.

(-N E1 ... EM) (N >= 1) [Editor Command]

Inserts E1 ... EM before the Nth element in the current expression.

(N E1 ... EM) [Editor Command]

Attaches E1 ... EM at the end of the current expression.

As mentioned earlier: all structure modification done by the editor is destructive, i.e., the editor uses RPLACA
and RPLACD to physically change the structure it was given. However, all structure modification is
undoable, see UNDO .

All of the above commands generate errors if the current expression is not a list, or in the case of the
first three commands, if the list contains fewer than N elements. In addition, the command (1), i.e.,
delete the first element, will cause an error if there is only one element, since deleting the first element
must be done by replacing it with the second element, and then deleting the second element. Or, to
look at it another way, deleting the first element when there is only one element would require
changing a list to an atom (i.e., to NIL) which cannot be done. However, the command DELETE will
work even if there is only one element in the current expression, since it will ascend to a point where it
can do the deletion.

If the value of CHANGESARRAY is a hash array, the editor will mark all structures that are changed by
doing (PUTHASH STRUCTURE FN CHANGESARRAY), where FN is the name of the function. The
algorithm used for marking is as follows:

1. If the expression is inside of another expression already marked as being changed, do
nothing.

16-33

2. If the change is an insertion of or replacement with a list, mark the list as changed.

3. If the change is an insertion of or replacement with an atom, or a deletion, mark the parent
as changed.

CHANGESARRAY is primarily for use by PRETTYPRINT (Chapter 26). When the value of CHANGECHAR
is non-NIL, PRETTYPRINT, when printing to a file or display terminal, prints CHANGECHAR in the
right margin while printing an expression marked as having been changed. CHANGECHAR is initially
|.

Implementation

Note: Since all commands that insert, replace, delete or attach structure use the same low level
editor functions, the remarks made here are valid for all structure changing commands.

For all replacement, insertion, and attaching at the end of a list, unless the command was typed in
directly to the editor, copies of the corresponding structure are used, because of the possibility that the
exact same command, (i.e., same list structure) might be used again. Thus if a program constructs the
command (1 (A B C)) e.g., via (LIST 1 FOO), and gives this command to the editor, the (A B
C) used for the replacement will not be EQ to FOO. You can circumvent this by using the I command,
which computes the structure to be used. In the above example, the form of the command would be
(I 1 FOO), which would replace the first element with the value of FOO itself.

Note: Some editor commands take as arguments a list of edit commands, e.g., (LP F
FOO (1 (CAR FOO))). In this case, the command (1 (CAR FOO)) is not
considered to have been "typed in" even though the LP command itself may have
been typed in. Similarly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et al, e.g., EDITF(FOO F
COND (N --)) are not considered typed in.

The rest of this section is included for applications wherein the editor is used to modify a data
structure, and pointers into that data structure are stored elsewhere. In these cases, the actual
mechanics of structure modification must be known in order to predict the effect that various
commands may have on these outside pointers. For example, if the value of FOO is CDR of the current
expression, what will the commands (2), (3), (2 X Y Z), (-2 X Y Z), etc. do to FOO?

Deletion of the first element in the current expression is performed by replacing it with the second
element and deleting the second element by patching around it. Deletion of any other element is done
by patching around it, i.e., the previous tail is altered. Thus if FOO is EQ to the current expression
which is (A B C D), and FIE is CDR of FOO, after executing the command (1), FOO will be (B C D)
(which is EQUAL but not EQ to FIE). However, under the same initial conditions, after executing (2)
FIE will be unchanged, i.e., FIE will still be (B C D) even though the current expression and FOO
are now (A C D).

A general solution of the problem isn’t possible, as it would require being able to make two lists EQ to
each other that were originally different. Thus if FIE is CDR of the current expression, and FUM is
CDDR of the current expression, performing (2) would have to make FIE be EQ to FUM if all
subsequent operations were to update both FIE and FUM correctly.

16-34

INTERLISP-D REFERENCE MANUAL

Both replacement and insertion are accomplished by smashing both CAR and CDR of the
corresponding tail. Thus, if FOO were EQ to the current expression, (A B C D), after (1 X Y Z),
FOO would be (X Y Z B C D). Similarly, if FOO were EQ to the current expression, (A B C D),
then after (-1 X Y Z), FOO would be (X Y Z A B C D).

The N command is accomplished by smashing the last CDR of the current expression a la NCONC. Thus
if FOO were EQ to any tail of the current expression, after executing an N command, the corresponding
expressions would also appear at the end of FOO.

In summary, the only situation in which an edit operation will not change an external pointer occurs
when the external pointer is to a proper tail of the data structure, i.e., to CDR of some node in the
structure, and the operation is deletion. If all external pointers are to elements of the structure, i.e., to
CAR of some node, or if only insertions, replacements, or attachments are performed, the edit
operation will always have the same effect on an external pointer as it does on the current expression.

The A, B, and : Commands

In the (N), (N E1 ... EM), and (-N E1 ... EM) commands, the sign of the integer is used to

indicate the operation. As a result, there is no direct way to express insertion after a particular
element (hence the necessity for a separate N command). Similarly, you cannot specify deletion or
replacement of the Nth element from the end of a list without first converting N to the corresponding
positive integer. Accordingly, we have:

(B E1 ... EM) [Editor Command]

Inserts E1 ... EM before the current expression. Equivalent to UP followed by (-1 E1 ...

EM).

For example, to insert FOO before the last element in the current expression, perform -1 and
then (B FOO).

(A E1 ... EM) [Editor Command]

Inserts E1 ... EM after the current expression. Equivalent to UP followed by (-2 E1 ...

EM) or (N E1 ... EM), whichever is appropriate.

(: E1 ... EM) [Editor Command]

Replaces the current expression by E1 ... EM. Equivalent to UP followed by (1 E1 ...

EM).

16-35

DELETE [Editor Command]
(:) [Editor Command]

Deletes the current expression.

DELETE first tries to delete the current expression by performing an UP and then a (1). This
works in most cases. However, if after performing UP, the new current expression contains
only one element, the command (1) will not work. Therefore, DELETE starts over and
performs a BK, followed by UP, followed by (2). For example, if the current expression is
(COND ((MEMB X Y)) (T Y)), and you perform -1, and then DELETE, the BK-UP-(2)
method is used, and the new current expression will be ... ((MEMB X Y))).

However, if the next higher expression contains only one element, BK will not work. So in
this case, DELETE performs UP, followed by (: NIL), i.e., it replaces the higher expression by
NIL. For example, if the current expression is (COND ((MEMB X Y)) (T Y)) and you
perform F MEMB and then DELETE, the new current expression will be ... NIL (T Y))
and the original expression would now be (COND NIL (T Y)). The rationale behind this is
that deleting (MEMB X Y) from ((MEMB X Y)) changes a list of one element to a list of no
elements, i.e., () or NIL.

If the current expression is a tail, then B, A, :, and DELETE all work exactly the same as
though the current expression were the first element in that tail. Thus if the current
expression were ... (PRINT Y) (PRINT Z)), (B (PRINT X)) would insert (PRINT
X) before (PRINT Y), leaving the current expression ... (PRINT X) (PRINT Y)
(PRINT Z)).

The following forms of the A, B, and : commands incorporate a location specification:

(INSERT E1 ... EM BEFORE . @) [Editor Command]

(@ is (CDR (MEMBER ’BEFORE COMMAND))) Similar to (LC .@) followed by (B E1 ...

EM).

Warning: If @ causes an error, the location process does not continue as
described above. For example, if @ = (COND 3) and the next COND
does not have a thirdelement, the search stops and the INSERT fails.
You can always write (LC COND 3) if you intend the search to
continue.

*P
(PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR &
&) (PRIN1 & T)
(PRIN1 & T) (SETQ X &

*(INSERT LABEL BEFORE PRIN1)
*P

16-36

INTERLISP-D REFERENCE MANUAL

(PROG (& & X) **COMMENT** (SELECTQ ATM & NIL) (OR &
&) LABEL
(PRIN1 & T) (user typed Control-E

*

Current edit chain is not changed, but UNFIND is set to the edit chain after the B was
performed, i.e., \ will make the edit chain be that chain where the insertion was performed.

(INSERT E1 ... EM AFTER . @) [Editor Command]

Similar to INSERT BEFORE except uses A instead of B.

(INSERT E1 ... EM FOR . @) [Editor Command]

Similar to INSERT BEFORE except uses : for B.

(REPLACE @ BY E1 ... EM) [Editor Command]

(REPLACE @ WITH E1 ... EM) [Editor Command]

Here @ is the segment of the command between REPLACE and WITH. Same as (INSERT E1
... EM FOR . @).

Example: (REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE @ TO E1 ... EM) [Editor Command]

Same as REPLACE WITH.

(DELETE . @) [Editor Command]

Does a (LC . @) followed by DELETE (see warning about INSERT above). The current edit
chain is not changed, but UNFIND is set to the edit chain after the DELETE was performed.

Note: The edit chain will be changed if the current expression is no longer a
part of the expression being edited, e.g., if the current expression is
... C) and you perform (DELETE 1), the tail, (C), will have been
cut off. Similarly, if the current expression is (CDR Y) and you
perform (REPLACE WITH (CAR X)).

Example: (DELETE -1), (DELETE COND 3)

Note: If @ is NIL (i.e., empty), the corresponding operation is performed on the
current edit chain.

16-37

For example, (REPLACE WITH (CAR X)) is equivalent to (: (CAR
X)). For added readability, HERE is also permitted, e.g., (INSERT
(PRINT X) BEFORE HERE) will insert (PRINT X) before the
current expression (but not change the edit chain).

Note: @ does not have to specify a location within the current expression, i.e., it is
perfectly legal to ascend to INSERT, REPLACE, or DELETE

For example, (INSERT (RETURN) AFTER ^ PROG -1) will go to
the top, find the first PROG, and insert a (RETURN) at its end, and not
change the current edit chain.

The A, B, and : commands, commands, (and consequently INSERT, REPLACE, and CHANGE),
all make special checks in E1 thru EM for expressions of the form (## . COMS). In this case,

the expression used for inserting or replacing is a copy of the current expression after
executing COMS, a list of edit commands (the execution of COMS does not change the current
edit chain). For example, (INSERT (## F COND -1 -1) AFTER 3) will make a copy of
the last form in the last clause of the next COND, and insert it after the third element of the
current expression. Note that this is not the same as (INSERT F COND -1 (## -1)
AFTER 3), which inserts four elements after the third element, namely F, COND, -1, and a
copy of the last element in the current expression.

Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands (and therefore in INSERT, CHANGE, REPLACE,
and DELETE commands after the location portion of the operation has been performed) makes these
operations form-oriented. For example, if you type F SETQ, and then DELETE, or simply (DELETE
SETQ), you will delete the entire SETQ expression, whereas (DELETE X) if X is a variable, deletes just
the variable X. In both cases, the operation is performed on the corresponding form, and in both cases
is probably what you intended. Similarly, if you type (INSERT (RETURN Y) BEFORE SETQ), you
mean before the SETQ expression, not before the atom SETQ. A consequent of this procedure is that a
pattern of the form (SETQ Y --) can be viewed as simply an elaboration and further refinement of
the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and (INSERT (RETURN Y)
BEFORE (SETQ Y --)) perform the same operation (assuming the next SETQ is of the form (SETQ
Y --)) and, in fact, this is one of the motivations behind making the current expression after F
SETQ, and F (SETQ Y --) be the same.

Note: There is some ambiguity in (INSERT EXPR AFTER FUNCTIONNAME), as you
might mean make EXPR be the function’s first argument. Similarly, you cannot
write (REPLACE SETQ WITH SETQQ) meaning change the name of the
function. You must in these cases write (INSERT EXPR AFTER FUNCTIONNAME
1), and (REPLACE SETQ 1 WITH SETQQ).

Occasionally, however, you may have a data structure in which no special significance or meaning is
attached to the position of an atom in a list, as Interlisp attaches to atoms that appear as CAR of a list,
versus those appearing elsewhere in a list. In general, you may not even know whether a particular
atom is at the head of a list or not. Thus, when you write (INSERT EXPR BEFORE FOO), you mean
before the atom FOO, whether or not it is CAR of a list. By setting the variable UPFINDFLG to NIL

16-38

INTERLISP-D REFERENCE MANUAL

(initially T), you can suppress the implicit UP that follows searches for atoms, and thus achieve the
desired effect. With UPFINDFLG = NIL, following F FOO, for example, the current expression will
be the atom FOO. In this case, the A, B, and : operations will operate with respect to the atom FOO. If
you intend the operation to refer to the list which FOO heads, use the pattern (FOO --)instead .

Extract and Embed

Extraction involves replacing the current expression with one of its subexpressions (from any depth).

(XTR . @) [Editor Command]

Replaces the original current expression with the expression that is current after performing
(LCL . @) (see warning about INSERT above). If the current expression after (LCL . @)
is a tail of a higher expression, its first element is used.

If the extracted expression is a list, then after XTR has finished, the current expression will be
that list. If the extracted expression is not a list, the new current expression will be a tail
whose first element is that non-list.

For example, if the current expression is (COND ((NULL X) (PRINT Y))), (XTR
PRINT), or (XTR 2 2) will replace the COND by the PRINT. The current expression after
the XTR would be (PRINT Y).

If the current expression is (COND ((NULL X) Y) (T Z)), then (XTR Y) will replace the
COND with Y, even though the current expression after performing (LCL Y) is ... Y). The
current expression after the XTR would be ... Y followed by whatever followed the COND.

If the current expression initially is a tail, extraction works exactly the same as though the
current expression were the first element in that tail. Thus if the current expression is ...
(COND ((NULL X) (PRINT Y))) (RETURN Z)), then (XTR PRINT) will replace the
COND by the PRINT, leaving (PRINT Y) as the current expression.

The extract command can also incorporate a location specification:

(EXTRACT @1 FROM . @2) [Editor Command]

Performs (LC . @2) and then (XTR . @1) (see warning about INSERT). The current edit

chain is not changed, but UNFIND is set to the edit chain after the XTR was performed.

Note: @1 is the segment between EXTRACT and FROM.

For example: If the current expression is (PRINT (COND ((NULL X) Y) (T Z))) then
following (EXTRACT Y FROM COND), the current expression will be (PRINT Y).
(EXTRACT 2 -1 FROM COND), (EXTRACT Y FROM 2), and (EXTRACT 2 -1 FROM 2)
will all produce the same result.

16-39

While extracting replaces the current expression by a subexpression, embedding replaces the current
expression with one containing it as a subexpression.

(MBD E1 ... EM) [Editor Command]

MBD substitutes the current expression for all instances of the atom & in E1 ... EM, and

replaces the current expression with the result of that substitution. As with SUBST, a fresh
copy is used for each substitution.

If & does not appear in E1 ... EM, the MBD is interpreted as (MBD (E1 ... EM &)).

MBD leaves the edit chain so that the larger expression is the new current expression.

Examples:

If the current expression is (PRINT Y), (MBD (COND ((NULL X) &) ((NULL (CAR Y))
& (GO LP)))) would replace (PRINT Y) with (COND ((NULL X) (PRINT Y))
((NULL (CAR Y)) (PRINT Y) (GO LP))).

If the current expression is (RETURN X), (MBD (PRINT Y) (AND FLG &)) would replace
it with the two expressions (PRINT Y) and (AND FLG (RETURN X)), i.e., if the (RETURN
X) appeared in the cond clause (T (RETURN X)), after the MBD, the clause would be (T
(PRINT Y) (AND FLG (RETURN X))).

If the current expression is (PRINT Y), then (MBD SETQ X) will replace it with (SETQ X
(PRINT Y)). If the current expression is (PRINT Y), (MBD RETURN) will replace it with
(RETURN (PRINT Y)).

If the current expression initially is a tail, embedding works exactly the same as though the
current expression were the first element in that tail. Thus if the current expression were ...
(PRINT Y) (PRINT Z)), (MBD SETQ X) would replace (PRINT Y) with (SETQ X
(PRINT Y)).

The embed command can also incorporate a location specification:

(EMBED @ IN . X) [Editor Command]

(@ is the segment between EMBED and IN.) Does (LC . @) and then (MBD . X) (see
warning about INSERT). Edit chain is not changed, but UNFIND is set to the edit chain after
the MBD was performed.

Examples: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN), (EMBED COND
3 1 IN (OR & (NULL X))).

16-40

INTERLISP-D REFERENCE MANUAL

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND NUMBERP
WITH (AND & (MINUSP X))).

EDITEMBEDTOKEN [Variable]

The special atom used in the MBD and EMBED commands is the value of this variable, initially
&.

The MOVE Command

The MOVE command allows you to specify the expression to be moved, the place it is to be moved to,
and the operation to be performed there, e.g., insert it before, insert it after, replace, etc.

(MOVE @1 TO COM . @2) [Editor Command]

(@1 is the segment between MOVE and TO.) COM is BEFORE, AFTER, or the name of a list

command, e.g., :, N, etc. Performs (LC . @1) (see warning about INSERT), and obtains the

current expression there (or its first element, if it is a tail), which we will call EXPR; MOVE then
goes back to the original edit chain, performs (LC . @2) followed by (COM EXPR) (setting

an internal flag so EXPR is not copied), then goes back to @1 and deletes EXPR. The edit

chain is not changed. UNFIND is set to the edit chain after (COM EXPR) was performed.

If @2 specifies a location inside of the expression to be moved, a message is printed and an error

is generated, e.g., (MOVE 2 TO AFTER X), where X is contained inside of the second
element.

For example, if the current expression is (A B C D), (MOVE 2 TO AFTER 4) will make
the new current expression be (A C D B). Note that 4 was executed as of the original edit
chain, and that the second element had not yet been removed.

As the following examples taken from actual editing will show, the MOVE command is an
extremely versatile and powerful feature of the editor.

*?
(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))
*(MOVE 3 TO : CAR)
*?
(PROG ((L L)) (RETURN (EDLOC (CDDR C))))
*
*P
... (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
*(MOVE 2 TO N 1)
*P
... (SELECTQ OBJPR & & &) LP2 (COND & &))

*
*P

16-41

(OR (EQ X LASTAIL) (NOT &) (AND & & &))
*(MOVE 4 TO AFTER (BELOW COND))
*P
(OR (EQ X LASTAIL) (NOT &))
*\ P
... (& &) (AND & & &) (T & &))
*

*P
((NULL X) **COMMENT** (COND & &))
*(-3 (GO NXT]
*(MOVE 4 TO N (← PROG))
*P
((NULL X) **COMMENT** (GO NXT))
*\ P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) (COND & &))
*(INSERT NXT BEFORE -1)
*P
(PROG (&) **COMMENT** (COND & & &) (COND & & &) NXT (COND & &))

In the last example, you could have added the PROG label NXT and moved the COND in one
operation by performing (MOVE 4 TO N (← PROG) (N NXT)). Similarly, in the next
example, in the course of specifying @2, the location where the expression was to be moved

to, you also perform a structure modification, via (N (T)), thus creating the structure that
will receive the expression being moved.

*P
((CDR &) **COMMENT** (SETQ CL &) (EDITSMASH CL & &))
*MOVE 4 TO N 0 (N (T)) -1]
*P
((CDR &) **COMMENT** (SETQ CL &))
*\ P
*(T (EDITSMASH CL & &))
*

If @2 is NIL, or (HERE), the current position specifies where the operation is to take place. In

this case, UNFIND is set to where the expression that was moved was originally located, i.e.,
@1. For example:

*P
(TENEX)
*(MOVE ↑ F APPLY TO N HERE)
*P
(TENEX (APPLY & &))
*

*P
(PROG (& & & ATM IND VAL) (OR & &) **COMMENT** (OR & &)
(PRIN1 & T) (
PRIN1 & T) (SETQ IND user typed Control-E

*(MOVE * TO BEFORE HERE)
*P
(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRIN1 &

16-42

INTERLISP-D REFERENCE MANUAL

*P
(T (PRIN1 C-EXP T))
*(MOVE ↑ BF PRIN1 TO N HERE)
*P
(T (PRIN1 C-EXP T) (PRIN1 & T))
*

Finally, if @1 is NIL, the MOVE command allows you to specify where the current expression is

to be moved to. In this case, the edit chain is changed, and is the chain where the current
expression was moved to; UNFIND is set to where it was.

*P
(SELECTQ OBJPR (&) (PROGN & &))
*(MOVE TO BEFORE LOOP)
*P
... (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ user typed Control-E

*

Commands That Move Parentheses

The commands presented in this section permit modification of the list structure itself, as opposed to
modifying components thereof. Their effect can be described as inserting or removing a single left or
right parenthesis, or pair of left and right parentheses. Of course, there will always be the same
number of left parentheses as right parentheses in any list structure, since the parentheses are just a
notational guide to the structure provided by PRINT. Thus, no command can insert or remove just
one parenthesis, but this is suggestive of what actually happens.

In all six commands, N and M are used to specify an element of a list, usually of the current
expression. In practice, N and M are usually positive or negative integers with the obvious
interpretation. However, all six commands use the generalized NTH command (NTH COM) to find
their element(s), so that Nth element means the first element of the tail found by performing (NTH N).
In other words, if the current expression is (LIST (CAR X) (SETQ Y (CONS W Z))), then (BI 2
CONS), (BI X -1), and (BI X Z) all specify the exact same operation.

All six commands generate an error if the element is not found, i.e., the NTH fails. All are undoable.

(BI N M) [Editor Command]

"Both In". Inserts a left parentheses before the Nth element and after the Mth element in the
current expression. Generates an error if the Mth element is not contained in the Nth tail, i.e.,
the Mth element must be "to the right" of the Nth element.

Example: If the current expression is (A B (C D E) F G), then (BI 2 4) will modify it
to be (A (B (C D E) F) G).

(BI N) [Editor Command]

Same as (BI N N).

16-43

Example: If the current expression is (A B (C D E) F G), then (BI -2) will modify it to
be (A B (C D E) (F) G).

(BO N) [Editor Command]

"Both Out". Removes both parentheses from the Nth element. Generates an error if Nth
element is not a list.

Example: If the current expression is (A B (C D E) F G), then (BO D) will modify it to
be (A B C D E F G).

(LI N) [Editor Command]

"Left In". Inserts a left parenthesis before the Nth element (and a matching right parenthesis
at the end of the current expression), i.e. equivalent to (BI N -1).

Example: if the current expression is (A B (C D E) F G), then (LI 2) will modify it to
be (A (B (C D E) F G)).

(LO N) [Editor Command]

"Left Out". Removes a left parenthesis from the Nth element. All elements following the Nth
element are deleted. Generates an error if Nth element is not a list.

Example: If the current expression is (A B (C D E) F G), then (LO 3) will modify it to
be (A B C D E).

(RI N M) [Editor Command]

"Right In". Inserts a right parenthesis after the Mth element of the Nth element. The rest of
the Nth element is brought up to the level of the current expression.

Example: If the current expression is (A (B C D E) F G), (RI 2 2) will modify it to be
(A (B C) D E F G). Another way of thinking about RI is to read it as "move the right
parenthesis at the end of the Nth element in to after its Nth element."

(RO N) [Editor Command]

"Right Out". Removes the right parenthesis from the Nth element, moving it to the end of the
current expression. All elements following the Nth element are moved inside of the Nth
element. Generates an error if Nth element is not a list.

16-44

INTERLISP-D REFERENCE MANUAL

Example: If the current expression is (A B (C D E) F G), (RO 3) will modify it to be (A
B (C D E F G)). Another way of thinking about RO is to read it as "move the right
parenthesis at the end of the Nth element out to the end of the current expression."

TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on several contiguous
elements, i.e., a segment of a list, by using in their respective location specifications the TO or THRU
command.

(@1 THRU @2) [Editor Command]

Does a (LC . @1), followed by an UP, and then a (BI 1 @2), thereby grouping the

segment into a single element, and finally does a 1, making the final current expression be
that element.

For example, if the current expression is (A (B (C D) (E) (F G H) I) J K), following
(C THRU G), the current expression will be ((C D) (E) (F G H)).

(@1 TO @2) [Editor Command]

Same as THRU except the last element not included, i.e., after the BI, an (RI 1 -2) is
performed.

If both @1 and @2 are numbers, and @2 is greater than @1, then @2 counts from the beginning of the

current expression, the same as @1. In other words, if the current expression is (A B C D E F G),

(3 THRU 5) means (C THRU E) not (C THRU G). In this case, the corresponding BI command is
(BI 1 @2-@1+1).

THRU and TO are not very useful commands by themselves; they are intended to be used in
conjunction with EXTRACT, EMBED, DELETE, REPLACE, and MOVE. After THRU and TO have operated,
they set an internal editor flag informing the above commands that the element they are operating on
is actually a segment, and that the extra pair of parentheses should be removed when the operation is
complete. Thus:

*P
(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRIN1 & T) (SETQ
IND &)
(SETQ VAL &) **COMMENT** (SETQQ user typed Control-E

*(MOVE (3 THRU 4) TO BEFORE 7)
*P
(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &)
(PRIN1 & T)
(PRIN1 & T) **COMMENT** user typed Control-E

16-45

*
*P
(* FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF
SOURCEXPR
AND CURRENTFORM. CURRENTFORM IS THE LAST FORM IN SOURCEXPR
WHICH WILL
HAVE BEEN TRANSLATED, AND IT CAUSED THE ERROR.)
*(DELETE (USER THRU CURR$))
=CURRENTFORM.
*P
(* FAIL RETURN FROM EDITOR.CURRENTFORM IS user typed Control-E

*
*P
... LP (SELECTO & & & & NIL) (SETQ Y &) OUT (SETQ FLG &)
(RETURN Y))
*(MOVE (1 TO OUT) TO N HERE]
*P
... OUT (SETQ FLG &) (RETURN Y) LP (SELECTQ & & & & NIL)
(SETQ Y &))
*

*PP
[PROG (RF TEMP1 TEMP2)
 (COND
 ((NOT (MEMB REMARG LISTING))
 (SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS))
COMMENT
 (SETQ TEMP2 (CADR TEMP1))
 (GO SKIP))
 (T **COMMENT**
 (SETQ TEMP1 REMARG)))
 (NCONC1 LISTING REMARG)
 (COND
 ((NOT (SETQ TEMP2 (SASSOC

*(EXTRACT (SETQ THRU CADR) FROM COND)
*P
(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) **COMMENT** (SETQ
TEMP2 &) (NCONC1 LISTING REMARG) (COND & & user typed Control-
E

*

TO and THRU can also be used directly with XTR, because XTR involves a location specification while
A, B, :, and MBD do not. Thus in the previous example, if the current expression had been the COND,
e.g.,you had first performed F COND, you could have used (XTR (SETQ THRU CADR)) to perform
the extraction.

16-46

INTERLISP-D REFERENCE MANUAL

(@1 TO) [Editor Command]

(@1 THRU) [Editor Command]

Both are the same as (@1 THRU -1), i.e., from @1 through the end of the list.

Examples:

*P
(VALUE (RPLACA DEPRP &) (RPLACD &) (RPLACA VARSWORD
&) (RETURN))
*(MOVE (2 TO) TO N (← PROG))
*(N (GO VAR))
*P
(VALUE (GO VAR))
*P
(T **COMMENT** (COND &) **COMMENT** (EDITSMASH CL &
&) (COND &))
*(-3 (GO REPLACE))
*(MOVE (COND TO) TO N ↑ PROG (N REPLACE))
*P
(T **COMMENT** (GO REPLACE))
*\ P
(PROG (&) **COMMENT** (COND & & &) (COND & & &)
DELETE (COND & &) REPLACE
(COND &) **COMMENT** (EDITSMASH CL & &) (COND &))
*

*PP
[LAMBDA (CLAUSALA X)
 (PROG (A D)
 (SETQ A CLAUSALA)
 LP (COND
 ((NULL A)
 (RETURN)))
 (SERCH X A)
 (RUMARK (CDR A))
 (NOTICECL (CAR A))
 (SETQ A (CDR A))
 (GO LP]
*(EXTRACT (SERCH THRU NOT$) FROM PROG)
=NOTICECL
*P
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL
&))
*(EMBED (SERCH TO) IN (MAP CLAUSALA (FUNCTION (LAMBDA
(A) *]
*PP
[LAMBDA (CLAUSALA X)
 (MAP CLAUSALA
 (FUNCTION (LAMBDA (A)
 (SERCH X A)
 (RUMARK (CDR A))
 (NOTICECL (CAR A]
*

16-47

The R Command

(R X Y) [Editor Command]

Replaces all instances of X by Y in the current expression, e.g., (R CAADR CADAR).
Generates an error if there is not at least one instance.

The R command operates in conjunction with the search mechanism of the editor. The search
proceeds as described in the Search Algorithm section above, and X can employ any of the
patterns shown in the Commands That Search section above. Each time X matches an
element of the structure, the element is replaced by (a copy of) Y; each time X matches a tail
of the structure, the tail is replaced by (a copy of) Y.

For example, if the current expression is (A (B C) (B . C)),

(R C D) will change it to (A (B D) (B . D)),

(R (... . C) D) will change it to (A (B C) (B . D)),

(R C (D E)) will change it to (A (B (D E)) (B D E)), and

(R (... . NIL) D) will change it to (A (B C . D) (B . C) . D).

If X is an atom or string containing $s (escapes), $s appearing in Y stand for the characters
matched by the corresponding $ in X. For example, (R FOO$ FIE$) means for all atoms or
strings that begin with FOO, replace the characters "FOO" by "FIE". Applied to the list (FOO
FOO2 XFOO1), (R FOO$ FIE$) would produce (FIE FIE2 XFOO1), and (R FOO
FIE) would produce (FIE FIE2 XFIE1). Similarly, (R D A) will change (LIST
(CADR X) (CADDR Y)) to (LIST (CAAR X) (CAADR)). Note that CADDR was not
changed to CAAAR, i.e., (R D A) does not mean replace every D with A, but replace the
first D in every atom or string by A. If you wanted to replace every D by A, you could perform
(LP (R D A)).

You will be informed of all such $ replacements by a message of the form X->Y, e.g., CADR-
>CAAR.

If X matches a string, it will be replaced by a string. It does not matter whether X or Y
themselves are strings, i.e. (R D A), (R "D" A), (R D "A"), and (R
"D" "A") are equivalent. X will never match with a number, i.e., (R $1 $2) will not
change 11 to 12.

The $ (escape) feature can be used to delete or add characters, as well as replace them. For
example, (R $1 $) will delete the terminating 1’s from all literal atoms and strings.

16-48

INTERLISP-D REFERENCE MANUAL

Similarly, if an $ in X does not have a mate in Y, the characters matched by the $ are
effectively deleted. For example, (R $/$ $) will change AND/OR to AND. There is no
similar operation for changing AND/OR to OR, since the first $ in Y always corresponds to the
first $ in X, the second $ in Y to the second in X, etc. Y can also be a list containing $s, e.g., (R
$1 (CAR $)) will change FOO1 to (CAR FOO), FIE1 to (CAR FIE).

If X does not contain $s, $ appearing in Y refers to the entire expression matched by X, e.g., (R
LONGATOM ’$) changes LONGATOM to ’LONGATOM, (R (SETQ X &) (PRINT $)) changes
every (SETQ X &) to (PRINT (SETQ X &)). If X is a pattern containing an $ pattern
somewhere within it, the characters matched by the $s are not available, and for the purposes
of replacement, the effect is the same as though X did not contain any $s. For example, if you
type (R (CAR F$) (PRINT $)), the second $ will refer to the entire expression matched by
(CAR F$).

Since (R X Y) is a frequently used operation for Replacing Characters, the following
command is provided:

(RC X Y) [Editor Command]

Equivalent to (R X Y)

R and RC change all instances of X to Y. The commands R1 and RC1 are available for
changing just one, (i.e., the first) instance of X to Y.

(R1 X Y) [Editor Command]

Find the first instance of X and replace it by Y.

(RC1 X Y) [Editor Command]

Equivalent to (R1 X Y).

In addition, while R and RC only operate within the current expression, R1 and RC1 will
continue searching, a la the F command, until they find an instance of x, even if the search
carries them beyond the current expression.

(SW N M) [Editor Command]

Switches the Nth and Mth elements of the current expression.

For example, if the current expression is (LIST (CONS (CAR X) (CAR Y)) (CONS
(CDR X) (CDR Y))), (SW 2 3) will modify it to be (LIST (CONS (CDR X) (CDR Y))
(CONS (CAR X) (CAR Y))). The relative order of N and M is not important, i.e., (SW 3
2) and (SW 2 3) are equivalent.

16-49

SW uses the generalized NTH command (NTH COM) to find the Nth and Mth elements, a la the
BI-BO commands.

Thus in the previous example, (SW CAR CDR) would produce the same result.

(SWAP @1 @2) [Editor Command]

Like SW except switches the expressions specified by @1 and @2, not the corresponding

elements of the current expression, i.e. @1 and @2 can be at different levels in current

expression, or one or both be outside of current expression.

Thus, using the previous example, (SWAP CAR CDR) would result in (LIST (CONS (CDR
X) (CAR Y)) (CONS (CAR X) (CDR Y))).

Commands That Print

PP [Editor Command]

Prettyprints the current expression.

P [Editor Command]

Prints the current expression as though PRINTLEVEL (Chapter 25) were set to 2.

(P M) [Editor Command]

Prints the Mth element of the current expression as though PRINTLEVEL were set to 2.

(P 0) [Editor Command]

Same as P.

(P M N) [Editor Command]

Prints the Mth element of the current expression as though PRINTLEVEL were set to N.

(P 0 N) [Editor Command]

Prints the current expression as though PRINTLEVEL were set to N.

? [Editor Command]

Same as (P 0 100).

16-50

INTERLISP-D REFERENCE MANUAL

Both (P M) and (P M N) use the generalized NTH command (NTH COM) to obtain the corresponding
element, so that M does not have to be a number, e.g., (P COND 3) will work. PP causes all
comments to be printed as **COMMENT** (see Chapter 26). P and ? print as **COMMENT** only those
comments that are (top level) elements of the current expression. Lower expressions are not really
seen by the editor; the printing command simply sets PRINTLEVEL and calls PRINT.

PP* [Editor Command]

Prettyprints current expression, including comments.

PP* is equivalent to PP except that it first resets **COMMENT**FLG to NIL (see Chapter 26).

PPV [Editor Command]

Prettyprints the current expression as a variable, i.e., no special treatment for LAMBDA, COND,
SETQ, etc., or for CLISP.

PPT [Editor Command]

Prettyprints the current expression, printing CLISP translations, if any.

?= [Editor Command]

Prints the argument names and corresponding values for the current expression. Analagous
to the ?= break command (Chapter 14). For example,

*P
(STRPOS "A0???" X N (QUOTE ?) T)
*?=
X = "A0???"
Y = X
START = N
SKIP = (QUOTE ?)
ANCHOR = T
TAIL =

The command MAKE (see below) is an imperative form of ?=. It allows you to specify a change to the
element of the current expression that corresponds to a particular argument name.

All printing functions print to the terminal, regardless of the primary output file. All use the readtable
T. No printing function ever changes the edit chain. All record the current edit chain for use by \P
(above). All can be aborted with Control-E.

16-51

Commands for Leaving the Editor

OK [Editor Command]

Exits from the editor.

STOP [Editor Command]

Exits from the editor with an error. Mainly for use in conjunction with TTY: commands (see
next section) that you want to abort.

Since all of the commands in the editor are errorset protected, you must exit from the editor
via a command. STOP provides a way of distinguishing between a successful and
unsuccessful (from your standpoint) editing session. For example, if you are executing
(MOVE 3 TO AFTER COND TTY:), and you exitsfrom the lower editor with an OK, the
MOVE command will then complete its operation. If you want to abort the MOVE command,
you must make the TTY: command generate an error. Do this by exiting from the lower
editor with a STOP command. In this case, the higher editor’s edit chain will not be changed
by the TTY: command.

Actually, it is also possible to exit the editor by typing Control-D. STOP is preferred even if
you are editing at the EVALQT level, as it will perform the necessary "wrapup" to insure that
the changes made while editing will be undoable.

SAVE [Editor Command]

Exits from the editor and saves the "state of the edit" on the property list of the function or
variable being edited under the property EDIT-SAVE. If the editor is called again on the
same structure, the editing is effectively "continued," i.e., the edit chain, mark list, value of
UNFIND and UNDOLST are restored.

For example:

*P
(NULL X)
*F COND P
(COND (& &) (T &))
*SAVE
FOO
← .
 .
 .
←EDITF(FOO)
EDIT
*P
(COND (& &) (T &))
*\ P
(NULL X)
*

16-52

INTERLISP-D REFERENCE MANUAL

SAVE is necessary only if you are editing many different expressions; an exit from the editor
via OK always saves the state of the edit of that call to the editor on the property list of the
atom EDIT, under the property name LASTVALUE. OK also remprops EDIT-SAVE from the
property list of the function or variable being edited.

Whenever the editor is entered, it checks to see if it is editing the same expression as the last
one edited. In this case, it restores the mark list and UNDOLST, and sets UNFIND to be the edit
chain as of the previous exit from the editor. For example:

←EDITF(FOO)
EDIT
*P
(LAMBDA (X) (PROG & & LP & & & &))
 .
 .
 .
*P
(COND & &)
*OK
FOO
← .
 . any number of LISPX inputs
 . except for calls to the editor
←EDITF(FOO)
EDIT
*P
(LAMBDA (X) (PROG & & LP & & & &))
*\ P
(COND & &)
*

Furthermore, as a result of the history feature, if the editor is called on the same expression
within a certain number of LISPX inputs (namely, the size of the history list, which can be
changed with CHANGESLICE, Chapter 13) the state of the edit of that expression is restored,
regardless of how many other expressions may have been edited in the meantime. For
example:

←EDITF(FOO)
EDIT
*
 .
 .
 .
*P
(COND (& &) (& &) (&) (T &))
*OK
FOO
 . a small number of LISPX inputs,
 . including editing
 .
←EDITF(FOO)
EDIT
*\ P
(COND (& &) (& &) (&) (T &))
*

16-53

Thus you can always continue editing, including undoing changes from a previous editing
session, if one of the following occurs:

 1. No other expressions have been edited since that session (since saving takes
place at exit time, intervening calls that were aborted via Control-D or exited
via STOP will not affect the editor’s memory).

2. That session was "sufficiently" recent.

3. It was ended with a SAVE command.

Nested Calls to Editor

TTY: [Editor Command]

Calls the editor recursively. You can then type in commands, and have them executed. The
TTY: command is completed when you exit from the lower editor (see OK and STOP above).

The TTY: command is extremely useful. It enables you to set up a complex operation, and
perform interactive attention-changing commands part way through it. For example, the
command (MOVE 3 TO AFTER COND 3 P TTY:) allows you to interact, in effect, within
the MOVE command. You can then verify for yourself that the correct location has been
found, or complete the specification "by hand." In effect, TTY: says "I’ll tell you what you
should do when you get there."

The TTY: command operates by printing TTY: and then calling the editor. The initial edit
chain in the lower editor is the one that existed in the higher editor at the time the TTY:
command was entered. Until you exit from the lower editor, any attention changing
commands you execute only affect the lower editor’s edit chain. Of course, if you perform
any structure modification commands while under a TTY: command, these will modify the
structure in both editors, since it is the same structure. When the TTY: command finishes,
the lower editor’s edit chain becomes the edit chain of the higher editor.

EF [Editor Command]
EV [Editor Command]
EP [Editor Command]

Calls EDITF or EDITV or EDITP on CAR of current expression.

16-54

INTERLISP-D REFERENCE MANUAL

Manipulating the Characters of an Atom or String

RAISE [Editor Command]

An edit macro defined as UP followed by (I 1 (U-CASE (## 1))), i.e., it raises to
uppercase the current expression, or if a tail, the first element of the current expression.

LOWER [Editor Command]

Similar to RAISE, except uses L-CASE.

CAP [Editor Command]

First does a RAISE, and then lowers all but the first character, i.e., the first character is left
capitalized.

RAISE, LOWER, and CAP are all no-ops if the corresponding atom or string is already in that
state.

(RAISE X) [Editor Command]

Equivalent to (I R (L-CASE X) X), i.e., changes every lowercase X to uppercase in the
current expression.

(LOWER X) [Editor Command]

Similar to RAISE, except performs (I R X (L-CASE X)).

In both (RAISE X) and (LOWER X), X should be typed in uppercase.

REPACK [Editor Command]

Permits the "editing" of an atom or string.

REPACK operates by calling the editor recursively on UNPACK of the current expression, or if
it is a list, on UNPACK of its first element. If the lower editor is exited successfully, i.e., via OK
as opposed to STOP, the list of atoms is made into a single atom or string, which replaces the
atom or string being "repacked." The new atom or string is always printed.

Example:

*P
... "THIS IS A LOGN STRING")
*REPACK
*EDIT
P
(T H I S % I S % A % L O G N % S T R I N G)

16-55

*(SW G N)
*OK
"THIS IS A LONG STRING"
*

This could also have been accomplished by (R GN NG) or simply (RC GN NG).

(REPACK @) [Editor Command]

Does (LC . @) followed by REPACK, e.g. (REPACK THIS$).

Manipulating Predicates and Conditional Expressions

JOINC [Editor Command]

Used to join two neighboring CONDs together, e.g. (COND CLAUSE1 CLAUSE2) followed by

(COND CLAUSE3 CLAUSE4) becomes (COND CLAUSE1 CLAUSE2 CLAUSE3 CLAUSE4).

JOINC does an (F COND T) first so that you don’t have to be at the first COND.

(SPLITC X) [Editor Command]

Splits one COND into two. X specifies the last clause in the first COND, e.g. (SPLITC 3) splits
(COND CLAUSE1 CLAUSE2 CLAUSE3 CLAUSE4) into (COND CLAUSE1 CLAUSE2) (COND

CLAUSE3 CLAUSE4). Uses the generalized NTH command (NTH COM), so that X does not

have to be a number, e.g., you can say (SPLITC RETURN), meaning split after the clause
containing RETURN. SPLITC also does an (F COND T) first.

NEGATE [Editor Command]

Negates the current expression, i.e. performs (MBD NOT), except that is smart about
simplifying. For example, if the current expression is: (OR (NULL X) (LISTP X)),
NEGATE would change it to (AND X (NLISTP X)).

NEGATE is implemented via the function NEGATE (Chapter 3).

SWAPC [Editor Command]

Takes a conditional expression of the form (COND (A B)(T C)) and rearranges it to an
equivalent (COND ((NOT A) C)(T B)), or (COND (A B) (C D)) to (COND ((NOT A)
(COND (C D))) (T B)).

16-56

INTERLISP-D REFERENCE MANUAL

SWAPC is smart about negations (uses NEGATE) and simplifying CONDs. It always produces
an equivalent expression. It is useful for those cases where one wants to insert extra clauses
or tests.

History Commands in the Editor

All of your inputs to the editor are stored on the history list EDITHISTORY (see Chapter 13, the
editor’s history list, and all of the programmer’s assistant commands for manipulating the history list,
e.g. REDO, USE, FIX, NAME, etc., are available for use on events on EDITHISTORY. In addition, the
following four history commands are recognized specially by the editor. They always operate on the
last, i.e. most recent, event.

DO COM [Editor Command]

Allows you to supply the command name when it was omitted.

USE is useful when a command name is incorrect.

For example, suppose you want to perform (-2 (SETQ X (LIST Y Z))) but instead
types just (SETQ X (LIST Y Z)). The editor will type SETQ ?, whereupon you can type
DO -2. The effect is the same as though you had typed FIX, followed by (LI 1), (-1 -2),
and OK, i.e., the command (-2 (SETQ X (LIST Y Z))) is executed. DO also works if the
command is a line command.

!F [Editor Command]

Same as DO F.

In the case of !F, the previous command is always treated as though it were a line command,
e.g., if you type (SETQ X &) and then !F, the effect is the same as though you had typed F
(SETQ X &), not (F (SETQ X &)).

!E [Editor Command]

Same as DO E.

!N [Editor Command]

Same as DO N.

16-57

Miscellaneous Commands

NIL [Editor Command]

Unless preceded by F or BF, is always a no-op. Thus extra right parentheses or square
brackets at the ends of commands are ignored.

CL [Editor Command]

Clispifies the current expression (see Chapter 21).

DW [Editor Command]

Dwimifies the current expression (see Chapter 21).

IFY [Editor Command]

If the current statement is a COND statement (Chapter 9), replaces it with an eqivalent IF
statement.

GET* [Editor Command]

If the current expression is a comment pointer (see Chapter 26), reads in the full text of the
comment, and replaces the current expression by it.

(* . X) [Editor Command]

X is the text of a comment. * ascends the edit chain looking for a "safe" place to insert the
comment, e.g., in a COND clause, after a PROG statement, etc., and inserts (* . X) after that
point, if possible, otherwise before. For example, if the current expression is (FACT (SUB1
N)) in

[COND
 ((ZEROP N) 1)
 (T (ITIMES N (FACT (SUB1 N]

then (* CALL FACT RECURSIVELY) would insert (* CALL FACT RECURSIVELY) before
the ITIMES expression. If inserted after the ITIMES, the comment would then be
(incorrectly) returned as the value of the COND. However, if the COND was itself a PROG
statement, and hence its value was not being used, the comment could be (and would be)
inserted after the ITIMES expression.

* does not change the edit chain, but UNFIND is set to where the comment was actually
inserted.

16-58

INTERLISP-D REFERENCE MANUAL

GETD [Editor Command]

Essentially "expands" the current expression in line:

1. If (CAR of) the current expression is the name of a macro, expands the macro
in line;

2. If a CLISP word, translates the current expression and replaces it with the
translation;

 3. If CAR is the name of a function for which the editor can obtain a symbolic
definition, either in-core or from a file, substitutes the argument expressions
for the corresponding argument names in the body of the definition and
replaces the current expression with the result;

4. If CAR of the current expression is an open lambda, substitutes the
arguments for the corresponding argument names in the body of the
lambda, and then removes the lambda and argument list.

Warning: When expanding a function definition or open lambda
expression, GETD does a simple substitution of the actual arguments
for the formal arguments. Therefore, if any of the function arguments
are used in other ways in the function definition (as functions, as
record fields, etc.), they will simply be replaced with the actual
arguments.

(MAKEFN (FN . ACTUALARGS) ARGLIST N1 N2) [Editor Command]

The inverse of GETD: makes the current expression into a function. FN is the function name,
ARGLIST its arguments. The argument names are substituted for the corresponding
argument values in ACTUALARGS, and the result becomes the body of the function definition
for FN. The current expression is then replaced with (FN . ACTUALARGS).

If N1 and N2 are supplied, (N1 THRU N2) is used rather than the current expression; if just

N1 is supplied, (N1 THRU -1) is used.

If ARGLIST is omitted, MAKEFN will make up some arguments, using elements of
ACTUALARGS, if they are literal atoms, otherwise arguments selected from (X Y Z A B C
...), avoiding duplicate argument names.

Example: If the current expression is (COND ((CAR X) (PRINT Y T)) (T (HELP))),
then (MAKEFN (FOO (CAR X) Y) (A B)) will define FOO as (LAMBDA (A B) (COND
(A (PRINT B T)) (T (HELP)))) and then replace the current expression with (FOO
(CAR X) Y).

16-59

(MAKE ARGNAME EXP) [Editor Command]

Makes the value of ARGNAME be EXP in the call which is the current expression, i.e. a ?=
command following a MAKE will always print ARGNAME = EXP. For example:

*P
(JSYS)
*?=
JSYS[N;AC1,AC2,AC3,RESULTAC]
*(MAKE N 10)
*(MAKE RESULTAC 3)
*P
(JSYS 10 NIL NIL NIL 3)

Q [Editor Command]

Quotes the current expression, i.e. MBD QUOTE.

D [Editor Command]

Deletes the current expression, then prints new current expression, i.e. (:) I P.

Commands That Evaluate

E [Editor Command]

Causes the editor to call the Interlisp executive LISPX giving it the next input as argument.
Example:

*E BREAK(FIE FUM)
(FIE FUM)
*E (FOO)

(FIE BROKEN)
:

E only works when when typed in, e.g, (INSERT D BEFORE E) will treat E as a pattern,
and search for E.

(E X) [Editor Command]

Evaluates X, i.e., performs (EVAL X), and prints the result on the terminal.

(E X T) [Editor Command]

Same as (E x) but does not print.

16-60

INTERLISP-D REFERENCE MANUAL

The (E X) and (E X T) commands are mainly intended for use by macros and subroutine
calls to the editor; you would probably type in a form for evaluation using the more
convenient format of the (atomic) E command.

(I C X1 ... XN) [Editor Command]

Executes the editor command (C Y1 ... YN) where Yi = (EVAL Xi). If C is not an atom,

C is evaluated also.

Examples:

(I 3 (GETD ’FOO)) will replace the third element of the current expression with the
definition of FOO.

(I N FOO (CAR FIE)) will attach the value of FOO and CAR of the value of FIE to the end
of the current expression.

(I F = FOO T) will search for an expression EQ to the value of FOO.

(I (COND ((NULL FLG) ’-1) (T 1)) FOO), if FLG is NIL, inserts the value of FOO
before the first element of the current expression, otherwise replaces the first element by the
value of FOO.

The I command sets an internal flag to indicate to the structure modification commands not
to copy expression(s) when inserting, replacing, or attaching.

EVAL [Editor Command]

Does an EVAL of the current expression.

EVAL, line-feed, and the GO command together effectively allows you to "single-step" a
program through its symbolic definition.

GETVAL [Editor Command]

Replaces the current expression by the result of evaluating it.

(## COM1 COM2 ... COMN) [NLambda NoSpread Function]

An nlambda, nospread function (not a command). Its value is what the current expression
would be after executing the edit commands COM1 ... COMN starting from the present edit

chain. Generates an error if any of COM1 thru COMN cause errors. The current edit chain is

never changed.

16-61

Note: The A, B, :, INSERT, REPLACE, and CHANGE commands make special
checks for ## forms in the expressions used for inserting or replacing,
and use a copy of ## form instead (see the A,B, and : Commands
section above). Thus, (INSERT (## 3 2) AFTER 1) is equivalent
to (I INSERT (COPY (## 3 2)) ’AFTER 1).

Example: (I R ’X (## (CONS .. Z))) replaces all X’s in the current expression by the
first CONS containing a Z.

The I command is not very convenient for computing an entire edit command for execution, since it
computes the command name and its arguments separately. Also, the I command cannot be used to
compute an atomic command. The following two commands provide more general ways of
computing commands.

(COMS X1 ... XM) [Editor Command]

Each Xi is evaluated and its value is executed as a command.

For example, (COMS (COND (X (LIST 1 X)))) will replace the first element of the
current expression with the value of X if non-NIL, otherwise do nothing. The editor
command NIL is a no-op (see the Miscellaneous Commands section above).

(COMSQ COM1 ... COMN) [Editor Command]

Executes COM1 ... COMN.

COMSQ is mainly useful in conjunction with the COMS command. For example, suppose you
want to compute an entire list of commands for evaluation, as opposed to computing each
command one at a time as does the COMS command. You would then write (COMS (CONS
’COMSQ X)) where X computed the list of commands, e.g., (COMS (CONS ’COMSQ (GETP
FOO ’COMMANDS))).

Commands That Test

(IF X) [Editor Command]

Generates an error unless the value of (EVAL X) is true. In other words, if (EVAL X) causes
an error or (EVAL X) = NIL, IF will cause an error.

For some editor commands, the occurrence of an error has a well defined meaning, i.e., they
use errors to branch on, as COND uses NIL and non-NIL. For example, an error condition in a
location specification may simply mean "not this one, try the next." Thus the location

16-62

INTERLISP-D REFERENCE MANUAL

specification (IPLUS (E (OR (NUMBERP (## 3)) (ERROR!)) T)) specifies the first
IPLUS whose second argument is a number. The IF command, by equating NIL to error,
provides a more natural way of accomplishing the same result. Thus, an equivalent location
specification is (IPLUS (IF (NUMBERP (## 3)))).

The IF command can also be used to select between two alternate lists of commands for
execution.

(IF X COMS1 COMS2) [Editor Command]

If (EVAL X) is true, execute COMS1; if (EVAL X) causes an error or is equal to NIL, execute

COMS2.

Thus IF is equivalent to

(COMS (CONS ’COMSQ
 (COND
 ((CAR (NLSETQ (EVAL X)))
 COMS1)

 (T COMS2))))

For example, the command (IF (READP T) NIL (P)) will print the current expression
provided the input buffer is empty.

(IF X COMS1) [Editor Command]

If (EVAL X) is true, execute COMS1; otherwise generate an error.

(LP COMS1 ... COMSN) [Editor Command]

Repeatedly executes COMS1 ... COMSN until an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of every PRINT expression.
(LP F PRINT (IF (## 3) NIL ((N T)))) will attach a T at the end of each print
expression which does not already have a second argument. The form (## 3) will cause an
error if the edit command 3 causes an error, thereby selecting ((N T)) as the list of
commands to be executed. The IF could also be written as (IF (CDDR (##)) NIL ((N
T))).

When an error occurs, LP prints N OCCURRENCES where N is the number of times the
commands were successfully executed. The edit chain is left as of the last complete
successful execution of COMS1 ... COMSN.

16-63

(LPQ COMS1 ... COMSN) [Editor Command]

Same as LP but does not print the message N OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ terminate when the number of
iterations reaches MAXLOOP, initially set to 30. MAXLOOP can be set to NIL, which is
equivalent to setting it to infinity. Since the edit chain is left as of the last successful
completion of the loop, you can simply continue the LP command with REDO (see Chapter
13).

(SHOW X) [Editor Command]

X is a list of patterns. SHOW does a LPQ printing all instances of the indicated expression(s),
e.g. (SHOW FOO (SETQ FIE &)) will print all FOOs and all (SETQ FIE &)s. Generates
an error if there aren’t any instances of the expression(s).

(EXAM X) [Editor Command]

Like SHOW except calls the editor recursively (via the TTY: command, see above) on each
instance of the indicated espression(s) so that you can examine and/or change them.

(ORR COMS1 ... COMSN) [Editor Command]

ORR begins by executing COMS1, a list of commands. If no error occurs, ORR is finished.

Otherwise, ORR restores the edit chain to its original value, and continues by executing
COMS2, etc. If none of the command lists execute without errors, i.e., the ORR "drops off the

end", ORR generates an error. Otherwise, the edit chain is left as of the completion of the first
command list which executes without an error.

NIL as a command list is perfectly legal, and will always execute successfully. Thus, making
the last "argument" to ORR be NIL will insure that the ORR never causes an error. Any other
atom is treated as (ATOM), i.e., the above example could be written as (ORR NX !NX NIL).

For example, (ORR (NX) (!NX) NIL) will perform a NX, if possible, otherwise a !NX, if
possible, otherwise do nothing. Similarly, DELETE could be written as (ORR (UP (1))
(BK UP (2)) (UP (: NIL))).

Edit Macros

Many of the more sophisticated branching commands in the editor, such as ORR, IF, etc., are most
often used in conjunction with edit macros. The macro feature permits you to define new commands
and thereby expand the editor’s repertoire, or redefine existing commands (to refer to the original

16-64

INTERLISP-D REFERENCE MANUAL

definition of a built-in command when redefining it via a macro, use the ORIGINAL command,
below).

Macros are defined by using the M command:

(M C COMS1 ... COMSN) [Editor Command]

For C an atom, M defines C as an atomic command. If a macro is redefined, its new definition
replaces its old. Executing C is then the same as executing the list of commands COMS1 ...

COMSN.

For example, (M BP BK UP P) will define BP as an atomic command which does three
things, a BK, and UP, and a P. Macros can use commands defined by macros as well as built
in commands in their definitions. For example, suppose Z is defined by (M Z -1 (IF
(READP T) NIL (P))), i.e., Z does a -1, and then if nothing has been typed, a P. Now we
can define ZZ by (M ZZ -1 Z), and ZZZ by (M ZZZ -1 -1 Z) or (M ZZZ -1 ZZ).

Macros can also define list commands, i.e., commands that take arguments.

(M (C) (ARG1 ... ARGN) COMS1 ... COMSM) [Editor Command]

C an atom. M defines C as a list command. Executing (C E1 ... EN) is then performed by

substituting E1 for ARG1, ... EN for ARGN throughout COMS1 ... COMSM, and then

executing COMS1 ... COMSM.

For example, we could define a more general BP by (M (BP) (N) (BK N) UP P). Thus,
(BP 3) would perform (BK 3), followed by an UP, followed by a P.

A list command can be defined via a macro so as to take a fixed or indefinite number of
"arguments", as with spread vs. nospread functions. The form given above specified a macro
with a fixed number of arguments, as indicated by its argument list. If the "argument list" is
atomic, the command takes an indefinite number of arguments.

(M (C) ARG COMS1 ... COMSM) [Editor Command]

If C, ARG are both atoms, this defines C as a list command. Executing (C E1 ... EN) is

performed by substituting (E1 ... EN), i.e., CDR of the command, for ARG throughout

COMS1 ... COMSM, and then executing COMS1 ... COMSM.

For example, the command 2ND (see the Location Specification section above), could be
defined as a macro by (M (2ND) X (ORR ((LC . X) (LC . X)))).

16-65

For all editor commands, "built in" commands as well as commands defined by macros as
atomic commands and list definitions are completely independent. In other words, the
existence of an atomic definition for C in no way affects the treatment of C when it appears as
CAR of a list command, and the existence of a list definition for C in no way affects the
treatment of C when it appears as an atom. In particular, C can be used as the name of either
an atomic command, or a list command, or both. In the latter case, two entirely different
definitions can be used.

Once C is defined as an atomic command via a macro definition, it will not be searched for
when used in a location specification, unless it is preceded by an F. Thus (INSERT --
BEFORE BP) would not search for BP, but instead perform a BK, and UP, and a P, and then
do the insertion. The corresponding also holds true for list commands.

Occasionally, your will want to employ the S command in a macro to save some temporary
result. For example, the SW command could be defined as:

(M (SW) (N M)
 (NTH N)
 (S FOO 1)
 MARK
 0
 (NTH M)
 (S FIE 1)
 (I 1 FOO)
 ←←
 (I 1 FIE))

Since this version of SW sets FOO and FIE, using SW may have undesirable side effects,
especially when the editor was called from deep in a computation, we would have to be
careful to make up unique names for dummy variables used in edit macros, which is
bothersome. Furthermore, it would be impossible to define a command that called itself
recursively while setting free variables. The BIND command solves both problems.

(BIND COMS1 ... COMSN) [Editor Command]

Binds three dummy variables #1, #2, #3, (initialized to NIL), and then executes the edit
commands COMS1 ... COMSN. BIND uses a PROG to make these bindings, so they are only

in effect while the commands are being executed and BINDs can be used recursively; the
variables #1, #2, and #3 will be rebound each time BIND is invoked.

Thus, we can write SW safely as:

(M (SW) (N M)
 (BIND (NTH N)
 (S #1 1)
 MARK
 0
 (NTH M)
 (S #2 1)
 (I 1 #1)

16-66

INTERLISP-D REFERENCE MANUAL

 ←← (I 1 #2)))

(ORIGINAL COMS1 ... COMSN) [Editor Command]

Executes COMS1 ... COMSN without regard to macro definitions. Useful for redefining a

built in command in terms of itself., i.e. effectively allows you to "advise" edit commands.

User macros are stored on a list USERMACROS. The file package command USERMACROS (Chapter 17)
is available for dumping all or selected user macros.

Undo

Each command that causes structure modification automatically adds an entry to the front of
UNDOLST that contains the information required to restore all pointers that were changed by that
command.

UNDO [Editor Command]

Undoes the last, i.e., most recent, structure modification command that has not yet been
undone, and prints the name of that command, e.g., MBD undone. The edit chain is then
exactly what it was before the "undone" command had been performed. If there are no
commands to undo, UNDO types nothing saved.

!UNDO [Editor Command]

Undoes all modifications performed during this editing session, i.e. this call to the editor. As
each command is undone, its name is printed a la UNDO. If there is nothing to be undone,
!UNDO prints nothing saved.

Undoing an event containing an I, E, or S command will also undo the side effects of the
evaluation(s), e.g., undoing (I 3 (/NCONC FOO FIE)) will not only restore the third element but
also restore FOO. Similarly, undoing an S command will undo the set. See the discussion of UNDO in
Chapter 13. (If the I command was typed directly to the editor, /NCONC would automatically be
substituted for NCONC as described in Chapter 13.)

Since UNDO and !UNDO cause structure modification, they also add an entry to UNDOLST. However,
UNDO and !UNDO entries are skipped by UNDO, e.g., if you perform an INSERT, and then an MBD, the
first UNDO will undo the MBD, and the second will undo the INSERT. However, you can also specify
precisely which commands you want undone by identifying the corresponding entry. In this case,
you can undo an UNDO command, e.g., by typing UNDO UNDO, or undo a !UNDO command, or undo a
command other than that most recently performed.

16-67

Whenever you continue an editing session, the undo information of the previous session is protected
by inserting a special blip, called an undo-block, on the front of UNDOLST. This undo-block will
terminate the operation of a !UNDO, thereby confining its effect to the current session, and will
similarly prevent an UNDO command from operating on commands executed in the previous session.

Thus, if you enter the editor continuing a session, and immediately execute an UNDO or !UNDO, the
editor will type BLOCKED instead of NOTHING SAVED. Similarly, if you execute several commands
and then undo them all, another UNDO or !UNDO will also cause BLOCKED to be typed.

UNBLOCK [Editor Command]

Removes an undo-block. If executed at a non-blocked state, i.e., if UNDO or !UNDO could
operate, types NOT BLOCKED.

TEST [Editor Command]

Adds an undo-block at the front of UNDOLST.

Note that TEST together with !UNDO provide a "tentative" mode for editing, i.e., you can
perform a number of changes, and then undo all of them with a single !UNDO command.

(UNDO EventSpec) [Editor Command]

EventSpec is an event specification (see Chapter 13). Undoes the indicated event on the
history list. In this case, the event does not have to be in the current editing session, even if
the previous session has not been unblocked as described above. However, you do have to
be editing the same expression as was being edited in the indicated event.

If the expressions differ, the editor types the warning message "different
expression," and does not undo the event. The editor enforces this to avoid your
accidentally undoing a random command by giving the wrong event specification.

EDITDEFAULT

Whenever a command is not recognized, i.e., is not "built in" or defined as a macro, the editor calls an
internal function, EDITDEFAULT, to determine what action to take. Since EDITDEFAULT is part of the
edit block, you cannot advise or redefine it as a means of augmenting or extending the editor.
However, you can accomplish this via EDITUSERFN. If the value of the variable EDITUSERFN is T,
EDITDEFAULT calls the function EDITUSERFN giving it the command as an argument. If
EDITUSERFN returns a non-NIL value, its value is interpreted as a single command and executed.
Otherwise, the error correction procedure described below is performed.

16-68

INTERLISP-D REFERENCE MANUAL

If a location specification is being executed, an internal flag informs EDITDEFAULT to treat the
command as though it had been preceded by an F.

If the command is a list, an attempt is made to perform spelling correction on the CAR of the command
(unless DWIMFLG = NIL) using EDITCOMSL, a list of all list edit commands. If spelling correction is
successful, the correct command name is RPLACAed into the command, and the editor continues by
executing the command. In other words, if you type (LP F PRINT (MBBD AND (NULL FLG))),
only one spelling correction will be necessary to change MBBD to MBD. If spelling correction is not
successful, an error is generated.

Note: When a macro is defined via the M command, the command name is added to
EDITCOMSA or EDITCOMSL, depending on whether it is an atomic or list
command. The USERMACROS file package command is aware of this, and
provides for restoring EDITCOMSA and EDITCOMSL.

If the command is atomic, the procedure followed is a little more elaborate.

1. If the command is one of the list commands, i.e., a member of EDITCOMSL, and there
is additional input on the same terminal line, treat the entire line as a single list command. The
line is read using READLINE (see Chapter 13), so the line can be terminated by a square
bracket, or by a carriage return not preceded by a space. You may omit parentheses for any
list command typed in at the top level (provided the command is not also an atomic command,
e.g. NX, BK). For example,

*P
(COND (& &) (T &))
*XTR 3 2]
*MOVE TO AFTER LP
*

If the command is on the list EDITCOMSL but no additional input is on the terminal
line, an error is generated. For example:

*P
(COND (& &) (T &))
*MOVE

MOVE ?
*

If the command is on EDITCOMSL, and not typed in directly, e.g., it appears as one of
the commands in a LP command, the procedure is similar, with the rest of the command
stream at that level being treated as "the terminal line", e.g. (LP F (COND (T &)) XTR 2
2).

If the command is being executed in location context, EDITDEFAULT does not get this
far, e.g., (MOVE TO AFTER COND XTR 3) will search for XTR, not execute it. However,
(MOVE TO AFTER COND (XTR 3)) will work.

16-69

2. If the command was typed in and the first character in the command is an 8, treat the
8 as a mistyped left parenthesis, and and the rest of the line as the arguments to the command,
e.g.,

*P
(COND (& &) (T &))
*8-2 (Y (RETURN Z)))
=(-2
*P
(COND (Y &) (& &) (T &))

3. If the command was typed in, is the name of a function, and is followed by NIL or a
list CAR of which is not an edit command, assume you forgot to type E and intend to apply the
function to its arguments, type =E and the function name, and perform the indicated
computation, e.g.

*BREAK(FOO)
=E BREAK
(FOO)
*

4. If the last character in the command is P, and the first N-1 characters comprise a
number, assume that you intended two commands, e.g.,

*P
(COND (& &) (T &))
*0P
=0 P
(SETQ X (COND & &))

5. Attempt spelling correction using EDITCOMSA, and if successful, execute the
corrected command.

6. If there is additional input on the same line, or command stream, spelling correct
using EDITCOMSL as a spelling list, e.g.,

*MBBD SETQ X
=MBD
*

7. Otherwise, generate an error.

Time Stamps

Whenever a function is edited, and changes were made, the function is time-stamped (by EDITE),
which consists of inserting a comment of the form (* USERS-INITIALS DATE). USERS-INITIALS
is the value of the variable INITIALS. After greeting (see Chapter 12), the function SETINITIALS is

16-70

INTERLISP-D REFERENCE MANUAL

called. SETINITIALS searches INITIALSLST, a list of elements of the form (USERNAME .
INITIALS) or (USERNAME FIRSTNAME INITIALS). If your name is found, INITIALS is set
accordingly. If your username name is not found on INITIALSLST, INITIALS is set to the value of
DEFAULTINITIALS, initially edited:. Thus, the default is to always time stamp. To suppress time
stamping, you must either include an entry of the form (USERNAME) on INITIALSLST, or set
DEFAULTINITIALS to NIL before greeting, i.e. in your user profile, or else, after greeting, explicitly
set INITIALS to NIL.

If you want your functions to be time stamped with your initials when edited, include a file package
command command of the form (ADDVARS (INITIALSLST (USERNAME . INITIALS))) in your
INIT.LISP file (see Chapter 12).

The following three functions may be of use for specialized applications with respect to time-
stamping: (FIXEDITDATE EXPR) which, given a lambda expression, inserts or smashes a time-
stamp comment; (EDITDATE? COMMENT) which returns T if COMMENT is a time stamp; and
(EDITDATE OLDATE INITLS) which returns a new time-stamp comment. If OLDATE is a time-stamp
comment, it will be reused.

Warning with Declarations

CAUTION: There is a feature of the BYTECOMPILER that is not supported by SEdit or
the XCL compiler. It is possible to insert a comment at the beginning of your function
that looks like

(* DECLARATIONS: --)

The tail, or -- section, of this comment is taken as a set of local record declarations which
are then used by the compiler in that function just as if they had been declared globally.
See the "Compiler" section in Chapter 3 of these Notes for additional behavior in XCL.

SEdit does not recognize such declarations. Thus, if the "Expand" command is used, the
expansion will not be done with these record declarations in effect. The code that you see
in SEdit will not be the same code compiled by the BYTECOMPILER.

16-71

[This page intentionally left blank]

17-1

17. FILE MANAGER

Warning: The subsystem within Medley used for managing collections of definitions (of functions, variables,
etc.) is known as the "File Manager." This terminology is confusing, because the word "file" is also used in the
more conventional sense as meaning a collection of data stored on some physical media. Unfortunately, it is not
possible to change this terminology at this time, because many functions and variables (MAKEFILE,
FILEPKGTYPES, etc.) incorporate the word "file" in their names.

Most implementations of Lisp treat symbolic files as unstructured text, much as they are treated in
most conventional programming environments. Function definitions are edited with a character-
oriented text editor, and then the changed definitions (or sometimes the entire file) is read or compiled
to install those changes in the running memory image. Interlisp incorporates a different philosophy.
A symbolic file is considered as a database of information about a group of data objects---function
definitions, variable values, record declarations, etc. The text in a symbolic file is never edited
directly. Definitions are edited only after their textual representations on files have been converted to
data-structures that reside inside the Lisp address space. The programs for editing definitions inside
Medley can therefore make use of the full set of data-manipulation capabilities that the environment
already provides, and editing operations can be easily intermixed with the processes of evaluation
and compilation.

Medley is thus a "resident" programming environment, and as such it provides facilities for moving
definitions back and forth between memory and the external databases on symbolic files, and for
doing the bookkeeping involved when definitions on many symbolic files with compiled counterparts
are being manipulated. The file manager provides those capabilities. It shoulders the burden of
keeping track of where things are and what things have changed so that you don’t have to. The file
manager also keeps track of which files have been modified and need to be updated and recompiled.

The file manager is integrated into many other system packages. For example, if only the compiled
version of a file is loaded and you attempt to edit a function, the file manager will attempt to load the
source of that function from the appropriate symbolic file. In many cases, if a datum is needed by
some program, the file manager will automatically retrieve it from a file if it is not already in your
working environment.

Some of the operations of the file manager are rather complex. For example, the same function may
appear in several different files, or the symbolic or compiled files may be in different directories, etc.
Therefore, this chapter does not document how the file manager works in each and every situation,
but instead makes the deliberately vague statement that it does the "right" thing with respect to
keeping track of what has been changed, and what file operations need to be performed in accordance
with those changes.

For a simple illustration of what the file manager does, suppose that the symbolic file FOO contains the
functions FOO1 and FOO2, and that the file BAR contains the functions BAR1 and BAR2. These two
files could be loaded into the environment with the function LOAD:

← (LOAD ’FOO)
FILE CREATED 4-MAR-83 09:26:55

17-2

INTERLISP-D REFERENCE MANUAL

FOOCOMS
{DSK}FOO.;1

← (LOAD ’BAR)
FILE CREATED 4-MAR-83 09:27:24
BARCOMS
{DSK}BAR.;1

Now, suppose that we change the definition of FOO2 with the editor, and we define two new
functions, NEW1 and NEW2. At that point, the file manager knows that the in-memory definition of
FOO2 is no longer consistent with the definition in the file FOO, and that the new functions have been
defined but have not yet been associated with a symbolic file and saved on permanent storage. The
function FILES? summarizes this state of affairs and enters into an interactive dialog in which we can
specify what files the new functions are to belong to.

← (FILES?)
FOO...to be dumped.
 plus the functions: NEW1,NEW2
want to say where the above go ? Yes
(functions)
NEW1 File name: BAR
NEW2 File name: ZAP
 new file ? Yes
NIL

The file manager knows that the file FOO has been changed, and needs to be dumped back to
permanent storage. This can be done with MAKEFILE.

←(MAKEFILE ’FOO)
{DSK}FOO.;2

Since we added NEW1 to the old file BAR and established a new file ZAP to contain NEW2, both BAR and
ZAP now also need to be dumped. This is confirmed by a second call to FILES?:

←(FILES?)
BAR, ZAP...to be dumped.
FOO...to be listed.
FOO...to be compiled
NIL

We are also informed that the new version we made of FOO needs to be listed (sent to a printer) and
that the functions on the file must be compiled.

Rather than doing several MAKEFILEs to dump the files BAR and ZAP, we can simply call CLEANUP.
Without any further user interaction, this will dump any files whose definitions have been modified.
CLEANUP will also send any unlisted files to the printer and recompile any files which need to be
recompiled. CLEANUP is a useful function to use at the end of a debugging session. It will call
FILES? if any new objects have been defined, so you do not lose the opportunity to say explicitly
where those belong. In effect, the function CLEANUP executes all the operations necessary to make the
your permanent files consistent with the definitions in the current core-image.

← (CLEANUP)
FOO...compiling {DSK}FOO.;2

17-3

 .
 .
 .
BAR...compiling {DSK}BAR.;2
 .
 .
 .
ZAP...compiling {DSK}ZAP.;1
 .
 .
 .

In addition to the definitions of functions, symbolic files in Interlisp can contain definitions of a
variety of other types, e.g. variable values, property lists, record declarations, macro definitions, hash
arrays, etc. In order to treat such a diverse assortment of data uniformly from the standpoint of file
operations, the file manager uses the concept of a typed definition, of which a function definition is just
one example. A typed definition associates with a name (usually a symbol), a definition of a given
type (called the file manager type). Note that the same name may have several definitions of different
types. For example, a symbol may have both a function definition and a variable definition. The file
manager also keeps track of the files that a particular typed definition is stored on, so one can think of
a typed definition as a relation between four elements: a name, a definition, a type, and a file.

Symbolic files on permanent storage devices are referred to by names that obey the naming
conventions of those devices, usually including host, directory, and version fields. When such
definition groups are noticed by the file manager, they are assigned simple root names and these are
used by all file manager operations to refer to those groups of definitions. The root name for a group
is computed from its full permanent storage name by applying the function ROOTFILENAME; this
strips off the host, directory, version, etc., and returns just the simple name field of the file. For each
file, the file manager also has a data structure that describes what definitions it contains. This is
known as the commands of the file, or its "filecoms". By convention, the filecoms of a file whose root
name is X is stored as the value of the symbol XCOMS. For example, the value of FOOCOMS is the
filecoms for the file FOO. This variable can be directly manipulated, but the file manager contains
facilities such as FILES? which make constructing and updating filecoms easier, and in some cases
automatic. See the Functions for Manipulating File Command Lists section.

The file manager is able to maintain its databases of information because it is notified by various other
routines in the system when events take place that may change that database. A file is "noticed" when
it is loaded, or when a new file is stored (though there are ways to explicitly notice files without
completely loading all their definitions). Once a file is noticed, the file manager takes it into account
when modifying filecoms, dumping files, etc. The file manager also needs to know what typed
definitions have been changed or what new definitions have been introduced, so it can determine
which files need to be updated. This is done by "marking changes". All the system functions that
perform file manager operations (LOAD, TCOMPL, PRETTYDEF, etc.), as well as those functions that
define or change data, (EDITF, EDITV, EDITP, DWIM corrections to user functions) interact with the
file manager. Also, typed-in assignment of variables or property values is noticed by the file manager.
(Note that modifications to variable or property values during the execution of a function body are
not noticed.) In some cases the marking procedure can be subtle, e.g. if you edit a property list using
EDITP, only those properties whose values are actually changed (or added) are marked.

17-4

INTERLISP-D REFERENCE MANUAL

All file manager operations can be disabled with FILEPKGFLG.

FILEPKGFLG [Variable]

The file manager can be disabled by setting FILEPKGFLG to NIL. This will turn off
noticing files and marking changes. FILEPKGFLG is initially T.

The rest of this chapter goes into further detail about the file manager. Functions for loading and
storing symbolic files are presented first, followed by functions for adding and removing typed
definitions from files, moving typed definitions from one file to another, determining which file a
particular definition is stored in, and so on.

Loading Files

The functions below load information from symbolic files into the Interlisp environment. A symbolic
file contains a sequence of Interlisp expressions that can be evaluated to establish specified typed
definitions. The expressions on symbolic files are read using FILERDTBL as the read table.

The loading functions all have an argument LDFLG. LDFLG affects the operation of DEFINE,
DEFINEQ, RPAQ, RPAQ?, and RPAQQ. While a source file is being loaded, DFNFLG (Chapter 10) is
rebound to LDFLG. Thus, if LDFLG = NIL, and a function is redefined, a message is printed and the
old definition saved. If LDFLG = T , the old definition is simply overwritten. If LDFLG = PROP, the
functions are stored as "saved" definitions on the property lists under the property EXPR instead of
being installed as the active definitions. If LDFLG = ALLPROP, not only function definitions but also
variables set by RPAQQ, RPAQ, RPAQ? are stored on property lists (except when the variable has the
value NOBIND, in which case they are set to the indicated value regardless of DFNFLG).

Another option is available for loading systems for others to use and who wish to suppress the
saving of information used to aid in development and debugging. If LDFLG = SYSLOAD, LOAD will:

17-5

1. Rebind DFNFLG to T, so old definitions are simply overwritten

2. Rebind LISPXHIST to NIL, thereby making the LOAD not be undoable and eliminating
the cost of saving undo information (Chapter 13)

3. Rebind ADDSPELLFLG to NIL, to suppress adding to spelling lists

4. Rebind FILEPKGFLG to NIL, to prevent the file from being "noticed" by the file manager

5. Rebind BUILDMAPFLG to NIL, to prevent a file map from being constructed

6. After the load has completed, set the filecoms variable and any filevars variables to
NOBIND

7. Add the file name to SYSFILES rather than FILELST

A filevars variable is any variable appearing in a file manager command of the form (FILECOM *
VARIABLE) (see the FileVars section). Therefore, if the filecoms includes (FNS * FOOFNS), FOOFNS
is set to NOBIND. If you want the value of such a variable to be retained, even when the file is loaded
with LDFLG = SYSLOAD, then you should replace the variable with an equivalent, non-atomic
expression, such as (FNS * (PROGN FOOFNS)).

All functions that have LDFLG as an argument perform spelling correction using LOADOPTIONS as a
spelling list when LDFLG is not a member of LOADOPTIONS. LOADOPTIONS is initially (NIL T PROP
ALLPROP SYSLOAD).

(LOAD FILE LDFLG PRINTFLG) [Function]

Reads successive expressions from FILE (with FILERDTBL as read table) and evaluates
each as it is read, until it reads either NIL, or the single atom STOP. Note that LOAD can be
used to load both symbolic and compiled files. Returns FILE (full name).

If PRINTFLG = T, LOAD prints the value of each expression; otherwise it does not.

(LOAD? FILE LDFLG PRINTFLG) [Function]

Similar to LOAD except that it does not load FILE if it has already been loaded, in which
case it returns NIL.

LOAD? loads FILE except when the same version of the file has been loaded (either from
the same place, or from a copy of it from a different place). Specifically, LOAD? considers
that FILE has already been loaded if the full name of FILE is on LOADEDFILELST (see
the Noticing Files section) or the date stored on the FILEDATES property of the root file
name of FILE is the same as the FILECREATED expression on FILE.

(LOADFNS FNS FILE LDFLG VARS) [Function]

Permits selective loading of definitions. FNS is a list of function names, a single function
name, or T, meaning to load all of the functions on the file. FILE can be either a compiled

17-6

INTERLISP-D REFERENCE MANUAL

or symbolic file. If a compiled definition is loaded, so are all compiler-generated
subfunctions. The interpretation of LDFLG is the same as for LOAD.

If FILE = NIL, LOADFNS will use WHEREIS (see the Storing Files section) to determine
where the first function in FNS resides, and load from that file. Note that the file must
previously have been "noticed". If WHEREIS returns NIL, and the WHEREIS library
package has been loaded, LOADFNS will use the WHEREIS data base to find the file
containing FN.

VARS specifies which non-DEFINEQ expressions are to be loaded (i.e., evaluated). It is
interpreted as follows:

T Means to load all non-DEFINEQ expressions.

NIL Means to load none of the non-DEFINEQ expressions.

VARS Means to evaluate all variable assignment expressions
(beginning with RPAQ, RPAQQ, or RPAQ?, see the Functions
Used Within Source Files section).

Any other symbol Means the same as specifying a list containing that atom.

A list If VARS is a list that is not a valid function definition, each
element in VARS is "matched" against each non-DEFINEQ
expression, and if any elements in VARS "match" successfully,
the expression is evaluated. "Matching" is defined as follows:
If an element of VARS is an atom, it matches an expression if
it is EQ to either the CAR or the CADR of the expression. If an
element of VARS is a list, it is treated as an edit pattern (see
Chapter 16), and matched with the entire expression (using
EDIT4E, described in Chapter 16). For example, if VARS was
(FOOCOMS DECLARE: (DEFLIST & (QUOTE MACRO))),
this would cause (RPAQQ FOOCOMS ...), all DECLARE:s,
and all DEFLISTs which set up MACROs to be read and
evaluated.

A function definition If VARS is a list and a valid function definition ((FNTYP
VARS) is true), then LOADFNS will invoke that function on
every non-DEFINEQ expression being considered, applying it
to two arguments, the first and second elements in the
expression. If the function returns NIL, the expression will
be skipped; if it returns a non-NIL symbol (e.g., T), the
expression will be evaluated; and if it returns a list, this list is
evaluated instead of the expression. The file pointer is set to
the very beginning of the expression before calling the VARS
function definition, so it may read the entire expression if
necessary. If the function returns a symbol, the file pointer is
reset and the expression is READ or SKREAD. However, the
file pointer is not reset when the function returns a list, so the

17-7

function must leave it set immediately after the expression
that it has presumably read.

LOADFNS returns a list of:

1. The names of the functions that were found

2. A list of those functions not found (if any) headed by the symbol NOT-
FOUND:

3. All of the expressions that were evaluated

4. A list of those members of VARS for which no corresponding expressions were
found (if any), again headed by the symbol NOT-FOUND:

For example:

← (LOADFNS ’(FOO FIE FUM) FILE NIL ’(BAZ (DEFLIST &)))
(FOO FIE (NOT-FOUND: FUM) (RPAQ BAZ ...) (NOT-FOUND:
(DEFLIST &)))

(LOADVARS VARS FILE LDFLG) [Function]

Same as (LOADFNS NIL FILE LDFLG VARS).

(LOADFROM FILE FNS LDFLG) [Function]

Same as (LOADFNS FNS FILE LDFLG T).

Once the file manager has noticed a file, you can edit functions contained in the file without explicitly
loading them. Similarly, those functions which have not been modified do not have to be loaded in
order to write out an updated version of the file. Files are normally noticed (i.e., their contents
become known to the file manager) when either the symbolic or compiled versions of the file are
loaded. If the file is not going to be loaded completely, the preferred way to notice it is with
LOADFROM. You can also load some functions at the same time by giving LOADFROM a second
argument, but it is normally used simply to inform the file manager about the existence and contents
of a particular file.

(LOADBLOCK FN FILE LDFLG) [Function]

Calls LOADFNS on those functions contained in the block declaration containing FN (see
Chapter 18). LOADBLOCK is designed primarily for use with symbolic files, to load the
EXPRs for a given block. It will not load a function which already has an in-core EXPR
definition, and it will not load the block name, unless it is also one of the block functions.

(LOADCOMP FILE LDFLG) [Function]

Performs all operations on FILE associated with compilation, i.e. evaluates all expressions
under a DECLARE: EVAL@COMPILE, and "notices" the function and variable names by
adding them to the lists NOFIXFNSLST and NOFIXVARSLST (see Chapter 21).

17-8

INTERLISP-D REFERENCE MANUAL

Thus, if building a system composed of many files with compilation information scattered
among them, all that is required to compile one file is to LOADCOMP the others.

(LOADCOMP? FILE LDFLG) [Function]

Similar to LOADCOMP, except it does not load if file has already been loaded (with
LOADCOMP), in which case its value is NIL.

LOADCOMP? will load the file even if it has been loaded with LOAD, LOADFNS, etc. The
only time it will not load the file is if the file has already been loaded with LOADCOMP.

FILESLOAD provides an easy way for you to load a series of files, setting various options:

(FILESLOAD FILE1 ... FILEN) [NLambda NoSpread Function]

Loads the files FILE1 ... FILEN (all arguments unevaluated). If any of these arguments
are lists, they specify certain loading options for all following files (unless changed by
another list). Within these lists, the following commands are recognized:

FROM DIR Search the specified directories for the file. DIR can
either be a single directory, or a list of directories to
search in order. For example, (FILESLOAD (FROM
{ERIS}<LISPCORE>SOURCES>) ...) will search the
directory {ERIS}<LISPCORE>SOURCES> for the files.
If this is not specified, the default is to search the
contents of DIRECTORIES (see Chapter 24).

If FROM is followed by the key word VALUEOF, the
following word is evaluated, and the value is used as the
list of directories to search. For example, (FILESLOAD
(FROM VALUEOF FOO) ...) will search the directory
list that is the value of the variable FOO.

As a special case, if DIR is a symbol, and the symbol
DIRDIRECTORIES is bound, the value of this variable is
used as the directory search list. For example, since the
variable LISPUSERSDIRECTORIES (see Chapter 24) is
commonly used to contain a list of directories containing
"library" packages, (FILESLOAD (FROM LISPUSERS)
...) can be used instead of (FILESLOAD (FROM
VALUEOF LISPUSERSDIRECTORIES) ...)

If a FILESLOAD is read and evaluated while loading a
file, and it doesn’t contain a FROM expression, the default
is to search the directory containing the FILESLOAD
expression before the value of DIRECTORIES.
FILESLOAD expressions can be dumped on files using
the FILES file manager command.

17-9

SOURCE Load the source version of the file rather than the
compiled version.

COMPILED Load the compiled version of the file.

If COMPILED is specified, the compiled version will be
loaded, if it is found. The source will not be loaded. If
neither SOURCE or COMPILED is specified, the compiled
version of the file will be loaded if it is found, otherwise
the source will be loaded if it is found.

LOAD Load the file by calling LOAD, if it has not already been
loaded. This is the default unless LOADCOMP or
LOADFROM is specified.

If LOAD is specified, FILESLOAD considers that the file
has already been loaded if the root name of the file has a
non-NIL FILEDATES property. This is a somewhat
different algorithm than LOAD? uses. In particular,
FILESLOAD will not load a newer version of a file that
has already been loaded.

LOADCOMP Load the file with LOADCOMP? rather than LOAD.
Automatically implies SOURCE.

LOADFROM Load the file with LOADFROM rather than LOAD.

NIL, T, PROP
ALLPROP
SYSLOAD The loading function is called with its LDFLG argument

set to the specified token. LDFLG affects the operation of
the loading functions by resetting DFNFLG (see Chapter
10) to LDFLG during the loading. If none of these tokens
are specified, the value of the variable LDFLG is used if it
is bound, otherwise NIL is used.

NOERROR If NOERROR is specified, no error occurs when a file is not
found.

Each list determines how all further files in the lists are loaded, unless changed by another
list. The tokens above can be joined together in a single list. For example,

(FILESLOAD (LOADCOMP) NET (SYSLOAD FROM VALUEOF
NEWDIRECTORIES) CJSYS)

will call LOADCOMP? to load the file NET searching the value of DIRECTORIES, and then call
LOADCOMP? to load the file CJSYS with LDFLG set to SYSLOAD, searching the directory list
that is the value of the variable NEWDIRECTORIES.

17-10

INTERLISP-D REFERENCE MANUAL

FILESLOAD expressions can be dumped on files using the FILES file manager command.

Storing Files

(MAKEFILE FILE OPTIONS REPRINTFNS SOURCEFILE) [Function]

Makes a new version of the file FILE, storing the information specified by FILE’s
filecoms. Notices FILE if not previously noticed. Then, it adds FILE to
NOTLISTEDFILES and NOTCOMPILEDFILES.

OPTIONS is a symbol or list of symbols which specify options. By specifying certain
options, MAKEFILE can automatically compile or list FILE. Note that if FILE does not
contain any function definitions, it is not compiled even when OPTIONS specifies C or RC.
The options are spelling corrected using the list MAKEFILEOPTIONS. If spelling
correction fails, MAKEFILE generates an error. The options are interpreted as follows:

C
RC After making FILE, MAKEFILE will compile FILE by calling

TCOMPL (if C is specified) or RECOMPILE (if RC is specified).
If there are any block declarations specified in the filecoms
for FILE, BCOMPL or BRECOMPILE will be called instead.

If F, ST, STF, or S is the next item on OPTIONS following C or
RC, it is given to the compiler as the answer to the compiler’s
question LISTING? (see Chapter 18). For example,
(MAKEFILE ’FOO ’(C F LIST)) will dump FOO, then
TCOMPL or BCOMPL it specifying that functions are not to be
redefined, and finally list the file.

LIST After making FILE, MAKEFILE calls LISTFILES to print a
hardcopy listing of FILE.

CLISPIFY MAKEFILE calls PRETTYDEF with CLISPIFYPRETTYFLG =
T (see Chapter 21). This causes CLISPIFY to be called on
each function defined as an EXPR before it is prettyprinted.

Alternatively, if FILE has the property FILETYPE with value
CLISP or a list containing CLISP, PRETTYDEF is called with
CLISPIFYPRETTYFLG reset to CHANGES, which will cause
CLISPIFY to be called on all functions marked as having
been changed. If FILE has property FILETYPE with value
CLISP, the compiler will DWIMIFY its functions before
compiling them (see Chapter 18).

FAST MAKEFILE calls PRETTYDEF with PRETTYFLG = NIL (see
Chapter 26). This causes data objects to be printed rather
than prettyprinted, which is much faster.

17-11

REMAKE MAKEFILE "remakes" FILE: The prettyprinted definitions of
functions that have not changed are copied from an earlier
version of the symbolic file. Only those functions that have
changed are prettyprinted.

NEW MAKEFILE does not remake FILE. If MAKEFILEREMAKEFLG
= T (the initial setting), the default for all calls to MAKEFILE
is to remake. The NEW option can be used to override this
default.

REPRINTFNS and SOURCEFILE are used when remaking a
file.

FILE is not added to NOTLISTEDFILES if FILE has on its
property list the property FILETYPE with value DON’TLIST,
or a list containing DON’TLIST. FILE is not added to
NOTCOMPILEDFILES if FILE has on its property list the
property FILETYPE with value DON’TCOMPILE, or a list
containing DON’TCOMPILE. Also, if FILE does not contain
any function definitions, it is not added to
NOTCOMPILEDFILES, and it is not compiled even when
OPTIONS specifies C or RC.

If a remake is not being performed, MAKEFILE checks the state of FILE to make sure that the
entire source file was actually LOADed. If FILE was loaded as a compiled file, MAKEFILE
prints the message CAN’T DUMP: ONLY THE COMPILED FILE HAS BEEN LOADED.
Similarly, if only some of the symbolic definitions were loaded via LOADFNS or LOADFROM,
MAKEFILE prints CAN’T DUMP: ONLY SOME OF ITS SYMBOLICS HAVE BEEN LOADED.
In both cases, MAKEFILE will then ask you if it should dump anyway; if you decline,
MAKEFILE does not call PRETTYDEF, but simply returns (FILE NOT DUMPED) as its value.

You can indicate that FILE must be block compiled together with other files as a unit by
putting a list of those files on the property list of each file under the property FILEGROUP. If
FILE has a FILEGROUP property, the compiler will not be called until all files on this
property have been dumped that need to be.

MAKEFILE operates by rebinding PRETTYFLG, PRETTYTRANFLG, and
CLISPIFYPRETTYFLG, evaluating each expression on MAKEFILEFORMS (under errorset
protection), and then calling PRETTYDEF.

PRETTYDEF calls PRETTYPRINT with its second argument PRETTYDEFLG = T, so whenever
PRETTYPRINT (and hence MAKEFILE) start printing a new function, the name of that
function is printed if more than 30 seconds (real time) have elapsed since the last time it
printed the name of a function.

17-12

INTERLISP-D REFERENCE MANUAL

(MAKEFILES OPTIONS FILES) [Function]

Performs (MAKEFILE FILE OPTIONS) for each file on FILES that needs to be dumped.
If FILES = NIL, FILELST is used. For example, (MAKEFILES ’LIST) will make and
list all files that have been changed. In this case, if any typed definitions for any items
have been defined or changed and they are not contained in one of the files on FILELST,
MAKEFILES calls ADDTOFILES? to allow you to specify where these go. MAKEFILES
returns a list of all files that are made.

(CLEANUP FILE1 FILE2 ... FILEN) [NLambda NoSpread Function]

Dumps, lists, and recompiles (with RECOMPILE or BRECOMPILE) any of the specified files
(unevaluated) requiring the corresponding operation. If no files are specified, FILELST is
used. CLEANUP returns NIL.

CLEANUP uses the value of the variable CLEANUPOPTIONS as the OPTIONS argument to
MAKEFILE. CLEANUPOPTIONS is initially (RC), to indicate that the files should be
recompiled. If CLEANUPOPTIONS is set to (RC F), no listing will be performed, and no
functions will be redefined as the result of compiling. Alternatively, if FILE1 is a list, it
will be interpreted as the list of options regardless of the value of CLEANUPOPTIONS.

(FILES?) [Function]

Prints on the terminal the names of those files that have been modified but not dumped,
dumped but not listed, dumped but not compiled, plus the names of any functions and
other typed definitions (if any) that are not contained in any file. If there are any, FILES?
then calls ADDTOFILES? to allow you to specify where these go.

(ADDTOFILES? —) [Function]

Called from MAKEFILES, CLEANUP, and FILES? when there are typed definitions that
have been marked as changed which do not belong to any file. ADDTOFILES? lists the
names of the changed items, and asks if you want to specify where these items should be
put. If you answer N(o), ADDTOFILES? returns NIL without taking any action. If you
answer], this is taken to be an answer to each question that would be asked, and all the
changed items are marked as dummy items to be ignored. Otherwise, ADDTOFILES?
prints the name of each changed item, and accepts one of the following responses:

A file name
A filevar If you give a file name or a variable whose value is a list

(a filevar), the item is added to the corresponding file or
list, using ADDTOFILE.

If your response is not the name of a file on FILELST or
a variable whose value is a list, you will be asked
whether it is a new file. If you say no, then
ADDTOFILES? will check whether the item is the name
of a list, i.e., whether its value is a list. If not, youwill be
asked whether it is a new list.

17-13

line-feed Same as your previous response.

space
carriage return Take no action.

] The item is marked as a dummy item by adding it to
NILCOMS. This tells the file manager simply to ignore
this item.

[The "definition" of the item in question is prettyprinted
to the terminal, and then you are asked again about its
disposition.

(ADDTOFILES? prompts with "LISTNAME: (", you type
in the name of a list, i.e. a variable whose value is a list,
terminated by a). The item will then only be added to
(under) a command in which the named list appears as a
filevar. If none are found, a message is printed, and you
are asked again. For example, you define a new function
FOO3. When asked where it goes, you type (FOOFNS).
If the command (FNS * FOOFNS) is found, FOO3 will
be added to the value of FOOFNS. If instead you type
(FOOCOMS), and the command (COMS * FOOCOMS) is
found, then FOO3 will be added to a command for
dumping functions that is contained in FOOCOMS.

If the named list is not also the name of a file, you can
simply type it in without parenthesis as described above.

@ ADDTOFILES? prompts with "Near: (", you type in the
name of an object, and the item is then inserted in a
command for dumping objects (of its type) that contains
the indicated name. The item is inserted immediately
after the indicated name.

(LISTFILES FILE1 FILE2 ... FILEN) [NLambda NoSpread Function]

Lists each of the specified files (unevaluated). If no files are given, NOTLISTEDFILES is
used. Each file listed is removed from NOTLISTEDFILES if the listing is completed. For
each file not found, LISTFILES prints the message FILENAME NOT FOUND and proceeds
to the next file.

LISTFILES calls the function LISTFILES1 on each file to be listed. Normally,
LISTFILES1 is defined to simply call SEND.FILE.TO.PRINTER (see Chapter 29), but
you can advise or redefine LISTFILES1 for more specialized applications.

Any lists inside the argument list to LISTFILES are interpreted as property lists that set
the various printing options, such as the printer, number of copies, banner page name, etc
(see see Chapter 29). Later properties override earlier ones. For example,

(LISTFILES FOO (HOST JEDI) FUM (#COPIES 3) FIE)

17-14

INTERLISP-D REFERENCE MANUAL

will cause one copy of FOO to be printed on the default printer, and one copy of FUM and
three copies of FIE to be printed on the printer JEDI.

(COMPILEFILES FILE1 FILE2 ... FILEN) [NLambda NoSpread Function]

Executes the RC and C options of MAKEFILE for each of the specified files (unevaluated).
If no files are given, NOTCOMPILEDFILES is used. Each file compiled is removed from
NOTCOMPILEDFILES. If FILE1 is a list, it is interpreted as the OPTIONS argument to
MAKEFILES. This feature can be used to supply an answer to the compiler’s LISTING?
question, e.g., (COMPILEFILES (STF)) will compile each file on NOTCOMPILEDFILES
so that the functions are redefined without the EXPRs definitions being saved.

(WHEREIS NAME TYPE FILES FN) [Function]

TYPE is a file manager type. WHEREIS sweeps through all the files on the list FILES and
returns a list of all files containing NAME as a TYPE. WHEREIS knows about and expands
all file manager commands and file manager macros. TYPE = NIL defaults to FNS (to
retrieve function definitions). If FILES is not a list, the value of FILELST is used.

If FN is given, it should be a function (with arguments NAME, FILE, and TYPE) which is
applied for every file in FILES that contains NAME as a TYPE. In this case, WHEREIS
returns NIL.

If the WHEREIS library package has been loaded, WHEREIS is redefined so that FILES = T
means to use the whereis package data base, so WHEREIS will find NAME even if the file
has not been loaded or noticed. FILES = NIL always means use FILELST.

Remaking a Symbolic File

Most of the time that a symbolic file is written using MAKEFILE, only a few of the functions that it
contains have been changed since the last time the file was written. Rather than prettprinting all of
the functions, it is often considerably faster to "remake" the file, copying the prettprinted definitions of
unchanged functions from an earlier version of the symbolic file, and only prettyprinting those
functions that have been changed.

MAKEFILE will remake the symbolic file if the REMAKE option is specified. If the NEW option is given,
the file is not remade, and all of the functions are prettprinted. The default action is specified by the
value of MAKEFILEREMAKEFLG: if T (its initial value), MAKEFILE will remake files unless the NEW
option is given; if NIL, MAKEFILE will not remake unless the REMAKE option is given.

Note: If the file has never been loaded or dumped, for example if the filecoms were
simply set up in memory, then MAKEFILE will never attempt to remake the file,
regardless of the setting of MAKEFILEREMAKEFLG, or whether the REMAKE
option was specified.

17-15

When MAKEFILE is remaking a symbolic file, you can explicitly indicate the functions which are to be
prettyprinted and the file to be used for copying the rest of the function definitions from via the
REPRINTFNS and SOURCEFILE arguments to MAKEFILE. Normally, both of these arguments are
defaulted to NIL. In this case, REPRINTFNS will be set to those functions that have been changed
since the last version of the file was written. For SOURCEFILE, MAKEFILE obtains the full name of the
most recent version of the file (that it knows about) from the FILEDATES property of the file, and
checks to make sure that the file still exists and has the same file date as that stored on the FILEDATES
property. If it does, MAKEFILE uses that file as SOURCEFILE. This procedure permits you to LOAD or
LOADFROM a file in a different directory, and still be able to remake the file with MAKEFILE. In the
case where the most recent version of the file cannot be found, MAKEFILE will attempt to remake
using the original version of the file (i.e., the one first loaded), specifying as REPRINTFNS the union of
all changes that have been made since the file was first loaded, which is obtained from the
FILECHANGES property of the file. If both of these fail, MAKEFILE prints the message "CAN’T FIND
EITHER THE PREVIOUS VERSION OR THE ORIGINAL VERSION OF FILE, SO IT WILL
HAVE TO BE WRITTEN ANEW", and does not remake the file, i.e. will prettyprint all of the functions.

When a remake is specified, MAKEFILE also checks to see how the file was originally loaded. If the
file was originally loaded as a compiled file, MAKEFILE will call LOADVARS to obtain those DECLARE:
expressions that are contained on the symbolic file, but not the compiled file, and hence have not been
loaded. If the file was loaded by LOADFNS (but not LOADFROM), then LOADVARS is called to obtain
any non-DEFINEQ expressions. Before calling LOADVARS to re-load definitions, MAKEFILE asks you,
e.g. "Only the compiled version of FOO was loaded, do you want to LOADVARS
the (DECLARE: .. DONTCOPY ..) expressions from {DSK}<MYDIR>FOO.;3?". You can
respond Yes to execute the LOADVARS and continue the MAKEFILE, No to proceed with the
MAKEFILE without performing the LOADVARS, or Abort to abort the MAKEFILE. You may wish to
skip the LOADVARS if you had circumvented the file manager in some way, and loading the old
definitions would overwrite new ones.

Remaking a symbolic file is considerably faster if the earlier version has a file map indicating where the
function definitions are located (see the File Maps section), but it does not depend on this information.

Loading Files in a Distributed Environment

Each Interlisp source and compiled code file contains the full filename of the file, including the host
and directory names, in a FILECREATED expression at the beginning of the file. The compiled code
file also contains the full file name of the source file it was created from. In earlier versions of
Interlisp, the file manager used this information to locate the appropriate source file when "remaking"
or recompiling a file.

This turned out to be a bad feature in distributed environments, where users frequently move files
from one place to another, or where files are stored on removable media. For example, suppose you
MAKEFILE to a floppy, and then copy the file to a file server. If you loaded and edited the file from a
file server, and tried to do MAKEFILE, it would try to locate the source file on the floppy, which is
probably no longer loaded.

17-16

INTERLISP-D REFERENCE MANUAL

Currently, the file manager searches for sources file on the connected directory, and on the directory
search path (on the variable DIRECTORIES). If it is not found, the host/directory information from
the FILECREATED expression be used.

Warning: One situation where the new algorithm does the wrong thing is if you
explicitly LOADFROM a file that is not on your directory search path. Future
MAKEFILEs and CLEANUPs will search the connected directory and
DIRECTORIES to find the source file, rather than using the file that the
LOADFROM was done from. Even if the correct file is on the directory search
path, you could still create a bad file if there is another version of the file in an
earlier directory on the search path. In general, you should either explicitly
specify the SOURCEFILE argument to MAKEFILE to tell it where to get the old
source, or connect to the directory where the correct source file is.

Marking Changes

The file manager needs to know what typed definitions have been changed, so it can determine which
files need to be updated. This is done by "marking changes". All the system functions that perform
file manager operations (LOAD, TCOMPL, PRETTYDEF, etc.), as well as those functions that define or
change data, (EDITF, EDITV, EDITP, DWIM corrections to user functions) interact with the file
manager by marking changes. Also, typed-in assignment of variables or property values is noticed by
the file manager. (If a program modifies a variable or property value, this is not noticed.) In some
cases the marking procedure can be subtle, e.g. if you edit a property list using EDITP, only those
properties whose values are actually changed (or added) are marked.

The various system functions which create or modify objects call MARKASCHANGED to mark the object
as changed. For example, when a function is defined via DEFINE or DEFINEQ, or modified via
EDITF, or a DWIM correction, the function is marked as being a changed object of type FNS. Similarly,
whenever a new record is declared, or an existing record redeclared or edited, it is marked as being a
changed object of type RECORDS, and so on for all of the other file manager types.

You can also call MARKASCHANGED directly to mark objects of a particular file manager type as
changed:

(MARKASCHANGED NAME TYPE REASON) [Function]

Marks NAME of type TYPE as being changed. MARKASCHANGED returns NAME.
MARKASCHANGED is undoable.

REASON is a symbol that indicated how NAME was changed. MARKASCHANGED recognizes
the following values for REASON:

DEFINED Used to indicate the creation of NAME, e.g. from DEFINEQ
(Chapter 10).

CHANGED Used to indicate a change to NAME, e.g. from the editor.

17-17

DELETED Used to indicate the deletion of NAME, e.g. by DELDEF.

CLISP Used to indicate the modification of NAME by CLISP
translation.

For backwards compatibility, MARKASCHANGED also accepts a REASON of T (=DEFINED)
and NIL (=CHANGED). New programs should avoid using these values.

The variable MARKASCHANGEDFNS is a list of functions that MARKASCHANGED calls (with
arguments NAME, TYPE, and REASON). Functions can be added to this list to "advise"
MARKASCHANGED to do additional work for all types of objects. The WHENCHANGED file
manager type property (see the Defining New File Manager Types section) can be used to
specify additional actions when MARKASCHANGED gets called on specific types of objects.

(UNMARKASCHANGED NAME TYPE) [Function]

Unmarks NAME of type TYPE as being changed. Returns NAME if NAME was marked as
changed and is now unmarked, NIL otherwise. UNMARKASCHANGED is undoable.

(FILEPKGCHANGES TYPE LST) [NoSpread Function]

If LST is not specified (as opposed to being NIL), returns a list of those objects of type
TYPE that have been marked as changed but not yet associated with their corresponding
files (see the File Manager Types section). If LST is specified, FILEPKGCHANGES sets the
corresponding list. (FILEPKGCHANGES) returns a list of all objects marked as changed as
a list of elements of the form (TYPENAME . CHANGEDOBJECTS).

Some properties (e.g. EXPR, ADVICE, MACRO, I.S.OPR, etc.) are used to implement other file manager
types. For example, if you change the value of the property I.S.OPR, you are really changing an
object of type I.S.OPR. The effect is the same as though you had redefined the i.s.opr via a direct
call to the function I.S.OPR. If a property whose value has been changed or added does not
correspond to a specific file manager type, then it is marked as a changed object of type PROPS whose
name is (VARIABLENAME PROPNAME) (except if the property name has a property PROPTYPE with
value IGNORE).

Similarly, if you change a variable which implements the file manager type ALISTS (as indicated by
the appearance of the property VARTYPE with value ALIST on the variable’s property list), only those
entries that are actually changed are marked as being changed objects of type ALISTS. The "name" of
the object will be (VARIABLENAME KEY) where KEY is CAR of the entry on the alist that is being
marked. If the variable corresponds to a specific file manager type other than ALISTS, e.g.,
USERMACROS, LISPXMACROS, etc., then an object of that type is marked. In this case, the name of the
changed object will be CAR of the corresponding entry on the alist. For example, if you edit
LISPXMACROS and change a definition for PL, then the object PL of type LISPXMACROS is marked as
being changed.

17-18

INTERLISP-D REFERENCE MANUAL

Noticing Files

Already existing files are "noticed" by LOAD or LOADFROM (or by LOADFNS or LOADVARS when the
VARS argument is T. New files are noticed when they are constructed by MAKEFILE, or when
definitions are first associated with them via FILES? or ADDTOFILES?. Noticing a file updates
certain lists and properties so that the file manager functions know to include the file in their
operations. For example, CLEANUP will only dump files that have been noticed.

You can explicitly tell the file manager to notice a newly-created file by defining the filecoms for the
file, and calling ADDFILE:

(ADDFILE FILE) [Function]

Tells the file manager that FILE should be recognized as a file; it adds FILE to FILELST,
and also sets up the FILE property of FILE to reflect the current set of changes which are
"registered against" FILE.

The file manager uses information stored on the property list of the root name of noticed files. The
following property names are used:

FILE [Property Name]

When a file is noticed, the property FILE, value ((FILECOMS . LOADTYPE)) is added
to the property list of its root name. FILECOMS is the variable containing the filecoms of
the file. LOADTYPE indicates how the file was loaded, e.g., completely loaded, only
partially loaded as with LOADFNS, loaded as a compiled file, etc.

The property FILE is used to determine whether or not the corresponding file has been
modified since the last time it was loaded or dumped. CDR of the FILE property records
by type those items that have been changed since the last MAKEFILE. Whenever a file is
dumped, these items are moved to the property FILECHANGES, and CDR of the FILE
property is reset to NIL.

FILECHANGES [Property Name]

The property FILECHANGES contains a list of all changed items since the file was loaded
(there may have been several sequences of editing and rewriting the file). When a file is
dumped, the changes in CDR of the FILE property are added to the FILECHANGES
property.

FILEDATES [Property Name]

The property FILEDATES contains a list of version numbers and corresponding file dates
for this file. These version numbers and dates are used for various integrity checks in
connection with remaking a file.

17-19

FILEMAP [Property Name]

The property FILEMAP is used to store the filemap for the file. This is used to directly
load individual functions from the middle of a file.

To compute the root name, ROOTFILENAME is applied to the name of the file as indicated in the
FILECREATED expression appearing at the front of the file, since this name corresponds to the name
the file was originally made under. The file manager detects that the file being noticed is a compiled
file (regardless of its name), by the appearance of more than one FILECREATED expressions. In this
case, each of the files mentioned in the following FILECREATED expressions are noticed. For
example, if you perform (BCOMPL ’(FOO FIE)), and subsequently loads FOO.DCOM, both FOO and
FIE will be noticed.

When a file is noticed, its root name is added to the list FILELST:

FILELST [Variable]

Contains a list of the root names of the files that have been noticed.

LOADEDFILELST [Variable]

Contains a list of the actual names of the files as loaded by LOAD, LOADFNS, etc. For
example, if you perform (LOAD ’<NEWLISP>EDITA.COM;3), EDITA will be added to
FILELST, but <NEWLISP>EDITA.COM;3 is added to LOADEDFILELST.
LOADEDFILELST is not used by the file manager; it is maintained solely for your benefit.

Distributing Change Information

Periodically, the function UPDATEFILES is called to find which file(s) contain the elements that have
been changed. UPDATEFILES is called by FILES?, CLEANUP, and MAKEFILES, i.e., any procedure
that requires the FILE property to be up to date. This procedure is followed rather than updating the
FILE property after each change because scanning FILELST and examining each file manager
command can be a time-consuming process; this is not so noticeable when performed in conjunction
with a large operation like loading or writing a file.

UPDATEFILES operates by scanning FILELST and interrogating the file manager commands for each
file. When (if) any files are found that contain the corresponding typed definition, the name of the
element is added to the value of the property FILE for the corresponding file. Thus, after
UPDATEFILES has completed operating, the files that need to be dumped are simply those files on
FILELST for which CDR of their FILE property is non-NIL. For example, if you load the file FOO
containing definitions for FOO1, FOO2, and FOO3, edit FOO2, and then call UPDATEFILES, (GETPROP
’FOO ’FILE) will be ((FOOCOMS . T) (FNS FOO2)). If any objects marked as changed have not
been transferred to the FILE property for some file, e.g., you define a new function but forget (or
declines) to add it to the file manager commands for the corresponding file, then both FILES? and

17-20

INTERLISP-D REFERENCE MANUAL

CLEANUP will print warning messages, and then call ADDTOFILES? to permit you to specify on which
files these items belong.

You can also invoke UPDATEFILES directly:

(UPDATEFILES — —) [Function]

(UPDATEFILES) will update the FILE properties of the noticed files.

File Manager Types

In addition to the definitions of functions and values of variables, source files in Interlisp can contain a
variety of other information, e.g. property lists, record declarations, macro definitions, hash arrays,
etc. In order to treat such a diverse assortment of data uniformly from the standpoint of file
operations, the file manager uses the concept of a typed definition, of which a function definition is just
one example. A typed definition associates with a name (usually a symbol), a definition of a given
type (called the file manager type). Note that the same name may have several definitions of different
types. For example, a symbol may have both a function definition and a variable definition. The file
manager also keeps track of the file that a particular typed definition is stored on, so one can think of a
typed definition as a relation between four elements: a name, a definition, a type, and a file.

A file manager type is an abstract notion of a class of objects which share the property that every
object of the same file manager type is stored, retrieved, edited, copied etc., by the file manager in the
same way. Each file manager type is identified by a symbol, which can be given as an argument to the
functions that manipulate typed definitions. You may define new file manager types, as described in
the Defining New Package Types section.

FILEPKGTYPES [Variable]

The value of FILEPKGTYPES is a list of all file manager types, including any that you may
have defined.

The file manager is initialized with the following built-in file manager types:

ADVICE [File Manager Type]

Used to access "advice" modifying a function (see Chapter 15).

ALISTS [File Manager Type]

Used to access objects stored on an association list that is the value of a symbol (see
Chapter 3).

A variable is declared to have an association list as its value by putting on its property list
the property VARTYPE with value ALIST. In this case, each dotted pair on the list is an
object of type ALISTS. When the value of such a variable is changed, only those entries in
the association list that are actually changed or added are marked as changed objects of

17-21

type ALISTS (with "name" (SYMBOL KEY)). Objects of type ALISTS are dumped via the
ALISTS or ADDVARS file manager commands.

Note that some association lists are used to "implement" other file manager types. For
example, the value of the global variable USERMACROS implements the file manager type
USERMACROS and the values of LISPXMACROS and LISPXHISTORYMACROS implement
the file manager type LISPXMACROS. This is indicated by putting on the property list of
the variable the property VARTYPE with value a list of the form (ALIST FILEPKGTYPE).
For example, (GETPROP ’LISPXHISTORYMACROS ’VARTYPE) => (ALIST
LISPXMACROS).

COURIERPROGRAMS [File Manager Type]

Used to access Courier programs (see Chapter 31).

EXPRESSIONS [File Manager Type]

Used to access lisp expressions that are put on a file by using the REMEMBER programmers
assistant command (Chapter 13), or by explicitly putting the P file manager command on
the filecoms.

FIELDS [File Manager Type]

Used to access fields of records. The "definition" of an object of type FIELDS is a list of all
the record declarations which contain the name. See Chapter 8.

FILEPKGCOMS [File Manager Type]

Used to access file manager commands and types. A single name can be defined both as a
file manager type and a file manager command. The "definition" of an object of type
FILEPKGCOMS is a list structure of the form ((COM . COMPROPS) (TYPE .
TYPEPROPS)), where COMPROPS is a property list specifying how the name is defined as
a file manager command by FILEPKGCOM (see the Defining New File Manager
Commands section), and TYPEPROPS is a property list specifying how the name is
defined as a file manager type by FILEPKGTYPE (see the Defining New File Manager
Types section).

FILES [File Manager Type]

Used to access files. This file manager type is most useful for renaming files. The
"definition" of a file is not a useful structure.

FILEVARS [File Manager Type]

Used to access Filevars (see the FileVars section).

FNS [File Manager Type]

Used to access function definitions.

17-22

INTERLISP-D REFERENCE MANUAL

I.S.OPRS [File Manager Type]

Used to access the definitions of iterative statement operators (see Chapter 9).

LISPXMACROS [File Manager Type]

Used to access programmer’s assistant commands defined on the variables LISPXMACROS
and LISPXHISTORYMACROS (see Chapter 13).

MACROS [File Manager Type]

Used to access macro definitions (see Chapter 10).

PROPS [File Manager Type]

Used to access objects stored on the property list of a symbol (see Chapter 2). When a
property is changed or added, an object of type PROPS, with "name" (SYMBOL
PROPNAME) is marked as being changed.

Note that some symbol properties are used to implement other file manager types. For
example, the property MACRO implements the file manager type MACROS, the property
ADVICE implements ADVICE, etc. This is indicated by putting the property PROPTYPE,
with value of the file manager type on the property list of the property name. For
example, (GETPROP ’MACRO ’PROPTYPE) => MACROS. When such a property is
changed or added, an object of the corresponding file manager type is marked. If
(GETPROP PROPNAME ’PROPTYPE) => IGNORE, the change is ignored. The FILE,
FILEMAP, FILEDATES, etc. properties are all handled this way. (IGNORE cannot be the
name of a file manager type implemented as a property).

RECORDS [File Manager Type]

Used to access record declarations (see Chapter 8).

RESOURCES [File Manager Type]

Used to access resources (see Chapter 12).

TEMPLATES [File Manager Type]

Used to access Masterscope templates (see Chapter 19).

USERMACROS [File Manager Type]

Used to access user edit macros (see Chapter 16).

VARS [File Manager Type]

Used to access top-level variable values.

17-23

Functions for Manipulating Typed Definitions

The functions described below can be used to manipulate typed definitions, without needing to know
how the manipulations are done. For example, (GETDEF ’FOO ’FNS) will return the function
definition of FOO, (GETDEF ’FOO ’VARS) will return the variable value of FOO, etc. All of the
functions use the following conventions:

1. All functions which make destructive changes are undoable.

2. Any argument that expects a list of symbols will also accept a single symbol, operating as
though it were enclosed in a list. For example, if the argument FILES should be a list of files,
it may also be a single file.

3. TYPE is a file manager type. TYPE = NIL is equivalent to TYPE = FNS. The singular
form of a file manager type is also recognized, e.g. TYPE = VAR is equivalent to TYPE =
VARS.

4. FILES = NIL is equivalent to FILES = FILELST.

5. SOURCE is used to indicate the source of a definition, that is, where the definition should
be found. SOURCE can be one of:

CURRENT Get the definition currently in effect.

SAVED Get the "saved" definition, as stored by SAVEDEF.

FILE Get the definition contained on the (first) file determined by
WHEREIS.

WHEREIS is called with FILES = T, so that if the WHEREIS
library package is loaded, the WHEREIS data base will be
used to find the file containing the definition.

? Get the definition currently in effect if there is one, else the
saved definition if there is one, otherwise the definition
from a file determined by WHEREIS. Like specifying
CURRENT, SAVED, and FILE in order, and taking the first
definition that is found.

a file name
a list of file names Get the definition from the first of the indicated files that

contains one.

NIL In most cases, giving SOURCE = NIL (or not specifying it at
all) is the same as giving ?, to get either the current, saved,
or filed definition. However, with HASDEF, SOURCE = NIL
is interpreted as equal to SOURCE = CURRENT, which only
tests if there is a current definition.

17-24

INTERLISP-D REFERENCE MANUAL

The operation of most of the functions described below can be changed or extended by
modifying the appropriate properties for the corresponding file manager type using the
function FILEPKGTYPE, described in the Defining New File Manager Types section.

(GETDEF NAME TYPE SOURCE OPTIONS) [Function]

Returns the definition of NAME, of type TYPE, from SOURCE. For most types, GETDEF
returns the expression which would be pretty printed when dumping NAME as TYPE. For
example, for TYPE = FNS, an EXPR definition is returned, for TYPE = VARS, the value of
NAME is returned, etc.

OPTIONS is a list which specifies certain options:

NOERROR GETDEF causes an error if an appropriate definition cannot
be found, unless OPTIONS is or contains NOERROR. In this
case, GETDEF returns the value of the NULLDEF file
manager type property (see the Defining New File Manager
Types section), usually NIL.

a string If OPTIONS is or contains a string, that string will be
returned if no definition is found (and NOERROR is not
among the options). The caller can thus determine whether
a definition was found, even for types for which NIL or
NOBIND are acceptable definitions.

NOCOPY GETDEF returns a copy of the definition unless OPTIONS is
or contains NOCOPY.

EDIT If OPTIONS is or contains EDIT, GETDEF returns a copy of
the definition unless it is possible to edit the definition "in
place." With some file manager types, such as functions, it
is meaningful (and efficient) to edit the definition by
destructively modifying the list structure, without calling
PUTDEF. However, some file manager types (like records)
need to be "installed" with PUTDEF after they are edited.
The default EDITDEF (see the Defining New File Manager
Types section) calls GETDEF with OPTIONS of (EDIT
NOCOPY), so it doesn’t use a copy unless it has to, and only
calls PUTDEF if the result of editing is not EQUAL to the old
definition.

NODWIM A FNS definition will be dwimified if it is likely to contain
CLISP unless OPTIONS is or contains NODWIM.

(PUTDEF NAME TYPE DEFINITION REASON) [Function]

Defines NAME of type TYPE with DEFINITION. For TYPE = FNS, does a DEFINE; for
TYPE = VARS, does a SAVESET, etc.

17-25

For TYPE = FILES, PUTDEF establishes the command list, notices NAME, and then calls
MAKEFILE to actually dump the file NAME, copying functions if necessary from the "old"
file (supplied as part of DEFINITION).

PUTDEF calls MARKASCHANGED (see the Mrking Changes section) to mark NAME as
changed, giving a reason of REASON. If REASON is NIL, the default is DEFINED.

If TYPE = FNS, PUTDEF prints a warning if you try to redefine a function on the list
UNSAFE.TO.MODIFY.FNS (see Chapter 10).

(HASDEF NAME TYPE SOURCE SPELLFLG) [Function]

Returns (OR NAME T) if NAME is the name of something of type TYPE. If not, attempts
spelling correction if SPELLFLG = T, and returns the spelling-corrected NAME. Otherwise
returns NIL. HASDEF for type FNS (or NIL) indicates that NAME has an editable source
definition. If NAME is a function that exists on a file for which you have loaded only the
compiled version and not the source, HASDEF returns NIL.

(HASDEF NIL TYPE) returns T if NIL has a valid definition.

If SOURCE = NIL, HASDEF interprets this as equal to SOURCE = CURRENT, which only tests
if there is a current definition.

(TYPESOF NAME POSSIBLETYPES IMPOSSIBLETYPES SOURCE) [Function]

Returns a list of the types in POSSIBLETYPES but not in IMPOSSIBLETYPES for which
NAME has a definition. FILEPKGTYPES is used if POSSIBLETYPES is NIL.

(COPYDEF OLD NEW TYPE SOURCE OPTIONS) [Function]

Defines NEW to have a copy of the definition of OLD by doing PUTDEF on a copy of the
definition retrieved by (GETDEF OLD TYPE SOURCE OPTIONS). NEW is substituted for
OLD in the copied definition, in a manner that may depend on the TYPE.

For example, (COPYDEF ’PDQ ’RST ’FILES) sets up RSTCOMS to be a copy of
PDQCOMS, changes things like (VARS * PDQVARS) to be (VARS * RSTVARS) in
RSTCOMS, and performs a MAKEFILE on RST such that the appropriate definitions get
copied from PDQ.

COPYDEF disables the NOCOPY option of GETDEF, so NEW will always have a copy of the
definition of OLD.

COPYDEF substitutes NEW for OLD throughout the definition of OLD. This is usually the
right thing to do, but in some cases, e.g., where the old name appears within a quoted
expression but was not used in the same context, you must re-edit the definition.

(DELDEF NAME TYPE) [Function]

Removes the definition of NAME as a TYPE that is currently in effect.

17-26

INTERLISP-D REFERENCE MANUAL

(SHOWDEF NAME TYPE FILE) [Function]

Prettyprints the definition of NAME as a TYPE to FILE. This shows you how NAME would
be written to a file. Used by ADDTOFILES? (see the Storing Files section).

(EDITDEF NAME TYPE SOURCE EDITCOMS) [Function]

Edits the definition of NAME as a TYPE. Essentially performs

(PUTDEF NAME TYPE
 (EDITE (GETDEF NAME TYPE SOURCE)
 EDITCOMS))

(SAVEDEF NAME TYPE DEFINITION) [Function]

Sets the "saved" definition of NAME as a TYPE to DEFINITION. If DEFINITION = NIL,
the current definition of NAME is saved.

If TYPE = FNS (or NIL), the function definition is saved on NAME’s property list under the
property EXPR, or CODE (depending on the FNTYP of the function definition). If (GETD
NAME) is non-NIL, but (FNTYP FN) = NIL, SAVEDEF saves the definition on the property
name LIST. This can happen if a function was somehow defined with an illegal expr
definition, such as (LAMMMMDA (X) ...).

If TYPE = VARS, the definition is stored as the value of the VALUE property of NAME. For
other types, the definition is stored in an internal data structure, from where it can be
retrieved by GETDEF or UNSAVEDEF.

(UNSAVEDEF NAME TYPE) [Function]

Restores the "saved" definition of NAME as a TYPE, making it be the current definition.
Returns PROP.

If TYPE = FNS (or NIL), UNSAVEDEF unsaves the function definition from the EXPR
property if any, else CODE, and returns the property name used. UNSAVEDEF also
recognizes TYPE = EXPR, CODE, or LIST, meaning to unsave the definition only from the
corresponding property only.

If DFNFLG is not T (see Chapter 10), the current definition of NAME, if any, is saved using
SAVEDEF. Thus one can use UNSAVEDEF to switch back and forth between two
definitions.

(LOADDEF NAME TYPE SOURCE) [Function]

Equivalent to (PUTDEF NAME TYPE (GETDEF NAME TYPE SOURCE)). LOADDEF is
essentially a generalization of LOADFNS, e.g. it enables loading a single record declaration
from a file. (LOADDEF FN) will give FN an EXPR definition, either obtained from its
property list or a file, unless it already has one.

17-27

(CHANGECALLERS OLD NEW TYPES FILES METHOD) [Function]

Finds all of the places where OLD is used as any of the types in TYPES and changes those
places to use NEW. For example, (CHANGECALLERS ’NLSETQ ’ERSETQ) will change all
calls to NLSETQ to be calls to ERSETQ. Also changes occurrences of OLD to NEW inside the
filecoms of any file, inside record declarations, properties, etc.

CHANGECALLERS attempts to determine if OLD might be used as more than one type; for
example, if it is both a function and a record field. If so, rather than performing the
transformation OLD -> NEW automatically, you are allowed to edit all of the places where
OLD occurs. For each occurrence of OLD, you are asked whether you want to make the
replacement. If you respond with anything except Yes or No, the editor is invoked on the
expression containing that occurrence.

There are two different methods for determining which functions are to be examined. If
METHOD = EDITCALLERS, EDITCALLERS is used to search FILES (see Chapter 16). If
METHOD = MASTERSCOPE, then the Masterscope database is used instead. METHOD =
NIL defaults to MASTERSCOPE if the value of the variable DEFAULTRENAMEMETHOD is
MASTERSCOPE and a Masterscope database exists, otherwise it defaults to EDITCALLERS.

(RENAME OLD NEW TYPES FILES METHOD) [Function]

First performs (COPYDEF OLD NEW TYPE) for all TYPE inside TYPES. It then calls
CHANGECALLERS to change all occurrences of OLD to NEW, and then "deletes" OLD with
DELDEF. For example, if you have a function FOO which you now wish to call FIE,
simply perform (RENAME ’FOO ’FIE), and FIE will be given FOO’s definition, and all
places that FOO are called will be changed to call FIE instead.

METHOD is interpreted the same as the METHOD argument to CHANGECALLERS, above.

(COMPARE NAME1 NAME2 TYPE SOURCE1 SOURCE2) [Function]

Compares the definition of NAME1 with that of NAME2, by calling COMPARELISTS
(Chapter 3) on (GETDEF NAME1 TYPE SOURCE1) and (GETDEF NAME2 TYPE SOURCE2),
which prints their differences on the terminal.

For example, if the current value of the variable A is (A B C (D E F) G), and the value
of the variable B on the file <lisp>FOO is (A B C (D F E) G), then:

←(COMPARE ’A ’B ’VARS ’CURRENT ’<lisp>FOO)
A from CURRENT and B from <lisp>TEST differ:
(E -> F) (F -> E)
T

(COMPAREDEFS NAME TYPE SOURCES) [Function]

Calls COMPARELISTS (Chapter 3) on all pairs of definitions of NAME as a TYPE obtained
from the various SOURCES (interpreted as a list of source specifications).

17-28

INTERLISP-D REFERENCE MANUAL

Defining New File Manager Types

All manipulation of typed definitions in the file manager is done using the type-independent
functions GETDEF, PUTDEF, etc. Therefore, to define a new file manager type, it is only necessary to
specify (via the function FILEPKGTYPE) what these functions should do when dealing with a typed
definition of the new type. Each file manager type has the following properties, whose values are
functions or lists of functions:

These functions are defined to take a TYPE argument so that you may have the same function for
more than one type.

GETDEF [File Manager Type Property]

Value is a function of three arguments, NAME, TYPE, and OPTIONS, which should return
the current definition of NAME as a type TYPE. Used by GETDEF (see the Functions for
Manipulating Typed Definitions section), which passes its OPTIONS argument.

If there is no GETDEF property, a file manager command for dumping NAME is created (by
MAKENEWCOM). This command is then used to write the definition of NAME as a type TYPE
onto the file FILEPKG.SCRATCH (in Medley, this file is created on the {CORE} device).
This expression is then read back in and returned as the current definition.

In some situations, the function HASDEF needs to call GETDEF to determine whether a
definition exists. In this case, OPTIONS will include the symbol HASDEF, and it is
permissable for a GETDEF function to return T or NIL, rather than creating a complex
structure which will not be used.

NULLDEF [File Manager Type Property]

The value of the NULLDEF property is returned by GETDEF (see the Functions for
Manipulating Typed Definitions section) when there is no definition and the NOERROR
option is supplied. For example, the NULLDEF of VARS is NOBIND.

FILEGETDEF [File Manager Type Property]

This enables you to provide a way of obtaining definitions from a file that is more efficient
than the default procedure used by GETDEF (see the Functions for Manipulating Typed
Definitions section). Value is a function of four arguments, NAME, TYPE, FILE, and
OPTIONS. The function is applied by GETDEF when it is determined that a typed
definition is needed from a particular file. The function must open and search the given
file and return any TYPE definition for NAME that it finds.

CANFILEDEF [File Manager Type Property]

If the value of this property is non-NIL, this indicates that definitions of this file manager
type are not loaded when a file is loaded with LOADFROM (see the Loading Files section).
The default is NIL. Initially, only FNS has this property set to non-NIL.

17-29

PUTDEF [File Manager Type Property]

Value is a function of three arguments, NAME, TYPE, and DEFINITION, which should
store DEFINITION as the definition of NAME as a type TYPE. Used by PUTDEF (see the
Functions for Manipulating Typed Definitions section).

HASDEF [File Manager Type Property]

Value is a function of three arguments, NAME, TYPE, and SOURCE, which should return
(OR NAME T) if NAME is the name of something of type TYPE. SOURCE is as interpreted by
HASDEF (see the Functions for Manipulating Typed Definitions section), which uses this
property.

EDITDEF [File Manager Type Property]

Value is a function of four arguments, NAME, TYPE, SOURCE, and EDITCOMS, which
should edit the definition of NAME as a type TYPE from the source SOURCE, interpreting
the edit commands EDITCOMS. If sucessful, should return NAME (or a spelling-corrected
NAME). If it returns NIL, the "default" editor is called. Used by EDITDEF (see the
Functions for Manipulating Typed Definitions section).

DELDEF [File Manager Type Property]

Value is a function of two arguments, NAME, and TYPE, which removes the definition of
NAME as a TYPE that is currently in effect. Used by DELDEF (see the Functions for
Manipulating Typed Definitions section).

NEWCOM [File Manager Type Property]

Value is a function of four arguments, NAME, TYPE, LISTNAME, and FILE. Specifies how
to make a new (instance of a) file manager command to dump NAME, an object of type
TYPE. The function should return the new file manager command. Used by ADDTOFILE
and SHOWDEF.

If LISTNAME is non-NIL, this means that you specified LISTNAME as the filevar in
interaction with ADDTOFILES? (see the FileVars section).

If no NEWCOM is specified, the default is to call DEFAULTMAKENEWCOM, which will
construct and return a command of the form (TYPE NAME). You can advise or redefine
DEFAULTMAKENEWCOM .

WHENCHANGED [File Manager Type Property]

Value is a list of functions to be applied to NAME, TYPE, and REASON when NAME, an
instance of type TYPE, is changed or defined (see MARKASCHANGED, in the Marking
Changes section). Used for various applications, e.g. when an object of type I.S.OPRS
changes, it is necessary to clear the corresponding translatons from CLISPARRAY.

The WHENCHANGED functions are called before the object is marked as changed, so that it
can, in fact, decide that the object is not to be marked as changed, and execute (RETFROM
’MARKASCHANGED).

17-30

INTERLISP-D REFERENCE MANUAL

The REASON argument passed to WHENCHANGED functions is either DEFINED or CHANGED.

WHENFILED [File Manager Type Property]

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an instance
of type TYPE, is added to FILE.

WHENUNFILED [File Manager Type Property]

Value is a list of functions to be applied to NAME, TYPE, and FILE when NAME, an instance
of type TYPE, is removed from FILE.

DESCRIPTION [File Manager Type Property]

Value is a string which describes instances of this type. For example, for type RECORDS,
the value of DESCRIPTION is the string "record declarations".

The function FILEPKGTYPE is used to define new file manager types, or to change the properties of
existing types. It is possible to redefine the attributes of system file manager types, such as FNS or
PROPS.

(FILEPKGTYPE TYPE PROP1 VAL1 ... PROPN VALN) [NoSpread Function]

Nospread function for defining new file manager types, or changing properties of existing
file manager types. PROPi is one of the property names given above; VALi is the value
to be given to that property. Returns TYPE.

(FILEPKGTYPE TYPE PROP) returns the value of the property PROP, without changing it.

(FILEPKGTYPE TYPE) returns a property list of all of the defined properties of TYPE,
using the property names as keys.

Specifying TYPE as the symbol TYPE can be used to define one file manager type as a
synonym of another. For example, (FILEPKGTYPE ’R ’TYPE ’RECORDS) defines R as
a synonym for the file manager type RECORDS.

File Manager Commands

The basic mechanism for creating symbolic files is the function MAKEFILE (see the Storing Files
section). For each file, the file manager has a data structure known as the "filecoms", which specifies
what typed descriptions are contained in the file. A filecoms is a list of file manager commands, each
of which specifies objects of a certain file manager type which should be dumped. For example, the
filecoms

((FNS FOO)
 (VARS FOO BAR BAZ)
 (RECORDS XYZZY))

17-31

has a FNS, a VARS, and a RECORDS file manager command. This filecoms specifies that the function
definition for FOO, the variable values of FOO, BAR, and BAZ, and the record declaration for XYZZY
should be dumped.

By convention, the filecoms of a file X is stored as the value of the symbol XCOMS. For example,
(MAKEFILE ’FOO.;27) will use the value of FOOCOMS as the filecoms. This variable can be directly
manipulated, but the file manager contains facilities which make constructing and updating filecoms
easier, and in some cases automatic (see the Functions for Manipulating File Command Lists section).

A file manager command is an instruction to MAKEFILE to perform an explicit, well-defined
operation, usually printing an expression. Usually there is a one-to-one correspondence between file
manager types and file manager commands; for each file manager type, there is a file manager
command which is used for writing objects of that type to a file, and each file manager command is
used to write objects of a particular type. However, in some cases, the same file manager type can be
dumped by several different file manager commands. For example, the file manager commands
PROP, IFPROP, and PROPS all dump out objects with the file manager type PROPS. This means if you
change an object of file manager type PROPS via EDITP, a typed-in call to PUTPROP, or via an explicit
call to MARKASCHANGED, this object can be written out with any of the above three commands. Thus,
when the file manager attempts to determine whether this typed object is contained on a particular
file, it must look at instances of all three file manager commands PROP, IFPROP, and PROPS, to see if
the corresponding atom and property are specified. It is also permissible for a single file manager
command to dump several different file manager types. For example, you can define a file manager
command which dumps both a function definition and its macro. Conversely, some file manager
comands do not dump any file manager types at all, such as the E command.

For each file manager command, the file manager must be able to determine what typed definitions
the command will cause to be printed so that the file manager can determine on what file (if any) an
object of a given type is contained (by searching through the filecoms). Similarly, for each file
manager type, the file manager must be able to construct a command that will print out an object of
that type. In other words, the file manager must be able to map file manager commands into file
manager types, and vice versa. Information can be provided to the file manager about a particular file
manager command via the function FILEPKGCOM (see the Defining New File Manager Commands
section), and information about a particular file manager type via the function FILEPKGTYPE (see the
prior section). In the absence of other information, the default is simply that a file manager command
of the form (X NAME) prints out the definition of NAME as a type X, and, conversely, if NAME is an
object of type X, then NAME can be written out by a command of the form (X NAME).

If a file manager function is given a command or type that is not defined, it attempts spelling
correction using FILEPKGCOMSPLST as a spelling list (unless DWIMFLG or NOSPELLFLG = NIL; see
Chapter 20). If successful, the corrected version of the list of file manager commands is written (again)
on the output file, since at this point, the uncorrected list of file manager commands would already
have been printed on the output file. When the file is loaded, this will result in FILECOMS being
reset, and may cause a message to be printed, e.g., (FOOCOMS RESET). The value of FOOCOMS
would then be the corrected version. If the spelling correction is unsuccessful, the file manager
functions generate an error, BAD FILE PACKAGE COMMAND.

17-32

INTERLISP-D REFERENCE MANUAL

File package commands can be used to save on the output file definitions of functions, values of
variables, property lists of atoms, advised functions, edit macros, record declarations, etc. The
interpretation of each file manager command is documented in the following sections.

(USERMACROS SYMBOL1 ... SYMBOLN) [File Manager Command]

Each symbol SYMBOLi is the name of a user edit macro. Writes expressions to add the
edit macro definitions of SYMBOLi to USERMACROS, and adds the names of the commands
to the appropriate spelling lists.

If SYMBOLi is not a user macro, a warning message "no EDIT MACRO for SYMBOLi" is
printed.

Functions and Macros

(FNS FN1 ... FNN) [File Manager Command]

Writes a DEFINEQ expression with the function definitions of FN1 ... FNN.

You should never print a DEFINEQ expression directly onto a file (by using the P file
manager command, for example), because MAKEFILE generates the filemap of function
definitions from the FNS file manager commands (see the File Maps section).

(ADVISE FN1 ... FNN) [File Manager Command]

For each function FNi, writes expressions to reinstate the function to its advised state
when the file is loaded. See Chapter 15.

When advice is applied to a function programmatically or by hand, it is additive. That is,
if a function already has some advice, further advice is added to the already-existing
advice. However, when advice is applied to a function as a result of loading a file with an
ADVISE file manager command, the new advice replaces any earlier advice. ADVISE
works this way to prevent problems with loading different versions of the same advice. If
you really want to apply additive advice, a file manager command such as (P (ADVISE
...)) should be used (see the Miscellaneous File Manager Commands section).

(ADVICE FN1 ... FNN) [File Manager Command]

For each function FNi, writes a PUTPROPS expression which will put the advice back on
the property list of the function. You can then use READVISE (see Chapter 15) to
reactivate the advice.

(MACROS SYMBOL1 ... SYMBOLN) [File Manager Command]

Each SYMBOLi is a symbol with a MACRO definition (and/or a DMACRO, 10MACRO, etc.).
Writes out an expression to restore all of the macro properties for each SYMBOLi,
embedded in a DECLARE: EVAL@COMPILE so the macros will be defined when the file is
compiled. See Chapter 10.

17-33

Variables

(VARS VAR1 ... VARN) [File Manager Command]

For each VARi, writes an expression to set its top level value when the file is loaded. If
VARi is atomic, VARS writes out an expression to set VARi to the top-level value it had at
the time the file was written. If VARi is non-atomic, it is interpreted as (VAR FORM), and
VARS write out an expression to set VAR to the value of FORM (evaluated when the file is
loaded).

VARS prints out expressions using RPAQQ and RPAQ, which are like SETQQ and SETQ
except that they also perform some special operations with respect to the file manager
(see the Functions Used within Source Files section).

VARS cannot be used for putting arbitrary variable values on files. For example, if the
value of a variable is an array (or many other data types), a symbol which represents the
array is dumped in the file instead of the array itself. The HORRIBLEVARS file manager
command provides a way of saving and reloading variables whose values contain re-
entrant or circular list structure, user data types, arrays, or hash arrays.

(INITVARS VAR1 ... VARN) [File Manager Command]

INITVARS is used for initializing variables, setting their values only when they are
currently NOBIND. A variable value defined in an INITVARS command will not change
an already established value. This means that re-loading files to get some other
information will not automatically revert to the initialization values.

The format of an INITVARS command is just like VARS. The only difference is that if
VARi is atomic, the current value is not dumped; instead NIL is defined as the
initialization value. Therefore, (INITVARS FOO (FUM 2)) is the same as (VARS (FOO
NIL)(FUM 2)), if FOO and FUM are both NOBIND.

INITVARS writes out an RPAQ? expression on the file instead of RPAQ or RPAQQ.

(ADDVARS (VAR1 . LST1)...(VARN . LSTN)) [File Manager Command]

For each (VARi . LSTi), writes an ADDTOVAR (see the Functions Used Within Source Files
section) to add each element of LSTi to the list that is the value of VARi at the time the file
is loaded. The new value of VARi will be the union of its old value and LSTi. If the value
of VARi is NOBIND, it is first set to NIL.

For example, (ADDVARS (DIRECTORIES LISP LISPUSERS)) will add LISP and
LISPUSERS to the value of DIRECTORIES.

If LSTi is not specified, VARi is initialized to NIL if its current value is NOBIND. In other
words, (ADDVARS (VAR)) will initialize VAR to NIL if VAR has not previously been set.

17-34

INTERLISP-D REFERENCE MANUAL

(APPENDVARS (VAR1 . LST1) ... (VARN . LSTN)) [File Manager Command]

The same as ADDVARS, except that the values are added to the end of the lists (using
APPENDTOVAR, in the Functions Used Within Source Files section), rather than at the
beginning.

(UGLYVARS VAR1 ... VARN) [File Manager Command]

Like VARS, except that the value of each VARi may contain structures for which READ is
not an inverse of PRINT, e.g. arrays, readtables, user data types, etc. Uses HPRINT (see
Chapter 25).

(HORRIBLEVARS VAR1 ... VARN) [File Manager Command]

Like UGLYVARS, except structures may also contain circular pointers. Uses HPRINT (see
Chapter 25). The values of VAR1 ... VARN are printed in the same operation, so that they
may contain pointers to common substructures.

UGLYVARS does not do any checking for circularities, which results in a large speed and
internal-storage advantage over HORRIBLEVARS. Thus, if it is known that the data
structures do not contain circular pointers, UGLYVARS should be used instead of
HORRIBLEVARS.

(ALISTS (VAR1 KEY1 KEY2 ...)...(VARN KEY3 KEY4 ...)) [File Manager Command]

VARi is a variable whose value is an association list, such as EDITMACROS,
BAKTRACELST, etc. For each VARi, ALISTS writes out expressions which will restore the
values associated with the specified keys. For example, (ALISTS (BREAKMACROS BT
BTV)) will dump the definition for the BT and BTV commands on BREAKMACROS.

Some association lists (USERMACROS, LISPXMACROS, etc.) are used to implement other file
manager types, and they have their own file manager commands.

(SPECVARS VAR1 ... VARN) [File Manager Command]

(LOCALVARS VAR1 ... VARN) [File Manager Command]

(GLOBALVARS VAR1 ... VARN) [File Manager Command]

Outputs the corresponding compiler declaration embedded in a DECLARE:
DOEVAL@COMPILE DONTCOPY. See Chapter 18.

(CONSTANTS VAR1 ... VARN) [File Manager Command]

Like VARS, for each VARi writes an expression to set its top level value when the file is
loaded. Also writes a CONSTANTS expression to declare these variables as constants (see
Chapter 18). Both of these expressions are wrapped in a (DECLARE: EVAL@COMPILE
...) expression, so they can be used by the compiler.

17-35

Like VARS, VARi can be non-atomic, in which case it is interpreted as (VAR FORM), and
passed to CONSTANTS (along with the variable being initialized to FORM).

Symbol Properties

(PROP PROPNAME SYMBOL1 ... SYMBOLN) [File Manager Command]

Writes a PUTPROPS expression to restore the value of the PROPNAME property of each
symbol SYMBOLi when the file is loaded.

If PROPNAME is a list, expressions will be written for each property on that list. If
PROPNAME is the symbol ALL, the values of all user properties (on the property list of each
SYMBOLi) are saved. SYSPROPS is a list of properties used by system functions. Only
properties not on that list are dumped when the ALL option is used.

If SYMBOLi does not have the property PROPNAME (as opposed to having the property
with value NIL), a warning message "NO PROPNAME PROPERTY FOR SYMBOLi" is
printed. The command IFPROP can be used if it is not known whether or not an atom
will have the corresponding property.

(IFPROP PROPNAME SYMBOL1 ... SYMBOLN) [File Manager Command]

Same as the PROP file manager command, except that it only saves the properties that
actually appear on the property list of the corresponding atom. For example, if FOO1 has
property PROP1 and PROP2, FOO2 has PROP3, and FOO3 has property PROP1 and PROP3,
then (IFPROP (PROP1 PROP2 PROP3) FOO1 FOO2 FOO3) will save only those five
property values.

(PROPS (SYMBOL1 PROPNAME1)...(SYMBOLN PROPNAMEN)) [File Manager Command]

Similar to PROP command. Writes a PUTPROPS expression to restore the value of
PROPNAMEi for each SYMBOLi when the file is loaded.

As with the PROP command, if SYMBOLi does not have the property PROPNAME (as
opposed to having the property with NIL value), a warning message "NO PROPNAMEi
PROPERTY FOR SYMBOLi" is printed.

Miscellaneous File Manager Commands

(RECORDS REC1 ... RECN) [File Manager Command]

Each RECi is the name of a record (see Chapter 8). Writes expressions which will
redeclare the records when the file is loaded.

(INITRECORDS REC1 ... RECN) [File Manager Command]

Similar to RECORDS, INITRECORDS writes expressions on a file that will, when loaded,
perform whatever initialization/allocation is necessary for the indicated records.

17-36

INTERLISP-D REFERENCE MANUAL

However, the record declarations themselves are not written out. This facility is useful for
building systems on top of Interlisp, in which the implementor may want to eliminate the
record declarations from a production version of the system, but the allocation for these
records must still be done.

(LISPXMACROS SYMBOL1 ... SYMBOLN) [File Manager Command]

Each SYMBOLi is defined on LISPXMACROS or LISPXHISTORYMACROS (see Chapter 13).
Writes expressions which will save and restore the definition for each macro, as well as
making the necessary additions to LISPXCOMS

(I.S.OPRS OPR1 ... OPRN) [File Manager Command]

Each OPRi is the name of a user-defined i.s.opr (see Chapter 9). Writes expressions which
will redefine the i.s.oprs when the file is loaded.

(RESOURCES RESOURCE1 ... RESOURCEN) [File Manager Command]

Each RESOURCESi is the name of a resource (see Chapter 12). Writes expressions which
will redeclare the resource when the file is loaded.

(INITRESOURCES RESOURCE1 ... RESOURCEN) [File Manager Command]

Parallel to INITRECORDS, INITRESOURCES writes expressions on a file to perform
whatever initialization/allocation is necessary for the indicated resources, without writing
the resource declaration itself.

(COURIERPROGRAMS NAME1 ... NAMEN) [File Manager Command]

Each NAMEi is the name of a Courier program (see Chapter 31). Writes expressions which
will redeclare the Courier program when the file is loaded.

(TEMPLATES SYMBOL1 ... SYMBOLN) [File Manager Command]

Each SYMBOLi is a symbol which has a Masterscope template (see Chapter 19). Writes
expressions which will restore the templates when the file is loaded.

(FILES FILE1 ... FILEN) [File Manager Command]

Used to specify auxiliary files to be loaded in when the file is loaded. Dumps an
expression calling FILESLOAD (see the Loading Files section), with FILE1 ... FILEN as
the arguments. FILESLOAD interprets FILE1 ... FILEN as files to load, possibly
interspersed with lists used to specify certain loading options.

(FILEPKGCOMS SYMBOL1 ... SYMBOLN) [File Manager Command]

Each symbol SYMBOLi is either the name of a user-defined file manager command or a
user-defined file manager type (or both). Writes expressions which will restore each
command/type.

17-37

If SYMBOLi is not a file manager command or type, a warning message "no FILE

PACKAGE COMMAND for SYMBOLi" is printed.

(* . TEXT) [File Manager Command]

Used for inserting comments in a file. The file manager command is simply written on
the output file; it will be ignored when the file is loaded.

If the first element of TEXT is another *, a form-feed is printed on the file before the
comment.

(P EXP1 ... EXPN) [File Manager Command]

Writes each of the expressions EXP1 ... EXPN on the output file, where they will be
evaluated when the file is loaded.

(E FORM1 ... FORMN) [File Manager Command]

Each of the forms FORM1 ... FORMN is evaluated at output time, when MAKEFILE
interpretes this file manager command.

(COMS COM1 ... COMN) [File Manager Command]

Each of the commands COM1 ... COMN is interpreted as a file manager command.

(ORIGINAL COM1 ... COMN) [File Manager Command]

Each of the commands COMi will be interpreted as a file manager command without
regard to any file manager macros (as defined by the MACRO property of the FILEPKGCOM
function, in the Defining New File Manager Commands section). Useful for redefining a
built-in file manager command in terms of itself.

Some of the "built-in" file manager commands are defined by file manager macros, so
interpreting them (or new user-defined file manager commands) with ORIGINAL will fail.
ORIGINAL was never intended to be used outside of a file manager command macro.

DECLARE:

(DECLARE: . FILEPKGCOMS/FLAGS) [File Manager Command]

Normally expressions written onto a symbolic file are evaluated when loaded; copied to
the compiled file when the symbolic file is compiled (see Chapter 18); and not evaluated
at compile time. DECLARE: allows you to override these defaults.

FILEPKGCOMS/FLAGS is a list of file manager commands, possibly interspersed with
"tags". The output of those file manager commands within FILEPKGCOMS/FLAGS is
embedded in a DECLARE: expression, along with any tags that are specified. For
example, (DECLARE: EVAL@COMPILE DONTCOPY (FNS ...) (PROP ...)) would
produce (DECLARE: EVAL@COMPILE DONTCOPY (DEFINEQ ...) (PUTPROPS

17-38

INTERLISP-D REFERENCE MANUAL

...)). DECLARE: is defined as an nlambda nospread function, which processes its
arguments by evaluating or not evaluating each expression depending on the setting of
internal state variables. The initial setting is to evaluate, but this can be overridden by
specifying the DONTEVAL@LOAD tag.

DECLARE: expressions are specially processed by the compiler. For the purposes of
compilation, DECLARE: has two principal applications: to specify forms that are to be
evaluated at compile time, presumably to affect the compilation, e.g., to set up macros;
and/or to indicate which expressions appearing in the symbolic file are not to be copied to
the output file. (Normally, expressions are not evaluated and are copied.) Each expression
in CDR of a DECLARE: form is either evaluated/not-evaluated and copied/not-copied
depending on the settings of two internal state variables, initially set for copy and not-
evaluate. These state variables can be reset for the remainder of the expressions in the
DECLARE: by means of the tags DONTCOPY, EVAL@COMPILE, etc.

The tags are:

EVAL@LOAD

DOEVAL@LOAD Evaluate the following forms when the file is loaded
(unless overridden by DONTEVAL@LOAD).

DONTEVAL@LOAD Do not evaluate the following forms when the file is
loaded.

EVAL@LOADWHEN This tag can be used to provide conditional evaluation.
The value of the expression immediately following the
tag determines whether or not to evaluate subsequent
expressions when loading. ... EVAL@LOADWHEN T
... is equivalent to ... EVAL@LOAD ...

COPY

DOCOPY When compiling, copy the following forms into the
compiled file.

DONTCOPY When compiling, do not copy the following forms into
the compiled file.

Note: If the file manager commands following
DONTCOPY include record declarations for datatypes,
or records with initialization forms, it is necessary to
include a INITRECORDS file manager command (see
the prior section) outside of the DONTCOPY form so
that the initialization information is copied. For
example, if FOO was defined as a datatype,

(DECLARE: DONTCOPY (RECORDS FOO))
(INITRECORDS FOO)

would copy the data type declaration for FOO, but
would not copy the whole record declaration.

17-39

COPYWHEN When compiling, if the next form evaluates to non-NIL,
copy the following forms into the compiled file.

EVAL@COMPILE

DOEVAL@COMPILE When compiling, evaluate the following forms.

DONTEVAL@COMPILE When compiling, do not evaluate the following forms.

EVAL@COMPILEWHEN When compiling, if the next form evaluates to non-NIL,
evaluate the following forms.

FIRST For expressions that are to be copied to the compiled file,
the tag FIRST can be used to specify that the following
expressions in the DECLARE: are to appear at the front of
the compiled file, before anything else except the
FILECREATED expressions (see the Symbolic File Format
section). For example, (DECLARE: COPY FIRST (P
(PRINT MESS1 T)) NOTFIRST (P (PRINT MESS2
T))) will cause (PRINT MESS1 T) to appear first in the
compiled file, followed by any functions, then (PRINT
MESS2 T).

NOTFIRST Reverses the effect of FIRST.

The value of DECLARETAGSLST is a list of all the tags used in DECLARE: expressions. If a
tag not on this list appears in a DECLARE: file manager command, spelling correction is
performed using DECLARETAGSLST as a spelling list.

Note that the function LOADCOMP (see the Loading Files section) provides a convenient
way of obtaining information from the DECLARE: expressions in a file, without reading
in the entire file. This information may be used for compiling other files.

(BLOCKS BLOCK1 ... BLOCKN) [File Manager Command]

For each BLOCKi, writes a DECLARE: expression which the block compile functions
interpret as a block declaration. See Chapter 18.

Exporting Definitions

When building a large system in Interlisp, it is often the case that there are record definitions, macros
and the like that are needed by several different system files when running, analyzing and compiling
the source code of the system, but which are not needed for running the compiled code. By using the
DECLARE: file manager command with tag DONTCOPY (see the prior section), these definitions can be
kept out of the compiled files, and hence out of the system constructed by loading the compiled files
files into Interlisp. This saves loading time, space in the resulting system, and whatever other
overhead might be incurred by keeping those definitions around, e.g., burden on the record package
to consider more possibilities in translating record accesses, or conflicts between system record fields
and user record fields.

17-40

INTERLISP-D REFERENCE MANUAL

However, if the implementor wants to debug or compile code in the resulting system, the definitions
are needed. And even if the definitions had been copied to the compiled files, a similar problem arises
if one wants to work on system code in a regular Interlisp environment where none of the system files
had been loaded. One could mandate that any definition needed by more than one file in the system
should reside on a distinguished file of definitions, to be loaded into any environment where the
system files are worked on. Unfortunately, this would keep the definitions away from where they
logically belong. The EXPORT mechanism is designed to solve this problem.

To use the mechanism, the implementor identifies any definitions needed by files other than the one
in which the definitions reside, and wraps the corresponding file manager commands in the EXPORT
file manager command. Thereafter, GATHEREXPORTS can be used to make a single file containing all
the exports.

(EXPORT COM1 ... COMN) [File Manager Command]

This command is used for "exporting" definitions. Like COM, each of the commands COM1
... COMN is interpreted as a file manager command. The commands are also flagged in
the file as being "exported" commands, for use with GATHEREXPORTS.

(GATHEREXPORTS FROMFILES TOFILE FLG) [Function]

FROMFILES is a list of files containing EXPORT commands. GATHEREXPORTS extracts all
the exported commands from those files and produces a loadable file TOFILE containing
them. If FLG = EVAL, the expressions are evaluated as they are gathered; i.e., the exports
are effectively loaded into the current environment as well as being written to TOFILE.

(IMPORTFILE FILE RETURNFLG) [Function]

If RETURNFLG is NIL, this loads any exported definitions from FILE into the current
environment. If RETURNFLG is T, this returns a list of the exported definitions (evaluable
expressions) without actually evaluating them.

(CHECKIMPORTS FILES NOASKFLG) [Function]

Checks each of the files in FILES to see if any exists in a version newer than the one from
which the exports in memory were taken (GATHEREXPORTS and IMPORTFILE note the
creation dates of the files involved), or if any file in the list has not had its exports loaded
at all. If there are any such files, you are asked for permission to IMPORTFILE each such
file. If NOASKFLG is non-NIL, IMPORTFILE is performed without asking.

For example, suppose file FOO contains records R1, R2, and R3, macros BAR and BAZ, and constants
CON1 and CON2. If the definitions of R1, R2, BAR, and BAZ are needed by files other than FOO, then
the file commands for FOO might contain the command

(DECLARE: EVAL@COMPILE DONTCOPY
 (EXPORT (RECORDS R1 R2)
 (MACROS BAR BAZ))
 (RECORDS R3)
 (CONSTANTS BAZ))

17-41

None of the commands inside this DECLARE: would appear on FOO’s compiled file, but
(GATHEREXPORTS ’(FOO) ’MYEXPORTS) would copy the record definitions for R1 and R2 and the
macro definitions for BAR and BAZ to the file MYEXPORTS.

FileVars

In each of the file manager commands described above, if the symbol * follows the command type,
the form following the *, i.e., CADDR of the command, is evaluated and its value used in executing the
command, e.g., (FNS * (APPEND FNS1 FNS2)). When this form is a symbol, e.g. (FNS *
FOOFNS), we say that the variable is a "filevar". Note that (COMS * FORM) provides a way of
computing what should be done by MAKEFILE.

Example:

← (SETQ FOOFNS ’(FOO1 FOO2 FOO3))
(FOO1 FOO2 FOO3)

← (SETQ FOOCOMS
’((FNS * FOOFNS)
(VARS FIE)
(PROP MACRO FOO1 FOO2)
(P (MOVD ’FOO1 ’FIE1))]

← (MAKEFILE ’FOO)

would create a file FOO containing:

(FILECREATED "time and date the file was made" . "other
information")

(PRETTYCOMPRINT FOOCOMS)
(RPAQQ FOOCOMS ((FNS * FOOFNS) ...)
(RPAQQ FOOFNS (FOO1 FOO3 FOO3))
(DEFINEQ "definitions of FOO1, FOO2, and FOO3")
(RPAQQ FIE "value of FIE")
(PUTPROPS FOO1 MACRO PROPVALUE)
(PUTPROPS FOO2 MACRO PROPVALUE)
(MOVD (QUOTE FOO1) (QUOTE FIE1))
STOP

For the PROP and IFPROP commands (see the Litatom Properties section), the * follows the property
name instead of the command, e.g., (PROP MACRO * FOOMACROS). Also, in the form (* *
comment ...), the word comment is not treated as a filevar.

Defining New File Manager Commands

A file manager command is defined by specifying the values of certain properties. You can specify the
various attributes of a file manager command for a new command, or respecify them for an existing
command. The following properties are used:

17-42

INTERLISP-D REFERENCE MANUAL

MACRO [File Manager Command Property]

Defines how to dump the file manager command. Used by MAKEFILE. Value is a pair
(ARGS . COMS). The "arguments" to the file manager command are substituted for ARGS
throughout COMS, and the result treated as a list of file manager commands. For example,
following (FILEPKGCOM ’FOO ’MACRO ’((X Y) . COMS)), the file manager
command (FOO A B) will cause A to be substituted for X and B for Y throughout COMS,
and then COMS treated as a list of commands.

The substitution is carried out by SUBPAIR (see Chapter 3), so that the "argument list" for
the macro can also be atomic. For example, if (X . COMS) was used instead of ((X Y)
. COMS), then the command (FOO A B) would cause (A B) to be substituted for X
throughout COMS.

Filevars are evaluated before substitution. For example, if the symbol * follows NAME in
the command, CADDR of the command is evaluated substituting in COMS.

ADD [File Manager Command Property]

Specifies how (if possible) to add an instance of an object of a particular type to a given
file manager command. Used by ADDTOFILE. Value is FN, a function of three arguments,
COM, a file manager command CAR of which is EQ to COMMANDNAME, NAME, a typed object,
and TYPE, its type. FN should return T if it (undoably) adds NAME to COM, NIL if not. If
no ADD property is specified, then the default is (1) if (CAR COM) = TYPE and (CADR
COM) = *, and (CADDR COM) is a filevar (i.e. a literal atom), add NAME to the value of
the filevar, or (2) if (CAR COM) = TYPE and (CADR COM) is not *, add NAME to (CDR
COM).

Actually, the function is given a fourth argument, NEAR, which if non-NIL, means the
function should try to add the item after NEAR. See discussion of ADDTOFILES?, in the
Storing Files section.

DELETE [File Manager Command Property]

Specifies how (if possible) to delete an instance of an object of a particular type from a
given file manager command. Used by DELFROMFILES. Value is FN, a function of three
arguments, COM, NAME, and TYPE, same as for ADD. FN should return T if it (undoably)
deletes NAME from COM, NIL if not. If no DELETE property is specified, then the default is
either (CAR COM) = TYPE and (CADR COM) = *, and (CADDR COM) is a filevar (i.e. a
literal atom), and NAME is contained in the value of the filevar, then remove NAME from the
filevar, or if (CAR COM) = TYPE and (CADR COM) is not *, and NAME is contained in
(CDR COM), then remove NAME from (CDR COM).

If FN returns the value of ALL, it means that the command is now "empty", and can be
deleted entirely from the command list.

17-43

CONTENTS [File Manager Command Property]
CONTAIN [File Manager Command Property]

Determines whether an instance of an object of a given type is contained in a given file
manager command. Used by WHEREIS and INFILECOMS?. Value is FN, a function of
three arguments, COM, a file manager command CAR of which is EQ to COMMANDNAME,
NAME, and TYPE. The interpretation of NAME is as follows: if NAME is NIL, FN should
return a list of elements of type TYPE contained in COM. If NAME is T, FN should return T if
there are any elements of type TYPE in COM. If NAME is an atom other than T or NIL,
return T if NAME of type TYPE is contained in COM. Finally, if NAME is a list, return a list of
those elements of type TYPE contained in COM that are also contained in NAME.

It is sufficient for the CONTENTS function to simply return the list of items of type TYPE in
command COM, i.e. it can in fact ignore the NAME argument. The NAME argument is
supplied mainly for those situations where producing the entire list of items involves
significantly more computation or creates more storage than simply determining whether
a particular item (or any item) of type TYPE is contained in the command.

If a CONTENTS property is specified and the corresponding function application returns
NIL and (CAR COM) = TYPE, then the operation indicated by NAME is performed on the
value of (CADDR COM), if (CADR COM) = *, otherwise on (CDR COM). In other words, by
specifying a CONTENTS property that returns NIL, e.g. the function NILL, you specify that
a file manager command of name FOO produces objects of file manager type FOO and only
objects of type FOO.

If the CONTENTS property is not provided, the command is simply expanded according to
its MACRO definition, and each command on the resulting command list is then
interrogated.

If COMMANDNAME is a file manager command that is used frequently, its expansion by the
various parts of the system that need to interrogate files can result in a large number of
CONSes and garbage collections. By informing the file manager as to what this command
actually does and does not produce via the CONTENTS property, this expansion is
avoided. For example, suppose you have a file manager command called GRAMMARS
which dumps various property lists but no functions. The file manager could ignore this
command when seeking information about FNS.

The function FILEPKGCOM is used to define new file manager commands, or to change the properties
of existing commands. It is possible to redefine the attributes of system file manager commands, such
as FNS or PROPS, and to cause unpredictable results.

(FILEPKGCOM COMMANDNAME PROP1 VAL1 ... PROPN VALN) [NoSpread Function]

Nospread function for defining new file manager commands, or changing properties of
existing file manager commands. PROPi is one of of the property names described
above; VALi is the value to be given that property of the file manager command
COMMANDNAME. Returns COMMANDNAME.

17-44

INTERLISP-D REFERENCE MANUAL

(FILEPKGCOM COMMANDNAME PROP) returns the value of the property PROP, without
changing it.

(FILEPKGCOM COMMANDNAME) returns a property list of all of the defined properties of
COMMANDNAME, using the property names as keys.

Specifying TYPE as the symbol COM can be used to define one file manager command as a
synonym of another. For example, (FILEPKGCOM ’INITVARIABLES ’COM
’INITVARS) defines INITVARIABLES as a synonym for the file manager command
INITVARS.

Functions for Manipulating File Command Lists

The following functions may be used to manipulate filecoms. The argument COMS does not have to
correspond to the filecoms for some file. For example, COMS can be the list of commands generated as
a result of expanding a user-defined file manager command.

The following functions will accept a file manager command as a valid value for their TYPE argument,
even if it does not have a corresponding file manager type. User-defined file manager commands are
expanded as necessary.

(INFILECOMS? NAME TYPE COMS) [Function]

COMS is a list of file manager commands, or a variable whose value is a list of file
manager commands. TYPE is a file manager type. INFILECOMS? returns T if NAME of
type TYPE is "contained" in COMS.

If NAME = NIL, INFILECOMS? returns a list of all elements of type TYPE.

If NAME = T, INFILECOMS? returns T if there are any elements of type TYPE in COMS.

(ADDTOFILE NAME TYPE FILE NEAR LISTNAME) [Function]

Adds NAME of type TYPE to the file manager commands for FILE. If NEAR is given and it
is the name of an item of type TYPE already on FILE, then NAME is added to the command
that dumps NEAR. If LISTNAME is given and is the name of a list of items of TYPE items
on FILE, then NAME is added to that list. Uses ADDTOCOMS and MAKENEWCOM. Returns
FILE. ADDTOFILE is undoable.

(DELFROMFILES NAME TYPE FILES) [Function]

Deletes all instances of NAME of type TYPE from the filecoms for each of the files on
FILES. If FILES is a non-NIL symbol, (LIST FILES) is used. FILES = NIL defaults to
FILELST. Returns a list of files from which NAME was actually removed. Uses
DELFROMCOMS. DELFROMFILES is undoable.

Deleting a function will also remove the function from any BLOCKS declarations in the
filecoms.

17-45

(ADDTOCOMS COMS NAME TYPE NEAR LISTNAME) [Function]

Adds NAME as a TYPE to COMS, a list of file manager commands or a variable whose value
is a list of file manager commands. Returns NIL if ADDTOCOMS was unable to find a
command appropriate for adding NAME to COMS. NEAR and LISTNAME are described in
the discussion of ADDTOFILE. ADDTOCOMS is undoable.

The exact algorithm for adding commands depends the particular command itself. See
discussion of the ADD property, in the description of FILEPKGCOM.

ADDTOCOMS will not attempt to add an item to any command which is inside of a
DECLARE: unless you specified a specific name via the LISTNAME or NEAR option of
ADDTOFILES?.

(DELFROMCOMS COMS NAME TYPE) [Function]

Deletes NAME as a TYPE from COMS. Returns NIL if DELFROMCOMS was unable to modify
COMS to delete NAME. DELFROMCOMS is undoable.

(MAKENEWCOM NAME TYPE) [Function]

Returns a file manager command for dumping NAME of type TYPE. Uses the procedure
described in the discussion of NEWCOM, in the Defining New File Manager Types section.

(MOVETOFILE TOFILE NAME TYPE FROMFILE) [Function]

Moves the definition of NAME as a TYPE from FROMFILE to TOFILE by modifying the file
commands in the appropriate way (with DELFROMFILES and ADDTOFILE).

Note that if FROMFILE is specified, the definition will be retrieved from that file, even if
there is another definition currently in your environment.

(FILECOMSLST FILE TYPE) [Function]

Returns a list of all objects of type TYPE in FILE.

(FILEFNSLST FILE) [Function]

Same as (FILECOMSLST FILE ’FNS).

(FILECOMS FILE TYPE) [Function]

Returns (PACK* FILE (OR TYPE ’COMS)). Note that (FILECOMS ’FOO) returns the
symbol FOOCOMS, not the value of FOOCOMS.

(SMASHFILECOMS FILE) [Function]

Maps down (FILECOMSLST FILE ’FILEVARS) and sets to NOBIND all filevars (see the
FileVars section), i.e., any variable used in a command of the form (COMMAND *
VARIABLE). Also sets (FILECOMS FILE) to NOBIND. Returns FILE.

17-46

INTERLISP-D REFERENCE MANUAL

Symbolic File Format

The file manager manipulates symbolic files in a particular format. This format is defined so that the
information in the file is easily readable when the file is listed, as well as being easily manipulated by
the file manager functions. In general, there is no reason for you to manually change the contents of a
symbolic file. However, to allow you to extend the file manager, this section describes some of the
functions used to write symbolic files, and other matters related to their format.

(PRETTYDEF PRTTYFNS PRTTYFILE PRTTYCOMS REPRINTFNS SOURCEFILE CHANGES)
[Function]

Writes a symbolic file in PRETTYPRINT format for loading, using FILERDTBL as its read
table. PRETTYDEF returns the name of the symbolic file that was created.

PRETTYDEF operates under a RESETLST (see Chapter 14), so if an error occurs, or a
Control-D is typed, all files that PRETTYDEF has opened will be closed, the (partially
complete) file being written will be deleted, and any undoable operations executed will be
undone. The RESETLST also means that any RESETSAVEs executed in the file manager
commands will also be protected.

PRTTYFNS is an optional list of function names. It is equivalent to including (FNS *
PRTTYFNS) in the file manager commands in PRTTYCOMS. PRTTYFNS is an anachronism
from when PRETTYDEF did not use a list of file manager commands, and should be
specified as NIL.

PRTTYFILE is the name of the file on which the output is to be written. PRTTYFILE has
to be a symbnol. If PRTTYFILE = NIL, the primary output file is used. PRTTYFILE is
opened if not already open, and it becomes the primary output file. PRTTYFILE is closed
at end of PRETTYDEF, and the primary output file is restored.

PRTTYCOMS is a list of file manager commands interpreted as described in the File
Manager Commands section. If PRTTYCOMS is atomic, its top level value is used and an
RPAQQ is written which will set that atom to the list of commands when the file is
subsequently loaded. A PRETTYCOMPRINT expression (see below) will also be written
which informs you of the named atom or list of commands when the file is subsequently
loaded. In addition, if any of the functions in the file are nlambda functions, PRETTYDEF
will automatically print a DECLARE: expression suitable for informing the compiler about
these functions, in case you recompile the file without having first loaded the nlambda
functions (see Chapter 18).

REPRINTFNS and SOURCEFILE are for use in conjunction with remaking a file (see the
Remaking a Symbolic File section). REPRINTFNS can be a list of functions to be
prettyprinted, or EXPRS, meaning prettyprint all functions with EXPR definitions, or ALL
meaning prettyprint all functions either defined as EXPRs, or with EXPR properties. Note
that doing a remake with REPRINTFNS = NIL makes sense if there have been changes in
the file, but not to any of the functions, e.g., changes to variables or property lists.
SOURCEFILE is the name of the file from which to copy the definitions for those functions
that are not going to be prettyprinted, i.e., those not specified by REPRINTFNS.
SOURCEFILE = T means to use most recent version (i.e., highest number) of

17-47

PRTTYFILE, the second argument to PRETTYDEF. If SOURCEFILE cannot be found,
PRETTYDEF prints the message "FILE NOT FOUND, SO IT WILL BE WRITTEN
ANEW", and proceeds as it does when REPRINTFNS and SOURCEFILE are both NIL.

PRETTYDEF calls PRETTYPRINT with its second argument PRETTYDEFLG = T, so
whenever PRETTYPRINT starts a new function, it prints (on the terminal) the name of that
function if more than 30 seconds (real time) have elapsed since the last time it printed the
name of a function.

Note that normally if PRETTYPRINT is given a symbol which is not defined as a function
but is known to be on one of the files noticed by the file manager, PRETTYPRINT will load
in the definition (using LOADFNS) and print it. This is not done when PRETTYPRINT is
called from PRETTYDEF.

In Medley the SYSPRETTYFLG is ignored in the Interlisp exec.

(PRINTFNS X) [Function]

X is a list of functions. PRINTFNS prettyprints a DEFINEQ epression that defines the
functions to the primary output stream using the primary read table. Used by
PRETTYDEF to implement the FNS file manager command.

(PRINTDATE FILE CHANGES) [Function]

Prints the FILECREATED expression at beginning of PRETTYDEF files. CHANGES used by
the file manager.

(FILECREATED X) [NLambda NoSpread Function]

Prints a message (using LISPXPRINT) followed by the time and date the file was made,
which is (CAR X). The message is the value of PRETTYHEADER, initially "FILE
CREATED". If PRETTYHEADER = NIL, nothing is printed. (CDR X) contains information
about the file, e.g., full name, address of file map, list of changed items, etc.
FILECREATED also stores the time and date the file was made on the property list of the
file under the property FILEDATES and performs other initialization for the file manager.

(PRETTYCOMPRINT X) [NLambda Function]

Prints X (unevaluated) using LISPXPRINT, unless PRETTYHEADER = NIL.

PRETTYHEADER [Variable]

Value is the message printed by FILECREATED. PRETTYHEADER is initially "FILE
CREATED". If PRETTYHEADER = NIL, neither FILECREATED nor PRETTYCOMPRINT will
print anything. Thus, setting PRETTYHEADER to NIL will result in "silent loads".
PRETTYHEADER is reset to NIL during greeting (see Chapter 12).

17-48

INTERLISP-D REFERENCE MANUAL

(FILECHANGES FILE TYPE) [Function]

Returns a list of the changed objects of file manager type TYPE from the FILECREATED
expression of FILE. If TYPE = NIL, returns an alist of all of the changes, with the file
manager types as the CARs of the elements..

(FILEDATE FILE) [Function]

Returns the file date contained in the FILECREATED expression of FILE.

(LISPSOURCEFILEP FILE) [Function]

Returns a non-NIL value if FILE is in file manager format and has a file map, NIL
otherwise.

Copyright Notices

The system has a facility for automatically printing a copyright notice near the front of files, right after
the FILECREATED expression, specifying the years it was edited and the copyright owner. The format
of the copyright notice is:

(* Copyright (c) 1981 by Foo Bars Corporation)

Once a file has a copyright notice then every version will have a new copyright notice inserted into the
file without your intervention. (The copyright information necessary to keep the copyright up to date
is stored at the end of the file.).

Any year the file has been edited is considered a "copyright year" and therefore kept with the
copyright information. For example, if a file has been edited in 1981, 1982, and 1984, then the
copyright notice would look like:

(* Copyright (c) 1981,1982,1984 by Foo Bars Corporation)

When a file is made, if it has no copyright information, the system will ask you to specify the
copyright owner (if COPYRIGHTFLG = T). You may specify one of the names from
COPYRIGHTOWNERS, or give one of the following responses:

• Type a left-square-bracket. The system will then prompt for an arbitrary string
which will be used as the owner-string

• Type a right-square-bracket, which specifies that you really do not want a copyright
notice.

• Type "NONE" which specifies that this file should never have a copyright notice.

For example, if COPYRIGHTOWNERS has the value

((BBN "Bolt Beranek and Newman Inc.")
 (XEROX "Xerox Corporation"))

17-49

then for a new file FOO the following interaction will take place:

Do you want to Copyright FOO? Yes
Copyright owner: (user typed ?)
one of:
BBN - Bolt Beranek and Newman Inc.
XEROX - Xerox Corporation
NONE - no copyright ever for this file
[- new copyright owner -- type one line of text
] - no copyright notice for this file now

Copyright owner: BBN

Then "Foo Bars Corporation" in the above copyright notice example would have been "Bolt Beranek
and Newman Inc."

The following variables control the operation of the copyright facility:

COPYRIGHTFLG [Variable]

The value of COPYRIGHTFLG determines whether copyright information is maintained in
files. Its value is interpreted as follows:

NIL The system will preserve old copyright information, but will
not ask you about copyrighting new files. This is the default
value of COPYRIGHTFLG.

T When a file is made, if it has no copyright information, the
system will ask you to specify the copyright owner.

NEVER The system will neither prompt for new copyright
information nor preserve old copyright information.

DEFAULT The value of DEFAULTCOPYRIGHTOWNER (below) is used for
putting copyright information in files that don’t have any
other copyright. The prompt "Copyright owner for
file xx:" will still be printed, but the default will be filled
in immediately.

COPYRIGHTOWNERS [Variable]

COPYRIGHTOWNERS is a list of entries of the form (KEY OWNERSTRING), where KEY is
used as a response to ASKUSER and OWNERSTRING is a string which is the full
identification of the owner.

DEFAULTCOPYRIGHTOWNER [Variable]

If you do not respond in DWIMWAIT seconds to the copyright query, the value of
DEFAULTCOPYRIGHTOWNER is used.

17-50

INTERLISP-D REFERENCE MANUAL

Functions Used Within Source Files

The following functions are normally only used within symbolic files, to set variable values, property
values, etc. Most of these have special behavior depending on file manager variables.

(RPAQ VAR VALUE) [NLambda Function]

An nlambda function like SETQ that sets the top level binding of VAR (unevaluated) to
VALUE.

(RPAQQ VAR VALUE) [NLambda Function]

An nlambda function like SETQQ that sets the top level binding of VAR (unevaluated) to
VALUE (unevaluated).

(RPAQ? VAR VALUE) [NLambda Function]

Similar to RPAQ, except that it does nothing if VAR already has a top level value other than
NOBIND. Returns VALUE if VAR is reset, otherwise NIL.

RPAQ, RPAQQ, and RPAQ? generate errors if X is not a symbol. All are affected by the value of DFNFLG
(see Chapter 10). If DFNFLG = ALLPROP (and the value of VAR is other than NOBIND), instead of
setting X, the corresponding value is stored on the property list of VAR under the property VALUE. All
are undoable.

(ADDTOVAR VAR X1 X2 ... XN) [NLambda NoSpread Function]

Each Xi that is not a member of the value of VAR is added to it, i.e. after ADDTOVAR
completes, the value of VAR will be (UNION (LIST X1 X2 ... XN) VAR). ADDTOVAR is
used by PRETTYDEF for implementing the ADDVARS command. It performs some file
manager related operations, i.e. "notices" that VAR has been changed. Returns the atom
VAR (not the value of VAR).

(APPENDTOVAR VAR X1 X2 ... XN) [NLambda NoSpread Function]

Similar to ADDTOVAR, except that the values are added to the end tof the list, rather than at
the beginning.

(PUTPROPS ATM PROP1 VAL1 ... PROPN VALN) [NLambda NoSpread Function]

Nlambda nospread version of PUTPROP (none of the arguments are evaluated). For i =
1...N, puts property PROPi, value VALi, on the property list of ATM. Performs some file
manager related operations, i.e., "notices" that the corresponding properties have been
changed.

(SAVEPUT ATM PROP VAL) [Function]

Same as PUTPROP, but marks the corresponding property value as having been changed
(used by the file manager).

17-51

File Maps

A file map is a data structure which contains a symbolic ’map’ of the contents of a file. Currently, this
consists of the begin and end byte address (see GETFILEPTR, in Chapter 25) for each DEFINEQ
expression in the file, the begin and end address for each function definition within the DEFINEQ, and
the begin and end address for each compiled function.

MAKEFILE, PRETTYDEF, LOADFNS, RECOMPILE, and numerous other system functions depend
heavily on the file map for efficient operation. For example, the file map enables LOADFNS to load
selected function definitions simply by setting the file pointer to the corresponding address using
SETFILEPTR, and then performing a single READ. Similarly, the file map is heavily used by the
"remake" option of MAKEFILE (see the Remaking a Symbolic File section): those function definitions
that have been changed since the previous version are prettyprinted; the rest are simply copied from
the old file to the new one, resulting in a considerable speedup.

Whenever a file is written by MAKEFILE, a file map for the new file is built. Building the map in this
case essentially comes for free, since it requires only reading the current file pointer before and after
each definition is written or copied. However, building the map does require that PRETTYPRINT
know that it is printing a DEFINEQ expression. For this reason, you should never print a DEFINEQ
expression onto a file yourself, but should instead always use the FNS file manager command (see the
Functions and Macros section).

The file map is stored on the property list of the root name of the file, under the property FILEMAP. In
addition, MAKEFILE writes the file map on the file itself. For cosmetic reasons, the file map is written
as the last expression in the file. However, the address of the file map in the file is (over)written into
the FILECREATED expression that appears at the beginning of the file so that the file map can be
rapidly accessed without having to scan the entire file. In most cases, LOAD and LOADFNS do not have
to build the file map at all, since a file map will usually appear in the corresponding file, unless the file
was written with BUILDMAPFLG = NIL, or was written outside of Interlisp.

Currently, file maps for compiled files are not written onto the files themselves. However, LOAD and
LOADFNS will build maps for a compiled file when it is loaded, and store it on the property FILEMAP.
Similary, LOADFNS will obtain and use the file map for a compiled file, when available.

The use and creation of file maps is controlled by the following variables:

BUILDMAPFLG [Variable]

Whenever a file is read by LOAD or LOADFNS, or written by MAKEFILE, a file map is
automatically built unless BUILDMAPFLG = NIL. (BUILDMAPFLG is initially T.)

While building the map will not help the first reference to a file, it will help in future
references. For example, if you perform (LOADFROM ’FOO) where FOO does not contain
a file map, the LOADFROM will be (slightly) slower than if FOO did contain a file map, but
subsequent calls to LOADFNS for this version of FOO will be able to use the map that was
built as the result of the LOADFROM, since it will be stored on FOO’s FILEMAP property.

17-52

INTERLISP-D REFERENCE MANUAL

USEMAPFLG [Variable]

If USEMAPFLG = T (the initial setting), the functions that use file maps will first check the
FILEMAP property to see if a file map for this file was previously obtained or built. If not,
the first expression on the file is checked to see if it is a FILECREATED expression that also
contains the address of a file map. If the file map is not on the FILEMAP property or in the
file, a file map will be built (unless BUILDMAPFLG = NIL).

If USEMAPFLG = NIL, the FILEMAP property and the file will not be checked for the file
map. This allows you to recover in those cases where the file and its map for some reason
do not agree. For example, if you use a text editor to change a symbolic file that contains a
map (not recommended), inserting or deleting just one character will throw that map off.
The functions which use file maps contain various integrity checks to enable them to
detect that something is wrong, and to generate the error FILEMAP DOES NOT AGREE
WITH CONTENTS OF FILE. In such cases, you can set USEMAPFLG to NIL, causing the
map contained in the file to be ignored, and then reexecute the operation.

18-1

18. COMPILER

The compiler is contained in the standard Medley system. It may be used to compile functions
defined in Medley, or to compile definitions stored in a file. The resulting compiled code may be
stored as it is compiled, so as to be available for immediate use, or it may be written onto a file for
subsequent loading.

The most common way to use the compiler is to use one of the file package functions, such as
MAKEFILE (Chapter 17), which automatically updates source files, and produces compiled versions.
However, it is also possible to compile individual functions defined in Medley, by directly calling the
compiler using functions such as COMPILE. No matter how the compiler is called, the function
COMPSET is called which asks you certain questions concerning the compilation. (COMPSET sets the
free variables LAPFLG, STRF, SVFLG, LCFIL and LSTFIL which determine various modes of
operation.) Those that can be answered "yes" or "no" can be answered with YES, Y, or T for "yes"; and
NO, N, or NIL for "no". The questions are:

LISTING? This asks whether to generate a listing of the compiled code.
The LAP and machine code are usually not of interest but can
be helpful in debugging macros. Possible answers are:

1 Prints output of pass 1, the LAP macro code

2 Prints output of pass 2, the machine code

YES Prints output of both passes

NO Prints no listings

The variable LAPFLG is set to the answer.

FILE: This question (which only appears if the answer to LISTING?
is affirmative) ask where the compiled code listing(s) should
be written. Answering T will print the listings at the terminal.
The variable LSTFIL is set to the answer.

REDEFINE? This question asks whether the functions compiled should be
redefined to their compiled definitions. If this is answered
YES, the compiled code is stored and the function definition
changed, otherwise the function definition remains
unchanged.

The compiler does not respect the value of DFNFLG (Chapter
10) when it redefines functions to their compiled definitions.
Therefore, if you set DFNFLG to PROP to completely avoid
inadvertantly redefining something in your running system,
you must not answer YES to this question.

The variable STRF is set to T (if this is answered YES) or NIL.

18-2

INTERLISP-D REFERENCE MANUAL

SAVE EXPRS? This question asks whether the original defining EXPRs of
functions should be saved. If answered YES, then before
redefining a function to its compiled definition, the EXPR
definition is saved on the property list of the function name.
Otherwise they are discarded.

It is very useful to save the EXPR definitions, just in case the
compiled function needs to be changed. The editing functions
will retrieve this saved definition if it exists, rather than
reading from a source file.

The variable SVFLG is set to T (if this is answered YES) or NIL.

OUTPUT FILE? This question asks whether (and where) the compiled
definitions should be written into a file for later loading. If you
answer with the name of a file, that file will be used. If you
answer Y or YES, you will be asked the name of the file. If the
file named is already open, it will continue to be used. If you
answer T or TTY:, the output will be typed on the teletype (not
particularly useful). If you answer N, NO, or NIL, output will
not be done.

The variable LCFIL is set to the name of the file.

To make answering these questions easier, there are four other possible answers to the LISTING?
question, which specify common compiling modes:

S Same as last setting. Uses the same answers to compiler
questions as given for the last compilation.

F Compile to File, without redefining functions.

ST STore new definitions, saving EXPR definitions.

STF STore new definitions; Forget EXPR definitions.

Implicit in these answers are the answers to the questions on disposition of compiled code and EXPR
definitions, so the questions REDEFINE? and SAVE EXPRS? would not be asked if these answers
were given. OUTPUT FILE? would still be asked, however. For example:

←COMPILE((FACT FACT1 FACT2))
LISTING? ST
OUTPUT FILE? FACT.DCOM
(FACT COMPILING)
.
.
(FACT REDEFINED)
.
.
(FACT2 REDEFINED)
(FACT FACT1 FACT2)
←

18-3

This process caused the functions FACT, FACT1, and FACT2 to be compiled, redefined, and the
compiled definitions also written on the file FACT.DCOM for subsequent loading.

Compiler Printout

In Medley, for each function FN compiled, whether by TCOMPL, RECOMPILE, or COMPILE, the
compiler prints:

(FN (ARG1 ... ARGN) (uses: VAR1 ... VARN) (calls: FN1 ... FNN))

The message is printed at the beginning of the second pass of the compilation of FN. (ARG1 ...

ARGN) is the list of arguments to FN; following uses: are the free variables referenced or set in FN (not
including global variables); following calls: are the undefined functions called within FN.

If the compilation of FN causes the generation of one or more auxilary functions, a compiler message
will be printed for these functions before the message for FN, e.g.,

(FOOA0027 (X) (uses: XX))
(FOO (A B))

When compiling a block, the compiler first prints (BLKNAME BLKFN1 BLKFN2 ...). Then the normal
message is printed for the entire block. The names of the arguments to the block are generated by
suffixing # and a number to the block name, e.g., (FOOBLOCK (FOOBLOCK#0 FOOBLOCK#1) FREE-
VARIABLES). Then a message is printed for each entry to the block.

In addition to the above output, both RECOMPILE and BRECOMPILE print the name of each function
that is being copied from the old compiled file to the new compiled file. The normal compiler
message is printed for each function that is actually compiled.

The compiler prints out error messages when it encounters problems compiling a function. For
example:

----- In BAZ:
***** (BAZ - illegal RETURN)

The above error message indicates that an illegal RETURN compiler error occurred while trying to
compile the function BAZ. Some compiler errors cause the compilation to terminate, producing
nothing; however, there are other compiler errors which do not stop compilation. The compiler error
messages are described in the last section of this chapter.

Compiler printout and error messages go to the file COUTFILE, initially T. COUTFILE can also be set
to the name of a file opened for output, in which case all compiler printout will go to COUTFILE, i.e.

18-4

INTERLISP-D REFERENCE MANUAL

the compiler will compile "silently." However, any error messages will be printed to both COUTFILE
as well as T.

Global Variables

Variables that appear on the list GLOBALVARS, or have the property GLOBALVAR with value T, or are
declared with the GLOBALVARS file package command, are called global variables. Such variables are
always accessed through their top level value when they are used freely in a compiled function. In
other words, a reference to the value of a global variable is equivalent to calling GETTOPVAL on the
variable, regardless of whether or not it is bound in the current access chain. Similarly, (SETQ
VARIABLE VALUE) will compile as (SETTOPVAL (QUOTE VARIABLE) VALUE).

All system parameters, unless otherwise specified, are declared as global variables. Thus, rebinding
these variables in a deep bound system like Medley will not affect the behavior of the system: instead,
the variables must be reset to their new values, and if they are to be restored to their original values,
reset again. For example, you might write

(SETQ GLOBALVARIABLE NEWVALUE)
FORM
(SETQ GLOBALVARIABLE OLDVALUE)

In this case, if an error occurred during the evaluation of FORM, or a Control-D was typed, the global
variable would not be restored to its original value. The function RESETVAR provides a convenient
way of resetting global variables in such a way that their values are restored even if an error occurred
or Control-D is typed.

Note: The variables that a given function accesses as global variables can be
determined by using the function CALLS.

Local Variables and Special Variables

In normal compiled and interpreted code, all variable bindings are accessible by lower level functions
because the variable’s name is associated with its value. We call such variables special variables, or
specvars. As mentioned earlier, the block compiler normally does not associate names with variable
values. Such unnamed variables are not accessible from outside the function which binds them and
are therefore local to that function. We call such unnamed variables local variables, or localvars.

The time economies of local variables can be achieved without block compiling by use of declarations.
Using local variables will increase the speed of compiled code; the price is the work of writing the
necessary specvar declarations for those variables which need to be accessed from outside the block.

LOCALVARS and SPECVARS are variables that affect compilation. During regular compilation,
SPECVARS is normally T, and LOCALVARS is NIL or a list. This configuration causes all variables

18-5

bound in the functions being compiled to be treated as special except those that appear on LOCALVARS.
During block compilation, LOCALVARS is normally T and SPECVARS is NIL or a list. All variables are
then treated as local except those that appear on SPECVARS.

Declarations to set LOCALVARS and SPECVARS to other values, and therefore affect how variables are
treated, may be used at several levels in the compilation process with varying scope.

1. The declarations may be included in the filecoms of a file, by using the LOCALVARS
and SPECVARS file package commands. The scope of the declaration is then the entire
file:

... (LOCALVARS . T) (SPECVARS X Y) ...

2. The declarations may be included in block declarations; the scope is then the block,
e.g.,

(BLOCKS ((FOOBLOCK FOO FIE (SPECVARS . T) (LOCALVARS
X)))

3. The declarations may also appear in individual functions, or in PROG’s or LAMBDA’s
within a function, using the DECLARE function. In this case, the scope of the declaration
is the function or the PROG or LAMBDA in which it appears. LOCALVARS and SPECVARS
declarations must appear immediately after the variable list in the function, PROG, or
LAMBDA, but intervening comments are permitted. For example:

(DEFINEQ ((FOO
(LAMBDA (X Y)

(DECLARE (LOCALVARS Y))
 (PROG (X Y Z)
 (DECLARE (LOCALVARS X))

...]

If the above function is compiled (non-block), the outer X will be special, the X bound in the PROG will
be local, and both bindings of Y will be local.

Declarations for LOCALVARS and SPECVARS can be used in two ways: either to cause variables to be
treated the same whether the function(s) are block compiled or compiled normally, or to affect one
compilation mode while not affecting the default in the other mode. For example:

(LAMBDA (X Y)
(DECLARE (SPECVARS . T))
(PROG (Z) ...]

will cause X, Y, and Z to be specvars for both block and normal compilation while

(LAMBDA (X Y)
(DECLARE (SPECVARS X))
...]

18-6

INTERLISP-D REFERENCE MANUAL

will make X a specvar when block compiling, but when regular compiling the declaration will have no
effect, because the default value of specvars would be T, and therefore both X and Y will be specvars
by default.

Although LOCALVARS and SPECVARS declarations have the same form as other components of block
declarations such as (LINKFNS . T), their operation is somewhat different because the two
variables are not independent. (SPECVARS . T) will cause SPECVARS to be set to T, and
LOCALVARS to be set to NIL. (SPECVARS V1 V2 ...) will have no effect if the value of SPECVARS
is T, but if it is a list (or NIL), SPECVARS will be set to the union of its prior value and (V1 V2 ...).
The operation of LOCALVARS is analogous. Thus, to affect both modes of compilation one of the two
(LOCALVARS or SPECVARS) must be declared T before specifying a list for the other.

Note: The variables that a given function binds as local variables or accesses as special
variables can be determined by using the function CALLS.

Note: LOCALVARS and SPECVARS declarations affect the compilation of local variables
within a function, but the arguments to functions are always accessible as
specvars. This can be changed by redefining the following function:

(DASSEM.SAVELOCALVARS FN) [Function]

This function is called by the compiler to determine whether argument information for FN
should be written on the compiled file for FN. If it returns NIL, the argument information
is not saved, and the function is stored with arguments U, V, W, etc instead of the originals.

Initially, DASSEM.SAVELOCALVARS is defined to return T. (MOVD ’NILL
’DASSEM.SAVELOCALVARS) causes the compiler to retain no local variable or argument
names. Alternatively, DASSEM.SAVELOCALVARS could be redefined as a more complex
predicate, to allow finer discrimination.

Constants

Interlisp allows the expression of constructions which are intended to be description of their constant
values. The following functions are used to define constant values. The function SELECTC provides
a mechanism for comparing a value to a number of constants.

(CONSTANT X) [Function]

This function enables you to define that the expression X should be treated as a "constant"
value. When CONSTANT is interpreted, X is evaluted each time it is encountered. If the
CONSTANT form is compiled, however, the expression will be evaluated only once.

If the value of X has a readable print name, then it will be evaluated at compile-time, and
the value will be saved as a literal in the compiled function’s definition, as if (QUOTE
VALUE-OF-EXPRESSION) had appeared instead of (CONSTANT EXPRESSION).

If the value of X does not have a readable print name, then the expression X itself will be
saved with the function, and it will be evaluated when the function is first loaded. The

18-7

value will then be stored in the function’s literals, and will be retrieved on future
references.

If a program needed a list of 30 NILs, you could specify (CONSTANT (to 30 collect
NIL)) instead of (QUOTE (NIL NIL ...)). The former is more concise and displays
the important parameter much more directly than the latter.

CONSTANT can also be used to denote values that cannot be quoted directly, such as
(CONSTANT (PACK NIL)), (CONSTANT (ARRAY 10)). It is also useful to
parameterize quantities that are constant at run time but may differ at compile time, e.g.,
(CONSTANT BITSPERWORD) in a program is exactly equivalent to 36, if the variable
BITSPERWORD is bound to 36 when the CONSTANT expression is evaluated at compile
time.

Whereas the function CONSTANT attempts to evaluate the expression as soon as possible
(compile-time, load-time, or first-run-time), other options are available, using the
folowing two function:

(LOADTIMECONSTANT X) [Function]

Similar to CONSTANT, except that the evaluation of X is deferred until the compiled code
for the containing function is loaded in. For example, (LOADTIMECONSTANT (DATE))
will return the date the code was loaded. If LOADTIMECONSTANT is interpreted, it merely
returns the value of X.

(DEFERREDCONSTANT X) [Function]

Similar to CONSTANT, except that the evaluation of X is always deferred until the compiled
function is first run. This is useful when the storage for the constant is excessive so that it
shouldn’t be allocated until (unless) the function is actually invoked. If
DEFERREDCONSTANT is interpreted, it merely returns the value of X.

(CONSTANTS VAR1 VAR2 ... VARN) [NLambda NoSpread Function]

Defines VAR1, ... VARN (unevaluated) to be compile-time constants. Whenever the
compiler encounters a (free) reference to one of these constants, it will compile the form
(CONSTANT VARi) instead.

If VARi is a list of the form (VAR FORM), a free reference to the variable will compile as
(CONSTANT FORM).

The compiler prints a warning if user code attempts to bind a variable previously declared
as a constant.

Constants can be saved using the CONSTANTS file package command.

18-8

INTERLISP-D REFERENCE MANUAL

Compiling Function Calls

When compiling the call to a function, the compiler must know the type of the function, to determine
how the arguments should be prepared (evaluated/unevaluated, spread/nospread). There are three
seperate cases: lambda, nlambda spread, and nlambda nospread functions.

To determine which of these three cases is appropriate, the compiler will first look for a definition
among the functions in the file that is being compiled. The function can be defined anywhere in any
of the files given as arguments to BCOMPL, TCOMPL, BRECOMPILE or RECOMPILE. If the function is
not contained in the file, the compiler will look for other information in the variables NLAMA, NLAML,
and LAMS, which can be set by you:

NLAMA [Variable]

(For NLAMbda Atoms) A list of functions to be treated as nlambda nospread functions by
the compiler.

NLAML [Variable]

(For NLAMbda List) A list of functions to be treated as nlambda spread functions by the
compiler.

LAMS [Variable]

A list of functions to be treated as lambda functions by the compiler. Note that including
functions on LAMS is only necessary to override in-core nlambda definitions, since in the
absence of other information, the compiler assumes the function is a lambda.

If the function is not contained in a file, or on the lists NLAMA, NLAML, or LAMS, the
compiler will look for a current definition in the Interlisp system, and use its type. If there
is no current definition, next COMPILEUSERFN is called:

COMPILEUSERFN [Variable]

When compiling a function call, if the function type cannot be found by looking in files,
the variables NLAMA, NLAML, or LAMS, or at a current definition, then if the value of
COMPILEUSERFN is not NIL, the compiler calls (the value of) COMPILEUSERFN giving it
as arguments CDR of the form and the form itself, i.e., the compiler does (APPLY*
COMPILEUSERFN (CDR FORM) FORM). If a non-NIL value is returned, it is compiled
instead of FORM. If NIL is returned, the compiler compiles the original expression as a call
to a lambda spread that is not yet defined.

COMPILEUSERFN is only called when the compiler encounters a list CAR of which is not
the name of a defined function. You can instruct the compiler about how to compile other
data types via COMPILETYPELST.

CLISP uses COMPILEUSERFN to tell the compiler how to compile iterative statements, IF-
THEN-ELSE statements, and pattern match constructs.

18-9

If the compiler cannot determine the function type by any of the means above, it assumes
that the function is a lambda function, and its arguments are to be evaluated.

If there are nlambda functions called from the functions being compiled, and they are only
defined in a separate file, they must be included on NLAMA or NLAML, or the compiler will
incorrectly assume that their arguments are to be evaluated, and compile the calling
function correspondingly. This is only necessary if the compiler does not "know" about
the function. If the function is defined at compile time, or is handled via a macro, or is
contained in the same group of files as the functions that call it, the compiler will
automatically handle calls to that function correctly.

FUNCTION and Functional Arguments

Compiling the function FUNCTION may involve creating and compiling a seperate "auxiliary
function", which will be called at run time. An auxiliary function is named by attaching a GENSYM to
the end of the name of the function in which they appear, e.g., FOOA0003. For example, suppose FOO
is defined as (LAMBDA (X) ... (FOO1 X (FUNCTION ...)) ...) and compiled. When FOO is
run, FOO1 will be called with two arguments, X, and FOOA000N and FOO1 will call FOOA000N each
time it uses its functional argument.

Compiling FUNCTION will not create an auxiliary function if it is a functional argument to a function
that compiles open, such as most of the mapping functions (MAPCAR, MAPLIST, etc.). A considerable
savings in time could be achieved by making FOO1 compile open via a computed macro, e.g.

(PUTPROP ’FOO1 ’MACRO
 ’(Z (LIST (SUBST (CADADR Z)
 (QUOTE FN)

DEF)
(CAR Z)))

DEF is the definition of FOO1 as a function of just its first argument, and FN is the name used for its
functional argument in its definition. In this case, (FOO1 X (FUNCTION ...)) would compile as
an expression, containing the argument to FUNCTION as an open LAMBDA expression. Thus you save
not only the function call to FOO1, but also each of the function calls to its functional argument. For
example, if FOO1 operates on a list of length ten, eleven function calls will be saved. Of course, this
savings in time costs space, and you must decide which is more important.

Open Functions

When a function is called from a compiled function, a system routine is invoked that sets up the
parameter and control push lists as necessary for variable bindings and return information. If the
amount of time spent inside the function is small, this function calling time will be a significant
percentage of the total time required to use the function. Therefore, many "small" functions, e.g., CAR,
CDR, EQ, NOT, CONS are always compiled "open", i.e., they do not result in a function call. Other larger

18-10

INTERLISP-D REFERENCE MANUAL

functions such as PROG, SELECTQ, MAPC, etc. are compiled open because they are frequently used.
You can make other functions compile open via MACRO definitions. You can also affect the compiled
code via COMPILEUSERFN and COMPILETYPELST.

COMPILETYPELST

Most of the compiler’s mechanism deals with how to handle forms (lists) and variables (symbols).
You can affect the compiler’s behaviour with respect to lists and literal atoms in a number of ways,
e.g. macros, declarations, COMPILEUSERFN, etc. COMPILETYPELST allows you to tell the compiler
what to do when it encounters a data type other than a list or an atom. It is the facility in the compiler
that corresponds to DEFEVAL for the interpreter.

COMPILETYPELST [Variable]

A list of elements of the form (TYPENAME . FUNCTION). Whenever the compiler
encounters a datum that is not a list and not an atom (or a number) in a context where the
datum is being evaluated, the type name of the datum is looked up on COMPILETYPELST.
If an entry appears CAR of which is equal to the type name, CDR of that entry is applied to
the datum. If the value returned by this application is not EQ to the datum, then that value
is compiled instead. If the value is EQ to the datum, or if there is no entry on
COMPILETYPELST for this type name, the compiler simply compiles the datum as
(QUOTE DATUM).

Compiling CLISP

Since the compiler does not know about CLISP, in order to compile functions containing CLISP
constructs, the definitions must first be DWIMIFYed. You can automate this process in several ways:

1. If the variable DWIMIFYCOMPFLG is T, the compiler will always DWIMIFY
expressions before compiling them. DWIMIFYCOMPFLG is initially NIL.

2. If a file has the property FILETYPE with value CLISP on its property list, TCOMPL,
BCOMPL, RECOMPILE, and BRECOMPILE will operate as though DWIMIFYCOMPFLG is T
and DWIMIFY all expressions before compiling.

3. If the function definition has a local CLISP declaration, including a null declaration,
i.e., just (CLISP:), the definition will be automatically DWIMIFYed before compiling.

Note: COMPILEUSERFN is defined to call DWIMIFY on iterative statements, IF-
THEN statements, and fetch, replace, and match expressions, i.e., any
CLISP construct which can be recognized by its CAR of form. Thus, if the only
CLISP constructs in a function appear inside of iterative statements, IF
statements, etc., the function does not have to be dwimified before compiling.

18-11

If DWIMIFY is ever unsuccessful in processing a CLISP expression, it will print the error message
UNABLE TO DWIMIFY followed by the expression, and go into a break unless DWIMESSGAG = T. In
this case, the expression is just compiled as is, i.e. as though CLISP had not been enabled. You can exit
the break in one of these ways:

1. Type OK to the break, which will cause the compiler to try again, e.g. you could
define some missing records while in the break, and then continue

2. Type ↑, which will cause the compiler to simply compile the expression as is, i.e. as
though CLISP had not been enabled in the first place

 3. Return an expression to be compiled in its place by using the RETURN break
command.

Note: TCOMPL, BCOMPL, RECOMPILE, and BRECOMPILE all scan the entire file
before doing any compiling, and take note of the names of all functions that
are defined in the file as well as the names of all variables that are set by
adding them to NOFIXFNSLST and NOFIXVARSLST, respectively. Thus, if a
function is not currently defined, but is defined in the file being compiled,
when DWIMIFY is called before compiling, it will not attempt to interpret the
function name as CLISP when it appears as CAR of a form. DWIMIFY also
takes into account variables that have been declared to be LOCALVARS, or
SPECVARS, either via block declarations or DECLARE expressions in the
function being compiled, and does not attempt spelling correction on these
variables. The declaration USEDFREE may also be used to declare variables
simply used freely in a function. These variables will also be left alone by
DWIMIFY. Finally, NOSPELLFLG is reset to T when compiling functions from
a file (as opposed to from their in-core definition) so as to suppress spelling
correction.

Compiler Functions

Normally, the compiler is envoked through file package commands that keep track of the state of
functions, and manage a set of files, such as MAKEFILE. However, it is also possible to explicitly call
the compiler using one of a number of functions. Functions may be compiled from in-core definitions
(via COMPILE), or from definitions in files (TCOMPL), or from a combination of in-core and file
definitions (RECOMPILE).

TCOMPL and RECOMPILE produce "compiled" files. Compiled files usually have the same name as the
symbolic file they were made from, suffixed with DCOM (the compiled file extension is stored as the
value of the variable COMPILE.EXT). The file name is constructed from the name field only, e.g.,
(TCOMPL ’<BOBROW>FOO.TEM;3) produces FOO.DCOM on the connected directory. The version
number will be the standard default.

A "compiled file" contains the same expressions as the original symbolic file, except for the following:

18-12

INTERLISP-D REFERENCE MANUAL

 1. A special FILECREATED expression appears at the front of the file which contains
information used by the file package, and which causes the message COMPILED ON
DATE to be printed when the file is loaded (the actual string printed is the value of
COMPILEHEADER).

2. Every DEFINEQ in the symbolic file is replaced by the corresponding compiled
definitions in the compiled file.

3. Expressions following a DONTCOPY tag inside of a DECLARE: that appears in the
symbolic file are not copied to the compiled file.

The compiled definitions appear at the front of the compiled file, i.e., before the other expressions in
the symbolic file, regardless of where they appear in the symbolic file. The only exceptions are expressions
that follow a FIRST tag inside of a DECLARE:. This "compiled" file can be loaded into any Interlisp
system with LOAD.

Note: When a function is compiled from its in-core definition (as opposed to
being compiled from a definition in a file), and the function has been modified
by BREAK, TRACE, BREAKIN, or ADVISE, it is first restored to its original state,
and a message is printed out, e.g., FOO UNBROKEN. If the function is not
defined by an expr definition, the value of the function’s EXPR property is
used for the compilation, if there is one. If there is no EXPR property, and the
compilation is being performed by RECOMPILE, the definition of the function
is obtained from the file (using LOADFNS). Otherwise, the compiler prints
(FN NOT COMPILEABLE), and goes on to the next function.

(COMPILE X FLG) [Function]

X is a list of functions (if atomic, (LIST X) is used). COMPILE first asks the standard
compiler questions, and then compiles each function on X, using its in-core definition.
Returns X.

If compiled definitions are being written to a file, the file is closed unless FLG = T.

(COMPILE1 FN DEF) [Function]

Compiles DEF, redefining FN if STRF = T (STRF is one of the variables set by COMPSET).
COMPILE1 is used by COMPILE, TCOMPL, and RECOMPILE.

If DWIMIFYCOMPFLG is T, or DEF contains a CLISP declaration, DEF is dwimified before
compiling.

(TCOMPL FILES) [Function]

TCOMPL is used to "compile files"; given a symbolic LOAD file (e.g., one created by
MAKEFILE), it produces a "compiled file". FILES is a list of symbolic files to be compiled
(if atomic, (LIST FILES) is used). TCOMPL asks the standard compiler questions, except
for "OUTPUT FILE:". The output from the compilation of each symbolic file is written on
a file of the same name suffixed with DCOM, e.g., (TCOMPL ’(SYM1 SYM2)) produces
two files, SYM1.DCOM and SYM2.DCOM.

18-13

TCOMPL processes the files one at a time, reading in the entire file. For each
FILECREATED expression, the list of functions that were marked as changed by the file
package is noted, and the FILECREATED expression is written onto the output file. For
each DEFINEQ expression, TCOMPL adds any nlambda functions defined in the DEFINEQ
to NLAMA or NLAML, and adds lambda functions to LAMS, so that calls to these functions
will be compiled correctly. NLAMA, NLAML, and LAMS are rebound to their top level values
(using RESETVAR) by all of the compiling functions, so that any additions to these lists
while inside of these functions will not propagate outside. Expressions beginning with
DECLARE: are processed specially. All other expressions are collected to be subsequently
written onto the output file.

After processing the file in this fashion, TCOMPL compiles each function, except for those
functions which appear on the list DONTCOMPILEFNS (initially NIL), and writes the
compiled definition onto the output file. TCOMPL then writes onto the output file the
other expressions found in the symbolic file. DONTCOMPILEFNS might be used for
functions that compile open, since their definitions would be superfluous when operating
with the compiled file. Note that DONTCOMPILEFNS can be set via block declarations.

Note: If the rootname of a file has the property FILETYPE with value
CLISP, or value a list containing CLISP, TCOMPL rebinds
DWIMIFYCOMPFLG to T while compiling the functions on FILE, so the
compiler will DWIMIFY all expressions before compiling them.

TCOMPL returns a list of the names of the output files. All files are properly terminated
and closed. If the compilation of any file is aborted via an error or Control-D, all files are
properly closed, and the (partially complete) compiled file is deleted.

(RECOMPILE PFILE CFILE FNS) [Function]

The purpose of RECOMPILE is to allow you to update a compiled file without recompiling
every function in the file. RECOMPILE does this by using the results of a previous
compilation. It produces a compiled file similar to one that would have been produced by
TCOMPL, but at a considerable savings in time by only compiling selected functions, and
copying the compiled definitions for the remainder of the functions in the file from an
earlier TCOMPL or RECOMPILE file.

PFILE is the name of the Pretty file (source file) to be compiled; CFILE is the name of the
Compiled file containing compiled definitions that may be copied. FNS indicates which
functions in PFILE are to be recompiled, e.g., have been changed or defined for the first
time since CFILE was made. Note that PFILE, not FNS, drives RECOMPILE.

RECOMPILE asks the standard compiler questions, except for "OUTPUT FILE:". As with
TCOMPL, the output automatically goes to PFILE.DCOM. RECOMPILE processes PFILE
the same as does TCOMPL except that DEFINEQ expressions are not actually read into core.
Instead, RECOMPILE uses the filemap to obtain a list of the functions contained in PFILE.
The filemap enables RECOMPILE to skip over the DEFINEQs in the file by simply resetting
the file pointer, so that in most cases the scan of the symbolic file is very fast (the only
processing required is the reading of the non-DEFINEQs and the processing of the
DECLARE: expressions as with TCOMPL). A map is built if the symbolic file does not

18-14

INTERLISP-D REFERENCE MANUAL

already contain one, for example if it was written in an earlier system, or with
BUILDMAPFLG = NIL.

After this initial scan of PFILE, RECOMPILE then processes the functions defined in the
file. For each function in PFILE, RECOMPILE determines whether or not the function is to
be (re)compiled. Functions that are members of DONTCOMPILEFNS are simply ignored.
Otherwise, a function is recompiled if :

1. FNS is a list and the function is a member of that list

2. FNS = T or EXPRS and the function is defined by an expr definition

3. FNS = CHANGES and the function is marked as having been changed in the
FILECREATED expression in PFILE

4. FNS = ALL

If a function is not to be recompiled, RECOMPILE obtains its compiled definition from
CFILE, and copies it (and all generated subfunctions) to the output file, PFILE.DCOM. If
the function does not appear on CFILE, RECOMPILE simply recompiles it. Finally, after
processing all functions, RECOMPILE writes out all other expressions that were collected
in the prescan of PFILE.

Note: If FNS = ALL, CFILE is superfluous, and does not have to be
specified. This option may be used to compile a symbolic file that has
never been compiled before, but which has already been loaded (since
using TCOMPL would require reading the file in a second time).

If CFILE = NIL, PFILE.DCOM (the old version of the output file) is used for copying
from. If both FNS and CFILE are NIL, FNS is set to the value of RECOMPILEDEFAULT,
which is initially CHANGES. Thus you can perform his edits, dump the file, and then
simply (RECOMPILE ’FILE) to update the compiled file.

The value of RECOMPILE is the file name of the new compiled file, PFILE.DCOM. If
RECOMPILE is aborted due to an error or Control-D, the new (partially complete)
compiled file will be closed and deleted.

RECOMPILE is designed to allow you to conveniently and efficiently update a compiled
file, even when the corresponding symbolic file has not been (completely) loaded. For
example, you can perform a LOADFROM to "notice" a symbolic file, edit the functions he
wants to change (the editor will automatically load those functions not already loaded),
call MAKEFILE to update the symbolic file (MAKEFILE will copy the unchanged functions
from the old symbolic file), and then perform (RECOMPILE PFILE).

Note: Since PRETTYDEF automatically outputs a suitable DECLARE:
expression to indicate which functions in the file (if any) are defined as
NLAMBDAs, calls to these functions will be handled correctly, even
though the NLAMBDA functions themselves may never be loaded, or
even looked at, by RECOMPILE.

18-15

Block Compiling

In Interlisp-10, block compiling provides a way of compiling several functions into a single block.
Function calls between the component functions of the block are very fast. Thus, compiling a block
consisting of just a single recursive function may be yield great savings if the function calls itself many
times. The output of a block compilation is a single, usually large, function. Calls from within the
block to functions outside of the block look like regular function calls. A block can be entered via
several different functions, called entries. These must be specified when the block is compiled.

In Medley, block compiling is handled somewhat differently; block compiling provides a mechanism
for hiding function names internal to a block, but it does not provide a performance improvement.
Block compiling in Medley works by automatically renaming the block functions with special names,
and calling these functions with the normal function-calling mechanisms. Specifically, a function FN
is renamed to \BLOCK-NAME/FN. For example, function FOO in block BAR is renamed to \BAR/FOO.
Note that it is possible with this scheme to break functions internal to a block.

Block Declarations

Block compiling a file frequently involves giving the compiler a lot of information about the nature
and structure of the compilation, e.g., block functions, entries, specvars, etc. To help with this, there is
the BLOCKS file package command, which has the form:

(BLOCKS BLOCK1... BLOCKN)

where each BLOCKi is a block declaration. The BLOCKS command outputs a DECLARE: expression,
which is noticed by BCOMPL and BRECOMPILE. BCOMPL and BRECOMPILE are sensitive to these
declarations and take the appropriate action.

Note: Masterscope includes a facility for checking the block declarations of a file or
files for various anomalous conditions, e.g. functions in block declarations
which aren’t on the file(s), functions in ENTRIES not in the block, variables
that may not need to be SPECVARS because they are not used freely below the
places they are bound, etc.

A block declaration is a list of the form:

(BLKNAME BLKFN1 ... BLKFNM
 (VAR1 . VALUE1) ... (VARN . VALUEN))

BLKNAME is the name of a block. BLKFN1 ... BLKFNM are the functions in the block and correspond
to BLKFNS in the call to BLOCKCOMPILE. The (VARi . VALUEi) expressions indicate the settings for
variables affecting the compilation of that block. If VALUEi is atomic, then VARi is set to VALUEi,

otherwise VARi is set to the UNION of VALUEi and the current value of the variable VARi. Also,
expressions of the form (VAR * FORM) will cause FORM to be evaluated and the resulting list used as
described above (e.g. (GLOBALVARS * MYGLOBALVARS)).

18-16

INTERLISP-D REFERENCE MANUAL

For example, consider the block declaration below. The block name is EDITBLOCK, it includes a
number of functions (EDITL0, EDITL1, ... EDITH), and it sets the variables ENTRIES,
SPECVARS, RETFNS, and GLOBALVARS.

(EDITBLOCK
EDITL0 EDITL1 UNDOEDITL EDITCOM EDITCOMA
EDITMAC EDITCOMS EDIT]UNDO UNDOEDITCOM EDITH
(ENTRIES EDITL0 ## UNDOEDITL)
(SPECVARS L COM LCFLG #1 #2 #3 LISPXBUFS)
(RETFNS EDITL0)
(GLOBALVARS EDITCOMSA EDITCOMSL EDITOPS))

Whenever BCOMPL or BRECOMPILE encounter a block declaration, they rebind RETFNS, SPECVARS,
GLOBALVARS, BLKLIBRARY, and DONTCOMPILEFNS to their top level values, bind BLKAPPLYFNS and
ENTRIES to NIL, and bind BLKNAME to the first element of the declaration. They then scan the rest of
the declaration, setting these variables as described above. When the declaration is exhausted, the
block compiler is called and given BLKNAME, the list of block functions, and ENTRIES.

If a function appears in a block declaration, but is not defined in one of the files, then if it has an in-
core definition, this definition is used and a message printed NOT ON FILE, COMPILING IN CORE
DEFINITION. Otherwise, the message NOT COMPILEABLE, is printed and the block declaration
processed as though the function were not on it, i.e. calls to the function will be compiled as external
function calls.

Since all compiler variables are rebound for each block declaration, the declaration only has to set
those variables it wants changed. Furthermore, setting a variable in one declaration has no effect on
the variable’s value for another declaration.

After finishing all blocks, BCOMPL and BRECOMPILE treat any functions in the file that did not appear
in a block declaration in the same way as do TCOMPL and RECOMPILE. If you wish a function
compiled separately as well as in a block, or if you wish to compile some functions (not blockcompile),
with some compiler variables changed, you can use a special pseudo-block declaration of the form

(NIL BLKFN1 ... BLKFNM (VAR1 . VALUE1) ... (VARN . VALUEN))

which means that BLKFN1 ... BLKFNM should be compiled after first setting VAR1 ... VARN as
described above.

The following variables control other aspects of compiling a block:

RETFNS [Variable]

Value is a list of internal block functions whose names must appear on the stack, e.g., if
the function is to be returned from RETFROM, RETTO, RETEVAL, etc. Usually, internal calls
between functions in a block are not put on the stack.

18-17

BLKAPPLYFNS [Variable]

Value is a list of internal block functions called by other functions in the same block using
BLKAPPLY or BLKAPPLY* for efficiency reasons.

Normally, a call to APPLY from inside a block would be the same as a call to any other
function outside of the block. If the first argument to APPLY turned out to be one of the
entries to the block, the block would have to be reentered. BLKAPPLYFNS enables a
program to compute the name of a function in the block to be called next, without the
overhead of leaving the block and reentering it. This is done by including on the list
BLKAPPLYFNS those functions which will be called in this fashion, and by using
BLKAPPLY in place of APPLY, and BLKAPPLY* in place of APPLY*. If BLKAPPLY or
BLKAPPLY* is given a function not on BLKAPPLYFNS, the effect is the same as a call to
APPLY or APPLY* and no error is generated. Note however, that BLKAPPLYFNS must be
set at compile time, not run time, and furthermore, that all functions on BLKAPPLYFNS
must be in the block, or an error is generated (at compile time), NOT ON BLKFNS.

BLKAPPLYFNS [Variable]

Value is a list of functions that are considered to be in the "block library" of functions that
should automatically be included in the block if they are called within the block.

Compiling a function open via a macro provides a way of eliminating a function call. For
block compiling, the same effect can be achieved by including the function in the block. A
further advantage is that the code for this function will appear only once in the block,
whereas when a function is compiled open, its code appears at each place where it is
called.

The block library feature provides a convenient way of including functions in a block. It is
just a convenience since you can always achieve the same effect by specifying the
function(s) in question as one of the block functions, provided it has an expr definition at
compile time. The block library feature simply eliminates the burden of supplying this
definition.

To use the block library feature, place the names of the functions of interest on the list
BLKLIBRARY, and their expr definitions on the property list of the functions under the
property BLKLIBRARYDEF. When the block compiler compiles a form, it first checks to
see if the function being called is one of the block functions. If not, and the function is on
BLKLIBRARY, its definition is obtained from the property value of BLKLIBRARYDEF, and
it is automatically included as part of the block.

Block Compiling Functions

There are three user level functions for block compiling, BLOCKCOMPILE, BCOMPL, and BRECOMPILE,
corresponding to COMPILE, TCOMPL, and RECOMPILE. Note that all of the remarks on macros,
globalvars, compiler messages, etc., all apply equally for block compiling. Using block declarations,
you can intermix in a single file functions compiled normally and block compiled functions.

18-18

INTERLISP-D REFERENCE MANUAL

(BLOCKCOMPILE BLKNAME BLKFNS ENTRIES FLG) [Function]

BLKNAME is the name of a block, BLKFNS is a list of the functions comprising the block,
and ENTRIES a list of entries to the block.

Each of the entries must also be on BLKFNS or an error is generated, NOT ON BLKFNS. If
only one entry is specified, the block name can also be one of the BLKFNS, e.g.,
(BLOCKCOMPILE ’FOO ’(FOO FIE FUM) ’(FOO)). However, if more than one entry
is specified, an error will be generated, CAN’T BE BOTH AN ENTRY AND THE BLOCK
NAME.

If ENTRIES is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE ’COUNT ’(COUNT
COUNT1))

If BLKFNS is NIL, (LIST BLKNAME) is used, e.g., (BLOCKCOMPILE ’EQUAL)

BLOCKCOMPILE asks the standard compiler questions, and then begins compiling. As
with COMPILE, if the compiled code is being written to a file, the file is closed unless FLG
= T. The value of BLOCKCOMPILE is a list of the entries, or if ENTRIES = NIL, the value
is BLKNAME.

The output of a call to BLOCKCOMPILE is one function definition for BLKNAME, plus
definitions for each of the functions on ENTRIES if any. These entry functions are very
short functions which immediately call BLKNAME.

(BCOMPL FILES CFILE) [Function]

FILES is a list of symbolic files (if atomic, (LIST FILES) is used). BCOMPL differs from
TCOMPL in that it compiles all of the files at once, instead of one at a time, in order to
permit one block to contain functions in several files. (If you have several files to be
BCOMPLed separately, you must make several calls to BCOMPL.) Output is to CFILE if
given, otherwise to a file whose name is (CAR FILES) suffixed with DCOM. For example,
(BCOMPL ’(EDIT WEDIT)) produces one file, EDIT.DCOM.

BCOMPL asks the standard compiler questions, except for "OUTPUT FILE:", then
processes each file exactly the same as TCOMPL. BCOMPL next processes the block
declarations as described above. Finally, it compiles those functions not mentioned in one
of the block declarations, and then writes out all other expressions.

If any of the files have property FILETYPE with value CLISP, or a list containing CLISP,
then DWIMIFYCOMPFLG is rebound to T for all of the files.

The value of BCOMPL is the output file (the new compiled file). If the compilation is
aborted due to an error or Control-D, all files are closed and the (partially complete)
output file is deleted.

It is permissible to TCOMPL files set up for BCOMPL; the block declarations will simply
have no effect. Similarly, you can BCOMPL a file that does not contain any block
declarations and the result will be the same as having TCOMPLed it.

18-19

(BRECOMPILE FILES CFILE FNS —) [Function]

BRECOMPILE plays the same role for BCOMPL that RECOMPILE plays for TCOMPL. Its
purpose is to allow you to update a compiled file without requiring an entire BCOMPL.

FILES is a list of symbolic files (if atomic, (LIST FILES) is used). CFILE is the compiled
file produced by BCOMPL or a previous BRECOMPILE that contains compiled definitions
that may be copied. The interpretation of FNS is the same as with RECOMPILE.

BRECOMPILE asks the standard compiler questions, except for "OUTPUT FILE:". As with
BCOMPL, output automatically goes to FILE.DCOM, where FILE is the first file in FILES.

BRECOMPILE processes each file the same as RECOMPILE, then processes each block
declaration. If any of the functions in the block are to be recompiled, the entire block must
be (is) recompiled. Otherwise, the block is copied from CFILE as with RECOMPILE. For
pseudo-block declarations of the form (NIL FN1 ...), all variable assignments are made,
but only those functions indicated by FNS are recompiled.

After completing the block declarations, BRECOMPILE processes all functions that do not
appear in a block declaration, recompiling those dictated by FNS, and copying the
compiled definitions of the remaining from CFILE.

Finally, BRECOMPILE writes onto the output file the "other expressions" collected in the
initial scan of FILES.

The value of BRECOMPILE is the output file (the new compiled file). If the compilation is
aborted due to an error or Control-D, all files are closed and the (partially complete)
output file is deleted.

If CFILE = NIL, the old version of FILE.DCOM is used, as with RECOMPILE. In
addition, if FNS and CFILE are both NIL, FNS is set to the value of RECOMPILEDEFAULT,
initially CHANGES.

Compiler Error Messages

Messages describing errors in the function being compiled are also printed on the terminal. These
messages are always preceded by *****. Unless otherwise indicated below, the compilation will
continue.

(FN NOT ON FILE, COMPILING IN CORE DEFINITION)

From calls to BCOMPL and BRECOMPILE.

(FN NOT COMPILEABLE)

An EXPR definition for FN could not be found. In this case, no code is produced for FN,
and the compiler proceeds to the next function to be compiled, if any.

18-20

INTERLISP-D REFERENCE MANUAL

(FN NOT FOUND)

Occurs when RECOMPILE or BRECOMPILE try to copy the compiled definition of FN from
CFILE, and cannot find it. In this case, no code is copied and the compiler proceeds to the
next function to be compiled, if any.

(FN NOT ON BLKFNS)

FN was specified as an entry to a block, or else was on BLKAPPLYFNS, but did not appear
on the BLKFNS. In this case, no code is produced for the entire block and the compiler
proceeds to the next function to be compiled, if any.

(FN CAN’T BE BOTH AN ENTRY AND THE BLOCK NAME)

In this case, no code is produced for the entire block and the compiler proceeds to the next
function to be compiled, if any.

(BLKNAME - USED BLKAPPLY WHEN NOT APPLICABLE)

BLKAPPLY is used in the block BLKNAME, but there are no BLKAPPLYFNS or ENTRIES
declared for the block.

(VAR SHOULD BE A SPECVAR - USED FREELY BY FN)

While compiling a block, the compiler has already generated code to bind VAR as a
LOCALVAR, but now discovers that FN uses VAR freely. VAR should be declared a
SPECVAR and the block recompiled.

((* --) COMMENT USED FOR VALUE)

A comment appears in a context where its value is being used, e.g. (LIST X (* --)
Y). The compiled function will run, but the value at the point where the comment was
used is undefined.

((FORM) - NON-ATOMIC CAR OF FORM)

If you intended to treat the value of FORM as a function, you should use APPLY* (Chapter
10). FORM is compiled as if APPLY* had been used.

((SETQ VAR EXPR --) BAD SETQ)

SETQ of more than two arguments.

(FN - USED AS ARG TO NUMBER FN?)

The value of a predicate, such as GREATERP or EQ, is used as an argument to a function
that expects numbers, such as IPLUS.

(FN - NO LONGER INTERPRETED AS FUNCTIONAL ARGUMENT)

The compiler has assumed FN is the name of a function. If you intended to treat the value
of FN as a function, APPLY* (Chapter 10) should be used. This message is printed when
FN is not defined, and is also a local variable of the function being compiled.

18-21

(FN - ILLEGAL RETURN)

RETURN encountered when not in PROG.

(TG - ILLEGAL GO)

GO encountered when not in a PROG.

(TG - MULTIPLY DEFINED TAG)

TG is a PROG label that is defined more than once in a single PROG. The second definition
is ignored.

(TG - UNDEFINED TAG)

TG is a PROG label that is referenced but not defined in a PROG.

(VAR - NOT A BINDABLE VARIABLE)

VAR is NIL, T, or else not a literal atom.

(VAR VAL -- BAD PROG BINDING)

Occurs when there is a prog binding of the form (VAR VAL1 ... VALN).

(TG - MULTIPLY DEFINED TAG, LAP)

TG is a label that was encountered twice during the second pass of the compilation. If this
error occurs with no indication of a multiply defined tag during pass one, the tag is in a
LAP macro.

(TG - UNDEFINED TAG, LAP)

TG is a label that is referenced during the second pass of compilation and is not defined.
LAP treats TG as though it were a COREVAL, and continues the compilation.

(TG - MULTIPLY DEFINED TAG, ASSEMBLE)

TG is a label that is defined more than once in an assemble form.

(TG - UNDEFINED TAG, ASSEMBLE)

TG is a label that is referenced but not defined in an assemble form.

(OP - OPCODE? - ASSEMBLE)

OP appears as CAR of an assemble statement, and is illegal.

(NO BINARY CODE GENERATED OR LOADED FOR FN)

A previous error condition was sufficiently serious that binary code for FN cannot be
loaded without causing an error.

19-1

19. DWIM

A surprisingly large percentage of the errors made by Interlisp users are of the type that could be
corrected by another Lisp programmer without any information about the purpose of the program or
expression in question, e.g., misspellings, certain kinds of parentheses errors, etc. To correct these
types of errors we have implemented in Medley a DWIM facility, short for Do-What-I-Mean. DWIM is
called automatically whenever an error occurs in the evaluation of an Interlisp expression. (Currently,
DWIM only operates on unbound atoms and undefined function errors.) DWIM then proceeds to try to
correct the mistake using the current context of computation plus information about what you had
previously been doing (and what mistakes you had been making) as guides to the remedy of the error.
If DWIM is able to make the correction, the computation continues as though no error had occurred.
Otherwise, the procedure is the same as though DWIM had not intervened: a break occurs, or an
unwind to the last ERRORSET (see Chapter 14). The following protocol illustrates the operation of
DWIM.

For example, suppose you define the factorial function (FACT N) as follows:

←DEFINEQ((FACT (LAMBDA (N) (COND
((ZEROP N0 1) ((T (ITIMS N (FACCT 9SUB1 N]
(FACT)

←

Note that the definition of FACT contains several mistakes: ITIMES and FACT have been misspelled;
the 0 in N0 was intended to be a right parenthesis, but the Shift key was not pressed; similarly, the 9
in 9SUB1 was intended to be a left parenthesis; and finally, there is an extra left parenthesis in front of
the T that begins the final clause in the conditional.

←PRETTYPRNT((FACCT]
=PRETTYPRINT
=FACT

(FACT
 [LAMBDA (N)
 (COND
 ((ZEROP N0 1)
 ((T (ITIMS N (FACCT 9SUB1 N])
(FACT)

←

After defining FACT, you want to look at its definition using PRETTYPRINT, which you unfortunately
misspell. Since there is no function PRETTYPRNT in the system, an undefined function error occurs,
and DWIM is called. DWIM invokes its spelling corrector, which searches a list of functions frequently
used (by this user) for the best possible match. Finding one that is extremely close, DWIM proceeds on
the assumption that PRETTYPRNT meant PRETTYPRINT, notifies you of this, and calls PRETTYPRINT.

19-2

INTERLISP-D REFERENCE MANUAL
DWIM

At this point, PRETTYPRINT would normally print (FACCT NOT PRINTABLE) and exit, since FACCT
has no definition. Note that this is not an Interlisp error condition, so that DWIM would not be called as
described above. However, it is obviously not what you meant.

This sort of mistake is corrected by having PRETTYPRINT itself explicitly invoke the spelling corrector
portion of DWIM whenever given a function with no EXPR definition. Thus, with the aid of DWIM
PRETTYPRINT is able to determine that you want to see the definition of the function FACT, and
proceeds accordingly.

←FACT(3]
N0 [IN FACT] -> N) ? YES
[IN FACT] (COND -- ((T --))) ->
 (COND -- (T --))
ITIMS [IN FACT] -> ITIMES
FACCT [IN FACT] -> FACT
9SUB1 [IN FACT] -> (SUB1 ? YES
6

←PP FACT
(FACT
 [LAMBDA (N)
 (COND
 ((ZEROP N)
 1)
 (T (ITIMES N (FACT (SUB1 N])
FACT

←

You now call FACT. During its execution, five errors occur, and DWIM is called five times. At each
point, the error is corrected, a message is printed describing the action taken, and the computation is
allowed to continue as if no error had occurred. Following the last correction, 6 is printed, the value
of (FACT 3). Finally, you prettyprint the new, now correct, definition of FACT.

In this particular example, you were operating in TRUSTING mode, which gives DWIM carte blanche
for most corrections. You can also operate in CAUTIOUS mode, in which case DWIM will inform you of
intended corrections before they are made, and allow you to approve or disapprove of them. If DWIM
was operating in CAUTIOUS mode in the example above, it would proceed as follows:

←FACT(3)
N0 [IN FACT] -> N) ? YES
U.D.F. T [IN FACT] FIX? YES
[IN FACT] (COND -- ((T --))) ->
 (COND -- (T --))
ITIMS [IN FACT] -> ITIMES ? ...YES
FACCT [IN FACT] -> FACT ? ...YES
9SUB1 [IN FACT] -> (SUB1 ? NO
U.B.A.
(9SUB1 BROKEN)
:

19-3

For most corrections, if you do not respond in a specified interval of time, DWIM automatically
proceeds with the correction, so that you need intervene only when you do not approve. In the
example, you responded to the first, second, and fifth questions; DWIM responded for you on the third
and fourth.

DWIM uses ASKUSER for its interactions with you (see Chapter 26). Whenever an interaction is about
to take place and you have typed ahead, ASKUSER types several bells to warn you to stop typing, then
clears and saves the input buffers, restoring them after the interaction is complete. Thus if you typed
ahead before a DWIM interaction, DWIM will not confuse your type-ahead with the answer to its
question, nor will your type-ahead be lost. The bells are printed by the function PRINTBELLS, which
can be advised or redefined for specialized applications, e.g. to flash the screen for a display terminal.

A great deal of effort has gone into making DWIM "smart", and experience with a large number of users
indicates that DWIM works very well; DWIM seldom fails to correct an error you feel it should have, and
almost never mistakenly corrects an error. However, it is important to note that even when DWIM is
wrong, no harm is done: since an error had occurred, you would have had to intervene anyway if
DWIM took no action. Thus, if DWIM mistakenly corrects an error, you simply interrupt or abort the
computation, reverse the DWIM change using UNDO (see Chapter 13), and make the correction you
would have had to make without DWIM. An exception is if DWIM’s correction mistakenly caused a
destructive computation to be initiated, and information was lost before you could interrupt. We
have not yet had such an incident occur.

(DWIM X) [Function]

Used to enable/disable DWIM. If X is the symbol C, DWIM is enabled in CAUTIOUS mode,
so that DWIM will ask you before making corrections. If X is T, DWIM is enabled in
TRUSTING mode, so DWIM will make most corrections automatically. If X is NIL, DWIM is
disabled. Medley initially has DWIM enabled in CAUTIOUS mode.

DWIM returns CAUTIOUS, TRUSTING or NIL, depending to what mode it has just been put
into.

For corrections to expressions typed in for immediate execution (typed into LISPX, Chapter 13),
DWIM always acts as though it were in TRUSTING mode, i.e., no approval necessary. For certain types
of corrections, e.g., run-on spelling corrections, 9-0 errors, etc., DWIM always acts like it was in
CAUTIOUS mode, and asks for approval. In either case, DWIM always informs you of its action as
described below.

Spelling Correction Protocol

One type of error that DWIM can correct is the misspelling of a function or a variable name. When an
unbound symbol or undefined function error occurs, DWIM tries to correct the spelling of the bad
symbol. If a symbol is found whose spelling is "close" to the offender, DWIM proceeds as follows:

19-4

INTERLISP-D REFERENCE MANUAL
DWIM

If the correction occurs in the typed-in expression, DWIM prints =CORRECT-SPELLING and continues
evaluating the expression. For example:

←(SETQ FOO (IPLUSS 1 2))
=IPLUS
3

If the correction does not occur in type-in, DWIM prints

BAD-SPELLING [IN FUNCTION-NAME] -> CORRECT-SPELLING

The appearance of -> is to call attention to the fact that the user’s function will be or has been
changed.

Then, if DWIM is in TRUSTING mode, it prints a carriage return, makes the correction, and continues
the computation. If DWIM is in CAUTIOUS mode, it prints a few spaces and ? and then wait for
approval. The user then has six options:

1. Type Y. DWIM types es, and proceeds with the correction.

2. Type N. DWIM types o, and does not make the correction.

3. Type ↑. DWIM does not make the correction, and furthermore guarantees that the error
will not cause a break.

4. Type Control-E. For error correction, this has the same effect as typing N.

5. Do nothing. In this case DWIM waits for DWIMWAIT seconds, and if you have not
responded, DWIM will type ... followed by the default answer.

The default on spelling corrections is determined by the value of the variable
FIXSPELLDEFAULT, whose top level value is initially Y.

6. Type space or carriage-return. In this case DWIM will wait indefinitely. This option is
intended for those cases where you want to think about your answer, and want to insure
that DWIM does not get "impatient" and answer for you.

The procedure for spelling correction on other than Interlisp errors is analogous. If the correction is
being handled as type-in, DWIM prints = followed by the correct spelling, and returns it to the function
that called DWIM. Otherwise, DWIM prints the incorrect spelling, followed by the correct spelling.
Then, if DWIM is in TRUSTING mode, DWIM prints a carriage-return and returns the correct spelling.
Otherwise, DWIM prints a few spaces and a ? and waits for approval. You can then respond with Y, N,
Control-E, space, carriage return, or do nothing as described above.

The spelling corrector itself is not ERRORSET protected like the DWIM error correction routines.
Therefore, typing N and typing Control-E may have different effects when the spelling corrector is
called directly. The former simply instructs the spelling corrector to return NIL, and lets the calling

19-5

function decide what to do next; the latter causes an error which unwinds to the last ERRORSET,
however far back that may be.

Parentheses Errors Protocol

When an unbound symbol or undefined error occurs, and the offending symbol contains 9 or 0,
DWIM tries to correct errors caused by typing 9 for left parenthesis and 0 for right parenthesis. In
these cases, the interaction with you is similar to that for spelling correction. If the error occurs in
type-in, DWIM types =CORRECTION, and continues evaluating the expression. For example:

←(SETQ FOO 9IPLUS 1 2]
= (IPLUS
3

If the correction does not occur in type-in, DWIM prints

BAD-ATOM [IN FUNCTION-NAME] -> CORRECTION ?

and then waits for approval. You then have the same six options as for spelling correction, except the
waiting time is 3*DWIMWAIT seconds. If you type Y, DWIM operates as if it were in TRUSTING mode,
i.e., it makes the correction and prints its message.

Actually, DWIM uses the value of the variables LPARKEY and RPARKEY to determine the corresponding
lower case character for left and right parentheses. LPARKEY and RPARKEY are initially 9 and 0
respectively, but they can be reset for other keyboard layouts, e.g., on some terminals left parenthesis
is over 8, and right parenthesis is over 9.

Undefined Function T Errors

When an undefined function error occurs, and the offending function is T, DWIM tries to correct
certain types of parentheses errors involving a T clause in a conditional. DWIM recognizes errors of
the following forms:

(COND --) (T --) The T clause appears outside and immediately
following the COND.

(COND -- (-- & (T --))) The T clause appears inside a previous clause.

(COND -- ((T --))) The T clause has an extra pair of parentheses
around it.

For undefined function errors that are not one of these three types, DWIM takes no corrective action at
all, and the error will occur.

19-6

INTERLISP-D REFERENCE MANUAL
DWIM

If the error occurs in type-in, DWIM simply types T FIXED and makes the correction. Otherwise if
DWIM is in TRUSTING mode, DWIM makes the correction and prints the message:

[IN FUNCTION-NAME] {BAD-COND} ->
 {CORRECTED-COND}

If DWIM is in CAUTIOUS mode, DWIM prints

UNDEFINED FUNCTION T
[IN FUNCTION-NAME] FIX?

and waits for approval. You then have the same options as for spelling corrections and parenthesis
errors. If you type Y or default, DWIM makes the correction and prints its message.

Having made the correction, DWIM must then decide how to proceed with the computation. In the
first case, (COND --) (T --), DWIM cannot know whether the T clause would have been executed if
it had been inside of the COND. Therefore DWIM asks you CONTINUE WITH T CLAUSE (with a default
of YES). If you type N, DWIM continues with the form after the COND, i.e., the form that originally
followed the T clause.

In the second case, (COND -- (-- & (T --))), DWIM has a different problem. After moving the T
clause to its proper place, DWIM must return as the value of & as the value of the COND. Since this
value is no longer around, DWIM asks you OK TO REEVALUATE and then prints the expression
corresponding to &. If you type Y, or default, DWIM continues by reevaluating &, otherwise DWIM
aborts, and a U.D.F. T error will then occur (even though the COND has in fact been fixed). If DWIM
can determine for itself that the form can safely be reevaluated, it does not consult you before
reevaluating. DWIM can do this if the form is atomic, or CAR of the form is a member of the list
OKREEVALST, and each of the arguments can safely be reevaluated. For example, (SETQ X (CONS
(IPLUS Y Z) W)) is safe to reevaluate because SETQ, CONS, and IPLUS are all on OKREEVALST.

In the third case, (COND -- ((T --))), there is no problem with continuation, so no further
interaction is necessary.

DWIM Operation

Whenever the interpreter encounters an atomic form with no binding, or a non-atomic form CAR of
which is not a function or function object, it calls the function FAULTEVAL. Similarly, when APPLY is
given an undefined function, FAULTAPPLY is called. When DWIM is enabled, FAULTEVAL and
FAULTAPPLY are redefined to first call the DWIM package, which tries to correct the error. If DWIM
cannot decide how to fix the error, or you disapprove of DWIM’s correction (by typing N), or you type
Control-E, then FAULTEVAL and FAULTAPPLY cause an error or break. If you type ↑ to DWIM, DWIM
exits by performing (RETEVAL ’FAULTEVAL ’(ERROR!)), so that an error will be generated at the
position of the call to FAULTEVAL.

19-7

If DWIM can (and is allowed to) correct the error, it exits by performing RETEVAL of the corrected form,
as of the position of the call to FAULTEVAL or FAULTAPPLY. Thus in the example at the beginning of
the chapter, when DWIM determined that ITIMS was ITIMES misspelled, DWIM called RETEVAL with
(ITIMES N (FACCT 9SUB1 N)). Since the interpreter uses the value returned by FAULTEVAL
exactly as though it were the value of the erroneous form, the computation will thus proceed exactly
as though no error had occurred.

In addition to continuing the computation, DWIM also repairs the cause of the error whenever possible;
in the above example, DWIM also changed (with RPLACA) the expression (ITIMS N (FACCT 9SUB1
N)) that caused the error. Note that if your program had computed the form and called EVAL, it would
not be possible to repair the cause of the error, although DWIM could correct the misspelling each time
it occurred.

Error correction in DWIM is divided into three categories: unbound atoms, undefined CAR of form, and
undefined function in APPLY. Assuming that the user approves DWIM’s corrections, the action taken
by DWIM for the various types of errors in each of these categories is summarized below.

DWIM Correction: Unbound Atoms

If DWIM is called as the result of an unbound atom error, it proceeds as follows:

1. If the first character of the unbound atom is ’, DWIM assumes that you (intentionally)
typed ’ATOM for (QUOTE ATOM) and makes the appropriate change. No message is
typed, and no approval is requested.

If the unbound atom is just ’ itself, DWIM assumes you want the next expression quoted,
e.g., (CONS X ’(A B C)) will be changed to (CONS X (QUOTE (A B C))). Again
no message will be printed or approval asked. If no expression follows the ’, DWIM
gives up.

Note: ’ is normally defined as a read-macro character which converts ’FOO to
(QUOTE FOO) on input, so DWIM will not see the ’ in the case of expressions that
are typed-in.

2. If CLISP (see Chapter 21) is enabled, and the atom is part of a CLISP construct, the
CLISP transformation is performed and the result returned. For example, N-1 is
transformed to (SUB1 N), and (... FOO_3 ...) is transformed into (... (SETQ
FOO 3) ...).

3. If the atom contains an 9 (actually LPARKEY (see the DWIM Functions and Variables
section below), DWIM assumes the 9 was intended to be a left parenthesis, and calls the
editor to make appropriate repairs on the expression containing the atom. DWIM
assumes that you did not notice the mistake, i.e., that the entire expression was affected
by the missing left parenthesis. For example, if you type (SETQ X (LIST (CONS
9CAR Y) (CDR Z)) Y), the expression will be changed to (SETQ X (LIST (CONS
(CAR Y) (CDR Z)) Y)). The 9 does not have to be the first character of the atom:
DWIM will handle (CONS X9CAR Y) correctly.

19-8

INTERLISP-D REFERENCE MANUAL
DWIM

4. If the atom contains a 0 (actually RPARKEY, see the DWIM Functions and Variables
section below), DWIM assumes the 0 was intended to be a right parenthesis and
operates as in the case above.

5. If the atom begins with a 7, the 7 is treated as a ’. For example, 7FOO becomes ’FOO,
and then (QUOTE FOO).

6. The expressions on DWIMUSERFORMS (see the DWIMUSERFORMS section below) are
evaluated in the order that they appear. If any of these expressions returns a non-NIL
value, this value is treated as the form to be used to continue the computation, it is
evaluated and its value is returned by DWIM.

7. If the unbound atom occurs in a function, DWIM attempts spelling correction using the
LAMBDA and PROG variables of the function as the spelling list.

8. If the unbound atom occurred in a type-in to a break, DWIM attempts spelling correction
using the LAMBDA and PROG variables of the broken function as the spelling list.

9. Otherwise, DWIM attempts spelling correction using SPELLINGS3 (see the Spelling Lists
section below).

10. If all of the above fail, DWIM gives up.

Undefined CAR of Form

If DWIM is called as the result of an undefined CAR of form error, it proceeds as follows:

1. If CAR of the form is T, DWIM assumes a misplaced T clause and operates as described
in the Undefined Function T Errors section above.

2. If CAR of the form is F/L, DWIM changes the "F/L" to "FUNCTION(LAMBDA". For
example, (F/L (Y) (PRINT (CAR Y))) is changed to (FUNCTION (LAMBDA (Y)
(PRINT (CAR Y))). No message is printed and no approval requested. If you omit
the variable list, DWIM supplies (X), e.g., (F/L (PRINT (CAR X))) is changed to
(FUNCTION (LAMBDA (X) (PRINT (CAR X)))). DWIM determines that you have
supplied the variable list when more than one expression follows F/L, CAR of the first
expression is not the name of a function, and every element in the first expression is
atomic. For example, DWIM will supply (X) when correcting (F/L (PRINT (CDR
X)) (PRINT (CAR X))).

3. If CAR of the form is a CLISP word (IF, FOR, DO, FETCH, etc.), the indicated CLISP
transformation is performed, and the result is returned as the corrected form. See
Chapter 21.

4. If CAR of the form has a function definition, DWIM attempts spelling correction on CAR of
the definition using as spelling list the value of LAMBDASPLST, initially (LAMBDA
NLAMBDA).

5. If CAR of the form has an EXPR or CODE property, DWIM prints CAR-OF-FORM UNSAVED,
performs an UNSAVEDEF, and continues. No approval is requested.

19-9

6. If CAR of the form has a FILEDEF property, the definition is loaded from a file (except
when DWIMIFYing). If the value of the property is atomic, the entire file is to be loaded.
If the value is a list, CAR is the name of the file and CDR the relevant functions, and
LOADFNS will be used. For both cases, LDFLG will be SYSLOAD (see Chapter 17). DWIM
uses FINDFILE (Chapter 24), so that the file can be on any of the directories on
DIRECTORIES, initially (NIL NEWLISP LISP LISPUSERS). If the file is found,
DWIM types SHALL I LOAD followed by the file name or list of functions. If you
approve, DWIM loads the function(s) or file, and continues the computation.

7. If CLISP is enabled, and CAR of the form is part of a CLISP construct, the indicated
transformation is performed, e.g., (N←N-1) becomes (SETQ N (SUB1 N)).

8. If CAR of the form contains an 9, DWIM assumes a left parenthesis was intended e.g.,
(CONS9CAR X).

9. If CAR of the form contains a 0, DWIM assumes a right parenthesis was intended.

10. If CAR of the form is a list, DWIM attempts spelling correction on CAAR of the form using
LAMBDASPLST as spelling list. If successful, DWIM returns the corrected expression itself.

11. The expressions on DWIMUSERFORMS are evaluated in the order they appear. If any
returns a non-NIL value, this value is treated as the corrected form, it is evaluated, and
DWIM returns its value.

12. Otherwise, DWIM attempts spelling correction using SPELLINGS2 as the spelling list (see
the Spelling Lists section below). When DWIMIFYing, DWIM also attemps spelling
correction on function names not defined but previously encountered, using
NOFIXFNSLST as a spelling list (see Chapter 21).

13. If all of the above fail, DWIM gives up.

Undefined Function in APPLY

If DWIM is called as the result of an undefined function in APPLY error, it proceeds as follows:

1. If the function has a definition, DWIM attempts spelling correction on CAR of the
definition using LAMBDASPLST as spelling list.

2. If the function has an EXPR or CODE property, DWIM prints FN UNSAVED, performs an
UNSAVEDEF and continues. No approval is requested.

3. If the function has a property FILEDEF, DWIM proceeds as in case 6 of undefined CAR
of form.

4. If the error resulted from type-in, and CLISP is enabled, and the function name contains
a CLISP operator, DWIM performs the indicated transformation, e.g., type
FOO←(APPEND FIE FUM).

5. If the function name contains an 9, DWIM assumes a left parenthesis was intended, e.g.,
EDIT9FOO].

19-10

INTERLISP-D REFERENCE MANUAL
DWIM

6. If the "function" is a list, DWIM attempts spelling correction on CAR of the list using
LAMBDASPLST as spelling list.

7. The expressions on DWIMUSERFORMS are evaluated in the order they appear, and if any
returns a non-NIL value, this value is treated as the function used to continue the
computation, i.e., it will be applied to its arguments.

8. DWIM attempts spelling correction using SPELLINGS1 as the spelling list.

9. DWIM attempts spelling correction using SPELLINGS2 as the spelling list.

10. If all fail, DWIM gives up.

DWIMUSERFORMS

The variable DWIMUSERFORMS provides a convenient way of adding to the transformations that DWIM
performs. For example, you might want to change atoms of the form $X to (QA4LOOKUP X). Before
attempting spelling correction, but after performing other transformations (F/L, 9, 0, CLISP, etc.),
DWIM evaluates the expressions on DWIMUSERFORMS in the order they appear. If any expression
returns a non-NIL value, this value is treated as the transformed form to be used. If DWIM was called
from FAULTEVAL, this form is evaluated and the resulting value is returned as the value of
FAULTEVAL. If DWIM is called from FAULTAPPLY, this form is treated as a function to be applied to
FAULTARGS, and the resulting value is returned as the value of FAULTAPPLY. If all of the expressions
on DWIMUSERFORMS return NIL, DWIM proceeds as though DWIMUSERFORMS = NIL, and attempts
spelling correction. Note that DWIM simply takes the value and returns it; the expressions on
DWIMUSERFORMS are responsible for making any modifications to the original expression. The
expressions on DWIMUSERFORMS should make the transformation permanent, either by associating it
with FAULTX via CLISPTRAN, or by destructively changing FAULTX.

In order for an expression on DWIMUSERFORMS to be able to be effective, it needs to know various
things about the context of the error. Therefore, several of DWIM’s internal variables have been made
SPECVARS (see Chapter 18) and are therefore "visible" to DWIMUSERFORMS. Below are a list of those
variables that may be useful.

FAULTX [Variable]

For unbound atom and undefined car of form errors, FAULTX is the atom or form. For
undefined function in APPLY errors, FAULTX is the name of the function.

FAULTARGS [Variable]

For undefined function in APPLY errors, FAULTARGS is the list of arguments. FAULTARGS
may be modified or reset by expressions on DWIMUSERFORMS.

19-11

FAULTAPPLYFLG [Variable]

Value is T for undefined function in APPLY errors; NIL otherwise. The value of
FAULTAPPLYFLG after an expression on DWIMUSERFORMS returns a non-NIL value
determines how the latter value is to be treated. Following an undefined function in
APPLY error, if an expression on DWIMUSERFORMS sets FAULTAPPLYFLG to NIL, the
value returned is treated as a form to be evaluated, rather than a function to be applied.

FAULTAPPLYFLG is necessary to distinguish between unbound atom and undefined
function in APPLY errors, since FAULTARGS may be NIL and FAULTX atomic in both
cases.

TAIL [Variable]

For unbound atom errors, TAIL is the tail of the expression CAR of which is the unbound
atom. DWIMUSERFORMS expression can replace the atom by another expression by
performing (/RPLACA TAIL EXPR)

PARENT [Variable]

For unbound atom errors, PARENT is the form in which the unbound atom appears. TAIL
is a tail of PARENT.

TYPE-IN? [Variable]

True if the error occurred in type-in.

FAULTFN [Variable]

Name of the function in which error occurred. FAULTFN is TYPE-IN when the error
occurred in type-in, and EVAL or APPLY when the error occurred under an explicit call to
EVAL or APPLY.

DWIMIFYFLG [Variable]

True if the error was encountered while DWIMIFYing (as opposed to happening while
running a program).

EXPR [Variable]

Definition of FAULTFN, or argument to EVAL, i.e., the superform in which the error occurs.

The initial value of DWIMUSERFORMS is ((DWIMLOADFNS?)). DWIMLOADFNS? is a function for
automatically loading functions from files. If DWIMLOADFNSFLG is T (its initial value), and CAR of the
form is the name of a function, and the function is contained on a file that has been noticed by the file
package, the function is loaded, and the computation continues.

19-12

INTERLISP-D REFERENCE MANUAL
DWIM

DWIM Functions and Variables

DWIMWAIT [Variable]

Value is the number of seconds that DWIM will wait before it assumes that you are not
going to respond to a question and uses the default response FIXSPELLDEFAULT.

DWIM operates by dismissing for 250 milliseconds, then checking to see if anything has
been typed. If not, it dismisses again, etc. until DWIMWAIT seconds have elapsed. Thus,
there will be a delay of at most 1/4 second before DWIM responds to your answer.

FIXSPELLDEFAULT [Variable]

If approval is requested for a spelling correction, and you do not respond, defaults to
value of FIXSPELLDEFAULT, initially Y. FIXSPELLDEFAULT is rebound to N when
DWIMIFYing.

ADDSPELLFLG [Variable]

If NIL, suppresses calls to ADDSPELL. Initially T.

NOSPELLFLG [Variable]

If T, suppresses all spelling correction. If some other non-NIL value, suppresses spelling
correction in programs but not type-in. NOSPELLFLG is initially NIL. It is rebound to T
when compiling from a file.

RUNONFLG [Variable]

If NIL, suppresses run-on spelling corrections. Initially NIL.

DWIMLOADFNSFLG [Variable]

If T, tells DWIM that when it encounters a call to an undefined function contained on a file
that has been noticed by the file package, to simply load the function. DWIMLOADFNSFLG
is initially T (see above).

LPARKEY [Variable]
RPARKEY [Variable]

DWIM uses the value of the variables LPARKEY and RPARKEY (initially 9 and 0
respectively) to determine the corresponding lower case character for left and right
parentheses. LPARKEY and RPARKEY can be reset for other keyboard layouts. For
example, on some terminals left parenthesis is over 8, and right parenthesis is over 9.

OKREEVALST [Variable]

The value of OKREEVALST is a list of functions that DWIM can safely reevaluate. If a form
is atomic, or CAR of the form is a member of OKREEVALST, and each of the arguments can
safely be reevaluated, then the form can be safely reevaluated. For example, (SETQ X
(CONS (IPLUS Y Z) W)) is safe to reevaluate because SETQ, CONS, and IPLUS are all
on OKREEVALST.

19-13

DWIMFLG [Variable]

DWIMFLG = NIL, all DWIM operations are disabled. (DWIM ’C) and (DWIM T) set
DWIMFLG to T; (DWIM NIL) sets DWIMFLG to NIL.

APPROVEFLG [Variable]

APPROVEFLG = T if DWIM should ask the user for approval before making a correction that
will modify the definition of one of his functions; NIL otherwise.

When DWIM is put into CAUTIOUS mode with (DWIM ’C), APPROVEFLG is set to T; for
TRUSTING mode, APPROVEFLG is set to NIL.

LAMBDASPLST [Variable]

DWIM uses the value of LAMBDASPLST as the spelling list when correcting "bad" function
definitions. Initially (LAMBDA NLAMBDA). You may wish to add to LAMBDASPLST if you
elect to define new "function types" via an appropriate DWIMUSERFORMS entry. For
example, the QLAMBDAs of SRI’s QLISP are handled in this way.

Spelling Correction

The spelling corrector is given as arguments a misspelled word (word means symbol), a spelling list (a
list of words), and a number: XWORD, SPLST, and REL respectively. Its task is to find that word on
SPLST which is closest to XWORD, in the sense described below. This word is called a respelling of
XWORD. REL specifies the minimum "closeness" between XWORD and a respelling. If the spelling
corrector cannot find a word on SPLST closer to XWORD than REL, or if it finds two or more words
equally close, its value is NIL, otherwise its value is the respelling. The spelling corrector can also be
given an optional functional argument, FN, to be used for selecting out a subset of SPLST, i.e., only
those members of SPLST that satisfy FN will be considered as possible respellings.

The exact algorithm for computing the spelling metric is described later, but briefly "closeness" is
inversely proportional to the number of disagreements between the two words, and directly
proportional to the length of the longer word. For example, PRTTYPRNT is "closer" to PRETTYPRINT
than CS is to CONS even though both pairs of words have the same number of disagreements. The
spelling corrector operates by proceeding down SPLST, and computing the closeness between each
word and XWORD, and keeping a list of those that are closest. Certain differences between words are
not counted as disagreements, for example a single transposition, e.g., CONS to CNOS, or a doubled
letter, e.g., CONS to CONSS, etc. In the event that the spelling corrector finds a word on SPLST with no
disagreements, it will stop searching and return this word as the respelling. Otherwise, the spelling
corrector continues through the entire spelling list. Then if it has found one and only one "closest"
word, it returns this word as the respelling. For example, if XWORD is VONS, the spelling corrector will
probably return CONS as the respelling. However, if XWORD is CONZ, the spelling corrector will not be
able to return a respelling, since CONZ is equally close to both CONS and COND. If the spelling corrector
finds an acceptable respelling, it interacts with you as described earlier.

19-14

INTERLISP-D REFERENCE MANUAL
DWIM

In the special case that the misspelled word contains one or more $s (escape), the spelling corrector
searches for those words on SPLST that match XWORD, where a $ can match any number of characters
(including 0), e.g., FOO$ matches FOO1 and FOO, but not NEWFOO. FOO matches all three. Both
completion and correction may be involved, e.g. RPETTY$ will match PRETTYPRINT, with one
mistake. The entire spelling list is always searched, and if more than one respelling is found, the
spelling corrector prints AMBIGUOUS, and returns NIL. For example, CON$ would be ambiguous if
both CONS and COND were on the spelling list. If the spelling corrector finds one and only one
respelling, it interacts with you as described earlier.

For both spelling correction and spelling completion, regardless of whether or not you approve of the
spelling corrector’s choice, the respelling is moved to the front of SPLST. Since many respellings are of
the type with no disagreements, this procedure has the effect of considerably reducing the time
required to correct the spelling of frequently misspelled words.

Synonyms

Spelling lists also provide a way of defining synonyms for a particular context. If a dotted pair
appears on a spelling list (instead of just an atom), CAR is interpreted as the correct spelling of the
misspelled word, and CDR as the antecedent for that word. If CAR is identical with the misspelled
word, the antecedent is returned without any interaction or approval being necessary. If the
misspelled word corrects to CAR of the dotted pair, the usual interaction and approval will take place,
and then the antecedent, i.e., CDR of the dotted pair, is returned. For example,you could make IFLG
synonymous with CLISPIFTRANFLG by adding (IFLG . CLISPIFTRANFLG) to SPELLINGS3, the
spelling list for unbound atoms. Similarly, you could make OTHERWISE mean the same as ELSEIF by
adding (OTHERWISE . ELSEIF) to CLISPIFWORDSPLST, or make L be synonymous with LAMBDA
by adding (L . LAMBDA) to LAMBDASPLST. You can also use L as a variable without confusion,
since the association of L with LAMBDA occurs only in the appropriate context.

Spelling Lists

Any list of atoms can be used as a spelling list, e.g., BROKENFNS, FILELST, etc. Various system
packages have their own spellings lists, e.g., LISPXCOMS, CLISPFORWORDSPLST, EDITCOMSA, etc.
These are documented under their corresponding sections, and are also indexed under "spelling lists."
In addition to these spelling lists, the system maintains, i.e., automatically adds to, and occasionally
prunes, four lists used solely for spelling correction: SPELLINGS1, SPELLINGS2, SPELLINGS3, and
USERWORDS. These spelling lists are maintained only when ADDSPELLFLG is non-NIL. ADDSPELLFLG
is initially T.

SPELLINGS1 [Variable]

SPELLINGS1 is a list of functions used for spelling correction when an input is typed in
apply format, and the function is undefined, e.g., EDTIF(FOO). SPELLINGS1 is
initialized to contain DEFINEQ, BREAK, MAKEFILE, EDITF, TCOMPL, LOAD, etc. Whenever
LISPX is given an input in apply format, i.e., a function and arguments, the name of the
function is added to SPELLINGS1 if the function has a definition.

19-15

For example, typing CALLS(EDITF) will cause CALLS to be added to SPELLINGS1. Thus
if you typed CALLS(EDITF) and later typed CALLLS(EDITV), since SPELLINGS1
would then contain CALLS, DWIM would be successful in correcting CALLLS to CALLS.

SPELLINGS2 [Variable]

SPELLINGS2 is a list of functions used for spelling correction for all other undefined
functions. It is initialized to contain functions such as ADD1, APPEND, COND, CONS, GO,
LIST, NCONC, PRINT, PROG, RETURN, SETQ, etc. Whenever LISPX is given a non-atomic
form, the name of the function is added to SPELLINGS2. For example, typing (RETFROM
(STKPOS (QUOTE FOO) 2)) to a break would add RETFROM to SPELLINGS2. Function
names are also added to SPELLINGS2 by DEFINE, DEFINEQ, LOAD (when loading
compiled code), UNSAVEDEF, EDITF, and PRETTYPRINT.

SPELLINGS3 [Variable]

SPELLINGS3 is a list of words used for spelling correction on all unbound atoms.
SPELLINGS3 is initialized to EDITMACROS, BREAKMACROS, BROKENFNS, and
ADVISEDFNS. Whenever LISPX is given an atom to evaluate, the name of the atom is
added to SPELLINGS3 if the atom has a value. Atoms are also added to SPELLINGS3
whenever they are edited by EDITV, and whenever they are set via RPAQ or RPAQQ. For
example, when a file is loaded, all of the variables set in the file are added to
SPELLINGS3. Atoms are also added to SPELLINGS3 when they are set by a LISPX input,
e.g., typing (SETQ FOO (REVERSE (SETQ FIE ...))) will add both FOO and FIE to
SPELLINGS3.

USERWORDS [Variable]

USERWORDS is a list containing both functions and variables that you have referred to, e.g.,
by breaking or editing. USERWORDS is used for spelling correction by ARGLIST,
UNSAVEDEF, PRETTYPRINT, BREAK, EDITF, ADVISE, etc. USERWORDS is initially NIL.
Function names are added to it by DEFINE, DEFINEQ, LOAD, (when loading compiled
code, or loading exprs to property lists) UNSAVEDEF, EDITF, EDITV, EDITP,
PRETTYPRINT, etc. Variable names are added to USERWORDS at the same time as they are
added to SPELLINGS3. In addition, the variable LASTWORD is always set to the last word
added to USERWORDS, i.e., the last function or variable referred to by the user, and the
respelling of NIL is defined to be the value of LASTWORD. Thus, if you had just defined a
function, you can then prettyprint it by typing PP().

Each of the above four spelling lists are divided into two sections separated by a special marker (the
value of the variable SPELLSTR1). The first section contains the "permanent" words; the second
section contains the temporary words. New words are added to the corresponding spelling list at the
front of its temporary section (except that functions added to SPELLINGS1 or SPELLINGS2 by LISPX
are always added to the end of the permanent section. If the word is already in the temporary section,
it is moved to the front of that section; if the word is in the permanent section, no action is taken. If the
length of the temporary section then exceeds a specified number, the last (oldest) word in the
temporary section is forgotten, i.e., deleted. This procedure prevents the spelling lists from becoming
cluttered with unimportant words that are no longer being used, and thereby slowing down spelling

19-16

INTERLISP-D REFERENCE MANUAL
DWIM

correction time. Since the spelling corrector usually moves each word selected as a respelling to the
front of its spelling list, the word is thereby moved into the permanent section. Thus once a word is
misspelled and corrected, it is considered important and will never be forgotten.

The spelling correction algorithm will not alter a spelling list unless it contains the special marker (the
value of SPELLSTR1). This provides a way to ensure that a spelling list will not be altered.

#SPELLINGS1 [Variable]
#SPELLINGS2 [Variable]
#SPELLINGS3 [Variable]
#USERWORDS [Variable]

The maximum length of the temporary section for SPELLINGS1, SPELLINGS2,
SPELLINGS3 and USERWORDS is given by the value of #SPELLINGS1, #SPELLINGS2,
#SPELLINGS3, and #USERWORDS, initialized to 30, 30, 30, and 60 respectively.

You can alter these values to modify the performance behavior of spelling correction.

Generators for Spelling Correction

For some applications, it is more convenient to generate candidates for a respelling one by one, rather
than construct a complete list of all possible candidates, e.g., spelling correction involving a large
directory of files, or a natural language data base. For these purposes, SPLST can be an array (of any
size). The first element of this array is the generator function, which is called with the array itself as
its argument. Thus the function can use the remainder of the array to store "state" information, e.g.,
the last position on a file, a pointer into a data structure, etc. The value returned by the function is the
next candidate for respelling. If NIL is returned, the spelling "list" is considered to be exhausted, and
the closest match is returned. If a candidate is found with no disagreements, it is returned
immediately without waiting for the "list" to exhaust.

SPLST can also be a generator, i.e. the value of the function GENERATOR (Chapter 11). The generator
SPLST will be started up whenever the spelling corrector needs the next candidate, and it should
return candidates via the function PRODUCE. For example, the following could be used as a "spelling
list" which effectively contains all functions in the system:

[GENERATOR
(MAPATOMS (FUNCTION (LAMBDA (X) (if (GETD X) then (PRODUCE

X]

Spelling Corrector Algorithm

The basic philosophy of DWIM spelling correction is to count the number of disagreements between
two words, and use this number divided by the length of the longer of the two words as a measure of
their relative disagreement. One minus this number is then the relative agreement or closeness. For
example, CONS and CONX differ only in their last character. Such substitution errors count as one
disagreement, so that the two words are in 75% agreement. Most calls to the spelling corrector specify
a relative agreement of 70, so that a single substitution error is permitted in words of four characters

19-17

or longer. However, spelling correction on shorter words is possible since certain types of differences
such as single transpositions are not counted as disagreements. For example, AND and NAD have a
relative agreement of 100. Calls to the spelling corrector from DWIM use the value of FIXSPELLREL,
which is initially 70. Note that by setting FIXSPELLREL to 100, only spelling corrections with "zero"
mistakes, will be considered, e.g., transpositions, double characters, etc.

The central function of the spelling corrector is CHOOZ. CHOOZ takes as arguments: a word, a
minimum relative agreement, a spelling list, and an optional functional argument, XWORD, REL,
SPLST, and FN respectively.

CHOOZ proceeds down SPLST examining each word. Words not satisfying FN (if FN is non-NIL), or
those obviously too long or too short to be sufficiently close to XWORD are immediately rejected. For
example, if REL = 70, and XWORD is 5 characters long, words longer than 7 characters will be rejected.

Special treatment is necessary for words shorter than XWORD, since doubled letters are not counted as
disagreements. For example, CONNSSS and CONS have a relative agreement of 100. CHOOZ handles this
by counting the number of doubled characters in XWORD before it begins scanning SPLST, and taking
this into account when deciding whether to reject shorter words.

If TWORD, the current word on SPLST, is not rejected, CHOOZ computes the number of disagreements
between it and XWORD by calling a subfunction, SKOR.

SKOR operates by scanning both words from left to right one character at a time. SKOR operates on the
list of character codes for each word. This list is computed by CHOOZ before calling SKOR. Characters
are considered to agree if they are the same characters or appear on the same key (i.e., a shift mistake).
The variable SPELLCASEARRAY is a CASEARRAY which is used to determine equivalence classes for
this purpose. It is initialized to equivalence lowercase and upper case letters, as well as the standard
key transitions: for example, 1 with !, 3 with #, etc.

If the first character in XWORD and TWORD do not agree, SKOR checks to see if either character is the
same as one previously encountered, and not accounted-for at that time. (In other words,
transpositions are not handled by lookahead, but by lookback.) A displacement of two or fewer
positions is counted as a tranposition; a displacement by more than two positions is counted as a
disagreement.In either case, both characters are now considered as accounted for and are discarded,
and SKORing continues.

If the first character in XWORD and TWORD do not agree, and neither agree with previously
unaccounted-for characters, and TWORD has more characters remaining than XWORD, SKOR removes
and saves the first character of TWORD, and continues by comparing the rest of TWORD with XWORD as
described above. If TWORD has the same or fewer characters remaining than XWORD, the procedure is
the same except that the character is removed from XWORD. In this case, a special check is first made to
see if that character is equal to the previous character in XWORD, or to the next character in XWORD, i.e., a
double character typo, and if so, the character is considered accounted-for, and not counted as a
disagreement. In this case, the "length" of XWORD is also decremented. Otherwise making XWORD

19-18

INTERLISP-D REFERENCE MANUAL
DWIM

sufficiently long by adding double characters would make it be arbitrarily close to TWORD, e.g.,
XXXXXX would correct to PP.

When SKOR has finished processing both XWORD and TWORD in this fashion, the value of SKOR is the
number of unaccounted-for characters, plus the number of disagreements, plus the number of
tranpositions, with two qualifications:

1. If both XWORD and TWORD have a character unaccounted-for in the same position, the
two characters are counted only once, i.e., substitution errors count as only one
disagreement, not two

2. If there are no unaccounted-for characters and no disagreements, transpositions are not
counted.

This permits spelling correction on very short words, such as edit commands, e.g., XRT->XTR.
Transpositions are also not counted when FASTYPEFLG = T, for example, IPULX and IPLUS will be in
80% agreement with FASTYPEFLG = T, only 60% with FASTYPEFLG = NIL. The rationale behind this
is that transpositions are much more common for fast typists, and should not be counted as
disagreements, whereas more deliberate typists are not as likely to combine tranpositions and other
mistakes in a single word, and therefore can use more conservative metric. FASTYPEFLG is initially
NIL.

Spelling Corrector Functions and Variables

(ADDSPELL X SPLST N) [Function]

Adds X to one of the spelling lists as determined by the value of SPLST:

NIL Adds X to USERWORDS and to SPELLINGS2. Used by
DEFINEQ.

0 Adds X to USERWORDS. Used by LOAD when loading
EXPRs to property lists.

1 Adds X to SPELLINGS1 (at end of permanent section).
Used by LISPX.

2 Adds X to SPELLINGS2 (at end of permanent section).
Used by LISPX.

3 Adds X to USERWORDS and SPELLINGS3.

a spelling list If SPLST is a spelling list, X is added to it. In this case, N is
the (optional) length of the temporary section.

If X is already on the spelling list, and in its temporary
section, ADDSPELL moves X to the front of that section.

ADDSPELL sets LASTWORD to X when SPLST = NIL, 0 or 3.

If X is not a symbol, ADDSPELL takes no action.

19-19

Note that the various systems calls to ADDSPELL, e.g., from DEFINE, EDITF, LOAD, etc.,
can all be suppressed by setting or binding ADDSPELLFLG to NIL (see the DWIM
Functions and Variables section above).

(MISSPELLED? XWORD REL SPLST FLG TAIL FN) [Function]

If XWORD = NIL or $ (<esc>), MISSPELLED? prints = followed by the value of LASTWORD,
and returns this as the respelling, without asking for approval. Otherwise, MISSPELLED?
checks to see if XWORD is really misspelled, i.e., if FN applied to XWORD is true, or XWORD is
already contained on SPLST. In this case, MISSPELLED? simply returns XWORD.
Otherwise MISSPELLED? computes and returns (FIXSPELL XWORD REL SPLST FLG

TAIL FN).

(FIXSPELL XWORD REL SPLST FLG TAIL FN TIEFLG DONTMOVETOPFLG) [Function]

The value of FIXSPELL is either the respelling of or NIL. If for some reason itself is on ,
then FIXSPELL aborts and calls ERROR!. If there is a possibility that is spelled correctly,
MISSPELLED? should be used instead of FIXSPELL. FIXSPELL performs all of the
interactions described earlier, including requesting your approval if necessary.

If XWORD = NIL or $ (escape), the respelling is the value of LASTWORD, and no approval is
requested.

If XWORD contains lowercase characters, and the corresponding uppercase word is correct,
i.e. on SPLST or satisfies FN, the uppercase word is returned and no interaction is
performed. If FIXSPELL.UPPERCASE.QUIET is NIL (the default), a warning "=XX" is
printed when coercing from "xx" to "XX". If FIXSPELL.UPPERCASE.QUIET is non-NIL,
no warning is given.

If REL = NIL, defaults to the value of FIXSPELLREL (initially 70).

If FLG = NIL, the correction is handled in type-in mode, i.e., approval is never requested,
and XWORD is not typed. If FLG = T, XWORD is typed (before the =) and approval is
requested if APPROVEFLG = T. If FLG = NO-MESSAGE, the correction is returned with no
further processing. In this case, a run-on correction will be returned as a dotted pair of the
two parts of the word, and a synonym correction as a list of the form (WORD1 WORD2),
where WORD1 is (the corrected version of) XWORD, and WORD2 is the synonym. The effect
of the function CHOOZ can be obtained by calling FIXSPELL with FLG = NO-MESSAGE.

If TAIL is not NIL, and the correction is successful, CAR of TAIL is replaced by the
respelling (using /RPLACA).

FIXSPELL will attempt to correct misspellings caused by running two words together, if
the global variable RUNONFLG is non-NIL (default is NIL). In this case, approval is always
requested. When a run-on error is corrected, CAR of TAIL is replaced by the two words,
and the value of FIXSPELL is the first one. For example, if FIXSPELL is called to correct
the edit command (MOVE TO AFTERCOND 3 2) with TAIL = (AFTERCOND 3 2),
TAIL would be changed to (AFTER COND 2 3), and FIXSPELL would return AFTER
(subject to yourapproval where necessary). If TAIL = T, FIXSPELL will also perform run-

19-20

INTERLISP-D REFERENCE MANUAL
DWIM

on corrections, returning a dotted pair of the two words in the event the correction is of
this type.

If TIEFLG = NIL and a tie occurs, i.e., more than one word on SPLST is found with the
same degree of "closeness", FIXSPELL returns NIL, i.e., no correction. If TIEFLG =
PICKONE and a tie occurs, the first word is taken as the correct spelling. If TIEFLG =
LIST, the value of FIXSPELL is a list of the respellings (even if there is only one), and
FIXSPELL will not perform any interaction with you, nor modify TAIL, the idea being
that the calling program will handle those tasks. Similarly, if TIEFLG = EVERYTHING, a
list of all candidates whose degree of closeness is above REL will be returned, regardless
of whether some are better than others. No interaction will be performed.

If DONTMOVETOPFLG = T and a correction occurs, it will not be moved to the front of the
spelling list. Also, the spelling list will not be altered unless it contains the special marker
used to separate the temporary and perminant parts of the system spelling lists (the value
of SPELLSTR1).

(FNCHECK FN NOERRORFLG SPELLFLG PROPFLG TAIL) [Function]

The task of FNCHECK is to check whether FN is the name of a function and if not, to correct
its spelling. If FN is the name of a function or spelling correction is successful, FNCHECK
adds the (corrected) name of the function to USERWORDS using ADDSPELL, and returns it
as its value.

Since FNCHECK is called by many low level functions such as ARGLIST, UNSAVEDEF, etc.,
spelling correction only takes place when DWIMFLG = T, so that these functions can
operate in a small Interlisp system which does not contain DWIM.

NOERRORFLG informs FNCHECK whether or not the calling function wants to handle the
unsuccessful case: if NOERRORFLG is T, FNCHECK simply returns NIL, otherwise it prints
fn NOT A FUNCTION and generates a non-breaking error.

If FN does not have a definition, but does have an EXPR property, then spelling correction
is not attempted. Instead, if PROPFLG = T, FN is considered to be the name of a function,
and is returned. If PROPFLG = NIL, FN is not considered to be the name of a function, and
NIL is returned or an error generated, depending on the value of NOERRORFLG.

FNCHECK calls MISSPELLED? to perform spelling correction, so that if FN = NIL, the value
of LASTWORD will be returned. SPELLFLG corresponds to MISSPELLED?’s fourth
argument, FLG. If SPELLFLG = T, approval will be asked if DWIM was enabled in
CAUTIOUS mode, i.e., if APPROVEFLG = T. TAIL corresponds to the fifth argument to
MISSPELLED?.

FNCHECK is currently used by ARGLIST, UNSAVEDEF, PRETTYPRINT, BREAK0, BREAKIN,
ADVISE, and CALLS. For example, BREAK0 calls FNCHECK with NOERRORFLG = T since if
FNCHECK cannot produce a function, BREAK0 wants to define a dummy one. CALLS
however calls FNCHECK with NOERRORFLG = NIL, since it cannot operate without a
function.

19-21

Many other system functions call MISSPELLED? or FIXSPELL directly. For example, BREAK1 calls
FIXSPELL on unrecognized atomic inputs before attempting to evaluate them, using as a spelling list
a list of all break commands. Similarly, LISPX calls FIXSPELL on atomic inputs using a list of all
LISPX commands. When UNBREAK is given
the name of a function that is not broken, it calls FIXSPELL with two different spelling lists, first with
BROKENFNS, and if that fails, with USERWORDS. MAKEFILE calls MISSPELLED? using FILELST as a
spelling list. Finally, LOAD, BCOMPL, BRECOMPILE, TCOMPL, and RECOMPILE all call MISSPELLED? if
their input file(s) won’t open.

20-1

20. CLISP

The syntax of Lisp is very simple. It can be described concisely, but it makes Lisp difficult to read and
write without tools. Unlike many languages, there are no reserved words in Lisp such as IF, THEN,
FOR, DO, etc., nor reserved characters like +, -, =, ←, etc. The only components of the language are
atoms and delimiters. This eliminates the need for parsers and precedence rules, and makes Lisp
programs easy to mainpuilate. For example, a Lisp interpreter can be written in one or two pages of
Lisp code. This makes Lisp the most suitable programming language for writing programs that deal
with other programs as data.

Human language is based on more complicated structures and relies more on special words to carry
the meaning. The definiton of the factorial function looks like this in Lisp:

(COND ((ZEROP N) 1) (T (TIMES N (FACTORIAL ((SUB1 N))))))

This definition is easy to read for a machine but difficult to read for a human. CLISP is designed to
make Interlisp programs easier to read and write. CLISP does this by translating various operators,
conditionals, and iterative statements to Interlisp. For example, factorial can be written in CLISP:

(IF N = 0 THEN 1 ELSE N*(FACTORIAL N-1))

CLISP will translate this expression to the form in the example above. The translation will take place
when the form is read so there are no performance penalties.

You should view CLISP as a shothand for produceing Lisp programs. CLISP makes a program easy to
read and sometimes more compact.

CLISP is implemented via the error correction machinery in Interlisp (see Chapter 20). Any
expression that Interlisp thinks is well-formed will never be seen by CLISP This means that
interpreted programs that do not use CLISP constructs do not pay for its availability by slower
execution time. In fact, the Interlisp interpreter does not know about CLISP at all. When the
interpreter finds an error it calls an error routine which in turn invokes the Do-What-I-Mean (DWIM)
analyzer. The DWIM analyzer knows how to deal with CLISP expressions. If the expression in
question turns out to be a CLISP construct, the translated form is returned to the interpreter. In
addition, the original CLISP expression is modified so that it becomes the correctly translated Interlisp
form. In this way, the analysis and translation are done only once.

Integrating CLISP into Medley makes possible Do-What-I-Mean features for CLISP constructs as well
as for pure Lisp expressions. For example, if you have defined a function named GET-PARENT, CLISP
would know not to attempt to interpret the form (GET-PARENT) as an arithmetic infix operation.
(Actually, CLISP would never get to see this form, since it does not contain any errors.) If you
mistakenly write (GET-PRAENT), CLISP would know you meant (GET-PARENT), and not
(DIFFERENCE GET PRAENT), by using the information that PARENT is not the name of a variable,
and that GET-PARENT is the name of a user function whose spelling is "very close" to that of GET-

20-2

INTERLISP-D REFERENCE MANUAL

PRAENT. Similarly, by using information about the program’s environment not readily available to a
preprocessor, CLISP can successfully resolve the following sorts of ambiguities:

1. (LIST X*FACT N), where FACT is the name of a variable, means (LIST (X*FACT)
N).

2. (LIST X*FACT N), where FACT is not the name of a variable but instead is the name
of a function, means (LIST X*(FACT N)), i.e., N is FACT’s argument.

3. (LIST X*FACT(N)), FACT the name of a function (and not the name of a variable),
means (LIST X*(FACT N)).

4. Cases 1, 2 and 3 with FACT misspelled!

The first expression is correct both from the standpoint of CLISP syntax and semantics so the change
would be made notification. In the other cases, you would be informed or consulted about what was
taking place. For example, suppose you write the expression (LIST X*FCCT N). Assume also that
there was both a function named FACT and a variable named FCT.

1. You will first be asked if FCCT is a misspelling of FCT. If you say YES, the expression
will be interpreted as (LIST (X*FCT) N). If you say NO, you will be asked if FCCT
was a misspelling of FACT, i.e., if you intended X*FCCT N to mean X*(FACT N).

2. If you say YES to this question, the indicated transformation will be performed. If you
say NO, the system will ask if X*FCCT should be treated as CLISP, since FCCT is not
the name of a (bound) variable.

3. If you say YES, the expression will be transformed, if NO, it will be left alone, i.e., as
(LIST X*FCCT N). Note that we have not even considered the case where X*FCCT is
itself a misspelling of a variable name, e.g., a variable named XFCT (as with GET-
PRAENT). This sort of transformation will be considered after you said NO to X*FCCT
N -> X*(FACT N).

The question of whether X*FCCT should be treated as CLISP is important because Interlisp users may
have programs that employ identifiers containing CLISP operators. Thus, if CLISP encounters the
expression A/B in a context where either A or B are not the names of variables, it will ask you if A/B is
intended to be CLISP, in case you really do have a free variable named A/B.

Note: Through the discussion above, we speak of CLISP or DWIM asking you.
Actually, if you typed in the expression in question for immediate execution, you
are simply informed of the transformation, on the grounds that you would prefer
an occasional misinterpretation rather than being continuously bothered,
especially since you can always retype what you intended if a mistake occurs,
and ask the programmer’s assistant to UNDO the effects of the mistaken
operations if necessary. For transformations on expressions in your programs,
you can tell CLISP whether you wish to operate in CAUTIOUS or TRUSTING
mode. In the former case (most typical) you will be asked to approve
transformations, in the latter, CLISP will operate as it does on type-in, i.e.,
perform the transformation after informing you.

20-3

CLISP

CLISP can also handle parentheses errors caused by typing 8 or 9 for (or). (On most terminals, 8
and 9 are the lowercase characters for (and), i.e., (and 8 appear on the same key, as do) and 9.)
For example, if you write N*8FACTORIAL N-1, the parentheses error can be detected and fixed
before the infix operator * is converted to the Interlisp function TIMES. CLISP is able to distinguish
this situation from cases like N*8*X meaning (TIMES N 8 X), or N*8X, where 8X is the name of a
variable, again by using information about the programming environment. In fact, by integrating
CLISP with DWIM, CLISP has been made sufficiently tolerant of errors that almost everything can be
misspelled! For example, CLISP can successfully translate the definition of FACTORIAL:

(IFF N = 0 THENN1 ESLE N*8FACTTORIALNN-1)

to the corresponding COND, while making five spelling corrections and fixing the parenthesis error.
CLISP also contains a facility for converting from Interlisp back to CLISP, so that after running the
above incorrect definition of FACTORIAL, you could "clispify" the now correct version to obtain (IF
N = 0 THEN 1 ELSE N*(FACTORIAL N-1)).

This sort of robustness prevails throughout CLISP. For example, the iterative statement permits you
to say things like:

(FOR OLD X FROM M TO N DO (PRINT X) WHILE (PRIMEP X))

However, you can also write OLD (X←M), (OLD X←M), (OLD (X←M)), permute the order of the
operators, e.g., (DO PRINT X TO N FOR OLD X←M WHILE PRIMEP X), omit either or both sets
of parentheses, misspell any or all of the operators FOR, OLD, FROM, TO, DO, or WHILE, or leave out the
word DO entirely! And, of course, you can also misspell PRINT, PRIMEP, M or N! In this example, the
only thing you could not misspell is the first X, since it specifies the name of the variable of iteration.
The other two instances of X could be misspelled.

CLISP is well integrated into Medley. For example, the above iterative statement translates into an
equivalent Interlisp form using PROG, COND, GO, etc. When the interpreter subsequently encounters
this CLISP expression, it automatically obtains and evaluates the translation. Similarly, the compiler
"knows" to compile the translated form. However, if you PRETTYPRINT your program,
PRETTYPRINT "knows" to print the original CLISP at the corresponding point in your function.
Similarly, when you edit your program, the editor keeps the translation invisible to you. If you
modify the CLISP, the translation is automatically discarded and recomputed the next time the
expression is evaluated.

In short, CLISP is not a language at all, but rather a system. It plays a role analagous to that of the
programmer’s assistant (Chapter 13). Whereas the programmer’s assistant is an invisible
intermediary agent between your console requests and the Interlisp executive, CLISP sits between
your programs and the Interlisp interpreter.

Only a small effort has been devoted to defining the core syntax of CLISP. Instead, most of the effort
has been concentrated on providing a facility which "makes sense" out of the input expressions using
context information as well as built-in and acquired information about user and system programs. It
has been said that communication is based on the intention of the speaker to produce an effect in the

20-4

INTERLISP-D REFERENCE MANUAL

recipient. CLISP operates under the assumption that what you say is intended to represent a
meaningful operation, and therefore tries very hard to make sense out of it. The motivation behind
CLISP is not to provide you with many different ways of saying the same thing, but to enable you to
worry less about the syntactic aspects of your communication with the system. In other words, it gives
you a new degree of freedom by permitting you to concentrate more on the problem at hand, rather
than on translation into a formal and unambiguous language.

DWIM and CLISP are invoked on iterative statements because CAR of the iterative statement is not the
name of a function, and hence generates an error. If you define a function by the same name as an i.s.
operator, e.g., WHILE, TO, etc., the operator will no longer have the CLISP interpretation when it
appears as CAR of a form, although it will continue to be treated as an i.s. operator if it appears in the
interior of an i.s. To alert you, a warning message is printed, e.g., (WHILE DEFINED, THEREFORE
DISABLED IN CLISP).

CLISP Interaction with User

Syntactically and semantically well formed CLISP transformations are always performed without
informing you. Other CLISP transformations described in the previous section, e.g., misspellings of
operands, infix operators, parentheses errors, unary minus - binary minus errors, all follow the same
protocol as other DWIM transformations (Chapter 19). That is, if DWIM has been enabled in
TRUSTING mode, or the transformation is in an expression you typed in for immediate execution,
your approval is not requested, but you are informed. However, if the transformation involves a user
program, and DWIM was enabled in CAUTIOUS mode, you will be asked to approve. If you say NO,
the transformation is not performed. Thus, in the previous section, phrases such as "one of these
(transformations) succeeds" and "the transformation LAST-ELL -> LAST-EL would be found" etc.,
all mean if you are in CAUTIOUS mode and the error is in a program, the corresponding
transformation will be performed only if you approve (or defaults by not responding). If you say NO,
the procedure followed is the same as though the transformation had not been found. For example, if
A*B appears in the function FOO, and B is not bound (and no other transformations are found) you
would be asked A*B [IN FOO] TREAT AS CLISP ? (The waiting time on such interactions is
three times as long as for simple corrections, i.e., 3*DWIMWAIT).

In certain situations, DWIM asks for approval even if DWIM is enabled in TRUSTING mode. For
example, you are always asked to approve a spelling correction that might also be interpreted as a
CLISP transformation, as in LAST-ELL -> LAST-EL.

If you approved, A*B would be transformed to (ITIMES A B), which would then cause a U.B.A.B.
error in the event that the program was being run (remember the entire discussion also applies to
DWIMifying). If you said NO, A*B would be left alone.

If the value of CLISPHELPFLG = NIL (initally T), you will not be asked to approve any CLISP
transformation. Instead, in those situations where approval would be required, the effect is the same
as though you had been asked and said NO.

20-5

CLISP

CLISP Character Operators

CLISP recognizes a number of special characters operators, both prefix and infix, which are translated
into common expressions. For example, the character + is recognized to represent addition, so CLISP
translates the symbol A+B to the form (IPLUS A B). Note that CLISP is invoked, and this translation
is made, only if an error occurs, such as an unbound atom error or an undefined function error for the
perfectly legitamate symbol A+B. Therefore you may choose not to use these facilities with no
penalty, similar to other CLISP facilities.

You have a lot of flexability in using CLISP character operators. A list can always be substituted for a
symbol, and vice versa, without changing the interpretation of a phrase. For example, if the value of
(FOO X) is A, and the value of (FIE Y) is B, then (LIST (FOO X)+(FIE Y)) has the same value
as (LIST A+B). Note that the first expression is a list of four elements: the atom "LIST", the list
"(FOO X)", the atom "+", and the list "(FIE X)", whereas the second expression, (LIST A+B), is a
list of only two elements: the symbol "LIST" and the symbol "A+B". Since (LIST (FOO X)+(FIE
Y)) is indistinguishable from (LIST (FOO X) + (FIE Y)) because spaces before or after
parentheses have no effect on the Interlisp READ program, to be consistent, extra spaces have no effect
on atomic operands either. In other words, CLISP will treat (LIST A+ B), (LIST A +B), and
(LIST A + B) the same as (LIST A+B).

Note: CLISP does not use its own special READ program because this would require
you to explicitly identify CLISP expressions, instead of being able to intermix
Interlisp and CLISP.

+ [CLISP Operator]
- [CLISP Operator]
* [CLISP Operator]
/ [CLISP Operator]
↑ [CLISP Operator]

CLISP recognizes +, -, *, /, and ↑ as the normal arithmetic infix operators. The - is also
recognized as the prefix operator, unary minus. These are converted to PLUS,
DIFFERENCE (or in the case of unary minus, MINUS), TIMES, QUOTIENT, and EXPT.

Normally, CLISP uses the "generic" arithmetic functions PLUS, TIMES, etc. CLISP
contains a facility for declaring which type of arithmetic is to be used, either by making a
global declaration, or by separate declarations about individual functions or variables.

The usual precedence rules apply (although you can easily change them), i.e., * has higher
precedence than + so that A+B*C is the same as A+(B*C), and both * and / are lower
than ↑ so that 2*X↑2 is the same as 2*(X↑2). Operators of the same precedence group
from left to right, e.g., A/B/C is equivalent to (A/B)/C. Minus is binary whenever
possible, i.e., except when it is the first operator in a list, as in (-A) or (-A), or when it
immediately follows another operator, as in A*-B. Note that grouping with parentheses
can always be used to override the normal precedence grouping, or when you are not sure
how a particular expression will parse. The complete order of precedence for CLISP
operators is given below.

20-6

INTERLISP-D REFERENCE MANUAL

Note that + in front of a number will disappear when the number is read, e.g., (FOO X
+2) is indistinguishable from (FOO X 2). This means that (FOO X +2) will not be
interpreted as CLISP, or be converted to (FOO (IPLUS X 2)). Similarly, (FOO X -2)
will not be interpreted the same as (FOO X-2). To circumvent this, always type a space
between the + or - and a number if an infix operator is intended, e.g., write (FOO X +
2).

= [CLISP Operator]
GT [CLISP Operator]
LT [CLISP Operator]
GE [CLISP Operator]
LE [CLISP Operator]

These are infix operators for "Equal", "Greater Than", "Less Than", "Greater Than or
Equal", and "Less Than or Equal".

GT, LT, GE, and LE are all affected by the same declarations as + and *, with the initial
default to use GREATERP and LESSP.

Note that only single character operators, e.g., +, ←, =, etc., can appear in the interior of an
atom. All other operators must be set off from identifiers with spaces. For example, XLTY
will not be recognized as CLISP. In some cases, DWIM will be able to diagnose this
situation as a run-on spelling error, in which case after the atom is split apart, CLISP will
be able to perform the indicated transformation.

A number of Lisp functions, such as EQUAL, MEMBER, AND, OR, etc., can also be treated as CLISP infix
operators. New infix operators can be easily added (see the CLISP Internal Convetions section below).
Spelling correction on misspelled infix operators is peformed using CLISPINFIXSPLST as a spelling
list.

AND is higher than OR, and both AND and OR are lower than the other infix operators, so (X OR Y
AND Z) is the same as (X OR (Y AND Z)), and (X AND Y EQUAL Z) is the same as (X AND (Y
EQUAL Z)). All of the infix predicates have lower precedence than Interlisp forms, since it is far
more common to apply a predicate to two forms, than to use a Boolean as an argument to a function.
Therefore, (FOO X GT FIE Y) is translated as ((FOO X) GT (FIE Y)), rather than as (FOO (X
GT (FIE Y))). However, you can easily change this.

: [CLISP Operator]

X:N extracts the Nth element of the list X. FOO:3 specifies the third element of FOO, or
(CADDR FOO). If N is less than zero, this indicates elements counting from the end of the
list; i.e. FOO:-1 is the last element of FOO. : operators can be nested, so FOO:1:2 means
the second element of the first element of FOO, or (CADAR FOO).

The : operator can also be used for extracting substructures of records (see Chapter 8).
Record operations are implemented by replacing expressions of the form X:FOO by (fetch
FOO of X). Both lower- and uppercase are acceptable.

20-7

CLISP

: is also used to indicate operations in the pattern match facility (see Chapter 12). X:(&
’A -- ’B) translates to (match X with (& ’A -- ’B))

. [CLISP Operator]

In combination with :, a period can be used to specify the "data path" for record
operations. For example, if FOO is a field of the BAR record, X:BAR.FOO is translated into
(fetch (BAR FOO) of X). Subrecord fields can be specified with multiple periods:
X:BAR.FOO.BAZ translates into (fetch (BAR FOO BAZ) of X).

Note: If a record contains fields with periods in them, CLISPIFY will not
translate a record operation into a form using periods to specify the
data path. For example, CLISPIFY will NOT translate (fetch A.B
of X) into X:A.B.

:: [CLISP Operator]

X:N, returns the Nth tail of the list X. For example, FOO::3 is (CDDDR FOO), and FOO::-
1 is (LAST FOO).

← [CLISP Operator]

← is used to indicate assignment. For example, X←Y translates to (SETQ X Y). If X does
not have a value, and is not the name of one of the bound variables of the function in
which it appears, spelling correction is attempted. However, since this may simply be a
case of assigning an initial value to a new free variable, DWIM will always ask for
approval before making the correction.

In conjunction with : and ::, ← can also be used to perform a more general type of
assignment, involving structure modification. For example, X:2←Y means "make the
second element of X be Y", in Interlisp terms (RPLACA (CDR X) Y). Note that the value
of this operation is the value of RPLACA, which is (CDR X), rather than Y. Negative
numbers can also be used, e.g., X:-2_Y, which translates to (RPLACA (NLEFT X 2)
Y).

You can indicate you want /RPLACA and /RPLACD used (undoable version of RPLACA
and RPLACD, see Chapter 13), or FRPLACA and FRPLACD (fast versions of RPLACA and
RPLACD, see Chapter 3), by means of CLISP declarations. The initial default is to use
RPLACA and RPLACD.

← is also used to indicate assignment in record operations (X:FOO←Y translates to
(replace FOO of X with Y).), and pattern match operations (Chapter 12).

← has different precedence on the left from on the right. On the left,← is a "tight"
operator, i.e., high precedence, so that A+B←C is the same as A+(B←C). On the right, ←
has broader scope so that A←B+C is the same as A←(B+C).

On type-in, $←FORM (where $ is the escape key) is equivalent to set the "last thing
mentioned", i.e., is equivalent to (SET LASTWORD FORM) (see Chapter 20). For example,

20-8

INTERLISP-D REFERENCE MANUAL

immediately after examining the value of LONGVARIABLENAME, you could set it by typing
$← followed by a form.

Note that an atom of the form X←Y, appearing at the top level of a PROG, will not be
recognized as an assignment statement because it will be interpreted as a PROG label by
the Interlisp interpreter, and therefore will not cause an error, so DWIM and CLISP will
never get to see it. Instead, one must write (X←Y).

< [CLISP Operator]
> [CLISP Operator]

Angle brackets are used in CLISP to indicate list construction. The appearance of a "<"
corresponds to a "(" and indicates that a list is to be constructed containing all the
elements up to the corresponding ">". For example, <A B <C>> translates to (LIST A
B (LIST C)). ! can be used to indicate that the next expression is to be inserted in the
list as a segment, e.g., <A B ! C> translates to (CONS A (CONS B C)) and <! A ! B
C> to (APPEND A B (LIST C)). !! is used to indicate that the next expression is to be
inserted as a segment, and furthermore, all list structure to its right in the angle brackets is
to be physically attached to it, e.g., <!! A B> translates to (NCONC1 A B), and <!!A !B
!C> to (NCONC A (APPEND B C)). Not (NCONC (APPEND A B) C), which would
have the same value, but would attach C to B, and not attach either to A. Note that <, !,
!!, and > need not be separate atoms, for example, <A B ! C> may be written equally
well as < A B !C >. Also, arbitrary Interlisp or CLISP forms may be used within angle
brackets. For example, one can write <FOO←(FIE X) ! Y> which translates to (CONS
(SETQ FOO (FIE X)) Y). CLISPIFY converts expressions in CONS, LIST, APPEND,
NCONC, NCONC1, /NCONC, and /NCONC1 into equivalent CLISP expressions using <, >, !,
and !!.

Note: brackets differ from other CLISP operators. For example, <A B ’C>
translates to (LIST A B (QUOTE C)) even though following ’, all
operators are ignored for the rest of the identifier. (This is true only if a
previous unmatched < has been seen, e.g., (PRINT ’A>B) will print
the atom A>B.) Note however that <A B ’ C> D> is equivalent to
(LIST A B (QUOTE C>) D).

’ [CLISP Operator]

CLISP recognizes ’ as a prefix operator. ’ means QUOTE when it is the first character in
an identifier, and is ignored when it is used in the interior of an identifier. Thus, X = ’Y
means (EQ X (QUOTE Y)), but X = CAN’T means (EQ X CAN’T), not (EQ X CAN)
followed by (QUOTE T). This enables users to have variable and function names with ’
in them (so long as the ’ is not the first character).

Following ’, all operators are ignored for the rest of the identifier, e.g., ’*A means
(QUOTE *A), and ’X=Y means (QUOTE X=Y), not (EQ (QUOTE X) Y). To write (EQ
(QUOTE X) Y), one writes Y=’X, or ’X =Y. This is one place where an extra space does
make a difference.

20-9

CLISP

On type-in, ’$ (escape) is equivalent to (QUOTE VALUE-OF-LASTWORD) (see Chapter 19).
For example, after calling PRETTYPRINT on LONGFUNCTION, you could move its
definition to FOO by typing (MOVD ’$ ’FOO).

Note that this is not (MOVD $ ’FOO), which would be equivalent to (MOVD
LONGFUNCTION ’FOO), and would (probably) cause a U.B.A. LONGFUNCTION error,
nor MOVD($ FOO), which would actually move the definition of $ to FOO, since DWIM
and the spelling corrector would never be invoked.

~ [CLISP Operator]

CLISP recognizes ~ as a prefix operator meaning NOT. ~ can negate a form, as in
~(ASSOC X Y), or ~X, or negate an infix operator, e.g., (A ~GT B) is the same as (A
LEQ B). Note that ~A = B means (EQ (NOT A) B).

When ~ negates an operator, e.g., ~=, ~LT, the two operators are treated as a single
operator whose precedence is that of the second operator. When ~ negates a function, e.g.,
(~FOO X Y), it negates the whole form, i.e., (~(FOO X Y)).

Order of Precedence of CLISP Operators:
’
:

← (left precedence)
- (unary), ~
↑
*, /

+, - (binary)
← (right precedence)
=

Interlisp forms
LT, GT, EQUAL, MEMBER, etc.
AND
OR
IF, THEN, ELSEIF, ELSE
iterative statement operators

Declarations

CLISP declarations are used to affect the choice of Interlisp function used as the translation of a
particular operator. For example, A+B can be translated as either (PLUS A B), (FPLUS A B), or
(IPLUS A B), depending on the declaration in effect. Similarly X:1←Y can mean (RPLACA X Y),
(FRPLACA X Y), or (/RPLACA X Y), and <!! A B> either (NCONC1 A B) or (/NCONC1 A B).
Note that the choice of function on all CLISP transformations are affected by the CLISP declaration in

20-10

INTERLISP-D REFERENCE MANUAL

effect, i.e., iterative statements, pattern matches, record operations, as well as infix and prefix
operators.

(CLISPDEC DECLST) [Function]

Puts into effect the declarations in DECLST. CLISPDEC performs spelling corrections on
words not recognized as declarations. CLISPDEC is undoable.

You can makes (changes) a global declaration by calling CLISPDEC with DECLST a list of
declarations, e.g., (CLISPDEC ’(FLOATING UNDOABLE)). Changing a global
declaration does not affect the speed of subsequent CLISP transformations, since all CLISP
transformation are table driven (i.e., property list), and global declarations are
accomplished by making the appropriate internal changes to CLISP at the time of the
declaration. If a function employs local declarations (described below), there will be a
slight loss in efficiency owing to the fact that for each CLISP transformation, the
declaration list must be searched for possibly relevant declarations.

Declarations are implemented in the order that they are given, so that later declarations
override earlier ones. For example, the declaration FAST specifies that FRPLACA,
FRPLACD, FMEMB, and FLAST be used in place of RPLACA, RPLACD, MEMB, and LAST; the
declaration RPLACA specifies that RPLACA be used. Therefore, the declarations (FAST
RPLACA RPLACD) will cause FMEMB, FLAST, RPLACA, and RPLACD to be used.

The initial global declaration is MIXED and STANDARD.

The table below gives the declarations available in CLISP, and the Interlisp functions they
indicate:

Declaration: Interlisp Functions to be used:

MIXED PLUS, MINUS, DIFFERENCE, TIMES,
QUOTIENT, LESSP, GREATERP

INTEGER or FIXED IPLUS, IMINUS, IDIFFERENCE, ITIMES,
IQUOTIENT, ILESSP, IGREATERP

FLOATING FPLUS, FMINUS, FDIFFERENCE, FTIMES,
FQUOTIENT, LESSP, FGREATERP

FAST FRPLACA, FRPLACD, FMEMB, FLAST, FASSOC

UNDOABLE /RPLACA, /RPLACD, /NCONC, /NCONC1,
/MAPCONC, /MAPCON

STANDARD RPLACA, RPLACD, MEMB, LAST, ASSOC,
NCONC, NCONC1, MAPCONC, MAPCON

RPLACA, RPLACD,
 /RPLACA, etc. corresponding function

You can also make local declarations affecting a selected function or functions by inserting
an expression of the form (CLISP: . DECLARATIONS) immediately following the

20-11

CLISP

argument list, i.e., as CADDR of the definition. Such local declarations take precedence
over global declarations. Declarations affecting selected variables can be indicated by
lists, where the first element is the name of a variable, and the rest of the list the
declarations for that variable. For example, (CLISP: FLOATING (X INTEGER))
specifies that in this function integer arithmetic be used for computations involving X, and
floating arithmetic for all other computations, where "involving" means where the
variable itself is an operand. For example, with the declaration (FLOATING (X
INTEGER)) in effect, (FOO X)+(FIE X) would translate to FPLUS, i.e., use floating
arithmetic, even though X appears somewhere inside of the operands, whereas X+(FIE
X) would translate to IPLUS. If there are declarations involving both operands, e.g., X+Y,
with (X FLOATING) (Y INTEGER), whichever appears first in the declaration list will
be used.

You can also make local record declarations by inserting a record declaration, e.g.,
(RECORD --), (ARRAYRECORD --), etc., in the local declaration list. In addition, a local
declaration of the form (RECORDS A B C) is equivalent to having copies of the global
declarations A, B, and C in the local declaration. Local record declarations override global
record declarations for the function in which they appear. Local declarations can also be
used to override the global setting of certain DWIM/CLISP parameters effective only for
transformations within that function, by including in the local declaration an expression
of the form (VARIABLE = VALUE), e.g., (PATVARDEFAULT = QUOTE).

The CLISP: expression is converted to a comment of a special form recognized by CLISP.
Whenever a CLISP transformation that is affected by declarations is about to be
performed in a function, this comment will be searched for a relevant declaration, and if
one is found, the corresponding function will be used. Otherwise, if none are found, the
global declaration(s) currently in effect will be used.

Local declarations are effective in the order that they are given, so that later declarations
can be used to override earlier ones, e.g., (CLISP: FAST RPLACA RPLACD) specifies
that FMEMB, FLAST, RPLACA, and RPLACD be used. An exception to this is that
declarations for specific variables take precedence of general, function-wide declarations,
regardless of the order of appearance, as in (CLISP: (X INTEGER) FLOATING).

CLISPIFY also checks the declarations in effect before selecting an infix operator to
ensure that the corresponding CLISP construct would in fact translate back to this form.
For example, if a FLOATING declaration is in effect, CLISPIFY will convert (FPLUS X
Y) to X+Y, but leave (IPLUS X Y) as is. If (FPLUS X Y) is CLISPIFYed while a
FLOATING declaration is under effect, and then the declaration is changed to INTEGER,
when X+Y is translated back to Interlisp, it will become (IPLUS X Y).

CLISP Operation

CLISP is a part of the basic Medley system. Without any special preparations, you can include CLISP
constructs in programs, or type them in directly for evaluation (in EVAL or APPLY format), then, when
the "error" occurrs, and DWIM is called, it will destructively transform the CLISP to the equivalent
Interlisp expression and evaluate the Interlisp expression. CLISP transformations, like all DWIM

20-12

INTERLISP-D REFERENCE MANUAL

corrections, are undoable. User approval is not requested, and no message is printed. This entire
discussion also applies to CLISP transformation initiated by calls to DWIM from DWIMIFY.

However, if a CLISP construct contains an error, an appropriate diagnostic is generated, and the form
is left unchanged. For example, if you write (LIST X+Y*), the error diagnostic MISSING OPERAND
AT X+Y* IN (LIST X+Y*) would be generated. Similarly, if you write (LAST+EL X), CLISP
knows that ((IPLUS LAST EL) X) is not a valid Interlisp expression, so the error diagnostic
MISSING OPERATOR IN (LAST+EL X) is generated. (For example, you might have meant to say
(LAST+EL*X).) If LAST+EL were the name of a defined function, CLISP would never see this form.

Since the bad CLISP transformation might not be CLISP at all, for example, it might be a misspelling
of a user function or variable, DWIM holds all CLISP error messages until after trying other
corrections. If one of these succeeds, the CLISP message is discarded. Otherwise, if all fail, the
message is printed (but no change is made). For example, suppose you type (R/PLACA X Y).
CLISP generates a diagnostic, since ((IQUOTIENT R PLACA) X Y) is obviously not right.
However, since R/PLACA spelling corrects to /RPLACA, this diagnostic is never printed.

Note: CLISP error messages are not printed on type-in. For example, typing X+*Y will
just produce a U.B.A. X+*Y message.

If a CLISP infix construct is well formed from a syntactic standpoint, but one or both of its operands
are atomic and not bound, it is possible that either the operand is misspelled, e.g., you wrote X+YY for
X+Y, or that a CLISP transformation operation was not intended at all, but that the entire expression is
a misspelling. For the purpose of DWIMIFYing, "not bound" means no top level value, not on list of
bound variables built up by DWIMIFY during its analysis of the expression, and not on
NOFIXVARSLST, i.e., not previously seen.

For example, if you have a variable named LAST-EL, and write (LIST LAST-ELL). Therefore,
CLISP computes, but does not actually perform, the indicated infix transformation. DWIM then
continues, and if it is able to make another correction, does so, and ignores the CLISP interpretation.
For example, with LAST-ELL, the transformation LAST-ELL -> LAST-EL would be found.

If no other transformation is found, and DWIM is about to interpret a construct as CLISP for which
one of the operands is not bound, DWIM will ask you whether CLISP was intended, in this case by
printing LAST-ELL TREAT AS CLISP ?.

Note: If more than one infix operator was involved in the CLISP construct, e.g., X+Y+Z,
or the operation was an assignment to a variable already noticed, or
TREATASCLISPFLG is T (initially NIL), you will simply be informed of the
correction, e.g., X+Y+Z TREATED AS CLISP. Otherwise, even if DWIM was
enabled in TRUSTING mode, you will be asked to approve the correction.

The same sort of procedure is followed with 8 and 9 errors. For example, suppose you write FOO8*X
where FOO8 is not bound. The CLISP transformation is noted, and DWIM proceeds. It next asks you
to approve FOO8*X -> FOO (*X. For example, this would make sense if you have (or plan to
define) a function named *X. If you refuses, you are asked whether FOO8*X is to be treated as CLISP.

20-13

CLISP

Similarly, if FOO8 were the name of a variable, and you write FOOO8*X, you will first be asked to
approve FOOO8*X -> FOOO (XX, and if you refuse, then be offered the FOOO8 -> FOO8
correction. The 8-9 transformation is tried before spelling correction since it is empirically more likely
that an unbound atom or undefined function containing an 8 or a 9 is a parenthesis error, rather than a
spelling error.

CLISP also contains provision for correcting misspellings of infix operators (other than single
characters), IF words, and i.s. operators. This is implemented in such a way that the user who does
not misspell them is not penalized. For example, if you write IF N = 0 THEN 1 ELSSE N*(FACT
N-1) CLISP does not operate by checking each word to see if it is a misspelling of IF, THEN, ELSE, or
ELSEIF, since this would seriously degrade CLISP’s performance on all IF statements. Instead,
CLISP assumes that all of the IF words are spelled correctly, and transforms the expression to (COND
((ZEROP N) 1 ELSSE N*(FACT N-1))). Later, after DWIM cannot find any other interpretation
for ELSSE, and using the fact that this atom originally appeared in an IF statement, DWIM attempts
spelling correction, using (IF THEN ELSE ELSEIF) for a spelling list. When this is successful,
DWIM "fails" all the way back to the original IF statement, changes ELSSE to ELSE, and starts over.
Misspellings of AND, OR, LT, GT, etc. are handled similarly.

CLISP also contains many Do-What-I-Mean features besides spelling corrections. For example, the
form (LIST +X Y) would generate a MISSING OPERATOR error. However, (LIST -X Y) makes
sense, if the minus is unary, so DWIM offers this interpretation to you. Another common error,
especially for new users, is to write (LIST X*FOO(Y)) or (LIST X*FOO Y), where FOO is the name
of a function, instead of (LIST X*(FOO Y)). Therefore, whenever an operand that is not bound is
also the name of a function (or corrects to one), the above interpretations are offered.

CLISP Translations

The translation of CLISP character operators and the CLISP word IF are handled by replacing the
CLISP expression with the corresponding Interlisp expression, and discarding the original CLISP.
This is done because (1) the CLISP expression is easily recomputable (by CLISPIFY) and (2) the
Interlisp expressions are simple and straightforward. Another reason for discarding the original
CLISP is that it may contain errors that were corrected in the course of translation (e.g.,
FOO←FOOO:1, N*8FOO X), etc.). If the original CLISP were retained, either you would have to go
back and fix these errors by hand, thereby negating the advantage of having DWIM perform these
corrections, or else DWIM would have to keep correcting these errors over and over.

Note that CLISPIFY is sufficiently fast that it is practical for you to configure your Interlisp system so
that all expressions are automatically CLISPIFYed immediately before they are presented to you. For
example, you can define an edit macro to use in place of P which calls CLISPIFY on the current
expression before printing it. Similarly, you can inform PRETTYPRINT to call CLISPIFY on each
expression before printing it, etc.

Where (1) or (2) are not the case, e.g., with iterative statements, pattern matches, record expressions,
etc. the original CLISP is retained (or a slightly modified version thereof), and the translation is stored

20-14

INTERLISP-D REFERENCE MANUAL

elsewhere (by the function CLISPTRAN, in the Miscellaneous Functions and Variables), usually in the
hash array CLISPARRAY. The interpreter automatically checks this array when given a form CAR of
which is not a function. Similarly, the compiler performs a GETHASH when given a form it does not
recognize to see if it has a translation, which is then compiled instead of the form. Whenever you
change a CLISP expresson by editing it, the editor automatically deletes its translation (if one exists), so
that the next time it is evaluated or DWIMIFIed, the expression will be retranslated (if the value of
CLISPRETRANFLG is T, DWIMIFY will also (re)translate any expressions which have translations
stored remotely, see the CLISPIFY section). The function PPT and the edit commands PPT and
CLISP: are available for examining translations (see the Miscellaneous Functions and Variables
section).

You can also indicate that you want the original CLISP retained by embedding it in an expression of
the form (CLISP . CLISP-EXPRESSION), e.g., (CLISP X:5:3) or (CLISP <A B C ! D>). In
such cases, the translation will be stored remotely as described above. Furthermore, such expressions
will be treated as CLISP even if infix and prefix transformations have been disabled by setting
CLISPFLG to NIL (see the Miscellaneous Functions and Variables section). In other words, you can
instruct the system to interpret as CLISP infix or prefix constructs only those expressions that are
specifically flagged as such. You can also include CLISP declarations by writing (CLISP
DECLARATIONS . FORM), e.g., (CLISP (CLISP: FLOATING) ...). These declarations will be
used in place of any CLISP declarations in the function definition. This feature provides a way of
including CLISP declarations in macro definitions.

Note: CLISP translations can also be used to supply an interpretation for function
objects, as well as forms, either for function objects that are used openly, i.e.,
appearing as CAR of form, function objects that are explicitly APPLYed, as with
arguments to mapping functions, or function objects contained in function
definition cells. In all cases, if CAR of the object is not LAMBDA or NLAMBDA, the
interpreter and compiler will check CLISPARRAY.

DWIMIFY

DWIMIFY is effectively a preprocessor for CLISP. DWIMIFY operates by scanning an expression as
though it were being interpreted, and for each form that would generate an error, calling DWIM to
"fix" it. DWIMIFY performs all DWIM transformations, not just CLISP transformations, so it does
spelling correction, fixes 8-9 errors, handles F/L, etc. Thus you will see the same messages, and be
asked for approval in the same situations, as you would if the expression were actually run. If DWIM
is unable to make a correction, no message is printed, the form is left as it was, and the analysis
proceeds.

DWIMIFY knows exactly how the interpreter works. It knows the syntax of PROGs, SELECTQs,
LAMBDA expressions, SETQs, et al. It knows how variables are bound, and that the argument of
NLAMBDAs are not evaluated (you can inform DWIMIFY of a function or macro’s nonstandard binding
or evaluation by giving it a suitable INFO property, see below). In the course of its analysis of a
particular expression, DWIMIFY builds a list of the bound variables from the LAMBDA expressions and
PROGs that it encounters. It uses this list for spelling corrections. DWIMIFY also knows not to try to

20-15

CLISP

"correct" variables that are on this list since they would be bound if the expression were actually being
run. However, note that DWIMIFY cannot, a priori, know about variables that are used freely but
would be bound in a higher function if the expression were evaluated in its normal context.
Therefore, DWIMIFY will try to "correct" these variables. Similarly, DWIMIFY will attempt to correct
forms for which CAR is undefined, even when the form is not in error from your standpoint, but the
corresponding function has simply not yet been defined.

Note: DWIMIFY rebinds FIXSPELLDEFAULT to N, so that if you are not at the terminal
when DWIMIFYing (or compiling), spelling corrections will not be performed.

DWIMIFY will also inform you when it encounters an expression with too many arguments (unless
DWIMCHECK#ARGSFLG = NIL), because such an occurrence, although does not cause an error in the
Interlisp interpreter, nevertheless is frequently symptomatic of a parenthesis error. For example, if
you wrote (CONS (QUOTE FOO X)) instead of (CONS (QUOTE FOO) X), DWIMIFY will print:

POSSIBLE PARENTHESIS ERROR IN
(QUOTE FOO X)
TOO MANY ARGUMENTS (MORE THAN 1)

DWIMIFY will also check to see if a PROG label contains a clisp character (unless
DWIMCHECKPROGLABELSFLG = NIL, or the label is a member of NOFIXVARSLST), and if so, will alert
you by printing the message SUSPICIOUS PROG LABEL, followed by the label. The PROG label will
not be treated as CLISP.

Note that in most cases, an attempt to transform a form that is already as you intended will have no
effect (because there will be nothing to which that form could reasonably be transformed). However,
in order to avoid needless calls to DWIM or to avoid possible confusion, you can inform DWIMIFY not
to attempt corrections or transformations on certain functions or variables by adding them to the list
NOFIXFNSLST or NOFIXVARSLST respectively. Note that you could achieve the same effect by
simply setting the corresponding variables, and giving the functions dummy definitions.

DWIMIFY will never attempt corrections on global variables, i.e., variables that are a member of the list
GLOBALVARS, or have the property GLOBALVAR with value T, on their property list. Similarly,
DWIMIFY will not attempt to correct variables declared to be SPECVARS in block declarations or via
DECLARE expressions in the function body. You can also declare variables that are simply used freely
in a function by using the USEDFREE declaration.

DWIMIFY and DWIMIFYFNS (used to DWIMIFY several functions) maintain two internal lists of those
functions and variables for which corrections were unsuccessfully attempted. These lists are
initialized to the values of NOFIXFNSLST and NOFIXVARSLST. Once an attempt is made to fix a
particular function or variable, and the attempt fails, the function or variable is added to the
corresponding list, so that on subsequent occurrences (within this call to DWIMIFY or DWIMIFYFNS),
no attempt at correction is made. For example, if FOO calls FIE several times, and FIE is undefined at
the time FOO is DWIMIFYed, DWIMIFY will not bother with FIE after the first occurrence. In other
words, once DWIMIFY "notices" a function or variable, it no longer attempts to correct it. DWIMIFY
and DWIMIFYFNS also "notice" free variables that are set in the expression being processed.

20-16

INTERLISP-D REFERENCE MANUAL

Moreover, once DWIMIFY "notices" such functions or variables, it subsequently treats them the same
as though they were actually defined or set.

Note that these internal lists are local to each call to DWIMIFY and DWIMIFYFNS, so that if a function
containing FOOO, a misspelled call to FOO, is DWIMIFYed before FOO is defined or mentioned, if the
function is DWIMIFYed again after FOO has been defined, the correction will be made.

You can undo selected transformations performed by DWIMIFY, as described in Chapter 13.

(DWIMIFY X QUIETFLG L) [Function]

Performs all DWIM and CLISP corrections and transformations on X that would be
performed if X were run, and prints the result unless QUIETFLG = T.

If X is an atom and L is NIL, X is treated as the name of a function, and its entire definition
is DWIMIFYed. If X is a list or L is not NIL, X is the expression to be DWIMIFYed. If L is
not NIL, it is the edit push-down list leading to X, and is used for determining context, i.e.,
what bound variables would be in effect when X was evaluated, whether X is a form or
sequence of forms, e.g., a COND clause, etc.

If X is an iterative statement and L is NIL, DWIMIFY will also print the translation, i.e.,
what is stored in the hash array.

(DWIMIFYFNS FN1 ... FNN) [NLambda NoSpread Function]

DWIMIFYs each of the functions given. If only one argument is given, it is evalued. If its
value is a list, the functions on this list are DWIMIFYed. If only one argument is given, it is
atomic, its value is not a list, and it is the name of a known file, DWIMIFYFNS will operate
on (FILEFNSLST FN1), e.g. (DWIMIFYFNS FOO.LSP) will DWIMIFY every function in

the file FOO.LSP.

Every 30 seconds, DWIMIFYFNS prints the name of the function it is processing, a la
PRETTYPRINT.

Value is a list of the functions DWIMIFYed.

DWIMINMACROSFLG [Variable]

Controls how DWIMIFY treats the arguments in a "call" to a macro, i.e., where the CAR of
the form is undefined, but has a macro definition. If DWIMINMACROSFLG is T, then
macros are treated as LAMBDA functions, i.e., the arguments are assumed to be evaluated,
which means that DWIMIFY will descend into the argument list. If DWIMINMACROSFLG is
NIL, macros are treated as NLAMBDA functions. DWIMINMACROSFLG is initially T.

INFO [Property Name]

Used to inform DWIMIFY of nonstandard behavior of particular forms with respect to
evaluation, binding of arguments, etc. The INFO property of a symbol is a single atom or
list of atoms chosen from among the following:

20-17

CLISP

EVAL Informs DWIMIFY (and CLISP and Masterscope) that an
nlambda function does evaluate its arguments. Can also be
placed on a macro name to override the behavior of
DWIMINMACROSFLG = NIL.

NOEVAL Informs DWIMIFY that a macro does not evaluate all of its
arguments, even when DWIMINMACROSFLG = T.

BINDS Placed on the INFO property of a function or the CAR of a
special form to inform DWIMIFY that the function or form
binds variables. In this case, DWIMIFY assumes that CADR
of the form is the variable list, i.e., a list of symbols, or lists
of the form (VAL VALUE). LAMBDA, NLAMBDA, PROG, and
RESETVARS are handled in this fashion.

LABELS Informs CLISPIFY that the form interprets top-level
symbols as labels, so that CLISPIFY will never introduce
an atom (by packing) at the top level of the expression.
PROG is handled in this fashion.

NOFIXFNSLST [Variable]

List of functions that DWIMIFY will not try to correct.

NOFIXVARSLST [Variable]

List of variables that DWIMIFY will not try to correct.

NOSPELLFLG [Variable]

If T, DWIMIFY will not perform any spelling corrections. Initially NIL. NOSPELLFLG is
reset to T when compiling functions whose definitions are obtained from a file, as
opposed to being in core.

CLISPHELPFLG [Variable]

If NIL, DWIMIFY will not ask you for approval of any CLISP transformations. Instead, in
those situations where approval would be required, the effect is the same as though you
had been asked and said NO. Initially T.

DWIMIFYCOMPFLG [Variable]

If T, DWIMIFY is called before compiling an expression. Initially NIL.

DWIMCHECK#ARGSFLG [Variable]

If T, causes DWIMIFY to check for too many arguments in a form. Initially T.

DWIMCHECKPROGLABELSFLG [Variable]

If T, causes DWIMIFY to check whether a PROG label contains a CLISP character. Initially
T.

20-18

INTERLISP-D REFERENCE MANUAL

DWIMESSGAG [Variable]

If T, suppresses all DWIMIFY error messages. Initially NIL.

CLISPRETRANFLG [Variable]

If T, informs DWIMIFY to (re)translate all expressions which have remote translations in
the CLISP hash array. Initially NIL.

CLISPIFY

CLISPIFY converts Interlisp expressions to CLISP. Note that the expression given to CLISPIFY need
not have originally been input as CLISP, i.e., CLISPIFY can be used on functions that were written
before CLISP was even implemented. CLISPIFY is cognizant of declaration rules as well as all of the
precedence rules. For example, CLISPIFY will convert (IPLUS A (ITIMES B C)) into A+B*C, but
(ITIMES A (IPLUS B C)) into A*(B+C). CLISPIFY handles such cases by first DWIMIFYing the
expression. CLISPIFY also knows how to handle expressions consisting of a mixture of Interlisp and
CLISP, e.g., (IPLUS A B*C) is converted to A+B*C, but (ITIMES A B+C) to (A*(B+C)).
CLISPIFY converts calls to the six basic mapping functions, MAP, MAPC, MAPCAR, MAPLIST, MAPCONC,
and MAPCON, into equivalent iterative statements. It also converts certain easily recognizable internal
PROG loops to the corresponding iterative statements. CLISPIFY can convert all iterative statements
input in CLISP back to CLISP, regardless of how complicated the translation was, because the original
CLISP is saved.

CLISPIFY is not destructive to the original Interlisp expression, i.e., CLISPIFY produces a new
expression without changing the original. The new expression may however contain some "pieces" of
the original, since CLISPIFY attempts to minimize the number of CONSes by not copying structure
whenever possible.

CLISPIFY will not convert expressions appearing as arguments to NLAMBDA functions, except for
those functions whose INFO property is or contains the atom EVAL. CLISPIFY also contains built in
information enabling it to process special forms such as PROG, SELECTQ, etc. If the INFO property is
or contains the atom LABELS, CLISPIFY will never create an atom (by packing) at the top level of the
expression. PROG is handled in this fashion.

Note: Disabling a CLISP operator with CLDISABLE (see the Miscellaneous Functions
and Variables section) will also disable the corresponding CLISPIFY
transformation. Thus, if ← is "turned off", A←B will not transform to (SETQ A
B), nor vice versa.

(CLISPIFY X EDITCHAIN) [Function]

Clispifies X. If X is an atom and EDITCHAIN is NIL, X is treated as the name of a function,
and its definition (or EXPR property) is clispified. After CLISPIFY has finished, X is
redefined (using /PUTD) with its new CLISP definition. The value of CLISPIFY is X. If X

20-19

CLISP

is atomic and not the name of a function, spelling correction is attempted. If this fails, an
error is generated.

If X is a list, or EDITCHAIN is not NIL, X itself is the expression to be clispified. If
EDITCHAIN is not NIL, it is the edit push-down list leading to X and is used to determine
context as with DWIMIFY, as well as to obtain the local declarations, if any. The value of
CLISPIFY is the clispified version of X.

(CLISPIFYFNS FN1 ... FNN) [NLambda NoSpread Function]

Like DWIMIFYFNS except calls CLISPIFY instead of DWIMIFY.

CL:FLG [Variable]

Affects CLISPIFY’s handling of forms beginning with CAR, CDR, ... CDDDDR, as well as
pattern match and record expressions. If CL:FLG is NIL, these are not transformed into
the equivalent : expressions. This will prevent CLISPIFY from constructing any
expression employing a : infix operator, e.g., (CADR X) will not be transformed to X:2. If
CL:FLG is T, CLISPIFY will convert to : notation only when the argument is atomic or a
simple list (a function name and one atomic argument). If CL:FLG is ALL, CLISPIFY will
convert to : expressions whenever possible.

CL:FLG is initially T.

CLREMPARSFLG [Variable]

If T, CLISPIFY will remove parentheses in certain cases from simple forms, where
"simple" means a function name and one or two atomic arguments. For example, (COND
((ATOM X) --)) will CLISPIFY to (IF ATOM X THEN --). However, if
CLREMPARSFLG is set to NIL, CLISPIFY will produce (IF (ATOM X) THEN --).
Regardless of the flag setting, the expression can be input in either form.

CLREMPARSFLG is initially NIL.

CLISPIFYPACKFLG [Variable]

CLISPIFYPACKFLG affects the treatment of infix operators with atomic operands. If
CLISPIFYPACKFLG is T, CLISPIFY will pack these into single atoms, e.g., (IPLUS A
(ITIMES B C)) becomes A+B*C. If CLISPIFYPACKFLG is NIL, no packing is done, e.g.,
the above becomes A + B * C.

CLISPIFYPACKFLG is initially T.

CLISPIFYUSERFN [Variable]

If T, causes the function CLISPIFYUSERFN, which should be a function of one argument,
to be called on each form (list) not otherwise recognized by CLISPIFY. If a non-NIL
value is returned, it is treated as the clispified form. Initially NIL

Note that CLISPIFYUSERFN must be both set and defined to use this feature.

20-20

INTERLISP-D REFERENCE MANUAL

FUNNYATOMLST [Variable]

Suppose you have variables named A, B, and A*B. If CLISPIFY were to convert (ITIMES
A B) to A*B, A*B would not translate back correctly to (ITIMES A B), since it would be
the name of a variable, and therefore would not cause an error. You can prevent this from
happening by adding A*B to the list FUNNYATOMLST. Then, (ITIMES A B) would
CLISPIFY to A * B.

Note that A*B’s appearance on FUNNYATOMLST would not enable DWIM and CLISP to
decode A*B+C as (IPLUS A*B C); FUNNYATOMLST is used only by CLISPIFY. Thus, if
an identifier contains a CLISP character, it should always be separated (with spaces) from
other operators. For example, if X* is a variable, you should write (SETQ X* FORM) in
CLISP as X* ←FORM, not X*←FORM. In general, it is best to avoid use of identifiers
containing CLISP character operators as much as possible.

Miscellaneous Functions and Variables

CLISPFLG [Variable]

If CLISPFLG = NIL, disables all CLISP infix or prefix transformations (but does not affect
IF/THEN/ELSE statements, or iterative statements).

If CLISPFLG = TYPE-IN, CLISP transformations are performed only on expressions that
are typed in for evaluation, i.e., not on user programs.

If CLISPFLG = T, CLISP transformations are performed on all expressions.

The initial value for CLISPFLG is T. CLISPIFYing anything will cause CLISPFLG to be
set to T.

CLISPCHARS [Variable]

A list of the operators that can appear in the interior of an atom. Currently (+ - * / ↑
~ ’ = ← : < > +- ~= @ !).

CLISPCHARRAY [Variable]

A bit table of the characters on CLISPCHARS used for calls to STRPOSL (Chapter 4).
CLISPCHARRAY is initialized by performing (SETQ CLISPCHARRAY (MAKEBITTABLE
CLISPCHARS)).

CLISPINFIXSPLST [Variable]

A list of infix operators used for spelling correction.

CLISPARRAY [Variable]

Hash array used for storing CLISP translations. CLISPARRAY is checked by FAULTEVAL
and FAULTAPPLY on erroneous forms before calling DWIM, and by the compiler.

20-21

CLISP

(CLEARCLISPARRAY NAME --) [Function]

Macro and CLISP expansions are cached in CLISPARRAY, the systems CLISP hash array.
When anything changes that would invalidate an expansion, it needs to be removed from
the cache. CLEARCLISPARRAY does this for you. The system does this automatically
whenever you define redefine a CLISP or macro form. If you have changed something
that a CLISP word or a macro depends on the system will not be able to detect this, so you
will have to invalidate the cahce by calling CLEARCLISPARRAY. You can clear the whole
cache by calling (CLRHASH CLISPARRAY).

(CLISPTRAN X TRAN) [Function]

Gives X the translation TRAN by storing (key X, value TRAN) in the hash array
CLISPARRAY. CLISPTRAN is called for all CLISP translations, via a non-linked, external
function call, so it can be advised.

(CLISPDEC DECLST) [Function]

Puts into effect the declarations in DECLST. CLISPDEC performs spelling corrections on
words not recognized as declarations. CLISPDEC is undoable.

(CLDISABLE OP) [Function]

Disables the CLISP operator OP. For example, (CLDISABLE ’-) makes - be just another
character. CLDISABLE can be used on all CLISP operators, e.g., infix operators, prefix
operators, iterative statement operators, etc. CLDISABLE is undoable.

Note: Simply removing a character operator from CLISPCHARS will prevent
it from being treated as a CLISP operator when it appears as part of an
atom, but it will continue to be an operator when it appears as a
separate atom, e.g. (FOO + X) vs FOO+X.

CLISPIFTRANFLG [Variable]

Affects handling of translations of IF-THEN-ELSE statements (see Chapter 9). If T, the
translations are stored elsewhere, and the (modified) CLISP retained. If NIL, the
corresponding COND expression replaces the CLISP. Initially T.

CLISPIFYPRETTYFLG [Variable]

If non-NIL, causes PRETTYPRINT (and therefore PP and MAKEFILE) to CLISPIFY
selected function definitions before printing them according to the following
interpretations of CLISPIFYPRETTYFLG:

ALL Clispify all functions.

T or EXPRS Clispify all functions currently defined as EXPRs.

CHANGES Clispify all functions marked as having been
changed.

a list Clispify all functions in that list.

20-22

INTERLISP-D REFERENCE MANUAL

CLISPIFYPRETTYFLG is (temporarily) reset to T when MAKEFILE is called with the
option CLISPIFY, and reset to CHANGES when the file being dumped has the property
FILETYPE value CLISP. CLISPIFYPRETTYFLG is initially NIL.

Note: If CLISPIFYPRETTYFLG is non-NIL, and the only transformation
performed by DWIM are well formed CLISP transformations, i.e., no
spelling corrections, the function will not be marked as changed, since
it would only have to be re-clispified and re-prettyprinted when the
file was written out.

(PPT X) [NLambda NoSpread Function]

Both a function and an edit macro for prettyprinting translations. It performs a PP after
first resetting PRETTYTRANFLG to T, thereby causing any translations to be printed
instead of the corresponding CLISP.

CLISP: [Editor Command]

Edit macro that obtains the translation of the correct expression, if any, from
CLISPARRAY, and calls EDITE on it.

CL [Editor Command]

Edit macro. Replaces current expression with CLISPIFYed current expression. Current
expression can be an element or tail.

DW [Editor Command]

Edit macro. DWIMIFYs current expression, which can be an element (atom or list) or tail.

Both CL and DW can be called when the current expression is either an element or a tail
and will work properly. Both consult the declarations in the function being edited, if any,
and both are undoable.

(LOWERCASE FLG) [Function]

If FLG = T, LOWERCASE makes the necessary internal modifications so that CLISPIFY will
use lower case versions of AND, OR, IF, THEN, ELSE, ELSEIF, and all i.s. operators. This
produces more readable output. Note that you can always type in either upper or lower
case (or a combination), regardless of the action of LOWERCASE. If FLG = NIL, CLISPIFY
will use uppercase versions of AND, OR, et al. The value of LOWERCASE is its previous
"setting". LOWERCASE is undoable. The initial setting for LOWERCASE is T.

CLISP Internal Conventions

CLISP is almost entirely table driven by the property lists of the corresponding infix or prefix
operators. For example, much of the information used for translating the + infix operator is stored on
the property list of the symbol "+". Thus it is relatively easy to add new infix or prefix operators or
change old ones, simply by adding or changing selected property values. (There is some built in

20-23

CLISP

information for handling minus, :, ’, and ~, i.e., you could not yourself add such "special" operators,
although you can disable or redefine them.)

Global declarations operate by changing the LISPFN and CLISPINFIX properties of the appropriate
operators.

CLISPTYPE [Property Name]

The property value of the property CLISPTYPE is the precedence number of the operator:
higher values have higher precedence, i.e., are tighter. Note that the actual value is
unimportant, only the value relative to other operators. For example, CLISPTYPE for :, ↑,
and * are 14, 6, and 4 respectively. Operators with the same precedence group left to
right, e.g., / also has precedence 4, so A/B*C is (A/B)*C.

An operator can have a different left and right precedence by making the value of
CLISPTYPE be a dotted pair of two numbers, e.g., CLISPTYPE of ← is (8 . -12). In
this case, CAR is the left precedence, and CDR the right, i.e., CAR is used when comparing
with operators on the left, and CDR with operators on the right. For example, A*B←C+D is
parsed as A*(B←(C+D)) because the left precedence of ← is 8, which is higher than that
of *, which is 4. The right precedence of ← is -12, which is lower than that of +, which is
2.

If the CLISPTYPE property for any operator is removed, the corresponding CLISP
transformation is disabled, as well as the inverse CLISPIFY transformation.

UNARYOP [Property Name]

The value of property UNARYOP must be T for unary operators or brackets. The operand
is always on the right, i.e., unary operators or brackets are always prefix operators.

BROADSCOPE [Property Name]

The value of property BROADSCOPE is T if the operator has lower precedence than
Interlisp forms, e.g., LT, EQUAL, AND, etc. For example, (FOO X AND Y) parses as ((FOO
X) AND Y). If the BROADSCOPE property were removed from the property list of AND,
(FOO X AND Y) would parse as (FOO (X AND Y)).

LISPFN [Property Name]

The value of the property LISPFN is the name of the function to which the infix operator
translates. For example, the value of LISPFN for ↑ is EXPT, for ’ QUOTE, etc. If the value
of the property LISPFN is NIL, the infix operator itself is also the function, e.g., AND, OR,
EQUAL.

SETFN [Property Name]

If FOO has a SETFN property FIE, then (FOO --)←X translates to (FIE -- X). For
example, if you make ELT be an infix operator, e.g. #, by putting appropriate CLISPTYPE
and LISPFN properties on the property list of # then you can also make # followed by ←
translate to SETA, e.g., X#N←Y to (SETA X N Y), by putting SETA on the property list of

20-24

INTERLISP-D REFERENCE MANUAL

ELT under the property SETFN. Putting the list (ELT) on the property list of SETA under
property SETFN will enable SETA forms to CLISPIFY back to ELT’s.

CLISPINFIX [Property Name]

The value of this property is the CLISP infix to be used in CLISPIFYing. This property is
stored on the property list of the corresponding Interlisp function, e.g., the value of
property CLISPINFIX for EXPT is ↑, for QUOTE is ’ etc.

CLISPWORD [Property Name]

Appears on the property list of clisp operators which can appear as CAR of a form, such as
FETCH, REPLACE, IF, iterative statement operators, etc. Value of property is of the form
(KEYWORD . NAME), where NAME is the lowercase version of the operator, and KEYWORD
is its type, e.g. FORWORD, IFWORD, RECORDWORD, etc.

KEYWORD can also be the name of a function. When the atom appears as CAR of a form,
the function is applied to the form and the result taken as the correct form. In this case,
the function should either physically change the form, or call CLISPTRAN to store the
translation.

As an example, to make & be an infix character operator meaning OR, you could do the
following:

←(PUTPROP ’& ’CLISPTYPE (GETPROP ’OR ’CLISPTYPE))
←(PUTPROP ’& ’LISPFN ’OR)
←(PUTPROP ’& ’BROADSCOPE T)
←(PUTPROP ’OR ’CLISPINFIX ’&)
←(SETQ CLISPCHARS (CONS ’& CLISPCHARS))
←(SETQ CLISPCHARRAY (MAKEBITTABLE CLISPCHARS))

21-1

21. PERFORMANCE ISSUES

This chapter describes a number of areas that often contribute to performance problems in Medley
programs. Many performance problems can be improved by optimizing the use of storage, since
allocating and reclaiming large amounts of storage is expensive. Another tactic that can sometimes
yield performance improvements is to change the use of variable bindings on the stack to reduce
variable lookup time. There are a number of tools that can be used to determine which parts of a
computation cause performance bottlenecks.

Storage Allocation and Garbage Collection

As an Medley application program runs, it creates data structures (allocated out of free storage space),
manipulates them, and then discards them. If there were no way to reclaim this space, over time the
Medley memory would fill up, and the computation would come to a halt. Actually, long before this
could happen the system would probably become intolerably slow, due to “data fragmentation,”
which occurs when the data currently in use are spread over many virtual memory pages, so that
most of the computer time must be spent swapping disk pages into physical memory. The problem of
fragmentation will occur in any situation where the virtual memory is significantly larger than the real
physical memory. To reduce swapping, you want to keep the "working set" (the set of pages
containing actively referenced data) as small as possible.

You can write programs that don’t generate much “garbage” data, or which recycle data, but such
programs tend to be complex and hard to debug. Spending effort writing such programs defeats the
whole point of using a system with automatic storage allocation. An important part of any Lisp
implementation is the “garbage collector” that finds discarded data and reclaims its space.

There are several well-known approaches to garbage collection. One method is the traditional mark-
and-sweep, which identifies “garbage” data by marking all accessible data structures, and then
sweeping through the data spaces to find all unmarked objects (i.e., not referenced by any other
object). This method is guaranteed to reclaim all garbage, but it takes time proportional to the
number of allocated objects, which may be very large. Also, the time that a mark-and-sweep garbage
collection takes is independent of the amount of garbage collected; it is possible to sweep through the
whole virtual memory, and only recover a small amount of garbage.

For interactive applications, it is not acceptable to have long interruptions in a computation for to
garbage collect. Medley solves this problem by using a reference-counting garbage collector. With
this scheme, there is a table containing counts of how many times each object is referenced. This table
is updated as pointers are created and discarded, incurring a small overhead distributed over the
computation as a whole. (Note: References from the stack are not counted, but are handled separately
at "sweep" time; thus the vast majority of data manipulations do not cause updates to this table.) At
opportune moments, the garbage collector scans this table, and reclaims all objects that are no longer
accessible (have a reference count of zero). The pause while objects are reclaimed is only the time for
scanning the reference count tables (small) plus time proportional to the amount of garbage that has to

21-2

INTERLISP-D REFERENCE MANUAL

be collected (typically less than a second). “Opportune” times occur when a certain number of cells
have been allocated or when the system has been waiting for you to type something for long enough.
The frequency of garbage collection is controlled by the functions and variables described below. For
the best system performance, it is desirable to adjust these parameters for frequent, short garbage
collections, which will not interrupt interactive applications for very long, and which will have the
added benefit of reducing data fragmentation, keeping the working set small.

One problem with the Medley garbage collector is that not all garbage is guaranteed to be collected.
Circular data structures, which point to themselves directly or indirectly, are never reclaimed, since
their reference counts are always at least one. With time, this unreclaimable garbage may increase the
working set to unacceptable levels. Some users have worked with the same Medley virtual memory
for a very long time, but it is a good idea to occasionally save all of your functions in files, reinitialize
Medley, and rebuild your system. Many users end their working day by issuing a command to
rebuild their system and then leaving the machine to perform this task in their absence. If the system
seems to be spending too much time swapping (an indication of fragmented working set), this
procedure is definitely recommended.

Another limitation of the reference-counting garbage collector is that the table in which reference
counts are maintained is of fixed size. For typical Lisp objects that are pointed to from exactly one
place (e.g., the individual conses in a list), no burden is placed on this table, since objects whose
reference count is 1 are not explicitly represented in the table. However, large, "rich" data structures,
with many interconnections, backward links, cross references, etc, can contribute many entries to the
reference count table. For example, if you created a data structure that functioned as a doubly-linked
list, such a structure would contribute an entry (reference count 2) for each element.

When the reference count table fills up, the garbage collector can no longer maintain consistent
reference counts, so it stops doing so altogether. At this point, a window appears on the screen with
the following message, and the debugger is entered:

Internal garbage collector tables have overflowed, due
to too many pointers with reference count greater than 1.
*** The garbage collector is now disabled. ***
Save your work and reload as soon as possible.

[This message is slightly misleading, in that it should say "count not equal to 1". In the current
implementation, the garbage collection of a large pointer array whose elements are not otherwise
pointed to can place a special burden on the table, as each element’s reference count simultaneously
drops to zero and is thus added to the reference count table for the short period before the element is
itself reclaimed.]

If you exit the debugger window (e.g., with the RETURN command), your computation can proceed;
however, the garbage collector is no longer operating. Thus, your virtual memory will become
cluttered with objects no longer accessible, and if you continue for long enough in the same virtual
memory image you will eventually fill up the virtual memory backing store and grind to a halt.

21-3

PERFORMANCE ISSUES

Garbage collection in Medley is controlled by the following functions and variables:

(RECLAIM) [Function]

Initiates a garbage collection. Returns 0.

(RECLAIMMIN N) [Function]

Sets the frequency of garbage collection. Interlisp keeps track of the number of cells of
any type that have been allocated; when it reaches a given number, a garbage collection
occurs. If N is non-NIL, this number is set to N. Returns the current setting of the number.

RECLAIMWAIT [Variable]

Medley will invoke a RECLAIM if the system is idle and waiting for your input for
RECLAIMWAIT seconds (currently set for 4 seconds).

(GCGAG MESSAGE) [Function]

Sets the behavior that occurs while a garbage collection is taking place. If MESSAGE is
non-NIL, the cursor is complemented during a RECLAIM; if MESSAGE = NIL, nothing
happens. The value of GCGAG is its previous setting.

(GCTRP) [Function]

Returns the number of cells until the next garbage collection, according to the
RECLAIMMIN number.

The amount of storage allocated to different data types, how much of that storage is in use, and the
amount of data fragmentation can be determined using the following function:

(STORAGE TYPES PAGETHRESHOLD) [Function]

STORAGE prints out a summary, for each data type, of the amount of space allocated to the
data type, and how much of that space is currently in use. If TYPES is non-NIL, STORAGE
only lists statistics for the specified types. TYPES can be a symbol or a list of types. If
PAGETHRESHOLD is non-NIL, then STORAGE only lists statistics for types that have at least
PAGETHRESHOLD pages allocated to them.

STORAGE prints out a table with the column headings Type, Assigned, Free
Items, In use, and Total alloc. Type is the name of the data type. Assigned
is how much of your virtual memory is set aside for items of this type. Currently,
memory is allocated in quanta of two pages (1024 bytes). The numbers under Assigned
show the number of pages and the total number of items that fit on those pages. Free
Items shows how many items are available to be allocated (using the create construct,
Chapter 8); these constitute the "free list" for that data type. In use shows how many
items of this type are currently in use, i.e., have pointers to them and hence have not been
garbage collected. If this number is higher than your program seems to warrant, you may
want to look for storage leaks. The sum of Free Items and In use is always the same

21-4

INTERLISP-D REFERENCE MANUAL

as the total Assigned items. Total alloc is the total number of items of this type that
have ever been allocated (see BOXCOUNT, in the Performance Measuring section below).

Note: The information about the number of items of type LISTP is only
approximate, because list cells are allocated in a special way that
precludes easy computation of the number of items per page.

Note: When a data type is redeclared, the data type name is reassigned.
Pages which were assigned to instances of the old data type are
labeled **DEALLOC**.

At the end of the table printout, STORAGE prints a "Data Spaces Summary" listing the
number of pages allocated to the major data areas in the virtual address space: the space
for fixed-length items (including datatypes), the space for variable-length items, and the
space for symbols. Variable-length data types such as arrays have fixed-length "headers,"
which is why they also appear in the printout of fixed-length data types. Thus, the line
printed for the BITMAP data type says how many bitmaps have been allocated, but the
"assigned pages" column counts only the headers, not the space used by the variable-
length part of the bitmap. This summary also lists "Remaining Pages" in relation to the
largest possible virtual memory, not the size of the virtual memory backing file in use.
This file may fill up, causing a STORAGE FULL error, long before the "Remaining Pages"
numbers reach zero.

STORAGE also prints out information about the sizes of the entries on the variable-length
data free list. The block sizes are broken down by the value of the variable
STORAGE.ARRAYSIZES, initially (4 16 64 256 1024 4096 16384 NIL), which
yields a printout of the form:

variable-datum free list:
le 4 26 items; 104 cells.
le 16 72 items; 783 cells.
le 64 36 items; 964 cells.
le 256 28 items; 3155 cells.
le 1024 3 items; 1175 cells.
le 4096 5 items; 8303 cells.
le 16384 3 items; 17067 cells.
others 1 items; 17559 cells.

This information can be useful in determining if the variable-length data space is
fragmented. If most of the free space is composed of small items, then the allocator may
not be able to find room for large items, and will extend the variable datum space. If this
is extended too much, this could cause an ARRAYS FULL error, even if there is a lot of
space left in little chunks.

(STORAGE.LEFT) [Function]

Provides a programmatic way of determining how much storage is left in the major data
areas in the virtual address space. Returns a list of the form (MDSFREE MDSFRAC
8MBFRAC ATOMFREE ATOMFRAC), where the elements are interpreted as follows:

MDSFREE The number of free pages left in the main data space
(which includes both fixed-length and variable-length
data types).

21-5

PERFORMANCE ISSUES

MDSFRAC The fraction of the total possible main data space that is
free.

8MBFRAC The fraction of the total main data space that is free,
relative to eight megabytes.

This number is useful when using Medley on some
early computers where the hardware limits the address
space to eight megabytes. The function
32MBADDRESSABLE returns non-NIL if the currently
running Medley system can use the full 32 megabyte
address space.

ATOMFREE The number of free pages left in the symbol space.

ATOMFRAC The fraction of the total symbol space that is free.

Note: Another important space resource is the amount of the virtual memory backing
file in use (see VMEMSIZE, Chapter 12). The system will crash if the virtual
memory file is full, even if the address space is not exhausted.

Variable Bindings

Different implementations of Lisp use different methods of accessing free variables. The binding of
variables occurs when a function or a PROG is entered. For example, if the function FOO has the
definition (LAMBDA (A B) BODY), the variables A and B are bound so that any reference to A or B
from BODY or any function called from BODY will refer to the arguments to the function FOO and not
to the value of A or B from a higher level function. All variable names (symbols) have a top level
value cell which is used if the variable has not been bound in any function. In discussions of variable
access, it is useful to distinguish between three types of variable access: local, special and global.
Local variable access is the use of a variable that is bound within the function from which it is used.
Special variable access is the use of a variable that is bound by another function. Global variable
access is the use of a variable that has not been bound in any function. We will often refer to a
variable all of whose accesses are local as a "local variable." Similarly, a variable all of whose accesses
are global we call a "global variable."

In a “deep” bound system, a variable is bound by saving on the stack the variable’s name together
with a value cell which contains that variable’s new value. When a variable is accessed, its value is
found by searching the stack for the most recent binding (occurrence) and retrieving the value stored
there. If the variable is not found on the stack, the variable’s top level value cell is used.

In a “shallow” bound system, a variable is bound by saving on the stack the variable name and the
variable’s old value and putting the new value in the variable’s top level value cell. When a variable
is accessed, its value is always found in its top level value cell.

The deep binding scheme has one disadvantage: the amount of cpu time required to fetch the value of
a variable depends on the stack distance between its use and its binding. The compiler can determine

21-6

INTERLISP-D REFERENCE MANUAL

local variable accesses and compiles them as fetches directly from the stack. Thus this computation
cost only arises in the use of variable not bound in the local frame ("free" variables). The process of
finding the value of a free variable is called free variable lookup.

In a shallow bound system, the amount of cpu time required to fetch the value of a variable is constant
regardless of whether the variable is local, special or global. The disadvantages of this scheme are that
the actual binding of a variable takes longer (thus slowing down function call), the cells that contain
the current in use values are spread throughout the space of all symbol value cells (thus increasing the
working set size of functions) and context switching between processes requires unwinding and
rewinding the stack (thus effectively prohibiting the use of context switching for many applications).

Medley uses deep binding, because of the working set considerations and the speed of context
switching. The free variable lookup routine is microcoded, thus greatly reducing the search time. In
benchmarks, the largest percentage of free variable lookup time was 20 percent of the total ellapsed
time; the normal time was between 5 and 10 percent.

Because of the deep binding, you can sometimes significantly improve performance by declaring
global variables. If a variable is declared global, the compiler will compile an access to that variable as
a retrieval of its top level value, completely bypassing a stack search. This should be done only for
variables that are never bound in functions, such as global databases and flags.

Global variable declarations should be done using the GLOBALVARS file manager command (Chapter
17). Its form is (GLOBALVARS VAR1 ... VARN).

Another way of improving performance is to declare variables as local within a function. Normally,
all variables bound within a function have their names put on the stack, and these names are scanned
during free variable lookup. If a variable is declared to be local within a function, its name is not put
on the stack, so it is not scanned during free variable lookup, which may increase the speed of
lookups. The compiler can also make some other optimizations if a variable is known to be local to a
function.

A variable may be declared as local within a function by including the form (DECLARE (LOCALVARS
VAR1 ... VARN)) following the argument list in the definition of the function. Local variable

declarations only effect the compilation of a function. Interpreted functions put all of their variable
names on the stack, regardless of any declarations.

Performance Measuring

This section describes functions that gather and display statistics about a computation, such as as the
elapsed time, and the number of data objects of different types allocated. TIMEALL and TIME gather
statistics on the evaluation of a specified form. BREAKDOWN gathers statistics on individual functions
called during a computation. These functions can be used to determine which parts of a computation
are consuming the most resources (time, storage, etc.), and could most profitably be improved.

21-7

PERFORMANCE ISSUES

(TIMEALL TIMEFORM NUMBEROFTIMES TIMEWHAT INTERPFLG) [NLambda Function]

Evaluates the form TIMEFORM and prints statistics on time spent in various categories
(elapsed, keyboard wait, swapping time, gc) and data type allocation.

For more accurate measurement on small computations, NUMBEROFTIMES may be
specified (its default is 1) to cause TIMEFORM to be executed NUMBEROFTIMES times. To
improve the accuracy of timing open-coded operations in this case, TIMEALL compiles a
form to execute TIMEFORM NUMBEROFTIMES times (unless INTERPFLG is non-NIL), and
then times the execution of the compiled form.

Note: If TIMEALL is called with NUMBEROFTIMES > 1, the dummy form is
compiled with compiler optimizations on. This means that it is not
meaningful to use TIMEALL with very simple forms that are
optimized out by the compiler. For example, (TIMEALL ’(IPLUS 2
3) 1000) will time a compiled function which simply returns the
number 5, since (IPLUS 2 3) is optimized to the integer 5.

TIMEWHAT restricts the statistics to specific categories. It can be an atom or list of
datatypes to monitor, and/or the atom TIME to monitor time spent. Note that ordinarily,
TIMEALL monitors all time and datatype usage, so this argument is rarely needed.

TIMEALL returns the value of the last evaluation of TIMEFORM.

(TIME TIMEX TIMEN TIMETYP) [NLambda Function]

TIME evaluates the form TIMEX, and prints out the number of CONS cells allocated and
computation time. Garbage collection time is subtracted out. This function has been
largely replaced by TIMEALL.

If TIMEN is greater than 1, TIMEX is executed TIMEN times, and TIME prints out (number
of conses)/TIMEN, and (computation time)/TIMEN. If TIMEN = NIL, it defaults to 1. This
is useful for more accurate measurement on small computations.

If TIMETYP is 0, TIME measures and prints total real time as well as computation time. If
TIMETYP = 3, TIME measures and prints garbage collection time as well as computation
time. If TIMETYP = T, TIME measures and prints the number of pagefaults.

TIME returns the value of the last evaluation of TIMEX.

(BOXCOUNT TYPE N) [Function]

Returns the number of data objects of type TYPE allocated since this Interlisp system was
created. TYPE can be any data type name (see TYPENAME, Chapter 8). If TYPE is NIL, it
defaults to FIXP. If N is non-NIL, the corresponding counter is reset to N.

(CONSCOUNT N) [Function]

Returns the number of CONS cells allocated since this Interlisp system was created. If N is
non-NIL, resets the counter to N. Equivalent to (BOXCOUNT ’LISTP N).

21-8

INTERLISP-D REFERENCE MANUAL

(PAGEFAULTS) [Function]

Returns the number of page faults since this Interlisp system was created.

BREAKDOWN

TIMEALL collects statistics for whole computations. BREAKDOWN is available to analyze the
breakdown of computation time (or any other measureable quantity) function by function.

(BREAKDOWN FN1 ... FNN) [NLambda NoSpread Function]

You call BREAKDOWN giving it a list of function names (unevaluated). These functions are
modified so that they keep track of various statistics.

To remove functions from those being monitored, simply UNBREAK (Chapter 15) the
functions, thereby restoring them to their original state. To add functions, call
BREAKDOWN on the new functions. This will not reset the counters for any functions not
on the new list. However (BREAKDOWN) will zero the counters of all functions being
monitored.

The procedure used for measuring is such that if one function calls other and both are
"broken down", then the time (or whatever quantity is being measured) spent in the inner
function is not charged to the outer function as well.

BREAKDOWN will not give accurate results if a function being measured is not returned
from normally, e.g., a lower RETFROM (or ERROR) bypasses it. In this case, all of the time
(or whatever quantity is being measured) between the time that function is entered and
the time the next function being measured is entered will be charged to the first function.

(BRKDWNRESULTS RETURNVALUESFLG) [Function]

BRKDWNRESULTS prints the analysis of the statistics requested as well as the number of
calls to each function. If RETURNVALUESFLG is non-NIL, BRKDWNRESULTS will not to
print the results, but instead return them in the form of a list of elements of the form
(FNNAME #CALLS VALUE).

Example:

← (BREAKDOWN SUPERPRINT SUBPRINT COMMENT1)
(SUPERPRINT SUBPRINT COMMENT1)
←(PRETTYDEF ’(SUPERPRINT) ’FOO)
FOO.;3
←(BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
SUPERPRINT 8.261 365 0.023 20
SUBPRINT 31.910 141 0.226 76
COMMENT1 1.612 8 0.201 4
TOTAL 41.783 514 0.081
NIL
←(BRKDWNRESULTS T)

21-9

PERFORMANCE ISSUES

((SUPERPRINT 365 8261) (SUBPRINT 141 31910)
(COMMENT1 8 1612))

BREAKDOWN can be used to measure other statistics, by setting the following variables:

BRKDWNTYPE [Variable]

To use BREAKDOWN to measure other statistics, before calling BREAKDOWN, set the variable
BRKDWNTYPE to the quantity of interest, e.g., TIME, CONSES, etc, or a list of such
quantities. Whenever BREAKDOWN is called with BRKDWNTYPE not NIL, BREAKDOWN
performs the necessary changes to its internal state to conform to the new analysis. In
particular, if this is the first time an analysis is being run with a particular statistic, a
measuring function will be defined, and the compiler will be called to compile it. The
functions being broken down will be redefined to call this measuring function. When
BREAKDOWN is through initializing, it sets BRKDWNTYPE back to NIL. Subsequent calls to
BREAKDOWN will measure the new statistic until BRKDWNTYPE is again set and a new
BREAKDOWN performed.

BRKDWNTYPES [Variable]

The list BRKDWNTYPES contains the information used to analyze new statistics. Each
entry on BRKDWNTYPES should be of the form (TYPE FORM FUNCTION), where TYPE is
a statistic name (as would appear in BRKDWNTYPE), FORM computes the statistic, and
FUNCTION (optional) converts the value of form to some more interesting quantity. For
example, (TIME (CLOCK 2) (LAMBDA (X) (FQUOTIENT X 1000))) measures
computation time and reports the result in seconds instead of milliseconds.
BRKDWNTYPES currently contains entries for TIME, CONSES, PAGEFAULTS, BOXES, and
FBOXES.

Example:

←(SETQ BRKDWNTYPE ’(TIME CONSES))
(TIME CONSES)
←(BREAKDOWN MATCH CONSTRUCT)
(MATCH CONSTRUCT)
←(FLIP ’(A B C D E F G H C Z) ’(.. $1 .. #2 ..)
’(.. #3 ..))
(A B D E F G H Z)
←(BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
MATCH 0.036 1 0.036 54
CONSTRUCT 0.031 1 0.031 46
TOTAL 0.067 2 0.033
FUNCTIONS CONSES #CALLS PER CALL %
MATCH 32 1 32.000 40
CONSTRUCT 49 1 49.000 60
TOTAL 81 2 40.500
NIL

Occasionally, a function being analyzed is sufficiently fast that the overhead involved in
measuring it obscures the actual time spent in the function. If you were using TIME, you
would specify a value for TIMEN greater than 1 to give greater accuracy. A similar option
is available for BREAKDOWN. You can specify that a function(s) be executed a multiple

21-10

INTERLISP-D REFERENCE MANUAL

number of times for each measurement, and the average value reported, by including a
number in the list of functions given to BREAKDOWN. For example, BREAKDOWN(EDITCOM
EDIT4F 10 EDIT4E EQP) means normal breakdown for EDITCOM and EDIT4F but
executes (the body of) EDIT4E and EQP 10 times each time they are called. Of course, the
functions so measured must not cause any harmful side effects, since they are executed
more than once for each call. The printout from BRKDWNRESULTS will look the same as
though each function were run only once, except that the measurement will be more
accurate.

Another way of obtaining more accurate measurement is to expand the call to the
measuring function in-line. If the value of BRKDWNCOMPFLG is non-NIL (initially NIL),
then whenever a function is broken-down, it will be redefined to call the measuring
function, and then recompiled. The measuring function is expanded in-line via an
appropriate macro. In addition, whenever BRKDWNTYPE is reset, the compiler is called for
all functions for which BRKDWNCOMPFLG was set at the time they were originally broken-
down, i.e. the setting of the flag at the time a function is broken-down determines whether
the call to the measuring code is compiled in-line.

GAINSPACE

If you have large programs and databases, you may sometimes find yourself in a situation where you
need to obtain more space, and are willing to pay the price of eliminating some or all of the context
information that the various user-assistance facilities such as the programmer’s assistant, file package,
CLISP, etc., have accumulated during the course of his session. The function GAINSPACE provides an
easy way to selectively throw away accumulated data:

(GAINSPACE) [Function]

Prints a list of deletable objects, allowing you to specify at each point what should be
discarded and what should be retained. For example:

←(GAINSPACE)
purge history lists ? Yes
purge everything, or just the properties, e.g.,
SIDE, LISPXPRINT, etc. ?
just the properties
discard definitions on property lists ? Yes
discard old values of variables ? Yes
erase properties ? No
erase CLISP translations? Yes

GAINSPACE is driven by the list GAINSPACEFORMS. Each element on GAINSPACEFORMS is of the
form (PRECHECK MESSAGE FORM KEYLST). If PRECHECK, when evaluated, returns NIL,
GAINSPACE skips to the next entry. For example, you will not be asked whether or not to purge the
history list if it is not enabled. Otherwise, ASKUSER (Chapter 26) is called with the indicated MESSAGE
and the (optional) KEYLST. If you respond No, i.e., ASKUSER returns N, GAINSPACE skips to the next
entry. Otherwise, FORM is evaluated with the variable RESPONSE bound to the value of ASKUSER. In
the above example, the FORM for the "purge history lists" question calls ASKUSER to ask

21-11

PERFORMANCE ISSUES

"purge everything, ..." only if you had responded Yes. If you had responded with
Everything, the second question would not have been asked.

The "erase properties" question is driven by a list SMASHPROPSMENU. Each element on this list is
of the form (MESSAGE . PROPS). You are prompted with MESSAGE (by ASKUSER), and if your
response is Yes, PROPS is added to the list SMASHPROPS. The "discard definitions on
property lists" and "discard old values of variables" questions also add to
SMASHPROPS. You will not be prompted for any entry on SMASHPROPSMENU for which all of the
corresponding properties are already on SMASHPROPS. SMASHPROPS is initially set to the value of
SMASHPROPSLST. This permits you to specify in advance those properties which you always want
discarded, and not be asked about them subsequently. After finishing all the entries on
GAINSPACEFORMS, GAINSPACE checks to see if the value of SMASHPROPS is non-NIL, and if so, does
a MAPATOMS, i.e., looks at every atom in the system, and erases the indicated properties.

You can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU, so that GAINSPACE
can also be used to purge structures that your programs have accumulated.

Using Data Types Instead of Records

If a program uses large numbers of large data structures, there are several advantages to representing
them as user data types rather than as list structures. The primary advantage is increased speed:
accessing and setting the fields of a data type can be significantly faster than walking through a list
with repeated CARs and CDRs. Also,

Compiled code for referencing data types is usually smaller. Finally, by reducing the number of
objects created (one object against many list cells), this can reduce the expense of garbage collection.

User data types are declared by using the DATATYPE record type (Chapter 8). If a list structure has
been defined using the RECORD record type (Chapter 8), and all accessing operations are written using
the record package’s fetch, replace, and create operations, changing from RECORDs to
DATATYPEs only requires editing the record declaration (using EDITREC, Chapter 8) to replace
declaration type RECORD by DATATYPE, and recompiling.

Note: There are some minor disadvantages: First, there is an upper limit on the
number of data types that can exist. Also, space for data types is allocated two
pages at a time. Each data type which has any instances allocated has at least
two pages assigned to it, which may be wasteful of space if there are only a few
examples of a given data type. These problems should not effect most
applications programs.

21-12

INTERLISP-D REFERENCE MANUAL

Using “Fast” and “Destructive” Functions

Among the functions used for manipulating objects of various data types, there are a number of
functions which have "fast" and "destructive" versions. You should be aware of what these functions
do, and when they should be used.

“Fast” functions: By convention, a function named by prefixing an existing function name with F
indicates that the new function is a "fast" version of the old. These usually have the same definitions
as the slower versions, but they compile open and run without any "safety" error checks. For example,
FNTH runs faster than NTH, however, it does not make as many checks (for lists ending with anything
but NIL, etc). If these functions are given arguments that are not in the form that they expect, their
behavior is unpredictable; they may run forever, or cause a system error. In general, you should only
use "fast" functions in code that has already been completely debugged, to speed it up.

“Destructive” functions: By convention, a function named by prefixing an existing function with D
indicates the new function is a "destructive" version of the old one, which does not make any new
structure but cannibalizes its argument(s). For example, REMOVE returns a copy of a list with a
particular element removed, but DREMOVE actually changes the list structure of the list.
(Unfortunately, not all destructive functions follow this naming convention: the destructive version of
APPEND is NCONC.) You should be careful when using destructive functions that they do not
inadvertantly change data structures.

22-1

22. PERFORMANCE ISSUES

This chapter describes a number of areas that often contribute to performance problems
in Interlisp-D programs. Many performance problems can be improved by optimizing
the use of storage, since allocating and reclaiming large amounts of storage is
expensive. Another tactic that can sometimes yield performance improvements is to
change the use of variable bindings on the stack to reduce variable lookup time. There
are a number of tools that can be used to determine which parts of a computation cause
performance bottlenecks.

Storage Allocation and Garbage Collection

As an Interlisp-D applications program runs, it creates data structures (allocated out of
free storage space), manipulates them, and then discards them. If there were no way of
reclaiming this space, over time the Interlisp-D memory (both the physical memory in
the machine and the virtual memory stored on the disk) would fill up, and the
computation would come to a halt. Actually, long before this could happen the system
would probably become intolerably slow, due to "data fragmentation," which occurs
when the data currently in use are spread over many virtual memory pages, so that
most of the computer time must be spent swapping disk pages into physical memory.
The problem of fragmentation will occur in any situation where the virtual memory is
significantly larger than the real physical memory. To reduce swapping, it is desirable
to keep the "working set" (the set of pages containing actively referenced data) as small
as possible.

It is possible to write programs that don’t generate much "garbage" data, or which
recycle data, but such programs tend to be overly complicated and difficult to debug.
Spending effort writing such programs defeats the whole point of using a system with
automatic storage allocation. An important part of any Lisp implementation is the
"garbage collector" which identifies discarded data and reclaims its space. There are
several well-known approaches to garbage collection. One method is the traditional
mark-and-sweep garbage collection algorithm, which identifies "garbage" data by
marking all accessible data structures, and then sweeping through the data spaces to
find all unmarked objects (i.e., not referenced by any other object). Although this
method is guaranteed to reclaim all garbage, it takes time proportional to the number of
allocated objects, which may be very large. (Some allocated objects will have been
marked during the "mark" phase, and the remainder will be collected during the
"sweep" phase; so all will have to be touched in some way.) Also, the time that a mark-
and-sweep garbage collection takes is independent of the amount of garbage collected; it

22-2

is possible to sweep through the whole virtual memory, and only recover a small
amount of garbage.

For interactive applications, it is not acceptable to have long interruptions in a
computation for the purpose of garbage collection. Interlisp-D solves this problem by
using a reference-counting garbage collector. With this scheme, there is a table
containing counts of how many times each object is referenced. This table is
incrementally updated as pointers are created and discarded, incurring a small
overhead distributed over the computation as a whole. (Note: References from the stack
are not counted, but are handled separately at "sweep" time; thus the vast majority of
data manipulations do not cause updates to this table.) At opportune moments, the
garbage collector scans this table, and reclaims all objects that are no longer accessible
(have a reference count of zero). The pause while objects are reclaimed is only the time
for scanning the reference count tables (small) plus time proportional to the amount of
garbage that has to be collected (typically less than a second). "Opportune" times occur
when a certain number of cells have been allocated or when the system has been
waiting for the user to type something for long enough. The frequency of garbage
collection is controlled by the functions and variables described below. For the best
system performance, it is desirable to adjust these parameters for frequent, short
garbage collections, which will not interrupt interactive applications for very long, and
which will have the added benefit of reducing data fragmentation, keeping the working
set small.

One problem with the Interlisp-D garbage collector is that not all garbage is guaranteed
to be collected. Circular data structures, which point to themselves directly or
indirectly, are never reclaimed, since their reference counts are always at least one.
With time, this unreclaimable garbage may increase the working set to unacceptable
levels. Some users have worked with the same Interlisp-D virtual memory for a very
long time, but it is a good idea to occasionally save all of your functions in files,
reinitialize Interlisp-D, and rebuild your system. Many users end their working day by
issuing a command to rebuild their system and then leaving the machine to perform
this task in their absence. If the system seems to be spending too much time swapping
(an indication of fragmented working set), this procedure is definitely recommended.

Garbage collection in Interlisp-D is controlled by the following functions and variables:

(RECLAIM) [Function]

Initiates a garbage collection. Returns 0.

(RECLAIMMIN N) [Function]

Sets the frequency of garbage collection. Interlisp keeps track of the number of
cells of any type that have been allocated; when it reaches a given number, a
garbage collection occurs. If N is non-NIL, this number is set to N. Returns the
current setting of the number.

22-3

RECLAIMWAIT [Variable]

Interlisp-D will invoke a RECLAIM if the system is idle and waiting for your
input for RECLAIMWAIT seconds (currently set for 4 seconds).

(GCGAG MESSAGE) [Function]

Sets the behavior that occurs while a garbage collection is taking place. If
MESSAGE is non-NIL, the cursor is complemented during a RECLAIM; if
MESSAGE=NIL, nothing happens. The value of GCGAG is its previous setting.

(GCTRP) [Function]

Returns the number of cells until the next garbage collection, according to the
RECLAIMMIN number.

The amount of storage allocated to different data types, how much of that storage is in
use, and the amount of data fragmentation can be determined using the following
function:

(STORAGE TYPES PAGETHRESHOLD) [Function]

STORAGE prints out a summary, for each data type, of the amount of space
allocated to the data type, and how much of that space is currently in use. If
TYPES is non-NIL, STORAGE only lists statistics for the specified types. TYPES
can be a litatom or a list of types. If PAGETHRESHOLD is non-NIL, then
STORAGE only lists statistics for types that have at least PAGETHRESHOLD
pages allocated to them.

22-4

STORAGE prints out a table with the column headings Type, Assigned, Free
Items, In use, and Total alloc. Type is the name of the data type. Assigned
is how much of your virtual memory is set aside for items of this type.
Currently, memory is allocated in quanta of two pages (1024 bytes). The
numbers under Assigned show the number of pages and the total number of
items that fit on those pages. Free Items shows how many items are available
to be allocated (using the create construct, Chapter 8); these constitute the
"free list" for that data type. In use shows how many items of this type are
currently in use, i.e., have pointers to them and hence have not been garbage
collected. If this number is higher than your program seems to warrant, you
may want to look for storage leaks. The sum of Free Items and In use is
always the same as the total Assigned items. Total alloc is the total number
of items of this type that have ever been allocated (see BOXCOUNT, in the
Performance Measuring section below).

Note: The information about the number of items of type LISTP is only
approximate, because list cells are allocated in a special way that
precludes easy computation of the number of items per page.

Note: When a data type is redeclared, the data type name is reassigned.
Pages which were assigned to instances of the old data type are labeled
DEALLOC.

At the end of the table printout, STORAGE prints a "Data Spaces Summary"
listing the number of pages allocated to the major data areas in the virtual
address space: the space for fixed-length items (including datatypes), the space
for variable-length items, and the space for litatoms. Variable-length data types
such as arrays have fixed-length "headers," which is why they also appear in the
printout of fixed-length data types. Thus, the line printed for the BITMAP data
type says how many bitmaps have been allocated, but the "assigned pages"
column counts only the headers, not the space used by the variable-length part
of the bitmap. This summary also lists "Remaining Pages" in relation to the
largest possible virtual memory, not the size of the virtual memory backing file
in use. This file may fill up, causing a STORAGE FULL error, long before the
"Remaining Pages" numbers reach zero.

STORAGE also prints out information about the sizes of the entries on the
variable-length data free list. The block sizes are broken down by the value of
the variable STORAGE.ARRAYSIZES, initially (4 16 64 256 1024 4096
16384 NIL), which yields a printout of the form:

variable-datum free list:
le 4 26 items; 104 cells.
le 16 72 items; 783 cells.
le 64 36 items; 964 cells.
le 256 28 items; 3155 cells.
le 1024 3 items; 1175 cells.

22-5

le 4096 5 items; 8303 cells.
le 16384 3 items; 17067 cells.
others 1 items; 17559 cells.

This information can be useful in determining if the variable-length data space
is fragmented. If most of the free space is composed of small items, then the
allocator may not be able to find room for large items, and will extend the
variable datum space. If this is extended too much, this could cause an ARRAYS
FULL error, even if there is a lot of space left in little chunks.

22-6

(STORAGE.LEFT) [Function]

Provides a programmatic way of determining how much storage is left in the
major data areas in the virtual address space. Returns a list of the form
(MDSFREE MDSFRAC 8MBFRAC ATOMFREE ATOMFRAC), where the
elements are interpreted as follows:

MDSFREE The number of free pages left in the main data space (which
includes both fixed-length and variable-length data types).

MDSFRAC The fraction of the total possible main data space that is free.

8MBFRAC The fraction of the total main data space that is free, relative
to eight megabytes.

This number is useful when using Interlisp-D on some early
computers where the hardware limits the address space to
eight megabytes. The function 32MBADDRESSABLE returns
non-NIL if the currently running Interlisp-D system can use
the full 32 megabyte address space.

ATOMFREE The number of free pages left in the litatom space.

ATOMFRAC The fraction of the total litatom space that is free.

Note: Another important space resource is the amount of the virtual memory backing
file in use (see VMEMSIZE, Chapter 12). The system will crash if the virtual memory file
is full, even if the address space is not exhausted.

Variable Bindings

Different implementations of lisp use different methods of accessing free variables. The
binding of variables occurs when a function or a PROG is entered. For example, if the
function FOO has the definition (LAMBDA (A B) BODY), the variables A and B are
bound so that any reference to A or B from BODY or any function called from BODY will
refer to the arguments to the function FOO and not to the value of A or B from a higher
level function. All variable names (litatoms) have a top level value cell which is used if
the variable has not been bound in any function. In discussions of variable access, it is
useful to distinquish between three types of variable access: local, special and global.
Local variable access is the use of a variable that is bound within the function from
which it is used. Special variable access is the use of a variable that is bound by
another function. Global variable access is the use of a variable that has not been
bound in any function. We will often refer to a variable all of whose accesses are local
as a "local variable." Similarly, a variable all of whose accesses are global we call a
"global variable."

22-7

In a "deep" bound system, a variable is bound by saving on the stack the variable’s
name together with a value cell which contains that variable’s new value. When a
variable is accessed, its value is found by searching the stack for the most recent
binding (occurrence) and retrieving the value stored there. If the variable is not found
on the stack, the variable’s top level value cell is used.

In a "shallow" bound system, a variable is bound by saving on the stack the variable
name and the variable’s old value and putting the new value in the variable’s top level
value cell. When a variable is accessed, its value is always found in its top level value
cell.

22-8

The deep binding scheme has one disadvantage: the amount of cpu time required to
fetch the value of a variable depends on the stack distance between its use and its
binding. The compiler can determine local variable accesses and compiles them as
fetches directly from the stack. Thus this computation cost only arises in the use of
variable not bound in the local frame ("free" variables). The process of finding the value
of a free variable is called free variable lookup.

In a shallow bound system, the amount of cpu time required to fetch the value of a
variable is constant regardless of whether the variable is local, special or global. The
disadvantages of this scheme are that the actual binding of a variable takes longer
(thus slowing down function call), the cells that contain the current in use values are
spread throughout the space of all litatom value cells (thus increasing the working set
size of functions) and context switching between processes requires unwinding and
rewinding the stack (thus effectively prohibiting the use of context switching for many
applications).

Interlisp-D uses deep binding, because of the working set considerations and the speed
of context switching. The free variable lookup routine is microcoded, thus greatly
reducing the search time. In benchmarks, the largest percentage of free variable lookup
time was 20 percent of the total ellapsed time; the normal time was between 5 and 10
percent.

One consequence of Interlisp-D’s deep binding scheme is that users may significantly
improve performance by declaring global variables in certain situations. If a variable is
declared global, the compiler will compile an access to that variable as a retrieval of its
top level value, completely bypassing a stack search. This should be done only for
variables that are never bound in functions, such as global databases and flags.

Global variable declarations should be done using the GLOBALVARS file package
command (Chapter 17). Its form is (GLOBALVARS VAR1 ... VARN).

Another way of improving performance is to declare variables as local within a function.
Normally, all variables bound within a function have their names put on the stack, and
these names are scanned during free variable lookup. If a variable is declared to be
local within a function, its name is not put on the stack, so it is not scanned during free
variable lookup, which may increase the speed of lookups. The compiler can also make
some other optimizations if a variable is known to be local to a function.

A variable may be declared as local within a function by including the form (DECLARE
(LOCALVARS VAR1 ... VARN)) following the argument list in the definition of the
function. Local variable declarations only effect the compilation of a function.
Interpreted functions put all of their variable names on the stack, regardless of any
declarations.

22-9

Performance Measuring

This section describes functions that gather and display statistics about a computation,
such as as the elapsed time, and the number of data objects of different types allocated.
TIMEALL and TIME gather statistics on the evaluation of a specified form. BREAKDOWN
gathers statistics on individual functions called during a computation. These functions
can be used to determine which parts of a computation are consuming the most
resources (time, storage, etc.), and could most profitably be improved.

(TIMEALL TIMEFORM NUMBEROFTIMES TIMEWHAT INTERPFLG —)
[NLambda Function]

Evaluates the form TIMEFORM and prints statistics on time spent in various
categories (elapsed, keyboard wait, swapping time, gc) and data type allocation.

For more accurate measurement on small computations, NUMBEROFTIMES
may be specified (its default is 1) to cause TIMEFORM to be executed
NUMBEROFTIMES times. To improve the accuracy of timing open-coded
operations in this case, TIMEALL compiles a form to execute TIMEFORM
NUMBEROFTIMES times (unless INTERPFLG is non-NIL), and then times
the execution of the compiled form.

Note: If TIMEALL is called with NUMBEROFTIMES>1, the dummy form is
compiled with compiler optimizations on. This means that it is not
meaningful to use TIMEALL with very simple forms that are optimized
out by the compiler. For example, (TIMEALL ’(IPLUS 2 3) 1000)
will time a compiled function which simply returns the number 5, since
(IPLUS 2 3) is optimized to the integer 5.

TIMEWHAT restricts the statistics to specific categories. It can be an atom or
list of datatypes to monitor, and/or the atom TIME to monitor time spent. Note
that ordinarily, TIMEALL monitors all time and datatype usage, so this
argument is rarely needed.

TIMEALL returns the value of the last evaluation of TIMEFORM.

(TIME TIMEX TIMEN TIMETYP) [NLambda Function]

TIME evaluates the form TIMEX, and prints out the number of CONS cells
allocated and computation time. Garbage collection time is subtracted out.
This function has been largely replaced by TIMEALL.

If TIMEN is greater than 1, TIMEX is executed TIMEN times, and TIME prints
out (number of conses)/TIMEN, and (computation time)/TIMEN. If
TIMEN=NIL, it defaults to 1. This is useful for more accurate measurement on
small computations.

22-10

If TIMETYP is 0, TIME measures and prints total real time as well as
computation time. If TIMETYP = 3, TIME measures and prints garbage
collection time as well as computation time. If TIMETYP=T, TIME measures
and prints the number of pagefaults.

TIME returns the value of the last evaluation of TIMEX.

(BOXCOUNT TYPE N) [Function]

Returns the number of data objects of type TYPE allocated since this Interlisp
system was created. TYPE can be any data type name (see TYPENAME, Chapter
8). If TYPE is NIL, it defaults to FIXP. If N is non-NIL, the corresponding
counter is reset to N.

(CONSCOUNT N) [Function]

Returns the number of CONS cells allocated since this Interlisp system was
created. If N is non-NIL, resets the counter to N. Equivalent to (BOXCOUNT
’LISTP N).

(PAGEFAULTS) [Function]

Returns the number of page faults since this Interlisp system was created.

BREAKDOWN

TIMEALL collects statistics for whole computations. BREAKDOWN is available to analyze
the breakdown of computation time (or any other measureable quantity) function by
function.

(BREAKDOWN FN1 ... FNN) [NLambda NoSpread Function]

The user calls BREAKDOWN giving it a list of function names (unevaluated).
These functions are modified so that they keep track of various statistics.

To remove functions from those being monitored, simply UNBREAK (Chapter 15)
the functions, thereby restoring them to their original state. To add functions,
call BREAKDOWN on the new functions. This will not reset the counters for any
functions not on the new list. However (BREAKDOWN) will zero the counters of
all functions being monitored.

The procedure used for measuring is such that if one function calls other and
both are "broken down", then the time (or whatever quantity is being measured)
spent in the inner function is not charged to the outer function as well.

22-11

BREAKDOWN will not give accurate results if a function being measured is not
returned from normally, e.g., a lower RETFROM (or ERROR) bypasses it. In this
case, all of the time (or whatever quantity is being measured) between the time
that function is entered and the time the next function being measured is
entered will be charged to the first function.

(BRKDWNRESULTS RETURNVALUESFLG) [Function]

BRKDWNRESULTS prints the analysis of the statistics requested as well as the
number of calls to each function. If RETURNVALUESFLG is non-NIL,
BRKDWNRESULTS will not to print the results, but instead return them in the
form of a list of elements of the form (FNNAME #CALLS VALUE).

Example:

← (BREAKDOWN SUPERPRINT SUBPRINT COMMENT1)
(SUPERPRINT SUBPRINT COMMENT1)
←(PRETTYDEF ’(SUPERPRINT) ’FOO)
FOO.;3
←(BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
SUPERPRINT 8.261 365 0.023 20
SUBPRINT 31.910 141 0.226 76
COMMENT1 1.612 8 0.201 4
TOTAL 41.783 514 0.081
NIL
←(BRKDWNRESULTS T)
((SUPERPRINT 365 8261) (SUBPRINT 141 31910) (COMMENT1 8
1612))

BREAKDOWN can be used to measure other statistics, by setting the following variables:

BRKDWNTYPE [Variable]

To use BREAKDOWN to measure other statistics, before calling BREAKDOWN, set
the variable BRKDWNTYPE to the quantity of interest, e.g., TIME, CONSES, etc, or
a list of such quantities. Whenever BREAKDOWN is called with BRKDWNTYPE not
NIL, BREAKDOWN performs the necessary changes to its internal state to conform
to the new analysis. In particular, if this is the first time an analysis is being
run with a particular statistic, a measuring function will be defined, and the
compiler will be called to compile it. The functions being broken down will be
redefined to call this measuring function. When BREAKDOWN is through
initializing, it sets BRKDWNTYPE back to NIL. Subsequent calls to BREAKDOWN
will measure the new statistic until BRKDWNTYPE is again set and a new
BREAKDOWN performed.

22-12

BRKDWNTYPES [Variable]

The list BRKDWNTYPES contains the information used to analyze new statistics.
Each entry on BRKDWNTYPES should be of the form (TYPE FORM FUNCTION),
where TYPE is a statistic name (as would appear in BRKDWNTYPE), FORM
computes the statistic, and FUNCTION (optional) converts the value of form to
some more interesting quantity. For example, (TIME (CLOCK 2) (LAMBDA
(X) (FQUOTIENT X 1000))) measures computation time and reports the
result in seconds instead of milliseconds. BRKDWNTYPES currently contains
entries for TIME, CONSES, PAGEFAULTS, BOXES, and FBOXES.

Example:

←(SETQ BRKDWNTYPE ’(TIME CONSES))
(TIME CONSES)
←(BREAKDOWN MATCH CONSTRUCT)
(MATCH CONSTRUCT)
←(FLIP ’(A B C D E F G H C Z) ’(.. $1 .. #2 ..) ’(.. #3
..))
(A B D E F G H Z)
←(BRKDWNRESULTS)
FUNCTIONS TIME #CALLS PER CALL %
MATCH 0.036 1 0.036 54
CONSTRUCT 0.031 1 0.031 46
TOTAL 0.067 2 0.033
FUNCTIONS CONSES #CALLS PER CALL %
MATCH 32 1 32.000 40
CONSTRUCT 49 1 49.000 60
TOTAL 81 2 40.500
NIL

Occasionally, a function being analyzed is sufficiently fast that the overhead
involved in measuring it obscures the actual time spent in the function. If you
were using TIME, you would specify a value for TIMEN greater than 1 to give
greater accuracy. A similar option is available for BREAKDOWN. You can specify
that a function(s) be executed a multiple number of times for each
measurement, and the average value reported, by including a number in the list
of functions given to BREAKDOWN. For example, BREAKDOWN(EDITCOM EDIT4F
10 EDIT4E EQP) means normal breakdown for EDITCOM and EDIT4F but
executes (the body of) EDIT4E and EQP 10 times each time they are called. Of
course, the functions so measured must not cause any harmful side effects, since
they are executed more than once for each call. The printout from
BRKDWNRESULTS will look the same as though each function were run only once,
except that the measurement will be more accurate.

Another way of obtaining more accurate measurement is to expand the call to
the measuring function in-line. If the value of BRKDWNCOMPFLG is non-NIL
(initially NIL), then whenever a function is broken-down, it will be redefined to

22-13

call the measuring function, and then recompiled. The measuring function is
expanded in-line via an appropriate macro. In addition, whenever BRKDWNTYPE
is reset, the compiler is called for all functions for which BRKDWNCOMPFLG was
set at the time they were originally broken-down, i.e. the setting of the flag at
the time a function is broken-down determines whether the call to the
measuring code is compiled in-line.

GAINSPACE

If you have large programs and databases, you may sometimes find yourself in a
situation where you need to obtain more space, and are willing to pay the price of
eliminating some or all of the context information that the various user-assistance
facilities such as the programmer’s assistant, file package, CLISP, etc., have
accumulated during the course of his session. The function GAINSPACE provides an
easy way to selectively throw away accumulated data:

(GAINSPACE) [Function]

Prints a list of deletable objects, allowing you to specify at each point what
should be discarded and what should be retained. For example:

←(GAINSPACE)
purge history lists ? Yes
purge everything, or just the properties, e.g., SIDE,
LISPXPRINT, etc. ?
just the properties
discard definitions on property lists ? Yes
discard old values of variables ? Yes
erase properties ? No
erase CLISP translations? Yes

GAINSPACE is driven by the list GAINSPACEFORMS. Each element on GAINSPACEFORMS
is of the form (PRECHECK MESSAGE FORM KEYLST). If PRECHECK, when
evaluated, returns NIL, GAINSPACE skips to the next entry. For example, you will not
be asked whether or not to purge the history list if it is not enabled. Otherwise,
ASKUSER (Chapter 26) is called with the indicated MESSAGE and the (optional)
KEYLST. If you respond No, i.e., ASKUSER returns N, GAINSPACE skips to the next
entry. Otherwise, FORM is evaluated with the variable RESPONSE bound to the value
of ASKUSER. In the above example, the FORM for the "purge history lists"
question calls ASKUSER to ask "purge everything, ..." only if you had responded
Yes. If you had responded with Everything, the second question would not have been
asked.

The "erase properties" question is driven by a list SMASHPROPSMENU. Each element
on this list is of the form (MESSAGE . PROPS). You are prompted with MESSAGE

22-14

(by ASKUSER), and if your response is Yes, PROPS is added to the list SMASHPROPS.
The "discard definitions on property lists" and "discard old values of
variables" questions also add to SMASHPROPS. You will not be prompted for any entry
on SMASHPROPSMENU for which all of the corresponding properties are already on
SMASHPROPS. SMASHPROPS is initially set to the value of SMASHPROPSLST. This
permits you to specify in advance those properties which you always want discarded,
and not be asked about them subsequently. After finishing all the entries on
GAINSPACEFORMS, GAINSPACE checks to see if the value of SMASHPROPS is non-NIL,
and if so, does a MAPATOMS, i.e., looks at every atom in the system, and erases the
indicated properties.

You can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU, so that
GAINSPACE can also be used to purge structures that your programs have accumulated.

Using Data Types Instead of Records

If a program uses large numbers of large data structures, there are several advantages
to representing them as user data types rather than as list structures. The primary
advantage is increased speed: accessing and setting the fields of a data type can be
significantly faster than walking through a list with repeated CARs and CDRs. Also,

22-15

compiled code for referencing data types is usually smaller. Finally, by reducing the
number of objects created (one object against many list cells), this can reduce the
expense of garbage collection.

User data types are declared by using the DATATYPE record type (Chapter 8). If a list
structure has been defined using the RECORD record type (Chapter 8), and all accessing
operations are written using the record package’s fetch, replace, and create
operations, changing from RECORDs to DATATYPEs only requires editing the record
declaration (using EDITREC, Chapter 8) to replace declaration type RECORD by
DATATYPE, and recompiling.

Note: There are some minor disadvantages with allocating new data types: First, there
is an upper limit on the number of data types which can exist. Also, space for data
types is allocated a page at a time, so each data type has at least one page assigned to
it, which may be wasteful of space if there are only a few examples of a given data type.
These problems should not effect most applications programs.

Using Incomplete File Names

Currently, Interlisp allows you to specify an open file by giving the file name. If the file
name is incomplete (it doesn’t have the device/host, directory, name, extension, and
version number all supplied), the system converts it to a complete file name, by
supplying defaults and searching through directories (which may be on remote file
servers), and then searches the open streams for one corresponding to that file name.
This file name-completion process happens whenever any I/O function is given an
incomplete file name, which can cause a serious performance problem if I/O operations
are done repeatedly. In general, it is much faster to convert an incomplete file name to
a stream once, and use the stream from then on. For example, suppose a file is opened
with (SETQ STRM (OPENSTREAM ’MYNAME ’INPUT)). After doing this, (READC
’MYNAME) and (READC STRM) would both work, but (READC ’MYNAME) would take
longer (sometimes orders of magnitude longer). This could seriously effect the
performance if a program which is doing many I/O operations.

At some point in the future, when multiple streams are supported to a single file, the
feature of mapping file names to streams will be removed. This is yet another reason
why programs should use streams as handles to open files, instead of file names.

For more information on efficiency considerations when using files, see Chapter 24.

22-16

Using "Fast" and "Destructive" Functions

Among the functions used for manipulating objects of various data types, there are a
number of functions which have "fast" and "destructive" versions. You should be aware
of what these functions do, and when they should be used.

"Fast" functions: By convention, a function named by prefixing an existing function
name with F indicates that the new function is a "fast" version of the old. These usually
have the same definitions as the slower versions, but they compile open and run
without any "safety" error checks. For example, FNTH runs faster than NTH, however, it
does not make as many checks (for lists ending with anything but NIL, etc). If these
functions are given arguments that are not in the form that they expect, their behavior
is unpredictable; they may run forever, or cause a system error. In general, you should
only use "fast" functions in code that has already been completely debugged, to speed it
up.

22-17

"Destructive" functions: By convention, a function named by prefixing an existing
function with D indicates the new function is a "destructive" version of the old one,
which does not make any new structure but cannibalizes its argument(s). For example,
REMOVE returns a copy of a list with a particular element removed, but DREMOVE
actually changes the list structure of the list. (Unfortunately, not all destructive
functions follow this naming convention: the destructive version of APPEND is NCONC.)
You should be careful when using destructive functions that they do not inadvertantly
change data structures.

22-1

22. PROCESSES

The Medley Process mechanism provides an environment in which multiple Lisp processes can run in
parallel. Each executes in its own stack space, but all share a global address space. The current
process implementation is cooperative; i.e., process switches happen voluntarily, either when the
process in control has nothing to do or when it is in a convenient place to pause. There is no
preemption or guaranteed service, so you cannot run something demanding (e.g., Chat) at the same
time as something that runs for long periods without yielding control. Keyboard input and network
operations block with great frequency, so processes currently work best for highly interactive tasks
(editing, making remote files).

In Medley, the process mechanism is already turned on, and is expected to stay on during normal
operations, as some system facilities (in particular, most network operations) require it. However,
under exceptional conditions, the following function can be used to turn the world off and on:

(PROCESSWORLD FLG) [Function]

Starts up the process world, or if FLG = OFF, kills all processes and turns it off. Normally
does not return. The environment starts out with two processes: a top-level EVALQT (the
initial "tty" process) and the "background" process, which runs the window mouse
handler and other system background tasks.

PROCESSWORLD is intended to be called at the top level of Interlisp, not from within a
program. It does not toggle some sort of switch; rather, it constructs some new processes
in a new part of the stack, leaving any callers of PROCESSWORLD in a now inaccessible
part of the stack. Calling (PROCESSWORLD ’OFF) is the only way the call to
PROCESSWORLD ever returns.

(HARDRESET) [Function]

Resets the whole world, and rebuilds the stack from scratch. This is "harder" than doing
RESET to every process, because it also resets system internal processes (such as the
keyboard handler).

HARDRESET automatically turns the process world on (or resets it if it was on), unless the
variable AUTOPROCESSFLG is NIL.

Creating and Destroying Processes

(ADD.PROCESS FORM PROP1 VALUE1 ... PROPN VALUEN) [NoSpread Function]

Creates a new process evaluating FORM, and returns its process handle. The process’s
stack environment is the top level, i.e., the new process does not have access to the
environment in which ADD.PROCESS was called; all such information must be passed as
arguments in FORM. The process runs until FORM returns or the process is explicitly
deleted. An untrapped error within the process also deletes the process (unless its
RESTARTABLE property is T), in which case a message is printed to that effect.

22-2

INTERLISP-D REFERENCE MANUAL

The remaining arguments are alternately property names and values. Any
property/value pairs acceptable to PROCESSPROP may be given, but the following two
are directly relevant to ADD.PROCESS:

NAME Value can be a symbol or a string; if not given, the process
name is taken from (CAR FORM). ADD.PROCESS may
pack the name with a number to make it unique. Process
names are treated as case-insensitive strings. This name is
solely for the convenience of manipulating processes at
Lisp type-in; e.g., the name can be given as the PROC
argument to most process functions, and the name
appears in menus of processes. However, programs
should normally only deal in process handles, both for
efficiency and to avoid the confusion that can result if two
processes have the same defining form.

SUSPEND If the value is non-NIL, the new process is created but
then immediately suspended; i.e., the process does not
actually run until woken by a WAKE.PROCESS (below).

(PROCESSPROP PROC PROP NEWVALUE) [NoSpread Function]

Used to get or set the values of certain properties of process PROC, in a manner analogous
to WINDOWPROP. If NEWVALUE is supplied (including if it is NIL), property PROP is given
that value. In all cases, returns the old value of the property. The following properties
have special meaning for processes; all others are uninterpreted:

NAME Value is a symbol used for identifying the process to the
user.

FORM Value is the Lisp form used to start the process (readonly).

RESTARTABLE Value is a flag indicating the disposition of the process
following errors or hard resets:

NIL or NO (the default): If an untrapped error (or Control-
E or Control-D) causes its form to be exited, the process is
deleted. The process is also deleted if a HARDRESET (or
Control-D from RAID) occurs, causing the entire Process
world to be reinitialized.

T or YES: The process is automatically restarted on errors
or HARDRESET. This is the normal setting for persistent
"background" processes, such as the mouse process, that
can safely restart themselves on errors.

HARDRESET: The process is deleted as usual if an error
causes its form to be exited, but it is restarted on a
HARDRESET. This setting is preferred for persistent
processes for which an error is an unusual condition, one

22-3

PROCESSES

that might repeat itself if the process were simply blindly
restarted.

RESTARTFORM If the value is non-NIL, it is the form used if the process is
restarted (instead of the value of the FORM property). Of
course, the process must also have a non-NIL
RESTARTABLE prop for this to have any effect.

BEFOREEXIT If the value is the atom DON’T, it will not be interrupted
by a LOGOUT. If LOGOUT is attempted before the process
finishes, a message will appear saying that Interlisp is
waiting for the process to finish. If you want the LOGOUT
to proceed without waiting, you must use the process
status window (from the background menu) to delete the
process.

AFTEREXIT Value indicates the disposition of the process following a
resumption of Lisp after some exit (LOGOUT, SYSOUT,
MAKESYS). Possible values are:

DELETE: Delete the process.

SUSPEND: Suspend the process; i.e., do not let it run until
it is explicitly woken.

An event: Cause the process to be suspended waiting for
the event (See the Events section below).

INFOHOOK Value is a function or form used to provide information
about the process, in conjunction with the INFO command
in the process status window (see the Process Status
Window section below).

WINDOW Value is a window associated with the process, the
process’s "main" window. Used to switch the tty process
to this process when you click in this window (see the
Switching the TTY Process section below).

Setting the WINDOW property does not set the primary I/O
stream (NIL) or the terminal I/O stream (T) to the
window. When a process is created, I/O operations to the
NIL or T stream will cause a new window to appear.
TTYDISPLAYSTREAM (see Chapter 26) should be used to
set the terminal I/O stream of a process to a specific
window.

TTYENTRYFN Value is a function that is applied to the process when the
process is made the tty process (see the Switching the TTY
Process section below).

22-4

INTERLISP-D REFERENCE MANUAL

TTYEXITFN Value is a function that is applied to the process when the
process ceases to be the tty process (see the Switching the
TTY Process section below).

(THIS.PROCESS) [Function]

Returns the handle of the currently running process, or NIL if the Process world is turned
off.

(DEL.PROCESS PROC) [Function]

Deletes process PROC. PROC may be a process handle (returned by ADD.PROCESS), or its
name. If PROC is the currently running process, DEL.PROCESS does not return!

(PROCESS.RETURN VALUE) [Function]

Terminates the currently running process, causing it to "return" VALUE. There is an
implicit PROCESS.RETURN around the FORM argument given to ADD.PROCESS, so that
normally a process can finish by simply returning; PROCESS.RETURN is supplied for
earlier termination.

(PROCESS.RESULT PROCESS WAITFORRESULT) [Function]

If PROCESS has terminated, returns the value, if any, that it returned. This is either the
value of a PROCESS.RETURN or the value returned from the form given to ADD.PROCESS.
If the process was aborted, the value is NIL. If WAITFORRESULT is true,
PROCESS.RESULT blocks until PROCESS finishes, if necessary; otherwise, it returns NIL
immediately if PROCESS is still running. PROCESS must be the actual process handle
returned from ADD.PROCESS, not a process name, as the association between handle and
name disappears when the process finishes (and the process handle itself is then garbage
collected if no one else has a pointer to it).

(PROCESS.FINISHEDP PROCESS) [Function]

True if PROCESS has terminated. The value returned is an indication of how it finished:
NORMAL or ERROR.

(PROCESSP PROC) [Function]

True if PROC is the handle of an active process, i.e., one that has not yet finished.

(RELPROCESSP PROCHANDLE) [Function]

True if PROCHANDLE is the handle of a deleted process. This is analogous to RELSTKP. It
differs from PROCESS.FINISHEDP in that it never causes an error, while
PROCESS.FINISHEDP can cause an error if its PROC argument is not a process at all.

(RESTART.PROCESS PROC) [Function]

Unwinds PROC to its top level and reevaluates its form. This is effectively a
DEL.PROCESS followed by the original ADD.PROCESS.

22-5

PROCESSES

(MAP.PROCESSES MAPFN) [Function]

Maps over all processes, calling MAPFN with three arguments: the process handle, its
name, and its form.

(FIND.PROCESS PROC ERRORFLG) [Function]

If PROC is a process handle or the name of a process, returns the process handle for it, else
NIL. If ERRORFLG is T, generates an error if PROC is not, and does not name, a live
process.

Process Control Constructs

(BLOCK MSECSWAIT TIMER) [Function]

Yields control to the next waiting process, assuming any is ready to run. If MSECSWAIT is
specified, it is a number of milliseconds to wait before returning, or T, meaning wait
forever (until explicitly woken). Alternatively, TIMER can be given as a millisecond timer
(as returned by SETUPTIMER, Chapter 12) of an absolute time at which to wake up. In
any of those cases, the process enters the waiting state until the time limit is up. BLOCK
with no arguments leaves the process in the runnable state, i.e., it returns as soon as every
other runnable process of the same priority has had a chance.

BLOCK can be aborted by interrupts such as Control-D, Control-E, or Control-B. BLOCK
will return before its timeout is completed, if the process is woken by WAKE.PROCESS,
PROCESS.EVAL, or PROCESS.APPLY.

(DISMISS MSECSWAIT TIMER NOBLOCK) [Function]

DISMISS is used to dismiss the current process for a given period of time. Similar to
BLOCK, except that:

• DISMISS is guaranteed not to return until the specified time has
elapsed

• MSECSWAIT cannot be T to wait forever

• If NOBLOCK is T, DISMISS will not allow other processes to run, but will
busy-wait until the amount of time given has elapsed.

(WAKE.PROCESS PROC STATUS) [Function]

Explicitly wakes process PROC, i.e., makes it runnable, and causes its call to BLOCK (or
other waiting function) to return STATUS. This is one simple way to notify a process of
some happening; however, note that if WAKE.PROCESS is applied to a process more than
once before the process actually gets its turn to run, it sees only the latest STATUS.

22-6

INTERLISP-D REFERENCE MANUAL

(SUSPEND.PROCESS PROC) [Function]

Blocks process PROC indefinitely, i.e., PROC will not run until it is woken by a
WAKE.PROCESS.

The following three functions allow access to the stack context of some other process. They require a
little bit of care, and are computationally non-trivial, but they do provide a more powerful way of
manipulating another process than WAKE.PROCESS allows.

(PROCESS.EVALV PROC VAR) [Function]

Performs (EVALV VAR) in the stack context of PROC.

(PROCESS.EVAL PROC FORM WAITFORRESULT) [Function]

Evaluates FORM in the stack context of PROC. If WAITFORRESULT is true, blocks until the
evaluation returns a result, else allows the current process to run in parallel with the
evaluation. Any errors that occur will be in the context of PROC, so be careful. In
particular, note that

(PROCESS.EVAL PROC ’(NLSETQ (FOO)))

and

(NLSETQ (PROCESS.EVAL PROC ’(FOO)))

behave quite differently if FOO causes an error. And it is quite permissible to intentionally
cause an error in proc by performing

(PROCESS.EVAL PROC ’(ERROR!))

If WAITFORRESULT is true and the computation in the other process aborts or the other
process is killed PROCESS.EVAL returns :ABORTED

After FORM is evaluated in PROC, the process PROC is woken up, even if it was running
BLOCK or AWAIT.EVENT. This is necessary because an event of interest may have
occurred while the process was evaluating FORM.

(PROCESS.APPLY PROC FN ARGS WAITFORRESULT) [Function]

Performs (APPLY FN ARGS) in the stack context of PROC. Note the same warnings as
with PROCESS.EVAL.

Events

An "event" is a synchronizing primitive used to coordinate related processes, typically producers and
consumers. Consumer processes can "wait" on events, and producers "notify" events.

22-7

PROCESSES

(CREATE.EVENT NAME) [Function]

Returns an instance of the EVENT datatype, to be used as the event argument to functions
listed below. NAME is arbitrary, and is used for debugging or status information.

(AWAIT.EVENT EVENT TIMEOUT TIMERP) [Function]

Suspends the current process until EVENT is notified, or until a timeout occurs. If
TIMEOUT is NIL, there is no timeout. Otherwise, timeout is either a number of
milliseconds to wait, or, if TIMERP is T, a millisecond timer set to expire at the desired
time using SETUPTIMER (see Chapter 12).

(NOTIFY.EVENT EVENT ONCEONLY) [Function]

If there are processes waiting for EVENT to occur, causes those processes to be placed in
the running state, with EVENT returned as the value from AWAIT.EVENT. If ONCEONLY is
true, only runs the first process waiting for the event (this should only be done if the
programmer knows that there can only be one process capable of responding to the event
at once).

The meaning of an event is up to the programmer. In general, however, the notification of an event is
merely a hint that something of interest to the waiting process has happened; the process should still
verify that the conceptual event actually occurred. That is, the process should be written so that it operates
correctly even if woken up before the timeout and in the absence of the notified event. In particular, the
completion of PROCESS.EVAL and related operations in effect wakes up the process in which they
were performed, since there is no secure way of knowing whether the event of interest occurred while
the process was busy performing the PROCESS.EVAL.

There is currently one class of system-defined events, used with the network code. Each Pup and NS
socket has associated with it an event that is notified when a packet arrives on the socket; the event
can be obtained by calling PUPSOCKETEVENT or NSOCKETEVENT, respectively (see Chapter 30).

Monitors

It is often the case that cooperating processes perform operations on shared structures, and some
mechanism is needed to prevent more than one process from altering the structure at the same time.
Some languages have a construct called a monitor, a collection of functions that access a common
structure with mutual exclusion provided and enforced by the compiler via the use of monitor locks.
Medley has taken this implementation notion as the basis for a mutual exclusion capability suitable
for a dynamically-scoped environment.

A monitorlock is an object created by you and associated with (e.g., stored in) some shared structure
that is to be protected from simultaneous access. To access the structure, a program waits for the lock
to be free, then takes ownership of the lock, accesses the structure, then releases the lock. The
functions and macros below are used:

22-8

INTERLISP-D REFERENCE MANUAL

(CREATE.MONITORLOCK NAME) [Function]

Returns an instance of the MONITORLOCK datatype, to be used as the lock argument to
functions listed below. NAME is arbitrary, and is used for debugging or status information.

(WITH.MONITOR LOCK FORM1 ... FORMN) [Macro]

Evaluates FORM1 ... FORMN while owning LOCK, and returns the value of FORMN. This

construct is implemented so that the lock is released even if the form is exited via error
(currently implemented with RESETLST).

Ownership of a lock is dynamically scoped: if the current process already owns the lock
(e.g., if the caller was itself inside a WITH.MONITOR for this lock), WITH.MONITOR does
not wait for the lock to be free before evaluating FORM1 ... FORMN.

(WITH.FAST.MONITOR LOCK FORM1 ... FORMN) [Macro]

Like WITH.MONITOR, but implemented without the RESETLST. User interrupts (e.g.,
Control-E) are inhibited during the evaluation of FORM1 ... FORMN.

Programming restriction: the evaluation of FORM1 ... FORMN must not error (the lock

would not be released). This construct is mainly useful when the forms perform a small,
safe computation that never errors and need never be interrupted.

(MONITOR.AWAIT.EVENT RELEASELOCK EVENT TIMEOUT TIMERP) [Function]

For use in blocking inside a monitor. Performs (AWAIT.EVENT EVENT TIMEOUT
TIMERP), but releases RELEASELOCK first, and reobtains the lock (possibly waiting) on
wakeup.

Typical use for MONITOR.AWAIT.EVENT: A function wants to perform some operation
on FOO, but only if it is in a certain state. It has to obtain the lock on the structure to make
sure that the state of the structure does not change between the time it tests the state and
performs the operation. If the state turns out to be bad, it then waits for some other
process to make the state good, meanwhile releasing the lock so that the other process can
alter the structure.

(WITH.MONITOR FOO-LOCK
 (until CONDITION-OF-FOO
 do (MONITOR.AWAIT.EVENT FOO-LOCK EVENT-FOO-
CHANGED TIMEOUT))
 OPERATE-ON-FOO)

It is sometimes convenient for a process to have WITH.MONITOR at its top level and then
do all its interesting waiting using MONITOR.AWAIT.EVENT. Not only is this often
cleaner, but in the present implementation in cases where the lock is frequently accessed,
it saves the RESETLST overhead of WITH.MONITOR.

Programming restriction: There must not be an ERRORSET between the enclosing
WITH.MONITOR and the call to MONITOR.AWAIT.EVENT such that the ERRORSET would
catch an ERROR! and continue inside the monitor, for the lock would not have been

22-9

PROCESSES

reobtained. (The reason for this restriction is that, although MONITOR.AWAIT.EVENT
won’t itself error, you could have caused an error with an interrupt, or a PROCESS.EVAL
in the context of the waiting process that produced an error.)

On rare occasions it may be useful to manipulate monitor locks directly. The following two functions
are used in the implementation of WITH.MONITOR:

(OBTAIN.MONITORLOCK LOCK DONTWAIT UNWINDSAVE) [Function]

Takes possession of LOCK, waiting if necessary until it is free, unless DONTWAIT is true, in
which case it returns NIL immediately. If UNWINDSAVE is true, performs a RESETSAVE to
be unwound when the enclosing RESETLST exits. Returns LOCK if LOCK was successfully
obtained, T if the current process already owned LOCK.

(RELEASE.MONITORLOCK LOCK EVENIFNOTMINE) [Function]

Releases LOCK if it is owned by the current process, and wakes up the next process, if any,
waiting to obtain the lock.

If EVENIFNOTMINE is non-NIL, the lock is released even if it is not owned by the current
process.

When a process is deleted, any locks it owns are released.

Global Resources

The biggest source of problems in the multi-processing environment is the matter of global resources.
Two processes cannot both use the same global resource if there can be a process switch in the middle
of their use (currently this means calls to BLOCK, but ultimately with a preemptive scheduler means
anytime). Thus, user code should be wary of its own use of global variables, if it ever makes sense for
the code to be run in more than one process at a time. "State" variables private to a process should
generally be bound in that process; structures that are shared among processes (or resources used
privately but expensive to duplicate per process) should be protected with monitor locks or some
other form of synchronization.

Aside from user code, however, there are many system global variables and resources. Most of these
arise historically from the single-process Interlisp-10 environment, and will eventually be changed in
Medley to behave appropriately in a multi-processing environment. Some have already been
changed, and are described below. Two other resources not generally thought of as global variables—
the keyboard and the mouse—are particularly idosyncratic, and are discussed in the next section.

 are allocated per process in Medley: primary input and output (the streams affected by INPUT and
OUTPUT), terminal input and output (the streams designated by the name T), the primary read table
and primary terminal table, and dribble files. Thus, each process can print to its own primary output,

22-10

INTERLISP-D REFERENCE MANUAL

print to the terminal, read from a different primary input, all without interfering with another
process’s reading and printing.

Each process begins life with its primary and terminal input/output streams set to a dummy stream.
If the process attempts input or output using any of those dummy streams, e.g., by calling (READ T),
or (PRINT & T), a tty window is automatically created for the process, and that window becomes
the primary input/output and terminal input/output for the process. The default tty window is
created at or near the region specified in the variable DEFAULTTTYREGION.

A process can, of course, call TTYDISPLAYSTREAM explicitly to give itself a tty window of its own
choosing, in which case the automatic mechanism never comes into play. Calling
TTYDISPLAYSTREAM when a process has no tty window not only sets the terminal streams, but also
sets the primary input and output streams to be that window, assuming they were still set to the
dummy streams.

(HASTTYWINDOWP PROCESS) [Function]

Returns T if the process PROCESS has a tty window; NIL otherwise. If PROCESS is NIL, it
defaults to the current process.

Other system resources that are typically changed by RESETFORM, RESETLST, or RESETVARS are all
global entities. In the multiprocessing environment, these constructs are suspect, as there is no
provision for "undoing" them when a process switch occurs. For example, in the current release of
Medley, it is not possible to set the print radix to 8 inside only one process, as the print radix is a
global entity.

Note that RESETFORM and similar expressions are perfectly valid in the process world, and even quite
useful, when they manipulate things strictly within one process. The process world is arranged so
that deleting a process also unwinds any RESETxxx expressions that were performed in the process
and are still waiting to be unwound, exactly as if a Control-D had reset the process to the top.
Additionally, there is an implicit RESETLST at the top of each process, so that RESETSAVE can be
used as a way of providing "cleanup" functions for when a process is deleted. For these, the value of
RESETSTATE (see Chapter 14) is NIL if the process finished normally, ERROR if it was aborted by an
error, RESET if the process was explicitly deleted, and HARDRESET if the process is being restarted
after a HARDRESET or a RESTART.PROCESS.

Typein and the TTY Process

There is one global resource, the keyboard, that is particularly problematic to share among processes.
Consider, for example, having two processes both performing (READ T). Since the keyboard input
routines block while there is no input, both processes would spend most of their time blocking, and it
would simply be a matter of chance which process received each character of type-in.

22-11

PROCESSES

To resolve such dilemmas, the system designates a distinguished process, termed the tty process, that
is assumed to be the process that is involved in terminal interaction. Any type-in from the keyboard
goes to that process. If a process other than the tty process requests keyboard input, it blocks until it
becomes the tty process. When the tty process is switched (in any of the ways described further
below), any typeahead that occurred before the switch is saved and associated with the current tty
process. Thus, it is always the case that keystrokes are sent to the process that is the tty process at the
time of the keystrokes, regardless of when that process actually gets around to reading them.

BACKGROUNDFNS [Variable]

A list of functions to call "in the background". The system runs a process (called
"BACKGROUND") whose sole task is to call each of the functions on the list
BACKGROUNDFNS repeatedly. Each element is the name of a function of no arguments.
This is a good place to put cheap background tasks that only do something once in a while
and hence do not want to spend their own separate process on it. However, note that it is
considered good citizenship for a background function with a time-consuming task to
spawn a separate process to do it, so that the other background functions are not delayed.

TTYBACKGROUNDFNS [Variable]

This list is like BACKGROUNDFNS, but the functions are only called while in a tty input
wait. That is, they always run in the tty process, and only when the user is not actively
typing. For example, the flashing caret is implemented by a function on this list. Again,
functions on this list should spend very little time (much less than a second), or else
spawn a separate process.

It is less immediately obvious how to handle keyboard interrupt characters, as their action is
asynchronous and not always tied to type-in. Interrupt handling is described in the Handling of
Interrupts section below.

Switching the TTY Process

Any process can make itself be the tty process by calling TTY.PROCESS.

(TTY.PROCESS PROC) [Function]

Returns the handle of the current tty process. In addition, if PROC is non-NIL, makes it be
the tty process. The special case of PROC = T is interpreted to mean the executive process;
this is sometimes useful when a process wants to explicitly give up being the tty process.

(TTY.PROCESSP PROC) [Function]

True if PROC is the tty process; PROC defaults to the running process. Thus,
(TTY.PROCESSP) is true if the caller is the tty process.

22-12

INTERLISP-D REFERENCE MANUAL

(WAIT.FOR.TTY MSECS NEEDWINDOW) [Function]

Efficiently waits until (TTY.PROCESSP) is true. WAIT.FOR.TTY is called internally by
the system functions that read from the terminal; user code thus need only call it in special
cases.

If MSECS is non-NIL, it is the number of milliseconds to wait before timing out. If
WAIT.FOR.TTY times out before (TTY.PROCESSP) is true, it returns NIL, otherwise it
returns T. If MSECS is NIL, WAIT.FOR.TTY will not time out.

If NEEDWINDOW is non-NIL, WAIT.FOR.TTY opens a TTY window for the current process
if one isn’t already open.

WAIT.FOR.TTY spawns a new mouse process if called under the mouse process (see
SPAWN.MOUSE, in the Keeping the Mouse Alive section below).

In some cases, such as in functions invoked as a result of mouse action or a user’s typed-in call, it is
reasonable for the function to invoke TTY.PROCESS itself so that it can take subsequent user type in.
In other cases, however, this is too undisciplined; it is desirable to let you designate which process
type-in should be directed to. This is most conveniently done by mouse action.

The system supports the model that "to type to a process, you click in its window." To cooperate with
this model, any process desiring keyboard input should put its process handle as the PROCESS
property of its window(s). To handle the common case, the function TTYDISPLAYSTREAM does this
automatically when the ttydisplaystream is switched to a new window. A process can own any
number of windows; clicking in any of those windows gives the process the tty.

This mechanism suffices for most casual process writers. For example, if a process wants all its
input/output interaction to occur in a particular window that it has created, it should just make that
window be its tty window by calling TTYDISPLAYSTREAM. Thereafter, it can PRINT or READ to/from
the T stream; if the process is not the tty process at the time that it calls READ, it will block until the
user clicks in the window.

For those needing tighter control over the tty, the default behavior can be overridden or
supplemented. The remainder of this section describes the mechanisms involved.

There is a window property WINDOWENTRYFN that controls whether and how to switch the tty to the
process owning a window. The mouse handler, before invoking any normal BUTTONEVENTFN,
specifically notices the case of a button going down in a window that belongs to a process (i.e., has a
PROCESS window property) that is not the tty process. In this case, it invokes the window’s
WINDOWENTRYFN of one argument (WINDOW). WINDOWENTRYFN defaults to GIVE.TTY.PROCESS:

(GIVE.TTY.PROCESS WINDOW) [Function]

If WINDOW has a PROCESS property, performs (TTY.PROCESS (WINDOWPROP WINDOW
’PROCESS)) and then invokes WINDOW’s BUTTONEVENTFN function (or RIGHTBUTTONFN
if the right button is down).

22-13

PROCESSES

There are some cases where clicking in a window does not always imply that the user wants to talk to
that window. For example, clicking in a text editor window with a shift key held down means to
"shift-select" some piece of text into the input buffer of the current tty process. The editor supports this
by supplying a WINDOWENTRYFN that performs GIVE.TTY.PROCESS if no shift key is down, but goes
into its shift-select mode, without changing the tty process, if a shift key is down. The shift-select
mode performs a BKSYSBUF of the selected text when the shift key is let up, the BKSYSBUF feeding
input to the current tty process.

Sometimes a process wants to be notified when it becomes the tty process, or stops being the tty
process. To support this, there are two process properties, TTYEXITFN and TTYENTRYFN. The
actions taken by TTY.PROCESS when it switches the tty to a new process are as follows: the former tty
process’s TTYEXITFN is called with two arguments (OLDTTYPROCESS NEWTTYPROCESS); the new
process is made the tty process; finally, the new tty process’s TTYENTRYFN is called with two
arguments (NEWTTYPROCESS OLDTTYPROCESS). Normally the TTYENTRYFN and TTYEXITFN need
only their first argument, but the other process involved in the switch is supplied for completeness. In
the present system, most processes want to interpret the keyboard in the same way, so it is considered
the responsibility of any process that changes the keyboard interpretation to restore it to the normal
state by its TTYEXITFN.

A window is "owned" by the last process that anyone gave as the window’s PROCESS property.
Ordinarily there is no conflict here, as processes tend to own disjoint sets of windows (though, of
course, cooperating processes can certainly try to confuse each other). The only likely problem arises
with that most global of windows, PROMPTWINDOW. Programs should not be tempted to read from
PROMPTWINDOW. This is not usually necessary anyway, as the first attempt to read from T in a process
that has not set its TTYDISPLAYSTREAM to its own window causes a tty window to be created for the
process (see the Global Resources section above).

Handling of Interrupts

At the time that a keyboard interrupt character (see Chapter 29) is struck, any process could be
running, and some decision must be made as to which process to actually interrupt. To the extent that
keyboard interrupts are related to type-in, most interrupts are taken in the tty process; however, the
following are handled specially:

RESET (initially Control-D)
ERROR (initially Control-E) These interrupts are taken in the mouse

process, if the mouse is not in its idle state;
otherwise they are taken in the tty process.
Thus, Control-E can be used to abort some
mouse-invoked window action, such as the
Shape command. As a consequence, note
that if the mouse invokes some lengthy
computation that the user thinks of as
"background", Control-E still aborts it, even
though that may not have been what the
user intended. Such lengthy computations,
for various reasons, should generally be

22-14

INTERLISP-D REFERENCE MANUAL

performed by spawning a separate process
to perform them. The RESET interrupt in a
process other than the executive is
interpreted exactly as if an error unwound
the process to its top level: if the process was
designated RESTARTABLE = T, it is restarted;
otherwise it is killed.

HELP (initially Control-G) A menu of processes is presented to the user,
who is asked to select which one the
interrupt should occur in. The current tty
process appears with a * next to its name at
the top of the menu. The menu also includes
an entry "[Spawn Mouse]", for the common
case of needing a mouse because the mouse
process is currently tied up running
someone’s BUTTONEVENTFN; selecting this
entry spawns a new mouse process, and no
break occurs.

BREAK (initially Control-B) Performs the HELP interrupt in the mouse
process, if the mouse is not in its idle state;
otherwise it is performed in the tty process.

RUBOUT (initially DELETE) This interrupt clears typeahead in all
processes.

RAID, STACK OVERFLOW
STORAGE FULL These interrupts always occur in whatever

process was running at the time the interrupt
struck. In the cases of STACK OVERFLOW
and STORAGE FULL, this means that the
interrupt is more likely to strike in the
offending process (especially if it is a
"runaway" process that is not blocking).
Note, however, that this process is still not
necessarily the guilty party; it could be an
innocent bystander that just happened to use
up the last of a resource prodigiously
consumed by some other process.

Keeping the Mouse Alive

Since the window mouse handler runs in its own process, it is not available while a window’s
BUTTONEVENTFN function (or any of the other window functions invoked by mouse action) is
running. This leads to two sorts of problems: (1) a long computation underneath a BUTTONEVENTFN
deprives the user of the mouse for other purposes, and (2) code that runs as a BUTTONEVENTFN

22-15

PROCESSES

cannot rely on other BUTTONEVENTFNs running, which means that there some pieces of code that run
differently from normal when run under the mouse process. These problems are addressed by the
following functions:

(SPAWN.MOUSE —) [Function]

Spawns another mouse process, allowing the mouse to run even if it is currently "tied up"
under the current mouse process. This function is intended mainly to be typed in at the
Lisp executive when you notice the mouse is busy.

(ALLOW.BUTTON.EVENTS) [Function]

Performs a (SPAWN.MOUSE) only when called underneath the mouse process. This
should be called (once, on entry) by any function that relies on BUTTONEVENTFNs for
completion, if there is any possibility that the function will itself be invoked by a mouse
function.

It never hurts, at least logically, to call SPAWN.MOUSE or ALLOW.BUTTON.EVENTS needlessly, as the
mouse process arranges to quietly kill itself if it returns from the user’s BUTTONEVENTFN and finds
that another mouse process has sprung up in the meantime. (There is, of course, some computational
expense.)

Process Status Window

The background menu command PSW (see Chapter 27) and the function PROCESS.STATUS.WINDOW
(below) create a "Process Status Window", that allows you to examine and manipulate all of the
existing processes:

The window consists of two menus. The top menu lists all the processes at the moment. Commands
in the bottom menu operate on the process selected in the top menu (EXEC in the example above).
The commands are:

BT, BTV, BTV*, BTV! Displays a backtrace of the selected process.

22-16

INTERLISP-D REFERENCE MANUAL

WHO? Changes the selection to the tty process, i.e., the one
currently in control of the keyboard.

KBD← Associates the keyboard with the selected process; i.e.,
makes the selected process be the tty process.

INFO If the selected process has an INFOHOOK property, calls
it. The hook may be a function, which is then applied
to two arguments, the process and the button (LEFT or
MIDDLE) used to invoke INFO, or a form, which is
simply EVAL’ed. The APPLY or EVAL happens in the
context of the selected process, using PROCESS.APPLY
or PROCESS.EVAL. The INFOHOOK process property
can be set using PROCESSPROP (see the Creating and
Destroying Processes section above).

BREAK Enter a break under the selected process. This has the
side effect of waking the process with the value
returned from the break.

KILL Deletes the selected process.

RESTART Restarts the selected process.

WAKE Wakes the selected process. Prompts for a value to
wake it with (see WAKE.PROCESS).

SUSPEND Suspends the selected process; i.e., causes it to block
indefinitely (until explicitly woken).

(PROCESS.STATUS.WINDOW WHERE) [Function]

Puts up a process status window that provides several debugging commands for
manipulating running processes. If the window is already up,
PROCESS.STATUS.WINDOW refreshes it. If WHERE is a position, the window is placed in
that position; otherwise, you are prompted for a position.

Currently, the process status window runs under the mouse process, like other menus, so
if the mouse is unavailable (e.g., a mouse function is performing an extensive
computation), you may be unable to use the process status window (you can try
SPAWN.MOUSE, of course).

Non-Process Compatibility

This section describes some considerations for authors of programs that ran in the old single-process
Medley environment, and now want to make sure they run properly in the multi-processing world.
The biggest problem to watch out for is code that runs underneath the mouse handler. Writers of
mouse handler functions should remember that in the process world the mouse handler runs in its
own process, and hence (a) you cannot depend on finding information on the stack (stash it in the

22-17

PROCESSES

window instead), and (b) while your function is running, the mouse is not available (if you have any
non-trivial computation to do, spawn a process to do it, notify one of your existing processes to do it,
or use PROCESS.EVAL to run it under some other process).

The following functions are meaningful even if the process world is not on: BLOCK (invokes the
system background routine, which includes handling the mouse); TTY.PROCESS, THIS.PROCESS
(both return NIL); and TTY.PROCESSP (returns T, i.e., anyone is allowed to take tty input). In
addition, the following two functions exist in both worlds:

(EVAL.AS.PROCESS FORM) [Function]

Same as (ADD.PROCESS FORM ’RESTARTABLE ’NO), when processes are running, EVAL
when not. This is highly recommended for mouse functions that perform any non-trivial
activity.

(EVAL.IN.TTY.PROCESS FORM WAITFORRESULT) [Function]

Same as (PROCESS.EVAL (TTY.PROCESS) FORM WAITFORRESULT), when processes
are running, EVAL when not.

Most of the process functions that do not take a process argument can be called even if processes
aren’t running. ADD.PROCESS creates, but does not run, a new process (it runs when PROCESSWORLD
is called).

23-1

23. PROCESSES

The Interlisp-D Process mechanism provides an environment in which multiple Lisp
processes can run in parallel. Each executes in its own stack space, but all share a
global address space. The current process implementation is cooperative; i.e., process
switches happen voluntarily, either when the process in control has nothing to do or
when it is in a convenient place to pause. There is no preemption or guaranteed service,
so you cannot run something demanding (e.g., Chat) at the same time as something
that runs for long periods without yielding control. Keyboard input and network
operations block with great frequency, so processes currently work best for highly
interactive tasks (editing, making remote files).

In Interlisp-D, the process mechanism is already turned on, and is expected to stay on
during normal operations, as some system facilities (in particular, most network
operations) require it. However, under exceptional conditions, the following function
can be used to turn the world off and on:

(PROCESSWORLD FLG) [Function]

Starts up the process world, or if FLG = OFF, kills all processes and turns it off.
Normally does not return. The environment starts out with two processes: a
top-level EVALQT (the initial "tty" process) and the "background" process, which
runs the window mouse handler and other system background tasks.

PROCESSWORLD is intended to be called at the top level of Interlisp, not from
within a program. It does not toggle some sort of switch; rather, it constructs
some new processes in a new part of the stack, leaving any callers of
PROCESSWORLD in a now inaccessible part of the stack. Calling
(PROCESSWORLD ’OFF) is the only way the call to PROCESSWORLD ever
returns.

(HARDRESET) [Function]

Resets the whole world, and rebuilds the stack from scratch. This is "harder"
than doing RESET to every process, because it also resets system internal
processes (such as the keyboard handler).

HARDRESET automatically turns the process world on (or resets it if it was on),
unless the variable AUTOPROCESSFLG is NIL.

23-2

Creating and Destroying Processes

(ADD.PROCESS FORM PROP1 VALUE1 ... PROPN VALUEN) [NoSpread Function]

Creates a new process evaluating FORM, and returns its process handle. The
process’s stack environment is the top level, i.e., the new process does not have
access to the environment in which ADD.PROCESS was called; all such
information must be passed as arguments in FORM. The process runs until
FORM returns or the process is explicitly deleted. An untrapped error within
the process also deletes the process (unless its RESTARTABLE property is T), in
which case a message is printed to that effect.

The remaining arguments are alternately property names and values. Any
property/value pairs acceptable to PROCESSPROP may be given, but the
following two are directly relevant to ADD.PROCESS:

NAME Value should be a litatom; if not given, the process name is
taken from (CAR FORM). ADD.PROCESS may pack the name
with a number to make it unique. This name is solely for the
convenience of manipulating processes at Lisp typein; e.g., the
name can be given as the PROC argument to most process
functions, and the name appears in menus of processes.
However, programs should normally only deal in process
handles, both for efficiency and to avoid the confusion that can
result if two processes have the same defining form.

SUSPEND If the value is non-NIL, the new process is created but then
immediately suspended; i.e., the process does not actually run
until woken by a WAKE.PROCESS (below).

(PROCESSPROP PROC PROP NEWVALUE) [NoSpread Function]

Used to get or set the values of certain properties of process PROC, in a manner
analogous to WINDOWPROP. If NEWVALUE is supplied (including if it is NIL),
property PROP is given that value. In all cases, returns the old value of the
property. The following properties have special meaning for processes; all
others are uninterpreted:

NAME Value is a litatom used for identifying the process to the
user.

FORM Value is the Lisp form used to start the process (readonly).

RESTARTABLE Value is a flag indicating the disposition of the process
following errors or hard resets:

23-3

NIL or NO (the default): If an untrapped error (or Control-E
or Control-D) causes its form to be exited, the process is
deleted. The process is also deleted if a HARDRESET (or
Control-D from RAID) occurs, causing the entire Process
world to be reinitialized.

T or YES: The process is automatically restarted on errors
or HARDRESET. This is the normal setting for persistent
"background" processes, such as the mouse process, that
can safely restart themselves on errors.

HARDRESET: The process is deleted as usual if an error
causes its form to be exited, but it is restarted on a
HARDRESET. This setting is preferred for persistent
processes for which an error is an unusual condition, one
that might repeat itself if the process were simply blindly
restarted.

RESTARTFORM If the value is non-NIL, it is the form used if the process is
restarted (instead of the value of the FORM property). Of
course, the process must also have a non-NIL
RESTARTABLE prop for this to have any effect.

BEFOREEXIT If the value is the atom DON’T, it will not be interrupted by
a LOGOUT. If LOGOUT is attempted before the process
finishes, a message will appear saying that Interlisp is
waiting for the process to finish. If you want the LOGOUT to
proceed without waiting, you must use the process status
window (from the background menu) to delete the process.

AFTEREXIT Value indicates the disposition of the process following a
resumption of Lisp after some exit (LOGOUT, SYSOUT,
MAKESYS). Possible values are:

DELETE: Delete the process.

SUSPEND: Suspend the process; i.e., do not let it run until
it is explicitly woken.

An event: Cause the process to be suspended waiting for
the event (See the Events section below).

INFOHOOK Value is a function or form used to provide information
about the process, in conjunction with the INFO command
in the process status window (see the Process Status
Window section below).

23-4

WINDOW Value is a window associated with the process, the
process’s "main" window. Used to switch the tty process to
this process when you click in this window (see the
Switching the TTY Process section below).

Setting the WINDOW property does not set the primary I/O
stream (NIL) or the terminal I/O stream (T) to the window.
When a process is created, I/O operations to the NIL or T
stream will cause a new window to appear.
TTYDISPLAYSTREAM (see Chapter 28) should be used to set
the terminal i/o stream of a process to a specific window.

TTYENTRYFN Value is a function that is applied to the process when the
process is made the tty process (see the Switching the TTY
Process section below).

TTYEXITFN Value is a function that is applied to the process when the
process ceases to be the tty process (see the Switching the
TTY Process section below).

(THIS.PROCESS) [Function]

Returns the handle of the currently running process, or NIL if the Process world
is turned off.

(DEL.PROCESS PROC —) [Function]

Deletes process PROC. PROC may be a process handle (returned by
ADD.PROCESS), or its name. If PROC is the currently running process,
DEL.PROCESS does not return!

(PROCESS.RETURN VALUE) [Function]

Terminates the currently running process, causing it to "return" VALUE. There
is an implicit PROCESS.RETURN around the FORM argument given to
ADD.PROCESS, so that normally a process can finish by simply returning;
PROCESS.RETURN is supplied for earlier termination.

(PROCESS.RESULT PROCESS WAITFORRESULT) [Function]

If PROCESS has terminated, returns the value, if any, that it returned. This is
either the value of a PROCESS.RETURN or the value returned from the form
given to ADD.PROCESS. If the process was aborted, the value is NIL. If
WAITFORRESULT is true, PROCESS.RESULT blocks until PROCESS finishes,
if necessary; otherwise, it returns NIL immediately if PROCESS is still
running. PROCESS must be the actual process handle returned from

23-5

ADD.PROCESS, not a process name, as the association between handle and name
disappears when the process finishes (and the process handle itself is then
garbage collected if no one else has a pointer to it).

(PROCESS.FINISHEDP PROCESS) [Function]

True if PROCESS has terminated. The value returned is an indication of how it
finished: NORMAL or ERROR.

(PROCESSP PROC) [Function]

True if PROC is the handle of an active process, i.e., one that has not yet
finished.

(RELPROCESSP PROCHANDLE) [Function]

True if PROCHANDLE is the handle of a deleted process. This is analogous to
RELSTKP. It differs from PROCESS.FINISHEDP in that it never causes an error,
while PROCESS.FINISHEDP can cause an error if its PROC argument is not a
process at all.

(RESTART.PROCESS PROC) [Function]

Unwinds PROC to its top level and reevaluates its form. This is effectively a
DEL.PROCESS followed by the original ADD.PROCESS.

(MAP.PROCESSES MAPFN) [Function]

Maps over all processes, calling MAPFN with three arguments: the process
handle, its name, and its form.

(FIND.PROCESS PROC ERRORFLG) [Function]

If PROC is a process handle or the name of a process, returns the process
handle for it, else NIL. If ERRORFLG is T, generates an error if PROC is not,
and does not name, a live process.

Process Control Constructs

(BLOCK MSECSWAIT TIMER) [Function]

Yields control to the next waiting process, assuming any is ready to run. If
MSECSWAIT is specified, it is a number of milliseconds to wait before
returning, or T, meaning wait forever (until explicitly woken). Alternatively,
TIMER can be given as a millisecond timer (as returned by SETUPTIMER,
Chapter 12) of an absolute time at which to wake up. In any of those cases, the

23-6

process enters the waiting state until the time limit is up. BLOCK with no
arguments leaves the process in the runnable state, i.e., it returns as soon as
every other runnable process of the same priority has had a chance.

BLOCK can be aborted by interrupts such as Control-D, Control-E, or Control-B.
BLOCK will return before its timeout is completed, if the process is woken by
WAKE.PROCESS, PROCESS.EVAL, or PROCESS.APPLY.

(DISMISS MSECSWAIT TIMER NOBLOCK) [Function]

DISMISS is used to dismiss the current process for a given period of time.
Similar to BLOCK, except that:

• DISMISS is guaranteed not to return until the specified time has elapsed

• MSECSWAIT cannot be T to wait forever

• If NOBLOCK is T, DISMISS will not allow other processes to run, but will
busy-wait until the amount of time given has elapsed.

(WAKE.PROCESS PROC STATUS) [Function]

Explicitly wakes process PROC, i.e., makes it runnable, and causes its call to
BLOCK (or other waiting function) to return STATUS. This is one simple way to
notify a process of some happening; however, note that if WAKE.PROCESS is
applied to a process more than once before the process actually gets its turn to
run, it sees only the latest STATUS.

(SUSPEND.PROCESS PROC) [Function]

Blocks process PROC indefinitely, i.e., PROC will not run until it is woken by a
WAKE.PROCESS.

The following three functions allow access to the stack context of some other process.
They require a little bit of care, and are computationally non-trivial, but they do provide
a more powerful way of manipulating another process than WAKE.PROCESS allows.

(PROCESS.EVALV PROC VAR) [Function]

Performs (EVALV VAR) in the stack context of PROC.

(PROCESS.EVAL PROC FORM WAITFORRESULT) [Function]

Evaluates FORM in the stack context of PROC. If WAITFORRESULT is true,
blocks until the evaluation returns a result, else allows the current process to
run in parallel with the evaluation. Any errors that occur will be in the context
of PROC, so be careful. In particular, note that

(PROCESS.EVAL PROC ’(NLSETQ (FOO)))

23-7

and

(NLSETQ (PROCESS.EVAL PROC ’(FOO)))

behave quite differently if FOO causes an error. And it is quite permissible to
intentionally cause an error in proc by performing

(PROCESS.EVAL PROC ’(ERROR!))

If errors are possible and WAITFORRESULT is true, the caller should almost
certainly make sure that FORM traps the errors; otherwise the caller could end
up waiting forever if FORM unwinds back into the pre-existing stack context of
PROC.

After FORM is evaluated in PROC, the process PROC is woken up, even if it
was running BLOCK or AWAIT.EVENT. This is necessary because an event of
interest may have occurred while the process was evaluating FORM.

(PROCESS.APPLY PROC FN ARGS WAITFORRESULT) [Function]

Performs (APPLY FN ARGS) in the stack context of PROC. Note the same
warnings as with PROCESS.EVAL.

Events

An "event" is a synchronizing primitive used to coordinate related processes, typically
producers and consumers. Consumer processes can "wait" on events, and producers
"notify" events.

(CREATE.EVENT NAME) [Function]

Returns an instance of the EVENT datatype, to be used as the event argument to
functions listed below. NAME is arbitrary, and is used for debugging or status
information.

(AWAIT.EVENT EVENT TIMEOUT TIMERP) [Function]

Suspends the current process until EVENT is notified, or until a timeout occurs.
If TIMEOUT is NIL, there is no timeout. Otherwise, timeout is either a number
of milliseconds to wait, or, if TIMERP is T, a millisecond timer set to expire at
the desired time using SETUPTIMER (see Chapter 12).

(NOTIFY.EVENT EVENT ONCEONLY) [Function]

If there are processes waiting for EVENT to occur, causes those processes to be
placed in the running state, with EVENT returned as the value from
AWAIT.EVENT. If ONCEONLY is true, only runs the first process waiting for

23-8

the event (this should only be done if the programmer knows that there can only
be one process capable of responding to the event at once).

The meaning of an event is up to the programmer. In general, however, the notification
of an event is merely a hint that something of interest to the waiting process has
happened; the process should still verify that the conceptual event actually occurred.
That is, the process should be written so that it operates correctly even if woken up before
the timeout and in the absence of the notified event. In particular, the completion of
PROCESS.EVAL and related operations in effect wakes up the process in which they
were performed, since there is no secure way of knowing whether the event of interest
occurred while the process was busy performing the PROCESS.EVAL.

There is currently one class of system-defined events, used with the network code.
Each Pup and NS socket has associated with it an event that is notified when a packet
arrives on the socket; the event can be obtained by calling PUPSOCKETEVENT or
NSOCKETEVENT, respectively (see Chapter 32).

Monitors

It is often the case that cooperating processes perform operations on shared structures,
and some mechanism is needed to prevent more than one process from altering the
structure at the same time. Some languages have a construct called a monitor, a
collection of functions that access a common structure with mutual exclusion provided
and enforced by the compiler via the use of monitor locks. Interlisp-D has taken this
implementation notion as the basis for a mutual exclusion capability suitable for a
dynamically-scoped environment.

A monitorlock is an object created by you and associated with (e.g., stored in) some
shared structure that is to be protected from simultaneous access. To access the
structure, a program waits for the lock to be free, then takes ownership of the lock,
accesses the structure, then releases the lock. The functions and macros below are
used:

(CREATE.MONITORLOCK NAME —) [Function]

Returns an instance of the MONITORLOCK datatype, to be used as the lock
argument to functions listed below. NAME is arbitrary, and is used for
debugging or status information.

(WITH.MONITOR LOCK FORM1 ... FORMN) [Macro]

Evaluates FORM1 ... FORMN while owning LOCK, and returns the value of
FORMN. This construct is implemented so that the lock is released even if the
form is exited via error (currently implemented with RESETLST).

23-9

Ownership of a lock is dynamically scoped: if the current process already owns
the lock (e.g., if the caller was itself inside a WITH.MONITOR for this lock),
WITH.MONITOR does not wait for the lock to be free before evaluating FORM1 ...
FORMN.

(WITH.FAST.MONITOR LOCK FORM1 ... FORMN) [Macro]

Like WITH.MONITOR, but implemented without the RESETLST. User interrupts
(e.g., Control-E) are inhibited during the evaluation of FORM1 ... FORMN.

Programming restriction: the evaluation of FORM1 ... FORMN must not error
(the lock would not be released). This construct is mainly useful when the forms
perform a small, safe computation that never errors and need never be
interrupted.

(MONITOR.AWAIT.EVENT RELEASELOCK EVENT TIMEOUT TIMERP) [Function]

For use in blocking inside a monitor. Performs (AWAIT.EVENT EVENT
TIMEOUT TIMERP), but releases RELEASELOCK first, and reobtains the
lock (possibly waiting) on wakeup.

Typical use for MONITOR.AWAIT.EVENT: A function wants to perform some
operation on FOO, but only if it is in a certain state. It has to obtain the lock on
the structure to make sure that the state of the structure does not change
between the time it tests the state and performs the operation. If the state
turns out to be bad, it then waits for some other process to make the state good,
meanwhile releasing the lock so that the other process can alter the structure.

(WITH.MONITOR FOO-LOCK
 (until CONDITION-OF-FOO
 do (MONITOR.AWAIT.EVENT FOO-LOCK EVENT-FOO-
CHANGED TIMEOUT))
 OPERATE-ON-FOO)

It is sometimes convenient for a process to have WITH.MONITOR at its top level
and then do all its interesting waiting using MONITOR.AWAIT.EVENT. Not only
is this often cleaner, but in the present implementation in cases where the lock
is frequently accessed, it saves the RESETLST overhead of WITH.MONITOR.

Programming restriction: There must not be an ERRORSET between the
enclosing WITH.MONITOR and the call to MONITOR.AWAIT.EVENT such that the
ERRORSET would catch an ERROR! and continue inside the monitor, for the lock
would not have been reobtained. (The reason for this restriction is that,
although MONITOR.AWAIT.EVENT won’t itself error, you could have caused an
error with an interrupt, or a PROCESS.EVAL in the context of the waiting
process that produced an error.)

23-10

On rare occasions it may be useful to manipulate monitor locks directly. The following
two functions are used in the implementation of WITH.MONITOR:

23-11

(OBTAIN.MONITORLOCK LOCK DONTWAIT UNWINDSAVE) [Function]

Takes possession of LOCK, waiting if necessary until it is free, unless
DONTWAIT is true, in which case it returns NIL immediately. If
UNWINDSAVE is true, performs a RESETSAVE to be unwound when the
enclosing RESETLST exits. Returns LOCK if LOCK was successfully obtained, T
if the current process already owned LOCK.

(RELEASE.MONITORLOCK LOCK EVENIFNOTMINE) [Function]

Releases LOCK if it is owned by the current process, and wakes up the next
process, if any, waiting to obtain the lock.

If EVENIFNOTMINE is non-NIL, the lock is released even if it is not owned by
the current process.

When a process is deleted, any locks it owns are released.

Global Resources

The biggest source of problems in the multi-processing environment is the matter of
global resources. Two processes cannot both use the same global resource if there can
be a process switch in the middle of their use (currently this means calls to BLOCK, but
ultimately with a preemptive scheduler means anytime). Thus, user code should be
wary of its own use of global variables, if it ever makes sense for the code to be run in
more than one process at a time. "State" variables private to a process should generally
be bound in that process; structures that are shared among processes (or resources used
privately but expensive to duplicate per process) should be protected with monitor locks
or some other form of synchronization.

Aside from user code, however, there are many system global variables and resources.
Most of these arise historically from the single-process Interlisp-10 environment, and
will eventually be changed in Interlisp-D to behave appropriately in a multi-processing
environment. Some have already been changed, and are described below. Two other
resources not generally thought of as global variables—the keyboard and the mouse—
are particularly idosyncratic, and are discussed in the next section.

The following resources, which are global in Interlisp-10, are allocated per process in
Interlisp-D: primary input and output (the streams affected by INPUT and OUTPUT),
terminal input and output (the streams designated by the name T), the primary read
table and primary terminal table, and dribble files. Thus, each process can print to its
own primary output, print to the terminal, read from a different primary input, all
without interfering with another process’s reading and printing.

23-12

Each process begins life with its primary and terminal input/output streams set to a
dummy stream. If the process attempts input or output using any of those dummy
streams, e.g., by calling (READ T), or (PRINT & T), a tty window is automatically
created for the process, and that window becomes the primary input/output and
terminal input/output for the process. The default tty window is created at or near the
region specified in the variable DEFAULTTTYREGION.

A process can, of course, call TTYDISPLAYSTREAM explicitly to give itself a tty window of
its own choosing, in which case the automatic mechanism never comes into play.
Calling TTYDISPLAYSTREAM when a process has no tty window not only sets the
terminal streams, but also sets the primary input and output streams to be that
window, assuming they were still set to the dummy streams.

(HASTTYWINDOWP PROCESS) [Function]

Returns T if the process PROCESS has a tty window; NIL otherwise. If
PROCESS is NIL, it defaults to the current process.

Other system resources that are typically changed by RESETFORM, RESETLST, or
RESETVARS are all global entities. In the multiprocessing environment, these
constructs are suspect, as there is no provision for "undoing" them when a process
switch occurs. For example, in the current release of Interlisp-D, it is not possible to set
the print radix to 8 inside only one process, as the print radix is a global entity.

Note that RESETFORM and similar expressions are perfectly valid in the process world,
and even quite useful, when they manipulate things strictly within one process. The
process world is arranged so that deleting a process also unwinds any RESETxxx
expressions that were performed in the process and are still waiting to be unwound,
exactly as if a Control-D had reset the process to the top. Additionally, there is an
implicit RESETLST at the top of each process, so that RESETSAVE can be used as a way
of providing "cleanup" functions for when a process is deleted. For these, the value of
RESETSTATE (see Chapter 14) is NIL if the process finished normally, ERROR if it was
aborted by an error, RESET if the process was explicitly deleted, and HARDRESET if the
process is being restarted after a HARDRESET or a RESTART.PROCESS.

Typein and the TTY Process

There is one global resource, the keyboard, that is particularly problematic to share
among processes. Consider, for example, having two processes both performing (READ
T). Since the keyboard input routines block while there is no input, both processes
would spend most of their time blocking, and it would simply be a matter of chance
which process received each character of typein.

23-13

To resolve such dilemmas, the system designates a distinguished process, termed the
tty process, that is assumed to be the process that is involved in terminal interaction.
Any typein from the keyboard goes to that process. If a process other than the tty
process requests keyboard input, it blocks until it becomes the tty process. When the
tty process is switched (in any of the ways described further below), any typeahead that
occurred before the switch is saved and associated with the current tty process. Thus, it
is always the case that keystrokes are sent to the process that is the tty process at the
time of the keystrokes, regardless of when that process actually gets around to reading
them.

It is less immediately obvious how to handle keyboard interrupt characters, as their
action is asynchronous and not always tied to typein. Interrupt handling is described in
the Handling of Interrupts section below.

Switching the TTY Process

Any process can make itself be the tty process by calling TTY.PROCESS.

(TTY.PROCESS PROC) [Function]

Returns the handle of the current tty process. In addition, if PROC is non-NIL,
makes it be the tty process. The special case of PROC = T is interpreted to
mean the executive process; this is sometimes useful when a process wants to
explicitly give up being the tty process.

(TTY.PROCESSP PROC) [Function]

True if PROC is the tty process; PROC defaults to the running process. Thus,
(TTY.PROCESSP) is true if the caller is the tty process.

(WAIT.FOR.TTY MSECS NEEDWINDOW) [Function]

Efficiently waits until (TTY.PROCESSP) is true. WAIT.FOR.TTY is called
internally by the system functions that read from the terminal; user code thus
need only call it in special cases.

If MSECS is non-NIL, it is the number of milliseconds to wait before timing out.
If WAIT.FOR.TTY times out before (TTY.PROCESSP) is true, it returns NIL,
otherwise it returns T. If MSECS is NIL, WAIT.FOR.TTY will not time out.

If NEEDWINDOW is non-NIL, WAIT.FOR.TTY opens a TTY window for the
current process if one isn’t already open.

WAIT.FOR.TTY spawns a new mouse process if called under the mouse process
(see SPAWN.MOUSE, in the Keeping the Mouse Alive section below).

23-14

In some cases, such as in functions invoked as a result of mouse action or a user’s typed-
in call, it is reasonable for the function to invoke TTY.PROCESS itself so that it can take
subsequent user type in. In other cases, however, this is too undisciplined; it is
desirable to let the user designate which process typein should be directed to. This is
most conveniently done by mouse action.

The system supports the model that "to type to a process, you click in its window." To
cooperate with this model, any process desiring keyboard input should put its process
handle as the PROCESS property of its window(s). To handle the common case, the
function TTYDISPLAYSTREAM does this automatically when the ttydisplaystream is
switched to a new window. A process can own any number of windows; clicking in any
of those windows gives the process the tty.

This mechanism suffices for most casual process writers. For example, if a process
wants all its input/output interaction to occur in a particular window that it has
created, it should just make that window be its tty window by calling
TTYDISPLAYSTREAM. Thereafter, it can PRINT or READ to/from the T stream; if the
process is not the tty process at the time that it calls READ, it will block until the user
clicks in the window.

For those needing tighter control over the tty, the default behavior can be overridden or
supplemented. The remainder of this section describes the mechanisms involved.

There is a window property WINDOWENTRYFN that controls whether and how to switch
the tty to the process owning a window. The mouse handler, before invoking any
normal BUTTONEVENTFN, specifically notices the case of a button going down in a
window that belongs to a process (i.e., has a PROCESS window property) that is not the
tty process. In this case, it invokes the window’s WINDOWENTRYFN of one argument
(WINDOW). WINDOWENTRYFN defaults to GIVE.TTY.PROCESS:

(GIVE.TTY.PROCESS WINDOW) [Function]

If WINDOW has a PROCESS property, performs (TTY.PROCESS (WINDOWPROP
WINDOW ’PROCESS)) and then invokes WINDOW’s BUTTONEVENTFN function
(or RIGHTBUTTONFN if the right button is down).

There are some cases where clicking in a window does not always imply that the user
wants to talk to that window. For example, clicking in a text editor window with a shift
key held down means to "shift-select" some piece of text into the input buffer of the
current tty process. The editor supports this by supplying a WINDOWENTRYFN that
performs GIVE.TTY.PROCESS if no shift key is down, but goes into its shift-select mode,
without changing the tty process, if a shift key is down. The shift-select mode performs
a BKSYSBUF of the selected text when the shift key is let up, the BKSYSBUF feeding
input to the current tty process.

23-15

Sometimes a process wants to be notified when it becomes the tty process, or stops
being the tty process. To support this, there are two process properties, TTYEXITFN and
TTYENTRYFN. The actions taken by TTY.PROCESS when it switches the tty to a new
process are as follows: the former tty process’s TTYEXITFN is called with two arguments
(OLDTTYPROCESS NEWTTYPROCESS); the new process is made the tty process;
finally, the new tty process’s TTYENTRYFN is called with two arguments
(NEWTTYPROCESS OLDTTYPROCESS). Normally the TTYENTRYFN and TTYEXITFN
need only their first argument, but the other process involved in the switch is supplied
for completeness. In the present system, most processes want to interpret the keyboard
in the same way, so it is considered the responsibility of any process that changes the
keyboard interpretation to restore it to the normal state by its TTYEXITFN.

A window is "owned" by the last process that anyone gave as the window’s PROCESS
property. Ordinarily there is no conflict here, as processes tend to own disjoint sets of
windows (though, of course, cooperating processes can certainly try to confuse each
other). The only likely problem arises with that most global of windows,
PROMPTWINDOW. Programs should not be tempted to read from PROMPTWINDOW. This is
not usually necessary anyway, as the first attempt to read from T in a process that has
not set its TTYDISPLAYSTREAM to its own window causes a tty window to be created for
the process (see the Global Resources section above).

Handling of Interrupts

At the time that a keyboard interrupt character (see Chapter 30) is struck, any process
could be running, and some decision must be made as to which process to actually
interrupt. To the extent that keyboard interrupts are related to typein, most interrupts
are taken in the tty process; however, the following are handled specially:

RESET (initially Control-D)
ERROR (initially Control-E) These interrupts are taken in the mouse process, if

the mouse is not in its idle state; otherwise they are
taken in the tty process. Thus, Control-E can be
used to abort some mouse-invoked window action,
such as the Shape command. As a consequence,
note that if the mouse invokes some lengthy
computation that the user thinks of as
"background", Control-E still aborts it, even though
that may not have been what the user intended.
Such lengthy computations, for various reasons,
should generally be performed by spawning a
separate process to perform them. The RESET
interrupt in a process other than the executive is
interpreted exactly as if an error unwound the
process to its top level: if the process was

23-16

designated RESTARTABLE = T, it is restarted;
otherwise it is killed.

HELP (initially Control-G) A menu of processes is presented to the user, who is
asked to select which one the interrupt should
occur in. The current tty process appears with a *
next to its name at the top of the menu. The menu
also includes an entry "[Spawn Mouse]", for the
common case of needing a mouse because the
mouse process is currently tied up running
someone’s BUTTONEVENTFN; selecting this entry
spawns a new mouse process, and no break occurs.

BREAK (initially Control-B) Performs the HELP interrupt in the mouse process,
if the mouse is not in its idle state; otherwise it is
performed in the tty process.

RUBOUT (initially DELETE) This interrupt clears typeahead in all processes.

RAID, STACK OVERFLOW
STORAGE FULL These interrupts always occur in whatever process

was running at the time the interrupt struck. In
the cases of STACK OVERFLOW and STORAGE FULL,
this means that the interrupt is more likely to
strike in the offending process (especially if it is a
"runaway" process that is not blocking). Note,
however, that this process is still not necessarily
the guilty party; it could be an innocent bystander
that just happened to use up the last of a resource
prodigiously consumed by some other process.

Keeping the Mouse Alive

Since the window mouse handler runs in its own process, it is not available while a
window’s BUTTONEVENTFN function (or any of the other window functions invoked by
mouse action) is running. This leads to two sorts of problems: (1) a long computation
underneath a BUTTONEVENTFN deprives the user of the mouse for other purposes, and
(2) code that runs as a BUTTONEVENTFN cannot rely on other BUTTONEVENTFNs running,
which means that there some pieces of code that run differently from normal when run
under the mouse process. These problems are addressed by the following functions:

23-17

(SPAWN.MOUSE —) [Function]

Spawns another mouse process, allowing the mouse to run even if it is currently
"tied up" under the current mouse process. This function is intended mainly to
be typed in at the Lisp executive when the user notices the mouse is busy.

(ALLOW.BUTTON.EVENTS) [Function]

Performs a (SPAWN.MOUSE) only when called underneath the mouse process.
This should be called (once, on entry) by any function that relies on
BUTTONEVENTFNs for completion, if there is any possibility that the function
will itself be invoked by a mouse function.

It never hurts, at least logically, to call SPAWN.MOUSE or ALLOW.BUTTON.EVENTS
needlessly, as the mouse process arranges to quietly kill itself if it returns from the
user’s BUTTONEVENTFN and finds that another mouse process has sprung up in the
meantime. (There is, of course, some computational expense.)

Process Status Window

The background menu command PSW (see Chapter 28) and the function
PROCESS.STATUS.WINDOW (below) create a "Process Status Window", that allows the
user to examine and manipulate all of the existing processes:

The window consists of two menus. The top menu lists all the processes at the moment.
Commands in the bottom menu operate on the process selected in the top menu (EXEC
in the example above). The commands are:

23-18

BT, BTV, BTV*, BTV! Displays a backtrace of the selected process.

WHO? Changes the selection to the tty process, i.e., the one currently
in control of the keyboard.

KBD← Associates the keyboard with the selected process; i.e., makes
the selected process be the tty process.

INFO If the selected process has an INFOHOOK property, calls it.
The hook may be a function, which is then applied to two
arguments, the process and the button (LEFT or MIDDLE) used
to invoke INFO, or a form, which is simply EVAL’ed. The
APPLY or EVAL happens in the context of the selected process,
using PROCESS.APPLY or PROCESS.EVAL. The INFOHOOK
process property can be set using PROCESSPROP (see the
Creating and Destroying Processes section above).

BREAK Enter a break under the selected process. This has the side
effect of waking the process with the value returned from the
break.

KILL Deletes the selected process.

RESTART Restarts the selected process.

WAKE Wakes the selected process. Prompts for a value to wake it
with (see WAKE.PROCESS).

SUSPEND Suspends the selected process; i.e., causes it to block
indefinitely (until explicitly woken).

(PROCESS.STATUS.WINDOW WHERE) [Function]

Puts up a process status window that provides several debugging commands for
manipulating running processes. If the window is already up,
PROCESS.STATUS.WINDOW refreshes it. If WHERE is a position, the window is
placed in that position; otherwise, the user is prompted for a position.

23-19

Currently, the process status window runs under the mouse process, like other
menus, so if the mouse is unavailable (e.g., a mouse function is performing an
extensive computation), you may be unable to use the process status window
(you can try SPAWN.MOUSE, of course).

Non-Process Compatibility

This section describes some considerations for authors of programs that ran in the old
single-process Interlisp-D environment, and now want to make sure they run properly
in the Multi-processing world. The biggest problem to watch out for is code that runs
underneath the mouse handler. Writers of mouse handler functions should remember
that in the process world the mouse handler runs in its own process, and hence (a) you
cannot depend on finding information on the stack (stash it in the window instead), and
(b) while your function is running, the mouse is not available (if you have any non-
trivial computation to do, spawn a process to do it, notify one of your existing processes
to do it, or use PROCESS.EVAL to run it under some other process).

The following functions are meaningful even if the process world is not on: BLOCK
(invokes the system background routine, which includes handling the mouse);
TTY.PROCESS, THIS.PROCESS (both return NIL); and TTY.PROCESSP (returns T, i.e.,
anyone is allowed to take tty input). In addition, the following two functions exist in
both worlds:

(EVAL.AS.PROCESS FORM) [Function]

Same as (ADD.PROCESS FORM ’RESTARTABLE ’NO), when processes are
running, EVAL when not. This is highly recommended for mouse functions that
perform any non-trivial activity.

(EVAL.IN.TTY.PROCESS FORM WAITFORRESULT) [Function]

Same as (PROCESS.EVAL (TTY.PROCESS) FORM WAITFORRESULT), when
processes are running, EVAL when not.

Most of the process functions that do not take a process argument can be called even if
processes aren’t running. ADD.PROCESS creates, but does not run, a new process (it
runs when PROCESSWORLD is called).

23-1

23. STREAMS AND FILES

A stream is an object that provides an interface to a physical or logical device. The stream object
contains local data and methods that operate on the stream object. Medley’s general-purpose I/O
functions take a stream as one of their arguments. Not every device is capable of implementing every
I/O operation, while some devices offer special functions for that device alone. Such restrictions and
extensions are noted in the documentation of each device. The majority of the streams used in Medley
fall into two categories: file streams and image streams.

A file is a sequence of data stored on some device that allows the data to be retrieved at a later time.
Files are identified by a name specifying their storage devices. Input or output to a file is performed
through a stream to the file, using OPENSTREAM (below). In addition, there are functions that
manipulate the files themselves, rather than their data content.

An image stream is an output stream to a display device, such as the display screen or a printer. In
addition to the standard output operations, an image stream implements a variety of graphics
operations, such as drawing lines and displaying characters in multiple fonts. Unlike a file, the
"content" of an image stream cannot be retrieved. Image streams are described in Chapter 26.

This chapter describes operations specific to file devices: how to name files, how to open streams to
files, and how to manipulate files on their devices.

Opening and Closing File Streams

To perform input from or output to a file, you must create a stream to the file, using OPENSTREAM:

(OPENSTREAM FILE ACCESS RECOG PARAMETERS —) [Function]

Opens and returns a stream for the file specified by FILE, a file name. FILE can be either
a string or a symbol. The syntax and manipulation of file names is described at length in
the FILENAMES section below. Incomplete file names are interpreted with respect to the
connected directory (below).

RECOG specifies the recognition mode of FILE (below). If RECOG = NIL, it defaults
according to the value of ACCESS.

ACCESS specifies the "access rights" to be used when opening the file. Possible values are:

INPUT Only input operations are permitted on the already existing file. Starts
reading at the beginning of the file. RECOG defaults to OLD.

OUTPUT Only output operations are permitted on the initially empty file. Starts
writing at the beginning of the file. While the file is open, other users or
processes are unable to open the file for either input or output. RECOG
defaults to NEW.

BOTH Both input and output operations are permitted on the file. Starts
reading or writing at the beginning of the file. RECOG defaults to
OLD/NEW. ACCESS = BOTH implies random access (Chapter 25), and
may not be possible for files on some devices.

23-2

 INTERLISP-D REFERENCE MANUAL

APPEND Only sequential output operations are permitted on the file. Starts
writing at the end of the file. RECOG defaults to OLD/NEW. ACCESS =
APPEND may not be allowed for files on some devices.

Note: ACCESS = OUTPUT implies that you intend to write a new or different
file, even if a version number was specified and the corresponding file
already exists. Any previous contents of the file are discarded, and the
file is empty immediately after the OPENSTREAM. If you want to write
on an already existing file while preserving the old contents, the file
must be opened for access BOTH or APPEND.

PARAMETERS is a list of pairs (ATTRIB VALUE), where ATTRIB is a file attribute (see
SETFILEINFO below). A non-list ATTRIB in PARAMETERS is treated as the pair (ATTRIB
T). Generally speaking, attributes that belong to the permanent file (e.g., TYPE) can only
be set when creating a new file, while attributes that belong only to a particular opening
of a file (e.g., ENDOFSTREAMOP) can be set on any call to OPENSTREAM. Not all devices
honor all attributes; those not recognized by a particular device are simply ignored.

In addition to the attributes permitted by SETFILEINFO, the following attributes are
accepted by OPENSTREAM as values of ATTRIB in its PARAMETERS argument:

DON’T.CHANGE.DATE If VALUE is non-NIL, the file’s creation date is not changed when the file
is opened. This option is meaningful only for old files opened for BOTH
access. You should use this only for specialized applications where the
caller does not want the file system to believe the file’s content has been
changed.

SEQUENTIAL If VALUE is non-NIL, this opening of the file need support only
sequential access; i.e., the caller intends never to use SETFILEPTR. For
some devices, sequential access to files is much more efficient than
random access. Note that the device may choose to ignore this attribute
and still open the file in a manner that permits random access. Also
note that this attribute does not make sense with ACCESS = BOTH.

If FILE is not recognized by the file system, OPENSTREAM causes the error FILE NOT
FOUND. Ordinarily, this error is intercepted via an entry on ERRORTYPELST (Chapter 24),
which causes SPELLFILE (see the Searching File Directories below) to be called.
SPELLFILE searches alternate directories and possibly attempts spelling correction on the
file name. Only if SPELLFILE is unsuccessful will the FILE NOT FOUND error actually
occur.

If FILE exists but cannot be opened, OPENSTREAM causes one of several other errors:
FILE WON’T OPEN if the file is already opened for conflicting access by someone else;
PROTECTION VIOLATION if the file is protected against the operation; FILE SYSTEM
RESOURCES EXCEEDED if there is no more room in the file system.

23-3

STREAMS & FILES

(CLOSEF FILE) [Function]

Closes FILE and returns its full file name. Generates an error, FILE NOT OPEN, if FILE
does not designate an open stream. After closing a stream, no further input/output
operations are permitted on it.

If FILE is NIL, it is defaulted to the primary input stream if that is not the terminal
stream, or else the primary output stream if that is not the terminal stream. If both
primary input and output streams are the terminal input/output streams, CLOSEF returns
NIL. If CLOSEF closes either the primary input stream or the primary output stream
(either explicitly or in the FILE = NIL case), it resets the primary stream for that direction
to be the corresponding terminal stream. See Chapter 25 for information on the primary
input/output streams.

WHENCLOSE (below) allows you to "advise" CLOSEF to perform various operations when a
file is closed.

Because of buffering, the contents of a file open for output are not guaranteed to be
written to the actual physical file device until CLOSEF is called. Buffered data can be
forced out to a file without closing the file by using the function FORCEOUTPUT (Chapter
25).

Some network file devices perform their transactions in the background. As a result, it is
possible for a file to be closed by CLOSEF and yet not be "fully" closed for a small time
period afterward. During this time the file appears to be busy and cannot be opened for
conflicting access by others.

(CLOSEF? FILE) [Function]

Closes FILE if it is open, returning the value of CLOSEF; otherwise does nothing and
returns NIL.

In the present implementation of Medley, all open streams to files are kept in a registry of "open files".
This registry does not include nameless streams, such as string streams (below), display streams
(Chapter 28), and the terminal input and output streams; nor streams explicitly hidden from you, such
as dribble streams (Chapter 30). This registry may not persist in future implementations of Medley,
but at the present time it is accessible by the following two functions:

(OPENP FILE ACCESS) [Function]

ACCESS is an access mode for a stream opening (see OPENSTREAM), or NIL for any access.

If FILE is a stream, returns its full name if it is open for the specified access, otherwise
NIL.

If FILE is a file name (a symbol), FILE is processed according to the rules of file
recognition (below). If a stream open to a file by that name is registered and open for the
specified access, then the file’s full name is returned. If the file name is not recognized, or
no stream is open to the file with the specified access, NIL is returned.

If FILE is NIL, returns a list of the full names of all registered streams that are open for
the specified access.

23-4

 INTERLISP-D REFERENCE MANUAL

(CLOSEALL ALLFLG) [Function]

Closes all streams in the value of (OPENP). Returns a list of the files closed.

WHENCLOSE (below) allows certain files to be "protected" from CLOSEALL. If ALLFLG is T,
all files, including those protected by WHENCLOSE, are closed.

File Names

A file name in Medley is a string or symbol whose characters specify a "path" to the actual file: on
what host or device the file resides, in which directory, and so forth. Because Medley supports a
variety of non-local file devices, parts of the path could be device-dependent. However, it is desirable
for programs to be able to manipulate file names in a device-independent manner. To this end,
Medley specifies a uniform file name syntax over all devices; the functions that perform the actual file
manipulation for a particular device are responsible for any translation to that device’s naming
conventions.

A file name is composed of a collection of fields, some of which have specific meanings. The functions
described below refer to each field by a field name, a literal atom from among the following: HOST,
DEVICE, DIRECTORY, NAME, EXTENSION, and VERSION. The standard syntax for a file name is
{HOST}DEVICE:<DIRECTORY>NAME.EXTENSION;VERSION. Some host’s file systems do not use all
of those fields in their file names.

HOST Specifies the host whose file system contains the file. In the case of local
file devices, the "host" is the name of the device, e.g., DSK or FLOPPY.

DEVICE Specifies, for those hosts that divide their file system’s name space
among mutiple physical devices, the device or logical structure on
which the file resides. This should not be confused with Medley’s
abstract "file device", which denotes either a host or a local physical
device and is specified by the HOST field.

DIRECTORY Specifies the "directory" containing the file. A directory usually is a
grouping of a possibly large set of loosely related files, e.g., the personal
files of a particular user, or the files belonging to some project. The
DIRECTORY field usually consists of a principal directory and zero or
more subdirectories that together describe a path through a file system’s
hierarchy. Each subdirectory name is set off from the previous
directory or subdirectory by the character ">"; e.g.,
"LISP>LIBRARY>NEW".

NAME This field carries no specific meaning, but generally names a set of files
thought of as being different renditions of the "same" abstract file.

EXTENSION This field also carries no specific meaning, but generally distinguishes
the form of files having the same name. Most files systems have some
"conventional" extensions that denote something about the content of
the file. For example, in Medley, the extension DCOM, LCOM or DFASL
denotes files containing compiled function definitions.

23-5

STREAMS & FILES

VERSION A number used to distinguish the versions or "generations" of the files
having a common name and extension. The version number is
incremented each time a new file by the same name is created.

Most functions that take as input "a directory" accept either a directory name (the contents of the
DIRECTORY field of a file name) or a "full" directory specification—a file name fragment consisting of
only the fields HOST, DEVICE, and DIRECTORY. In particular, the "connected directory" (see below)
consists, in general, of all three fields.

For convenience in dealing with certain operating systems, Medley also recognizes [] and () as host
delimiters (synonymous with {}), and / as a directory delimiter (synonymous with < at the beginning
of a directory specification and > to terminate directory or subdirectory specification). For example, a
file on a Unix file server UNX with the name /usr/foo/bar/stuff.tedit, whose DIRECTORY
field is thus usr/foo/bar, could be specified as {UNX}/usr/foo/bar/stuff.tedit, or
(UNX)<usr/foo/bar>stuff.tedit, or several other variations. Note that when using [] or () as
host delimiters, they usually must be escaped with the reader’s escape character if the file name is
expressed as a symbol rather than a string.

Different hosts have different requirements for vaild characters in file names. In Medley, all
characters are valid. However, in order to be able to parse a file name into its component fields, it is
necessary that those characters that are conventionally used as file name delimiters be quoted when
they appear inside of fields where there could be ambiguity. The file name quoting character is " ’ "
(single quote). Thus, the following characters must be quoted when not used as delimeters: >, :, ;, /,
and ’ itself. The character . (period) need only be quoted if it is to be considered a part of the
EXTENSION field. The characters },], and) need only be quoted in a file name when the host field of
the name is introduced by {, [, and (, respectively. The characters {, [, (, and < need only be quoted if
they appear as the first character of a file name fragment, where they would otherwise be assumed to
introduce the HOST or DIRECTORY fields.

The following functions are the standard way to manipulate file names in Medley. Their operation is
purely syntactic—they perform no file system operations themselves.

(UNPACKFILENAME.STRING FILENAME) [Function]

Parses FILENAME, returning a list in property list format of alternating field names and
field contents. The field contents are returned as strings. If it is a stream, its full name is
used.

Only those fields actually present in FILENAME are returned. A field is considered
present if its delimiting punctuation is present, even if the field itself is empty. Empty
fields are denoted by "" (the empty string).

Examples:

(UNPACKFILENAME.STRING "FOO.BAR") =>
 (NAME "FOO" EXTENSION "BAR")

(UNPACKFILENAME.STRING "FOO.;2") =>
 (NAME "FOO" EXTENSION "" VERSION "2")

(UNPACKFILENAME.STRING "FOO;") =>
 (NAME "FOO" VERSION "")

(UNPACKFILENAME.STRING

23-6

 INTERLISP-D REFERENCE MANUAL

 "{ERIS}<LISP>CURRENT>IMTRAN.DCOM;21")
 => (HOST "ERIS" DIRECTORY "LISP>CURRENT"
 NAME "IMTRAN" EXTENSION "DCOM"
 VERSION "21")

(UNPACKFILENAME FILE) [Function]

Old version of UNPACKFILENAME.STRING that returns the field values as atoms, rather
than as strings. UNPACKFILENAME.STRING is now considered the "correct" way of
unpacking file names, because it does not lose information when the contents of a field are
numeric. For example,

(UNPACKFILENAME ’STUFF.TXT) =>
 (NAME STUFF EXTENSION TXT)

but

(UNPACKFILENAME ’STUFF.029) =>
 (NAME STUFF EXTENSION 29)

Explicitly omitted fields are denoted by the atom NIL, rather than the empty string.

Note: Both UNPACKFILENAME and UNPACKFILENAME.STRING leave the
trailing colon on the device field, so that the Tenex device NIL: can be
distinguished from the absence of a device. Although
UNPACKFILENAME.STRING is capable of making the distinction, it
retains this behavior for backward compatibility. Thus,

(UNPACKFILENAME.STRING ’{TOAST}DSK:FOO) =>
 (HOST "TOAST" DEVICE "DSK:" NAME "FOO")

(FILENAMEFIELD FILENAME FIELDNAME) [Function]

Returns, as an atom, the contents of the FIELDNAME field of FILENAME. If FILENAME is a
stream, its full name is used.

(PACKFILENAME.STRING FIELD1 CONTENTS1 ... FIELDN CONTENTSN) [NoSpread
Function]

Takes a sequence of alternating field names and field contents (atoms or strings), and
returns the corresponding file name, as a string.

If PACKFILENAME.STRING is given a single argument, it is interpreted as a list of
alternating field names and field contents. Thus PACKFILENAME.STRING and
UNPACKFILENAME.STRING operate as inverses.

If the same field name is given twice, the first occurrence is used.

The contents of the field name DIRECTORY may be either a directory name or a full
directory specification as described above.

PACKFILENAME.STRING also accepts the "field name" BODY to mean that its contents
should itself be unpacked and spliced into the argument list at that point. This feature, in
conjunction with the rule that fields early in the argument list override later duplicates, is
useful for altering existing file names. For example, to provide a default field, place BODY

23-7

STREAMS & FILES

first in the argument list, then the default fields. To override a field, place the new fields
first and BODY last.

If the value of the BODY field is a stream, its full name is used.

Examples:

(PACKFILENAME.STRING ’DIRECTORY "LISP"
 ’NAME "NET")
 => "<LISP>NET"

(PACKFILENAME.STRING ’NAME "NET"
 ’DIRECTORY "{DSK}<LISPFILES>")
 => "{DSK}<LISPFILES>NET"

(PACKFILENAME.STRING ’DIRECTORY "{DSK}"
 ’BODY "{TOAST}<FOO>BAR")
 => "{DSK}BAR"

(PACKFILENAME.STRING ’DIRECTORY "FRED"
 ’BODY "{TOAST}<FOO>BAR")
 => "{TOAST}<FRED>BAR"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR"
 ’DIRECTORY "FRED")
 => "{TOAST}<FOO>BAR"

(PACKFILENAME.STRING ’VERSION NIL
 ’BODY "{TOAST}<FOO>BAR.DCOM;2")
 => "{TOAST}<FOO>BAR.DCOM"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR.DCOM"
 ’VERSION 1)
 => "{TOAST}<FOO>BAR.DCOM;1"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR.DCOM;"
 ’VERSION 1)
 => "{TOAST}<FOO>BAR.DCOM;"

(PACKFILENAME.STRING ’BODY "BAR.;1"
 ’EXTENSION "DCOM")
 => "BAR.;1"

(PACKFILENAME.STRING ’BODY "BAR;1"
 ’EXTENSION "DCOM")
 => "BAR.DCOM;1"

In the last two examples, note that in one case the extension is explicitly present in the
body (as indicated by the preceding period), while in the other there is no indication of an
extension, so the default is used.

(PACKFILENAME FIELD1 CONTENTS1 ... FIELDN CONTENTSN) [NoSpread Function]

The same as PACKFILENAME.STRING, except that it returns the file name as a symbol,
instead of a string.

Incomplete File Names

In general, it is not necessary to pass a complete file name (one containing all the fields listed above) to
functions that take a file name as an argument. Interlisp supplies suitable defaults for certain fields
(below). Functions that return names of actual files, however, always return the full file name.

23-8

 INTERLISP-D REFERENCE MANUAL

If the version field is omitted from a file name, Interlisp performs version recognition, as described
below.

If the host, device and/or directory field are omitted from a file name, Interlisp uses the currently
connected directory. You can change the currently connected directory by by calling CNDIR (below)
or using the programmer’s assistant command CONN.

Defaults are added to the partially specified name "left to right" until a host, device or directory field is
encountered. Thus, if the connected directory is {TWENTY}PS:<FRED>, then

BAR.DCOM means
 {TWENTY}PS:<FRED>BAR.DCOM

<GRANOLA>BAR.DCOM means
 {TWENTY}PS:<GRANOLA>BAR.DCOM

MTA0:<GRANOLA>BAR.DCOM means
 {TWENTY}MTA0:<GRANOLA>BAR.DCOM

{THIRTY}<GRANOLA>BAR.DCOM means
 {THIRTY}<GRANOLA>BAR.DCOM

In addition, if the partially specified name contains a subdirectory, but no principal directory, then the
subdirectory is appended to the connected directory. For example,

ISO>BAR.DCOM means
 {TWENTY}PS:<FRED>ISO>BAR.DCOM

Or, if the connected directory is the Unix directory {UNX}/usr/fred/, then iso/bar.dcom means
{UNX}/usr/fred/iso/bar.dcom, but /other/bar.dcom means {UNX}/other/bar.dcom.

(CNDIR HOST/DIR) [Function]

Connects to the directory HOST/DIR, which can either be a directory name or a full
directory specification including host and/or device. If the specification includes just a
host, and the host supports directories, the directory is defaulted to the value of
(USERNAME); if the host is omitted, connection is made to another directory on the same
host as before. If HOST/DIR is NIL, connects to the value of LOGINHOST/DIR.

CNDIR returns the full name of the now-connected directory. Causes an error, Non-
existent directory, if HOST/DIR is not a valid directory.

Note that CNDIR does not necessarily require or provide any directory access privileges.
Access privileges are checked when a file is opened.

CONN HOST/DIR [Prog. Asst. Command]

Command form of CNDIR for use at the executive. Connects to HOST/DIR, or to the value
of LOGINHOST/DIR if HOST/DIR is omitted. This command is undoable. —Undoing it
causes the system to connect to the previously connected directory.

LOGINHOST/DIR [Variable]

CONN with no argument connects to the value of the variable LOGINHOST/DIR, initially
{DSK}, but usually reset in your greeting file (Chapter 12).

23-9

STREAMS & FILES

(DIRECTORYNAME DIRNAME STRPTR) [Function]

If DIRNAME is T, returns the full specification of the currently connected directory. If
DIRNAME is NIL, returns the value of LOGINHOST/DIR. For any other value of DIRNAME,
returns a full directory specification if DIRNAME designates an existing directory (satisfies
DIRECTORYNAMEP), otherwise NIL.

If STRPTR is T, the value is returned as an atom, otherwise it is returned as a string.

(DIRECTORYNAMEP DIRNAME HOSTNAME) [Function]

Returns T if DIRNAME is a valid directory on host HOSTNAME, or on the host of the
currently connected directory if HOSTNAME is NIL. DIRNAME may be either a directory
name or a full directory specification containing host and/or device.

If DIRNAME includes subdirectories, this function may or may not pass judgment on their
validity. Some hosts support "true" subdirectories, distinct entities manipulable by the file
system, while others only provide them as a syntactic convenience.

(HOSTNAMEP NAME) [Function]

Returns T if NAME is recognized as a valid host or file device name at the moment
HOSTNAMEP is called.

Version Recognition

Most of the file devices in Interlisp support file version numbers. That is, you can have several files of
the exact same name, differing only in their VERSION field, which is incremented for each new
"version" of the file that is created. When the filesystem encounters a file name without a version
number, it must figure out which version was intended. This process is known as version recognition.

When OPENSTREAM opens a file for input and no version number is given, the highest existing version
number is used. Similarly, when a file is opened for output and no version number is given, a new
file is created with a version number one higher than the highest one currently in use with that file
name. You can change he version number defaulting for OPENSTREAM by specifying a different value
for its RECOG argument (see FULLNAME below).

Other functions that accept file names as arguments generally perform default version recognition,
which is newest version for existing files, or a new version if using the file name to create a new file.
The one exception is DELFILE, which uses the oldest existing version of the file.

The functions below can be used to perform version recognition without actually calling OPENSTREAM
to open the file. Note that these functions only tell the truth at the moment they are called, and thus
cannot be used to anticipate the name of the file opened by a comparable OPENSTREAM. They are best
used as helpful hints.

(FULLNAME X RECOG) [Function]

If X is an open stream, simply returns the full file name of the stream. Otherwise, if X is a
file name given as a string or symbol, performs version recognition, as follows:

23-10

 INTERLISP-D REFERENCE MANUAL

If X is recognized in the recognition mode specified by RECOG as an abbreviation for some
file, returns the file’s full name, otherwise NIL. RECOG is one of the following:

OLD Chooses the newest existing version of the file. Returns NIL if no file
named X exists.

OLDEST Chooses the oldest existing version of the file. Returns NIL if no file
named X exists.

NEW Chooses a new version of the file. If versions of X already exist, then
chooses a version number one higher than highest existing version;
otherwise chooses version 1. For some file systems, FULLNAME returns
NIL if you do not have the access rights necessary to create a new file
named X.

OLD/NEW Tries OLD, then NEW. Choose the newest existing version of the file, if
any; otherwise chooses version 1. This usually only makes sense if you
intend to open X for access BOTH.

RECOG = NIL defaults to OLD. For all other values of RECOG, generates
an error ILLEGAL ARG.

If X already contains a version number, the RECOG argument will never
change it. In particular, RECOG = NEW does not require that the file
actually be new. For example, (FULLNAME ’FOO.;2 ’NEW) may
return {ERIS}<LISP>FOO.;2 if that file already exists, even though
(FULLNAME ’FOO ’NEW) would default the version to a new number,
perhaps returning {ERIS}<LISP>FOO.;5.

(INFILEP FILE) [Function]

Equivalent to (FULLNAME FILE ’OLD). Returns the full file name of the newest version of
FILE if FILE is the name of an existing file that can be opened for input, NIL otherwise.

(OUTFILEP FILE) [Function]

Equivalent to (FULLNAME FILE ’NEW).

Note that INFILEP, OUTFILEP and FULLNAME do not open any files; they are pure predicates. They
are also only hints, as they do not imply that the caller has access rights to the file. For example,
INFILEP might return non-NIL, but OPENSTREAM might fail for the same file because you don’t have
read access to it, or the file is open for output by another user. Similarly, OUTFILEP could return non-
NIL, but OPENSTREAM could fail with a FILE SYSTEM RESOURCES EXCEEDED error.

Note also that in a shared file system, such as a remote file server, intervening file operations by
another user could contradict the information returned by recognition. For example, a file that was
INFILEP might be deleted, or between an OUTFILEP and the subsequent OPENSTREAM, another user
might create a new version or delete the highest version, causing OPENSTREAM to open a different
version of the file than the one returned by OUTFILEP. In addition, some file servers do not support
recognition of files in output context. Thus, the "truth" about a file can only be obtained by actually
opening the file; creators of files should rely on the name of the stream opened by OPENSTREAM, not

23-11

STREAMS & FILES

the value returned from these recognition functions. In particular, programmers are discouraged
from using OUTFILEP or (FULLNAME NAME ’NEW).

Using File Names Instead of Streams

In earlier implementations of Interlisp, from the days of Interlisp-10 onward, the "handle" used to
refer to an open file was not a stream, but rather the file’s full name, represented as a symbol. When
the file name was passed to any I/O function, it was mapped to a stream by looking it up in a list of
open files. This scheme was sometimes convenient for typing in file commands at the executive, but
was poor for serious programming in two ways. First, mapping from file name to stream on every
input/output operation is inefficient. Second, and more importantly, using the file name as the handle
on an open stream means that it is not possible to have more than one stream open on a given file at
once.

As of this writing, Medley is in a transition period, where it still supports the use of symbol file names
as synonymous with open streams, but this use is not recommended. The remainder of this section
discusses this usage of file names for the benefit of those reading older programs and wishing to
convert them to work properly when this compatibility feature is removed.

File Name Efficiency Considerations

It is possible for a program to be seriously inefficient using a file name as a stream if the program is
not using the name returned by OPENFILE (below). Any time that an input/output function is called
with a file name other than the full file name, Interlisp must perform recognition on the partial file
name to determine which open file is intended. Thus if repeated operations are to be performed, it is
considerably more efficient to use the full file name returned from OPENFILE.

There is a more subtle problem with partial file names, in that recognition is performed on your entire
directory, not just the open files. It is possible for a file name that previously denoted one file to
suddenly denote a different file. For example, suppose a program performs (INFILE ’FOO),
opening FOO.;1, and reads several expressions from FOO. Then you interrupt the program, create a
FOO.;2 and resume the program (or a user at another workstation creates a FOO.;2). Now a call to
READ giving it FOO as its FILE argument will generate a FILE NOT OPEN error, because FOO will be
recognized as FOO.;2.

Obsolete File Opening Functions

The following functions are now obsolete, but are provided for backwards compatibility:

(OPENFILE FILE ACCESS RECOG PARAMETERS) [Function]

Opens FILE with access rights as specified by ACCESS, and recognition mode RECOG, and
returns the full name of the resulting stream. Equivalent to (FULLNAME (OPENSTREAM
FILE ACCESS RECOG PARAMETERS)).

(INFILE FILE) [Function]

Opens FILE for input, and sets it as the primary input stream. Equivalent to (INPUT
(OPENSTREAM FILE ’INPUT ’OLD))

23-12

 INTERLISP-D REFERENCE MANUAL

(OUTFILE FILE) [Function]

Opens FILE for output, and sets it as the primary output stream. Equivalent to (OUTPUT
(OPENSTREAM FILE ’OUTPUT ’NEW)).

(IOFILE FILE) [Function]

Opens FILE for both input and output. Equivalent to (OPENFILE FILE ’BOTH ’OLD).
Does not affect the primary input or output stream.

Converting Old Programs

At some point in the future, the Medley file system will change so that each call to OPENSTREAM
returns a distinct stream, even if a stream is already open to the specified file. This change is required
in order to deal with files in a multiprocessing environment.

This change will produce the following incompatibilities:

1. The functions OPENFILE, INPUT, and OUTPUT will return a stream, not a full file
name. To make this less confusing in interactive situations, streams will have a print
format that reveals the underlying file’s actual name.

2. Passing anything other than the object returned from OPENFILE to I/O operations
will cause problems. Passing the file’s name will be significantly slower than passing
the stream (even when passing the "full" file name), and in the case where there is more
than one stream open on the file it might even act on the wrong one.

3. OPENP will return NIL when passed the name of a file rather than the value of
OPENFILE or OPENSTREAM.

You should consider the following advice when writing new programs and editing existing programs,
so your programs will behave properly when the change occurs:

Because of the efficiency and ambiguity considerations described earlier, users have long been
encouraged to use only full file names as FILE arguments to I/O operations. The "proper" way to
have done this was to bind a variable to the value returned from OPENFILE and pass that variable to
all I/O operations; such code will continue to work. A less proper way to obtain the full file name,
but one which has to date not incurred any obvious penalty, is that which binds a variable to the
result of an INFILEP and passes that to OPENFILE and all I/O operations. This has worked because
INFILEP and OPENFILE both return a full file name, an invalid assumption in this future world.
Such code should be changed to pass around the value of the OPENFILE, not the INFILEP.

Code that calls OPENP to test whether a possibly incomplete file name is already open should be
recoded to pass to OPENP only the value returned from OPENFILE or OPENSTREAM.

Code that uses ordinary string functions to manipulate file names, and in particular the value
returned from OPENFILE, should be changed to use the the functions UNPACKFILENAME.STRING
and PACKFILENAME.STRING. Those functions work both on file names (strings) and streams
(coercing the stream to the name of its file).

Code that tests the value of OUTPUT for equality to some known file name or T should be examined
carefully and, if possible, recoded.

23-13

STREAMS & FILES

To see more directly the effects of passing around streams instead of file names, replace your calls to
OPENFILE with calls to OPENSTREAM. OPENSTREAM is called in exactly the same way, but returns a
STREAM. Streams can be passed to READ, PRINT, CLOSEF, etc just as the file’s full name can be
currently, but using them is more efficient. The function FULLNAME, when applied to a stream,
returns its full file name.

Using Files with Processes

Because Medley does not yet support multiple streams per file, problems can arise if different
processes attempt to access the same file. You have to be careful not to have two processes
manipulating the same file at the same time, since the two processes will be sharing a single input
stream and file pointer. For example, you can’t have one process TCOMPL a file while another process
is running LISTFILES on it.

File Attributes

Any file has a number of "file attributes", such as the read date, protection, and bytesize. The exact
attributes that a file can have is dependent on the file device. The functions GETFILEINFO and
SETFILEINFO allow you to access file attributes:

(GETFILEINFO FILE ATTRIB) [Function]

Returns the current setting of the ATTRIB attribute of FILE.

(SETFILEINFO FILE ATTRIB VALUE) [Function]

Sets the attribute ATTRIB of FILE to be VALUE. SETFILEINFO returns T if it is able to
change the attribute ATTRIB, and NIL if unsuccessful, either because the file device does
not recognize ATTRIB or because the file device does not permit the attribute to be
modified.

The FILE argument to GETFILEINFO and SETFILEINFO can be an open stream (or an argument
designating an open stream, see Chapter 25), or the name of a closed file. SETFILEINFO in general
requires write access to the file.

The attributes recognized by GETFILEINFO and SETFILEINFO fall into two categories: permanent
attributes, which are properties of the file, and temporary attributes, which are properties only of an
open stream to the file. The temporary attributes are only recognized when FILE designates an open
stream; the permanent attributes are usually equally accessible for open and closed files. However,
some devices are willing to change the value of certain attributes of an open stream only when
specified in the PARAMETERS argument to OPENSTREAM (see above), not on a later call to
SETFILEINFO.

The following are permanent attributes of a file:

BYTESIZE The byte size of the file. Medley currently only supports byte size 8.

LENGTH The number of bytes in the file. Alternatively, the byte position of the
end-of-file. Like (GETEOFPTR FILE), but FILE does not have to be
open.

23-14

 INTERLISP-D REFERENCE MANUAL

SIZE The size of FILE in pages.

CREATIONDATE The date and time, as a string, that the content of FILE was "created".
The creation date changes whenever the content of the file is modified,
but remains unchanged when a file is transported, unmodified, across
file systems. Specifically, COPYFILE and RENAMEFILE (see below)
preserve the file’s creation date. Note that this is different from the
concept of "creation date" used by some operating systems (e.g.,
Tops20).

WRITEDATE The date and time, as a string, that the content of FILE was last written
to this particular file system. When a file is copied, its creation date
does not change, but its write date becomes the time at which the copy
is made.

READDATE The date and time, as a string, that FILE was last read, or NIL if it has
never been read.

ICREATIONDATE
IWRITEDATE
IREADDATE The CREATIONDATE, WRITEDATE and READDATE, respectively, in

integer form, as IDATE (Chapter 12) would return. This form is useful
for comparing dates.

AUTHOR The name of the user who last wrote the file.

TYPE The "type" of the file, some indication of the nature of the file’s content.
The "types" of files allowed depends on the file device. Most devices
recognize the symbol TEXT to mean that the file contains just characters,
or BINARY to mean that the file contains arbitrary data.

Some devices support a wider range of file types that distinguish
among the various sorts of files one might create whose content is
"binary". All devices interpret any value of TYPE that they do not
support to be BINARY. Thus, GETFILEINFO may return the more
general value BINARY instead of the original type that was passed to
SETFILEINFO or OPENSTREAM. Similarly, COPYFILE, while
attempting to preserve the TYPE of the file it is copying, may turn, say,
an INTERPRESS file into a mere BINARY file.

The way in which some file devices (e.g., Xerox file servers) support a
wide range of file types is by representing the type as an integer, whose
interpretation is known by the client. The variable FILING.TYPES is
used to associate symbolic types with numbers for these devices. This
list initially contains some of the well-known assignments of type name
to number; you can add additional elements to handle any private file
types. For example, suppose there existed an NS file type MAZEFILE
with numeric value 5678. You could add the element (MAZEFILE
5678) to FILING.TYPES and then use MAZEFILE as a value for the
TYPE attribute to SETFILEINFO or OPENSTREAM. Other devices are, of

23-15

STREAMS & FILES

course, free to store TYPE attributes in whatever manner they wish, be it
numeric or symbolic. FILING.TYPES is merely considered the official
registry for Xerox file types.

For most file devices, the TYPE of a newly created file, if not specified in
the PARAMETERS argument to OPENSTREAM, defaults to the value of
DEFAULTFILETYPE, initially TEXT.

The following are currently recognized as temporary attributes of an
open stream:

ACCESS The current access rights of the stream (see the beginning of this
chapter). Can be one of INPUT, OUTPUT, BOTH, APPEND; or NIL if the
stream is not open.

ENDOFSTREAMOP The action to be taken when a stream is at "end of file" and an attempt is
made to take input from it. The value of this attribute is a function of
one argument, the stream. The function can examine the stream and its
calling context and take any action it wishes. If the function returns
normally, its should return either T, meaning to try the input operation
again, or the byte that BIN would have returned had there been more
bytes to read. Ordinarily, one should not let the ENDOFSTREAMOP
function return unless one is only performing binary input from the file,
since there is no way in general of knowing in what state the reader was
at the time the end of file occurred, and hence how it will interpret a
single byte returned to it.

The default ENDOFSTREAMOP is a system function that causes the error
END OF FILE. The behavior of that error can be further modified for a
particular stream by using the EOF option of WHENCLOSE (see below).

EOL The end-of-line convention for the stream. This can be CR, LF, or CRLF,
indicating with what byte or sequence of bytes the "End Of Line"
character is represented on the stream. On input, that sequence of bytes
on the stream is read as (CHARCODE EOL) by READCCODE or the string
reader. On output, (TERPRI) and (PRINTCCODE (CHARCODE EOL))
cause that sequence of bytes to be placed on the stream.

The end of line convention is usually not apparent to you. The file
system is usually aware of the convention used by a particular remote
operating system, and sets this attribute accordingly. If you believe a
file actually is stored with a different convention than the default, it is
possible to modify the default behavior by including the EOL attribute
in the PARAMETERS argument to OPENSTREAM.

BUFFERS Value is the number of 512-byte buffers that the stream maintains at one
time. This attribute is only used by certain random-access devices
(currently, the local disk, floppy, and Leaf servers); all others ignore it.

Streams open to files generally maintain some portion of the file
buffered in memory, so that each call to an I/O function does not

23-16

 INTERLISP-D REFERENCE MANUAL

require accessing the actual file on disk or a file server. For files being
read or written sequentially, not much buffer space is needed, since
once a byte is read or written, it will never need to be seen again. In the
case of random access streams, buffering is more complicated, since a
program may jump around in the file, using SETFILEPTR (Chapter 25).
In this case, the more buffer space the stream has, the more likely it is
that after a SETFILEPTR to a place in the file that has already been
accessed, the stream still has that part of the file buffered and need not
go out to the device again. This benefit must, of course, be traded off
against the amount of memory consumed by the buffers.

NS servers implement the following additional attributes for GETFILEINFO (neither of these
attributes are settable with SETFILEINFO):

READER The name of the user who last read the file.

PROTECTION A list specifying the access rights to the file. Each element of the list is of
the form (name nametype . rights). Name is the name of a user or group
or a name pattern. Rights is one or more of the symbols ALL READ
WRITE DELETE CREATE or MODIFY. For servers running services 10.0
or later, nametype is the symbol "--". , In earlyer releases it is one of the
symbols INDIVIDUAL or GROUP

Closing and Reopening Files

The function WHENCLOSE permits you to associate certain operations with open streams that govern
how and when the stream will be closed. You can specify that certain functions will be executed
before CLOSEF closes the stream and/or after CLOSEF closes the stream. You can make a particular
stream be invisible to CLOSEALL, so that it will remain open across user invocations of CLOSEALL.

(WHENCLOSE FILE PROP1 VAL1 ... PROPN VALN) [NoSpread Function]

FILE must designate an open stream other than T (NIL defaults to the primary input
stream, if other than T, or primary output stream if other than T). The remaining
arguments specify properties to be associated with the full name of FILE. WHENCLOSE
returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

BEFORE VAL is a function that CLOSEF will apply to the stream just before it is
closed. This might be used, for example, to copy information about the
file from an in-core data structure to the file just before it is closed.

AFTER VAL is a function that CLOSEF will apply to the stream just after it is
closed. This capability permits in-core data structures that know about
the stream to be cleaned up when the stream is closed.

CLOSEALL VAL is either YES or NO and determines whether FILE will be closed by
CLOSEALL (YES) or whether CLOSEALL will ignore it (NO). CLOSEALL

23-17

STREAMS & FILES

uses CLOSEF, so that any AFTER functions will be executed if the stream
is in fact closed. Files are initialized with CLOSEALL set to YES.

EOF VAL is a function that will be applied to the stream when an end-of-file
error occurs, and the ERRORTYPELST entry for that error, if any, returns
NIL. The function can examine the context of the error, and can decide
whether to close the stream, RETFROM some function, or perform some
other computation. If the function supplied returns normally (i.e., does
not RETFROM some function), the normal error machinery will be
invoked.

The default EOF behavior, unless overridden by this WHENCLOSE
option, is to call the value of DEFAULTEOFCLOSE (below).

For some applications, the ENDOFSTREAMOP attribute (see above) is a
more useful way to intercept the end-of-file error. The
ENDOFSTREAMOP attribute comes into effect before the error machinery
is ever activated.

Multiple AFTER and BEFORE functions may be associated with a file;
they are executed in sequence with the most recently associated
function executed first. The CLOSEALL and EOF values, however, will
override earlier values, so only the last value specified will have an
effect.

DEFAULTEOFCLOSE [Variable]

Value is the name of a function that is called by default when an end of file error occurs
and no EOF option has been specified for the stream by WHENCLOSE. The initial value of
DEFAULTEOFCLOSE is NILL, meaning take no special action (go ahead and cause the
error). Setting it to CLOSEF would cause the stream to be closed before the rest of the
error machinery is invoked.

I/O Operations to and from Strings

It is possible to treat a string as if it were the contents of a file by using the following function:

(OPENSTRINGSTREAM STR ACCESS) [Function]

Returns a stream that can be used to access the characters of the string STR. ACCESS may
be either INPUT, OUTPUT, or BOTH; NIL defaults to INPUT. The stream returned may be
used exactly like a file opened with the same access, except that output operations may
not extend past the end of the original string. Also, string streams do not appear in the
value of (OPENP).

For example, after performing

(SETQ STRM (OPENSTRINGSTREAM "THIS 2 (IS A LIST)"))

the following succession of reads could occur:

23-18

 INTERLISP-D REFERENCE MANUAL

(READ STRM) => THIS
 (RATOM STRM) => 2
 (READ STRM) => (IS A LIST)
 (EOFP STRM) => T

Compatibility Note: In Interlisp-10 it was possible to take input from a string simply by passing the
string as the FILE argument to an input function. In order to maintain compatibility with this feature,
Medley provides the same capability. This not terribly clean feature persists in the present
implementation to give users time to convert old code. This means that strings are not equivalent to
symbols when specifying a file name as a stream argument. In a future release, the old Interlisp-10
string-reading feature will be decommissioned, and OPENSTRINGSTREAM will be the only way to
perform I/O on a string.

Temporary Files and the CORE Device

Many operating systems have a notion of "scratch file", a file typically used as temporary storage for
data most naturally maintained in the form of a file, rather than some other data structure. A scratch
file can be used as a normal file in most respects, but is automatically deleted from the file system after
its useful life is up, e.g., when the job terminates, or you log out. In normal operation, you need never
explicitly delete such files, since they are guaranteed to disappear soon.

A similar functionality is provided in Medley by core-resident files. Core-resident files are on the
device CORE. The directory structure for this device and all files on it are represented completely
within your virtual memory. These files are treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disappears when the Medley image is abandoned.

Core files are opened and closed by name the same as any other file, e.g., (OPENSTREAM
’{CORE}<FOO>FIE.DCOM ’OUTPUT). Directory names are completely optional, so files can also
have names of the form {CORE}NAME.EXT. Core files can be enumerated by DIRECTORY (see below).
While open, they are registered in (OPENP). They do consume virtual memory space, which is only
reclaimed when the file is deleted. Some caution should thus be used when creating large CORE files.
Since the virtual memory of an Medley workstation usually persists far longer than the typical process
on a mainframe computer, it is still important to delete CORE files after they are no longer in use.

For many applications, the name of the scratch file is irrelevant, and there is no need for anyone to
have access to the file independent of the program that created it. For such applications, NODIRCORE
files are preferable. Files created on the device lisp NODIRCORE are core-resident files that have no
name and are registered in no directory. These files "disappear", and the resources they consume are
reclaimed, when all pointers to the file are dropped. Hence, such files need never be explicitly deleted
or, for that matter, closed. The "name" of such a file is simply the stream object returned from
(OPENSTREAM ’{NODIRCORE} ’OUTPUT), and it is this stream object that must be passed to all
input/output operations, including CLOSEF and any calls to OPENSTREAM to reopen the file.

(COREDEVICE NAME NODIRFLG) [Function]

Creates a new device for core-resident files and assigns NAME as its device name. Thus,
after performing (COREDEVICE ’FOO), one can execute (OPENSTREAM ’{FOO}BAR
’OUTPUT) to open a file on that device. Medley is initialized with the single core-resident
device named CORE, but COREDEVICE may be used to create any number of logically
distinct core devices.

23-19

STREAMS & FILES

If NODIRFLG is non-NIL, a core device that acts like {NODIRCORE} is created.

Compatibility note: In Interlisp-10, it was possible to create scratch files by using file
names with suffixes ;S or ;T. In Medley, these suffixes in file names are simply ignored
when output is directed to a particular host or device. However, the function
PACKFILENAME.STRING is defined to default the device name to CORE if the file has the
TEMPORARY attribute and no explicit host is provided.

NULL Device

The NULL device provides a source of content-free "files". (OPENSTREAM ’{NULL} ’OUTPUT)
creates a stream that discards all output directed at it. (OPENSTREAM ’{NULL} ’INPUT) creates a
stream that is perpetually at end-of-file (i.e., has no input).

Deleting, Copying, and Renaming Files

(DELFILE FILE) [Function]

Deletes FILE if possible. The file must be closed. Returns the full name of the file if
deleted, else NIL. Recognition mode for FILE is OLDEST, i.e., if FILE does not have a
version number specified, then DELFILE deletes the oldest version of the file.

(COPYFILE FROMFILE TOFILE) [Function]

Copies FROMFILE to a new file named TOFILE. The source and destination may be on
any combination of hosts/devices. COPYFILE attempts to preserve the TYPE and
CREATIONDATE where possible. If the original file’s file type is unknown, COPYFILE
attempts to infer the type (file type is BINARY if any of its 8-bit bytes have their high bit
on).

COPYFILE uses COPYCHARS (Chapter 25) if the source and destination hosts have
different EOL conventions. Thus, it is possible for the source and destination files to be of
different lengths.

(RENAMEFILE OLDFILE NEWFILE) [Function]

Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT FOUND if FILE does not
exist. Returns the full name of the new file, if successful, else NIL if the rename cannot be
performed.

If OLDFILE and NEWFILE are on the same host/device, and the device implements a
renaming primitive, RENAMEFILE can be very fast. However, if the device does not know
how to rename files in place, or if OLDFILE and NEWFILE are on different devices,
RENAMEFILE works by copying OLDFILE to NEWFILE and then deleting OLDFILE.

23-20

 INTERLISP-D REFERENCE MANUAL

Searching File Directories

DIRECTORIES [Variable]

Global variable containing the list of directories searched (in order) by SPELLFILE and
FINDFILE (below) when not given an explicit DIRLST argument. In this list, the atom
NIL stands for the login directory (the value of LOGINHOST/DIR), and the atom T stands
for the currently connected directory. Other elements should be full directory
specifications, e.g., {TWENTY}PS:<LISPUSERS>, not merely LISPUSERS.

LISPUSERSDIRECTORIES [Variable]

Global variable containing a list of directories to search for "library" package files. Used
by the FILES file package command (Chapter 17).

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLST) [Function]

Searches for the file name FILE, possibly performing spelling correction (see Chapter 20).
Returns the corrected file name, if any, otherwise NIL.

If FILE has a directory field, SPELLFILE attempts spelling correction against the files in
that particular directory. Otherwise, SPELLFILE searches for the file on the directory list
DIRLST before attempting any spelling correction.

If NOPRINTFLG is NIL, SPELLFILE asks you to confirm any spelling correction done, and
prints out any files found, even if spelling correction is not done. If NOPRINTFLG = T,
SPELLFILE does not do any printing, nor ask for approval.

If NSFLG = T (or NOSPELLFLG = T, see Chapter 20), no spelling correction is attempted,
though searching through DIRLST still occurs.

DIRLST is the list of directories searched if FILE does not have a directory field. If
DIRLST is NIL, the value of the variable DIRECTORIES is used.

Note: If DIRLST is NIL, and FILE is not found by searching the directories
on DIRECTORIES, but the root name of FILE has a FILEDATES
property (Chapter 17) indicating that a file by that name has been
loaded, then the directory indicated in the FILEDATES property is
searched, too. This additional search is not done if DIRLST is non-
NIL.

ERRORTYPELST (Chapter 14) initially contains the entry ((23 (SPELLFILE (CADR
ERRORMESS) NIL NOFILESPELLFLG))), which causes SPELLFILE to be called in case
of a FILE NOT FOUND error. If the variable NOFILESPELLFLG is T (its initial value),
then spelling correction is not done on the file name, but DIRECTORIES is still searched.
If SPELLFILE is successful, the operation will be reexecuted with the new (corrected) file
name.

23-21

STREAMS & FILES

(FINDFILE FILE NSFLG DIRLST) [Function]

Uses SPELLFILE to search for a file named FILE. If it finds one, returns its full name,
with no user interaction. Specifically, it calls (SPELLFILE FILE T NSFLG DIRLST), after
first performing two simple checks: If FILE has an explicit directory, it checks to see if a
file so named exists, and if so returns that file. If DIRLST is NIL, it looks for FILE on the
connected directory before calling SPELLFILE.

Listing File Directories

The function DIRECTORY allows you to conveniently specify and/or program a variety of directory
operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAULTVERS) [Function]

Returns, lists, or performs arbitrary operations on all files specified by the "file group"
FILES. A file group has the form of a regular file name, except that the character * can be
used to match any number of characters, including zero, in the file name. For example,
the file group A*B matches all file names beginning with the character A and ending with
the character B. The file group *.DCOM matches all files with an extension of DCOM.

If FILES does not contain an explicit extension, it is defaulted to DEFAULTEXT; if FILES
does not contain an explicit version, it is defaulted to DEFAULTVERS. DEFAULTEXT and
DEFAULTVERS themselves default to *. If the period or semicolon preceding the omitted
extension or version, respectively, is present, the field is explicitly empty and no default is
used. All other unspecified fields default to *. Null version is interpreted as "highest".
Thus FILES = * or *.* or *.*;* enumerates all files on the connected directory; FILES
= *. or *.;* enumerates all versions of files with null extension; FILES = *.;
enumerates the highest version of files with null extension; and FILES = *.*;
enumerates the highest version of all files. If FILES is NIL, it defaults to *.*;*.

Note: Some hosts/devices are not capable of supporting "highest version" in
enumeration. Such hosts instead enumerate all versions.

For each file that matches the file group FILES, the "file commands" in COMMANDS are
executed in order. Some of the file commands allow aborting the command processing
for a given file, effectively filtering the list of files. The interpretation of the different file
commands is described below. If COMMANDS is NIL, it defaults to (COLLECT), which
collects the matching file names in a list and returns it as the value of DIRECTORY.

The "file commands" in COMMANDS are interpreted as follows:

P Prints the file’s name. For readability, DIRECTORY strips the directory
from the name, printing it once as a header in front of each set of
consecutive files on the same directory.

PP Prints the file’s name without a version number.

a string Prints the string.

READDATE, WRITEDATE

23-22

 INTERLISP-D REFERENCE MANUAL

CREATIONDATE, SIZE

LENGTH, BYTESIZE

PROTECTION, AUTHOR

TYPE Prints the appropriate information returned by GETFILEINFO (see
above).

COLLECT Adds the full name of this file to an accumulating list, which will be
returned as the value of DIRECTORY.

COUNTSIZE Adds the size of this file to an accumulating sum, which will be
returned as the value of DIRECTORY.

DELETE Deletes the file.

DELVER If this file is not the highest version of files by its name, delete it.

PAUSE Waits until you type any character before proceeding with the rest of
the commands (good for display if you want to ponder).

The following commands are predicates to filter the list. If the predicate is not satisfied,
then processing for this file is aborted and no further commands (such as those above) are
executed for this file.

Note: if the P and PP commands appear in COMMANDS ahead of any of the
filtering commands below except PROMPT, they are postponed until
after the filters. Thus, assuming the caller has placed the attribute
options after the filters as well, no printing occurs for a file that is
filtered out. This is principally so that functions like DIR (below) can
both request printing and pass arbitrary commands through to
DIRECTORY, and have the printing happen in the appropriate place.

PROMPT MESS Prompts with the yes/no question MESS; if user responds with No, abort
command processing for this file.

OLDERTHAN N Continue command processing if the file hasn’t been referenced (read or
written) in N days. N can also be a string naming an explicit date and
time since which the file must not have been referenced.

NEWERTHAN N Continue command processing if the file has been written within the
last N days. N can also be a string naming an explicit date and time.
Note that this is not quite the complement of OLDERTHAN, since it
ignores the read date.

BY USER Continue command processing if the file was last written by the given
user, i.e., its AUTHOR attribute matches (case insensitively) USER.

@ X X is either a function of one argument (FILENAME), or an arbitrary
expression which uses the variable FILENAME freely. If X returns NIL,
abort command processing for this file.

The following two commands apply not to any particular file, but globally to the manner
in which directory information is printed.

23-23

STREAMS & FILES

OUT FILE Directs output to FILE.

COLUMNS N Attempts to format output in N columns (rather than just 1).

DIRECTORY uses the variable DIRCOMMANDS as a spelling list to correct spelling and define
abbreviations and synonyms (see Chapter 20). Currently the following abbreviations are recognized:

AU => AUTHOR

- => PAUSE

COLLECT? => PROMPT " ? " COLLECT

DA
DATE => CREATIONDATE

TI => WRITEDATE

DEL => DELETE

DEL?
DELETE? => PROMPT " delete? " DELETE

OLD => OLDERTHAN 90

PR => PROTECTION

SI => SIZE
VERBOSE => AUTHOR CREATIONDATE SIZE

READDATE WRITEDATE

(FILDIR FILEGROUP) [Function]

Obsolete synonym of (DIRECTORY FILEGROUP).

(DIR FILEGROUP COM1 ... COMN) [NLambda NoSpread Function]

Convenient form of DIRECTORY for use in type-in at the executive. Performs
(DIRECTORY ’FILEGROUP ’(P COM1 ... COMN)).

(NDIR FILEGROUP COM1 ... COMN) [NLambda NoSpread Function]

Version of DIR that lists the file names in a multi-column format. Also, by default only
lists the most recent version of files (unless FILEGROUP contains an explicit version).

23-1

23. STREAMS AND FILES

Medley can perform input/output operations on a large variety of physical devices, including local
disk drives, floppy disk drives, the keyboard and display screen, and remote file server computers
accessed over a network. While the low-level details of how all these devices perform input/output
vary considerably, the Interlisp-D language provides the programmer a small, common set of abstract
operations whose use is largely independent of the physical input/output medium involved—
operations such as read, print, change font, or go to a new line. By merely changing the targeted I/O
device, a single program can be used to produce output on the display, a file, or a printer.

The underlying data abstraction that permits this flexibility is the stream. A stream is a data object (an
instance of the data type STREAM) that encapsulates all of the information about an input/output
connection to a particular I/O device. Each of Medley’s general-purpose I/O functions takes a stream
as one of its arguments. The general-purpose function then performs action specific to the stream’s
device to carry out the requested operation. Not every device is capable of implementing every I/O
operation, while some devices offer additional functionality by way of special functions for that
device alone. Such restrictions and extensions are noted in the documentation of each device.

The vast majority of the streams commonly used in Medley fall into two interesting categories: the file
stream and the image stream.

A file is an ordered collection of data, usually a sequence of characters or bytes, stored on a file device
in a manner that allows the data to be retrieved at a later time. Floppy disks, hard disks, and remote
file servers are among the devices used to store files. Files are identified by a "file name", which
specifies the device on which the file resides and a name unique to a specific file on that device. Input
or output to a file is performed by obtaining a stream to the file, using OPENSTREAM (see below). In
addition, there are functions that manipulate the files themselves, rather than their data content.

An image stream is an output stream to a display device, such as the display screen or a printer. In
addition to the standard output operations, such as print, an image stream implements a variety of
graphics operations, such as drawing lines and displaying characters in multiple fonts. Unlike a file,
the "content" of an image stream cannot be retrieved. Image streams are described in Chapter 26.

The creation of other kinds of streams, such as network byte-stream connections, is described in the
chapters peculiar to those kinds of streams. The operations common to streams in general are
described in Chapter 24. This chapter describes operations specific to file devices: how to name files,
how to open streams to files, and how to manipulate files on their devices.

Opening and Closing File Streams

In order to perform input from or output to a file, it is necessary to create a stream to the file, using
OPENSTREAM:

23-2

INTERLISP-D REFERENCE MANUAL

(OPENSTREAM FILE ACCESS RECOG PARAMETERS —) [Function]

Opens and returns a stream for the file specified by FILE, a file name. FILE can be either
a string or a symbol. The syntax and manipulation of file names is described at length in
the FILENAMES section below. Incomplete file names are interpreted with respect to the
connected directory (below).

RECOG specifies the recognition mode of FILE, as described in a later section of this
chapter. If RECOG = NIL, it defaults according to the value of ACCESS.

ACCESS specifies the "access rights" to be used when opening the file, one of the
following:

INPUT Only input operations are permitted on the file. The file must
already exist. Starts reading at the beginning of the file.
RECOG defaults to OLD.

OUTPUT Only output operations are permitted on the file. Starts
writing at the beginning of the file, which is initially empty.
While the file is open, other users or processes are unable to
open the file for either input or output. RECOG defaults to NEW.

BOTH Both input and output operations are permitted on the file.
Starts reading or writing at the beginning of the file. RECOG
defaults to OLD/NEW. ACCESS = BOTH implies random
accessibility (Chapter 25), and thus may not be possible for
files on some devices.

APPEND Only sequential output operations are permitted on the file.
Starts writing at the end of the file. RECOG defaults to
OLD/NEW. ACCESS = APPEND may not be allowed for files on
some devices.

Note: ACCESS = OUTPUT implies that one intends to write a new or different
file, even if a version number was specified and the corresponding file
already exists. Thus any previous contents of the file are discarded,
and the file is empty immediately after the OPENSTREAM. If it is
desired to write on an already existing file while preserving the old
contents, the file must be opened for access BOTH or APPEND.

PARAMETERS is a list of pairs (ATTRIB VALUE), where ATTRIB is any file attribute that
the file system is willing to allow you to set (see SETFILEINFO below). A non-list
ATTRIB in PARAMETERS is treated as the pair (ATTRIB T). Generally speaking,
attributes that belong to the permanent file (e.g., TYPE) can only be set when creating a
new file, while attributes that belong only to a particular opening of a file (e.g.,
ENDOFSTREAMOP) can be set on any call to OPENSTREAM. Not all devices honor all
attributes; those not recognized by a particular device are simply ignored.

In addition to the attributes permitted by SETFILEINFO, the following tokens are
accepted by OPENSTREAM as values of ATTRIB in its PARAMETERS argument:

23-3

STREAMS & FILES

DON’T.CHANGE.DATE If VALUE is non-NIL, the file’s creation date is not
changed when the file is opened. This option is
meaningful only for old files being opened for
access BOTH. This should be used only for
specialized applications in which the caller does not
want the file system to believe the file’s content has
been changed.

SEQUENTIAL If VALUE is non-NIL, this opening of the file need
support only sequential access; i.e., the caller intends
never to use SETFILEPTR. For some devices,
sequential access to files is much more efficient than
random access. Note that the device may choose to
ignore this attribute and still open the file in a
manner that permits random access. Also note that
this attribute does not make sense with ACCESS =
BOTH.

If FILE is not recognized by the file system, OPENSTREAM causes the error FILE NOT
FOUND. Ordinarily, this error is intercepted via an entry on ERRORTYPELST (Chapter 24),
which causes SPELLFILE (see the Searching File Directories section of this chapter) to be
called. SPELLFILE searches alternate directories and possibly attempts spelling
correction on the file name. Only if SPELLFILE is unsuccessful will the FILE NOT
FOUND error actually occur.

If FILE exists but cannot be opened, OPENSTREAM causes one of several other errors:
FILE WON’T OPEN if the file is already opened for conflicting access by someone else;
PROTECTION VIOLATION if the file is protected against the operation; FILE SYSTEM
RESOURCES EXCEEDED if there is no more room in the file system.

(CLOSEF FILE) [Function]

Closes FILE, and returns its full file name. Generates an error, FILE NOT OPEN, if FILE
does not designate an open stream. After closing a stream, no further input/output
operations are permitted on it.

If FILE is NIL, it is defaulted to the primary input stream if that is not the terminal
stream, or else the primary output stream if that is not the terminal stream. If both
primary input and output streams are the terminal input/output streams, CLOSEF returns
NIL. If CLOSEF closes either the primary input stream or the primary output stream
(either explicitly or in the FILE = NIL case), it resets the primary stream for that direction
to be the corresponding terminal stream. See Chapter 25 for information on the primary
input/output streams.

WHENCLOSE (see below) allows you to "advise" CLOSEF to perform various operations
when a file is closed.

Because of buffering, the contents of a file open for output are not guaranteed to be
written to the actual physical file device until CLOSEF is called. Buffered data can be

23-4

INTERLISP-D REFERENCE MANUAL

forced out to a file without closing the file by using the function FORCEOUTPUT (Chapter
25).

Some network file devices perform their transactions in the background. As a result, it is
possible for a file to be closed by CLOSEF and yet not be "fully" closed for some small
period of time afterward, during which time the file appears to still be busy, and cannot
be opened for conflicting access by other users.

(CLOSEF? FILE) [Function]

Closes FILE if it is open, returning the value of CLOSEF; otherwise does nothing and
returns NIL.

In the present implementation of Medley, all streams to files are kept, while open, in a registry of
"open files". This registry does not include nameless streams, such as string streams (see below),
display streams (Chapter 28), and the terminal input and output streams; nor streams explicitly
hidden from you, such as dribble streams (Chapter 30). This registry may not persist in future
implementations of Medley, but at the present time it is accessible by the following two functions:

(OPENP FILE ACCESS) [Function]

ACCESS is an access mode for a stream opening (one of INPUT, OUTPUT, BOTH, or
APPEND), or NIL, meaning any access.

If FILE is a stream, returns its full name if it is open for the specified access, else NIL.

If FILE is a file name (a symbol), FILE is processed according to the rules of file
recognition (see below). If a stream open to a file by that name is registered and open for
the specified access, then the file’s full name is returned. If the file name is not
recognized, or no stream is open to the file with the specified access, NIL is returned.

If FILE is NIL, returns a list of the full names of all registered streams that are open for
the specified access.

(CLOSEALL ALLFLG) [Function]

Closes all streams in the value of (OPENP). Returns a list of the files closed.

WHENCLOSE (see below) allows certain files to be "protected" from CLOSEALL. If ALLFLG
is T, all files, including those protected by WHENCLOSE, are closed.

File Names

A file name in Medley is a string or symbol whose characters specify a "path" to the actual file: on
what host or device the file resides, in which directory, and so forth. Because Medley supports a
variety of non-local file devices, parts of the path could be very device-dependent. However, it is
desirable for programs to be able to manipulate file names in a device-independent manner. To this
end, Medley specifies a uniform file name syntax over all devices; the functions that perform the

23-5

STREAMS & FILES

actual file manipulation for a particular device are responsible for any translation to that device’s
naming conventions.

A file name is composed of a collection of fields, some of which have specific semantic interpretations.
The functions described below refer to each field by a field name, a literal atom from among the
following: HOST, DEVICE, DIRECTORY, NAME, EXTENSION, and VERSION. The standard syntax for
a file name that contains all of those fields is
{HOST}DEVICE:<DIRECTORY>NAME.EXTENSION;VERSION. Some host’s file systems do not use all
of those fields in their file names.

HOST Specifies the host whose file system contains the file. In
the case of local file devices, the "host" is the name of the
device, e.g., DSK or FLOPPY.

DEVICE Specifies, for those hosts that divide their file system’s
name space among mutiple physical devices, the device or
logical structure on which the file resides. This should not
be confused with Medley’s abstract "file device", which
denotes either a host or a local physical device and is
specified by the HOST field.

DIRECTORY Specifies the "directory" containing the file. A directory
usually is a grouping of a possibly large set of loosely
related files, e.g., the personal files of a particular user, or
the files belonging to some project. The DIRECTORY field
usually consists of a principal directory and zero or more
subdirectories that together describe a path through a file
system’s hierarchy. Each subdirectory name is set off
from the previous directory or subdirectory by the
character ">"; e.g., "LISP>LIBRARY>NEW".

NAME This field carries no specific meaning, but generally names
a set of files thought of as being different renditions of the
"same" abstract file.

EXTENSION This field also carries no specific meaning, but generally
distinguishes the form of files having the same name.
Most files systems have some "conventional" extensions
that denote something about the content of the file. For
example, in Medley, the extension DCOM standardly
denotes a file containing compiled function definitions.

VERSION A number used to distinguish the versions or
"generations" of the files having a common name and
extension. The version number is incremented each time a
new file by the same name is created.

Most functions that take as input "a directory" accept either a directory name (the contents of the
DIRECTORY field of a file name) or a "full" directory specification—a file name fragment consisting of

23-6

INTERLISP-D REFERENCE MANUAL

only the fields HOST, DEVICE, and DIRECTORY. In particular, the "connected directory" (see below)
consists, in general, of all three fields.

For convenience in dealing with certain operating systems, Medley also recognizes [] and () as host
delimiters (synonymous with {}), and / as a directory delimiter (synonymous with < at the beginning
of a directory specification and > to terminate directory or subdirectory specification). For example, a
file on a Unix file server UNX with the name /usr/foo/bar/stuff.tedit, whose DIRECTORY
field is thus usr/foo/bar, could be specified as {UNX}/usr/foo/bar/stuff.tedit, or
(UNX)<usr/foo/bar>stuff.tedit, or several other variations. Note that when using [] or () as
host delimiters, they usually must be escaped with the reader’s % escape character if the file name is
expressed as a symbol rather than a string.

Different hosts have different requirements regarding which characters are valid in file names. From
Medley’s point of view, any characters are valid. However, in order to be able to parse a file name
into its component fields, it is necessary that those characters that are conventionally used as file name
delimiters be quoted when they appear inside of fields where there could be ambiguity. The file name
quoting character is "’" (single quote). Thus, the following characters must be quoted when not used
as delimeters: :, >, ;, /, and ’ itself. The character . (period) need only be quoted if it is to be
considered a part of the EXTENSION field. The characters },], and) need only be quoted in a file
name when the host field of the name is introduced by {, [, and (, respectively. The characters {, [,
(, and < need only be quoted if they appear as the first character of a file name fragment, where they
would otherwise be assumed to introduce the HOST or DIRECTORY fields.

The following functions are the standard way to manipulate file names in Interlisp. Their operation is
purely syntactic—they perform no file system operations themselves.

(UNPACKFILENAME.STRING FILENAME) [Function]

Parses , returning a list in property list format of alternating field names and field
contents. The field contents are returned as strings. If is a stream, its full name is used.

Only those fields actually present in are returned. A field is considered present if its
delimiting punctuation (in the case of EXTENSION and VERSION, the preceding period or
semicolon, respectively) is present, even if the field itself is empty. Empty fields are
denoted by "" (the empty string).

Examples:

(UNPACKFILENAME.STRING "FOO.BAR") =>
 (NAME "FOO" EXTENSION "BAR")

(UNPACKFILENAME.STRING "FOO.;2") =>
 (NAME "FOO" EXTENSION "" VERSION "2")

(UNPACKFILENAME.STRING "FOO;") =>
 (NAME "FOO" VERSION "")

(UNPACKFILENAME.STRING
 "{ERIS}<LISP>CURRENT>IMTRAN.DCOM;21")
 => (HOST "ERIS" DIRECTORY "LISP>CURRENT"
 NAME "IMTRAN" EXTENSION "DCOM"
 VERSION "21")

23-7

STREAMS & FILES

(UNPACKFILENAME FILE) [Function]

Old version of UNPACKFILENAME.STRING that returns the field values as atoms, rather
than as strings. UNPACKFILENAME.STRING is now considered the "correct" way of
unpacking file names, because it does not lose information when the contents of a field are
numeric. For example,

(UNPACKFILENAME ’STUFF.TXT) =>
 (NAME STUFF EXTENSION TXT)

but

(UNPACKFILENAME ’STUFF.029) =>
 (NAME STUFF EXTENSION 29)

Explicitly omitted fields are denoted by the atom NIL, rather than the empty string.

Note: Both UNPACKFILENAME and UNPACKFILENAME.STRING leave the
trailing colon on the device field, so that the Tenex device NIL: can be
distinguished from the absence of a device. Although
UNPACKFILENAME.STRING is capable of making the distinction, it
retains this behavior for backward compatibility. Thus,

(UNPACKFILENAME.STRING ’{TOAST}DSK:FOO) =>
 (HOST "TOAST" DEVICE "DSK:" NAME "FOO")

(FILENAMEFIELD FILENAME FIELDNAME) [Function]

Returns, as an atom, the contents of the FIELDNAME field of FILENAME. If FILENAME is a
stream, its full name is used.

(PACKFILENAME.STRING FIELD1 CONTENTS1 ... FIELDN CONTENTSN) [NoSpread
Function]

Takes a sequence of alternating field names and field contents (atoms or strings), and
returns the corresponding file name, as a string.

If PACKFILENAME.STRING is given a single argument, it is interpreted as a list of
alternating field names and field contents. Thus PACKFILENAME.STRING and
UNPACKFILENAME.STRING operate as inverses.

If the same field name is given twice, the first occurrence is used.

The contents of the field name DIRECTORY may be either a directory name or a full
directory specification as described above.

PACKFILENAME.STRING also accepts the "field name" BODY to mean that its contents
should itself be unpacked and spliced into the argument list at that point. This feature, in
conjunction with the rule that fields early in the argument list override later duplicates, is
useful for altering existing file names. For example, to provide a default field, place BODY
first in the argument list, then the default fields. To override a field, place the new fields
first and BODY last.

If the value of the BODY field is a stream, its full name is used.

23-8

INTERLISP-D REFERENCE MANUAL

Examples:

(PACKFILENAME.STRING ’DIRECTORY "LISP"
 ’NAME "NET")
 => "<LISP>NET"

(PACKFILENAME.STRING ’NAME "NET"
 ’DIRECTORY "{DSK}<LISPFILES>")
 => "{DSK}<LISPFILES>NET"

(PACKFILENAME.STRING ’DIRECTORY "{DSK}"
 ’BODY "{TOAST}<FOO>BAR")
 => "{DSK}BAR"

(PACKFILENAME.STRING ’DIRECTORY "FRED"
 ’BODY "{TOAST}<FOO>BAR")
 => "{TOAST}<FRED>BAR"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR"
 ’DIRECTORY "FRED")
 => "{TOAST}<FOO>BAR"

(PACKFILENAME.STRING ’VERSION NIL
 ’BODY "{TOAST}<FOO>BAR.DCOM;2")
 => "{TOAST}<FOO>BAR.DCOM"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR.DCOM"
 ’VERSION 1)
 => "{TOAST}<FOO>BAR.DCOM;1"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR.DCOM;"
 ’VERSION 1)
 => "{TOAST}<FOO>BAR.DCOM;"

(PACKFILENAME.STRING ’BODY "BAR.;1"
 ’EXTENSION "DCOM")
 => "BAR.;1"

(PACKFILENAME.STRING ’BODY "BAR;1"
 ’EXTENSION "DCOM")
 => "BAR.DCOM;1"

In the last two examples, note that in one case the extension is explicitly present in the
body (as indicated by the preceding period), while in the other there is no indication of an
extension, so the default is used.

(PACKFILENAME FIELD1 CONTENTS1 ... FIELDN CONTENTSN) [NoSpread Function]

The same as PACKFILENAME.STRING, except that it returns the file name as a symbol,
instead of a string.

Incomplete File Names

In general, it is not necessary to pass a complete file name (one containing all the fields listed above) to
functions that take a file name as argument. Interlisp supplies suitable defaults for certain fields, as
described below. Functions that return names of actual files, however, always return the fully
specified name.

23-9

STREAMS & FILES

If the version field is omitted from a file name, Interlisp performs version recognition, as described
below.

If the host, device and/or directory field are omitted from a file name, Interlisp defaults them with
respect to the currently connected directory. The connected directory is changed by calling the
function CNDIR or using the programmer’s assistant command CONN.

Defaults are added to the partially specified name "left to right" until a host, device or directory field is
encountered. Thus, if the connected directory is {TWENTY}PS:<FRED>, then

BAR.DCOM means
 {TWENTY}PS:<FRED>BAR.DCOM

<GRANOLA>BAR.DCOM means
 {TWENTY}PS:<GRANOLA>BAR.DCOM

MTA0:<GRANOLA>BAR.DCOM means
 {TWENTY}MTA0:<GRANOLA>BAR.DCOM

{THIRTY}<GRANOLA>BAR.DCOM means
 {THIRTY}<GRANOLA>BAR.DCOM

In addition, if the partially specified name contains a subdirectory, but no principal directory, then the
subdirectory is appended to the connected directory. For example,

ISO>BAR.DCOM means
 {TWENTY}PS:<FRED>ISO>BAR.DCOM

Or, if the connected directory is the Unix directory {UNX}/usr/fred/, then iso/bar.dcom means
{UNX}/usr/fred/iso/bar.dcom, but /other/bar.dcom means {UNX}/other/bar.dcom.

(CNDIR HOST/DIR) [Function]

Connects to the directory HOST/DIR, which can either be a directory name or a full
directory specification including host and/or device. If the specification includes just a
host, and the host supports directories, the directory is defaulted to the value of
(USERNAME); if the host is omitted, connection is made to another directory on the same
host as before. If HOST/DIR is NIL, connects to the value of LOGINHOST/DIR.

CNDIR returns the full name of the now-connected directory. Causes an error, Non-
existent directory, if HOST/DIR is not recognized as a valid directory.

Note that CNDIR does not necessarily require or provide any directory access privileges.
Access privileges are checked when a file is opened.

CONN HOST/DIR [Prog. Asst. Command]

Convenient command form of CNDIR for use at the executive. Connects to HOST/DIR, or
to the value of LOGINHOST/DIR if HOST/DIR is omitted. This command is undoable—
undoing it causes the system to connect to the previously connected directory.

23-10

INTERLISP-D REFERENCE MANUAL

LOGINHOST/DIR [Variable]

CONN with no argument connects to the value of the variable LOGINHOST/DIR, initially
{DSK}, but usually reset in your greeting file (Chapter 12).

(DIRECTORYNAME DIRNAME STRPTR) [Function]

If DIRNAME is T, returns the full specification of the currently connected directory. If
DIRNAME is NIL, returns the "login" directory specification (the value of
LOGINHOST/DIR). For any other value of DIRNAME, returns a full directory specification
if DIRNAME designates an existing directory (satisfies DIRECTORYNAMEP), otherwise NIL.

If STRPTR is T, the value is returned as an atom, otherwise it is returned as a string.

(DIRECTORYNAMEP DIRNAME HOSTNAME) [Function]

Returns T if DIRNAME is recognized as a valid directory on host HOSTNAME, or on the host
of the currently connected directory if HOSTNAME is NIL. DIRNAME may be either a
directory name or a full directory specification containing host and/or device as well.

If DIRNAME includes subdirectories, this function may or may not pass judgment on their
validity. Some hosts support "true" subdirectories, distinct entities manipulable by the file
system, while others only provide them as a syntactic convenience.

(HOSTNAMEP NAME) [Function]

Returns T if NAME is recognized as a valid host or file device name at the moment
HOSTNAMEP is called.

Version Recognition

Most of the file devices in Interlisp support file version numbers. That is, it is possible to have several
files of the exact same name, differing only in their VERSION field, which is incremented for each new
"version" of the file that is created. When a file name lacking a version number is presented to the file
system, it is necessary to determine which version number is intended. This process is known as
version recognition.

When OPENSTREAM opens a file for input and no version number is given, the highest existing version
number is used. Similarly, when a file is opened for output and no version number is given, a new
file is created with a version number one higher than the highest one currently in use with that file
name. The version number defaulting for OPENSTREAM can be changed by specifying a different
value for its RECOG argument, as described under FULLNAME, below.

Other functions that accept file names as arguments generally perform the default version recognition,
which is newest version for existing files, or a new version if using the file name to create a new file.
The one exception is DELFILE, which defaults to the oldest existing version of the file.

23-11

STREAMS & FILES

The functions below can be used to perform version recognition without actually calling OPENSTREAM
to open the file. Note that these functions only tell the truth about the moment at which they are
called, and thus cannot in general be used to anticipate the name of the file opened by a comparable
OPENSTREAM. They are sometimes, however, helpful hints.

(FULLNAME X RECOG) [Function]

If X is an open stream, simply returns the full file name of the stream. Otherwise, if X is a
file name given as a string or symbol, performs version recognition, as follows:

If X is recognized in the recognition mode specified by RECOG as an abbreviation for some
file, returns the file’s full name, otherwise NIL. RECOG is one of the following:

OLD Choose the newest existing version of the file. Return NIL
if no file named X exists.

OLDEST Choose the oldest existing version of the file. Return NIL
if no file named X exists.

NEW Choose a new (not yet existing) version of the file. That is,
if versions of X already exist, then choose a version
number one higher than highest existing version; else
choose version 1. For some file systems, FULLNAME
returns NIL if you do not have the access rights necessary
for creating a new file named X.

OLD/NEW Try OLD, then NEW. That is, choose the newest existing
version of the file, if any; else choose version 1. This
usually only makes sense if you are intending to open X
for access BOTH.

RECOG = NIL defaults to OLD. For all other values of
RECOG, generates an error ILLEGAL ARG.

If X already contains a version number, the RECOG
argument will never change it. In particular, RECOG = NEW
does not require that the file actually be new. For
example, (FULLNAME ’FOO.;2 ’NEW) may return
{ERIS}<LISP>FOO.;2 if that file already exists, even
though (FULLNAME ’FOO ’NEW) would default the
version to a new number, perhaps returning
{ERIS}<LISP>FOO.;5.

(INFILEP FILE) [Function]

Equivalent to (FULLNAME FILE ’OLD). That is, returns the full file name of the newest
version of FILE if FILE is recognized as specifying the name of an existing file that could
potentially be opened for input, NIL otherwise.

23-12

INTERLISP-D REFERENCE MANUAL

(OUTFILEP FILE) [Function]

Equivalent to (FULLNAME FILE ’NEW).

Note that INFILEP, OUTFILEP and FULLNAME do not open any files; they are pure predicates. In
general they are also only hints, as they do not necessarily imply that the caller has access rights to the
file. For example, INFILEP might return non-NIL, but OPENSTREAM might fail for the same file
because the file is read-protected against you, or the file happens to be open for output by another
user at the time. Similarly, OUTFILEP could return non-NIL, but OPENSTREAM could fail with a FILE
SYSTEM RESOURCES EXCEEDED error.

Note also that in a shared file system, such as a remote file server, intervening file operations by
another user could contradict the information returned by recognition. For example, a file that was
INFILEP might be deleted, or between an OUTFILEP and the subsequent OPENSTREAM, another user
might create a new version or delete the highest version, causing OPENSTREAM to open a different
version of the file than the one returned by OUTFILEP. In addition, some file servers do not well
support recognition of files in output context. Thus, in general, the "truth" about a file can only be
obtained by actually opening the file; creators of files should rely on the name of the stream opened by
OPENSTREAM, not the value returned from these recognition functions. In particular, for the reasons
described earlier, programmers are discouraged from using OUTFILEP or (FULLNAME NAME ’NEW).

Using File Names Instead of Streams

In earlier implementations of Interlisp, from the days of Interlisp-10 onward, the "handle" used to
refer to an open file was not a stream, but rather the file’s full name, represented as a symbol. When
the file name was passed to any I/O function, it was mapped to a stream by looking it up in a list of
open files. This scheme was sometimes convenient for typing in file commands at the executive, but
was very poor for serious programming in two major ways. First, the mapping from file name to
stream on every input/output operation is inefficient. Second, and more importantly, using the file
name as the handle on an open stream means that it is not possible to have more than one stream
open on a given file at once.

As of this writing, Medley is in a transition period, where it still supports the use of symbol file names
as synonymous with open streams, but this use is not recommended. The remainder of this section
discusses this usage of file names for the benefit of those reading older programs and wishing to
convert them as necessary to work properly when this compatibility feature is removed.

File Name Efficiency Considerations

It is possible for a program to be seriously inefficient using a file name as a stream if the program is
not using the file’s full name, the name returned by OPENFILE (below). Any time that an
input/output function is called with a file name other than the full file name, Interlisp must perform
recognition on the partial file name in order to determine which open file is intended. Thus if
repeated operations are to be performed, it is considerably more efficient to use the full file name

23-13

STREAMS & FILES

returned from OPENFILE than to repeatedly use the possibly incomplete name that was used to open
the file.

There is a more subtle problem with partial file names, in that recognition is performed on your entire
directory, not just the open files. It is possible for a file name that was previously recognized to
denote one file to suddenly denote a different file. For example, suppose a program performs
(INFILE ’FOO), opening FOO.;1, and reads several expressions from FOO. Then you interrupt the
program, create a FOO.;2 and resume the program (or a user at another workstation creates a
FOO.;2). Now a call to READ giving it FOO as its FILE argument will generate a FILE NOT OPEN
error, because FOO will be recognized as FOO.;2.

Obsolete File Opening Functions

The following functions are now considered obsolete, but are provided for backwards compatibility:

(OPENFILE FILE ACCESS RECOG PARAMETERS) [Function]

Opens FILE with access rights as specified by ACCESS, and recognition mode RECOG, and
returns the full name of the resulting stream. Equivalent to (FULLNAME (OPENSTREAM
FILE ACCESS RECOG PARAMETERS)).

(INFILE FILE) [Function]

Opens FILE for input, and sets it as the primary input stream. Equivalent to (INPUT
(OPENSTREAM FILE ’INPUT ’OLD))

(OUTFILE FILE) [Function]

Opens FILE for output, and sets it as the primary output stream. Equivalent to (OUTPUT
(OPENSTREAM FILE ’OUTPUT ’NEW)).

(IOFILE FILE) [Function]

Equivalent to (OPENFILE FILE ’BOTH ’OLD); opens FILE for both input and output.
Does not affect the primary input or output stream.

Converting Old Programs

At some point in the future, the Medley file system will change so that each call to OPENSTREAM
returns a distinct stream, even if a stream is already open to the specified file. This change is required
in order to deal rationally with files in a multiprocessing environment.

This change will of necessity produce the following incompatibilities:

1. The functions OPENFILE, INPUT, and OUTPUT will return a STREAM, not a full file
name. To make this less confusing in interactive situations, STREAMs will have a print
format that reveals the underlying file’s actual name,

23-14

INTERLISP-D REFERENCE MANUAL

2. A greater penalty will ensue for passing as the FILE argument to I/O operations
anything other than the object returned from OPENFILE. Passing the file’s name will
be significantly slower than passing the stream (even when passing the "full" file
name), and in the case where there is more than one stream open on the file it might
even act on the wrong one.

3. OPENP will return NIL when passed the name of a file rather than a stream (the value
of OPENFILE or OPENSTREAM).

Users should consider the following advice when writing new programs and editing existing
programs, in order that they will continue to operate well when this change is made:

Because of the efficiency and ambiguity considerations described earlier, users have long been
encouraged to use only full file names as FILE arguments to I/O operations. The "proper" way to
have done this was to bind a variable to the value returned from OPENFILE and pass that variable to
all I/O operations; such code will continue to work. A less proper way to obtain the full file name,
but one which has to date not incurred any obvious penalty, is that which binds a variable to the
result of an INFILEP and passes that to OPENFILE and all I/O operations. This has worked because
INFILEP and OPENFILE both return a full file name, an invalid assumption in this future world.
Such code should be changed to pass around the value of the OPENFILE, not the INFILEP.

Code that calls OPENP to test whether a possibly incomplete file name is already open should be
recoded to pass to OPENP only the value returned from OPENFILE or OPENSTREAM.

Code that uses ordinary string functions to manipulate file names, and in particular the value
returned from OPENFILE, should be changed to use the the functions UNPACKFILENAME.STRING
and PACKFILENAME.STRING. Those functions work both on file names (strings) and streams
(coercing the stream to the name of its file).

Code that tests the value of OUTPUT for equality to some known file name or T should be examined
carefully and, if possible, recoded.

To see more directly the effects of passing around STREAMs instead of file names, replace your calls to
OPENFILE with calls to OPENSTREAM. OPENSTREAM is called in exactly the same way, but returns a
STREAM. Streams can be passed to READ, PRINT, CLOSEF, etc just as the file’s full name can be
currently, but using them is more efficient. The function FULLNAME, when applied to a stream,
returns its full file name.

Using Files with Processes

Because Medley does not yet support multiple streams per file, problems can arise if different
processes attempt to access the same file. You have to be careful not to have two processes
manipulating the same file at the same time, since the two processes will be sharing a single input

23-15

STREAMS & FILES

stream and file pointer. For example, it will not work to have one process TCOMPL a file while another
process is running LISTFILES on it.

File Attributes

Any file has a number of "file attributes", such as the read date, protection, and bytesize. The exact
attributes that a file can have is dependent on the file device. The functions GETFILEINFO and
SETFILEINFO allow you to conveniently access file attributes:

(GETFILEINFO FILE ATTRIB) [Function]

Returns the current setting of the ATTRIB attribute of FILE.

(SETFILEINFO FILE ATTRIB VALUE) [Function]

Sets the attribute ATTRIB of FILE to be VALUE. SETFILEINFO returns T if it is able to
change the attribute ATTRIB, and NIL if unsuccessful, either because the file device does
not recognize ATTRIB or because the file device does not permit the attribute to be
modified.

The FILE argument to GETFILEINFO and SETFILEINFO can be an open stream (or an argument
designating an open stream, see Chapter 25), or the name of a closed file. SETFILEINFO in general
requires write access to the file.

The attributes recognized by GETFILEINFO and SETFILEINFO fall into two categories: permanent
attributes, which are properties of the file, and temporary attributes, which are properties only of an
open stream to the file. The temporary attributes are only recognized when FILE designates an open
stream; the permanent attributes are usually equally accessible for open and closed files. However,
some devices are willing to change the value of certain attributes of an open stream only when
specified in the PARAMETERS argument to OPENSTREAM (see above), not on a later call to
SETFILEINFO.

The following are currently recognized as permanent attributes of a file:

BYTESIZE The byte size of the file. Medley currently only
supports byte size 8.

LENGTH The number of bytes in the file. Alternatively, the
byte position of the end-of-file. Like (GETEOFPTR
FILE), but FILE does not have to be open.

SIZE The size of FILE in pages.

CREATIONDATE The date and time, as a string, that the content of
FILE was "created". The creation date changes
whenever the content of the file is modified, but
remains unchanged when a file is transported,

23-16

INTERLISP-D REFERENCE MANUAL

unmodified, across file systems. Specifically,
COPYFILE and RENAMEFILE (see below) preserve
the file’s creation date. Note that this is different
from the concept of "creation date" used by some
operating systems (e.g., Tops20).

WRITEDATE The date and time, as a string, that the content of
FILE was last written to this particular file system.
When a file is copied, its creation date does not
change, but its write date becomes the time at which
the copy is made.

READDATE The date and time, as a string, that FILE was last
read, or NIL if it has never been read.

ICREATIONDATE
IWRITEDATE
IREADDATE The CREATIONDATE, WRITEDATE and READDATE,

respectively, in integer form, as IDATE (Chapter 12)
would return. This form is useful for comparing
dates.

AUTHOR The name of the user who last wrote the file.

TYPE The "type" of the file, some indication of the nature
of the file’s content. The "types" of files allowed
depends on the file device. Most devices recognize
the symbol TEXT to mean that the file contains just
characters, or BINARY to mean that the file contains
arbitrary data.

Some devices support a wider range of file types
that distinguish among the various sorts of files one
might create whose content is "binary". All devices
interpret any value of TYPE that they do not support
to be BINARY. Thus, GETFILEINFO may return the
more general value BINARY instead of the original
type that was passed to SETFILEINFO or
OPENSTREAM. Similarly, COPYFILE, while
attempting to preserve the TYPE of the file it is
copying, may turn, say, an INTERPRESS file into a
mere BINARY file.

The way in which some file devices (e.g., Xerox file
servers) support a wide range of file types is by
representing the type as an integer, whose
interpretation is known by the client. The variable
FILING.TYPES is used to associate symbolic types
with numbers for these devices. This list initially
contains some of the well-known assignments of

23-17

STREAMS & FILES

type name to number; you can add additional
elements to handle any private file types. For
example, suppose there existed an NS file type
MAZEFILE with numeric value 5678. You could add
the element (MAZEFILE 5678) to FILING.TYPES
and then use MAZEFILE as a value for the TYPE
attribute to SETFILEINFO or OPENSTREAM. Other
devices are, of course, free to store TYPE attributes
in whatever manner they wish, be it numeric or
symbolic. FILING.TYPES is merely considered the
official registry for Xerox file types.

For most file devices, the TYPE of a newly created
file, if not specified in the PARAMETERS argument to
OPENSTREAM, defaults to the value of
DEFAULTFILETYPE, initially TEXT.

The following are currently recognized as
temporary attributes of an open stream:

ACCESS The current access rights of the stream (see the
beginning of this chapter). Can be one of INPUT,
OUTPUT, BOTH, APPEND; or NIL if the stream is not
open.

ENDOFSTREAMOP The action to be taken when a stream is at "end of
file" and an attempt is made to take input from it.
The value of this attribute is a function of one
argument, the stream. The function can examine the
stream and its calling context and take any action it
wishes. If the function returns normally, its should
return either T, meaning to try the input operation
again, or the byte that BIN would have returned had
there been more bytes to read. Ordinarily, one
should not let the ENDOFSTREAMOP function return
unless one is only performing binary input from the
file, since there is no way in general of knowing in
what state the reader was at the time the end of file
occurred, and hence how it will interpret a single
byte returned to it.

The default ENDOFSTREAMOP is a system function
that causes the error END OF FILE. The behavior
of that error can be further modified for a particular
stream by using the EOF option of WHENCLOSE (see
below).

EOL The end-of-line convention for the stream. This can
be CR, LF, or CRLF, indicating with what byte or
sequence of bytes the "End Of Line" character is

23-18

INTERLISP-D REFERENCE MANUAL

represented on the stream. On input, that sequence
of bytes on the stream is read as (CHARCODE EOL)
by READCCODE or the string reader. On output,
(TERPRI) and (PRINTCCODE (CHARCODE EOL))
cause that sequence of bytes to be placed on the
stream.

The end of line convention is usually not apparent
to you. The file system is usually aware of the
convention used by a particular remote operating
system, and sets this attribute accordingly. If you
believe a file actually is stored with a different
convention than the default, it is possible to modify
the default behavior by including the EOL attribute
in the PARAMETERS argument to OPENSTREAM.

BUFFERS Value is the number of 512-byte buffers that the
stream maintains at one time. This attribute is only
used by certain random-access devices (currently,
the local disk, floppy, and Leaf servers); all others
ignore it.

Streams open to files generally maintain some
portion of the file buffered in memory, so that each
call to an I/O function does not require accessing
the actual file on disk or a file server. For files being
read or written sequentially, not much buffer space
is needed, since once a byte is read or written, it will
never need to be seen again. In the case of random
access streams, buffering is more complicated, since
a program may jump around in the file, using
SETFILEPTR (Chapter 25). In this case, the more
buffer space the stream has, the more likely it is that
after a SETFILEPTR to a place in the file that has
already been accessed, the stream still has that part
of the file buffered and need not go out to the device
again. This benefit must, of course, be traded off
against the amount of memory consumed by the
buffers.

Closing and Reopening Files

The function WHENCLOSE permits you to associate certain operations with open streams that govern
how and when the stream will be closed. You can specify that certain functions will be executed
before CLOSEF closes the stream and/or after CLOSEF closes the stream. You can make a particular
stream be invisible to CLOSEALL, so that it will remain open across user invocations of CLOSEALL.

23-19

STREAMS & FILES

(WHENCLOSE FILE PROP1 VAL1 ... PROPN VALN) [NoSpread Function]

FILE must designate an open stream other than T (NIL defaults to the primary input
stream, if other than T, or primary output stream if other than T). The remaining
arguments specify properties to be associated with the full name of FILE. WHENCLOSE
returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

BEFORE VAL is a function that CLOSEF will apply to the
stream just before it is closed. This might be used,
for example, to copy information about the file from
an in-core data structure to the file just before it is
closed.

AFTER VAL is a function that CLOSEF will apply to the
stream just after it is closed. This capability permits
in-core data structures that know about the stream
to be cleaned up when the stream is closed.

CLOSEALL VAL is either YES or NO and determines whether
FILE will be closed by CLOSEALL (YES) or whether
CLOSEALL will ignore it (NO). CLOSEALL uses
CLOSEF, so that any AFTER functions will be
executed if the stream is in fact closed. Files are
initialized with CLOSEALL set to YES.

EOF VAL is a function that will be applied to the stream
when an end-of-file error occurs, and the
ERRORTYPELST entry for that error, if any, returns
NIL. The function can examine the context of the
error, and can decide whether to close the stream,
RETFROM some function, or perform some other
computation. If the function supplied returns
normally (i.e., does not RETFROM some function),
the normal error machinery will be invoked.

The default EOF behavior, unless overridden by this
WHENCLOSE option, is to call the value of
DEFAULTEOFCLOSE (below).

For some applications, the ENDOFSTREAMOP
attribute (see above) is a more useful way to
intercept the end-of-file error. The
ENDOFSTREAMOP attribute comes into effect before
the error machinery is ever activated.

Multiple AFTER and BEFORE functions may be
associated with a file; they are executed in sequence
with the most recently associated function executed

23-20

INTERLISP-D REFERENCE MANUAL

first. The CLOSEALL and EOF values, however, will
override earlier values, so only the last value
specified will have an effect.

DEFAULTEOFCLOSE [Variable]

Value is the name of a function that is called by default when an end of file error occurs
and no EOF option has been specified for the stream by WHENCLOSE. The initial value of
DEFAULTEOFCLOSE is NILL, meaning take no special action (go ahead and cause the
error). Setting it to CLOSEF would cause the stream to be closed before the rest of the
error machinery is invoked.

Local Hard Disk Device

Warning: This section describes the Medley functions that control the local hard disk drive available on some
computers. All of these functions may not work on all computers running Medley. For more information on
using the local hard disk facilities, see the users guide for your computer.

This section describes the local file system currently supported on the Xerox 1108 and 1186 computers.
The Xerox 1132 supports a simpler local file system. The functions below are no-ops on the Xerox
1132, except for DISKPARTITION (which returns a disk partition number), and DISKFREEPAGES. On
the Xerox 1132, different numbered partitions are referenced by using devices such as {DSK1},
{DSK2}, etc. {DSK} always refers to the disk partition that Interlisp is running on. The 1132 local file
system does not support the use of directories.

The hard disk used with the Xerox 1108 or 1186 may be partitioned into a number of named "logical
volumes." Logical volumes may be used to hold the Interlisp virtual memory file (see Chapter 12), or
Interlisp files. For information on intializing and partitioning the hard disk, see the users guide for
your computer. In order to store Interlisp files on a logical volume, it is necessary to create a lisp file
directory on that volume (see CREATEDSKDIRECTORY, below).

So long as there exists a logical volume with a Lisp directory on it, files on this volume can be accessed
by using the file device called {DSK}. Medley can be used to read, write, and otherwise interact with
files on local disk disks through standard Interlisp input/output functions. All I/O functions such as
LOAD, OPENSTREAM, READ, PRINT, GETFILEINFO, COPYFILE, etc., work with files on the local disk.

If you do not have a logical volume with a Lisp directory on it, Interlisp emulates the {DSK} device by
a core device, a file device whose backing store is entirely within the Lisp virtual memory. However,
this is not recommended because the core device only provides limited scratch space, and since the
core device is contained in virtual memory, it (and the files stored on it) will be erased when the
virtual memory file is reloaded.

Each logical volume with a Lisp directory on it serves as a directory of the device {DSK}. Files are
referred to by forms such as

23-21

STREAMS & FILES

{DSK}<VOLUMENAME>FILENAME

Thus, the file INIT.LISP on the volume LISPFILES would be called
{DSK}<LISPFILES>INIT.LISP.

Subdirectories within a logical volume are supported, using the > character in file names to delimit
subdirectory names. For example, the file name {DSK}<LISPFILES>DOC>DESIGN.TEDIT
designates the file names DESIGN.TEDIT on the subdirectory DOC on the logical volume LISPFILES.

If a logical volume name is not specified, it defaults in an unusual but simple way: the logical volume
defaults to the next logical volume that has a lisp file directory on it including or after the volume
containing the currently running virtual memory. For example, if the local disk has the logical
volumes LISP, TEMP, and LISPFILES, the LISP volume contains the running virtual memory, and
only the LISP volume has a Lisp file directory on it, then {DSK}INIT.LISP refers to the file
{DSK}<LispFiles>INIT.LISP. All the functions below default logical volume names in a similar
way, except for those such as CREATEDSKDIRECTORY. To determine the current default lisp file
directory, evaluate (DIRECTORYNAME ’{DSK}).

(CREATEDSKDIRECTORY VOLUMENAME) [Function]

Creates a Lisp file directory on the logical volume VOLUMENAME, and returns the name of
the directory created. It is only necessary to create a Lisp file directory the first time the
logical volume is used. After that, the system automatically recognizes and opens access
to the logical volumes that have Lisp file directories on them.

(PURGEDSKDIRECTORY VOLUMENAME) [Function]

Erases all Lisp files on the volume VOLUMENAME, and deletes the Lisp file directory.

(LISPDIRECTORYP VOLUMENAME) [Function]

Returns T if the logical volume VOLUMENAME has a lisp file directory on it.

(VOLUMES) [Function]

Returns a list of the names of all of the logical volumes on the local hard disk (whether
they have lisp file directories or not).

(VOLUMESIZE VOLUMENAME) [Function]

Returns the total size of the logical volume VOLUMENAME in disk pages.

(DISKFREEPAGES VOLUMENAME) [Function]

Returns the total number of free disk pages left on the logical volume VOLUMENAME.

(DISKPARTITION) [Function]

Returns the name of the logical volume containing the virtual memory file that Interlisp is
currently running in (see Chapter 12).

23-22

INTERLISP-D REFERENCE MANUAL

(DSKDISPLAY NEWSTATE) [Function]

Controls a display window that displays information about the logical volumes on the
local hard disk (logical volume names, sizes, free pages, etc.). DSKDISPLAY opens or
closes this display window depending on the value of NEWSTATE (one of ON, OFF, or
CLOSED), and returns the previous state of the display window.

If NEWSTATE is ON, the display window is opened, and it is automatically updated
whenever the file system state changes (this can slow file operations significantly). If
NEWSTATE is OFF, the display window is opened, but it is not automatically updated. If
NEWSTATE is CLOSED, the display window is closed. The display mode is initially set to
CLOSED.

Once the display window is open, you can update it or change its state with the mouse.
Left-buttoning the display window updates it, and middle-buttoning the window brings
up a menu that allows you to change the display state.

Note: DSKDISPLAY uses the value of the variable DSKDISPLAY.POSITION
for the position of the lower-left corner of the disk display window
when it is opened. This variable is changed if the disk display
window is moved.

(SCAVENGEDSKDIRECTORY VOLUMENAME SILENT) [Function]

Rebuilds the lisp file directory for the logical volume VOLUMENAME. This may repair
damage in the unlikely event of file system failure, signified by symptoms such as infinite
looping or other strange behavior while the system is doing a directory search. Calling
SCAVENGEDSKDIRECTORY will not harm an intact volume.

Normally, SCAVENGEDSKDIRECTORY prints out messages as it scavenges the directory. If
SILENT is non-NIL, these messages are not printed.

Note: Some low-level disk failures may cause "HARD DISK ERROR" errors
to occur. To fix such a failure, it may be necessary to log out of
Interlisp, scavenge the logical volume in question using Pilot tools,
and then call SCAVENGEDSKDIRECTORY from within Interlisp. See
the users guide for your computer for more information.

Floppy Disk Device

Warning: This section describes the Medley functions that control the floppy disk drive available on some
computers. All of these functions may not work on all computers running Medley. For more information on
using the floppy disk facilities, see the users guide for your computer.

The floppy disk drive is accessed through the device {FLOPPY}. Medley can be used to read, write,
and otherwise interact with files on floppy disks through standard Interlisp input/output functions.
All I/O functions such as LOAD, OPENSTREAM, READ, PRINT, GETFILEINFO, COPYFILE, etc., work
with files on floppies.

23-23

STREAMS & FILES

Note that floppy disks are a removable storage medium. Therefore, it is only meaningful to perform
I/O operations to the floppy disk drive, rather than to a given floppy disk. In this section, the phrase
"the floppy" is used to mean "the floppy that is currently in the floppy disk drive."

For example, the following sequence could be used to open a file XXX.TXT on the floppy, print
"Hello" on it, and close it:

(SETQ XXX (OPENSTREAM ’{FLOPPY}XXX.TXT ’OUTPUT ’NEW)
(PRINT "Hello" XXX)
(CLOSEF XXX)

(FLOPPY.MODE MODE) [Function]

Medley can currently read and write files on floppies stored in a number of different
formats. At any point, the floppy is considered to be in one of four "modes," which
determines how it reads and writes files on the floppy. FLOPPY.MODE sets the floppy
mode to the value of MODE, one of PILOT, HUGEPILOT, SYSOUT, or CPM, and returns the
previous floppy mode. The floppy modes are interpreted as follows:

PILOT This is the normal floppy mode, using floppies in
the Xerox Pilot floppy disk format. This file format
allows all of the normal Medley I/O operations.
This format also supports file names with arbitrary
levels of subdirectories. For example, it is possible
to create a file named
{FLOPPY}<Lisp>Project>FOO.TXT.

HUGEPILOT This floppy mode is used to access files that are
larger than a single floppy, stored on multiple
floppies. There are some restrictions with using
"huge" files. Some I/O operations are not
meaningful for "huge" files. When a stream is
created for output in this mode, the LENGTH file
attribute must be specified when the file is opened,
so that it is known how many floppies will be
needed. When an output file is created, the floppy
(or floppies) are automatically erased and
reformatted (after confirmation from you).

HUGEPILOT mode is primarily useful for saving big
files to and from floppies. For example, the
following could be used to copy the file
{ERIS}<Lisp>Bigfile.txt onto the huge Pilot
file {FLOPPY}BigFile.save:

(FLOPPY.MODE ’HUGEPILOT)

(COPYFILE ’{ERIS}<Lisp>Bigfile.txt
’{FLOPPY}BigFile.save)

23-24

INTERLISP-D REFERENCE MANUAL

and the following would restore the file:

(FLOPPY.MODE ’HUGEPILOT)

(COPYFILE ’{FLOPPY}BigFile.save
’{ERIS}<Lisp>Bigfile.txt)

During each copying operation, you will be
prompted to insert "the next floppy" if
{ERIS}<Lisp>Bigfile.txt takes multiple
floppies.

SYSOUT Similar to HUGEPILOT mode, SYSOUT mode is used
for storing sysout files (Chapter 12) on multiple
floppy disks. You are prompted to insert new
floppies as they are needed.

This mode is set automatically when SYSOUT or
MAKESYS is done to the floppy device: (SYSOUT
’{FLOPPY}) or (MAKESYS ’{FLOPPY}). Notice
that the file name does not need to be specifed in
SYSOUT mode; unlike HUGEPILOT mode, the file
name Lisp.sysout is always used.

Note: The procedure for loading sysout files from
floppies depends on the particular computer being
used. For information on loading sysout files from
floppies, see the users guide for your computer.

Explicitly setting the mode to SYSOUT is useful
when copying a sysout file to or from floppies. For
example, the following can be used to copy the
sysout file {ERIS}<Lisp>Lisp.sysout onto
floppies (it is important to set the floppy mode back
when done):

(FLOPPY.MODE ’SYSOUT)
(COPYFILE ’{ERIS}<Lisp>Lisp.sysout
’{FLOPPY})
(FLOPPY.MODE ’PILOT)

CPM Medley supports the single-density single-sided
(SDSS) CPM floppy format (a standard used by
many computers). CPM-formatted floppies are
totally different than Pilot floppies, so you should
call FLOPPY.MODE to switch to CPM mode when
planning to use CPM floppies. After switching to
CPM mode, FLOPPY.FORMAT can be used to create
CPM-formatted floppies, and the usual
input/output operations work with CPM floppy
files.

23-25

STREAMS & FILES

Note: There are a few limitations on CPM floppy
format files: (1) CPM file names are limited to eight
or fewer characters, with extensions of three or
fewer characters; (2) CPM floppies do not have
directories or version numbers; and (3) CPM files
are padded out with blanks to make the file lengths
multiples of 128.

(FLOPPY.FORMAT NAME AUTOCONFIRMFLG SLOWFLG) [Function]

FLOPPY.FORMAT erases and initializes the track information on a floppy disk. This must
be done when new floppy disks are to be used for the first time. This can also be used to
erase the information on used floppy disks.

NAME should be a string that is used as the name of the floppy (106 characters max). This
name can be read and set using FLOPPY.NAME (below).

If AUTOCONFIRMFLG is NIL, you will be prompted to confirm erasing the floppy, if it
appears to contain valid information. If AUTOCONFIRMFLG is T, you are not prompted to
confirm.

If SLOWFLG is NIL, only the Pilot records needed to give your floppy an empty directory
are written. If SLOWFLG is T, FLOPPY.FORMAT will completely erase the floppy, writing
track information and critical Pilot records on it. SLOWFLG should be set to T when
formatting a brand-new floppy.

Note: Formatting a floppy is a very compute-intensive operation for the I/O
hardware. Therefore, the cursor may stop tracking the mouse and
keystrokes may be lost while formatting a floppy. This behavior goes
away when the formatting is finished.

Warning: The floppy mode set by FLOPPY.MODE (above) affects how FLOPPY.FORMAT
formats the floppy. If the floppy is going to be used in Pilot mode, it should be formatted
under (FLOPPY.MODE ’PILOT). If it is to be used as a CMP floppy, it should be
formatted under (FLOPPY.MODE ’CPM). The two types of formatting are incompatible.

(FLOPPY.NAME NAME) [Function]

If NAME is NIL, returns the name stored on the floppy disk. If NAME is non-NIL, then the
name of the floppy disk is set to NAME.

(FLOPPY.FREE.PAGES) [Function]

Returns the number of unallocated free pages on the floppy disk in the floppy disk drive.

Note: Pilot floppy files are represented by contiguous pages on a floppy
disk. If you are creating and deleting a lot of files on a floppy, it is
advisable to keep such a floppy less than 75 percent full.

(FLOPPY.CAN.READP) [Function]

Returns non-NIL if there is a floppy in the floppy drive.

23-26

INTERLISP-D REFERENCE MANUAL

Note: FLOPPY.CAN.READP does not provide any debouncing (protection
against not fully closing the floppy drive door). It may be more useful
to use FLOPPY.WAIT.FOR.FLOPPY (below).

(FLOPPY.CAN.WRITEP) [Function]

Returns non-NIL if there is a floppy in the floppy drive and the floppy drive can write on
this floppy.

It is not possible to write on a floppy disk if the "write-protect notch" on the floppy disk is
punched out.

(FLOPPY.WAIT.FOR.FLOPPY NEWFLG) [Function]

If NEWFLG is NIL, waits until a floppy is in the floppy drive before returning.

If NEWFLG is T, waits until the existing floppy in the floppy drive, if any, is removed, then
waits for a floppy to be inserted into the drive before returning.

(FLOPPY.SCAVENGE) [Function]

Attempts to repair a floppy whose critical records have become confused (causing errors
when file operations are attempted). May also retrieve accidently-deleted files, provided
they haven’t been overwritten by new files.

(FLOPPY.TO.FILE TOFILE) [Function]

Copies the entire contents of the floppy to the "floppy image" file TOFILE, which can be
on a file server, local disk, etc. This can be used to create a centralized copy of a floppy,
that different users can copy to their own floppy disks (using FLOPPY.FROM.FILE).

Note: A floppy image file for an 8-inch floppy is about 2500 pages long,
regardless of the number of pages in use on the floppy.

(FLOPPY.FROM.FILE FROMFILE) [Function]

Copies the "floppy image" file FROMFILE to the floppy. FROMFILE must be a file
produced by FLOPPY.TO.FILE.

(FLOPPY.ARCHIVE FILES NAME) [Function]

FLOPPY.ARCHIVE formats a floppy inserted into the floppy drive, giving the floppy the
name NAME#1. FLOPPY.ARCHIVE then copies each file in FILES to the freshly formatted
floppy. If the first floppy fills up, FLOPPY.ARCHIVE uses multiple floppies (named
NAME#2, NAME#3, etc.), each time prompting you to insert a new floppy.

The function DIRECTORY (see below) is convenient for generating a list of files to archive.
For example,

(FLOPPY.ARCHIVE
 (DIRECTORY ’{ERIS}<Lisp>Project>*)
 ’Project)

23-27

STREAMS & FILES

will archive all files on the directory {ERIS}<Lisp>Project> to floppies (named
Project#1, Project#2, etc.).

(FLOPPY.UNARCHIVE HOST/DIRECTORY) [Function]

FLOPPY.UNARCHIVE copies all files on the current floppy to the directory
HOST/DIRECTORY. For example, (FLOPPY.UNARCHIVE ’{ERIS}<Lisp>Project>)
will copy each file on the current floppy to the directory {ERIS}<Lisp>Project>. If
there is more than one floppy to restore from archive, FLOPPY.UNARCHIVE should be
called on each floppy disk.

I/O Operations to and from Strings

It is possible to treat a string as if it were the contents of a file by using the following function:

(OPENSTRINGSTREAM STR ACCESS) [Function]

Returns a stream that can be used to access the characters of the string STR. ACCESS may
be either INPUT, OUTPUT, or BOTH; NIL defaults to INPUT. The stream returned may be
used exactly like a file opened with the same access, except that output operations may
not extend past the end of the original string. Also, string streams do not appear in the
value of (OPENP).

For example, after performing

(SETQ STRM (OPENSTRINGSTREAM "THIS 2 (IS A LIST)"))

the following succession of reads could occur:

(READ STRM) => THIS
 (RATOM STRM) => 2
 (READ STRM) => (IS A LIST)
 (EOFP STRM) => T

Compatibility Note: In Interlisp-10 it was possible to take input from a string simply by passing the
string as the FILE argument to an input function. In order to maintain compatibility with this feature,
Medley provides the same capability. This not terribly clean feature persists in the present
implementation to give users time to convert old code. This means that strings are not equivalent to
symbols when specifying a file name as a stream argument. In a future release, the old Interlisp-10
string-reading feature will be decommissioned, and OPENSTRINGSTREAM will be the only way to
perform I/O on a string.

Temporary Files and the CORE Device

Many operating systems have a notion of "scratch file", a file typically used as temporary storage for
data most naturally maintained in the form of a file, rather than some other data structure. A scratch

23-28

INTERLISP-D REFERENCE MANUAL

file can be used as a normal file in most respects, but is automatically deleted from the file system after
its useful life is up, e.g., when the job terminates, or you log out. In normal operation, you need never
explicitly delete such files, since they are guaranteed to disappear soon.

A similar functionality is provided in Medley by core-resident files. Core-resident files are on the
device CORE. The directory structure for this device and all files on it are represented completely
within your virtual memory. These files are treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disappears when the virtual memory is abandoned.

Core files are opened and closed by name the same as any other file, e.g., (OPENSTREAM
’{CORE}<FOO>FIE.DCOM ’OUTPUT). Directory names are completely optional, so files can also
have names of the form {CORE}NAME.EXT. Core files can be enumerated by DIRECTORY (see below).
While open, they are registered in (OPENP). They do consume virtual memory space, which is only
reclaimed when the file is deleted. Some caution should thus be used when creating large CORE files.
Since the virtual memory of an Medley workstation usually persists far longer than the typical process
on a mainframe computer, it is still important to delete CORE files after they are no longer in use.

For many applications, the name of the scratch file is irrelevant, and there is no need for anyone to
have access to the file independent of the program that created it. For such applications, NODIRCORE
files are preferable. Files created on the device lisp NODIRCORE are core-resident files that have no
name and are registered in no directory. These files "disappear", and the resources they consume are
reclaimed, when all pointers to the file are dropped. Hence, such files need never be explicitly deleted
or, for that matter, closed. The "name" of such a file is simply the stream object returned from
(OPENSTREAM ’{NODIRCORE} ’OUTPUT), and it is this stream object that must be passed to all
input/output operations, including CLOSEF and any calls to OPENSTREAM to reopen the file.

(COREDEVICE NAME NODIRFLG) [Function]

Creates a new device for core-resident files and assigns NAME as its device name. Thus,
after performing (COREDEVICE ’FOO), one can execute (OPENSTREAM ’{FOO}BAR
’OUTPUT) to open a file on that device. Medley is initialized with the single core-resident
device named CORE, but COREDEVICE may be used to create any number of logically
distinct core devices.

If NODIRFLG is non-NIL, a core device that acts like {NODIRCORE} is created.

Compatibility note: In Interlisp-10, it was possible to create scratch files by using file
names with suffixes ;S or ;T. In Medley, these suffixes in file names are simply ignored
when output is directed to a particular host or device. However, the function
PACKFILENAME.STRING is defined to default the device name to CORE if the file has the
TEMPORARY attribute and no explicit host is provided.

23-29

STREAMS & FILES

NULL Device

The NULL device provides a source of content-free "files". (OPENSTREAM ’{NULL} ’OUTPUT)
creates a stream that discards all output directed at it. (OPENSTREAM ’{NULL} ’INPUT) creates a
stream that is perpetually at end-of-file (i.e., has no input).

Deleting, Copying, and Renaming Files

(DELFILE FILE) [Function]

Deletes FILE if possible. The file must be closed. Returns the full name of the file if
deleted, else NIL. Recognition mode for FILE is OLDEST, i.e., if FILE does not have a
version number specified, then DELFILE deletes the oldest version of the file.

(COPYFILE FROMFILE TOFILE) [Function]

Copies FROMFILE to a new file named TOFILE. The source and destination may be on
any combination of hosts/devices. COPYFILE attempts to preserve the TYPE and
CREATIONDATE where possible. If the original file’s file type is unknown, COPYFILE
attempts to infer the type (file type is BINARY if any of its 8-bit bytes have their high bit
on).

COPYFILE uses COPYCHARS (Chapter 25) if the source and destination hosts have
different EOL conventions. Thus, it is possible for the source and destination files to be of
different lengths.

(RENAMEFILE OLDFILE NEWFILE) [Function]

Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT FOUND if FILE does not
exist. Returns the full name of the new file, if successful, else NIL if the rename cannot be
performed.

If OLDFILE and NEWFILE are on the same host/device, and the device implements a
renaming primitive, RENAMEFILE can be very fast. However, if the device does not know
how to rename files in place, or if OLDFILE and NEWFILE are on different devices,
RENAMEFILE works by copying OLDFILE to NEWFILE and then deleting OLDFILE.

Searching File Directories

DIRECTORIES [Variable]

Global variable containing the list of directories searched (in order) by SPELLFILE and
FINDFILE (below) when not given an explicit DIRLST argument. In this list, the atom
NIL stands for the login directory (the value of LOGINHOST/DIR), and the atom T stands
for the currently connected directory. Other elements should be full directory
specifications, e.g., {TWENTY}PS:<LISPUSERS>, not merely LISPUSERS.

23-30

INTERLISP-D REFERENCE MANUAL

LISPUSERSDIRECTORIES [Variable]

Global variable containing a list of directories to search for "library" package files. Used
by the FILES file package command (Chapter 17).

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLST) [Function]

Searches for the file name FILE, possibly performing spelling correction (see Chapter 20).
Returns the corrected file name, if any, otherwise NIL.

If FILE has a directory field, SPELLFILE attempts spelling correction against the files in
that particular directory. Otherwise, SPELLFILE searches for the file on the directory list
DIRLST before attempting any spelling correction.

If NOPRINTFLG is NIL, SPELLFILE asks you to confirm any spelling correction done, and
prints out any files found, even if spelling correction is not done. If NOPRINTFLG = T,
SPELLFILE does not do any printing, nor ask for approval.

If NSFLG = T (or NOSPELLFLG = T, see Chapter 20), no spelling correction is attempted,
though searching through DIRLST still occurs.

DIRLST is the list of directories searched if FILE does not have a directory field. If
DIRLST is NIL, the value of the variable DIRECTORIES is used.

Note: If DIRLST is NIL, and FILE is not found by searching the directories
on DIRECTORIES, but the root name of FILE has a FILEDATES
property (Chapter 17) indicating that a file by that name has been
loaded, then the directory indicated in the FILEDATES property is
searched, too. This additional search is not done if DIRLST is non-
NIL.

ERRORTYPELST (Chapter 14) initially contains the entry ((23 (SPELLFILE (CADR
ERRORMESS) NIL NOFILESPELLFLG))), which causes SPELLFILE to be called in case
of a FILE NOT FOUND error. If the variable NOFILESPELLFLG is T (its initial value),
then spelling correction is not done on the file name, but DIRECTORIES is still searched.
If SPELLFILE is successful, the operation will be reexecuted with the new (corrected) file
name.

(FINDFILE FILE NSFLG DIRLST) [Function]

Uses SPELLFILE to search for a file named FILE. If it finds one, returns its full name,
with no user interaction. Specifically, it calls (SPELLFILE FILE T NSFLG DIRLST), after
first performing two simple checks: If FILE has an explicit directory, it checks to see if a
file so named exists, and if so returns that file. If DIRLST is NIL, it looks for FILE on the
connected directory before calling SPELLFILE.

23-31

STREAMS & FILES

Listing File Directories

The function DIRECTORY allows you to conveniently specify and/or program a variety of directory
operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAULTVERS) [Function]

Returns, lists, or performs arbitrary operations on all files specified by the "file group"
FILES. A file group has the form of a regular file name, except that the character * can be
used to match any number of characters, including zero, in the file name. For example,
the file group A*B matches all file names beginning with the character A and ending with
the character B. The file group *.DCOM matches all files with an extension of DCOM.

If FILES does not contain an explicit extension, it is defaulted to DEFAULTEXT; if FILES
does not contain an explicit version, it is defaulted to DEFAULTVERS. DEFAULTEXT and
DEFAULTVERS themselves default to *. If the period or semicolon preceding the omitted
extension or version, respectively, is present, the field is explicitly empty and no default is
used. All other unspecified fields default to *. Null version is interpreted as "highest".
Thus FILES = * or *.* or *.*;* enumerates all files on the connected directory; FILES
= *. or *.;* enumerates all versions of files with null extension; FILES = *.;
enumerates the highest version of files with null extension; and FILES = *.*;
enumerates the highest version of all files. If FILES is NIL, it defaults to *.*;*.

Note: Some hosts/devices are not capable of supporting "highest version" in
enumeration. Such hosts instead enumerate all versions.

For each file that matches the file group FILES, the "file commands" in COMMANDS are
executed in order. Some of the file commands allow aborting the command processing
for a given file, effectively filtering the list of files. The interpretation of the different file
commands is described below. If COMMANDS is NIL, it defaults to (COLLECT), which
collects the matching file names in a list and returns it as the value of DIRECTORY.

The "file commands" in COMMANDS are interpreted as follows:

P Prints the file’s name. For readability, DIRECTORY
strips the directory from the name, printing it once as
a header in front of each set of consecutive files on the
same directory.

PP Prints the file’s name without a version number.

a string Prints the string.

READDATE, WRITEDATE
CREATIONDATE, SIZE

LENGTH, BYTESIZE
PROTECTION, AUTHOR

TYPE Prints the appropriate information returned by
GETFILEINFO (see above).

23-32

INTERLISP-D REFERENCE MANUAL

COLLECT Adds the full name of this file to an accumulating list,
which will be returned as the value of DIRECTORY.

COUNTSIZE Adds the size of this file to an accumulating sum,
which will be returned as the value of DIRECTORY.

DELETE Deletes the file.

DELVER If this file is not the highest version of files by its
name, delete it.

PAUSE Waits until you type any character before proceeding
with the rest of the commands (good for display if
you want to ponder).

The following commands are predicates to filter the list. If the predicate is not satisfied,
then processing for this file is aborted and no further commands (such as those above) are
executed for this file.

Note: if the P and PP commands appear in COMMANDS ahead of any of the
filtering commands below except PROMPT, they are postponed until
after the filters. Thus, assuming the caller has placed the attribute
options after the filters as well, no printing occurs for a file that is
filtered out. This is principally so that functions like DIR (below) can
both request printing and pass arbitrary commands through to
DIRECTORY, and have the printing happen in the appropriate place.

PROMPT MESS Prompts with the yes/no question MESS; if user
responds with No, abort command processing for this
file.

OLDERTHAN N Continue command processing if the file hasn’t been
referenced (read or written) in N days. N can also be a
string naming an explicit date and time since which
the file must not have been referenced.

NEWERTHAN N Continue command processing if the file has been
written within the last N days. N can also be a string
naming an explicit date and time. Note that this is
not quite the complement of OLDERTHAN, since it
ignores the read date.

BY USER Continue command processing if the file was last
written by the given user, i.e., its AUTHOR attribute
matches (case insensitively) USER.

@ X X is either a function of one argument (FILENAME), or
an arbitrary expression which uses the variable
FILENAME freely. If X returns NIL, abort command
processing for this file.

23-33

STREAMS & FILES

The following two commands apply not to any particular file, but globally to the manner
in which directory information is printed.

OUT FILE Directs output to FILE.

COLUMNS N Attempts to format output in N columns (rather than
just 1).

DIRECTORY uses the variable DIRCOMMANDS as a spelling list to correct spelling and define
abbreviations and synonyms (see Chapter 20). Currently the following abbreviations are recognized:

AU => AUTHOR

- => PAUSE

COLLECT? => PROMPT " ? " COLLECT

DA

DATE => CREATIONDATE

TI => WRITEDATE

DEL => DELETE

DEL?

DELETE? => PROMPT " delete? " DELETE

OLD => OLDERTHAN 90

PR => PROTECTION

SI => SIZE

VERBOSE => AUTHOR CREATIONDATE SIZE
READDATE WRITEDATE

(FILDIR FILEGROUP) [Function]

Obsolete synonym of (DIRECTORY FILEGROUP).

(DIR FILEGROUP COM1 ... COMN) [NLambda NoSpread Function]

Convenient form of DIRECTORY for use in type-in at the executive. Performs
(DIRECTORY ’FILEGROUP ’(P COM1 ... COMN)).

(NDIR FILEGROUP COM1 ... COMN) [NLambda NoSpread Function]

Version of DIR that lists the file names in a multi-column format. Also, by default only
lists the most recent version of files (unless FILEGROUP contains an explicit version).

File Servers

A file server is a shared resource on a local communications network which provides large amounts of
file storage. Different file servers honor a variety of access protocols. Medley supports the following

23-34

INTERLISP-D REFERENCE MANUAL

protocols: PUP-FTP, PUP-Leaf, and NS Filing. In addition, there are library packages available that
support other communications protocols, such as TCP/IP and RS232.

With the exception of the RS232-based protocols, which exist only for file transfer, these network
protocols are integrated into the Medley file system to allow files on a file server to be treated in much
the same way files are accessed on local devices, such as the disk. Thus, it is possible to call
OPENSTREAM on the file {ERIS}<LISP>FOO.DCOM;3 and read from it or write to it just as if the file
had been on the local disk ({DSK}<LISP>FOO.DCOM;3), rather than on a remote server named
ERIS. However, the protocols vary in how much control they give the workstation over file system
operations. Hence, some restrictions apply, as described in the following sections.

PUP File Server Protocols

There are two file server protocols in the family of PUP protocols: Leaf and FTP. Some servers
support both, while others support only one of them. Medley uses whichever protocol is more
appropriate for the requested operation.

Leaf is a random access protocol, so files opened using these protocols are RANDACCESSP, and thus
most normal I/O operations can be performed. However, Leaf does not support directory
enumeration. Hence, DIRECTORY cannot be used on a Leaf file server unless the server also supports
FTP. In addition, Leaf does not supply easy access to a file’s attributes. INFILEP and GETFILEINFO
have to open the file for input in order to obtain their information, and hence the file’s read date will
change, even though the semantics of these functions do not imply it.

FTP is a file transfer protocol that only permits sequential access to files. However, most
implementations of it are considerably more efficient than Leaf. Medley uses FTP in preference to
Leaf whenever the call to OPENSTREAM requests sequential access only. In particular, the functions
SYSOUT and COPYFILE open their files for sequential access. If a file server supports FTP but for
some reason it is undesirable for Lisp to use it, one can set the internal variable \FTPAVAILABLE to
NIL.

The system normally maintains a Leaf connection to a host in the background. This connection can be
broken by calling (BREAKCONNECTION HOST). Any subsequent reference to files on that host will re-
establish the connection. The principal use for this function arises when you interrupt a file operation
in such a way that the file server thinks the file is open but Lisp thinks it is closed (or not yet open).
As a result, the next time Lisp tries to open the file, it gets a file busy error.

Xerox NS File Server Protocols

Interlisp supports file access to Xerox 803x file servers, using the Filing Protocol built on Xerox
Network Systems protocols. Medley determines that a host is an NS File Server by the presense of a
colon in its name, e.g., {PHYLEX:}. The general format of NS fileserver device names is
{SERVERNAME:DOMAIN:ORGANIZATION}; the device specification for an 8000-series product in
general includes the ClearingHouse domain and organization. If domain and organization are not
supplied directly, then they are obtained from the defaults, which themselves are found by consulting

23-35

STREAMS & FILES

the nearest ClearingHouse if you have not defined them in an init file. However, note that the server
name must still have a colon in it to distinguish it from other types of host names (e.g., PUP server
names).

NS file servers in general permit arbitrary characters in file names. You should be cognizant of file
name quoting conventions, and the fact that any file name presented as a symbol needs to have
characters of significance to the reader, such as space, escaped with a %. Of course, one can always
present the file name as a string, in which case only the quoting conventions are important.

NS file servers support a true hierarchical file system, where subdirectories are just another kind of
file, which needs to be explicitly created. In Interlisp, subdirectories are created automatically as
needed: A call to OPENFILE to create a file in a non-existent subdirectory automatically creates the
subdirectory. CONN to a non-existent subdirectory asks you whether to create the directory. For those
using Star software, a directory corresponds to a "File Drawer," while a subdirectory corresponds to a
"File Folder."

Because of their hierarchical structure, NS directories can be enumeerated to arbitrary levels. The
default is to enumerate all the files (the leaves of the tree), omitting the subdirectory nodes
themselves. This default can be changed by the following variable:

FILING.ENUMERATION.DEPTH [Variable]

This variable is either a number, specifying the number of levels deep to enumeerate, or T,
meaning enumerate to all levels. In the former case, when the enumeration reaches the
specified depth, only the subdirectory name rooted at that level is listed, and none of its
descendants is listed. When FILING.ENUMERATION.DEPTH is T, all files are listed, and
no subdirectory names are listed. FILING.ENUMERATION.DEPTH is initially T.

Independent of FILING.ENUMERATION.DEPTH, a request to enumerate the top-level of a
file server’s hierarchy lists only the top level, i.e., assumes a depth of 1. For example,
(DIRECTORY ’{PHYLEX:}) lists exactly the top-level directories of the server PHYLEX:.

NS file servers do not currently support random access. Therefore, SETFILEPTR of an NS file
generally causes an error. However, GETFILEPTR returns the correct character position for open files
on NS file servers. In addition, SETFILEPTR works in the special case where the file is open for input,
and the file pointer is being set forward. In this case, the intervening charactgers are automatically
read.

Even while Interlisp has no file open on an NS Server, the system maintains a "session" with the server
for a while in order to improve the speed of subsequent requests to the server. While this session is
open, it is possible for some nodes of the server’s file system to appear "busy" or inaccessible to certain
clients on other workstations (such as Star). If this happens, the following function can be used to
terminate any open sessions immediately.

(BREAK.NSFILING.CONNECTION HOST) [Function]

Closes any open connections to NS file server HOST.

23-36

INTERLISP-D REFERENCE MANUAL

Operating System Designations

Some of the network server protocols are implemented on more than one kind of foreign host. Such
hosts vary in their conventions for logging in, naming files, representing end-of-line, etc. In order for
Interlisp to communicate gracefully with all these hosts, it is necessary that the variable
NETWORKOSTYPES be set correctly.The following functions are now considered obsolete, but are
provided for backwards compatibility:

NETWORKOSTYPES [Variable]

An association-list that associates a host name with its operating system type. Elements in
this list are of the form (HOSTNAME . TYPE). For example, (MAXC2 . TENEX). The
operating system types currently known to Lisp are TENEX, TOPS20, UNIX, and VMS.
The host names in this list should be the "canonical" host name, represented as an
uppercase atom. For PUP and NS hosts, the function CANONICAL.HOSTNAME (below) can
be used to determine which of several aliases of a server is the canonical name.

(CANONICAL.HOSTNAME HOSTNAME) [Function]

Returns the "canonical" name of the server HOSTNAME, or NIL if HOSTNAME is not the
name of a server.

Logging In

Most file servers require a user name and password for access. Medley maintains an ephemeral
database of user names and passwords for each host accessed recently. The database vanishes when
LOGOUT, SAVEVM, SYSOUT, or MAKESYS is executed, so that the passwords remain secure from any
subsequent user of the same virtual memory image. Medley also maintains a notion of the "default"
user name and password, which are generally those with which you initially log in.

When a file server for which the system does not yet have an entry in its password database requests a
name and password, the system first tries the default user name and password. If the file server does
not recognize that name/password, the system prompts you for a name and password to use for that
host. It suggests a default name:

{ERIS} Login: Green

which you can accept by pressing [Return}, or replace the name by typing a new name or backspacing
over it. Following the name, you are prompted for a password:

{ERIS} Login: Verdi (password)

which is not echoed, terminated by another [Return]. This information is stored in the password
database so that you are prompted only once, until the database is again cleared.

23-37

STREAMS & FILES

Medley also prompts for password information when a protection violation occurs on accessing a
directory on certain kinds of servers that support password-protected directories. Some such servers
allow one to protect a file in a way that is inaccessible to even its owner until the file’s protection is
changed. In such cases, no password would help, and the system causes the normal PROTECTION
VIOLATION error.

You can abort a password interaction by typing the ERROR interrupt, initially Cosntrol-E. This
generally either causes a PROTECTION VIOLATION error, if the password was requested in order to
gain access to a protected file on an otherwise accessible server; or to act as though the server did not
exist, in the case where the password was needed to gain any access to the server.

(LOGIN HOSTNAME FLG DIRECTORY MSG) [Function]

Forces Medley to ask for your name and password to be used when accessing host
HOSTNAME. Any previous login information for HOSTNAME is overridden. If HOSTNAME is
NIL, it overrides login information for all hosts and resets the default user name and
password to be those typed in by you. The special value HOSTNAME = NS:: is used to
obtain the default user name and password for all logins for NS Servers.

If FLG is the atom QUIET, only prompts you if there is no cached information for
HOSTNAME.

If DIRECTORY is specified, it is the name of a directory on HOSTNAME. In this case, the
information requested is the "connect" password for that directory. Connect passwords
for any number of different directories on a host can be maintained.

If MSG is non-NIL, it is a message (a string) to be printed before the name and password
information is requested.

LOGIN returns the user name with which you completed the login.

(SETPASSWORD HOST USER PASSWORD DIRECTORY) [Function]

Sets the values in the internal password database exactly as if the strings USER and
PASSWORD were typed in via (LOGIN HOST NIL DIRECTORY).

(SETUSERNAME NAME) [Function]

Sets the default uer name to NAME.

(USERNAME FLG STRPTR PRESERVECASE) [Function]

If FLG = NIL, returns the default user name. This is the only value of FLG that is
meaningful in Medley.

USERNAME returns the value as a string, unless STRPTR is T, in which case USERNAME
returns the value as an atom. The name is returned in uppercase, unless PRESERVECASE
is true.

23-38

INTERLISP-D REFERENCE MANUAL

Abnormal Conditions

If Medley tries to access a file and does not get a response from the file server in a areasonable period
of time, it prints a message that the file server is not responding, and keeps trying. If the file server
has actually crashed, this may continue indefinitely. A Control-E or similar interrupt aborts out of
this state.

If the file server crashes but is restarted before you attempt to do anything, file operations will usually
proceed normally, except for a brief pause while Medley tries to re-establish any connections it had
open before the crash. However, this is not always possible. For example, when a file is open for
sequential output and the server crashes, there is no way to recover the output already written, since it
vanished with the crash. In such cases, the system will cause an error such as Connection Lost.

LOGOUT closes any file server connections that are currently open. On return, it attempts to re-
establish connections for any files that were open before logging out. If a file has disappeared or been
modified, Medley reports this fact. Files that were open for sequential access generally cannot be
reopened after LOGOUT.

Interlisp supports simultaneous access to the same server from different processes and permits
overlapping of Lisp computation with file server operations, allowing for improved performance.
However, as a corollary of this, a file is not closed the instant that CLOSEF returns; Interlisp closes the
file "in the bckground". It is therefore very important that you exit Interlisp via (LOGOUT) or
(LOGOUT T), rather than boot the machine.

On rare occasions, the Ethernet may appear completely unresponsive, due to Interlisp having gotten
into a bad state. Type (RESTART.ETHER) to reinitialize Lisp’s Ethernet driver(s), just as when the
Lisp system is started up following a LOGOUT, SYSOUT, etc.

24-1

 24. INPUT/OUTPUT FUNCTIONS

This chapter describes the standard I/O functions used for reading and printing characters and
Interlisp expressions on files and other streams. First, the primitive input functions are presented,
then the output functions, then functions for random-access operations (such as searching a file for a
given stream, or changing the "next-character" pointer to a position in a file). Next, the PRINTOUT
statement is documented (see below), which provides an easy way to write complex output
operations. Finally, read tables, used to parse characters as Interlisp expressions, are documented.

Specifying Streams for Input/Output Functions

Most of the input/output functions in Interlisp-D have an argument named STREAM or FILE,
specifying on which open stream the function’s action should occur (the name FILE is used in older
functions that predate the concept of stream; the two should, however, be treated synonymously).
The value of this argument should be one of the following:

a stream An object of type STREAM, as returned by OPENSTREAM (Chapter 23) or
other stream-producing functions, is always the most precise and
efficient way to designate a stream argument.

T The litatom T designates the terminal input or output stream of the
currently running process, controlling input from the keyboard and
output to the display screen. For functions where the direction (input
or output) is ambiguous, T is taken to designate the terminal output
stream. The T streams are always open; they cannot be closed.

The terminal output stream can be set to a given window or display
stream by using TTYDISPLAYSTREAM (Chapter 28). The terminal input
stream cannot be changed. For more information on terminal I/O, see
Chapter 30.

NIL The litatom NIL designates the "primary" input or output stream. These
streams are initially the same as the terminal input/output streams, but
they can be changed by using the functions INPUT and OUTPUT.

For functions where the direction (input or output) is ambiguous, e.g.,
GETFILEPTR, the argument NIL is taken to mean the primary input
stream, if that stream is not identical to the terminal input stream, else
the primary output stream.

a window Uses the display stream of the window . Valid for output only.

a file name As of this writing, the name of an open file (as a litatom) can be used as
a stream argument. However, there are inefficiencies and possible
future incompatibilities associated with doing so. See Chapter 24 for
details.

24-2

INTERLISP-D REFERENCE MANUAL

(GETSTREAM FILE ACCESS) [Function]

Coerces the argument FILE to a stream by the above rules. If ACCESS is INPUT, OUTPUT,
or BOTH, produces the stream designated by FILE that is open for ACCESS. If
ACCESS=NIL, returns a stream for FILE open for any kind of input/output (see the list
above for the ambiguous cases). If FILE does not designate a stream open in the specified
mode, causes an error, FILE NOT OPEN.

(STREAMP X) [Function]

Returns X if X is a STREAM, otherwise NIL.

Input Functions

While the functions described below can take input from any stream, some special actions occur when
the input is from the terminal (the T input stream, see above). When reading from the terminal, the
input is buffered a line at a time, unless buffering has been inhibited by CONTROL (Chapter 30) or the
input is being read by READC or PEEKC. Using specified editing characters, you can erase a character
at a time, a word at a time, or the whole line. The keys that perform these editing functions are
assignable via SETSYNTAX, with the initial settings chosen to be those most natural for the given
operating system. In Interlisp-D, the initial settings are as follows: characters are deleted one at a time
by Backspace; words are erased by control-W; the whole line is erased by Control-Q.

On the Interlisp-D display, deleting a character or a line causes the characters to be physically erased
from the screen. In Interlisp-10, the deleting action can be modified for various types of display
terminals by using DELETECONTROL (Chapter 30).

Unless otherwise indicated, when the end of file is encountered while reading from a file, all input
functions generate an error, END OF FILE. Note that this does not close the input file. The
ENDOFSTREAMOP stream attribute (Chapter 24) is useful for changing the behavior at end of file.

Most input functions have a RDTBL argument, which specifies the read table to be used for input.
Unless otherwise specified, if RDTBL is NIL, the primary read table is used.

If the FILE or STREAM argument to an input function is NIL, the primary input stream is used.

(INPUT FILE) [Function]

Sets FILE as the primary input stream; returns the old primary input stream. FILE must
be open for input.

(INPUT) returns the current primary input stream, which is not changed.

Note: If the primary input stream is set to a file, the file’s full name, rather than the stream
itself, is returned. See discussion in Chapter 24.

24-3

I/O FUNCTIONS

(READ FILE RDTBL FLG) [Function]

Reads one expression from FILE. Atoms are delimited by the break and separator
characters as defined in RDTBL. To include a break or separator character in an atom, the
character must be preceded by the character %, e.g., AB%(C is the atom AB(C, %% is the
atom %, %control-K is the atom Control-K. For input from the terminal, an atom containing
an interrupt character can be input by typing instead the corresponding alphabetic
character preceded by Control-V, e.g., ^VD for Control-D.

Strings are delimited by double quotes. To input a string containing a double quote or a
%, precede it by %, e.g., "AB%"C" is the string AB"C. Note that % can always be typed
even if next character is not "special", e.g., %A%B%C is read as ABC.

If an atom is interpretable as a number, READ creates a number, e.g., 1E3 reads as a
floating point number, 1D3 as a literal atom, 1.0 as a number, 1,0 as a literal atom, etc.
An integer can be input in a non-decimal radix by using syntax such as 123Q, |b10101,
|5r1234 (see Chapter 7). The function RADIX, sets the radix used to print integers.

When reading from the terminal, all input is line-buffered to enable the action of the
backspacing control characters, unless inhibited by CONTROL (Chapter 30). Thus no
characters are actually seen by the program until a carriage-return (actually the character
with terminal syntax class EOL, see Chapter 30), is typed. However, for reading by READ,
when a matching right parenthesis is encountered, the effect is the same as though a
carriage-return were typed, i.e., the characters are transmitted. To indicate this, Interlisp
also prints a carriage-return line-feed on the terminal. The line buffer is also transmitted
to READ whenever an IMMEDIATE read macro character is typed (see below).

FLG=T suppresses the carriage-return normally typed by READ following a matching right
parenthesis. (However, the characters are still given to READ; i.e., you do not have to type
the carriage-return.)

(RATOM FILE RDTBL) [Function]

Reads in one atom from FILE. Separation of atoms is defined by RDTBL. % is also defined
for RATOM, and the remarks concerning line-buffering and editing control characters also
apply.

If the characters comprising the atom would normally be interpreted as a number by
READ, that number is returned by RATOM. Note however that RATOM takes no special
action for " whether or not it is a break character, i.e., RATOM never makes a string.

(RSTRING FILE RDTBL) [Function]

Reads characters from FILE up to, but not including, the next break or separator
character, and returns them as a string. Backspace, Control-W, Control-Q, Control-V, and
% have the same effect as with READ.

Note that the break or separator character that terminates a call to RATOM or RSTRING is not read by
that call, but remains in the buffer to become the first character seen by the next reading function that

24-4

INTERLISP-D REFERENCE MANUAL

is called. If that function is RSTRING, it will return the null string. This is a common source of
program bugs.

(RATOMS A FILE RDTBL) [Function]

Calls RATOM repeatedly until the atom A is read. Returns a list of the atoms read, not
including A.

(RATEST FLG) [Function]

If FLG = T, RATEST returns T if a separator was encountered immediately prior to the
atom returned by the last RATOM or READ, NIL otherwise.

If FLG = NIL, RATEST returns T if last atom read by RATOM or READ was a break character,
NIL otherwise.

If FLG = 1, RATEST returns T if last atom read (by READ or RATOM) contained a % used to
quote the next character (as in %[or %A%B%C), NIL otherwise.

(READC FILE RDTBL) [Function]

Reads and returns the next character, including %, ", etc, i.e., is not affected by break or
separator characters. The action of READC is subject to line-buffering, i.e., READC does not
return a value until the line has been terminated even if a character has been typed. Thus,
the editing control characters have their usual effect. RDTBL does not directly affect the
value returned, but is used as usual in line-buffering, e.g., determining when input has
been terminated. If (CONTROL T) has been executed (Chapter 30), defeating line-
buffering, the RDTBL argument is irrelevant, and READC returns a value as soon as a
character is typed (even if the character typed is one of the editing characters, which
ordinarily would never be seen in the input buffer).

(PEEKC FILE) [Function]

Returns the next character, but does not actually read it and remove it from the buffer. If
reading from the terminal, the character is echoed as soon as PEEKC reads it, even though
it is then "put back" into the system buffer, where Backspace, Control-W, etc. could change
it. Thus it is possible for the value returned by PEEKC to "disagree" in the first character
with a subsequent READ.

(LASTC FILE) [Function]

Returns the last character read from FILE. LASTC can return an incorrect result when
called immediatley following a PEEKC on a file that contains run-coded NS characters.

(READCCODE FILE RDTBL) [Function]

Returns the next character code from STREAM; thus, this operation is equivalent to, but
more efficient than, (CHCON1 (READC FILE RDTBL)).

24-5

I/O FUNCTIONS

(PEEKCCODE FILE) [Function]

Returns, without consuming, the next character code from STREAM; thus, this operation is
equivalent to, but more efficient than, (CHCON1 (PEEKC FILE)).

(BIN STREAM) [Function]

Returns the next byte from STREAM. This operation is useful for reading streams of
binary, rather than character, data.

Note: BIN is similar to READCCODE, except that BIN always reads a single byte,
whereas READCCODE reads a "character" that can consist of more than one byte,
depending on the character and its encoding.

READ, RATOM, RATOMS, PEEKC, READC all wait for input if there is none. The only way to test whether
or not there is input is to use READP:

(READP FILE FLG) [Function]

Returns T if there is anything in the input buffer of FILE, NIL otherwise. This operation
is only interesting for streams whose source of data is dynamic, e.g., the terminal or a byte
stream over a network; for other streams, such as to files, (READP FILE) is equivalent to
(NOT (EOFP FILE)).

Note that because of line-buffering, READP may return T, indicating there is input in the
buffer, but READ may still have to wait.

Frequently, the terminal’s input buffer contains a single EOL character left over from a
previous input. For most applications, this situation wants to be treated as though the
buffer were empty, and so READP returns NIL in this case. However, if FLG=T, READP
returns T if there is any character in the input buffer, including a single EOL. FLG is
ignored for streams other than the terminal.

(EOFP FILE) [Function]

Returns true if FILE is at "end of file", i.e., the next call to an input function would cause
an END OF FILE error; NIL otherwise. For randomly accessible files, this can also be
thought of as the file pointer pointing beyond the last byte of the file. FILE must be open
for (at least) input, or an error is generated, FILE NOT OPEN.

Note that EOFP can return NIL and yet the next call to READ might still cause an END OF
FILE error, because the only characters remaining in the input were separators or
otherwise constituted an incomplete expression. The function SKIPSEPRS is sometimes
more useful as a way of detecting end of file when it is known that all the expressions in
the file are well formed.

(WAITFORINPUT FILE) [Function]

Waits until input is available from FILE or from the terminal, i.e. from T. WAITFORINPUT
is functionally equivalent to (until (OR (READP T) (READP FILE)) do NIL),

24-6

INTERLISP-D REFERENCE MANUAL

except that it does not use up machine cycles while waiting. Returns the device for which
input is now available, i.e. FILE or T.

FILE can also be an integer, in which case WAITFORINPUT waits until there is input
available from the terminal, or until FILE milliseconds have elapsed. Value is T if input is
now available, NIL in the case that WAITFORINPUT timed out.

(SKREAD FILE REREADSTRING RDTBL) [Function]

"Skip Read". SKREAD consumes characters from FILE as if one call to READ had been
performed, without paying the storage and compute cost to really read in the structure.
REREADSTRING is for the case where the caller has already performed some READC’s and
RATOM’s before deciding to skip this expression. In this case, REREADSTRING should be
the material already read (as a string), and SKREAD operates as though it had seen that
material first, thus setting up its parenthesis count, double-quote count, etc.

The read table RDTBL is used for reading from FILE. If RDTBL is NIL, it defaults to the
value of FILERDTBL. SKREAD may have difficulties if unusual read macros are defined in
RDTBL. SKREAD does not recognize read macro characters in REREADSTRING, nor
SPLICE or INFIX read macros. This is only a problem if the read macros are defined to
parse subsequent input in the stream that does not follow the normal parenthesis and
string-quote conventions.

SKREAD returns %) if the read terminated on an unbalanced closing parenthesis; %] if the
read terminated on an unbalanced %], i.e., one which also would have closed any extant
open left parentheses; otherwise NIL.

(SKIPSEPRS FILE RDTBL) [Function]

Consumes characters from FILE until it encounters a non-separator character (as defined
by RDTBL). SKIPSEPRS returns, but does not consume, the terminating character, so that
the next call to READC would return the same character. If no non-separator character is
found before the end of file is reached, SKIPSEPRS returns NIL and leaves the stream at
end of file. This function is useful for skipping over "white space" when scanning a
stream character by character, or for detecting end of file when reading expressions from a
stream with no pre-arranged terminating expression.

Output Functions

Unless otherwise specified by DEFPRINT, pointers other than lists, strings, atoms, or numbers, are
printed in the form {DATATYPE} followed by the octal representation of the address of the pointer
(regardless of radix). For example, an array pointer might print as {ARRAYP}#43,2760. This
printed representation is for compactness of display on your terminal, and will not read back in
correctly; if the form above is read, it will produce the litatom {ARRAYP}#43,2760.

Note: The term "end-of-line" appearing in the description of an output function means
the character or characters used to terminate a line in the file system being used

24-7

I/O FUNCTIONS

by the given implementation of Interlisp. For example, in Interlisp-D end-of-line
is indicated by the character carriage-return.

Some of the functions described below have a RDTBL argument, which specifies the read table to be
used for output. If RDTBL is NIL, the primary read table is used.

Most of the functions described below have an argument FILE, which specifies the stream on which
the operation is to take place. If FILE is NIL, the primary output stream is used .

(OUTPUT FILE) [Function]

Sets FILE as the primary output stream; returns the old primary output stream. FILE
must be open for output.

(OUTPUT) returns the current primary output stream, which is not changed.

Note: If the primary output stream is set to a file, the file’s full name, rather
than the stream itself, is returned. See the discussion in Chapter 24.

(PRIN1 X FILE) [Function]

Prints X on FILE.

(PRIN2 X FILE RDTBL) [Function]

Prints X on FILE with %’s and "’s inserted where required for it to read back in properly
by READ, using RDTBL.

Both PRIN1 and PRIN2 print any kind of Lisp expression, including lists, atoms, numbers, and
strings. PRIN1 is generally used for printing expressions where human readability, rather than
machine readability, is important, e.g., when printing text rather than program fragments. PRIN1
does not print double quotes around strings, or % in front of special characters. PRIN2 is used for
printing Interlisp expressions which can then be read back into Interlisp with READ; i.e., break and
separator characters in atoms will be preceded by %’s. For example, the atom "()" is printed as %(%)
by PRIN2. If the integer output radix (as set by RADIX) is not 10, PRIN2 prints the integer using the
input syntax for non-decimal integers (see Chapter 7) but PRIN1 does not (but both print the integer
in the output radix).

(PRIN3 X FILE) [Function]
(PRIN4 X FILE RDTBL) [Function]

PRIN3 and PRIN4 are the same as PRIN1 and PRIN2 respectively, except that they do not
increment the horizontal position counter nor perform any linelength checks. They are
useful primarily for printing control characters.

(PRINT X FILE RDTBL) [Function]

Prints the expression X using PRIN2 followed by an end-of-line. Returns X.

24-8

INTERLISP-D REFERENCE MANUAL

(PRINTCCODE CHARCODE FILE) [Function]

Outputs a single character whose code is CHARCODE to FILE. This is similar to (PRIN1
(CHARACTER CHARCODE)), except that numeric characters are guaranteed to print
"correctly"; e.g., (PRINTCCODE (CHARCODE 9)) always prints "9", independent of the
setting of RADIX.

PRINTCCODE may actually print more than one byte on FILE, due to character encoding
and end of line conventions; thus, no assumptions should be made about the relative
motion of the file pointer (see GETFILEPTR) during this operation.

(BOUT STREAM BYTE) [Function]

Outputs a single 8-bit byte to STREAM. This is similar to PRINTCCODE, but for binary
streams the character position in STREAM is not updated (as with PRIN3), and end of line
conventions are ignored.

Note: BOUT is similar to PRINTCCODE, except that BOUT always writes a
single byte, whereas PRINTCCODE writes a "character" that can consist
of more than one byte, depending on the character and its encoding.

(SPACES N FILE) [Function]

Prints N spaces. Returns NIL.

(TERPRI FILE) [Function]

Prints an end-of-line character. Returns NIL.

(FRESHLINE STREAM) [Function]

Equivalent to TERPRI, except it does nothing if it is already at the beginning of the line.
Returns T if it prints an end-of-line, NIL otherwise.

(TAB POS MINSPACES FILE) [Function]

Prints the appropriate number of spaces to move to position POS. MINSPACES indicates
how many spaces must be printed (if NIL, 1 is used). If the current position plus
MINSPACES is greater than POS, TAB does a TERPRI and then (SPACES POS). If
MINSPACES is T, and the current position is greater than POS, then TAB does nothing.

Note: A sequence of PRINT, PRIN2, SPACES, and TERPRI expressions can often be
more conveniently coded with a single PRINTOUT statement.

(SHOWPRIN2 X FILE RDTBL) [Function]

Like PRIN2 except if SYSPRETTYFLG=T, prettyprints X instead. Returns X.

24-9

I/O FUNCTIONS

(SHOWPRINT X FILE RDTBL) [Function]

Like PRINT except if SYSPRETTYFLG=T, prettyprints X instead, followed by an end-of-
line. Returns X.

SHOWPRINT and SHOWPRIN2 are used by the programmer’s assistant (Chapter 13) for printing the
values of expressions and for printing the history list, by various commands of the break package
(Chapter 14), e.g. ?= and BT commands, and various other system packages. The idea is that by
simply settting or binding SYSPRETTYFLG to T (initially NIL), you instruct the system when
interacting with you to PRETTYPRINT expressions (Chapter 26) instead of printing them.

(PRINTBELLS) [Function]

Used by DWIM (Chapter 19) to print a sequence of bells to alert you to stop typing. Can
be advised or redefined for special applications, e.g., to flash the screen on a display
terminal.

(FORCEOUTPUT STREAM WAITFORFINISH) [Function]

Forces any buffered output data in STREAM to be transmitted.

If WAITFORFINISH is non-NIL, this doesn’t return until the data has been forced out.

(POSITION FILE N) [Function]

Returns the column number at which the next character will be read or printed. After a
end of line, the column number is 0. If N is non-NIL, resets the column number to be N.

Note that resetting POSITION only changes Lisp’s belief about the current column
number; it does not cause any horizontal motion. Also note that (POSITION FILE) is not
the same as (GETFILEPTR FILE) which gives the position in the file, not on the line.

(LINELENGTH N FILE) [Function]

Sets the length of the print line for the output file FILE to N; returns the former setting of
the line length. FILE defaults to the primary output stream. (LINELENGTH NIL FILE)
returns the current setting for FILE. When a file is first opened, its line length is set to the
value of the variable FILELINELENGTH.

Whenever printing an atom or string would increase a file’s position beyond the line length
of the file, an end of line is automatically inserted first. This action can be defeated by
using PRIN3 and PRIN4.

(SETLINELENGTH N) [Function]

Sets the line length for the terminal by doing (LINELENGTH N T). If N is NIL, it
determines N by consulting the operating system’s belief about the terminal’s
characteristics. In Interlisp-D, this is a no-op.

24-10

INTERLISP-D REFERENCE MANUAL

PRINTLEVEL

When using Interlisp one often has to handle large, complicated lists, which are difficult to
understand when printed out. PRINTLEVEL allows you to specify in how much detail lists should be
printed. The print functions PRINT, PRIN1, and PRIN2 are all affected by level parameters set by:

(PRINTLEVEL CARVAL CDRVAL) [Function]

Sets the CAR print level to CARVAL, and the CDR print level to CDRVAL. Returns a list cell
whose CAR and CDR are the old settings. PRINTLEVEL is initialized with the value (1000
. -1).

In order that PRINTLEVEL can be used with RESETFORM or RESETSAVE, if CARVAL is a
list cell it is equivalent to (PRINTLEVEL (CAR CARVAL) (CDR CARVAL)).

(PRINTLEVEL N NIL) changes the CAR printlevel without affecting the CDR printlevel.
(PRINTLEVEL NIL N) changes the CDR printlevel with affecting the CAR printlevel.
(PRINTLEVEL) gives the current setting without changing either.

Note: Control-P (Chapter 30) can be used to change the PRINTLEVEL setting
dynamically, even while Interlisp is printing.

The CAR printlevel specifies how "deep" to print a list. Specifically, it is the number of
unpaired left parentheses which will be printed. Below that level, all lists will be printed
as &. If the CAR printlevel is negative, the action is similar except that an end-of-line is
inserted after each right parentheses that would be immediately followed by a left
parenthesis.

The CDR printlevel specifies how "long" to print a list. It is the number of top level list
elements that will be printed before the printing is terminated with --. For example, if
CDRVAL=2, (A B C D E) will print as (A B --). For sublists, the number of list
elements printed is also affected by the depth of printing in the CAR direction: Whenever
the sum of the depth of the sublist (i.e. the number of unmatched left parentheses) and the
number of elements is greater than the CDR printlevel, -- is printed. This gives a
"triangular" effect in that less is printed the farther one goes in either CAR or CDR direction.
If the CDR printlevel is negative, then it is the same as if the CDR printlevel were infinite.

Examples:

After: (A (B C (D (E F) G) H) K L) prints as:

(PRINTLEVEL 3 -1) (A (B C (D & G) H) K L)

(PRINTLEVEL 2 -1) (A (B C & H) K L)

(PRINTLEVEL 1 -1) (A & K L)

(PRINTLEVEL 0 -1) &

(PRINTLEVEL 1000 2) (A (B --) --)

(PRINTLEVEL 1000 3) (A (B C --) K --)

24-11

I/O FUNCTIONS

(PRINTLEVEL 1 3) (A & K --)

PLVLFILEFLG [Variable]

Normally, PRINTLEVEL only affects terminal output. Output to all other files acts as
though the print level is infinite. However, if PLVLFILEFLG is T (initially NIL), then
PRINTLEVEL affects output to files as well.

The following three functions are useful for printing isolated expressions at a specified print level
without going to the overhead of resetting the global print level.

(LVLPRINT X FILE CARLVL CDRLVL TAIL) [Function]

Performs PRINT of X to FILE, using as CAR and CDR print levels the values CARLVL and
CDRLVL, respectively. Uses the T read table. If TAIL is specified, and X is a tail of it, then
begins its printing with "...", rather than on open parenthesis.

(LVLPRIN2 X FILE CARLVL CDRLVL TAIL) [Function]

Similar to LVLPRIN2, but performs a PRIN2.

(LVLPRIN1 X FILE CARLVL CDRLVL TAIL) [Function]

Similar to LVLPRIN1, but performs a PRIN1.

Printing Numbers

How the ordinary printing functions (PRIN1, PRIN2, etc.) print numbers can be affected in several
ways. RADIX influences the printing of integers, and FLTFMT influences the printing of floating point
numbers. The setting of the variable PRXFLG determines how the symbol-manipulation functions
handle numbers. The PRINTNUM package permits greater controls on the printed appearance of
numbers, allowing such things as left-justification, suppression of trailing decimals, etc.

(RADIX N) [Function]

Resets the output radix for integers to the absolute value of N. The value of RADIX is its
previous setting. (RADIX) gives the current setting without changing it. The initial
setting is 10.

Note that RADIX affects output only. There is no input radix; on input, numbers are
interpreted as decimal unless they are entered in a non-decimal radix with syntax such as
123Q, |b10101, |5r1234 (see Chapter 7). RADIX does not affect the behavior of
UNPACK, etc., unless the value of PRXFLG (below) is T. For example, if PRXFLG is NIL and
the radix is set to 8 with (RADIX 8), the value of (UNPACK 9) is (9), not (1 1).

Using PRINTNUM (below) or the PRINTOUT command .I (below) is often a more
convenient and appropriate way to print a single number in a specified radix than to
globally change RADIX.

24-12

INTERLISP-D REFERENCE MANUAL

(FLTFMT FORMAT) [Function]

Resets the output format for floating point numbers to the FLOAT format FORMAT (see
PRINTNUM below for a description of FLOAT formats). FORMAT=T specifies the default
"free" formatting: some number of significant digits (a function of the implementation) are
printed, with trailing zeros suppressed; numbers with sufficiently large or small
exponents are instead printed in exponent notation.

FLTFMT returns its current setting. (FLTFMT) returns the current setting without
changing it. The initial setting is T.

Note: In Interlisp-D, FLTFMT ignores the WIDTH and PAD fields of the format (they are
implemented only by PRINTNUM).

Whether print name manipulation functions (UNPACK, NCHARS, etc.) use the values of RADIX and
FLTFMT is determined by the variable PRXFLG:

PRXFLG [Variable]

If PRXFLG=NIL (the initial setting), then the "PRIN1" name used by PACK, UNPACK,
MKSTRING, etc., is computed using base 10 for integers and the system default floating
format for floating point numbers, independent of the current setting of RADIX or
FLTFMT. If PRXFLG=T, then RADIX and FLTFMT do dictate the "PRIN1" name of
numbers. Note that in this case, PACK and UNPACK are not inverses.

Examples with (RADIX 8), (FLTFMT ’(FLOAT 4 2)):

With PRXFLG=NIL,

(UNPACK 13) => (1 3)
(PACK ’(A 9)) => A9
(UNPACK 1.2345) => (1 %. 2 3 4 5)

With PRXFLG=T,

(UNPACK 13) => (1 5)
(PACK ’(A 9)) => A11
(UNPACK 1.2345) => (1 %. 2 3)

Note that PRXFLG does not effect the radix of "PRIN2" names, so with (RADIX 8),
(NCHARS 9 T), which uses PRIN2 names, would return 3, (since 9 would print as 11Q)
for either setting of PRXFLG.

Warning: Some system functions will not work correctly if PRXFLG is not NIL. Therefore,
resetting the global value of PRXFLG is not recommended. It is much better to rebind
PRXFLG as a SPECVAR for that part of a program where it needs to be non-NIL.

The basic function for printing numbers under format control is PRINTNUM. Its utility is considerably
enhanced when used in conjunction with the PRINTOUT package, which implements a compact
language for specifying complicated sequences of elementary printing operations, and makes fancy
output formats easy to design and simple to program.

24-13

I/O FUNCTIONS

(PRINTNUM FORMAT NUMBER FILE) [Function]

Prints NUMBER on FILE according to the format FORMAT. FORMAT is a list structure with
one of the forms described below.

If FORMAT is a list of the form (FIX WIDTH RADIX PAD0 LEFTFLUSH), this specifies a FIX
format. NUMBER is rounded to the nearest integer, and then printed in a field WIDTH
characters long with radix set to RADIX (or 10 if RADIX=NIL; note that the setting from
the function RADIX is not used as the default). If PAD0 and LEFTFLUSH are both NIL, the
number is right-justified in the field, and the padding characters to the left of the leading
digit are spaces. If PAD0 is T, the character "0" is used for padding. If LEFTFLUSH is T,
then the number is left-justified in the field, with trailing spaces to fill out WIDTH
characters.

The following examples illustrate the effects of the FIX format options on the number 9
(the vertical bars indicate the field width):

FORMAT: (PRINTNUM FORMAT 9) prints:

(FIX 2) | 9|

(FIX 2 NIL T) |09|

(FIX 12 8 T) |000000000011|

(FIX 5 NIL NIL T) |9 |

If FORMAT is a list of the form (FLOAT WIDTH DECPART EXPPART PAD0 ROUND), this
specifies a FLOAT format. NUMBER is printed as a decimal number in a field WIDTH
characters wide, with DECPART digits to the right of the decimal point. If EXPPART is not
0 (or NIL), the number is printed in exponent notation, with the exponent occupying
EXPPART characters in the field. EXPPART should allow for the character E and an
optional sign to be printed before the exponent digits. As with FIX format, padding on
the left is with spaces, unless PAD0 is T. If ROUND is given, it indicates the digit position at
which rounding is to take place, counting from the leading digit of the number.

Interlisp-D interprets WIDTH=NIL to mean no padding, i.e., to use however much space
the number needs, and interprets DECPART=NIL to mean as many decimal places as
needed.

The following examples illustrate the effects of the FLOAT format options on the number
27.689 (the vertical bars indicate the field width):

FORMAT: (PRINTNUM FORMAT 27.689) prints:

(FLOAT 7 2) | 27.69|

(FLOAT 7 2 NIL 0) |0027.69|

(FLOAT 7 2 2) | 2.77E1|

(FLOAT 11 2 4) | 2.77E+01|

(FLOAT 7 2 NIL NIL 1) | 30.00|

(FLOAT 7 2 NIL NIL 2) | 28.00|

24-14

INTERLISP-D REFERENCE MANUAL

NILNUMPRINTFLG [Variable]

If PRINTNUM’s NUMBER argument is not a number and not NIL, a NON-NUMERIC ARG
error is generated. If NUMBER is NIL, the effect depends on the setting of the variable
NILNUMPRINTFLG. If NILNUMPRINTFLG is NIL, then the error occurs as usual. If it is
non-NIL, then no error occurs, and the value of NILNUMPRINTFLG is printed right-
justified in the field described by FORMAT. This option facilitates the printing of numbers
in aggregates with missing values coded as NIL.

User Defined Printing

Initially, Interlisp only knows how to print in an interesting way objects of type litatom, number,
string, list and stackp. All other types of objects are printed in the form {datatype} followed by the
octal representation of the address of the pointer, a format that cannot be read back in to produce an
equivalent object. When defining user data types (using the DATATYPE record type, Chapter 8), it is
often desirable to specify as well how objects of that type should be printed, so as to make their
contents readable, or at least more informative to the viewer. The function DEFPRINT is used to
specify the printing format of a data type.

(DEFPRINT TYPE FN) [Function]

TYPE is a type name. Whenever a printing function (PRINT, PRIN1, PRIN2, etc.) or a
function requiring a print name (CHCON, NCHARS, etc.) encounters an object of the
indicated type, FN is called with two arguments: the item to be printed and the name of
the stream, if any, to which the object is to be printed. The second argument is NIL on
calls that request the print name of an object without actually printing it.

If FN returns a list of the form (ITEM1 . ITEM2), ITEM1 is printed using PRIN1 (unless
it is NIL), and then ITEM2 is printed using PRIN2 (unless it is NIL). No spaces are
printed between the two items. Typically, ITEM1 is a read macro character.

If FN returns NIL, the datum is printed in the system default manner.

If FN returns T, nothing further is printed; FN is assumed to have printed the object to the
stream itself. Note that this case if permitted only when the second argument passed to
FN is non-NIL; otherwise, there is no destination for FN to do its printing, so it must return
as in one of the other two cases.

Printing Unusual Data Structures

HPRINT (for "Horrible Print") and HREAD provide a mechanism for printing and reading back in
general data structures that cannot normally be dumped and loaded easily, such as (possibly re-
entrant or circular) structures containing user datatypes, arrays, hash tables, as well as list structures.
HPRINT will correctly print and read back in any structure containing any or all of the above, chasing
all pointers down to the level of literal atoms, numbers or strings. HPRINT currently cannot handle
compiled code arrays, stack positions, or arbitrary unboxed numbers.

24-15

I/O FUNCTIONS

HPRINT operates by simulating the Interlisp PRINT routine for normal list structures. When it
encounters a user datatype (see Chapter 8), or an array or hash array, it prints the data contained
therein, surrounded by special characters defined as read macro characters. While chasing the
pointers of a structure, it also keeps a hash table of those items it encounters, and if any item is
encountered a second time, another read macro character is inserted before the first occurrence (by
resetting the file pointer with SETFILEPTR) and all subsequent occurrences are printed as a back
reference using an appropriate macro character. Thus the inverse function, HREAD merely calls the
Interlisp READ routine with the appropriate read table.

(HPRINT EXPR FILE UNCIRCULAR DATATYPESEEN) [Function]

Prints EXPR on FILE. If UNCIRCULAR is non-NIL, HPRINT does no checking for any
circularities in EXPR (but is still useful for dumping arbitrary structures of arrays, hash
arrays, lists, user data types, etc., that do not contain circularities). Specifying
UNCIRCULAR as non-NIL results in a large speed and internal-storage advantage.

Normally, when HPRINT encounters a user data type for the first time, it outputs a
summary of the data type’s declaration. When this is read in, the data type is redeclared.
If DATATYPESEEN is non-NIL, HPRINT assumes that the same data type declarations will
be in force at read time as were at HPRINT time, and not output declarations.

HPRINT is intended primarily for output to random access files, since the algorithm
depends on being able to reset the file pointer. If FILE is not a random access file (and
UNCIRCULAR = NIL), a temporary file, HPRINT.SCRATCH, is opened, EXPR is HPRINTed
on it, and then that file is copied to the final output file and the temporary file is deleted.

You can not use HPRINT to save things that contains pointers to raw storage.
Fontdescriptors contain pointers to raw storage and windows contain pointers to
fontdescriptors. Netiher can therefor be saved with HPRINT.

(HREAD FILE) [Function]

Reads and returns an HPRINT-ed expression from FILE.

(HCOPYALL X) [Function]

Copies data structure X. X may contain circular pointers as well as arbitrary structures.

Note: HORRIBLEVARS and UGLYVARS (Chapter 17) are two file package commands for
dumping and reloading circular and re-entrant data structures. They provide a
convenient interface to HPRINT and HREAD.

When HPRINT is dumping a data structure that contains an instance of an Interlisp
datatype, the datatype declaration is also printed onto the file. Reading such a data
structure with HREAD can cause problems if it redefines a system datatype. Redefining a
system datatype will almost definitely cause serious errors. The Interlisp system
datatypes do not change very often, but there is always a possibility when loading in old
files created under an old Interlisp release.

To prevent accidental system crashes, HREAD will not redefine datatypes. Instead, it will
cause an error "attempt to read DATATYPE with different field

24-16

INTERLISP-D REFERENCE MANUAL

specification than currently defined". Continuing from this error will
redefine the datatype.

Random Access File Operations

For most applications, files are read starting at their beginning and proceeding sequentially, i.e., the
next character read is the one immediately following the last character read. Similarly, files are
written sequentially. However, for files on some devices, it is also possible to read/write characters at
arbitrary positions in a file, essentially treating the file as a large block of auxiliary storage. For
example, one application might involve writing an expression at the beginning of the file, and then
reading an expression from a specified point in its middle. This particular example requires the file be
open for both input and output. However, random file input or output can also be performed on files
that have been opened for only input or only output.

Associated with each file is a "file pointer" that points to the location where the next character is to be
read from or written to. The file position of a byte is the number of bytes that precede it in the file, i.e.,
0 is the position of the beginning of the file. The file pointer to a file is automatically advanced after
each input or output operation. This section describes functions which can be used to reposition the
file pointer on those files that can be randomly accessed. A file used in this fashion is much like an
array in that it has a certain number of addressable locations that characters can be put into or taken
from. However, unlike arrays, files can be enlarged. For example, if the file pointer is positioned at
the end of a file and anything is written, the file "grows." It is also possible to position the file pointer
beyond the end of file and then to write. (If the program attempts to read beyond the end of file, an END
OF FILE error occurs.) In this case, the file is enlarged, and a "hole" is created, which can later be
written into. Note that this enlargement only takes place at the end of a file; it is not possible to make
more room in the middle of a file. In other words, if expression A begins at position 1000, and
expression B at 1100, and the program attempts to overwrite A with expression C, whose printed
representation is 200 bytes long, part of B will be altered.

Warning: File positions are always in terms of bytes, not characters. You should thus be very careful
about computing the space needed for an expression. In particular, NS characters may take multiple
bytes (see below). Also, the end-of-line character (see Chapter 24) may be represented by a different
number of characters in different implementations. Output functions may also introduce end-of-line’s
as a result of LINELENGTH considerations. Therefore NCHARS (see Chapter 2) does not specify how
many bytes an expression takes to print, even ignoring line length considerations.

(GETFILEPTR FILE) [Function]

Returns the current position of the file pointer for FILE, i.e., the byte address at which the
next input/output operation will commence.

(SETFILEPTR FILE ADR) [Function]

Sets the file pointer for FILE to the position ADR; returns ADR. The special value ADR=-1
is interpreted to mean the address of the end of file.

24-17

I/O FUNCTIONS

Note: If a file is opened for output only, the end of file is initially zero, even if
an old file by the same name had existed (see OPENSTREAM, Chapter
24). If a file is opened for both input and output, the initial file pointer
is the beginning of the file, but (SETFILEPTR FILE -1) sets it to the
end of the file. If the file had been opened in append mode by
(OPENSTREAM FILE ’APPEND), the file pointer right after opening
would be set to the end of the existing file, in which case a SETFILEPTR
to position the file at the end would be unnecessary.

(GETEOFPTR FILE) [Function]

Returns the byte address of the end of file, i.e., the number of bytes in the file. Equivalent
to performing (SETFILEPTR FILE -1) and returning (GETFILEPTR FILE) except that
it does not change the current file pointer.

(RANDACCESSP FILE) [Function]

Returns FILE if FILE is randomly accessible, NIL otherwise. The file T is not randomly
accessible, nor are certain network file connections in Interlisp-D. FILE must be open or
an error is generated, FILE NOT OPEN.

(COPYBYTES SRCFIL DSTFIL START END) [Function]

Copies bytes from SRCFIL to DSTFIL, starting from position START and up to but not
including position END. Both SRCFIL and DSTFIL must be open. Returns T.

If END=NIL, START is interpreted as the number of bytes to copy (starting at the current
position). If START is also NIL, bytes are copied until the end of the file is reached.

Warning: COPYBYTES does not take any account of multi-byte NS characters (see Chapter
2). COPYCHARS (below) should be used whenever copying information that might include
NS characters.

(COPYCHARS SRCFIL DSTFIL START END) [Function]

Like COPYBYTES except that it copies NS characters (see Chapter 2), and performs the
proper conversion if the end-of-line conventions of SRCFIL and DSTFIL are not the same
(see Chapter 24). START and END are interpreted the same as with COPYBYTES, i.e., as
byte (not character) specifications in SRCFIL. The number of bytes actually output to
DSTFIL might be more or less than the number of bytes specified by START and END,
depending on what the end-of-line conventions are. In the case where the end-of-line
conventions happen to be the same, COPYCHARS simply calls COPYBYTES.

(FILEPOS STR FILE START END SKIP TAIL CASEARRAY) [Function]

Analogous to STRPOS (see Chapter 4), but searches a file rather than a string. FILEPOS
searches FILE for the string STR. Search begins at START (or the current position of the
file pointer, if START=NIL), and goes to END (or the end of FILE, if END=NIL). Returns
the address of the start of the match, or NIL if not found.

24-18

INTERLISP-D REFERENCE MANUAL

SKIP can be used to specify a character which matches any character in the file. If TAIL is
T, and the search is successful, the value is the address of the first character after the
sequence of characters corresponding to STR, instead of the starting address of the
sequence. In either case, the file is left so that the next i/o operation begins at the address
returned as the value of FILEPOS.

CASEARRAY should be a "case array" that specifies that certain characters should be
transformed to other characters before matching. Case arrays are returned by
CASEARRAY or SEPRCASE below. CASEARRAY=NIL means no transformation will be
performed.

A case array is an implementation-dependent object that is logically an array of character
codes with one entry for each possible character. FILEPOS maps each character in the file
"through" CASEARRAY in the sense that each character code is transformed into the
corresponding character code from CASEARRAY before matching. Thus if two characters
map into the same value, they are treated as equivalent by FILEPOS. CASEARRAY and
SETCASEARRAY provide an implementation-independent interface to case arrays.

For example, to search without regard to upper and lower case differences, CASEARRAY
would be a case array where all characters map to themselves, except for lower case
characters, whose corresponding elements would be the upper case characters. To search
for a delimited atom, one could use " ATOM " as the pattern, and specify a case array in
which all of the break and separator characters mapped into the same code as space.

For applications calling for extensive file searches, the function FFILEPOS is often faster than
FILEPOS.

(FFILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) [Function]

Like FILEPOS, except much faster in most applications. FFILEPOS is an implementation
of the Boyer-Moore fast string searching algorithm. This algorithm preprocesses the
string being searched for and then scans through the file in steps usually equal to the
length of the string. Thus, FFILEPOS speeds up roughly in proportion to the length of the
string, e.g., a string of length 10 will be found twice as fast as a string of length 5 in the
same position.

Because of certain fixed overheads, it is generally better to use FILEPOS for short searches
or short strings.

(CASEARRAY OLDARRAY) [Function]

Creates and returns a new case array, with all elements set to themselves, to indicate the
identity mapping. If OLDARRAY is given, it is reused.

(SETCASEARRAY CASEARRAY FROMCODE TOCODE) [Function]

Modifies the case array CASEARRAY so that character code FROMCODE is mapped to
character code TOCODE.

24-19

I/O FUNCTIONS

(GETCASEARRAY CASEARRAY FROMCODE) [Function]

Returns the character code that FROMCODE is mapped to in CASEARRAY.

(SEPRCASE CLFLG) [Function]

Returns a new case array suitable for use by FILEPOS or FFILEPOS in which all of the
break/separators of FILERDTBL are mapped into character code zero. If CLFLG is non-
NIL, then all CLISP characters are mapped into this character as well. This is useful for
finding a delimited atom in a file. For example, if PATTERN is " FOO ", and (SEPRCASE
T) is used for CASEARRAY, then FILEPOS will find "(FOO_".

UPPERCASEARRAY [Variable]

Value is a case array in which every lowercase character is mapped into the
corresponding uppercase character. Useful for searching text files.

Input/Output Operations with Characters and Bytes

Interlisp-D supports the 16-bit NS character set (see Chapter 2). All of the standard string and print
name functions accept litatoms and strings containing NS characters. In almost all cases, a program
does not have to distinguish between NS characters or 8-bit characters. The exception to this rule is
the handling of input/output operations.

Interlisp-D uses two ways of writing 16-bit NS characters on files. One way is to write the full 16-bits
(two bytes) every time a character is output. The other way is to use "run-encoding." Each 16 NS
character can be decoded into a character set (an integer from 0 to 254 inclusive) and a character
number (also an integer from 0 to 254 inclusive). In run-encoding, the byte 255 (illegal as either a
character set number or a character number) is used to signal a change to a given character set, and
the following bytes are all assumed to come from the same character set (until the next change-
character set sequence). Run-encoding can reduce the number of bytes required to encode a string of
NS characters, as long as there are long sequences of characters from the same character set (usually
the case).

Note that characters are not the same as bytes. A single character can take anywhere from one to four
bytes bytes, depending on whether it is in the same character set as the preceeding character, and
whether run-encoding is enabled. Programs which assume that characters are equal to bytes must be
changed to work with NS characters.

The functions BIN and BOUT (see above) should only be used to read and write single eight-bit bytes.
The functions READCCODE and PRINTCCODE (see above) should be used to read and write single
character codes, interpreting run-encoded NS characters. COPYBYTES should only be used to copy
blocks of 8-bit data; COPYCHARS should be used to copy characters. Most I/O functions (READC,
PRIN1, etc.) read or write 16-bit NS characters.

24-20

INTERLISP-D REFERENCE MANUAL

The use of NS characters has serious consequences for any program that uses file pointers to access a
file in a random access manner. At any point when a file is being read or written, it has a "current
character set." If the file pointer is changed with SETFILEPTR to a part of the file with a different
character set, any characters read or written may have the wrong character set. The current character
set can be accessed with the following function:

(CHARSET STREAM CHARACTERSET) [Function]

Returns the current character set of the stream STREAM. If CHARACTERSET is non-NIL,
the current character set for STREAM is set. Note that for output streams this may cause
bytes to be written to the stream.

If CHARACTERSET is T, run encoding for STREAM is disabled: both the character set and
the character number (two bytes total) will be written to the stream for each character
printed.

PRINTOUT

Interlisp provides many facilities for controlling the format of printed output. By executing various
sequences of PRIN1, PRIN2, TAB, TERPRI, SPACES, PRINTNUM, and PRINTDEF, almost any effect can
be achieved. PRINTOUT implements a compact language for specifying complicated sequences of
these elementary printing functions. It makes fancy output formats easy to design and simple to
program.

PRINTOUT is a CLISP word (like FOR and IF) for interpreting a special printing language in which
you can describe the kinds of printing desired. The description is translated by DWIMIFY to the
appropriate sequence of PRIN1, TAB, etc., before it is evaluated or compiled. PRINTOUT printing
descriptions have the following general form:

(PRINTOUT STREAM PRINTCOM1 ... PRINTCOMN)

STREAM is evaluated to obtain the stream to which the output from this specification is directed. The
PRINTOUT commands are strung together, one after the other without punctuation, after STREAM.
Some commands occupy a single position in this list, but many commands expect to find arguments
following the command name in the list. The commands fall into several logical groups: one set deals
with horizontal and vertical spacing, another group provides controls for certain formatting
capabilities (font changes and subscripting), while a third set is concerned with various ways of
actually printing items. Finally, there is a command that permits escaping to a simple Lisp evaluation
in the middle of a PRINTOUT form. The various commands are described below. The following
examples give a general flavor of how PRINTOUT is used:

Example 1: Suppose you want to print out on the terminal the values of three variables, X, Y, and Z,
separated by spaces and followed by a carriage return. This could be done by:

24-21

I/O FUNCTIONS

(PRIN1 X T)
(SPACES 1 T)
(PRIN1 Y T)
(SPACES 1 T)
(PRIN1 Z T)
(TERPRI T)

or by the more concise PRINTOUT form:

(PRINTOUT T X , Y , Z T)

Here the first T specifies output to the terminal, the commas cause single spaces to be printed, and the
final T specifies a TERPRI. The variable names are not recognized as special PRINTOUT commands,
so they are printed using PRIN1 by default.

Example 2: Suppose the values of X and Y are to be pretty-printed lined up at position 10, preceded
by identifying strings. If the output is to go to the primary output stream, you could write either:

(PRIN1 "X =")
(PRINTDEF X 10 T)
(TERPRI)
(PRIN1 "Y =")
(PRINTDEF Y 10 T)
(TERPRI)

or the equivalent:

(PRINTOUT NIL "X =" 10 .PPV X T
 "Y =" 10 .PPV Y T)

Since strings are not recognized as special commands, "X =" is also printed with PRIN1 by default.
The positive integer means TAB to position 10, where the .PPV command causes the value of X to be
prettyprinted as a variable. By convention, special atoms used as PRINTOUT commands are prefixed
with a period. The T causes a carriage return, so the Y information is printed on the next line.

Example 3. As a final example, suppose that the value of X is an integer and the value of Y is a
floating-point number. X is to be printed right-flushed in a field of width 5 beginning at position 15,
and Y is to be printed in a field of width 10 also starting at position 15 with 2 places to the right of the
decimal point. Furthermore, suppose that the variable names are to appear in the font class named
BOLDFONT and the values in font class SMALLFONT. The program in ordinary Interlisp that would
accomplish these effects is too complicated to include here. With PRINTOUT, one could write:

(PRINTOUT NIL
 .FONT BOLDFONT "X =" 15

24-22

INTERLISP-D REFERENCE MANUAL

 .FONT SMALLFONT .I5 X T
 .FONT BOLDFONT "Y =" 15
 .FONT SMALLFONT .F10.2 Y T
 .FONT BOLDFONT)

The .FONT commands do whatever is necessary to change the font on a multi-font output device. The
.I5 command sets up a FIX format for a call to the function PRINTNUM (see above) to print X in the
desired format. The .F10.2 specifies a FLOAT format for PRINTNUM.

Horizontal Spacing Commands

The horizontal spacing commands provide convenient ways of calling TAB and SPACES. In the
following descriptions, N stands for a literal positive integer (not for a variable or expression whose
value is an integer).

N (N a number) [PRINTOUT Command]

Used for absolute spacing. It results in a TAB to position N (literally, a (TAB N)). If the
line is currently at position N or beyond, the file will be positioned at position N on the
next line.

.TAB POS [PRINTOUT Command]

Specifies TAB to position (the value of) POS. This is one of several commands whose effect
could be achieved by simply escaping to Lisp, and executing the corresponding form. It is
provided as a separate command so that the PRINTOUT form is more concise and is
prettyprinted more compactly. Note that .TAB N and N, where N is an integer, are
equivalent.

.TAB0 POS [PRINTOUT Command]

Like .TAB except that it can result in zero spaces (i.e. the call to TAB specifies
MINSPACES=0).

-N (N a number) [PRINTOUT Command]

Negative integers indicate relative (as opposed to absolute) spacing. Translates as
(SPACES |N|).

, [PRINTOUT Command]
,, [PRINTOUT Command]
,,, [PRINTOUT Command]

(1, 2 or 3 commas) Provides a short-hand way of specifying 1, 2 or 3 spaces, i.e., these
commands are equivalent to -1, -2, and -3, respectively.

.SP DISTANCE [PRINTOUT Command]

Translates as (SPACES DISTANCE). Note that .SP N and -N, where N is an integer, are
equivalent.

24-23

I/O FUNCTIONS

Vertical Spacing Commands

Vertical spacing is obtained by calling TERPRI or printing form-feeds. The relevant commands are:

T [PRINTOUT Command]

Translates as (TERPRI), i.e., move to position 0 (the first column) of the next line. To
print the letter T, use the string "T".

.SKIP LINES [PRINTOUT Command]

Equivalent to a sequence of LINES (TERPRI)’s. The .SKIP command allows for
skipping large constant distances and for computing the distance to be skipped.

.PAGE [PRINTOUT Command]

Puts a form-feed (Control-L) out on the file. Care is taken to make sure that Interlisp’s
view of the current line position is correctly updated.

Special Formatting Controls

There are a small number of commands for invoking some of the formatting capabilities of multi-font
output devices. The available commands are:

.FONT FONTSPEC [PRINTOUT Command]

Changes printing to the font FONTSPEC, which can be a font descriptor, a "font list" such
as ’(MODERN 10), an image stream (coerced to its current font), or a windows (coerced
to the current font of its display stream). The DSPFONT is changed permanently. See fonts
(Chapter 27) for more information.

FONTSPEC may also be a positive integer N, which is taken as an abbreviated reference to
the font class named FONTN (e.g. 1 => FONT1).

.SUP [PRINTOUT Command]

Specifies superscripting. All subsequent characters are printed above the base of the
current line. Note that this is absolute, not relative: a .SUP following a .SUP is a no-op.

.SUB [PRINTOUT Command]

Specifies subscripting. Subsequent printing is below the base of the current line. As with
superscripting, the effect is absolute.

.BASE [PRINTOUT Command]

Moves printing back to the base of the current line. Un-does a previous .SUP or .SUB; a
no-op, if printing is currently at the base.

24-24

INTERLISP-D REFERENCE MANUAL

Printing Specifications

The value of any expression in a PRINTOUT form that is not recognized as a command itself or as a
command argument is printed using PRIN1 by default. For example, title strings can be printed by
simply including the string as a separate PRINTOUT command, and the values of variables and forms
can be printed in much the same way. Note that a literal integer, say 51, cannot be printed by
including it as a command, since it would be interpreted as a TAB; the desired effect can be obtained
by using instead the string specification "51", or the form (QUOTE 51).

For those instances when PRIN1 is not appropriate, e.g., PRIN2 is required, or a list structures must be
prettyprinted, the following commands are available:

.P2 THING [PRINTOUT Command]

Causes THING to be printed using PRIN2; translates as (PRIN2 THING).

.PPF THING [PRINTOUT Command]

Causes THING to be prettyprinted at the current line position via PRINTDEF (see Chapter
26). The call to PRINTDEF specifies that THING is to be printed as if it were part of a
function definition. That is, SELECTQ, PROG, etc., receive special treatment.

.PPV THING [PRINTOUT Command]

Prettyprints THING as a variable; no special interpretation is given to SELECTQ, PROG, etc.

.PPFTL THING [PRINTOUT Command]

Like .PPF, but prettyprints THING as a tail, that is, without the initial and final
parentheses if it is a list. Useful for prettyprinting sub-lists of a list whose other elements
are formatted with other commands.

.PPVTL THING [PRINTOUT Command]

Like .PPV, but prettyprints THING as a tail.

Paragraph Format

Interlisp’s prettyprint routines are designed to display the structure of expressions, but they are not
really suitable for formatting unstructured text. If a list is to be printed as a textual paragraph, its
internal structure is less important than controlling its left and right margins, and the indentation of
its first line. The .PARA and .PARA2 commands allow these parameters to be conveniently specified.

.PARA LMARG RMARG LIST [PRINTOUT Command]

Prints LIST in paragraph format, using PRIN1. Translates as (PRINTPARA LMARG RMARG
LIST) (see below).

24-25

I/O FUNCTIONS

Example: (PRINTOUT T 10 .PARA 5 -5 LST) will print the elements of LST as a
paragraph with left margin at 5, right margin at (LINELENGTH)-5, and the first line
indented to 10.

.PARA2 LMARG RMARG LIST [PRINTOUT Command]

Print as paragraph using PRIN2 instead of PRIN1. Translates as (PRINTPARA LMARG
RMARG LIST T).

Right-Flushing

Two commands are provided for printing simple expressions flushed-right against a specified line
position, using the function FLUSHRIGHT (see below). They take into account the current position, the
number of characters in the print-name of the expression, and the position the expression is to be flush
against, and then print the appropriate number of spaces to achieve the desired effect. Note that this
might entail going to a new line before printing. Note also that right-flushing of expressions longer
than a line (e.g. a large list) makes little sense, and the appearance of the output is not guaranteed.

.FR POS EXPR [PRINTOUT Command]

Flush-right using PRIN1. The value of POS determines the position that the right end of
EXPR will line up at. As with the horizontal spacing commands, a negative position
number means |POS| columns from the current position, a positive number specifies the
position absolutely. POS=0 specifies the right-margin, i.e. is interpreted as
(LINELENGTH).

.FR2 POS EXPR [PRINTOUT Command]

Flush-right using PRIN2 instead of PRIN1.

Centering

Commands for centering simple expressions between the current line position and another specified
position are also available. As with right flushing, centering of large expressions is not guaranteed.

.CENTER POS EXPR [PRINTOUT Command]

Centers EXPR between the current line position and the position specified by the value of
POS. A positive POS is an absolute position number, a negative POS specifies a position
relative to the current position, and 0 indicates the right-margin. Uses PRIN1 for printing.

.CENTER2 POS EXPR [PRINTOUT Command]

Centers using PRIN2 instead of PRIN1.

24-26

INTERLISP-D REFERENCE MANUAL

Numbering

The following commands provide FORTRAN-like formatting capabilities for integer and floating-
point numbers. Each command specifies a printing format and a number to be printed. The format
specification translates into a format-list for the function PRINTNUM.

.IFORMAT NUMBER [PRINTOUT Command]

Specifies integer printing. Translates as a call to the function PRINTNUM with a FIX
format-list constructed from FORMAT. The atomic format is broken apart at internal
periods to form the format-list. For example, .I5.8.T yields the format-list (FIX 5 8
T), and the command sequence (PRINTOUT T .I5.8.T FOO) translates as
(PRINTNUM ’(FIX 5 8 T) FOO). This expression causes the value of FOO to be
printed in radix 8 right-flushed in a field of width 5, with 0’s used for padding on the left.
Internal NIL’s in the format specification may be omitted, e.g., the commands .I5..T and
.I5.NIL.T are equivalent.

The format specification .I1 is often useful for forcing a number to be printed in radix 10
(but not otherwise specially formatted), independent of the current setting of RADIX.

.F FORMAT NUMBER [PRINTOUT Command]

Specifies floating-number printing. Like the .I format command, except translates with a
FLOAT format-list.

.N FORMAT NUMBER [PRINTOUT Command]

The .I and .F commands specify calls to PRINTNUM with quoted format specifications.
The .N command translates as (PRINTNUM FORMAT NUMBER), i.e., it permits the format to
be the value of some expression. Note that, unlike the .I and .F commands, FORMAT is a
separate element in the command list, not part of an atom beginning with .N.

Escaping to Lisp

There are many reasons for taking control away from PRINTOUT in the middle of a long printing
expression. Common situations involve temporary changes to system printing parameters (e.g.
LINELENGTH), conditional printing (e.g. print FOO only if FIE is T), or lower-level iterative printing
within a higher-level print specification.

FORM [PRINTOUT Command]

The escape command. FORM is an arbitrary Lisp expression that is evaluated within the
context established by the PRINTOUT form, i.e., FORM can assume that the primary output
stream has been set to be the FILE argument to PRINTOUT. Note that nothing is done
with the value of FORM; any printing desired is accomplished by FORM itself, and the value
is discarded.

Note: Although PRINTOUT logically encloses its translation in a RESETFORM (Chapter
14) to change the primary output file to the FILE argument (if non-NIL), in most

24-27

I/O FUNCTIONS

cases it can actually pass FILE (or a locally bound variable if FILE is a non-
trivial expression) to each printing function. Thus, the RESETFORM is only
generated when the # command is used, or user-defined commands (below) are
used. If many such occur in repeated PRINTOUT forms, it may be more efficient
to embed them all in a single RESETFORM which changes the primary output file,
and then specify FILE=NIL in the PRINTOUT expressions themselves.

User-Defined Commands

The collection of commands and options outlined above is aimed at fulfilling all common printing
needs. However, certain applications might have other, more specialized printing idioms, so a facility
is provided whereby you can define new commands. This is done by adding entries to the global list
PRINTOUTMACROS to define how the new commands are to be translated.

PRINTOUTMACROS [Variable]

PRINTOUTMACROS is an association-list whose elements are of the form (COMM FN).
Whenever COMM appears in command position in the sequence of PRINTOUT commands
(as opposed to an argument position of another command), FN is applied to the tail of the
command-list (including the command).

After inspecting as much of the tail as necessary, the function must return a list whose
CAR is the translation of the user-defined command and its arguments, and whose CDR is
the list of commands still remaining to be translated in the normal way.

For example, suppose you want to define a command "?", which will cause its single
argument to be printed with PRIN1 only if it is not NIL. This can be done by entering (?
?TRAN) on PRINTOUTMACROS, and defining the function ?TRAN as follows:

(DEFINEQ (?TRAN (COMS)
 (CONS
 (SUBST (CADR COMS) ’ARG
 ’(PROG ((TEMP ARG))
 (COND (TEMP (PRIN1 TEMP)))))
 (CDDR COMS))]

Note that ?TRAN does not do any printing itself; it returns a form which, when evaluated
in the proper context, will perform the desired action. This form should direct all printing
to the primary output file.

Special Printing Functions

The paragraph printing commands are translated into calls on the function PRINTPARA, which may
also be called directly:

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) [Function]

Prints LIST on FILE in line-filled paragraph format with its first element beginning at the
current line position and ending at or before RMARG, and with subsequent lines appearing

24-28

INTERLISP-D REFERENCE MANUAL

between LMARG and RMARG. If P2FLAG is non-NIL, prints elements using PRIN2,
otherwise PRIN1. If PARENFLAG is non-NIL, then parentheses will be printed around the
elements of LIST.

If LMARG is zero or positive, it is interpreted as an absolute column position. If it is
negative, then the left margin will be at |LMARG|+(POSITION). If LMARG=NIL, the left
margin will be at (POSITION), and the paragraph will appear in block format.

If RMARG is positive, it also is an absolute column position (which may be greater than the
current (LINELENGTH)). Otherwise, it is interpreted as relative to (LINELENGTH), i.e.,
the right margin will be at (LINELENGTH)+|RMARG|. Example: (TAB 10)
(PRINTPARA 5 -5 LST T) will PRIN2 the elements of LST in a paragraph with the
first line beginning at column 10, subsequent lines beginning at column 5, and all lines
ending at or before (LINELENGTH)-5.

The current (LINELENGTH) is unaffected by PRINTPARA, and upon completion, FILE
will be positioned immediately after the last character of the last item of LIST.
PRINTPARA is a no-op if LIST is not a list.

The right-flushing and centering commands translate as calls to the function FLUSHRIGHT:

(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE) [Function]

If CENTERFLAG=NIL, prints X right-flushed against position POS on FILE; otherwise,
centers X between the current line position and POS. Makes sure that it spaces over at
least MIN spaces before printing by doing a TERPRI if necessary; MIN=NIL is equivalent
to MIN=1. A positive POS indicates an absolute position, while a negative POS signifies
the position which is |POS| to the right of the current line position. POS=0 is interpreted
as (LINELENGTH), the right margin.

READFILE and WRITEFILE

For those applications where you simply want to simply read all of the expressions on a file, and not
evaluate them, the function READFILE is available:

(READFILE FILE RDTBL ENDTOKEN) [NoSpread Function]

Reads successive expressions from file using READ (with read table RDTBL) until the
single litatom ENDTOKEN is read, or an end of file encountered. Returns a list of these
expressions.

If RDTBL is not specified, it defaults to FILERDTBL. If ENDTOKEN is not specified, it
defaults to the litatom STOP.

(WRITEFILE X FILE) [Function]

Writes a date expression onto FILE, followed by successive expressions from X, using
FILERDTBL as a read table. If X is atomic, its value is used. If FILE is not open, it is

24-29

I/O FUNCTIONS

opened. If FILE is a list, (CAR FILE) is used and the file is left opened. Otherwise, when
X is finished, the litatom STOP is printed on FILE and it is closed. Returns FILE.

(ENDFILE FILE) [Function]

Prints STOP on FILE and closes it.

Read Tables

Many Interlisp input functions treat certain characters in special ways. For example, READ recognizes
that the right and left parenthesis characters are used to specify list structures, and that the quote
character is used to delimit text strings. The Interlisp input and (to a certain extent) output routines
are table driven by read tables. Read tables are objects that specify the syntactic properties of
characters for input routines. Since the input routines parse character sequences into objects, the read
table in use determines which sequences are recognized as literal atoms, strings, list structures, etc.

Most Interlisp input functions take an optional read table argument, which specifies the read table to
use when reading an expression. If NIL is given as the read table, the "primary read table" is used. If
T is specified, the system terminal read table is used. Some functions will also accept the atom ORIG
(not the value of ORIG) as indicating the "original" system read table. Some output functions also take
a read table argument. For example, PRIN2 prints an expression so that it would be read in correctly
using a given read table.

The Interlisp-D system uses the following read tables: T for input/output from terminals, the value of
FILERDTBL for input/output from files, the value of EDITRDTBL for input from terminals while in
the tty-based editor, the value of DEDITRDTBL for input from terminals while in the display-based
editor, and the value of CODERDTBL for input/output from compiled files. These five read tables are
initially copies of the ORIG read table, with changes made to some of them to provide read macros
that are specific to terminal input or file input. Using the functions described below, you may further
change, reset, or copy these tables. However, in the case of FILERDTBL and CODERDTBL, you are
cautioned that changing these tables may prevent the system from being able to read files made with
the original tables, or prevent users possessing only the standard tables from reading files made using
the modified tables.

You can also create new read tables, and either explicitly pass them to input/output functions as
arguments, or install them as the primary read table, via SETREADTABLE, and then not specify a
RDTBL argument, i.e., use NIL.

Read Table Functions

(READTABLEP RDTBL) [Function]

Returns RDTBL if RDTBL is a real read table (not T or ORIG), otherwise NIL.

24-30

INTERLISP-D REFERENCE MANUAL

(GETREADTABLE RDTBL) [Function]

If RDTBL=NIL, returns the primary read table. If RDTBL=T, returns the system terminal
read table. If RDTBL is a real read table, returns RDTBL. Otherwise, generates an ILLEGAL
READTABLE error.

(SETREADTABLE RDTBL FLG) [Function]

Sets the primary read table to RDTBL. If FLG=T, SETREADTABLE sets the system terminal
read table, T. Note that you can reset the other system read tables with SETQ, e.g., (SETQ
FILERDTBL (GETREADTABLE)).

Generates an ILLEGAL READTABLE error if RDTBL is not NIL, T, or a real read table.
Returns the previous setting of the primary read table, so SETREADTABLE is suitable for
use with RESETFORM (Chapter 14).

(COPYREADTABLE RDTBL) [Function]

Returns a copy of RDTBL. RDTBL can be a real read table, NIL, T, or ORIG (in which case
COPYREADTABLE returns a copy of the original system read table), otherwise
COPYREADTABLE generates an ILLEGAL READTABLE error.

Note that COPYREADTABLE is the only function that creates a read table.

(RESETREADTABLE RDTBL FROM) [Function]

Copies (smashes) FROM into RDTBL. FROM and RDTBL can be NIL, T, or a real read table.
In addition, FROM can be ORIG, meaning use the system’s original read table.

Syntax Classes

A read table is an object that contains information about the "syntax class" of each character. There are
nine basic syntax classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET,
STRINGDELIM, ESCAPE, BREAKCHAR, SEPRCHAR, and OTHER, each associated with a primitive
syntactic property. In addition, there is an unlimited assortment of user-defined syntax classes,
known as "read macros". The basic syntax classes are interpreted as follows:

LEFTPAREN (normally left parenthesis) Begins list structure.

RIGHTPAREN (normally right parenthesis) Ends list structure.

LEFTBRACKET (normally left bracket) Begins list structure. Also matches RIGHTBRACKET
characters.

RIGHTBRACKET (normally left bracket) Ends list structure. Can close an arbitrary numbers of
LEFTPAREN lists, back to the last LEFTBRACKET.

STRINGDELIM (normally double quote) Begins and ends text strings. Within the string, all
characters except for the one(s) with class ESCAPE are treated as ordinary, i.e.,
interpreted as if they were of syntax class OTHER. To include the string
delimiter inside a string, prefix it with the ESCAPE character.

24-31

I/O FUNCTIONS

ESCAPE (normally percent sign) Inhibits any special interpretation of the next
character, i.e., the next character is interpreted to be of class OTHER,
independent of its normal syntax class.

BREAKCHAR (None initially) Is a break character, i.e., delimits atoms, but is otherwise an
ordinary character.

SEPRCHAR (space, carriage return, etc.) Delimits atoms, and is otherwise ignored.

OTHER Characters that are not otherwise special belong to the class OTHER.

Characters of syntax class LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET, and
STRINGDELIM are all break characters. That is, in addition to their interpretation as delimiting list or
string structures, they also terminate the reading of an atom. Characters of class BREAKCHAR serve
only to terminate atoms, with no other special meaning. In addition, if a break character is the first
non-separator encountered by RATOM, it is read as a one-character atom. In order for a break character
to be included in an atom, it must be preceded by the ESCAPE character.

Characters of class SEPRCHAR also terminate atoms, but are otherwise completely ignored; they can be
thought of as logically spaces. As with break characters, they must be preceded by the ESCAPE
character in order to appear in an atom.

For example, if $ were a break character and * a separator character, the input stream
ABC**DEF$GH*$$ would be read by six calls to RATOM returning respectively ABC, DEF, $, GH, $, $.

Although normally there is only one character in a read table having each of the list- and string-
delimiting syntax classes (such as LEFTPAREN), it is perfectly acceptable for any character to have any
syntax class, and for more than one to have the same class.

Note that a "syntax class" is an abstraction: there is no object referencing a collection of characters
called a syntax class. Instead, a read table provides the association between a character and its syntax
class, and the input/output routines enforce the abstraction by using read tables to drive the parsing.

The functions below are used to obtain and set the syntax class of a character in a read table. CH can
either be a character code (a integer), or a character (a single-character atom). Single-digit integers are
interpreted as character codes, rather than as characters. For example, 1 indicates Control-A, and 49
indicates the character 1. Note that CH can be a full sixteen-bit NS character (see Chapter 2).

Note: Terminal tables, described in Chapter 30, also associate characters with syntax
classes, and they can also be manipulated with the functions below. The set of
read table and terminal table syntax classes are disjoint, so there is never any
ambiguity about which type of table is being referred to.

(GETSYNTAX CH TABLE) [Function]

Returns the syntax class of CH, a character or a character code, with respect to TABLE.
TABLE can be NIL, T, ORIG, or a real read table or terminal table.

24-32

INTERLISP-D REFERENCE MANUAL

CH can also be a syntax class, in which case GETSYNTAX returns a list of the character
codes in TABLE that have that syntax class.

(SETSYNTAX CHAR CLASS TABLE) [Function]

Sets the syntax class of CHAR, a character or character code, in TABLE. TABLE can be
either NIL, T, or a real read table or terminal table. SETSYNTAX returns the previous
syntax class of CHAR. CLASS can be any one of the following:

• The name of one of the basic syntax classes.

• A list, which is interpreted as a read macro (see below).

• NIL, T, ORIG, or a real read table or terminal table, which means to give CHAR
the syntax class it has in the table indicated by CLASS. For example,
(SETSYNTAX ’%(’ORIG TABLE) gives the left parenthesis character in
TABLE the same syntax class that it has in the original system read table.

• A character code or character, which means to give CHAR the same syntax
class as the character CHAR in TABLE. For example, (SETSYNTAX ’{ ’%[
TABLE) gives the left brace character the same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) [Function]

CODE is a character code; TABLE is NIL, T, or a real read table or terminal table. Returns T
if CODE has the syntax class CLASS in TABLE; NIL otherwise.

CLASS can also be a read macro type (MACRO, SPLICE, INFIX), or a read macro option
(FIRST, IMMEDIATE, etc.), in which case SYNTAXP returns T if the syntax class is a read
macro with the specified property.

SYNTAXP will not accept a character as an argument, only a character code.

For convenience in use with SYNTAXP, the atom BREAK may be used to refer to all break
characters, i.e., it is the union of LEFTPAREN, RIGHTPAREN, LEFTBRACKET,
RIGHTBRACKET, STRINGDELIM, and BREAKCHAR. For purely symmetrical reasons, the
atom SEPR corresponds to all separator characters. However, since the only separator
characters are those that also appear in SEPRCHAR, SEPR and SEPRCHAR are equivalent.

Note that GETSYNTAX never returns BREAK or SEPR as a value although SETSYNTAX and
SYNTAXP accept them as arguments. Instead, GETSYNTAX returns one of the disjoint basic
syntax classes that comprise BREAK. BREAK as an argument to SETSYNTAX is interpreted
to mean BREAKCHAR if the character is not already of one of the BREAK classes. Thus, if %(
is of class LEFTPAREN, then (SETSYNTAX ’%(’BREAK) doesn’t do anything, since %(
is already a break character, but (SETSYNTAX ’%(’BREAKCHAR) means make %(be
just a break character, and therefore disables the LEFTPAREN function of %(. Similarly, if
one of the format characters is disabled completely, e.g., by (SETSYNTAX ’%(’OTHER),
then (SETSYNTAX ’%(’BREAK) would make %(be only a break character; it would not
restore %(as LEFTPAREN.

24-33

I/O FUNCTIONS

The following functions provide a way of collectively accessing and setting the separator
and break characters in a read table:

(GETSEPR RDTBL) [Function]

Returns a list of separator character codes in RDTBL. Equivalent to (GETSYNTAX ’SEPR
RDTBL).

(GETBRK RDTBL) [Function]

Returns a list of break character codes in RDTBL. Equivalent to (GETSYNTAX ’BREAK
RDTBL).

(SETSEPR LST FLG RDTBL) [Function]

Sets or removes the separator characters for RDTBL. LST is a list of charactors or character
codes. FLG determines the action of SETSEPR as follows: If FLG=NIL, makes RDTBL have
exactly the elements of LST as separators, discarding from RDTBL any old separator
characters not in LST. If FLG=0, removes from RDTBL as separator characters all elements
of LST. This provides an "UNSETSEPR". If FLG=1, makes each of the characters in LST be
a separator in RDTBL.

If LST=T, the separator characters are reset to be those in the system’s read table for
terminals, regardless of the value of FLG, i.e., (SETSEPR T) is equivalent to (SETSEPR
(GETSEPR T)). If RDTBL is T, then the characters are reset to those in the original
system table.

Returns NIL.

(SETBRK LST FLG RDTBL) [Function]

Sets the break characters for RDTBL. Similar to SETSEPR.

As with SETSYNTAX to the BREAK class, if any of the list- or string-delimiting break
characters are disabled by an appropriate SETBRK (or by making it be a separator
character), its special action for READ will not be restored by simply making it be a break
character again with SETBRK. However, making these characters be break characters
when they already are will have no effect.

The action of the ESCAPE character (normally %) is not affected by SETSEPR or SETBRK.
It can be disabled by setting its syntax to the class OTHER, and other characters can be
used for escape on input by assigning them the class ESCAPE. As of this writing,
however, there is no way to change the output escape character; it is "hardwired" as %.
That is, on output, characters of special syntax that need to be preceded by the ESCAPE
character will always be preceded by %, independent of the syntax of % or which, if any
characters, have syntax ESCAPE.

The following function can be used for defeating the action of the ESCAPE character or
characters:

24-34

INTERLISP-D REFERENCE MANUAL

(ESCAPE FLG RDTBL) [Function]

If FLG=NIL, makes characters of class ESCAPE behave like characters of class OTHER on
input. Normal setting is (ESCAPE T). ESCAPE returns the previous setting.

Read Macros

This is a description of the OLD-INTERLISP-T read macros. Read macros are user-defined syntax
classes that can cause complex operations when certain characters are read. Read macro characters
are defined by specifying as a syntax class an expression of the form:

(TYPE OPTION1 ... OPTIONN FN)

where TYPE is one of MACRO, SPLICE, or INFIX, and FN is the name of a function or a lambda
expression. Whenever READ encounters a read macro character, it calls the associated function, giving
it as arguments the input stream and read table being used for that call to READ. The interpretation of
the value returned depends on the type of read macro:

MACRO This is the simplest type of read macro. The result returned from the macro is
treated as the expression to be read, instead of the read macro character.
Often the macro reads more input itself. For example, in order to cause
~EXPR to be read as (NOT EXPR), one could define ~ as the read macro:

[MACRO (LAMBDA (FL RDTBL)
 (LIST ’NOT (READ FL RDTBL]

SPLICE The result (which should be a list or NIL) is spliced into the input using
NCONC. For example, if $ is defined by the read macro:

(SPLICE (LAMBDA NIL (APPEND FOO)))

and the value of FOO is (A B C), then when you input (X $ Y), the result
will be (X A B C Y).

INFIX The associated function is called with a third argument, which is a list, in
TCONC format (Chapter 3), of what has been read at the current level of list
nesting. The function’s value is taken as a new TCONC list which replaces the
old one. For example, the infix operator + could be defined by the read
macro:

(INFIX (LAMBDA (FL RDTBL Z)
 (RPLACA (CDR Z)
 (LIST (QUOTE IPLUS)
 (CADR Z)
 (READ FL RDTBL)))
 Z))

If an INFIX read macro character is encountered not in a list, the third
argument to its associated function is NIL. If the function returns NIL, the
read macro character is essentially ignored and reading continues. Otherwise,
if the function returns a TCONC list of one element, that element is the value of

24-35

I/O FUNCTIONS

the READ. If it returns a TCONC list of more than one element, the list is the
value of the READ.

The specification for a read macro character can be augmented to specify various options OPTION1
... OPTIONN, e.g., (MACRO FIRST IMMEDIATE FN). The following three disjoint options specify

when the read macro character is to be effective:

ALWAYS The default. The read macro character is always effective (except when
preceded by the % character), and is a break character, i.e., a member of
(GETSYNTAX ’BREAK RDTBL).

FIRST The character is interpreted as a read macro character only when it is the first
character seen after a break or separator character; in all other situations, the
character is treated as having class OTHER. The read macro character is not a
break character. For example, the quote character is a FIRST read macro
character, so that DON’T is read as the single atom DON’T, rather than as DON
followed by (QUOTE T).

ALONE The read macro character is not a break character, and is interpreted as a read
macro character only when the character would have been read as a separate
atom if it were not a read macro character, i.e., when its immediate neighbors
are both break or separator characters.

Making a FIRST or ALONE read macro character be a break character (with SETBRK) disables the read
macro interpretation, i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS read macro
character be a break character is a no-op.

The following two disjoint options control whether the read macro character is to be protected by the
ESCAPE character on output when a litatom containing the character is printed:

ESCQUOTE or ESC The default. When printed with PRIN2, the read macro character will be
preceded by the output escape character (%) as needed to permit the atom
containing it to be read correctly. Note that for FIRST macros, this means
that the character need be quoted only when it is the first character of the
atom.

NOESCQUOTE or NOESC The read macro character will always be printed without an escape. For
example, the ? read macro in the T read table is a NOESCQUOTE character.
Unless you are very careful what you are doing, read macro characters in
FILERDTBL should never be NOESCQUOTE, since symbols that happen to
contain the read macro character will not read back in correctly.

The following two disjoint options control when the macro’s function is actually executed:

IMMEDIATE or IMMED The read macro character is immediately activated, i.e., the current line is
terminated, as if an EOL had been typed, a carriage-return line-feed is printed,

24-36

INTERLISP-D REFERENCE MANUAL

and the entire line (including the macro character) is passed to the input
function.

IMMEDIATE read macro characters enable you to specify a character that will
take effect immediately, as soon as it is encountered in the input, rather than
waiting for the line to be terminated. Note that this is not necessarily as soon
as the character is typed. Characters that cause action as soon as they are
typed are interrupt characters (see Chapter 30).

Note that since an IMMEDIATE macro causes any input before it to be sent to
the reader, characters typed before an IMMEDIATE read macro character
cannot be erased by Control-A or Control-Q once the IMMEDIATE character
has been typed, since they have already passed through the line buffer.
However, an INFIX read macro can still alter some of what has been typed
earlier, via its third argument.

NONIMMEDIATE or NONIMMED The default. The read macro character is a normal character with respect to
the line buffering, and so will not be activated until a carriage-return or
matching right parenthesis or bracket is seen.

Making a read macro character be both ALONE and IMMEDIATE is a
contradiction, since ALONE requires that the next character be input in order
to see if it is a break or separator character. Thus, ALONE read macros are
always NONIMMEDIATE, regardless of whether or not IMMEDIATE is specified.

Read macro characters can be "nested". For example, if = is defined by

(MACRO (LAMBDA (FL RDTBL)
 (EVAL (READ FL RDTBL))))

and ! is defined by

(SPLICE (LAMBDA (FL RDTBL)
 (READ FL RDTBL)))

then if the value of FOO is (A B C), and (X =FOO Y) is input, (X (A B C) Y) will be returned. If
(X !=FOO Y) is input, (X A B C Y) will be returned.

Note: If a read macro’s function calls READ, and the READ returns NIL, the function cannot
distinguish the case where a RIGHTPAREN or RIGHTBRACKET followed the read macro character, (e.g.
"(A B ’)"), from the case where the atom NIL (or "()") actually appeared. In Interlisp-D, a READ
inside of a read macro when the next input character is a RIGHTPAREN or RIGHTBRACKET reads the
character and returns NIL, just as if the READ had not occurred inside a read macro.

24-37

I/O FUNCTIONS

If a call to READ from within a read macro encounters an unmatched RIGHTBRACKET within a list, the
bracket is simply put back into the buffer to be read (again) at the higher level. Thus, inputting an
expression such as (A B ’(C D] works correctly.

(INREADMACROP) [Function]

Returns NIL if currently not under a read macro function, otherwise the number of
unmatched left parentheses or brackets.

(READMACROS FLG RDTBL) [Function]

If FLG=NIL, turns off action of read macros in read table RDTBL. If FLG=T, turns them on.
Returns previous setting.

The following read macros are standardly defined in Interlisp in the T and EDITRDTBL
read tables:

’ (single-quote) Returns the next expression, wrapped in a call to QUOTE; e.g., ’FOO reads as
(QUOTE FOO). The macro is defined as a FIRST read macro, so that the
quote character has no effect in the middle of a symbol. The macro is also
ignored if the quote character is immediately followed by a separator
character.

Control-Y Defined in T and EDITRDTBL. Returns the result of evaluating the next
expression. For example, if the value of FOO is (A B), then (LIST 1 control-
YFOO 2) is read as (LIST 1 (A B) 2). Note that no structure is copied;
the third element of that input expression is still EQ to the value of FOO.
Control-Y can thus be used to read structures that ordinarily have no read
syntax. For example, the value returned from reading (KEY1 Control-
Y(ARRAY 10)) has an array as its second element. Control-Y can be thought
of as an "un-quote" character. The choice of character to perform this function
is changeable with SETTERMCHARS (see Chapter 16).

‘ (backquote) Backquote makes it easier to write programs to construct complex data
structures. Backquote is like quote, except that within the backquoted
expression, forms can be evaluated. The general idea is that the backquoted
expression is a "template" containing some constant parts (as with a quoted
form) and some parts to be filled in by evaluating something. Unlike with
control-Y, however, the evaluation occurs not at the time the form is read, but
at the time the backquoted expression is evaluated. That is, the backquote
macro returns an expression which, when evaluated, produces the desired
structure.

Within the backquoted expression, the character "," (comma) introduces a
form to be evaluated. The value of a form preceded by ",@" is to be spliced in,
using APPEND. If it is permissible to destroy the list being spliced in (i.e.,
NCONC may be used in the translation), then ",." can be used instead of ",@".

For example, if the value of FOO is (1 2 3 4), then the form

24-38

INTERLISP-D REFERENCE MANUAL

‘(A ,(CAR FOO) ,@(CDDR FOO) D E)

evaluates to (A 1 3 4 D E); it is logically equivalent to writing

(CONS ’A
 (CONS (CAR FOO)
 (APPEND (CDDR FOO) ’(D E))))
.

Backquote is particularly useful for writing macros. For example, the body of
a macro that refers to X as the macro’s argument list might be

‘(COND
 ((FIXP ,(CAR X))
 ,(CADR X))
 (T .,(CDDR X)))

which is equivalent to writing
(LIST ’COND
 (LIST (LIST ’FIXP (CAR X))
 (CADR X))
 (CONS ’T (CDDR X)))

Note that comma does not have any special meaning outside of a backquote
context.

For users without a backquote character on their keyboards, backquote can
also be written as |’ (vertical-bar, quote).

? Implements the ?= command for on-line help regarding the function
currently being "called" in the typein (see Chapter 26).

| (vertical bar) When followed by an end of line, tab or space, | is ignored, i.e., treated as a
separator character, enabling the editor’s CHANGECHAR feature (see Chapter
26). Otherwise it is a "dispatching" read macro whose meaning depends on
the character(s) following it. The following are currently defined:

’ (quote) -- A synonym for backquote.

. (period) -- Returns the evaluation of the next expression, i.e., this is a
synonym for Control-Y.

, (comma) -- Returns the evaluation of the next expression at load time, i.e., the
following expression is quoted in such a manner that the compiler treats it as
a literal whose value is not determined until the compiled expression is
loaded.

O or o (the letter O) -- Treats the next number as octal, i.e., reads it in radix 8.
For example, |o12 = 10 (decimal).

B or b -- Treats the next number as binary, i.e., reads it in radix 2. For
example, |b101 = 5 (decimal).

24-39

I/O FUNCTIONS

X or x -- Treats the next number as hexadecimal, i.e., reads it in radix 16. The
uppercase letters A though F are used as the digits after 9. For example, |x1A
= 26 (decimal).

R or r -- Reads the next number in the radix specified by the (decimal)
number that appears between the | and the R. When inputting a number in a
radix above ten, the upper-case letters A through Z can be used as the digits
after 9 (but there is no digit above Z, so it is not possible to type all base-99
digits). For example, |3r120 reads 120 in radix 3, returning 15.

(, {, ^ -- Used internally by HPRINT and HREAD (see above) to print and
read unusual expressions.

The dispatching characters that are letters can appear in either upper- or
lowercase.

25-1

25. USER/ INPUT/OUTPUT PACKAGES

Interlisp-D can perform input/output operations on a large variety of physical devices.

This chapter presents a number of packages that have been developed for displaying and allowing the
user to enter information. These packages are used to implement the user interface of many system
facilities.

INSPECT (see the INSPECT section below) provides a window-based facility for
displaying and changing the fields of a data object.

PROMPTFORWORD (see the PROMPTFORWORD section below) is a function used for
entering a simple string of characters. Basic editing and prompting facilities are
provided.

ASKUSER (see the ASKUSER section below) provides a more complicated prompting
and answering facility, allowing a series of questions to be printed. Prompts and
argument completion are supported.

TTYIN (see the TTYIN Display Typein Editor section below) is a display typein editor,
that provides complex text editing facilities when entering an input line.

PRETTYPRINT (see the Prettyprint section below) is used for printing function
definitions and other list structures, using multiple fonts and indenting lines to show
the structure of the list.

Inspector

The Inspector provides a display-oriented facility for looking at and changing arbitrary Interlisp-D
data structures. The inspector can be used to inspect all user datatypes and many system datatypes
(although some objects such as numbers have no inspectable structure). The inspector displays the
field names and values of an arbitrary object in a window that allows setting of the properties and
further inspection of the values. This latter feature makes it possible to "walk" around all of the data
structures in the system at the touch of a button. In addition, the inspector is integrated with the
break package to allow inspection of any object on the stack and with the display and teletype
structural editors to allow the editors to be used to "inspect" list structures and the inspector to "edit"
datatypes.

The underlying mechanisms of the data inspector have been designed to allow their use as specialized
editors in user applications. This functionality is described at the end of this section.

Note: Currently, the inspector does not have UNDOing. Also, variables whose values are
changed will not be marked as such.

Calling the Inspector

25-2

INTERLISP-D REFERENCE MANUAL

There are several ways to open an inspect window onto an object. In addition to calling INSPECT
directly (below), the inspector can also be called by buttoning an Inspect command inside an existing
inspector window. Finally, if a non-list is edited with EDITDEF (see Chapter 17), the inspector is
called. This also causes the inspector to be called by the Dedit command from the display editor or
the EV command from the teletype editor if the selected piece of structure is a non-list.

(INSPECT OBJECT ASTYPE WHERE) [Function]

Creates an inspect window onto OBJECT. If ASTYPE is given, it will be taken as the
record type of OBJECT. This allows records to be inspected with their property names. If
ASTYPE is NIL, the data type of OBJECT will be used to determine its property names in
the inspect window.

WHERE specifies the location of the inspect window. If WHERE is NIL, the user will be
prompted for a location. If WHERE is a window, it will be used as the inspect window. If
WHERE is a region, the inspect window will be created in that region of the screen. If
WHERE is a position, the inspect window will have its lower left corner at that position on
the screen.

INSPECT returns the inspect window onto OBJECT, or NIL if no inspection took place.

(INSPECTCODE FN WHERE — — — —) [Function]

Opens a window and displays the compiled code of the function FN using PRINTCODE.
The window is scrollable.

WHERE determines where the window should appear. It can be a position, a region, or a
window. If NIL, the user is prompted to specify the position of the window.

Note: If the Tedit library package is loaded, INSPECTCODE uses it to create the code
inspector window. Also, if INSPECTCODE is called to inspect the frame name in
a break window (see Chapter 14), the location in the code that the frame’s PC
indicates it was executing at the time is highlighted.

Multiple Ways of Inspecting

For some datatypes there is more than one aspect that is of interest or more than one method of
inspecting the object. In these cases, the inspector will bring up a menu of the possibilities and wait
for the user to select one.

If the object is a litatom, the commands are the types for which the litatom has definitions as
determined by HASDEF. Some typical commands are:

FNS Edit the definition of the selected litatom.

VARS Inspect the value.

PROPS Inspect the property list.

If the object is a list, there will be choice of how to inspect the list:

25-3

USER I/O PACKAGES

Inspect Opens an inspect window in which the properties are numbers and the values
are the elements of the list.

TtyEdit Calls the teletype list structure editor on the list (see Chapter 16).

DisplayEdit Calls the DEdit display editor on the list (see Chapter 16).

As a PLIST Inspects the list as a property list, if the list is in property list form: ((PROP1
VAL1) ... (PROPN VALN)).

As an ALIST Inspects the list as an association-list, if the list is in ASSOC list form: (PROP1
VAL1 ... PROPN VALN).

As a record Brings up a submenu with all of the RECORDs in the system and inspect the
list with the one chosen.

As a "record type" Inspects the list as the record of the type named in its CAR, if the CAR of the
list is the name of a TYPERECORD (see Chapter 8).

If the object is a bitmap, the choice is between inspecting the bitmap’s contents with the bitmap editor
(EDITBM) or inspecting the bitmap’s fields.

Other datatypes may include multiple methods for inspecting objects of that type.

Inspect Windows

An inspect window displays two columns of values. The lefthand column lists the property names of
the structure being inspected. The righthand column contains the values of the properties named on
the left. For variable length data such as lists and arrays, the "property names" are numbers from 1 to
the length of the inspected item and the values are the corresponding elements. For arrays, the
property names are the array element numbers and the values are the corresponding elements of the
array.

For large lists or arrays, or datatypes with many fields, the initial window may be too small to contain
all of them. In these cases, the unseen elements can be scrolled into view (from the bottom) or the
window can be reshaped to increase its size.

In an inspect window, the LEFT button is used to select things, the MIDDLE button to invoke
commands that apply to the selected item. Any property or value can be selected by pointing the
cursor directly at the text representing it, and clicking the LEFT button. There is one selected item per
window and it is marked by having its surrounding box inverted.

The options offered by the MIDDLE button depend on whether the selection is a property or a value. If
the selected item is a value, the options provide different ways of inspecting the selected structure.
The exact commands that are given depend on the type of the value. An example of the menu you
may see is:

25-4

INTERLISP-D REFERENCE MANUAL

If the selected item is a property name, the command SET will appear. If selected, the user will be
asked to type in an expression, and the selected property will be set to the result of evaluating the read
form. The evaluation of the read form and the replacement of the selected item property will appear
as their own history events and are individually undoable. Properties of system datatypes cannot be
set. (There are often consistency requirements which can be inadvertently violated in ways that crash
the system. This may be true of some user datatypes as well, however the system doesn’t know which
ones. Users are advised to exercise caution.)

It is possible to copy-select property names or values out of an inspect window. Litatoms, numbers
and strings are copied as they are displayed. Unprintable objects (such as bitmaps, etc.) come out as
an appropriate system expression, such that if is evaluated, the object is re-created.

Inspect Window Commands

By pressing the MIDDLE button in the title of the inspect window, a menu of commands that apply to
the inspect window is brought up:

ReFetch [Inspect Window Command]

An inspect window is not automatically updated when the structure it is inspecting is
changed. The ReFetch command will refetch and redisplay all of the fields of the object
being inspected in the inspect window.

IT←datum [Inspect Window Command]

Sets the variable IT to object being inspected in the inspect window.

IT←selection [Inspect Window Command]

Sets the variable IT to the property name or value currently selected in the inspect
window.

Interaction With Break Windows

The break window facility (see Chapter 14) knows about the inspector in the sense that the backtrace
frame window is an inspect window onto the frame selected from the back trace menu during a break.
Thus you can call the inspector on an object that is bound on the stack by selecting its frame in the
back trace menu, selecting its value with the LEFT button in the back trace frame window, and

25-5

USER I/O PACKAGES

selecting the inspect command with the MIDDLE button in the back trace frame window. The values
of variables in frames can be set by selecting the variable name with the LEFT button and then the
"Set" command with the MIDDLE button.

Note: The inspector will only allow the setting of named variables. Even with this
restriction it is still possible to crash the system by setting variables inside system
frames. Exercise caution in setting variables in other than your own code.

Controlling the Amount Displayed During Inspection

The amount of information displayed during inspection can be controlled using the following
variables:

MAXINSPECTCDRLEVEL [Variable]

The inspector prints only the first MAXINSPECTCDRLEVEL elements of a long list, and will
make the tail containing the unprinted elements the last item. The last item can be
inspected to see further elements. Initially 50.

MAXINSPECTARRAYLEVEL [Variable]

The inspector prints only the first MAXINSPECTARRAYLEVEL elements of an array. The
remaining elements can be inspected by calling the function (INSPECT/ARRAY ARRAY
BEGINOFFSET) which inspects the BEGINOFFSET through the BEGINOFFSET +
MAXINSPECTARRAYLEVEL elements of ARRAY. Initially 300.

INSPECTPRINTLEVEL [Variable]

When printing the values, the inspector resets PRINTLEVEL (see Chapter 25) to the value
of INSPECTPRINTLEVEL. Initially (2 . 5).

INSPECTALLFIELDSFLG [Variable]

If INSPECTALLFIELDSFLG is T, the inspector will show computed fields (ACCESSFNS,
Chapter 8) as well as regular fields for structures that have a record definition. Initially T.

Inspect Macros

The Inspector can be extended to inspect new structures and datatypes by adding entries to the list
INSPECTMACROS. An entry should be of the form (OBJECTTYPE . INSPECTINFO). OBJECTTYPE
is used to determine the types of objects that are inspected with this macro. If OBJECTTYPE is a
litatom, the INSPECTINFO will be used to inspect items whose type name is OBJECTTYPE. If
OBJECTTYPE is a list of the form (FUNCTION DATUM-PREDICATE), DATUM-PREDICATE will be
APPLYed to the item and if it returns non-NIL, the INSPECTINFO will be used to inspect the item.

INSPECTINFO can be one of two forms. If INSPECTINFO is a litatom, it should be a function that will
be applied to three arguments (the item being inspected, OBJECTTYPE, and the value of WHERE
passed to INSPECT) that should do the inspection. If INSPECTINFO is not a litatom, it should be a list

25-6

INTERLISP-D REFERENCE MANUAL

of (PROPERTIES FETCHFN STOREFN PROPCOMMANDFN VALUECOMMANDFN TITLECOMMANDFN
TITLE SELECTIONFN WHERE PROPPRINTFN) where the elements of this list are the arguments for
INSPECTW.CREATE, described below. From this list, the WHERE argument will be evaluated; the
others will not. If WHERE is NIL, the value of WHERE that was passed to INSPECT will be used.

Examples:

The entry ((FUNCTION MYATOMP) PROPNAMES GETPROP PUTPROP) on INSPECTMACROS would
cause all objects satisfying the predicate MYATOMP to have their properties inspected with GETPROP
and PUTPROP. In this example, MYATOMP should make sure the object is a litatom.

The entry (MYDATATYPE . MYINSPECTFN) on INSPECTMACROS would cause all datatypes of type
MYDATATYPE to be passed to the function MYINSPECTFN.

INSPECTWs

The inspector is built on the abstraction of an INSPECTW. An INSPECTW is a window with certain
window properties that display an object and respond to selections of the object’s parts. It is
characterized by an object and its list of properties. An INSPECTW displays the object in two columns
with the property names on the left and the values of those properties on the right. An INSPECTW
supports the protocol that the LEFT mouse button can be used to select any property name or
property value and the MIDDLE button calls a user provided function on the selected value or
property. For the Inspector application, this function puts up a menu of the alternative ways of
inspecting values or of the ways of setting properties. INSPECTWs are created with the following
function:

(INSPECTW.CREATE DATUM PROPERTIES FETCHFN STOREFN PROPCOMMANDFN
VALUECOMMANDFN TITLECOMMANDFN TITLE SELECTIONFN WHERE PROPPRINTFN)
[Function]

Creates an INSPECTW that views the object DATUM. If PROPERTIES is a list, it is taken as
the list of properties of DATUM to display. If PROPERTIES is a litatom, it is APPLYed to
DATUM and the result is used as the list of properties to display.

FETCHFN is a function of two arguments (OBJECT PROPERTY) that should return the
value of the PROPERTY property of OBJECT. The result of this function will be printed
(with PRIN2) in the INSPECTW as the value.

STOREFN is a function of three arguments (OBJECT PROPERTY NEWVALUE) that
changes the PROPERTY property of OBJECT to NEWVALUE. It is used by the default
PROPCOMMANDFN and VALUECOMMANDFN to change the value of a property and also by
the function INSPECTW.REPLACE (described below). This can be NIL if the user provides
command functions which do not call INSPECTW.REPLACE. Each replace action will be a
separate event on the history list. Users are encouraged to provide UNDOable STOREFNs.

PROPCOMMANDFN is a function of three arguments (PROPERTY OBJECT INSPECTW)
which gets called when the user presses the MIDDLE button and the selected item in the

25-7

USER I/O PACKAGES

INSPECTW is a property name. PROPERTY will be the name of the selected property,
OBJECT will be the datum being viewed, and INSPECTW will be the window. If
PROPCOMMANDFN is a string, it will get printed in the PROMPTWINDOW when the MIDDLE
button is pressed. This provides a convenient way to notify the user about disabled
commands on the properties. DEFAULT.INSPECTW.PROPCOMMANDFN, the default
PROPCOMMANDFN, will present a menu with the single command Set on it. If selected, the
Set command will read a value from the user and set the selected property to the result of
EVALuating this read value.

VALUECOMMANDFN is a function of four arguments (VALUE PROPERTY OBJECT
INSPECTW) that gets called when the user presses the MIDDLE button and the selected
item in the INSPECTW is a property value. VALUE will be the selected value (as returned
by FETCHFN), PROPERTY will be the name of the property VALUE is the value of, OBJECT
will be the datum being viewed, and INSPECTW will be the INSPECTW window.

DEFAULT.INSPECTW.VALUECOMMANDFN, the default VALUECOMMANDFN, will present a
menu of possible ways of inspecting the value and create a new Inspect window if one of
the menu items is selected.

TITLECOMMANDFN is a function of two arguments (INSPECTW OBJECT) which gets
called when the user presses the MIDDLE button and the cursor is in the title or border of
the inspect window INSPECTW. This command function is provided so that users can
implement commands that apply to the entire object. The default TITLECOMMANDFN
(DEFAULT.INSPECTW.TITLECOMMANDFN) presents a menu with the commands
ReFetch, IT←datum, and IT←election .

TITLE specifies the title of the window. If TITLE is NIL, the title of the window will be
the printed form of DATUM followed by the string " Inspector". If TITLE is the litatom
DON’T, the inspect window will not have a title. If TITLE is any other litatom, it will be
applyed to the DATUM and the potential inspect window (if it is known). If this result is the
litatom DON’T, the inspect window will not have a title; otherwise the result will be used
as a title. If TITLE is not a litatom, it will be used as the title.

SELECTIONFN is a function of three arguments (PROPERTY VALUEFLG INSPECTW)
which gets called when the user releases the left button and the cursor is on one of the
items. The SELECTIONFN allows a program to take action on the user’s selection of an
item in the inspect window. At the time this function is called, the selected item has been
"selected". The function INSPECTW.SELECTITEM (described below) can be used to turn
off this selection. PROPERTY will be the name of the property of the selected item.
VALUEFLG will be NIL if the selected item is the property name; T if the selected item is
the property value.

WHERE indicates where the inspect window should go. Its interpretation is described in
INSPECT (see above).

PROPPRINTFN is a function of two arguments (PROPERTY DATUM) which gets called to
determine what to print in the property place for the property PROPERTY. If
PROPPRINTFN returns NIL, no property name will be printed and the value will be
printed to the left of the other values.

25-8

INTERLISP-D REFERENCE MANUAL

An inspect window uses the following window property names to hold information:
DATUM, FETCHFN, STOREFN, PROPCOMMANDFN, VALUECOMMANDFN, SELECTIONFN,
PROPPRINTFN, INSPECTWTITLE, PROPERTIES, CURRENTITEM and SELECTABLEITEMS.

(INSPECTW.REDISPLAY INSPECTW PROPS —) [Function]

Updates the display of the objects being inspected in INSPECTW. If PROPS is a property
name or a list of property names, only those properties are updated. If PROPS is NIL, all
properties are redisplayed. This function is provided because inspect windows do not
automatically update their display when the object they are showing changes.

This function is called by the ReFetch command in the title command menu of an
INSPECTW (see above).

(INSPECTW.REPLACE INSPECTW PROPERTY NEWVALUE) [Function]

Calls the STOREFN of the inspect window INSPECTW to change the property named
PROPERTY to the value NEWVALUE and updates the display of PROPERTY’s value in the
display. This provides a functional interface for user PROPCOMMANDFNs.

(INSPECTW.SELECTITEM INSPECTW PROPERTY VALUEFLG) [Function]

Sets the selected item in an inspect window. The item is inverted on the display and put
on the window property CURRENTITEM of INSPECTW. If INSPECTW has a CURRENTITEM,
it is deselected. PROPERTY is the name of the property of the selected item. VALUEFLG is
NIL if the selected item is the property name; T if the selected item is the property value.
If PROPERTY is NIL, no item will be selected. This provides a way of deselecting all items.

PROMPTFORWORD

PROMPTFORWORD is a function that reads in a sequence of characters, generally from the keyboard,
without involving READ-like syntax. A user can supply a prompting string, as well as a "candidate"
string, which is printed and used if the user types only a word terminator character (or doesn’t type
anything before a given time limit). As soon as any characters are typed the "candidate" string is
erased and the new input takes its place.

PROMPTFORWORD accepts user type-in until one of the "word terminator" characters is typed.
Normally, the word terminator characters are EOL, ESCAPE, LF, SPACE, or TAB. This list can be
changed using the TERMINCHAR.LST argument to PROMPTFORWORD, for example if it is desirable to
allow the user to input lines including spaces.

PROMPTFORWORD also recognizes the following special characters:

Control-A
BACKSPACE

 DELETE Any of these characters deletes the last character typed and appropriately
erases it from the echo stream if it is a display stream.

25-9

USER I/O PACKAGES

Control-Q Erases all the type-in so far.

Control-R Reprints the accumulated string.

Control-V "Quotes" the next character: after typing Control-V, the next character typed is
added to the accumulated string, regardless of any special meaning it has.
Allows the user to include editing characters and word terminator characters
in the accumulated string.

Control-W Erases the last word.

? Calls up a "help" facility. The action taken is defined by the
GENERATE?LIST.FN argument to PROMPTFORWORD (see below). Normally,
this prints a list of possible candidates.

(PROMPTFORWORD PROMPT.STR CANDIDATE.STR GENERATE?LIST.FN ECHO.CHANNEL
DONTECHOTYPEIN.FLG URGENCY.OPTION TERMINCHARS.LST KEYBD.CHANNEL)
[Function]

PROMPTFORWORD has a multiplicity of features, which are specified through a rather large
number of input arguments, but the default settings for them (i.e., when they aren’t given,
or are given as NIL) is such to minimize the number needed in the average case, and an
attempt has been made to order the more frequently non-defaulted arguments at the
beginning of the argument list. The default input and echo are both to the terminal; the
terminal table in effect during input allows most control characters to be INDICATE’d.

PROMPTFORWORD returns NIL if a null string is typed; this would occur when no
candidate is given and only a terminator is typed, or when the candidate is erased and a
terminator is typed with no other input still un-erased. In all other cases,
PROMPTFORWORD returns a string.

PROMPTFORWORD is controlled through the following arguments:
PROMPT.STR If non-NIL, this is coerced to a string and used for prompting; an additional

space is output after this string.
CANDIDATE.STR If non-NIL, this is coerced to a string and offered as initial contents of the

input buffer.
GENERATE?LIST.FN If non-NIL, this is either a string to be printed out for help, or a function to be

applied to PROMPT.STR and CANDIDATE.STR (after both have been coerced
to strings), and which should return a list of potential candidates. The help
string or list of potential candidates will then be printed on a separate line, the
prompt will be restarted, and any type-in will be re-echoed.
Note: If GENERATE?LIST.FN is a function, its value list will be cached so
that it will be run at most once per call to PROMPTFORWORD.

ECHO.CHANNEL Coerced to an output stream; NIL defaults to T, the "terminal output stream",
normally (TTYDISPLAYSTREAM). To achieve echoing to the "current output
stream", use (GETSTREAM NIL ’OUTPUT). If echo is to a display stream, it
will have a flashing caret showing where the next input is to be echoed.

DONTECHOTYPEIN.FLG If T, there is no echoing of the input characters. If the value of
DONTECHOTYPEIN.FLG is a single-character atom or string, that character is

25-10

INTERLISP-D REFERENCE MANUAL

echoed instead of the actual input. For example, LOGIN prompts for a
password with DONTECHOTYPEIN.FLG being "*".

URGENCY.OPTION If NIL, PROMPTFORWORD quietly wait for input, as READ does; if a number,
this is the number of seconds to wait for the user to respond (if timeout is
reached, then CANDIDATE.WORD is returned, regardless of any other type-in
activity); if T, this means to wait forever, but periodically flash the window to
alert the user; if TTY, then PROMPTFORWORD grabs the TTY immediately.
When URGENCY.OPTION = TTY, the cursor is temporarily changed to a
different shape to indicate the urgent nature of the request.

TERMINCHARS.LST This is list of "word terminator" character codes; it defaults to (CHARCODE
(EOL ESCAPE LF SPACE TAB)). This may also be a single character code.

KEYBD.CHANNEL If non-NIL, this is coerced to a stream, and the input bytes are taken from that
stream. NIL defaults to the keyboard input stream. Note that this is not
the same as the terminal input stream T, which is a buffered keyboard input
stream, not suitable for use with PROMPTFORWORD.

Examples:

(PROMPTFORWORD
 "What is your FOO word?" ’Mumble
 (FUNCTION (LAMBDA () ’(Grumble Bletch)))
 PROMPTWINDOW NIL 30)

This first prompts the user for input by printing the first argument as a prompt into
PROMPTWINDOW; then the proffered default answer, Mumble, is printed out and the caret
starts flashing just after it to indicate that the upcoming input will be echoed there. If the
user fails to complete a word within 30 seconds, then the result will be the string Mumble.

(FRESHLINE T)
(LIST
 (PROMPTFORWORD
 (CONCAT "{" HOST "} Login:")
 (USERNAME NIL NIL T))
 (PROMPTFORWORD
 " (password)" NIL NIL NIL ’*))

This first prompts in whatever window is currently (TTYDISPLAYSTREAM), and then
takes in a username; the second call prompts with (password) and takes in another word
(the password) without proffering a candidate, echoing the typed-in characters as "*".

ASKUSER

DWIM, the compiler, the editor, and many other system packages all use ASKUSER, an extremely
general user interaction package, for their interactions with the user at the terminal. ASKUSER takes as
its principal argument KEYLST which is used to drive the interaction. KEYLST specifies what the user
can type at any given point, how ASKUSER should respond to the various inputs, what value should
be returned by ASKUSER, and is also used to present the user at any given point with a list of the

25-11

USER I/O PACKAGES

possible responses. ASKUSER also takes other arguments which permit specifying a wait time, a
default value, a message to be printed on entry, a flag indicating whether or not typeahead is to be
permitted, a flag indicating whether the transaction is to be stored on the history list (see Chapter 13),
a default set of options, and an (optional) input file/string.

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG OPTIONSLST
FILE) [Function]

WAIT is either NIL or a number (of seconds). DEFAULT is a single character or a sequence
(list) of characters to be used as the default inputs for the case when WAIT is not NIL and
more than WAIT seconds elapse without any input. In this case, the character(s) from
DEFAULT are processed exactly as though they had been typed, except that ASKUSER first
types "...".

MESS is the initial message to be printed by ASKUSER, if any, and can be a string, or a list.
In the latter case, each element of the list is printed, separated by spaces, and terminated
with a " ? ". KEYLST and OPTIONSLST are described. TYPEAHEAD is T if the user is
permitted to typeahead a response to ASKUSER. NIL means any typeahead should be
cleared and saved. LISPXPRNTFLG determines whether or not the interaction is to be
recorded on the history list. FILE can be either NIL (in which case it defaults to the
terminal input stream, T) or a stream.

All input operations take place from FILE until an unacceptable input is encountered, i.e.,
one that does not conform to the protocol defined by KEYLST. At that point, FILE is set
to T, DEFAULT is set to NIL, the input buffer is cleared, and a bell is rung. Unacceptable
inputs are not echoed.

The value of ASKUSER is the result of packing all the keys that were matched, unless the
RETURN option is specified (see the Options section below).

(MAKEKEYLST LST DEFAULTKEY LCASEFLG AUTOCOMPLETEFLG) [Function]

LST is a list of atoms or strings. MAKEKEYLST returns an ASKUSER KEYLST which will
permit the user to specify one of the elements on LST by either typing enough characters
to make the choice unambiguous, or else typing a number between 1 and N, where N is
the length of LST.

For example, if ASKUSER is called with KEYLST = (MAKEKEYLST ’(CONNECT
SUPPORT COMPILE)), then the user can type C-O-N, S, C-O-M, 1, 2, or 3 to indicate one
of the three choices.

If LCASEFLG = T, then echoing of upper case elements will be in lower case (but the
value returned will still be one of the elements of LST). If DEFAULTKEY is non-NIL, it will
be the last key on the KEYLST. Otherwise, a key which permits the user to indicate "No -
none of the above" choices, in which case the value returned by ASKUSER will be NIL.

AUTOCOMPLETEFLG is used as the value of the AUTOCOMPLETEFLG option of the resulting
key list.

25-12

INTERLISP-D REFERENCE MANUAL

Format of KEYLST

KEYLST is a list of elements of the form (KEY PROMPTSTRING . OPTIONS), where KEY is an atom
or a string (equivalent), PROMPTSTRING is an atom or a string, and OPTIONS a list of options in
property list format. The options are explained below. If an option is specified in OPTIONS, the value
of the option is the next element. Otherwise, if the option is specified in the OPTIONSLST argument to
ASKUSER, its value is the next element on OPTIONSLST. Thus, OPTIONSLST can be used to provide
default options for an entire KEYLST, rather than having to include the option at each level. If an
option does not appear on either OPTIONS or OPTIONSLST, its value is NIL.

For convenience, an entry on KEYLST of the form (KEY . ATOM/STRING), can be used as an
abbreviation for (KEY ATOM/STRING CONFIRMFLG T), and an entry of just the form KEY, i.e., a
non-list, as an abbreviation for (KEY NIL CONFIRMFLG T).

As each character is read, it is matched against the currently active keys. A character matches a key if
it is the same character as that in the corresponding position in the key, or, if the character is an
alphabetic character, if the characters are the same without regard for upper/lower case differences,
i.e. "A" matches "a" and vice versa (unless the NOCASEFLG option is T, see the Options section below).
In other words, if two characters have already been input and matched, the third character is matched
with each active key by comparing it with the third character of that key. If the character matches
with one or more of the keys, the entries on KEYLST corresponding to the remaining keys are
discarded. If the character does not match with any of the keys, the character is not echoed, and a bell
is rung instead.

When a key is complete, PROMPTSTRING is printed (NIL is equivalent to "", the empty string, i.e.,
nothing will be printed). Then, if the value of the CONFIRMFLG option is T, ASKUSER waits for
confirmation of the key by a carriage return or space. Otherwise, the key does not require
confirmation.

Then, if the value of the KEYLST option is not NIL, its value becomes the new KEYLST, and the
process recurses. Otherwise, the key is a "leaf," i.e., it terminates a particular path through the
original, top-level KEYLST, and ASKUSER returns the result of packing all the keys that have been
matched and completed along the way (unless the RETURN option is used to specify some other value,
as described below).

For example, when ASKUSER is called with KEYLST = NIL, the following KEYLST is used as the
default:

((Y "escr") (N "ocr"))

This KEYLST specifies that if (as soon as) the user types Y (or y), ASKUSER echoes with Y, prompts
with escr, and returns Y as its value. Similarly, if the user types N, ASKUSER echoes the N, prompts
with ocr, and returns N. If the user types ?, ASKUSER prints:

Yes

No

25-13

USER I/O PACKAGES

to indicate his possible responses. All other inputs are unacceptable, and ASKUSER will ring the bell
and not echo or print anything.

For a more complicated example, the following is the KEYLST used for the compiler questions:

((ST "ore and redefine " KEYLST ("" (F . "orget
exprs"))
 (S . "ame as last time")
 (F . "File only")
 (T . "o terminal")
 1
 2
 (Y . "es")
 (N . "o"))

When ASKUSER is called with this KEYLST, and the user types an S, two keys are matched: ST and S.

The user can then type a T, which matches only the ST key, or confirm the S key by typing a cr or
space. If the user confirms the S key, ASKUSER prompts with "ame as last time", and returns S as its
value. (Note that the confirming character is not included in the value.) If the user types a T,
ASKUSER prompts with "ore and redefine", and makes ("" (F . "orget exprs")) be the new
KEYLST, and waits for more input. The user can then type an F, or confirm the "" (which essentially
starts out with all of its characters matched). If he confirms the "", ASKUSER returns ST as its value
the result of packing ST and "". If he types F, ASKUSER prompts with "orget exprs", and waits for
confirmation again. If the user then confirms, ASKUSER returns STF, the result of packing ST and F.

At any point the user can type a ? and be prompted with the possible responses. For example, if the
user types S and then ?, ASKUSER will type:

STore and redefine Forget exprs
STore and redefine
Same as last time

Options
KEYLST When a key is complete, if the value of the KEYLST option is not NIL, this

value becomes the new KEYLST and the process recurses. Otherwise, the key
terminates a path through the original, top-level KEYLST, and ASKUSER
returns the indicated value.

CONFIRMFLG If T, the key must be confirmed with either a carriage return or a space. If the
value of CONFIRMFLG is a list, the confirming character may be any member
of the list.

PROMPTCONFIRMFLG If T, whenever confirmation is required, the user is prompted with the string
[confirm].

NOCASEFLG If T, says do not perform case independent matching on alphabetic characters.
If NIL, do perform case independent matching, i.e. "A" matches with "a" and
vice versa.

25-14

INTERLISP-D REFERENCE MANUAL

RETURN If non-NIL, EVAL of the value of the RETURN option is returned as the value of
ASKUSER. Note that different RETURN options can be specified for different
keys. The variable ANSWER is bound in ASKUSER to the list of keys that have
been matched. In other words, RETURN (PACK ANSWER) would be
equivalent to what ASKUSER normally does.

NOECHOFLG If non-NIL, characters that are matched (or automatically supplied as a result
of typing $ (escape) or confirming) are not echoed, nor is the confirming
character, if any. The value of NOECHOFLG is automatically NIL when
ASKUSER is reading from a file or string. The decision about whether or not
to echo a character that matches several keys is determined by the value of the
NOECHOFLG option for the first key.

EXPLAINSTRING If the value of the EXPLAINSTRING option is non-NIL, its value is printed
when the user types a ?, rather than KEY + PROMPTSTRING.
EXPLAINSTRING enables more elaborate explanations in response to a ? than
what the user sees when he is prompted as a result of simply completing keys.
For example: One of the entries on the KEYLST used by ADDTOFILES? is:
(] "Nowherecr" NOECHOFLG T
EXPLAINSTRING "] - nowhere, item is marked as a

dummycr")
When the user types], ASKUSER just prints Nowherecr, i.e., the] is not
echoed. If the user types ?, the explanation corresponding to this entry will
be:

] - nowhere, item is marked as a dummy
KEYSTRING If non-NIL, characters that are matched are echoed as though the value of

KEYSTRING were used in place of the key. KEYSTRING is also used for
computing the value returned. The main reason for this feature is to enable
echoing in lowercase.

PROMPTON If non-NIL, PROMPTSTRING is printed only when the key is confirmed with a
member of the value of PROMPTON.

COMPLETEON When a confirming character is typed, the N characters that are automatically
supplied, as specified in case (4), are echoed only when the key is confirmed
with a member of the value of PROMPTON.

The PROMPTON and COMPLETEON options enable the user to construct a KEYLST which will cause
ASKUSER to emulate the action of the TENEX exec. The protocol followed by the TENEX exec is that
the user can type as many characters as he likes in specifying a command. The command can be
completed with a carriage return or space, in which case no further output is forthcoming, or with a $
(escape), in which case the rest of the characters in the command are echoed, followed by some
prompting information. The following KEYLST would handle the TENEX COPY and CONNECT
comands:

((COPY " (FILE LIST) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($))

 (CONNECT " (TO DIRECTORY) "

25-15

USER I/O PACKAGES

PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($)))

AUTOCOMPLETEFLG If the value of the AUTOCOMPLETEFLG option is not NIL, ASKUSER will
automatically supply unambiguous characters whenever it can, i.e., ASKUSER
acts as though $ (escape) were typed after each character (except that it does
not ring the bell if there are no unambiguous characters).

MACROCHARS value is a list of dotted pairs of form (CHARACTER . FORM). When
CHARACTER is typed, and it does not match any of the current keys, FORM is
evaluated and nothing else happens, i.e. the matching process stays where it
is. For example, ? could have been implemented using this option.
Essentially MACROCHARS provides a read macro facility while inside of
ASKUSER (since ASKUSER does READC’s, read macros defined via the
readtable are never invoked).

EXPLAINDELIMITER value is what is printed to delimit explanation in response to ?.
Initially a carriage return, but can be reset, e.g. to a comma, for more linear
output.

Operation

All input operations are executed with the terminal table in the variable ASKUSERTTBL, in which the
following is true:

•
(CONTROL T) has been executed (see the Line-Buffering section of Chapter 30), so
that ASKUSER can interact with the user after each character is typed

(ECHOMODE NIL) has been executed (see the Terminal Control Functions section of
Chapter 30), so that ASKUSER can decide after it reads a character whether or not
the character should be echoed, and with what, e.g. unacceptable inputs are never
echoed.

As each character is typed, it is matched against KEYLST, and appropriate echoing and/or prompting
is performed. If the user types an unacceptable character, ASKUSER simply rings the bell and allows
him to try again.

At any point, the user can type ? and receive a list of acceptable responses at that point (generated
from KEYLST), or type a Control-A, Control-Q, Control-X, or delete, which causes ASKUSER to
reinitialize, and start over.

Note that ?, Control-A, Control-Q, and Control-X will not work if they are acceptable inputs, i.e., they
match one of the keys on KEYLST. Delete will not work if it is an interrupt character, in which case it
is not seen by ASKUSER.

When an acceptable sequence is completed, ASKUSER returns the indicated value.

25-16

INTERLISP-D REFERENCE MANUAL

Completing a Key

The decision about when a key is complete is more complicated than simply whether or not all of its
characters have been matched. In the compiler questions example above, all of the characters in the S
key are matched as soon as the S has been typed, but until the next character is typed, ASKUSER does
not know whether the S completes the S key, or is simply the first character in the ST key. Therefore,
a key is considered to be complete when:

1. All of its characters have been matched and it is the only key left, i.e., there are no other
keys for which this key is a substring.

2. All of its characters have been matched and a confirming character is typed.

3. All of its characters have been matched, and the value of the CONFIRMFLG option is
NIL, and the value of the KEYLST option is not NIL, and the next character matches
one of the keys on the value of the KEYLST option.

4. There is only one key left and a confirming character is typed. Note that if the value of
CONFIRMFLG is T, the key still has to be confirmed, regardless of whether or not it is
complete. For example, if the first entry in the above example were instead

(ST "ore and redefine " CONFIRMFLG T KEYLST ("" (F . "orget
exprs"))

and the user wanted to specify the STF path, he would have to type ST, then confirm
before typing F, even though the ST completed the ST key by the rule in Case 1.
However, he would be prompted with ore and redefine as soon as he typed the T, and
completed the ST key.

Case 2 says that confirmation can be used to complete a key in the case where it is a substring of
another key, even where the value of CONFIRMFLG is NIL. In this case, the confirming character
doubles as both an indicator that the key is complete, and also to confirm it, if necessary. This
situation corresponds to typing Scr in the above example.

Case 3 says that if there were another entry whose key was STX in the above example, so that after the
user typed ST, two keys, ST and STX, were still active, then typing F would complete the ST key,
because F matches the (F . "orget exprs") entry on the value of the KEYLST option of the ST
entry. In this case, ore and redefine would be printed before the F was echoed.

Finally, Case 4 says that the user can use confirmation to specify completion when only one key is left,
even when all of its characters have not been matched. For example, if the first key in the above
example were STORE, the user could type ST and then confirm, and ORE would be echoed, followed
by whatever prompting was specified. In this case, the confirming character also confirms the key if
necessary, so that no further action is required, even when the value of CONFIRMFLG is T.

Case 4 permits the user not to have to type every character in a key when the key is the only one left.
Even when there are several active keys, the user can type <escape> to specify the next N>0 common
characters among the currently active keys. The effect is exactly the same as though these characters

25-17

USER I/O PACKAGES

had been typed. If there are no common characters in the active keys at that point, i.e. N = 0, the $ is
treated as an incorrect input, and the bell is rung. For example, if KEYLST is (CLISPFLG
CLISPIFYPACKFLG CLISPIFTRANFLG), and the user types C followed by $, ASKUSER will supply
the L, I, S, and P. The user can then type F followed by a carriage return or space to complete and
confirm CLISPFLG, as per Case 4, or type I, followed by $, and ASKUSER will supply the F, etc.
Note that the characters supplied do not have to correspond to a terminal segment of any of the keys.
Note also that the $ does not confirm the key, although it may complete it in the case that there is only
one key active.

If the user types a confirming character when several keys are left, the next N>0 common characters
are still supplied, the same as with $. However, ASKUSER assumes the intent was to complete a key,
i.e., Case 4 is being invoked. Therefore, after supplying the next N characters, the bell is rung to
indicate that the operation was not completed. In other words, typing a confirming character has the
same effect as typing an $ in that the next N common characters are supplied. Then, if there is only
one key left, the key is complete (Case 4) and confirmation is not required. If the key is not the only
key left, the bell is rung.

Special Keys

& This can be used as a key to match with any single character, provided the
character does not match with some other key at that level. For the purposes
of echoing and returning a value, the effect is the same as though the
character that were matched actually appeared as the key.

<escape> This can be used as a key to match with the result of a single call to READ. For
example, if the KEYLST were:

((COPY " (FILE LIST) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($)
KEYLST (($ NIL RETURN ANSWER))))

then if the user typed COP FOOcr, (COPY FOO) would be returned as the
value of ASKUSER. One advantage of using $, rather than having the calling
program perform the READ, is that the call to READ from inside ASKUSER is
ERRORSET protected, so that the user can back out of this path and reinitialize
ASKUSER, e.g. to change from a COPY command to a CONNECT command,
simply by typing Control-E.

Escape Escape This can be used as a key to match with the result of a single call to
READLINE.

A list A list can be used as a key, in which case the list/form is evaluated and its
value "matches" the key. This feature is provided primarily as an escape
hatch for including arbitrary input operations as part of an ASKUSER
sequence. For example, the effect of $$ (escape, escape) could be achieved
simply by using (READLINE T) as a key.

25-18

INTERLISP-D REFERENCE MANUAL

"" The empty string can be used as a key. Since it has no characters, all of its
characters are automatically matched. "" essentially functions as a place
marker. For example, one of the entries on the KEYLST used by
ADDTOFILES? is:

("" "File/list: "
EXPLAINSTRING "a file name or name of a
function list"

KEYLST ($))

Thus, if the user types a character that does not match any of the other keys
on the KEYLST, then the character completes the "" key, by virtue of case (4),
since the character will match with the $ in the inner KEYLST. ASKUSER then
prints File/list: before echoing the character, then calls READ. The character
will be read as part of the READ. The value returned by ASKUSER will be the
value of the READ.

Note: For Escape, Escape Escape, or a list, if the last character read by
the input operation is a separator, the character is treated as a
confirming character for the key. However, if the last character is
a break character, it will be matched against the next key.

Startup Protocol and Typeahead

Interlisp permits and encourages the user to typeahead; in actual practice, the user frequently does
this. This presents a problem for ASKUSER. When ASKUSER is entered and there has been typeahead,
was the input intended for ASKUSER, or was the interaction unanticipated, and the user simply typing
ahead to some other program, e.g. the programmer’s assistant? Even where there was no typeahead,
i.e., the user starts typing after the call to ASKUSER, the question remains of whether the user had time
to see the message from ASKUSER and react to it, or simply began typing ahead at an inauspicious
moment. Thus, what is needed is an interlock mechanism which warns the user to stop typing, gives
him a chance to respond to the warning, and then allows him to begin typing to ASKUSER.

Therefore, when ASKUSER is first entered, and the interaction is to take place with a terminal, and
typeahead to ASKUSER is not permitted, the following protocol is observed:

25-19

USER I/O PACKAGES

1. If there is typeahead, ASKUSER clears and saves the input buffers and rings the bell to
warn the user to stop typing. The buffers will be restored when ASKUSER completes
operation and returns.

2. If MESS, the message to be printed on entry, is not NIL (the typical case), ASKUSER then
prints MESS if it is a string, otherwise CAR of MESS, if MESS is a list.

3. After printing MESS or CAR of MESS, ASKUSER waits until the output has actually been
printed on the terminal to make sure that the user has actually had a chance to see the
output. This also give the user a chance to react. ASKUSER then checks to see if
anything additional has been typed in the intervening period since it first warned the
user in (1). If something has been typed, ASKUSER clears it out and again rings the bell.
This latter material, i.e., that typed between the entry to ASKUSER and this point, is
discarded and will not be restored since it is not certain whether the user simply
reacted quickly to the first warning (bell) and this input is intended for ASKUSER, or
whether the user was in the process of typing ahead when the call to ASKUSER
occurred, and did not stop typing at the first warning, and therefore this input is a
continuation of input intended for another program.

Anything typed after (3) is considered to be intended for ASKUSER, i.e., once the user
sees MESS or CAR of MESS, he is free to respond. For example, UNDO (see Chapter 13)
calls ASKUSER when the number of undosaves are exceeded for an event with MESS =
(LIST NUMBER-UNDOSAVES "undosaves, continue saving"). Thus, the user
can type a response as soon as NUMBER-UNDOSAVES is typed.

4. ASKUSER then types the rest of MESS, if any.

5. Then ASKUSER goes into a wait loop until something is typed. If WAIT, the wait time,
is not NIL, and nothing is typed in WAIT seconds, ASKUSER will type "..." and treat
the elements of DEFAULT, the default value, as a list of characters, and begin processing
them exactly as though they had been typed. If the user does type anything within
WAIT seconds, he can then wait as long as he likes, i.e., once something has been
typed, ASKUSER will not use the default value specified in DEFAULT.

If the user wants to consider his response for more than WAIT seconds, and does not
want ASKUSER to default, he can type a carriage return or a space, which are ignored if
they are not specified as acceptable inputs by KEYLST (see below) and they are the first
thing typed.

If the calling program knows that the user is expecting an interaction with ASKUSER,
e.g., another interaction preceded this one, it can specify in the call to ASKUSER that
typeahead is permitted. In this case, ASKUSER simply notes whether there is any
typeahead, then prints MESS and goes into a wait loop as described above.

If there is typeahead that contains unacceptable input, ASKUSER will assume that the
typeahead was not intended for ASKUSER, and will restore the typeahead when it
completes operation and returns.

6. Finally, if the interaction is not with the terminal, i.e., the optional input file/string is
specified, ASKUSER simply prints MESS and begins reading from the file/string.

25-20

INTERLISP-D REFERENCE MANUAL

TTYIN Display Typein Editor

TTYIN is an Interlisp function for reading input from the terminal. It features altmode completion,
spelling correction, help facility, and fancy editing, and can also serve as a glorified free text input
function. This document is divided into two major sections: how to use TTYIN from the user’s point
of view, and from the programmer’s.

TTYIN exists in implementations for Interlisp-10 and Interlisp-D. The two are substantially
compatible, but the capabilities of the two systems differ (Interlisp-D has a more powerful display and
allows greater access to the system primitives needed to control it effectively; it also has a mouse,
greatly reducing the need for keyboard-oriented editing commands). Descriptions of both are
included in this document for completeness, but Interlisp-D users may find large sections irrelevant.

Entering Input With TTYIN

There are two major ways of using TTYIN: set LISPXREADFN to TTYIN, so the LISPX executive uses
it to obtain input; and call TTYIN from within a program to gather text input. Mostly the same rules
apply to both; places where it makes a difference are mentioned below.

The following characters may be used to edit your input, independent of what kind of terminal you
are on. The more TTYIN knows about your terminal, of course, the nicer some of these will behave.
Some functions are performed by one of several characters; any character that you happen to have
assigned as an interrupt character will, of couse, not be read by TTYIN. There is a (somewhat
inelegant) way of changing which characters perform which functions, described under
TTYINREADMACROS later on.

Control-A
BACKSPACE

DELETE Deletes a character. At the start of the second or subsequent lines of
your input, deletes the last character of the previous line.

Control-W Deletes a "word". Generally this means back to the last space or
parenthesis.

Control-Q Deletes the current line, or if the current line is blank, deletes the
previous line.

Control-R Refreshes the current line. Two in a row refreshes the whole buffer
(when doing multi-line input).

ESCAPE Tries to complete the current word from the spelling list provided to
TTYIN, if any. In the case of ambiguity, completes as far as is uniquely
determined, or rings the bell. For LISPX input, the spelling list may be
USERWORDS (see discussion of TTYINCOMPLETEFLG.

Interlisp-10 only: If no spelling list was provided, but the word begins
with a "<", tries directory name completion (or filename completion if
there is already a matching ">" in the current word).

25-21

USER I/O PACKAGES

? If typed in the middle of a word will supply alternative completions
from the SPLST argument to TTYIN (if any). ?ACTIVATEFLG (see the
Assorted Flags section below) must be true to enable this feature.

Control-Y Escapes to a Lisp user exec, from which you may return by the
command OK. However, when in READ mode and the buffer is non-
empty, Control-Y is treated as Lisp’s unquote macro instead, so you
have to use meta-Control-Y (below) to invoke the user exec.

LF in Interlisp-10 Retrieves characters from the previous non-empty buffer when it is able
to; e.g., when typed at the beginning of the line this command restores
the previous line you typed at TTYIN; when typed in the middle of a
line fills in the remaining text from the old line; when typed following
↑Q or ↑W restores what those commands erased.

; If typed as the first character of the line means the line is a comment; it
is ignored, and TTYIN loops back for more input.

Note: The exact behaviour of this character is determined by the value
of TTYINCOMMENTCHAR (see the Assorted Flags section below).

Control-X Goes to the end of your input (or end of expression if there is an excess
right parenthesis) and returns if parentheses are balanced, beeps if not.

During most kinds of input, TTYIN is in "autofill" mode: if a space is typed near the right margin, a
carriage return is simulated to start a new line. In fact, on cursor-addressable displays, lines are
always broken, if possible, so that no word straddles the end of the line. The "pseudo-carriage return"
ending the line is still read as a space, however; i.e., the program keeps track of whether a line ends in
a carriage return or is merely broken at some convenient point. You won’t get carriage returns in your
strings unless you explicitly type them.

Mouse Commands

The mouse buttons are interpreted as follows during TTYIN input:

LEFT Moves the caret to where the cursor is pointing. As you hold down
LEFT, the caret moves around with the cursor; after you let up, any
typein will be inserted at the new position.

MIDDLE Like LEFT, but moves only to word boundaries.

RIGHT Deletes text from the caret to the cursor, either forward or backward.
While you hold down RIGHT, the text to be deleted is complemented;
when you let up, the text actually goes away. If you let up outside the
scope of the text, nothing is killed (this is how to "cancel" the
command). This is roughly the same as CTRL-RIGHT with no initial
selection (below).

If you hold down CTRL and/or SHIFT while pressing the mouse buttons, you instead get secondary
selection, move selection or delete selection. You make a selection by bugging LEFT (to select a
character) or MIDDLE (to select a word), and optionally extend the selection either left or right using
RIGHT. While you are doing this, the caret does not move, but your selected text is highlighted in a
manner indicating what is about to happen. When you have made your selection (all mouse buttons
up now), lift up on CTRL and/or SHIFT and the action you have selected will occur, which is:

25-22

INTERLISP-D REFERENCE MANUAL

SHIFT The selected text as typein at the caret. The text is highlighted with a
broken underline during selection.

CTRL Delete the selected text. The text is complemented during selection.

CTRL-SHIFT Combines the above: delete the selected text and insert it at the caret.
This is how you move text about.

You can cancel a selection in progress by pressing LEFT or MIDDLE as if to select, and moving outside
the range of the text.

The most recent text deleted by mouse command can be inserted at the caret by typing Middle-blank
key (on the Xerox 1132) or the Open key (on the Xerox 1108). This is the same key that retrieves the
previous buffer when issued at the end of a line.

Display Editing Commands

On terminals with a meta key: In Interlisp-10, TTYIN reads from the terminal in binary mode,
allowing many more editing commands via the meta key, in the style of TVEDIT commands. Note
that due to Tenex’s unfortunate way of handling typeahead, it is not possible to type ahead edit
commands before TTYIN has started (i.e., before its prompt appears), because the meta bit will be
thrown away. Also, since Escape has numerous other meanings in Lisp and even in TTYIN (for
completion), this is not used as a substitute for the meta key.

In Interlisp-D: Users will probably have little use for most of these commands, as cursor positioning
can often be done more conveniently, and certainly more obviously, with the mouse. Nevertheless,
some commands, such as the case changing commands, can be useful. The <bottom-blank> key can
be used as an meta key if you perform (METASHIFT T) (see Chapter 30). Alternatively, you can use
the variable EDITPREFIXCHAR as described in the next paragraph.

On display terminals without a meta key: If you want to type any of these commands, you need to
prefix them with the "edit prefix" character. Set the variable EDITPREFIXCHAR to the character code
of the desired prefix char. Type the edit prefix twice to give an "meta-escape" command. Some users
of the TENEX TVEDIT program like to make escape (33Q) be the edit prefix, but this makes it
somewhat awkward to ever use escape completion. EDITPREFIXCHAR is initially NIL.

On hardcopy terminals without a meta key: You probably want to ignore this section, since you won’t
be able to see what’s going on when you issure edit commands; there is no attempt made to echo
anything reasonable.

In the descriptions below, "current word" means the word the cursor is under, or if under a space, the
previous word. Currently parentheses are treated as spaces, which is usually what you want, but can
occasionally cause confusion in the word deletion commands. Most commands can be preceded by
numbers or escape (means infinity), only the first of which requires the meta key (or the edit prefix).
Some commands also accept negative arguments, but some only look at the magnitude of the arg.

25-23

USER I/O PACKAGES

Most of these commands are taken from the display editors TVEDIT and/or E, and are confined to
work within one line of text unless otherwise noted.

Cursor Movement Commands:

Meta-DELETE
Meta-BS
Meta-< Back up one (or n) characters.

Meta-SPACE
Meta-> Moves forward one (or n) characters.

Meta-^ Moves up one (or n) lines.

Meta-lf Moves down one (or n) lines.

Meta-(Moves back one (or n) words.

Meta-) Moves ahead one (or n) words.

Meta-TAB Moves to end of line; with an argument moves to nth end of line; Meta-ESC-
TAB goes to end of buffer.

Control-Meta-L Moves to start of line (or nth previous, or start of buffer).

Meta-{
 Meta-} Go to start and end of buffer, respectively.

Meta-[Moves to beginning of the current list, where cursor is currently under an
element of that list or its closing paren. (See also the auto-parenthesis-matching
feature below under "Flags".)

Meta-] Moves to end of current list.

Meta-Sx Skips ahead to next (or nth) occurrence of character x, or rings the bell.

Meta-Bx Backward search.

Buffer Modification Commands:

Meta-Zx Zaps characters from cursor to next (or nth) occurrence of x. There is no unzap
command yet.

Meta-A
Meta-R Repeat the last S, B or Z command, regardless of any intervening input (note this

differs from TEdit’s A command).

Meta-K Kills the character under the cursor, or n chars starting at the cursor.

Meta-CR When the buffer is empty is the same as LF, i.e. restores buffer’s previous
contents. Otherwise is just like a CR (except that it also terminates an insert).
Thus, Meta-CR CR will repeat the previous input (as will LF CR without the
meta key).

25-24

INTERLISP-D REFERENCE MANUAL

Meta-O Does "Open line", inserting a crlf after the cursor, i.e., it breaks the line but leaves
the cursor where it is.

Meta-T Transposes the characters before and after the cursor. When typed at the end of
a line, transposes the previous two characters. Refuses to handle funny cases,
such as tabs.

Meta-G Grabs the contents of the previous line from the cursor position onward. Meta-
nG grabs the nth previous line.

Meta-L Lowercases current word, or n words on line. Meta-ESC-L lowercases the rest
of the line, or if given at the end of line lowercases the entire line.

Meta-U Uppercases analogously.

Meta-C Capitalize. If you give it an argument, only the first word is capitalized; the rest
are just lowercased.

Control-Meta-Q Deletes the current line. Control-Meta-ESC-Q deletes from the current cursor
position to the end of the buffer. No other arguments are handled.

Control-Meta-W Deletes the current word, or the previous word if sitting on a space.

Meta-J "Justify" this line. This will break it if it is too long, or move words up from the
next line if too short. Will not join to an empty line, or one starting with a tab
(both of which are interpreted as paragraph breaks). Any new line breaks it
introduces are considered spaces, not carriage returns. Meta-nJ justifies n lines.

The linelength is defined as TTYJUSTLENGTH, ignoring any prompt characters at
the margin. If TTYJUSTLENGTH is negative, it is interpreted as relative to the
right margin. TTYJUSTLENGTH is initially -8 in Interlisp-D, 72 in Interlisp-10.

Meta-ESC-F "Finishes" the input, regardless of where the cursor is. Specifically, it goes to the
end of the input and enters a CR, control-Z or "", depending on whether
normal, REPEAT or READ input is happening. Note that a "" won’t necessarily
end a READ, but it seems likely to in most cases where you would be inclined to
use this command, and makes for more predictable behavior.

Miscellaneous Commands:

Meta-P Interlisp-D: Prettyprint buffer. Clears the buffer and reprints it using
prettyprint. If there are not enough right parentheses, it will supply more; if
there are too many, any excess remains unprettyprinted at the end of the buffer.
May refuse to do anything if there is an unclosed string or other error trying to
read the buffer.

Meta-N Refresh line. Same as Control-R. Meta-ESC-N refreshes the whole buffer;
Meta-nN refreshes n lines. Cursor movement in TTYIN depends on TTYIN being
the only source of output to the screen; if you do a Control-T, or a system
message appears, or line noise occurs, you may need to refresh the line for best
results. In Interlisp-10, if for some reason your terminal falls out of binary mode
(e.g. can happen when returning to a Lisp running in a lower fork), Meta-
<anything> is unreadable, so you’d have to type Control-R instead.

Control-Meta-Y Gets user exec. Thus, this is like regular Control-Y, except when doing a READ
(when control-Y is a read macro and hence does not invoke this function).

25-25

USER I/O PACKAGES

Control-Meta-ESC-YGets a user exec, but first unreads the contents of the buffer from the cursor
onward. Thus if you typed at TTYIN something destined for the Lisp executive,
you can do Control-Meta-L-ESC-Control-Y and give it to Lisp.

Meta-← Adds the current word to the spelling list USERWORDS. With zero arg, removes
word. See TTYINCOMPLETEFLG (see the Assorted Flags section below).

Note to Datamedia, Heath users: In addition to simple cursor movement commands and
insert/delete, TTYIN uses the display’s cursor-addressing capability to optimize cursor movements
longer than a few characters, e.g. Meta-TAB to go to the end of the line. In order to be able to address
the cursor, TTYIN has to know where it is to begin with. Lisp keeps track of the current print position
within the line, but does not keep track of the line on the screen (in fact, it knows precious little about
displays, much like Tenex). Thus, TTYIN establishes where it is by forcing the cursor to appear on the
last line of the screen. Ordinarily this is the case anyway (except possibly on startup), but if the cursor
happens to be only halfway down the screen at the time, there is a possibly unsettling leap of the
cursor when TTYIN starts.

Using TTYIN for Lisp Input

When TTYIN is loaded, or a sysout containing TTYIN is started up, the function SETREADFN is called.
If the terminal is a display, it sets LISPXREADFN (see Chapter 13) to be TTYINREAD. If the terminal is
not a display terminal, SETREADFN will set the variable to READ. (SETREADFN ’READ) will also set
it to READ.

There are two principal differences between TTYINREAD and READ: (1) parenthesis balancing. The
input does not activate on an exactly balancing right paren/bracket unless the input started with a
paren/bracket, e.g., USE (FOO) FOR (FIE) will all be on one line, terminated by CR; and (2) read
macros.

In Interlisp-10, TTYIN does not use a read table (TTYIN behaves as though using the default initial
Lisp terminal input readtable), so read macros and redefinition of syntax characters are not supported;
however, " ’ " (QUOTE) and "Control-Y" (EVAL) are built in, and a simple implementation of ? and ?=
is supplied. Also, the TTYINREADMACROS facility described below can supply some of the
functionality of immediate read macros in the editor.

In Interlisp-D, read macros are (mostly) supported. Immediate read macros take effect only if typed at
the end of the input (it’s not clear what their semantics should be elsewhere).

Useful Macros

There are two useful edit macros that allow you to use TTYIN as a character editor: (1) ED loads the
current expression into the ttyin buffer to be edited (this is good for editing comments and strings).
Input is terminated in the usual way (by typing a balancing right programmer’s assistant command
FIX will load the buffer with the event’s input, rather than calling the editor. If you really wanted the

25-26

INTERLISP-D REFERENCE MANUAL

Interlisp editor for your fix, you can say FIX EVENT - TTY: once you got TTYIN’s version to force
you into the editor.

Programming With TTYIN

(TTYIN PROMPT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL)
[Function]

TTYIN prints PROMPT, then waits for input. The value returned in the normal case is a list
of all atoms on the line, with comma and parens returned as individual atoms; OPTIONS
may be used to get a different kind of value back.

PROMPT is an atom or string (anything else is converted to a string). If NIL, the value of
DEFAULTPROMPT, initially "** ", will be used. If PROMPT is T, no prompt will be given.
PROMPT may also be a dotted pair (PROMPT1 . PROMPT2), giving the prompt for the
first and subsequent (or overflow) lines, each prompt being a string/atom or NIL to
denote absence of prompt. The default prompt for overflow lines is "...". Note that
rebinding DEFAULTPROMPT gives a convenient way to affect all the "ordinary" prompts in
some program module.

SPLST is a spelling list, i.e., a list of atoms or dotted pairs (SYNONYM . ROOT). If
supplied, it is used to check and correct user responses, and to provide completion if the
user types escape. If SPLST is one of the Lisp system spelling lists (e.g., USERWORDS or
SPELLINGS3), words that are escape-completed get moved to the front, just as if a
FIXSPELL had found them. Autocompletion is also performed when user types a break
character (cr, space, paren, etc), unless one of the "nofixspell" options below is selected;
i.e., if the word just typed would uniquely complete by escape, TTYIN behaves as though
escape had been typed.

HELP, if non-NIL, determines what happens when the user types ? or HELP. If HELP = T,
program prints back SPLST in suitable form. If HELP is any other litatom, or a string
containing no spaces, it performs (DISPLAYHELP HELP). Anything else is printed as is.
If HELP is NIL, ? and HELP are treated as any other atoms the user types. [DISPLAYHELP
is a user-supplied function, initially a noop; systems with a suitable HASH package, for
example, have defined it to display a piece of text from a hashfile associated with the key
HELP.]

OPTIONS is an atom or list of atoms chosen from among the following:

NOFIXSPELL Uses SPLST for HELP and Escape completion, but does not attempt any
FIXSPELLing. Mainly useful if SPLST is incomplete and the caller wants to
handle corrections in a more flexible way than a straight FIXSPELL.

MUSTAPPROVE Does spelling correction, but requires confirmation.

CRCOMPLETE Requires confirmation on spelling correction, but also does autocompletion on
<cr> (i.e. if what user has typed so far uniquely identifies a member of SPLST,
completes it). This allows you to have the benefits of autocompletion and still
allow new words to be typed.

25-27

USER I/O PACKAGES

DIRECTORY (only if SPLST = NIL) Interprets Escape to mean directory name completion
[Interlisp-10 only].

USER Like DIRECTORY, but does username completion. This is identical to
DIRECTORY under Tenex [Interlisp-10 only].

FILE (only if SPLST = NIL) Interprets Escape to mean filename completion
[Sumex and Tops20 only].

FIX If response is not on, or does not correct to, SPLST, interacts with user until an
acceptable response is entered. A blank line (returning NIL) is always
accepted. Note that if you are willing to accept responses that are not on
SPLST, you probably should specify one of the options NOXFISPELL,
MUSTAPPROVE or CRCOMPLETE, lest the user’s new response get FIXSPELLed
away without their approval.

STRING Line is read as a string, rather than list of atoms. Good for free text.

NORAISE Does not convert lower case letters to upper case.

NOVALUE For use principally with the ECHOTOFILE arg (below). Does not compute a
value, but returns T if user typed anything, NIL if just a blank line.

REPEAT For multi-line input. Repeatedly prompts until user types Control-Z (as in
Tenex sndmsg). Returns one long list; with STRING option returns a single
string of everything typed, with carriage returns (EOL) included in the string.

TEXT Implies REPEAT, NORAISE, and NOVALUE. Additionally, input may be
terminated with Control-V, in which case the global flag CTRLVFLG will be set
true (it is set to NIL on any other termination). This flag may be utilized in
any way the caller desires.

COMMAND Only the first word on the line is treated as belonging to SPLST, the
remainder of the line being arbitrary text; i.e., "command format". If other
options are supplied, COMMAND still applies to the first word typed. Basically,
it always returns (CMD . REST-OF-INPUT), where REST-OF-INPUT is
whatever the other options dictate for the remainder. E.g. COMMAND NOVALUE
returns (CMD) or (CMD . T), depending on whether there was further input;
COMMAND STRING returns (CMD . "REST-OF-INPUT"). When used with
REPEAT, COMMAND is only in effect for the first line typed; furthermore,
if the first line consists solely of a command, the REPEAT is ignored, i.e., the
entire input is taken to be just the command.

READ Parens, brackets, and quotes are treated a la READ, rather than being returned
as individual atoms. Control characters may be input via the Control-Vx
notation. Input is terminated roughly along the lines of READ conventions: a
balancing or over-balancing right paren/bracket will activate the input, or
<cr> when no parenthesis remains unbalanced. READ overrides all other
options (except NORAISE).

25-28

INTERLISP-D REFERENCE MANUAL

LISPXREAD Like READ, but implies that TTYIN should behave even more like READ, i.e.,
do NORAISE, not be errorset-protected, etc.

NOPROMPT Interlisp-D only: The prompt argument is treated as usual, except that TTYIN
assumes that the prompt for the first line has already been printed by the
caller; the prompt for the first line is thus used only when redisplaying the
line.

ECHOTOFILE if specified, user’s input is copied to this file, i.e., TTYIN can be used as a simple text-to-
file routine if NOVALUE is used. If ECHOTOFILE is a list, copies to all files in the list. PROMPT is not
included on the file.

TABS is a special addition for tabular input. It is a list of tabstops (numbers). When user types a tab,
TTYIN automatically spaces over to the next tabstop (thus the first tabstop is actually the second
"column" of input). Also treats specially the characters * and "; they echo normally, and then
automatically tab over.

UNREADBUF allows the caller to "preload" the TTYIN buffer with a line of input. UNREADBUF is a list,
the elements of which are unread into the buffer (i.e., "the outer parentheses are stripped off") to be
edited further as desired; a simple carriage return (or Control-Z for REPEAT input) will thus cause the
buffer’s contents to be returned unchanged. If doing READ input, the "PRIN2 names" of the input list
are used, i.e., quotes and %’s will appear as needed; otherwise the buffer will look as though
UNREADBUF had been PRIN1’ed. UNREADBUF is treated somewhat like READBUF, so that if it contains
a pseudo-carriage return (the value of HISTSTR0), the input line terminates there.

Input can also be unread from a file, using the HISTSTR1 format: UNREADBUF = (<value of
HISTSTR1> (FILE START . END)), where START and END are file byte pointers. This makes
TTYIN a miniature text file editor.

RDTBL [Interlisp-D only] is the read table to use for READing the input when one of the READ options
is given. A lot of character interpretations are hardwired into TTYIN, so currently the only effect this
has is in the actual READ, and in deciding whether a character typed at the end of the input is an
immediate read macro, for purposes of termination.

If the global variable TYPEAHEADFLG is T, or option LISPXREAD is given, TTYIN permits type-ahead;
otherwise it clears the buffer before prompting the user.

Using TTYIN as a General Editor

The following may be useful as a way of outsiders to call TTYIN as an editor. These functions are
currently only in Interlisp-D.

25-29

USER I/O PACKAGES

(TTYINEDIT EXPRS WINDOW PRINTFN PROMPT) [Function]

This is the body of the edit macro EE. Switches the tty to WINDOW, clears it, prettyprints
EXPRS, a list of expressions, into it, and leaves you in TTYIN to edit it as Lisp input.
Returns a new list of expressions.

If PRINTFN is non-NIL, it is a function of two arguments, EXPRS and FILE, which is
called instead of PRETTYPRINT to print the expressions to the window (actually to a
scratch file). Note that EXPRS is a list, so normally the outer parentheses should not be
printed. PRINTFN = T is shorthand for "unpretty"; use PRIN2 instead of PRETTYPRINT.

PROMPT determines what prompt is printed, if any. If T, no prompt is printed. If NIL, it
defaults to the value of TTYINEDITPROMPT.

TTYINAUTOCLOSEFLG [Variable]

If TTYINAUTOCLOSEFLG is true, TTYINEDIT closes the window on exit.

TTYINEDITWINDOW [Variable]

If the WINDOW arg to TTYINEDIT is NIL, it uses the value of TTYINEDITWINDOW, creating
it if it does not yet exist.

TTYINPRINTFN [Variable]

The default value for PRINTFN in EE’s call to TTYINEDIT.

(SET.TTYINEDIT.WINDOW WINDOW) [Function]

Called under a RESETLST. Switches the tty to WINDOW (defaulted as in TTYINEDIT) and
clears it. The window’s position is left so that TTYIN will be happy with it if you now call
TTYIN yourself. Specifically, this means positioning an integral number of lines from the
bottom of the window, the way the top-level tty window normally is.

(TTYIN.SCRATCHFILE) [Function]

Returns, possibly creating, the scratchfile that TTYIN uses for prettyprinting its input. The
file pointer is set to zero. Since TTYIN does use this file, beware of multiple simultaneous
use of the file.

?= Handler

In Interlisp, the ?= read macro displays the arguments to the function currently "in progress" in the
typein. Since TTYIN wants you to be able to continue editing the buffer after a ?=, it processes this
macro specially on its own, printing the arguments below your typein and then putting the cursor
back where it was when ?= was typed. For users who want special treatment of ?=, the following
hook exists:

25-30

INTERLISP-D REFERENCE MANUAL

TTYIN?=FN [Variable]

The value of this variable, if non-NIL, is a user function of one argument that is called
when ?= is typed. The argument is the function that ?= thinks it is inside of. The user
function should return one of the following:

NIL Normal ?= processing is performed.

T Nothing is done. Presumably the user function has done something privately,
perhaps diddled some other window, or called TTYIN.PRINTARGS (below).

a list (ARGS . STUFF) Treats STUFF as the argument list of the function in question, and
performs the normal ?= processing using it.

anything else The value is printed in lieu of what ?= normally prints.

At the time that ?= is typed, nothing has been "read" yet, so you don’t have the normal
context you might expect inside a conventional readmacro. If the user function wants to
examine the typed-in arguments being passed to the fn, however, it can call the function
TTYIN.READ?=ARGS:

(TTYIN.READ?=ARGS) [Function]

When called inside TTYIN?=FN user function, returns everything between the function
and the typing of ?= as a list (like an arglist). Returns NIL if ?= was typed immediately
after the function name.

(TTYIN.PRINTARGS FN ARGS ACTUALS ARGTYPE) [Function]

Does the function/argument printing for ?=. ARGS is an argument list, ACTUALS is a list
of actual parameters (from the typein) to match up with args. ARGTYPE is a value of the
function ARGTYPE; it defaults to (ARGTYPE FN).

Read Macros

When doing READ input in Interlisp-10, no Lisp-style read macros are available (but the ’ and control-
Y macros are built in). Principally because of the usefulness of the editor read macros (set by
SETTERMCHARS), and the desire for a way of changing the meanings of the display editing
commands, the following exists as a hack:

TTYINREADMACROS [Variable]

Value is a set of shorthand inputs useable during READ input. It is an alist of entries
(CHARCODE . SYNONYM). If the user types the indicated character (the meta bit is
denoted by the 200Q bit in the char code), TTYIN behaves as though the synonym
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure meta bit; means to read another char
and turn on its meta bit; 400Q - macro quote: read another char and use its original
meaning. For example, if you have macros ((33Q . 200Q) (30Q . 33Q)), then
Escape (33Q) will behave as an edit prefix, and control-X (30Q) will behave like Escape.

25-31

USER I/O PACKAGES

Note: currently, synonyms for meta commands are not well-supported, working only
when the command is typed with no argument.

Slightly more powerful macros also can be supplied; they are recognized when a character
is typed on an empty line, i.e., as the first thing after the prompt. In this case, the
TTYINREADMACROS entry is of the form (CHARCODE T . RESPONSE) or (CHARCODE
CONDITION . RESPONSE), where CONDITION is a list that evaluates true. If RESPONSE
is a list, it is EVALed; otherwise it is left unevaluated. The result of this evaluation (or
RESPONSE itself) is treated as follows:

NIL The macro is ignored and the character reads normally, i.e., as though
TTYINREADMACROS had never existed.

An integer A character code, treated as above. Special case: -1 is treated like 0, but says
that the display may have been altered in the evaluation of the macro, so
TTYIN should reset itself appropriately.

Anything else This TTYIN input is terminated (with a crlf) and returns the value of
"response" (turned into a list if necessary). This is the principal use of this
facility. The macro character thus stands for the (possibly computed) reponse,
terminated if necessary with a crlf. The original character is not echoed.

Interrupt characters, of course, cannot be read macros, as TTYIN never sees them, but any
other characters, even non-control chars, are allowed. The ability to return NIL allows
you to have conditional macros that only apply in specified situations (e.g., the macro
might check the prompt (LISPXID) or other contextual variables). To use this specifically
to do immediate editor read macros, do the following for each edit command and
character you want to invoke it with:

(ADDTOVAR TTYINREADMACROS (CHARCODE ’CHARMACRO?
EDITCOM)))

For example, (ADDTOVAR TTYINREADMACROS (12Q CHARMACRO? !NX)) will make
linefeed do the !NX command. Note that this will only activate linefeed at the beginning
of a line, not anywhere in the line. There will probably be a user function to do this in the
next release.

Note that putting (12Q T . !NX) on TTYINREADMACROS would also have the effect of
returning !NX from the READ call so that the editor would do an !NX. However, TTYIN
would also return !NX outside the editor (probably resulting in a u.b.a. error, or
convincing DWIM to enter the editor), and also the clearing of the output buffer (performed
by CHARMACRO?) would not happen.

Assorted Flags

These flags control aspects of TTYIN’s behavior. Some have already been mentioned. In Interlisp-D,
the flags are all initially set to T.

25-32

INTERLISP-D REFERENCE MANUAL

TYPEAHEADFLG [Variable]

If true, TTYIN always permits typeahead; otherwise it clears the buffer for any but
LISPXREAD input.

?ACTIVATEFLG [Variable]

If true, enables the feature whereby ? lists alternative completions from the current
spelling list.

SHOWPARENFLG [Variable]

If true, then whenever you are typing Lisp input and type a right parenthesis/bracket,
TTYIN will briefly move the cursor to the matching parenthesis/bracket, assuming it is
still on the screen. The cursor stays there for about 1 second, or until you type another
character (i.e., if you type fast you’ll never notice it). This feature was inspired by a
similar EMACS feature, and turned out to be pretty easy to implement.

TTYINBSFLG [Variable]

Causes TTYIN to always physically backspace, even if you’re running on a non-display
(not a DM or Heath), rather than print \deletedtext\ (this assumes your hardcopy
terminal or glass tty is capable of backspacing). If TTYINBSFLG is LF, then in addition to
backspacing, TTYIN x’s out the deleted characters as it backs up, and when you stop
deleting, it outputs a linefeed to drop to a new, clean line before resuming. To save paper,
this linefeed operation is not done when only a single character is deleted, on the grounds
that you can probably figure out what you typed anyway.

TTYINRESPONSES [Variable]

An association list of special responses that will be handled by routines designated by the
programmer. See "Special Responses", below.

TTYINERRORSETFLG [Variable]

[Interlisp-D only] If true, non-LISPXREAD inputs are errorset-protected (Control-E traps
back to the prompt), otherwise errors propagate upwards. Initially NIL.

TTYINCOMMENTCHAR [Variable]

This variable affects the treatment of lines beginning with the comment character (usually
";"). If TTYINCOMMENTCHAR is a character code, and the first character on a line of typein
is equal to TTYINCOMMENTCHAR, then the line is erased from the screen and no input
function will see it. If TTYINCOMMENTCHAR is NIL, this feature is disabled.
TTYINCOMMENTCHAR is initially NIL.

TTYINCOMPLETEFLG [Variable]

If true, enables Escape completion from USERWORDS during READ inputs. Details below.

25-33

USER I/O PACKAGES

USERWORDS (see Chapter 20) contains words you mentioned recently: functions you have defined or
edited, variables you have set or evaluated at the executive level, etc. This happens to be a very
convenient list for context-free escape completion; if you have recently edited a function, chances are
good you may want to edit it again (typing "EF xx$") or type a call to it. If there is no completion for
the current word from USERWORDS, the escape echoes as "$", i.e. nothing special happens; if there is
more than one possible completion, you get beeped. If typed when not inside a word, Escape
completes to the value of LASTWORD, i.e., the last thing you typed that the p.a. "noticed" (setting
TTYINCOMPLETEFLG to 0 disables this latter feature), except that Escape at the beginning of the line is
left alone (it is a p.a. command).

If you really wanted to enter an escape, you can, of course, just quote it with a control-V, like you can
other control chars.

You may explicitly add words to USERWORDS yourself that wouldn’t get there otherwise. To make
this convenient online the edit command [←] means "add the current atom to USERWORDS" (you
might think of the command as "pointing out this atom"). For example, you might be entering a
function definition and want to "point to" one or more of its arguments or prog variables. Giving an
argument of zero to this command will instead remove the indicated atom from USERWORDS.

Note that this feature loses some of its value if the spelling list is too long, for then the completion
takes too long computationally and, more important, there are too many alternative completions for
you to get by with typing a few characters followed by escape. Lisp’s maintenance of the spelling list
USERWORDS keeps the "temporary" section (which is where everything goes initially unless you say
otherwise) limited to #USERWORDS atoms, initially 100. Words fall off the end if they haven’t been
used (they are "used" if FIXSPELL corrects to one, or you use <escape> to complete one).

Special Responses

There is a facility for handling "special responses" during any non-READ TTYIN input. This action is
independent of the particular call to TTYIN, and exists to allow you to effectively "advise" TTYIN to
intercept certain commands. After the command is processed, control returns to the original TTYIN
call. The facility is implemented via the list TTYINRESPONSES.

TTYINRESPONSES [Variable]

TTYINRESPONSES is a list of elements, each of the form:

(COMMANDS RESPONSE-FORM OPTION)

COMMANDS is a single atom or list of commands to be recognized; RESPONSE-FORM is
EVALed (if a list), or APPLYed (if an atom) to the command and the rest of the line. Within
this form one can reference the free variables COMMAND (the command the user typed) and
LINE (the rest of the line). If OPTION is the atom LINE, this means to pass the rest of line
as a list; if it is STRING, this means to pass it as a string; otherwise, the command is only
valid if there is nothing else on the line. If RESPONSE-FORM returns the atom IGNORE, it
is not treated as a special response (i.e. the input is returned normally as the result of
TTYIN).

25-34

INTERLISP-D REFERENCE MANUAL

Suggested use: global commands or options can be added to the toplevel value of TTYINRESPONSES.
For more specialized commands, rebind TTYINRESPONSES to (APPEND NEWENTRIES
TTYINRESPONSES) inside any module where you want to do this sort of special processing.

Special responses are not checked for during READ-style input.

Display Types

[This is not relevant in Interlisp-D]

TTYIN determines the type of display by calling DISPLAYTERMP, which is initially defined to test the
value of the GTTYP jsys. It returns either NIL (for printing terminals) or a small number giving
TTYIN’s internal code for the terminal type. The types TTYIN currently knows about:

0 = glass tty (capable of deleting chars by backspacing, but little else)

1 = Datamedia

2 = Heath

Only the Datamedia has full editing power. DISPLAYTERMP has built into it the correct terminal
types for Sumex and Stanford campus 20’s: Datamedia = 11 on tenex, 5 on tops20; Heath = 18 on
Tenex, 25 on tops20. You can override those values by setting the variable DISPLAYTYPES to be an
association list associating the GTTYP value with one of these internal codes. For example, Sumex
displays correspond to DISPLAYTYPES = ((11 . 1) (18 . 2)) [although this is actually
compiled into DISPLAYTERMP for speed]. Any display terminal other than Datamedia and Heath can
probably safely be assigned to "0" for glass tty.

To add new terminal types, you have to choose a number for it, add new code to TTYIN for it and
recompile. The TTYIN code specifies what the capabilities of the terminal are, and how to do the
primitive operations: up, down, left, right, address cursor, erase screen, erase to end of line, insert
character, etc.

For terminals lacking a meta key (currently only Datamedias have it), set the variable
EDITPREFIXCHAR to the ascii code of an edit "prefix" (i.e., anything typed preceded by the prefix is
considered to have the meta bit on). If your EDITPREFIXCHAR is 33Q (Escape), you can type a real
Escape by typing 3 of them (2 won’t do, since that means "Meta-Escape", a legitimate argument to
another command). You could also define an Escape synonym with TTYINREADMACROS if you
wanted (but currently it doesn’t work in filename completion). Setting EDITPREFIXCHAR for a
terminal that is not equipped to handle the full range of editing functions (only the Heath and
Datamedia are currently so equipped) is not guaranteed to work, i.e. the display will not always be up
to date; but if you can keep track of what you’re doing, together with an occasional control-R to help
out, go right ahead.

25-35

USER I/O PACKAGES

Prettyprint

The standard way of printing out function definitions (on the terminal or into files) is to use
PRETTYPRINT.

(PRETTYPRINT FNS PRETTYDEFLG —) [Function]

FNS is a list of functions. If FNS is atomic, its value is used). The definitions of the
functions are printed in a pretty format on the primary output file using the primary
readtable. For example, if FACTORIAL were defined by typing

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND ((ZEROP N) 1)
(T (ITIMES N (FACTORIAL (SUB1 N]

(PRETTYPRINT ’(FACTORIAL))would print out
(FACTORIAL
 [LAMBDA (N)
 (COND
 ((ZEROP N)
 1)
 (T (ITIMES N (FACTORIAL (SUB1 N])

PRETTYDEFLG is T when called from PRETTYDEF (and hence MAKEFILE). Among other
actions taken when this argument is true, PRETTYPRINT indicates its progress in writing
the current output file: whenever it starts a new function, it prints on the terminal the
name of that function if more than 30 seconds (real time) have elapsed since the last time
it printed the name of a function.

PRETTYPRINT operates correctly on functions that are BROKEN, BROKEN-IN, ADVISED, or
have been compiled with their definitions saved on their property lists: it prints the
original, pristine definition, but does not change the current state of the function. If a
function is not defined but is known to be on one of the files noticed by the file package,
PRETTYPRINT loads in the definition (using LOADFNS) and prints it (except when called
from PRETTYDEF). If PRETTYPRINT is given an atom which is not the name of a
function, but has a value, it prettyprints the value. Otherwise, PRETTYPRINT attempts
spelling correction. If all fails, PRETTYPRINT returns (FN NOT PRINTABLE). Note that
PRETTYPRINT will return (FN NOT PRINTABLE) if FN does not have an accessable expr
definition, or if it doesn’t have any definition at all.

(PP FN1 ... FNN) [NLambda NoSpread Function]

For prettyprinting functions to the terminal. PP calls PRETTYPRINT with the primary
output file set to T and the primary read table set to T. The primary output file and
primary readtable are restored after printing.

(PP FOO) is equivalent to (PRETTYPRINT ’(FOO)); (PP FOO FIE) is equivalent to
(PRETTYPRINT ’(FOO FIE)).

25-36

INTERLISP-D REFERENCE MANUAL

As described above, when PRETTYPRINT, and hence PP, is called with the name of a function that is
not defined, but whose definition is on a file known to the file package, the definition is automatically
read in and then prettyprinted. However, if the user does not intend on editing or running the
definition, but simply wants to see the definition, the function PF described below can be used to
simply copy the corresponding characters from the file to the terminal. This results in a savings in
both space and time, since it is not necessary to allocate storage to actually read in the definition, and
it is not necessary to re-prettyprint it (since the function is already in prettyprint format on the file).

(PF FN FROMFILES TOFILE) [NLambda NoSpread Function]

Copies the definition of FN found on each of the files in FROMFILES to TOFILE. If
TOFILE = NIL, defaults to T. If FROMFILES = NIL, defaults to (WHEREIS FN NIL
T) (see Chapter 17). The typical usage of PF is simply to type "PF FN".

PF prints a message if it can’t find a file on FROMFILES, or it can’t find the function FN on
a file.

When printing to the terminal, PF performs several transformations on the characters in the file that
comprise the definition for FN:

1. Font information is stripped out (except in Interlisp-D, whose display supports
multiple fonts)

2. Occurrences of the CHANGECHAR (see the Special Prettyprint Controls section below)
are not printed

3. Since functions typically tend to be printed to a file with a larger linelength than when
printing to a terminal, the number of leading spaces on each line is cut in half (unless
PFDEFAULT is T; initially NIL)

4. Comments are elided, if **COMMENT**FLG is non-NIL (see the Comment Feature
section below).

(SEE FROMFILE TOFILE) [NLambda NoSpread Function]

Copies all of the text from FROMFILE to TOFILE (defaults to T), processing all text as PF
does. Used to display the contents of files on the terminal.

(PP* X) [NLambda NoSpread Function]
(PF* FN FROMFILES TOFILE) [NLambda NoSpread Function]
(SEE* FROMFILE TOFILE) [NLambda NoSpread Function]

These functions operate exactly like PP, PF, and SEE, except that they bind
COMMENTFLG to NIL, so comments are printed in full.

While the function PRETTYPRINT prints entire function definitions, the function PRINTDEF can be
used to print parts of functions, or arbitrary Interlisp structures:

25-37

USER I/O PACKAGES

(PRINTDEF EXPR LEFT DEF TAILFLG FNSLST FILE) [Function]

Prints the expression EXPR in a pretty format on FILE using the primary readtable. LEFT
is the left hand margin (LINELENGTH determines the right hand margin). PRINTDEF
initially performs (TAB LEFT T), which means to space to position LEFT, unless already
beyond this position, in which case it does nothing.

DEF = T means EXPR is a function definition, or a piece of one. If DEF = NIL, no special
action is taken for LAMBDA’s, PROG’s, COND’s, comments, CLISP, etc. DEF is NIL when
PRETTYDEF calls PRETTYPRINT to print variables and property lists, and when
PRINTDEF is called from the editor via the command PPV.

TAILFLG = T means EXPR is interpreted as a tail of a list, to be printed without
parentheses.

FNSLST is for use for printing with multiple fonts (see Chapter 27). PRINTDEF prints
occurrences of any function in the list FNSLST in a different font, for emphasis.
MAKEFILE passes as FNSLST the list of all functions on the file being made.

Comment Feature

A facility for annotating Interlisp functions is provided in PRETTYPRINT. Any expression beginning
with the atom * is interpreted as a comment and printed in the right margin. Example:

(FACTORIAL
 [LAMBDA (N) (* COMPUTES N!)
 (COND
 ((ZEROP N) (* 0! = 1)
 1)
 (T (* RECURSIVE DEFINITION:
 N! = N*N-1!)
 (ITIMES N (FACTORIAL (SUB1 N])

These comments actually form a part of the function definition. Accordingly, * is defined as an
nlambda nospread function that returns its argument, similar to QUOTE. When running an interpreted
function, * is entered the same as any other Interlisp function. Therefore, comments should only be
placed where they will not harm the computation, i.e., where a quoted expression could be placed.
For example, writing

(ITIMES N (FACTORIAL (SUB1 N)) (* RECURSIVE
DEFINITION))

in the above function would cause an error when ITIMES attempted to multiply N, N-1!, and
RECURSIVE.

For compilation purposes, * is defined as a macro which compiles into no instructions (unless the
comment has been placed where it has been used for value, in which case the compiler prints an
appropriate error message and compiles * as QUOTE). Thus, the compiled form of a function with

25-38

INTERLISP-D REFERENCE MANUAL

comments does not use the extra atom and list structure storage required by the comments in the
source (interpreted) code. This is the way the comment feature is intended to be used.

A comment of the form (* E X) causes X to be evaluated at prettyprint time, as well as printed as a
comment in the usual way. For example, (* E (RADIX 8)) as a comment in a function containing
octal numbers can be used to change the radix to produce more readable printout.

The comment character * is stored in the variable COMMENTFLG. The user can set it to some other
value, e.g. ";", and use this to indicate comments.

COMMENTFLG [Variable]

If CAR of an expression is EQ to COMMENTFLG, the expression is treated as a comment by
PRETTYPRINT. COMMENTFLG is initialized to *. Note that whatever atom is chosen for
COMMENTFLG should also have an appropriate function definition and compiler macro, for
example, by copying those of *.

Comments are designed mainly for documenting listings. Therefore, when prettyprinting to the
terminal, comments are suppressed and printed as the string **COMMENT**. The value of
COMMENTFLG determines the action.

COMMENTFLG [Variable]

If **COMMENT**FLG is NIL, comments are printed. Otherwise, the value of
COMMENTFLG is printed. Initially " **COMMENT** ".

(COMMENT1 L —) [Function]

Prints the comment L. COMMENT1 is a separate function to permit the user to write
prettyprint macros that use the regular comment printer. For example, to cause
comments to be printed at a larger than normal linelength, one could put an entry for * on
PRETTYPRINTMACROS:

(* LAMBDA (X) (RESETFORM (LINELENGTH 100)
(COMMENT1 X)))

This macro resets the line length, prints the comment, and then restores the line length.

COMMENT1 expects to be called from within the environment established by PRINTDEF, so
ordinarily the user should call it only from within prettyprint macros.

Comment Pointers

For a well-commented collection of programs, the list structure, atom, and print name storage
required to represent the comments in core can be significant. If the comments already appear on a
file and are not needed for editing, a significant savings in storage can be achieved by simply leaving
the text of the comment on the file when the file is loaded, and instead retaining in core only a pointer
to the comment. When this feature is enabled, * is defined as a read macro (see Chapter 25) in

25-39

USER I/O PACKAGES

FILERDTBL which, instead of reading in the entire text of the comment, constructs an expression
containing

• The name of the file in which the text of the comment is contained

• The address of the first character of the comment

• The number of characters in the comment

• A flag indicating whether the comment appeared at the right hand margin or centered
on the page

For output purposes, * is defined on PRETTYPRINTMACROS (see the Prettyprint Control Functions
section below) so that it prints the comments represented by such pointers by simply copying the
corresponding characters from one file to another, or to the terminal. Normal comments are
processed the same as before, and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the function NORMALCOMMENTS.

(NORMALCOMMENTS FLG) [Function]

If FLG is NIL, the comment pointer feature is enabled. If FLG is T, the comment pointer
feature is disabled (the default).

NORMALCOMMENTS can be changed as often as desired. Thus, some files can be loaded
normally, and others with their comments converted to comment pointers.

For convenience of editing selected comments, an edit macro, GET*, is included, which loads in the
text of the corresponding comment. The editor’s PP* command, in contrast, prints the comment
without reading it by simply copying the corresponding characters to the terminal. GET* is defined in
terms of GETCOMMENT:

(GETCOMMENT X DESTFL —) [Function]

If X is a comment pointer, replaces X with the actual text of the comment, which it reads
from its file. Returns X in all cases. If DESTFL is non-NIL, it is the name of an open file, to
which GETCOMMENT copies the comment; in this case, X remains a comment pointer, but it
has been changed to point to the new file (unless NORMALCOMMENTS has been set to
DONTUPDATE).

(PRINTCOMMENT X) [Function]

Defined as the prettyprint macro for *: copies the comment to the primary output file by
using GETCOMMENT.

(READCOMMENT FL RDTBL LST) [Function]

Defined as the read macro for * in FILERDTBL: if NORMALCOMMENTSFLG is NIL, it
constructs a comment pointer, unless it believes the expression beginning with * is not
actually a comment, e.g., if the next atom is "." or E.

25-40

INTERLISP-D REFERENCE MANUAL

Note that a certain amount of care is required in using the comment pointer feature. Since the text of
the comment resides on the file pointed to by the comment pointer, that file must remain in existence
as long as the comment is needed. GETCOMMENT helps out by changing the comment pointer to
always point at the most recent file that the comment lives on. However, if the user has been
performing repeated MAKEFILE’s (see Chapter 17) in which differing functions have changed at each
invocation of MAKEFILE, it is possible for the comment pointers in memory to be pointing at several
versions of the same file, since a comment pointer is only updated when the function it lives in is
prettyprinted, not when the function has been copied verbatim to the new file. This can be a problem
for file systems that have a built-in limit on the number of versions of a given file that will be made
before old versions are expunged. In such a case, the user should set the version retention count of
any directories involved to be infinite. GETCOMMENT prints an error message if the file that the
comment pointer points at has disappeared.

Similarly, one should be cognizant of comment pointers in sysouts, and be sure to retain any files thus
pointed to.

When using comment pointers, the user should also not set PRETTYFLG to NIL or call MAKEFILE
with option FAST, since this will prevent functions from being prettyprinted, and hence not get the
text of the comment copied into the new file.

If the user changes the value of COMMENTFLG but still wishes to use the comment pointer feature, the
new COMMENTFLG should be given the same read-macro definition in FILERDTBL as * has, and the
same entry be put on PRETTYPRINTMACROS. For example, if COMMENTFLG is reset to be ";", then
(SETSYNTAX ’; ’* FILERDTBL) should be performed, and (; . PRINTCOMMENT) added to
PRETTYPRINTMACROS.

Converting Comments to Lower Case

This section is for users using terminals without lower case, who nevertheless would like their
comments to be converted to lower case for more readable listings. If the second atom in a comment
is %%, the text of the comment is converted to lower case so that it looks like English instead of Lisp.
Note that comments are converted only when they are actually written to a file by PRETTYPRINT.

The algorithm for conversion to lower case is the following: If the first character in an atom is ^, do
not change the atom (but remove the ^). If the first character is %, convert the atom to lower case.
Note that the user must type %% as % is the escape character. If the atom (minus any trailing
punctuation marks) is an Interlisp word (i.e., is a bound or free variable for the function containing the
comment, or has a top level value, or is a defined function, or has a non-NIL property list), do not
change it. Otherwise, convert the atom to lower case. Conversion only affects the upper case
alphabet, i.e., atoms already converted to lower case are not changed if the comment is converted
again. When converting, the first character in the comment and the first character following each
period are left capitalized. After conversion, the comment is physically modified to be the lower case
text minus the %% flag, so that conversion is thus only performed once (unless the user edits the
comment inserting additional upper case text and another %% flag).

25-41

USER I/O PACKAGES

LCASELST [Variable]

Words on LCASELST will always be converted to lower case. LCASELST is initialized to
contain words which are Interlisp functions but also appear frequently in comments as
English words (AND, EVERY, GET, GO, LAST, LENGTH, LIST, etc.). Therefore, if one
wished to type a comment including the lisp fuction GO, it would be necessary to type ↑GO
in order that it might be left in upper case.

UCASELST [Variable]

Words on UCASELST (that do not appear on LCASELST) will be left in upper case.
UCASELST is initialized to NIL.

ABBREVLST [Variable]

ABBREVLST is used to distinguish between abbreviations and words that end in periods.
Normally, words that end in periods and occur more than halfway to the right margin
cause carriage-returns. Furthermore, during conversion to lowercase, words ending in
periods, except for those on ABBREVLST, cause the first character in the next word to be
capitalized. ABBREVLST is initialized to the upper and lower case forms of ETC., I.E., and
E.G..

Special Prettyprint Controls

PRETTYTABFLG [Variable]

In order to save space on files, tabs are used instead of spaces for the inital spaces on each
line, assuming that each tab corresponds to 8 spaces. This results in a reduction of file size
by about 30%. Tabs are not used if PRETTYTABFLG is set to NIL (initially T).

#RPARS [Variable]

Controls the number of right parentheses necessary for square bracketing to occur. If
#RPARS = NIL, no brackets are used. #RPARS is initialized to 4.

FIRSTCOL [Variable]

The starting column for comments. Comments run between FIRSTCOL and the line
length set by LINELENGTH (see Chapter 25). If a word in a comment ends with a "." and
is not on the list ABBREVLST, and the position is greater than halfway between FIRSTCOL
and LINELENGTH, the next word in the comment begins on a new line. Also, if a list is
encountered in a comment, and the position is greater than halfway, the list begins on a
new line.

PRETTYLCOM [Variable]

If a comment has more than PRETTYLCOM elements (using COUNT), it is printed starting at
column 10, instead of FIRSTCOL. Comments are also printed starting at column 10 if
their second element is also a *, i.e., comments of the form (* * --).

25-42

INTERLISP-D REFERENCE MANUAL

#CAREFULCOLUMNS [Variable]

In the interests of efficiency, PRETTYPRINT approximates the number of characters in
each atom, rather than calling NCHARS, when computing how much will fit on a line. This
procedure works satisfactorily in most cases. However, users with unusually long atoms
in their programs, e.g., such as produced by CLISPIFY, may occasionlly encounter some
glitches in the output produced by PRETTYPRINT. The value of #CAREFULCOLUMNS tells
PRETTYPRINT how many columns (counting from the right hand margin) in which to
actually compute NCHARS instead of approximating. Setting #CAREFULCOLUMNS to 20 or
30 will eliminate the glitches, although it will slow down PRETTYPRINT slightly.
#CAREFULCOLUMNS is initially 0.

(WIDEPAPER FLG) [Function]

(WIDEPAPER T) sets FILELINELENGTH (see Chapter 25), FIRSTCOL, and PRETTYLCOM
to large values appropriate for pretty printing files to be listed on wide paper.
(WIDEPAPER) restores these parameters to their initial values. WIDEPAPER returns the
previous setting of FLG.

PRETTYFLG [Variable]

If PRETTYFLG is NIL, PRINTDEF uses PRIN2 instead of prettyprinting. This is useful for
producing a fast symbolic dump (see the FAST option of MAKEFILE in Chapter 17). Note
that the file loads the same as if it were prettyprinted. PRETTYFLG is initially set to T.
PRETTYFLG should not be set to NIL if comment pointers are being used.

CLISPIFYPRETTYFLG [Variable]

Used to inform PRETTYPRINT to call CLISPIFY on selected function definitions before
printing them (see Chapter 21).

PRETTYPRINTMACROS [Variable]

An association-list that enables the user to control the formatting of selected expressions.
CAR of each expression being PRETTYPRINTed is looked up on PRETTYPRINTMACROS,
and if found, CDR of the corresponding entry is applied to the expression. If the result of
this application is NIL, PRETTYPRINT ignores the expression; i.e., it prints nothing,
assuming that the prettyprintmacro has done any desired printing. If the result of
applying the prettyprint macro is non-NIL, the result is prettyprinted in the normal
fashion. This gives the user the option of computing some other expression to be
prettyprinted in its place.

Note: "prettyprinted in the normal fashion" includes processing prettyprint macros,
unless the prettyprint macro returns a structure EQ to the one it was handed, in
which case the potential recursion is broken.

PRETTYPRINTYPEMACROS [Variable]

A list of elements of the form (TYPENAME . FN). For types other than lists and atoms,
the type name of each datum to be prettyprinted is looked up on

25-43

USER I/O PACKAGES

PRETTYPRINTYPEMACROS, and if found, the corresponding function is applied to the
datum about to be printed, instead of simply printing it with PRIN2.

PRETTYEQUIVLST [Variable]

An association-list that tells PRETTYPRINT to treat a CAR-of-form the same as some other
CAR-of-form. For example, if (QLAMBDA . LAMBDA) appears on PRETTYEQUIVLST,
then expressions beginning with QLAMBDA are prettyprinted the same as LAMBDAs.
Currently, PRETTYEQUIVLST only allows (i.e., supports in an interesting way)
equivalences to forms that PRETTYPRINT internally handles. Equivalence to forms for
which the user has specified a prettyprint macro should be made by adding further
entries to PRETTYPRINTMACROS

CHANGECHAR [Variable]

If non-NIL, and PRETTYPRINT is printing to a file or display terminal, PRETTYPRINT
prints CHANGECHAR in the right hand margin while printing those expressions marked by
the editor as having been changed (see Chapter 16). CHANGECHAR is initially |.

26-1

26. GRAPHICS OUTPUT OPERATIONS

Streams are used as the basis for all I/O operations. Files are implemented as streams that can
support character printing and reading operations, and file pointer manipulation. An image stream is
a type of stream that also provides an interface for graphical operations. All of the operations that can
applied to streams can be applied to image streams. For example, an image stream can be passed as
the argument to PRINT, to print something on an image stream. In addition, special functions are
provided to draw lines and curves and perform other graphical operations. Calling these functions on
a stream that is not an image stream will generate an error.

Primitive Graphics Concepts

The Interlisp-D graphics system is based on manipulating bitmaps (rectangular arrays of pixels),
positions, regions, and textures. These objects are used by all of the graphics functions.

Positions

A position denotes a point in an X,Y coordinate system. A POSITION is an instance of a record with
fields XCOORD and YCOORD and is manipulated with the standard record package facilities. For
example, (create POSITION XCOORD ← 10 YCOORD ← 20) creates a position representing the
point (10,20).

(POSITIONP X) [Function]

Returns X if X is a position; NIL otherwise.

Regions

A Region denotes a rectangular area in a coordinate system. Regions are characterized by the
coordinates of their bottom left corner and their width and height. A REGION is a record with fields
LEFT, BOTTOM, WIDTH, and HEIGHT. It can be manipulated with the standard record package
facilities. There are access functions for the REGION record that return the TOP and RIGHT of the
region.

The following functions are provided for manipulating regions:

(CREATEREGION LEFT BOTTOM WIDTH HEIGHT) [Function]

Returns an instance of the REGION record which has LEFT, BOTTOM, WIDTH and HEIGHT
as respectively its LEFT, BOTTOM, WIDTH, and HEIGHT fields.

26-2

INTERLISP-D REFERENCE MANUAL

Example: (CREATEREGION 10 -20 100 200) will create a region that denotes a
rectangle whose width is 100, whose height is 200, and whose lower left corner is at the
position (10,-20).

(REGIONP X) [Function]

Returns X if X is a region, NIL otherwise.

(INTERSECTREGIONS REGION1 REGION2 ... REGIONn) [NoSpread Function]

Returns a region which is the intersection of a number of regions. Returns NIL if the
intersection is empty.

(UNIONREGIONS REGION1 REGION2 ... REGIONn) [NoSpread Function]

Returns a region which is the union of a number of regions, i.e. the smallest region that
contains all of them. Returns NIL if there are no regions given.

(REGIONSINTERSECTP REGION1 REGION2) [Function]

Returns T if REGION1 intersects REGION2. Returns NIL if they do not intersect.

(SUBREGIONP LARGEREGION SMALLREGION) [Function]

Returns T if SMALLREGION is a subregion (is equal to or entirely contained in)
LARGEREGION; otherwise returns NIL.

(EXTENDREGION REGION INCLUDEREGION) [Function]

Changes (destructively modifies) the region REGION so that it includes the region
INCLUDEREGION. It returns REGION.

(MAKEWITHINREGION REGION LIMITREGION) [Function]

Changes (destructively modifies) the left and bottom of the region REGION so that it is
within the region LIMITREGION, if possible. If the dimension of REGION are larger than
LIMITREGION, REGION is moved to the lower left of LIMITREGION. If LIMITREGION is
NIL, the value of the variable WHOLEDISPLAY (the screen region) is used.
MAKEWITHINREGION returns the modified REGION.

(INSIDEP REGION POSORX Y) [Function]

If POSORX and Y are numbers, it returns T if the point (POSORX,Y) is inside of REGION. If
POSORX is a POSITION, it returns T if POSORX is inside of REGION. If REGION is a
WINDOW, the window’s interior region in window coordinates is used. Otherwise, it
returns NIL.

26-3

 GRAPHICS OUTPUT OPERATIONS

Bitmaps

The display primitives manipulate graphical images in the form of bitmaps. A bitmap is a rectangular
array of "pixels," each of which is an integer representing the color of one point in the bitmap image.
A bitmap is created with a specific number of bits allocated for each pixel. Most bitmaps used for the
display screen use one bit per pixel, so that at most two colors can be represented. If a pixel is 0, the
corresponding location on the image is white. If a pixel is 1, its location is black. This interpretation
can be changed for the display screen with the function VIDEOCOLOR. Bitmaps with more than one
bit per pixel are used to represent color or grey scale images. Bitmaps use a positive integer
coordinate system with the lower left corner pixel at coordinate (0,0). Bitmaps are represented as
instances of the datatype BITMAP. Bitmaps can be saved on files with the VARS file package
command.

(BITMAPCREATE WIDTH HEIGHT BITSPERPIXEL) [Function]

Creates and returns a new bitmap which is WIDTH pixels wide by HEIGHT pixels high,
with BITSPERPIXEL bits per pixel. If BITSPERPIXEL is NIL, it defaults to 1.

(BITMAPP X) [Function]

Returns X if X is a bitmap, NIL otherwise.

(BITMAPWIDTH BITMAP) [Function]

Returns the width of BITMAP in pixels.

(BITMAPHEIGHT BITMAP) [Function]

Returns the height of BITMAP in pixels.

(BITSPERPIXEL BITMAP) [Function]

Returns the number of bits per pixel of BITMAP.

(BITMAPBIT BITMAP X Y NEWVALUE) [Function]

If NEWVALUE is between 0 and the maximum value for a pixel in BITMAP, the pixel (X,Y)
is changed to NEWVALUE and the old value is returned. If NEWVALUE is NIL, BITMAP is
not changed but the value of the pixel is returned. If NEWVALUE is anything else, an error
is generated. If (X,Y) is outside the limits of BITMAP, 0 is returned and no pixels are
changed. BITMAP can also be a window or display stream. Note: non-window image
streams are "write-only"; the NEWVALUE argument must be non-NIL.

(BITMAPCOPY BITMAP) [Function]

Returns a new bitmap which is a copy of BITMAP (same dimensions, bits per pixel, and
contents).

(EXPANDBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR) [Function]

Returns a new bitmap that is WIDTHFACTOR times as wide as BITMAP a

26-4

INTERLISP-D REFERENCE MANUAL

nd HEIGHTFACTOR times as high. Each pixel of BITMAP is copied into a WIDTHFACTOR
times HEIGHTFACTOR block of pixels. If NIL, WIDTHFACTOR defaults to 4,
HEIGHTFACTOR to 1.

(ROTATEBITMAP BITMAP) [Function]

Given an m-high by n-wide bitmap, this function returns an n-high by m-wide bitmap.
The returned bitmap is the image of the original bitmap, rotated 90 degrees clockwise.

(SHRINKBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR DESTINATIONBITMAP)
[Function]

Returns a copy of BITMAP that has been shrunken by WIDTHFACTOR and HEIGHTFACTOR
in the width and height, respectively. If NIL, WIDTHFACTOR defaults to 4,
HEIGHTFACTOR to 1. If DESTINATIONBITMAP is not provided, a bitmap that is
1/WIDTHFACTOR by 1/HEIGHTFACTOR the size of BITMAP is created and returned.
WIDTHFACTOR and HEIGHTFACTOR must be positive integers.

(PRINTBITMAP BITMAP FILE) [Function]

Prints the bitmap BITMAP on the file FILE in a format that can be read back in by
READBITMAP.

(READBITMAP FILE) [Function]

Creates a bitmap by reading an expression (written by PRINTBITMAP) from the file
FILE.

(EDITBM BMSPEC) [Function]

EDITBM provides an easy-to-use interactive editing facility for various types of bitmaps.
If BMSPEC is a bitmap, it is edited. If BMSPEC is an atom whose value is a bitmap, its value
is edited. If BMSPEC is NIL, EDITBM asks for dimensions and creates a bitmap. If
BMSPEC is a region, that portion of the screen bitmap is used. If BMSPEC is a window, it is
brought to the top and its contents edited.

EDITBM sets up the bitmap being edited in an editing window. The editing window has two major
areas: a gridded edit area in the lower part of the window and a display area in the upper left part. In
the edit area, the left button will add points, the middle button will erase points. The right button
provides access to the normal window commands to reposition and reshape the window. The actual
size bitmap is shown in the display area. For example, the following is a picture of the bitmap editing
window editing a eight-high by eighteen-wide bitmap:

26-5

 GRAPHICS OUTPUT OPERATIONS

If the bitmap is too large to fit in the edit area, only a portion will be editable. This portion can be
changed by scrolling both up and down in the left margin and left and right in the bottom margin.
Pressing the middle button while in the display area will bring up a menu that allows global
placement of the portion of the bitmap being edited. To allow more of the bitmap to be editing at
once, the window can be reshaped to make it larger or the GridSize← command described below
can be used to reduce the size of a bit in the edit area.

The bitmap editing window can be reshaped to provide more or less room for editing. When this
happens, the space allocated to the editing area will be changed to fit in the new region.

Whenever the left or middle button is down and the cursor is not in the edit area, the section of the
display of the bitmap that is currently in the edit area is complemented. Pressing the left button while
not in the edit region will put the lower left 16 x 16 section of the bitmap into the cursor for as long as
the left button is held down.

Pressing the middle button while not in either the edit area or the display area (i.e., while in the grey
area in the upper right or in the title) will bring up a command menu.

There are commands to stop editing, to restore the bitmap to its initial state and to clear the bitmap.
Holding the middle button down over a command will result in an explanatory message being
printed in the prompt window. The commands are described below:

Paint Puts the current bitmap into a window and call the window PAINT
command on it. The PAINT command implements drawing with various
brush sizes and shapes but only on an actual sized bitmap. The PAINT mode
is left by pressing the RIGHT button and selecting the QUIT command from

26-6

INTERLISP-D REFERENCE MANUAL

the menu. At this point, you will be given a choice of whether or not the
changes you made while in PAINT mode should be made to the current
bitmap.

ShowAsTile Tesselates the current bitmap in the upper part of the window. This is useful
for determining how a bitmap will look if it were made the display
background (using the function CHANGEBACKGROUND). Note: The tiled
display will not automatically change as the bitmap changes; to update it, use
the ShowAsTile command again.

Grid,On/Off Turns the editing grid display on or off.

GridSize← Allows specification of the size of the editing grid. Another menu will appear
giving a choice of several sizes. If one is selected, the editing portion of the
bitmap editor will be redrawn using the selected grid size, allowing more or
less of the bitmap to be edited without scrolling. The original size is chosen
hueristically and is typically about 8. It is particularly useful when editing
large bitmaps to set the edit grid size smaller than the original.

Reset Sets all or part of the bitmap to the contents it had when EDITBM was called.
Another menu will appear giving a choice between resetting the entire bitmap
or just the portion that is in the edit area. The second menu also acts as a
confirmation, since not selecting one of the choices on this menu results in no
action being taken.

Clear Sets all or part of the bitmap to 0. As with the Reset command, another
menu gives a choice between clearing the entire bitmap or just the portion
that is in the edit area.

Cursor← Sets the cursor to the lower left part of the bitmap. This prompts the user to
specify the cursor "hot spot" by clicking in the lower left corner of the grid.

OK Copies the changed image into the original bitmap, stops the bitmap editor
and closes the edit windows. The changes the bitmap editor makes during
the interaction occur on a copy of the original bitmap. Unless the bitmap
editor is exited via OK, no changes are made in the original.

Stop Stops the bitmap editor without making any changes to the original bitmap.

Textures

A Texture denotes a pattern of gray which can be used to (conceptually) tessellate the plane to form an
infinite sheet of gray. It is currently either a 4 by 4 pattern or a 16 by N (N <= 16) pattern. Textures
are created from bitmaps using the following function:

(CREATETEXTUREFROMBITMAP BITMAP) [Function]

Returns a texture object that will produce the texture of BITMAP. If BITMAP is too large,
its lower left portion is used. If BITMAP is too small, it is repeated to fill out the texture.

26-7

 GRAPHICS OUTPUT OPERATIONS

(TEXTUREP OBJECT) [Function]

Returns OBJECT if it is a texture; NIL otherwise.

The functions which accept textures (TEXTUREP, BITBLT, DSPTEXTURE, etc.) also accept
bitmaps up to 16 bits wide by 16 bits high as textures. When a region is being filled with a bitmap
texture, the texture is treated as if it were 16 bits wide (if less, the rest is filled with white space).

The common textures white and black are available as system constants WHITESHADE and
BLACKSHADE. The global variable GRAYSHADE is used by many system facilities as a background
gray shade and can be set by the user.

(EDITSHADE SHADE) [Function]

Opens a window that allows the user to edit textures. Textures can be either small (4 by 4)
patterns or large (16 by 16). In the edit area, the left button adds bits to the shade and the
middle button erases bits from the shade. The top part of the window is painted with the
current texture whenever all mouse keys are released. Thus it is possible to directly
compare two textures that differ by more than one pixel by holding a mouse key down
until all changes are made. When the "quit" button is selected, the texture being edited is
returned.

If SHADE is a texture object, EDITSHADE starts with it. If SHADE is T, it starts with a large
(16 by 16) white texture. Otherwise, it starts with WHITESHADE.

The following is a picture of the texture editor, editing a large (16 by 16) pattern:

Opening Image Streams

An image stream is an output stream which "knows" how to process graphic commands to a graphics
output device. Besides accepting the normal character-output functions (PRINT, etc.), an image

26-8

INTERLISP-D REFERENCE MANUAL

stream can also be passed as an argument to functions to draw curves, to print characters in multiple
fonts, and other graphics operations.

Each image stream has an "image stream type," a litatom that specifies the type of graphic output
device that the image stream is processing graphics commands for. Currently, the built-in image
stream types are DISPLAY (for the display screen), INTERPRESS (for Interpress format printers),
and PRESS (for Press format printers). There are also library packages available that define
image stream types for the IRIS display, 4045 printer, FX-80 printer, C150 printer, etc.

Image streams to the display (display streams) interpret graphics commands by immediately
executing the appropriate operations to cause the desired image to appear on the display screen.
Image streams for hardcopy devices such as Interpress printers interpret the graphic commands by
saving information in a file, which can later be sent to the printer.

Note: Not all graphics operations can be properly executed for all image stream types. For example,
BITBLT may not be supported to all printers. This functionality is still being developed, but even in
the long run some operations may be beyond the physical or logical capabilities of some devices or
image file formats. In these cases, the stream will approximate the specified image as best it can.

(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS) [Function]

Opens and returns an image stream of type IMAGETYPE on a destination specified by
FILE. If FILE is a file name on a normal file storage device, the image stream will store
graphics commands on the specified file, which can be transmitted to a printer by explicit
calls to LISTFILES and SEND.FILE.TO.PRINTER. If IMAGETYPE is DISPLAY,
then the user is prompted for a window to open. FILE in this case will be used as the title
of the window.

If FILE is a file name on the LPT device, this indicates that the graphics commands
should be stored in a temporary file, and automatically sent to the printer when the image
stream is closed by CLOSEF. FILE = NIL is equivalent to FILE = {LPT}. File names on
the LPT device are of the form {LPT}PRINTERNAME.TYPE, where PRINTERNAME,
TYPE, or both may be omitted. PRINTERNAME is the name of the particular printer to
which the file will be transmitted on closing; it defaults to the first printer on
DEFAULTPRINTINGHOST that can print IMAGETYPE files. The TYPE extension
supplies the value of IMAGETYPE when it is defaulted (see below). OPENIMAGESTREAM
will generate an error if the specified printer does not accept the kind of file specified by
IMAGETYPE.

If IMAGETYPE is NIL, the image type is inferred from the extension field of FILE and the
EXTENSIONS properties in the list PRINTFILETYPES. Thus, the extensions IP, IPR,
and INTERPRESS indicate Interpress format, and the extension PRESS indicates Press
format. If FILE is a printer file with no extension (of the form {LPT}PRINTERNAME),
then IMAGETYPE will be the type that the indicated printer can print. If FILE has no
extension but is not on the printer device {LPT}, then IMAGETYPE will default to the
type accepted by the first printer on DEFAULTPRINTINGHOST.

26-9

 GRAPHICS OUTPUT OPERATIONS

OPTIONS is a list in property list format, (PROP1 VAL1 PROP2 VAL2 —), used to
specify certain attributes of the image stream; not all attributes are meaningful or
interpreted by all types of image streams. Acceptable properties are:

REGION Value is the region on the page (in stream scale units, 0,0 being the lower-left
corner of the page) that text will fill up. It establishes the initial values for
DSPLEFTMARGIN, DSPRIGHTMARGIN, DSPBOTTOMMARGIN (the point at
which carriage returns cause page advancement) and DSPTOPMARGIN
(where the stream is positioned at the beginning of a new page).

If this property is not given, the value of the variable
DEFAULTPAGEREGION, is used.

FONTS Value is a list of fonts that are expected to be used in the image stream. Some
image streams (e.g. Interpress) are more efficient if the expected fonts are
specified in advance, but this is not necessary. The first font in this list will be
the initial font of the stream, otherwise the default font for that image stream
type will be used.

HEADING Value is the heading to be placed automatically on each page. NIL means no
heading.

Examples: Suppose that Tremor: is an Interpress printer, Quake is a Press
printer, and DEFAULTPRINTINGHOST is (Tremor: Quake):

(OPENIMAGESTREAM) returns an Interpress image stream on printer
Tremor:.

(OPENIMAGESTREAM NIL ’PRESS) returns a Press stream on Quake.

(OPENIMAGESTREAM ’{LPT}.INTERPRESS) returns an Interpress
stream on Tremor:.

(OPENIMAGESTREAM ’{CORE}FOO.PRESS) returns a Press stream on
the file {CORE}FOO.PRESS.

(IMAGESTREAMP X IMAGETYPE) [NoSpread Function]

Returns X (possibly coerced to a stream) if it is an output image stream of type
IMAGETYPE (or of any type if IMAGETYPE = NIL), otherwise NIL.

(IMAGESTREAMTYPE STREAM) [Function]

Returns the image stream type of STREAM.

(IMAGESTREAMTYPEP STREAM TYPE) [Function]

Returns T if STREAM is an image stream of type TYPE.

26-10

INTERLISP-D REFERENCE MANUAL

Accessing Image Stream Fields

The following functions manipulate the fields of an image stream. These functions return the old
value (the one being replaced). A value of NIL for the new value will return the current setting
without changing it. These functions do not change any of the bits drawn on the image stream; they
just affect future operations done on the image stream.

(DSPCLIPPINGREGION REGION STREAM) [Function]

The clipping region is a region that limits the extent of characters printed and lines drawn
(in the image stream’s coordinate system). Initially set so that no clipping occurs.

Warning: For display streams, the window system maintains the clipping region during
window operations. Users should be very careful about changing this field.

(DSPFONT FONT STREAM) [Function]

The font field specifies the font used when printing characters to the image stream.

Note: DSPFONT determines its new font descriptor from FONT by the same
coercion rules that FONTPROP and FONTCREATE use , with one
additional possibility: If FONT is a list of the form (PROP1 VAL1
PROP2 VAL2 ...) where PROP1 is acceptable as a font-property to

FONTCOPY, then the new font is obtained by (FONTCOPY
(DSPFONT NIL STREAM) PROP1 VAL1 PROP2 VAL2 ...).

For example, (DSPFONT ’(SIZE 12) STREAM) would change
the font to the 12 point version of the current font, leaving all other font
properties the same.

(DSPTOPMARGIN YPOSITION STREAM) [Function]

The top margin is an integer that is the Y position after a new page (in the image stream’s
coordinate system). This function has no effect on windows.

(DSPBOTTOMMARGIN YPOSITION STREAM) [Function]

The bottom margin is an integer that is the minimum Y position that characters will be
printed by PRIN1 (in the image stream’s coordinate system). This function has no effect
on windows.

(DSPLEFTMARGIN XPOSITION STREAM) [Function]

The left margin is an integer that is the X position after an end-of-line (in the image
stream’s coordinate system). Initially the left edge of the clipping region.

(DSPRIGHTMARGIN XPOSITION STREAM) [Function]

The right margin is an integer that is the maximum X position that characters will be
printed by PRIN1 (in the image stream’s coordinate system). This is initially the position
of the right edge of the window or page.

26-11

 GRAPHICS OUTPUT OPERATIONS

The line length of a window or image stream (as returned by LINELENGTH) is computed by dividing
the distance between the left and right margins by the width of an uppercase "A" in the current font.
The line length is changed whenever the font, left margin, or right margin are changed or whenever
the window is reshaped.

(DSPOPERATION OPERATION STREAM) [Function]

The operation is the default BITBLT operation used when printing or drawing on the
image stream. One of REPLACE, PAINT, INVERT, or ERASE. Initially REPLACE.
This is a meaningless operation for most printers which support the model that once dots
are deposited on a page they cannot be removed.

(DSPLINEFEED DELTAY STREAM) [Function]

The linefeed is an integer that specifies the Y increment for each linefeed, normally
negative. Initially minus the height of the initial font.

(DSPCLEOL DSPSTREAM XPOS YPOS HEIGHT) [Function]

"Clear to end of line". Clears a region from (XPOS,YPOS) to the right margin of the
display, with a height of HEIGHT. If XPOS and YPOS are NIL, clears the remainder of the
current display line, using the height of the current font.

(DSPRUBOUTCHAR DSPSTREAM CHAR X Y TTBL) [Function]

Backs up over character code CHAR in the DSPSTREAM, erasing it. If X, Y are supplied, the
rubbing out starts from the position specified. DSPRUBOUTCHAR assumes CHAR was
printed with the terminal table TTBL, so it knows to handle control characters, etc. TTBL
defaults to the primary terminal table.

(DSPSCALE SCALE STREAM) [Function]

Returns the scale of the image stream STREAM, a number indicating how many units in
the streams coordinate system correspond to one printer’s point (1/72 of an inch). For
example, DSPSCALE returns 1 for display streams, and 35.27778 for Interpress and Press
streams (the number of micas per printer’s point). In order to be device-independent, user
graphics programs must either not specify position values absolutely, or must multiply
absolute point quantities by the DSPSCALE of the destination stream. For example, to set
the left margin of the Interpress stream XX to one inch, do

(DSPLEFTMARGIN (TIMES 72 (DSPSCALE NIL XX)) XX)

The SCALE argument to DSPSCALE is currently ignored. In a future release it will
enable the scale of the stream to be changed under user control, so that the necessary
multiplication will be done internal to the image stream interface. In this case, it would be
possible to set the left margin of the Interpress stream XX to one inch by doing

(DSPSCALE 1 XX)
(DSPLEFTMARGIN 72 XX)

26-12

INTERLISP-D REFERENCE MANUAL

(DSPSPACEFACTOR FACTOR STREAM) [Function]

The space factor is the amount by which to multiply the natural width of all following
space characters on STREAM; this can be used for the justification of text. The default
value is 1. For example, if the natural width of a space in STREAM’s current font is 12
units, and the space factor is set to two, spaces appear 24 units wide. The values returned
by STRINGWIDTH and CHARWIDTH are also affected.

The following two functions only have meaning for image streams that can display color:

(DSPCOLOR COLOR STREAM) [Function]

Sets the default foreground color of STREAM. Returns the previous foreground color. If
COLOR is NIL, it returns the current foreground color without changing anything. The
default color is white

(DSPBACKCOLOR COLOR STREAM) [Function]

Sets the background color of STREAM. Returns the previous background color. If COLOR
is NIL, it returns the current background color without changing anything. The default
background color is black.

Current Position of an Image Stream

Each image stream has a "current position," which is a position (in the image stream’s coordinate
system) where the next printing operation will start from. The functions which print characters or
draw on an image stream update these values appropriately. The following functions are used to
explicitly access the current position of an image stream:

(DSPXPOSITION XPOSITION STREAM) [Function]

Returns the X coordinate of the current position of STREAM. If XPOSITION is non-NIL,
the X coordinate is set to it (without changing the Y coordinate).

(DSPYPOSITION YPOSITION STREAM) [Function]

Returns the Y coordinate of the current position of STREAM. If YPOSITION is non-NIL,
the Y coordinate is set to it (without changing the X coordinate).

(MOVETO X Y STREAM) [Function]

Changes the current position of STREAM to the point (X,Y).

(RELMOVETO DX DY STREAM) [Function]

Changes the current position to the point (DX,DY) coordinates away from current position
of STREAM.

26-13

 GRAPHICS OUTPUT OPERATIONS

(MOVETOUPPERLEFT STREAM REGION) [Function]

Moves the current position to the beginning position of the top line of text. If REGION is
non-NIL, it must be a REGION and the X position is changed to the left edge of REGION
and the Y position changed to the top of REGION less the font ascent of STREAM. If
REGION is NIL, the X coordinate is changed to the left margin of STREAM and the Y
coordinate is changed to the top of the clipping region of STREAM less the font ascent of
STREAM.

Moving Bits Between Bitmaps With BITBLT

BITBLT is the primitive function for moving bits from one bitmap to another, or from a bitmap to an
image stream.

(BITBLT SOURCE SOURCELEFT SOURCEBOTTOM DESTINATION DESTINATIONLEFT
DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE OPERATION TEXTURE
CLIPPINGREGION) [Function]

Transfers a rectangular array of bits from SOURCE to DESTINATION. SOURCE can be a
bitmap, or a display stream or window, in which case its associated bitmap is used.
DESTINATION can be a bitmap or an arbitrary image stream.

WIDTH and HEIGHT define a pair of rectangles, one in each of the SOURCE and
DESTINATION whose left, bottom corners are at, respectively, (SOURCELEFT,
SOURCEBOTTOM) and (DESTINATIONLEFT, DESTINATIONBOTTOM). If these rectangles
overlap the boundaries of either source or destination they are both reduced in size
(without translation) so that they fit within their respective boundaries. If
CLIPPINGREGION is non-NIL it should be a REGION and is interpreted as a clipping
region within DESTINATION; clipping to this region may further reduce the defining
rectangles. These (possibly reduced) rectangles define the source and destination
rectangles for BITBLT.

The mode of transferring bits is defined by SOURCETYPE and OPERATION.
SOURCETYPE and OPERATION specify whether the source bits should come from SOURCE
or TEXTURE, and how these bits are combined with those of DESTINATION.
SOURCETYPE and OPERATION are described further below.

TEXTURE is a texture. BITBLT aligns the texture so that the upper-left pixel of the
texture coincides with the upper-left pixel of the destination bitmap.

SOURCELEFT, SOURCEBOTTOM, DESTINATIONLEFT, and DESTINATIONBOTTOM
default to 0. WIDTH and HEIGHT default to the width and height of the SOURCE.
TEXTURE defaults to white. SOURCETYPE defaults to INPUT. OPERATION defaults to
REPLACE. If CLIPPINGREGION is not provided, no additional clipping is done.
BITBLT returns T if any bits were moved; NIL otherwise.

Note: If SOURCE or DESTINATION is a window or image stream, the remaining
arguments are interpreted as values in the coordinate system of the window or image

26-14

INTERLISP-D REFERENCE MANUAL

stream and the operation of BITBLT is translated and clipped accordingly. Also, if a
window or image stream is used as the destination to BITBLT, its clipping region further
limits the region involved.

SOURCETYPE specifies whether the source bits should come from the bitmap SOURCE, or
from the texture TEXTURE. SOURCETYPE is interpreted as follows:

INPUT The source bits come from SOURCE. TEXTURE is ignored.

INVERT The source bits are the inverse of the bits from SOURCE. TEXTURE is ignored.

TEXTURE The source bits come from TEXTURE. SOURCE, SOURCELEFT, and
SOURCEBOTTOM are ignored.

OPERATION specifies how the source bits (as specified by SOURCETYPE) are
combined with the bits in DESTINATION and stored back into DESTINATION.
DESTINATION is one of the following:

REPLACE All source bits (on or off) replace destination bits.

PAINT Any source bits that are on replace the corresponding destination bits. Source
bits that are off have no effect. Does a logical OR between the source bits and
the destination bits.

INVERT Any source bits that are on invert the corresponding destination bits. Does a
logical XOR between the source bits and the destination bits.

ERASE Any source bits that are on erase the corresponding destination bits. Does a
logical AND operation between the inverse of the source bits and the
destination bits.

Different combinations of SOURCETYPE and OPERATION can be specified to
achieve many different effects. Given the following bitmaps as the values of
SOURCE, TEXTURE, and DESTINATION:

BITBLT would produce the results given below for the difference
combinations of SOURCETYPE and OPERATION (assuming
CLIPPINGREGION, SOURCELEFT, etc. are set correctly, of course):

26-15

 GRAPHICS OUTPUT OPERATIONS

(BLTSHADE TEXTURE DESTINATION DESTINATIONLEFT DESTINATIONBOTTOM WIDTH
HEIGHT OPERATION CLIPPINGREGION) [Function]

BLTSHADE is the SOURCETYPE = TEXTURE case of BITBLT. It fills the specified region
of the destination bitmap DESTINATION with the texture TEXTURE. DESTINATION can
be a bitmap or image stream.

(BITMAPIMAGESIZE BITMAP DIMENSION STREAM) [Function]

Returns the size that BITMAP will be when BITBLTed to STREAM, in STREAM’s units.
DIMENSION can be one of WIDTH, HEIGHT, or NIL, in which case the dotted pair (WIDTH
. HEIGHT) will be returned.

Drawing Lines

Interlisp-D provides several functions for drawing lines and curves on image streams. The line
drawing functions are intended for interactive applications where efficiency is important. They do
not allow the use of "brush" patterns, like the curve drawing functions, but (for display streams) they
support drawing a line in INVERT mode, so redrawing the line will erase it. DRAWCURVE can be
used to draw lines using a brush.

(DRAWLINE X1 Y1 X2 Y2 WIDTH OPERATION STREAM COLOR DASHING) [Function]

Draws a straight line from the point (X1,Y1) to the point (X2,Y2) on the image stream

STREAM. The position of STREAM is set to (X2,Y2). If X1 equals X2 and Y1 equals Y2, a

point is drawn at (X1,Y1).

WIDTH is the width of the line, in the units of the device. If WIDTH is NIL, the default is 1.

OPERATION is the BITBLT operation used to draw the line. If OPERATION is NIL, the
value of DSPOPERATION for the image stream is used.

COLOR is a color specification that determines the color used to draw the line for image
streams that support color. If COLOR is NIL, the DSPCOLOR of STREAM is used.

26-16

INTERLISP-D REFERENCE MANUAL

DASHING is a list of positive integers that determines the dashing characteristics of the
line. The line is drawn for the number of points indicated by the first element of the
dashing list, is not drawn for the number of points indicated by the second element. The
third element indicates how long it will be on again, and so forth. The dashing sequence
is repeated from the beginning when the list is exhausted. A brush LINEWITHBRUSH-
by-LINEWITHBRUSH is used.

 If DASHING is NIL, the line is not dashed.

(DRAWBETWEEN POSITION1 POSITION2 WIDTH OPERATION STREAM COLOR DASHING)
[Function]

Draws a line from the point POSITION1 to the point POSITION2 onto the destination

bitmap of STREAM. The position of STREAM is set to POSITION2.

In the Medley release, when using the color argument, Interpress DRAWLINE treats 16x16
bitmaps or negative numbers as shades/textures. Positive numbers continue to refer to
color maps, and so cannot be used as textures. To convert an integer shade into a negative
number use NEGSHADE (e.g. (NEGSHADE 42495) is -23041).

(DRAWTO X Y WIDTH OPERATION STREAM COLOR DASHING) [Function]

Draws a line from the current position to the point (X,Y) onto the destination bitmap of
STREAM. The position of STREAM is set to (X,Y).

(RELDRAWTO DX DY WIDTH OPERATION STREAM COLOR DASHING) [Function]

Draws a line from the current position to the point (DX,DY) coordinates away onto the
destination bitmap of STREAM. The position of STREAM is set to the end of the line. If DX
and DY are both 0, nothing is drawn.

Drawing Curves

A curve is drawn by placing a brush pattern centered at each point along the curve’s trajectory. A
brush pattern is defined by its shape, size, and color. The predefined brush shapes are ROUND,
SQUARE, HORIZONTAL, VERTICAL, and DIAGONAL; new brush shapes can be created using the
INSTALLBRUSH function, described below. A brush size is an integer specifying the width of the
brush in the units of the device. The color is a color specification, which is only used if the curve is
drawn to an image stream that supports colors.

A brush is specified to the various drawing functions as a list of the form (SHAPE WIDTH COLOR),
for example (SQUARE 2) or (VERTICAL 4 RED). A brush can also be specified as a positive
integer, which is interpreted as a ROUND brush of that width. If a brush is a litatom, it is assumed to
be a function which is called at each point of the curve’s trajectory (with three arguments: the X-

26-17

 GRAPHICS OUTPUT OPERATIONS

coordinate of the point, the Y-coordinate, and the image stream), and should do whatever image
stream operations are necessary to draw each point. Finally, if a brush is specified as NIL, a (ROUND
1) brush is used as default.

The appearance of a curve is also determined by its dashing characteristics. Dashing is specified by a
list of positive integers. If a curve is dashed, the brush is placed along the trajectory for the number of
units indicated by the first element of the dashing list. The brush is off, not placed in the bitmap, for a
number of units indicated by the second element. The third element indicates how long it will be on
again, and so forth. The dashing sequence is repeated from the beginning when the list is exhausted.
The units used to measure dashing are the units of the brush. For example, specifying the dashing as
(1 1) with a brush of (ROUND 16) would put the brush on the trajectory, skip 16 points, and put
down another brush. A curve is not dashed if the dashing argument to the drawing function is NIL.

The curve functions use the image stream’s clipping region and operation. Most types of image
streams only support the PAINT operation when drawing curves. When drawing to a display
stream, the curve-drawing functions accept the operation INVERT if the brush argument is 1. For
brushes larger than 1, these functions will use the ERASE operation instead of INVERT. For display
streams, the curve-drawing functions treat the REPLACE operation the same as PAINT.

(DRAWCURVE KNOTS CLOSED BRUSH DASHING STREAM) [Function]

Draws a "parametric cubic spline curve" on the image stream STREAM. KNOTS is a list of
positions to which the curve will be fitted. If CLOSED is non-NIL, the curve will be
closed; otherwise it ends at the first and last positions in KNOTS. BRUSH and DASHING are
interpreted as described above.

For example,

(DRAWCURVE ’((10 . 10)(50 . 50)(100 . 10)(150 . 50))
 NIL ’(ROUND 5) ’(1 1 1 2) XX)

would draw a curve like the following on the display stream XX:

(DRAWCIRCLE CENTERX CENTERY RADIUS BRUSH DASHING
 STREAM) [Function]

Draws a circle of radius RADIUS about the point (CENTERX,CENTERY) onto the image
stream STREAM. STREAM’s position is left at (CENTERX,CENTERY). The other arguments
are interpreted as described above.

26-18

INTERLISP-D REFERENCE MANUAL

(DRAWARC CENTERX CENTERY RADIUS STARTANGLE NDEGREES BRUSH
DASHINGSTREAM) [Function]

Draws an arc of the circle whose center point is (CENTERX CENTERY) and whose radius is
RADIUS from the position at STARTANGLE degrees for NDEGREES number of degrees. If
STARTANGLE is 0, the starting point will be (CENTERX (CENTERY + RADIUS)). If
NDEGREES is positive, the arc will be counterclockwise. If NDEGREES is negative, the arc
will be clockwise. The other arguments are interpreted as described in DRAWCIRCLE.

(DRAWELLIPSE CENTERX CENTERY SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING STREAM) [Function]

Draws an ellipse with a minor radius of SEMIMINORRADIUS and a major radius of
SEMIMAJORRADIUS about the point (CENTERX,CENTERY) onto the image stream
STREAM. ORIENTATION is the angle of the major axis in degrees, positive in the
counterclockwise direction. STREAM’s position is left at (CENTERX,CENTERY). The other
arguments are interpreted as described above.

New brush shapes can be defined using the following function:

(INSTALLBRUSH BRUSHNAME BRUSHFN BRUSHARRAY) [Function]

Installs a new brush called BRUSHNAME with creation-function BRUSHFN and optional
array BRUSHARRAY. BRUSHFN should be a function of one argument (a width), which
returns a bitmap of the brush for that width. BRUSHFN will be called to create new
instances of BRUSHNAME-type brushes; the sixteen smallest instances will be pre-
computed and cached. "Hand-crafted" brushes can be supplied as the BRUSHARRAY
argument. Changing an existing brush can be done by calling INSTALLBRUSH with
new BRUSHFN and/or BRUSHARRAY.

(DRAWPOINT X Y BRUSH STREAM OPERATION) [Function]

Draws BRUSH centered around point (X, Y) on STREAM, using the operation OPERATION.
BRUSH may be a bitmap or a brush.

Miscellaneous Drawing and Printing Operations

(DSPFILL REGION TEXTURE OPERATION STREAM) [Function]

Fills REGION of the image stream STREAM (within the clipping region) with the texture
TEXTURE. If REGION is NIL, the whole clipping region of STREAM is used. If TEXTURE or
OPERATION is NIL, the values for STREAM are used.

26-19

 GRAPHICS OUTPUT OPERATIONS

(DRAWPOLYGON POINTS CLOSED BRUSH DASHING STREAM) [Function]

Draws a polygon on the image stream STREAM. POINTS is a list of positions to which the
figure will be fitted (the vertices of the polygon). If CLOSED is non-NIL, then the starting
position is specified only once in POINTS. If CLOSED is NIL, then the starting vertex
must be specified twice in POINTS. BRUSH and DASHING are interpreted as described in
Chapter 27 of the Interlisp-D Reference Manual.

For example,

(DRAWPOLYGON ’((100 . 100) (50 . 125)
 (150 . 175) (200 . 100) (150 .
50))
 T ’(ROUND 3) ’(4 2) XX)

will draw a polygon like the following on the display stream XX.

(FILLPOLYGON POINTS TEXTURE OPERATION WINDNUMBER STREAM) [Function]

OPERATION is the BITBLT operation (see page 27.15 in the Interlisp-D Reference Manual)
used to fill the polygon. If the OPERATION is NIL, the OPERATION defaults to the
STREAM default OPERATION.

WINDNUMBER is the number for the winding rule convention . This number is either 0 or 1;
0 indicates the "zero" winding rule, 1 indicates the "odd" winding rule.

When filling a polygon, there is more than one way of dealing with the situation where
two polygon sides intersect, or one polygon is fully inside the other. Currently,
FILLPOLYGON to a display stream uses the "odd" winding rule, which means that
intersecting polygon sides define areas that are filled or not filled somewhat like a
checkerboard. For example,

(FILLPOLYGON
 ’(((110 . 110)(150 . 200)(190 . 110))
 ((135 . 125)(160 . 125)(160 . 150)(135 .
150)))
 GRAYSHADE WINDOW)

will produce a display something like this:

26-20

INTERLISP-D REFERENCE MANUAL

This fill convention also takes into account all polygons in POINTS, if it specifies multiple
polygons.

(FILLCIRCLE CENTERX CENTERY RADIUS TEXTURE STREAM) [Function]

Fills in a circular area of radius RADIUS about the point (CENTERX,CENTERY) in STREAM
with TEXTURE. STREAM’s position is left at (CENTERX,CENTERY).

(DSPRESET STREAM) [Function]

Sets the X coordinate of STREAM to its left margin, sets its Y coordinate to the top of the
clipping region minus the font ascent. For a display stream, this also fills its destination
bitmap with its background texture.

(DSPNEWPAGE STREAM) [Function]

Starts a new page. The X coordinate is set to the left margin, and the Y coordinate is set to
the top margin plus the linefeed.

(CENTERPRINTINREGION EXP REGION STREAM) [Function]

Prints EXP so that is it centered within REGION of the STREAM. If REGION is NIL, EXP
will be centered in the clipping region of STREAM.

Drawing and Shading Grids

A grid is a partitioning of an arbitrary coordinate system (hereafter referred to as the "source system")
into rectangles. This section describes functions that operate on grids. It includes functions to draw
the outline of a grid, to translate between positions in a source system and grid coordinates (the
coordinates of the rectangle which contains a given position), and to shade grid rectangles. A grid is
defined by its "unit grid," a region (called a grid specification) which is the origin rectangle of the grid
in terms of the source system. Its LEFT field is interpreted as the X-coordinate of the left edge of the
origin rectangle, its BOTTOM field is the Y-coordinate of the bottom edge of the origin rectangle, its
WIDTH is the width of the grid rectangles, and its HEIGHT is the height of the grid rectangles.

(GRID GRIDSPEC WIDTH HEIGHT BORDER STREAM GRIDSHADE) [Function]

Outlines the grid defined by GRIDSPEC which is WIDTH rectangles wide and HEIGHT
rectangles high on STREAM. Each box in the grid has a border within it that is BORDER
points on each side; so the resulting lines in the grid are 2*BORDER thick. If BORDER is the
atom POINT, instead of a border the lower left point of each grid rectangle will be turned

26-21

 GRAPHICS OUTPUT OPERATIONS

on. If GRIDSHADE is non-NIL, it should be a texture and the border lines will be drawn
using that texture.

(SHADEGRIDBOX X Y SHADE OPERATION GRIDSPEC GRIDBORDER
STREAM) [Function]

Shades the grid rectangle (X,Y) of GRIDSPEC with texture SHADE using OPERATION on
STREAM. GRIDBORDER is interpreted the same as for GRID.

The following two functions map from the X,Y coordinates of the source system into the grid X,Y
coordinates:

(GRIDXCOORD XCOORD GRIDSPEC) [Function]

Returns the grid X-coordinate (in the grid specified by GRIDSPEC) that contains the
source system X-coordinate XCOORD.

(GRIDYCOORD YCOORD GRIDSPEC) [Function]

Returns the grid Y-coordinate (in the grid specified by GRIDSPEC) that contains the
source system Y-coordinate YCOORD.

The following two functions map from the grid X,Y coordinates into the X,Y coordinates of the
source system:

(LEFTOFGRIDCOORD GRIDX GRIDSPEC) [Function]

Returns the source system X-coordinate of the left edge of a grid rectangle at grid X-
coordinate GRIDX (in the grid specified by GRIDSPEC).

(BOTTOMOFGRIDCOORD GRIDY GRIDSPEC) [Function]

Returns the source system Y-coordinate of the bottom edge of a grid rectangle at grid Y-
coordinate GRIDY (in the grid specified by GRIDSPEC).

Display Streams

Display streams (image streams of type DISPLAY) are used to control graphic output operations to a
bitmap, known as the "destination" bitmap of the display stream. For each window on the screen,
there is an associated display stream which controls graphics operations to a specific part of the screen
bitmap. Any of the functions that take a display stream will also take a window, and use the
associated display stream. Display streams can also have a destination bitmap that is not connected to
any window or display device.

26-22

INTERLISP-D REFERENCE MANUAL

(DSPCREATE DESTINATION) [Function]

Creates and returns a display stream. If DESTINATION is specified, it is used as the
destination bitmap, otherwise the screen bitmap is used.

(DSPDESTINATION DESTINATION DISPLAYSTREAM) [Function]

Returns the current destination bitmap for DISPLAYSTREAM, setting it to DESTINATION if
non-NIL. DESTINATION can be either the screen bitmap, or an auxilliary bitmap in order
to construct figures, possibly save them, and then display them in a single operation.

Warning: The window system maintains the destination of a window’s display
stream. Users should be very careful about changing this field.

(DSPXOFFSET XOFFSET DISPLAYSTREAM) [Function]

(DSPYOFFSET YOFFSET DISPLAYSTREAM) [Function]

Each display stream has its own coordinate system, separate from the coordinate system
of its destination bitmap. Having the coordinate system local to the display stream allows
objects to be displayed at different places by translating the display stream’s coordinate
system relative to its destination bitmap. This local coordinate system is defined by the X
offset and Y offset.

DSPXOFFSET returns the current X offset for DISPLAYSTREAM, the X origin of the
display stream’s coordinate system in the destination bitmap’s coordinate system. It is set
to XOFFSET if non-NIL.

DSPYOFFSET returns the current Y offset for DISPLAYSTREAM, the Y origin of the
display stream’s coordinate system in the destination bitmap’s coordinate system. It is set
to YOFFSET if non-NIL.

The X offset and Y offset for a display stream are both initially 0 (no X or Y-coordinate
translation).

Warning: The window system maintains the X and Y offset of a window’s display stream.
Users should be very careful about changing these fields.

(DSPTEXTURE TEXTURE DISPLAYSTREAM) [Function]

Returns the current texture used as the background pattern for DISPLAYSTREAM. It is set
to TEXTURE if non-NIL. Initially the value of WHITESHADE.

(DSPSOURCETYPE SOURCETYPE DISPLAYSTREAM) [Function]

Returns the current BITBLT sourcetype used when printing characters to the display
stream. It is set to SOURCETYPE, if non-NIL. Must be either INPUT or INVERT.
Initially INPUT.

26-23

 GRAPHICS OUTPUT OPERATIONS

(DSPSCROLL SWITCHSETTING DISPLAYSTREAM) [Function]

Returns the current value of the "scroll flag," a flag that determines the scrolling behavior
of the display stream; either ON or OFF. If ON, the bits in the display streams’s destination
bitmap are moved after any linefeed that moves the current position out of the destination
bitmap. Any bits moved out of the current clipping region are lost. Does not adjust the X
offset, Y offset, or clipping region of the display stream. Initially OFF.

Sets the scroll flag to SWITCHSETTING, if non-NIL.

Note: The word "scrolling" also describes the use of "scroll bars" on the left and bottom of
a window to move an object displayed in a window.

Each window has an associated display stream. To get the window of a particular display stream, use
WFROMDS:

(WFROMDS DISPLAYSTREAM DONTCREATE) [Function]

Returns the window associated with DISPLAYSTREAM, creating a window if one does not
exist (and DONTCREATE is NIL). Returns NIL if the destination of DISPLAYSTREAM is
not a screen bitmap that supports a window system.

If DONTCREATE is non-NIL, WFROMDS will never create a window, and returns NIL if
DISPLAYSTREAM does not have an associated window.

TTYDISPLAYSTREAM calls WFROMDS with DONTCREATE = T, so it will not create a
window unnecessarily. Also, if WFROMDS does create a window, it calls CREATEW with
NOOPENFLG = T.

(DSPBACKUP WIDTH DISPLAYSTREAM) [Function]

Backs up DISPLAYSTREAM over a character which is WIDTH screen points wide.
DSPBACKUP fills the backed over area with the display stream’s background texture and
decreases the X position by WIDTH. If this would put the X position less than
DISPLAYSTREAM’s left margin, its operation is stopped at the left margin. It returns T if
any bits were written, NIL otherwise.

Fonts

A font is the collection of images that are printed or displayed when characters are output to a graphic
output device. Some simple displays and printers can only print characters using one font. Bitmap
displays and graphic printers can print characters using a large number of fonts.

Fonts are identified by a distinctive style or family (such as Modern or Classic), a size (such as 10
points), and a face (such as bold or italic). Fonts also have a rotation that indicates the orientation of
characters on the screen or page. A normal horizontal font (also called a portrait font) has a rotation of
0; the rotation of a vertical (landscape) font is 90 degrees. While any combination can be specified, in

26-24

INTERLISP-D REFERENCE MANUAL

practice the user will find that only certain combinations of families, sizes, faces, and rotations are
available for any graphic output device.

To specify a font to the functions described below, a FAMILY is represented by a literal atom, a SIZE
by a positive integer, and a FACE by a three-element list of the form (WEIGHT SLOPE
EXPANSION). WEIGHT, which indicates the thickness of the characters, can be BOLD, MEDIUM, or
LIGHT; SLOPE can be ITALIC or REGULAR; and EXPANSION can be REGULAR, COMPRESSED,
or EXPANDED, indicating how spread out the characters are. For convenience, faces may also be
specified by three-character atoms, where each character is the first letter of the corresponding field.
Thus, MRR is a synonym for (MEDIUM REGULAR REGULAR). In addition, certain common face
combinations may be indicated by special literal atoms:

STANDARD = (MEDIUM REGULAR REGULAR) = MRR
ITALIC = (MEDIUM ITALIC REGULAR) = MIR
BOLD = (BOLD REGULAR REGULAR) = BRR
BOLDITALIC = (BOLD ITALIC REGULAR) = BIR

Interlisp represents all the information related to a font in an object called a font descriptor. Font
descriptors contain the family, size, etc. properties used to represent the font. In addition, for each
character in the font, the font descriptor contains width information for the character and (for display
fonts) a bitmap containing the picture of the character.

The font functions can take fonts specified in a variety of different ways. DSPFONT, FONTCREATE,
FONTCOPY, etc. can be applied to font descriptors, "font lists" such as ’(MODERN 10), image streams
(coerced to its current font), or windows (coerced to the current font of its display stream). The
printout command ".FONT" will also accept fonts specified in any of these forms.

In general font files use the following format:

The family name (e.g., Modern); a two digit size (e.g., 08); a three letter Face (e.g., BIR, for Bold Italic
Regular); the letter C followed by the font’s character set in base 8 (e.g., C41); and finally an extension
(e.g., Displayfont).

Family

Size

Face

Modern08-BIR-C41.Displayfont

CharacterSet (base 8)

Extension

(two digits)

26-25

 GRAPHICS OUTPUT OPERATIONS

(FONTCREATE FAMILY SIZE FACE ROTATION DEVICE NOERRORFLG CHARSET)
[Function]

Returns a font descriptor for the specified font. FAMILY is a litatom specifying the font
family. SIZE is an integer indicating the size of the font in points. FACE specifies the face
characteristics in one of the formats listed above; if FACE is NIL, STANDARD is used.
ROTATION, which specifies the orientation of the font, is 0 (or NIL) for a portrait font and
90 for a landscape font. DEVICE indicates the output device for the font, and can be any
image stream type , such as DISPLAY, INTERPRESS, etc. DEVICE may also be an
image stream, in which case the type of the stream determines the font device. DEVICE
defaults to DISPLAY.

The FAMILY argument to FONTCREATE may also be a list, in which case it is interpreted
as a font-specification quintuple, a list of the form (FAMILY SIZE FACE ROTATION
DEVICE). Thus, (FONTCREATE ’(GACHA 10 BOLD)) is equivalent to
(FONTCREATE ’GACHA 10 ’BOLD). FAMILY may also be a font descriptor, in which
case that descriptor is simply returned.

If a font descriptor has already been created for the specified font, FONTCREATE simply
returns it. If it has not been created, FONTCREATE has to read the font information from
a font file that contains the information for that font. The name of an appropriate font file,
and the algorithm for searching depends on the device that the font is for, and is described
in more detail below. If an appropriate font file is found, it is read into a font descriptor.
If no file is found, for DISPLAY fonts FONTCREATE looks for fonts with less face
information and fakes the remaining faces (such as by doubling the bit pattern of each
character or slanting it). For hardcopy printer fonts, there is no acceptable faking
algorithm.

If no acceptable font is found, the action of FONTCREATE is determined by
NOERRORFLG. If NOERRORFLG is NIL, it generates a FONT NOT FOUND error with
the offending font specification; otherwise, FONTCREATE returns NIL.

CHARSET is the character set which will be read to create the font. Defaults to 0. For
more information on character sets, see NS Characters.

(FONTP X) [Function]

Returns X if X is a font descriptor; NIL otherwise.

(FONTPROP FONT PROP) [Function]

Returns the value of the PROP property of font FONT. The following font properties are
recognized:

FAMILY The style of the font, represented as a literal atom, such as CLASSIC or
MODERN.

SIZE A positive integer giving the size of the font, in printer’s points (1/72 of an
inch).

26-26

INTERLISP-D REFERENCE MANUAL

WEIGHT The thickness of the characters; one of BOLD, MEDIUM, or LIGHT.

SLOPE The "slope" of the characters in the font; one of ITALIC or REGULAR.

EXPANSION The extent to which the characters in the font are spread out; one of
REGULAR, COMPRESSED, or EXPANDED. Most available fonts have
EXPANSION = REGULAR.

FACE A three-element list of the form (WEIGHT SLOPE EXPANSION), giving all
of the typeface parameters.

ROTATION An integer that gives the orientation of the font characters on the screen or
page, in degrees. A normal horizontal font (also called a portrait font) has a
rotation of 0; the rotation of a vertical (landscape) font is 90.

DEVICE The device that the font can be printed on; one of DISPLAY, INTERPRESS,
etc.

ASCENT An integer giving the maximum height of any character in the font from its
base line (the printing position). The top line will be at
BASELINE+ASCENT-1.

DESCENT An integer giving the maximum extent of any character below the base line,
such as the lower part of a "p". The bottom line of a character will be at
BASELINE-DESCENT.

HEIGHT Equal to ASCENT + DESCENT.

SPEC The (FAMILY SIZE FACE ROTATION DEVICE) quintuple by which the
font is known to Lisp.

DEVICESPEC The (FAMILY SIZE FACE ROTATION DEVICE) quintuple that
identifies what will be used to represent the font on the display or printer. It
will differ from the SPEC property only if an implicit coercion is done to
approximate the specified font with one that actually exists on the device.

SCALE The units per printer’s point (1/72 of an inch) in which the font is measured.
For example, this is 35.27778 (the number of micas per printer’s point) for
Interpress fonts, which are measured in terms of micas.

(FONTCOPY OLDFONT PROP1 VAL1 PROP2 VAL2 ...) [NoSpread Function]

Returns a font descriptor that is a copy of the font OLDFONT, but which differs from
OLDFONT in that OLDFONT’s properties are replaced by the specified properties and
values. Thus, (FONTCOPY FONT ’WEIGHT ’BOLD ’DEVICE ’INTERPRESS)
will return a bold Interpress font with all other properties the same as those of FONT.
FONTCOPY accepts the properties FAMILY, SIZE, WEIGHT, SLOPE, EXPANSION,
FACE, ROTATION, and DEVICE. If the first property is a list, it is taken to be the PROP1
VAL1 PROP2 VAL2 ... sequence. Thus, (FONTCOPY FONT ’(WEIGHT BOLD

DEVICE INTERPRESS)) is equivalent to the example above.

26-27

 GRAPHICS OUTPUT OPERATIONS

If the property NOERROR is specified with value non-NIL, FONTCOPY will return NIL
rather than causing an error if the specified font cannot be created.

(FONTSAVAILABLE FAMILY SIZE FACE ROTATION DEVICE
CHECKFILESTOO?) [Function]

Returns a list of available fonts that match the given specification. FAMILY, SIZE,
FACE, ROTATION, and DEVICE are the same as for FONTCREATE. Additionally, any of
them can be the atom *, in which case all values of that field are matched.

If CHECKFILESTOO? is NIL, only fonts already loaded into virtual memory will be
considered. If CHECKFILESTOO? is non-NIL, the font directories for the specified device
will be searched. When checking font files, the ROTATION is ignored.

Note: The search is conditional on the status of the server which holds the font.
Thus a file server crash may prevent FONTCREATE from finding a file
that an earlier FONTSAVAILABLE returned.

Each element of the list returned will be of the form (FAMILY SIZE FACE ROTATION
DEVICE).

Examples:

(FONTSAVAILABLE ’MODERN 10 ’MRR 0 ’DISPLAY)

will return ((MODERN 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY)) if the
regular Modern 10 font for the display is in virtual memory; NIL otherwise.

(FONTSAVAILABLE ’* 14 ’* ’* ’INTERPRESS T)

will return a list of all the size 14 Interpress fonts, whether they are in virtual memory or
in font files.

(SETFONTDESCRIPTOR FAMILY SIZE FACE ROTATION DEVICE FONT) [Function]

Indicates to the system that FONT is the font that should be associated with the FAMILY
SIZE FACE ROTATION DEVICE characteristics. If FONT is NIL, the font associated with
these characteristics is cleared and will be recreated the next time it is needed. As with
FONTPROP and FONTCOPY, FONT is coerced to a font descriptor if it is not one already.

This functions is useful when it is desirable to simulate an unavailable font or to use a font
with characteristics different from the interpretations provided by the system.

(DEFAULTFONT DEVICE FONT —) [Function]

Returns the font that would be used as the default (if NIL were specified as a font
argument) for image stream type DEVICE. If FONT is a font descriptor, it is set to be the
default font for DEVICE.

26-28

INTERLISP-D REFERENCE MANUAL

(CHARWIDTH CHARCODE FONT) [Function]

CHARCODE is an integer that represents a valid character (as returned by CHCON1).
Returns the amount by which an image stream’s X-position will be incremented when the
character is printed.

(CHARWIDTHY CHARCODE FONT) [Function]

Like CHARWIDTH, but returns the Y component of the character’s width, the amount by
which an image stream’s Y-position will be incremented when the character is printed.
This will be zero for most characters in normal portrait fonts, but may be non-zero for
landscape fonts or for vector-drawing fonts.

(STRINGWIDTH STR FONT FLG RDTBL) [Function]

Returns the amount by which a stream’s X-position will be incremented if the printname
for the Interlisp-D object STR is printed in font FONT. If FONT is NIL, DEFAULTFONT is
used as FONT. If FONT is an image stream, its font is used. If FLG is non-NIL, the PRIN2-
pname of STR with respect to the readtable RDTBL is used.

(STRINGREGION STR STREAM PRIN2FLG RDTBL) [Function]

Returns the region occupied by STR if it were printed at the current location in the image
stream STREAM. This is useful, for example, for determining where text is in a window to
allow the user to select it. The arguments PRIN2FLG and RDTBL are passed to
STRINGWIDTH.

Note: STRINGREGION does not take into account any carriage returns in the
string, or carriage returns that may be automatically printed if STR is
printed to STREAM. Therefore, the value returned is meaningless for multi-
line strings.

The following functions allow the user to access and change the bitmaps for individual characters in a
display font. Note: Character code 256 can be used to access the "dummy" character, used for
characters in the font with no bitmap defined.

(GETCHARBITMAP CHARCODE FONT) [Function]

Returns a bitmap containing a copy of the image of the character CHARCODE in the font
FONT.

(PUTCHARBITMAP CHARCODE FONT NEWCHARBITMAP NEWCHARDESCENT) [Function]

Changes the bitmap image of the character CHARCODE in the font FONT to the bitmap
NEWCHARBITMAP. If NEWCHARDESCENT is non-NIL, the descent of the character is
changed to the value of NEWCHARDESCENT.

26-29

 GRAPHICS OUTPUT OPERATIONS

(EDITCHAR CHARCODE FONT) [Function]

Calls the bitmap editor (EDITBM) on the bitmap image of the character CHARCODE in the
font FONT. CHARCODE can be a character code (as returned by CHCON1) or an atom or
string, in which case the first character of CHARCODE is used.

(WRITESTRIKEFONTFILE FONT CHARSET FILENAME) [Function]

Takes a display font font descriptor and a character set number, and writes that character
set into a file suitable for reading in again. Note that the font descriptor’s current state is
used (which was perhaps modified by INSPECTing the datum), so this provides a
mechanism for creating/modifying new fonts.

For example:

(WRITESTRIKEFONTFILE (FONTCREATE ’GACHA 10) 0 ’{DSK}Magic10-
MRR-C0.DISPLAYFONT)

If your DISPLAYFONTDIRECTORIES includes {DSK}, then a subsequent
(FONTCREATE ’MAGIC 10) will create a new font descriptor whose appearance is
the same as the old Gacha font descriptor.

However, the new font is identical to the old one in appearance only. The individual
datatype fields and bitmap may not be the same as those in the old font descriptor, due to
peculiarities of different font file formats.

Font Files and Font Directories

If FONTCREATE is called to create a font that has not been loaded into Interlisp, FONTCREATE has to
read the font information from a font file that contains the information for that font. For printer
devices, the font files have to contain width information for each character in the font. For display
fonts, the font files have to contain, in addition, bitmap images for each character in the fonts. The
font file names, formats, and searching algorithms are different for each device. There are a set of
variables for each device, that determine the directories that are searched for font files. All of these
variables must be set before Interlisp can auto-load font files. These variables should be initialized in
the site-specific INIT file.

DISPLAYFONTDIRECTORIES [Variable]

Value is a list of directories searched to find font bitmap files for display fonts.

DISPLAYFONTEXTENSIONS [Variable]

Value is a list of file extensions used when searching DISPLAYFONTDIRECTORIES for
display fonts. Initially set to (DISPLAYFONT), but when using older font files it may be
necessary to add STRIKE and AC to this list.

26-30

INTERLISP-D REFERENCE MANUAL

INTERPRESSFONTDIRECTORIES [Variable]

Value is a list of directories searched to find font widths files for Interpress fonts.

PRESSFONTWIDTHSFILES [Variable]

Value is a list of files (not directories) searched to find font widths files for Press fonts.
Press font widths are packed into large files (usually named FONTS.WIDTHS).

Font Profiles

PRETTYPRINT contains a facility for printing different elements (user functions, system functions,
clisp words, comments, etc.) in different fonts to emphasize (or deemphasize) their importance, and in
general to provide for a more pleasing appearance. Of course, in order to be useful, this facility
requires that the user is printing on a device (such as a bitmapped display or a laser printer) which
supports multiple fonts.

PRETTYPRINT signals font changes by inserting into the file a user-defined escape sequence (the
value of the variable FONTESCAPECHAR) followed by the character code which specifies, by
number, which font to use, i.e. ↑A for font number 1, etc. Thus, if FONTESCAPECHAR were the
character ↑F, ↑F↑C would be output to change to font 3, ↑F↑A to change to font 1, etc. If
FONTESCAPECHAR consists of characters which are separator charactors in FILERDTBL, then a file
with font changes in it can also be loaded back in.

Currently, PRETTYPRINT uses the following font classes. The user can specify separate fonts for
each of these classes, or use the same font for several different classes.

LAMBDAFONT The font for printing the name of the function being prettyprinted, before the
actual definition (usually a large font).

CLISPFONT If CLISPFLG is on, the font for printing any clisp words, i.e. atoms with
property CLISPWORD.

COMMENTFONT The font used for comments.

USERFONT The font for the name of any function in the file, or any member of the list
FONTFNS.

SYSTEMFONT The font for any other (defined) function.

CHANGEFONT The font for an expression marked by the editor as having been changed.

PRETTYCOMFONT The font for the operand of a file package command.

DEFAULTFONT The font for everything else.

Note that not all combinations of fonts will be aesthetically pleasing (or even readable!) and the user
may have to experiment to find a compatible set.

26-31

 GRAPHICS OUTPUT OPERATIONS

Although in some implementations LAMBDAFONT et al. may be defined as variables, one should not
set them directly, but should indicate what font is to be used for each class by calling the function
FONTPROFILE:

(FONTPROFILE PROFILE) [Function]

Sets up the font classes as determined by PROFILE, a list of elements which defines the
correspondence between font classes and specific fonts. Each element of PROFILE is a list
of the form:

(FONTCLASS FONT# DISPLAYFONT PRESSFONT
INTERPRESSFONT)

FONTCLASS is the font class name and FONT# is the font number for that class. For each
font class name, the escape sequence will consist of FONTESCAPECHAR followed by the
character code for the font number, e.g. ↑A for font number 1, etc.

If FONT# is NIL for any font class, the font class named DEFAULTFONT (which must
always be specified) is used. Alternatively, if FONT# is the name of a previously defined
font class, this font class will be equivalenced to the previously defined one.

DISPLAYFONT, PRESSFONT, and INTERPRESSFONT are font specifications (of the
form accepted by FONTCREATE) for the fonts to use when printing to the display and to
Press and Interpress printers respectively.

FONTPROFILE [Variable]

This is the variable used to store the current font profile, in the form accepted by the
function FONTPROFILE. Note that simply editing this value will not change the fonts
used for the various font classes; it is necessary to execute (FONTPROFILE
FONTPROFILE) to install the value of this variable.

The process of printing with multiple fonts is affected by a large number of variables:
FONTPROFILE, FILELINELENGTH, PRETTYLCOM, etc. To facilitate switching back and forth
between various sets of values for the font variables, Interlisp supports the idea of named "font
configurations" encapsulating the values of all relevant variables.

To create a new font configuration, set all "relevant" variables to the values you want, and then call
FONTNAME to save them (on the variable FONTDEFS) under a given name. To install a particular
font configuration, call FONTSET giving it your name. To change the values in a saved font
configuration, edit the value of the variable FONTDEFS.

Note: The list of variables saved by FONTNAME is stored in the variable FONTDEFSVARS. This can
be changed by the user.

26-32

INTERLISP-D REFERENCE MANUAL

(FONTSET NAME) [Function]

Installs font configuration for NAME. Also evaluates (FONTPROFILE FONTPROFILE)
to install the font classes as specified in the new value of the variable FONTPROFILE.
Generates an error if NAME not previously defined.

FONTDEFSVARS [Variable]

The list of variables to be packaged by a FONTNAME. Initially FONTCHANGEFLG,
FILELINELENGTH, COMMENTLINELENGTH, FIRSTCOL, PRETTYLCOM,
LISTFILESTR, and FONTPROFILE.

FONTDEFS [Variable]

An association list of font configurations. FONTDEFS is a list of elements of form (NAME
. PARAMETER-PAIRS). To save a configuration on a file after performing a
FONTNAME to define it, the user could either save the entire value of FONTDEFS, or use
the ALISTS file package command to dump out just the one configuration.

FONTESCAPECHAR [Variable]

The character or string used to signal the start of a font escape sequence.

FONTCHANGEFLG [Variable]

If T, enables fonts when prettyprinting. If NIL, disables fonts. ALL indicates that all calls
to CHANGEFONT are executed.

LISTFILESTR [Variable]

In Interlisp-10, passed to the operating system by LISTFILES. Can be used to specify
subcommands to the LIST command, e.g. to establish correspondance between font
number and font name.

COMMENTLINELENGTH [Variable]

Since comments are usually printed in a smaller font, COMMENTLINELENGTH is
provided to offset the fact that Interlisp does not know about font widths. When
FONTCHANGEFLG = T, CAR of COMMENTLINELENGTH is the linelength used to print
short comments, i.e. those printed in the right margin, and CDR is the linelength used
when printing full width comments.

(CHANGEFONT FONT STREAM) [Function]

Executes the operations on STREAM to change to the font FONT. For use in
PRETTYPRINTMACROS.

26-33

 GRAPHICS OUTPUT OPERATIONS

Image Objects

An Image Object is an object that includes information about an image, such as how to display it, how
to print it, and how to manipulate it when it is included in a collection of images (such as a
document). More generally, it enables you to include one kind of image, with its own semantics,
layout rules, and editing paradigms, inside another kind of image. Image Objects provide a general-
purpose interface between image users who want to manipulate arbitrary images, and image
producers, who create images for use, say, in documents.

Images are encapsulated inside a uniform barrier—the IMAGEOBJ data type. From the outside, you
communicate to the image by calling a standard set of functions. For example, calling one function
tells you how big the image is; calling another causes the image object to be displayed where you tell
it, and so on. Anyone who wants to create images for general use can implement his own brand of
IMAGEOBJ. IMAGEOBJs have been implemented (in library packages) for bitmaps, menus,
annotations, graphs, and sketches.

Image Objects were originally implemented to support inserting images into TEdit text files, but the
facility is available for use by any tools that manipulate images. The Image Object interface allows
objects to exist in TEdit documents and be edited with their own editor. It also provides a facility in
which objects can be shift-selected (or "copy-selected") between TEdit and non-TEdit windows. For
example, the Image Objects interface allows you to copy-select graphs from a Grapher window into a
TEdit window. The source window (where the object comes from) does not have to know what sort
of window the destination window (where the object is inserted) is, and the destination does not have
to know where the insertion comes from.

A new data type, IMAGEOBJ, contains the data and the procedures necessary to manipulate an object
that is to be manipulated in this way. IMAGEOBJs are created with the function IMAGEOBJCREATE
(below).

Another new data type, IMAGEFNS, is a vector of the procedures necessary to define the behavior of
a type of IMAGEOBJ. Grouping the operations in a separate data type allows multiple instances of
the same type of image object to share procedure vectors. The data and procedure fields of an
IMAGEOBJ have a uniform interface through the function IMAGEOBJPROP. IMAGEFNS are created
with the function IMAGEFNSCREATE:

(IMAGEFNSCREATE DISPLAYFN IMAGEBOXFN PUTFN GETFN COPYFN BUTTONEVENTINFN
COPYBUTTONEVENTINFN WHENMOVEDFN WHENINSERTEDFN WHENDELETEDFN
WHENCOPIEDFN WHENOPERATEDONFN PREPRINTFN —) [Function]

Returns an IMAGEFNS object that contains the functions necessary to define the behavior
of an IMAGEOBJ.

The arguments DISPLAYFN through PREPRINTFN should all be function names to be
stored as the "methods" of the IMAGEFNS. The purpose of each IMAGEFNS method is
described below.

26-34

INTERLISP-D REFERENCE MANUAL

Note: Image objects must be "registered" before they can be read by TEdit or HREAD.
IMAGEFNSCREATE implicitly registers its GETFN argument.

(IMAGEOBJCREATE OBJECTDATUM IMAGEFNS) [Function]

Returns an IMAGEOBJ that contains the object datum OBJECTDATUM and the operations
vector IMAGEFNS. OBJECTDATUM can be arbitrary data.

(IMAGEOBJPROP IMAGEOBJECT PROPERTY NEWVALUE) [NoSpread Function]

Accesses and sets the properties of an IMAGEOBJ. Returns the current value of the
PROPERTY property of the image object IMAGEOBJECT. If NEWVALUE is given, the
property is set to it.

IMAGEOBJPROP can be used on the system properties OBJECTDATUM, DISPLAYFN,
IMAGEBOXFN, PUTFN, GETFN, COPYFN, BUTTONEVENTINFN,
COPYBUTTONEVENTINFN, WHENOPERATEDONFN, and PREPRINTFN. Additionally,
it can be used to save arbitrary properties on an IMAGEOBJ.

(IMAGEFNSP X) [Function]

Returns X if X is an IMAGEFNS object, NIL otherwise.

(IMAGEOBJP X) [Function]

Returns X if X is an IMAGEOBJ object, NIL otherwise.

IMAGEFNS Methods

Note: Many of the IMAGEFNS methods below are passed "host stream" arguments. The TEdit text
editor passes the "text stream" (an object contain all of the information in the document being edited)
as the "host stream" argument. Other editing programs that want to use image objects may want to
pass the data structure being edited to the IMAGEFNS methods as the "host stream" argument.

(DISPLAYFN IMAGEOBJ IMAGESTREAM IMAGESTREAMTYPE HOSTSTREAM) [IMAGEFNS
Method]

The DISPLAYFN method is called to display the object IMAGEOBJ at the current position
on IMAGESTREAM. The type of IMAGESTREAM indicates whether the device is the display
or some other image stream.

Note: When the DISPLAYFN method is called, the offset and clipping regions for the
stream are set so the object’s image is at (0,0), and only that image area can be modified.

(IMAGEBOXFN IMAGEOBJ IMAGESTREAM CURRENTX RIGHTMARGIN) [IMAGEFNS Method]

The IMAGEBOXFN method should return the size of the object as an IMAGEBOX, which
is a data structure that describes the image laid down when an IMAGEOBJ is displayed in
terms of width, height, and descender height. An IMAGEBOX has four fields: XSIZE,

26-35

 GRAPHICS OUTPUT OPERATIONS

YSIZE, YDESC, and XKERN. XSIZE and YSIZE are the width and height of the object
image. YDESC and XKERN give the position of the baseline and the left edge of the image
relative to where you want to position it. For characters, the YDESC is the descent (height
of the descender) and the XKERN is the amount of left kerning (note: TEdit doesn’t
support left kerning).

The IMAGEBOXFN looks at the type of the stream to determine the output device if the
object’s size changes from device to device. (For example, a bit-map object may specify a
scale factor that is ignored when the bit map is displayed on the screen.) CURRENTX and
RIGHTMARGIN allow an object to take account of its environment when deciding how big
it is. If these fields are not available, they are NIL.

Note: TEdit calls the IMAGEBOXFN only during line formatting, then caches the
IMAGEBOX as the BOUNDBOX property of the IMAGEOBJ. This avoids
the need to call the IMAGEBOXFN when incomplete position and
margin information is available.

(PUTFN IMAGEOBJ FILESTREAM) [IMAGEFNS Method]

The PUTFN method is called to save the object on a file. It prints a description on
FILESTREAM that, when read by the corresponding GETFN method (see below),
regenerates the image object. (TEdit and HPRINT take care of writing out the name of the
GETFN.)

(GETFN FILESTREAM) [IMAGEFNS Method]

The GETFN method is called when the object is encountered on the file during input. It
reads the description that was written by the PUTFN method and returns an IMAGEOBJ.

(COPYFN IMAGEOBJ SOURCEHOSTSTREAM TARGETHOSTSTREAM) [IMAGEFNS Method]

The COPYFN method is called during a copy-select operation. It should return a copy of
IMAGEOBJ. If it returns the litatom DON’T, copying is suppressed.

(BUTTONEVENTINFN IMAGEOBJ WINDOWSTREAM SELECTION RELX RELY WINDOW
HOSTSTREAM BUTTON) [IMAGEFNS Method]

The BUTTONEVENTINFN method is called when you press a mouse button inside the
object. The BUTTONEVENTINFN decides whether or not to handle the button, to track
the cursor in parallel with mouse movement, and to invoke selections or edits supported
by the object (but see the COPYBUTTONEVENTINFN method below). If the
BUTTONEVENTINFN returns NIL, TEdit treats the button press as a selection at its level.
Note that when this function is first called, a button is down. The BUTTONEVENTINFN
should also support the button-down protocol to descend inside of any composite objects
with in it. In most cases, the BUTTONEVENTINFN relinquishes control (i.e., returns)
when the cursor leaves its object’s region.

26-36

INTERLISP-D REFERENCE MANUAL

When the BUTTONEVENTINFN is called, the window’s clipping region and offsets have been
changed so that the lower-left corner of the object’s image is at (0,0), and only the object’s image can
be changed. The selection is available for changing to fit your needs; the mouse button went down at
(RELX,RELY) within the object’s image. You can affect how TEdit treats the selection by returning
one of several values. If you return NIL, TEdit forgets that you selected an object; if you return the
atom DON’T, TEdit doesn’t permit the selection; if you return the atom CHANGED, TEdit updates the
screen. Use CHANGED to signal TEdit that the object has changed size or will have side effects on
other parts of the screen image.

(COPYBUTTONEVENTINFN IMAGEOBJ WINDOWSTREAM) [IMAGEFNS Method]

The COPYBUTTONEVENTINFN method is called when you button inside an object while
holding down a copy key. Many of the comments about BUTTONEVENTINFN apply
here too. Also, see the discussion below about copying image objects between windows.

(WHENMOVEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM
TARGETHOSTSTREAM) [IMAGEFNS Method]

The WHENMOVEDFN method provides hooks by which the object is notified when TEdit
performs an operation (MOVEing) on the whole object. It allows objects to have side
effects.

(WHENINSERTEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM
TARGETHOSTSTREAM) [IMAGEFNS Method]

The WHENINSERTEDFN method provides hooks by which the object is notified when
TEdit performs an operation (INSERTing) on the whole object. It allows objects to have
side effects.

(WHENDELETEDFN IMAGEOBJ TARGETWINDOWSTREAM) [IMAGEFNS Method]

The WHENDELETEDFN method provides hooks by which the object is notified when
TEdit performs an operation (DELETEing) on the whole object. It allows objects to have
side effects.

(WHENCOPIEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM
TARGETHOSTSTREAM) [IMAGEFNS Method]

The WHENCOPIEDFN method provides hooks by which the object is notified when TEdit
performs an operation (COPYing) on the whole object. The WHENCOPIEDFN method is
called in addition to (and after) the COPYFN method above. It allows objects to have side
effects.

(WHENOPERATEDONFN IMAGEOBJ WINDOWSTREAM HOWOPERATEDON SELECTION
HOSTSTREAM) [IMAGEFNS Method]

The WHENOPERATEDONFN method provides a hook for edit operations.
HOWOPERATEDON should be one of SELECTED, DESELECTED, HIGHLIGHTED, and
UNHILIGHTED. The WHENOPERATEDONFN differs from the BUTTONEVENTINFN
because it is called when you extend a selection through the object. That is, the object is

26-37

 GRAPHICS OUTPUT OPERATIONS

treated in toto as a TEdit character. HIGHLIGHTED refers to the selection being
highlighted on the screen, and UNHIGHLIGHTED means that the highlighting is being
turned off.

(PREPRINTFN IMAGEOBJ) [IMAGEFNS Method]

The PREPRINTFN method is called to convert the object into something that can be
printed for inclusion in documents. It returns an object that the receiving window can
print (using either PRIN1 or PRIN2,its choice) to obtain a character representation of the
object. If the PREPRINTFN method is NIL, the OBJECTDATUM field of IMAGEOBJ itself
is used. TEdit uses this function when you indicate that you want to print the characters
from an object rather than the object itself (presumably using PRIN1 case).

Registering Image Objects

Each legitimate GETFN needs to be known to the system, to prevent various Trojan-horse problems
and to allow the automatic loading of the supporting code for infrequently used IMAGEOBJs. To this
end, there is a global list, IMAGEOBJGETFNS, that contains an entry for each GETFN. The existence
of the entry marks the GETFN as legitimate; the entry itself is a property list, which can hold
information about the GETFN.

No action needs to be taken for GETFNs that are currently in use: the function IMAGEFNSCREATE
automatically adds its GETFN argument to the list. However, packages that support obsolete versions
of objects may need to explicitly add the obsolete GETFNs. For example, TEdit supports bit-map
IMAGEOBJs. Recently, a change was made in the format in which objects are stored; to retain
compatibility with the old object format, there are now two GETFNs. The current GETFN is
automatically on the list, courtesy of IMAGEFNSCREATE. However, the code file that supports the
old bit-map objects contains the clause: (ADDVARS (IMAGEOBJGETFNS
(OLDGETFNNAME))), which adds the old GETFN to IMAGEOBJGETFNS.

For a given GETFN, the entry on IMAGEOBJGETFNS may be a property list of information.
Currently the only recognized property is FILE.

FILE is the name of the file that can be loaded if the GETFN isn’t defined. This file should define the
GETFN, along with all the other functions needed to support that kind of IMAGEOBJ.

For example, the bit-map IMAGEOBJ implemented by TEdit use the GETFN BMOBJ.GETFN2. Its
entry on IMAGEOBJGETFNS is (BMOBJ.GETFN2 FILE IMAGEOBJ), indicating that the
support code for bit-map image objects resides on the file IMAGEOBJ, and that the GETFN for them is
BMOBJ.GETFN2.

This makes it possible to have entries for GETFNs whose supporting code isn’t loaded—you might,
for instance, have your init file add entries to IMAGEOBJGETFNS for the kinds of image objects you

26-38

INTERLISP-D REFERENCE MANUAL

commonly use. The system’s default reading method will automatically load the code when
necessary.

Reading and Writing Image Objects on Files

Image Objects can be written out to files using HPRINT and read back using HREAD. The following
functions can also be used:

(WRITEIMAGEOBJ IMAGEOBJ STREAM) [Function]

Prints (using PRIN2) a call to READIMAGEOBJ, then calls the PUTFN for IMAGEOBJ to
write it onto STREAM. During input, then, the call to READIMAGEOBJ is read and
evaluated; it in turn reads back the object’s description, using the appropriate GETFN.

(READIMAGEOBJ STREAM GETFN NOERROR) [Function]

Reads an IMAGEOBJ from STREAM, starting at the current file position. Uses the function
GETFN after validating it (and loading support code, if necessary).

If the GETFN can’t be validated or isn’t defined, READIMAGEOBJ returns an
"encapsulated image object", an IMAGEOBJ that safely encapsulates all of the information
in the image object. An encapsulated image object displays as a rectangle that says,
"Unknown IMAGEOBJ Type" and lists the GETFN’s name. Selecting an encapsulated
image object with the mouse causes another attempt to read the object from the file; this is
so you can load any necessary support code and then get to the object.

Warning: You cannot save an encapsulated image object on a file because there isn’t
enough information to allow copying the description to the new file from the old one.

If NOERROR is non-NIL, READIMAGEOBJ returns NIL if it can’t successfully read the
object.

26-39

 GRAPHICS OUTPUT OPERATIONS

Copying Image Objects Between Windows

Copying between windows is implemented as follows: If a button event occurs in a window when a
copy key is down, the window’s COPYBUTTONEVENTFN window property is called. If this window
supports copy-selection, it should track the mouse, indicating the item to be copied. When the button
is released, the COPYBUTTONEVENTFN should create an image object out of the selected
information, and call COPYINSERT to insert it in the current TTY window. COPYINSERT calls the
COPYINSERTFN window property of the TTY window to insert this image object. Therefore, both
the source and destination windows can determine how they handle copying image objects.

If the COPYBUTTONEVENTFN of a window is NIL, the BUTTONEVENTFN is called instead when a
button event occurs in the window when a copy key is down, and copying from that window is not
supported. If the COPYINSERTFN of the TTY window is NIL, COPYINSERT will turn the image
object into a string (by calling the PREPRINTFN method of the image object) and insert it by calling
BKSYSBUF.

COPYBUTTONEVENTFN [Window Property]

The COPYBUTTONEVENTFN of a window is called (if it exists) when a button event
occurs in the window and a copy key is down. If no COPYBUTTONEVENTFN exists, the
BUTTONEVENTFN is called.

COPYINSERTFN [Window Property]

The COPYINSERTFN of the "destination" window is called by COPYINSERT to insert
something into the destination window. It is called with two arguments: the object to be
inserted and the destination window. The object to be inserted can be a character string,
an IMAGEOBJ, or a list of IMAGEOBJs and character strings. As a convention, the
COPYINSERTFN should call BKSYSBUF if the object to be inserted insert is a character
string.

(COPYINSERT IMAGEOBJ) [Function]

COPYINSERT inserts IMAGEOBJ into the window that currently has the TTY. If the
current TTY window has a COPYINSERTFN, it is called, passing it IMAGEOBJ and the
window as arguments.

If no COPYINSERTFN exists and if IMAGEOBJ is an image object, BKSYSBUF is called
on the result of calling its PREPRINTFN on it. If IMAGEOBJ is not an image object, it is
simply passed to BKSYSBUF . In this case, BKSYSBUF will call PRIN2 with a read table
taken from the process associated with the TTY window. A window that wishes to use
PRIN1 or a different read table must provide its own COPYINSERTFN to do this.

26-40

INTERLISP-D REFERENCE MANUAL

Implementation of Image Streams

Interlisp does all image creation through a set of functions and data structures for device-independent
graphics, known popularly as DIG. DIG is implemented through the use of a special type of stream,
known as an image stream.

An image stream, by convention, is any stream that has its IMAGEOPS field (described in detail
below) set to a vector of meaningful graphical operations. Using image streams, you can write
programs that draw and print on an output stream without regard to the underlying device, be it a
window, a disk, or a printer.

To define a new image stream type, it is necessary to put information on the variable
IMAGESTREAMTYPES:

IMAGESTREAMTYPES [Variable]

This variable describes how to create a stream for a given image stream type. The value of
IMAGESTREAMTYPES is an association list, indexed by the image stream type (e.g.,
DISPLAY, INTERPRESS, etc.). The format of a single association list item is:

(IMAGETYPE
 (OPENSTREAM OPENSTREAMFN)
 (FONTCREATE FONTCREATEFN)
 (FONTSAVAILABLE FONTSAVAILABLEFN))

OPENSTREAMFN, FONTCREATEFN, and FONTSAVAILABLEFN are "image stream
methods," device-dependent functions used to implement generic image stream
operations. For Interpress image streams, the association list entry is:

(INTERPRESS
 (OPENSTREAM OPENIPSTREAM)
 (FONTCREATE \CREATEINTERPRESSFONT)
 (FONTSAVAILABLE \SEARCHINTERPRESSFONTS))

(OPENSTREAMFN FILE OPTIONS) [Image Stream Method]

FILE is the file name as it was passed to OPENIMAGESTREAM, and OPTIONS is the
OPTIONS property list passed to OPENIMAGESTREAM. The result must be a stream of
the appropriate image type.

(FONTCREATEFN FAMILY SIZE FACE ROTATION DEVICE) [Image Stream Method]

FAMILY is the family name for the font, e.g., MODERN. SIZE is the body size of the font,
in printer’s points. FACE is a three-element list describing the weight, slope, and
expansion of the face desired, e.g., (MEDIUM ITALIC EXPANDED). ROTATION is how
much the font is to be rotated from the normal orientation, in minutes of arc. For
example, to print a landscape page, fonts have the rotation 5400 (90 degrees). The
function’s result must be a FONTDESCRIPTOR with the fields filled in appropriately.

26-41

 GRAPHICS OUTPUT OPERATIONS

(FONTSAVAILABLEFN FAMILY SIZE FACE ROTATION DEVICE) [Image Stream Method]

This function returns a list of all fonts agreeing with the FAMILY, SIZE, FACE, and
ROTATION arguments; any of them may be wild-carded (i.e., equal to *, which means any
value is acceptable). Each element of the list should be a quintuple of the form (FAMILY
SIZE FACE ROTATION DEVICE).

Where the function looks is an implementation decision: the FONTSAVAILABLEFN for
the display device looks at DISPLAYFONTDIRECTORIES, the Interpress code looks on
INTERPRESSFONTDIRECTORIES, and implementors of new devices should feel free
to introduce new search path variables.

As indicated above, image streams use a field that no other stream uses: IMAGEOPS. IMAGEOPS is
an instance of the IMAGEOPS data type and contains a vector of the stream’s graphical methods. The
methods contained in the IMAGEOPS object can make arbitrary use of the stream’s IMAGEDATA
field, which is provided for their use, and may contain any data needed.

IMAGETYPE [IMAGEOPS Field]

Value is the name of an image type. Monochrome display streams have an IMAGETYPE
of DISPLAY; color display streams are identified as (COLOR DISPLAY). The
IMAGETYPE field is informational and can be set to anything you choose.

IMFONTCREATE [IMAGEOPS Field]

Value is the device name to pass to FONTCREATE when fonts are created for the stream.

The remaining fields are all image stream methods, whose value should be a device-
dependent function that implements the generic operation. Most methods are called by a
similarly-named function, e.g. the function DRAWLINE calls the IMDRAWLINE method.
All coordinates that refer to points in a display device’s space are measured in the device’s
units. (The IMSCALE method provides access to a device’s scale.) For arguments that
have defaults (such as the BRUSH argument of DRAWCURVE), the default is substituted
for the NIL argument before it is passed to the image stream method. Therefore, image
stream methods do not have to handle defaults.

(IMCLOSEFN STREAM) [Image Stream Method]

Called before a stream is closed with CLOSEF. This method should flush buffers, write
header or trailer information, etc.

(IMDRAWLINE STREAM X1 Y1 X2 Y2 WIDTH OPERATION COLOR DASHING) [Image Stream
Method]

Draws a line of width WIDTH from (X1, Y1) to (X2, Y2). See DRAWLINE.

(IMDRAWCURVE STREAM KNOTS CLOSED BRUSH DASHING) [Image Stream Method]

Draws a curve through KNOTS. See DRAWCURVE.

26-42

INTERLISP-D REFERENCE MANUAL

(IMDRAWCIRCLE STREAM CENTERX CENTERY RADIUS BRUSH DASHING) [Image Stream
Method]

Draws a circle of radius RADIUS around (CENTERX, CENTERY). See DRAWCIRCLE.

(IMDRAWELLIPSE STREAM CENTERX CENTERY SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING) [Image Stream Method]

Draws an ellipse around (CENTERX, CENTERY). See DRAWELLIPSE.

(IMFILLPOLYGON STREAM POINTS TEXTURE) [Image Stream Method]

Fills in the polygon outlined by POINTS on the image stream STREAM, using the texture
TEXTURE. See FILLPOLYGON.

(IMFILLCIRCLE STREAM CENTERX CENTERY RADIUS TEXTURE) [Image Stream Method]

Draws a circle filled with texture TEXTURE around (CENTERX, CENTERY). See
FILLCIRCLE.

(IMBLTSHADE TEXTURE STREAM DESTINATIONLEFT DESTINATIONBOTTOM WIDTH
HEIGHT OPERATION CLIPPINGREGION) [Image Stream Method]

The texture-source case of BITBLT. DESTINATIONLEFT, DESTINATIONBOTTOM,
WIDTH, HEIGHT, and CLIPPINGREGION are measured in STREAM’s units. This method
is invoked by the functions BITBLT and BLTSHADE.

(IMBITBLT SOURCEBITMAP SOURCELEFT SOURCEBOTTOM STREAM DESTINATIONLEFT
DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE OPERATION TEXTURE
CLIPPINGREGION CLIPPEDSOURCELEFT CLIPPEDSOURCEBOTTOM SCALE) [Image
Stream Method]

Contains the bit-map-source cases of BITBLT. SOURCELEFT, SOURCEBOTTOM,

CLIPPEDSOURCELEFT, CLIPPEDSOURCEBOTTOM, WIDTH, and HEIGHT are measured
in pixels; DESTINATIONLEFT, DESTINATIONBOTTOM, and CLIPPINGREGION are in the
units of the destination stream.

(IMSCALEDBITBLT SOURCEBITMAP SOURCELEFT SOURCEBOTTOM STREAM
DESTINATIONLEFT DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE OPERATION
TEXTURE CLIPPINGREGION CLIPPEDSOURCELEFT CLIPPEDSOURCEBOTTOM SCALE)
[Image Stream Method]

A scaled version of IMBITBLT. Each pixel in SOURCEBITMAP is replicated SCALE times
in the X and Y directions; currently, SCALE must be an integer.

(IMMOVETO STREAM X Y) [Image Stream Method]

Moves to (X,Y). This method is invoked by the function MOVETO. If IMMOVETO is not
supplied, a default method composed of calls to the IMXPOSITION and IMYPOSITION
methods is used.

26-43

 GRAPHICS OUTPUT OPERATIONS

(IMSTRINGWIDTH STREAM STR RDTBL) [Image Stream Method]

Returns the width of string STR in STREAM’s units, using STREAM’s current font. This is
envoked when STRINGWIDTH is passed a stream as its FONT argument. If
IMSTRINGWIDTH is not supplied, it defaults to calling STRINGWIDTH on the default
font of STREAM.

(IMCHARWIDTH STREAM CHARCODE) [Image Stream Method]

Returns the width of character CHARCODE in STREAM’s units, using STREAM’s current font.
This is invoked when CHARWIDTH is passed a stream as its FONT argument. If
IMCHARWIDTH is not supplied, it defaults to calling CHARWIDTH on the default font of
STREAM.

(IMCHARWIDTHY STREAM CHARCODE) [Image Stream Method]

Returns the Y componant of the width of character CHARCODE in STREAM’s units, using
STREAM’s current font. This is envoked when CHARWIDTHY is passed a stream as its
FONT argument. If IMCHARWIDTHY is not supplied, it defaults to calling CHARWIDTHY
on the default font of STREAM.

(IMBITMAPSIZE STREAM BITMAP DIMENSION) [Image Stream Method]

Returns the size that BITMAP will be when BITBLTed to STREAM, in STREAM’s units.
DIMENSION can be one of WIDTH, HEIGHT, or NIL, in which case the dotted pair
(WIDTH . HEIGHT) will be returned.

This is envoked by BITMAPIMAGESIZE. If IMBITMAPSIZE is not supplied, it defaults
to a method that multiplies the bitmap height and width by the scale of STREAM.

(IMNEWPAGE STREAM) [Image Stream Method]

Causes a new page to be started. The X position is set to the left margin, and the Y
position is set to the top margin plus the linefeed. If not supplied, defaults to
(\OUTCHAR STREAM (CHARCODE ^L)). Envoked by DSPNEWPAGE.

(IMTERPRI STREAM) [Image Stream Method]

Causes a new line to be started. The X position is set to the left margin, and the Y position
is set to the current Y position plus the linefeed. If not supplied, defaults to (\OUTCHAR
STREAM (CHARCODE EOL)). Envoked by TERPRI.

(IMRESET STREAM) [Image Stream Method]

Resets the X and Y position of STREAM. The X coordinate is set to its left margin; the Y
coordinate is set to the top of the clipping region minus the font ascent. Envoked by
DSPRESET.

26-44

INTERLISP-D REFERENCE MANUAL

The following methods all have corresponding DSPxx functions (e.g., IMYPOSITION corresponds to
DSPYPOSITION) that invoke them. They also have the property of returning their previous value;
when called with NIL they return the old value without changing it.

(IMCLIPPINGREGION STREAM REGION) [Image Stream Method]

Sets a new clipping region on STREAM.

(IMXPOSITION STREAM XPOSITION) [Image Stream Method]

Sets the X-position on STREAM.

(IMYPOSITION STREAM YPOSITION) [Image Stream Method]

Sets a new Y-position on STREAM.

(IMFONT STREAM FONT) [Image Stream Method]

Sets STREAM’s font to be FONT.

(IMLEFTMARGIN STREAM LEFTMARGIN) [Image Stream Method]

Sets STREAM’s left margin to be LEFTMARGIN. The left margin is defined as the X-position
set after the new line.

(IMRIGHTMARGIN STREAM RIGHTMARGIN) [Image Stream Method]

Sets STREAM’s right margin to be RIGHTMARGIN. The right margin is defined as the
maximum X-position at which characters are printed; printing beyond it causes a new
line.

(IMTOPMARGIN STREAM YPOSITION) [Image Stream Method]

Sets STREAM’s top margin (the Y-position of the tops of characters that is set after a new
page) to be YPOSITION.

(IMBOTTOMMARGIN STREAM YPOSITION) [Image Stream Method]

Sets STREAM’s bottom margin (the Y-position beyond which any printing causes a new
page) to be YPOSITION.

(IMLINEFEED STREAM DELTA) [Image Stream Method]

Sets STREAM’s line feed distance (distance to move vertically after a new line) to be
DELTA.

(IMSCALE STREAM SCALE) [Image Stream Method]

Returns the number of device points per screen point (a screen point being ~1/72 inch).
SCALE is ignored.

26-45

 GRAPHICS OUTPUT OPERATIONS

(IMSPACEFACTOR STREAM FACTOR) [Image Stream Method]

Sets the amount by which to multiply the natural width of all following space characters
on STREAM; this can be used for the justification of text. The default value is 1. For
example, if the natural width of a space in STREAM’s current font is 12 units, and the space
factor is set to two, spaces appear 24 units wide. The values returned by STRINGWIDTH
and CHARWIDTH are also affected.

(IMOPERATION STREAM OPERATION) [Image Stream Method]

Sets the default BITBLT OPERATION argument.

(IMBACKCOLOR STREAM COLOR) [Image Stream Method]

Sets the background color of STREAM.

(IMCOLOR STREAM COLOR) [Image Stream Method]

Sets the default color of STREAM.

In addition to the IMAGEOPS methods described above, there are two other important methods,
which are contained in the stream itself. These fields can be installed using a form like (replace
(STREAM OUTCHARFN) of STREAM with (FUNCTION MYOUTCHARFN)). Note: You need to have
loaded the Interlisp-D system declarations to manipulate the fields of STREAMs. The declarations can
be loaded by loading the Lisp Library package SYSEDIT.

(STRMBOUTFN STREAM CHARCODE) [Stream Method]

The function called by BOUT.

(OUTCHARFN STREAM CHARCODE) [Stream Method]

The function that is called to output a single byte. This is like STRMBOUTFN, except for
being one level higher: it is intended for text output. Hence, this function should convert
(CHARCODE EOL) into the stream’s actual end-of-line sequence and should adjust the
stream’s CHARPOSITION appropriately before invoking the stream’s STRMBOUTFN (by
calling BOUT) to actually put the character. Defaults to \FILEOUTCHARFN, which is
probably incorrect for an image stream.

27-1

27. WINDOWS AND MENUS

Windows provide a means by which different programs can share a single display harmoniously.
Rather than having every program directly manipulating the screen bitmap, all display input/output
operations are directed towards windows, which appear as rectangular regions of the screen, with
borders and titles. The Interlisp-D window system provides both interactive and programmatic
constructs for creating, moving, reshaping, overlapping, and destroying windows in such a way that a
program can use a window in a relatively transparent fashion (see the Windows section below). This
allows existing Interlisp programs to be used without change, while providing a base for
experimentation with more complex windows in new applications.

Menus are a special type of window provided by the window system, used for displaying a set of
items to the user, and having the user select one using the mouse and cursor. The window system
uses menus to provide the interactive interface for manipulating windows. The menu facility also
allows users to create and use menus in interactive programs (see the Menus section below).

Sometimes, a program needs to use a number of windows, displaying related information. The
attached window facility (see the Attached Windows section below) makes it easy to manipulate a
group of windows as a single unit, moving and reshaping them together.

This chapter documents the Interlisp-D window system. First, it describes the default windows and
menus supplied by the window system. Then, the programmatic facilities for creating windows.
Next, the functions for using menus. Finally, the attached window facility.

Warning: The window system assumes that all programs follow certain conventions concerning
control of the screen. All user programs should use perform display operations using
windows and menus. In particular, user programs should not perform operate directly
on the screen bitmap; otherwise the window system will not work correctly. For
specialized applications that require taking complete control of the display, the window
system can be turned off (and back on again) with the following function:

(WINDOWWORLD FLAG) [NoSpread Function]

The window system is turned on if FLAG is T and off if FLAG is NIL. WINDOWWORLD
returns the previous state of the window system (T or NIL). If WINDOWWORLD is given no
arguments, it simply returns the current state without affecting the window system.

Using the Window System

When Medley is initially started, the display screen lights up, showing a number of windows,
including the following:

27-2

 INTERLISP-D REFERENCE MANUAL

This window is the "logo window," used to identify the system. The logo window is bound to the
variable LOGOW until it is closed. The user can create other windows like this by calling the following
function:

(LOGOW STRING WHERE TITLE ANGLEDELTA) [Function]

Creates a window formatted like the "logo window." STRING is the string to be printed in
big type in the window; if NIL, "Medley" is used. WHERE is the position of the lower-left
corner of the window; if NIL, the user is asked to specify a position. TITLE is the window
title to use; if NIL, it defaults to the Xerox copyright notice and date. ANGLEDELTA
specifies the angle (in degrees) between the boxes in the picture; if NIL, it defaults to 23
degrees.

This window is the "executive window," used for typing expressions and commands to the Interlisp-D
executive, and for the executive to print any results (see Chapter 13). For example, in the above
picture, the user typed in (PLUS 3 4), the executive evaluated it, and printed out the result, 7. The
upward-pointing arrow () is the flashing caret, which indicates where the next keyboard typein will
be printed (see the TTY Process and the Caret section in this chapter).

This window is the "prompt window," used for printing various system prompt messages. It is
available to user programs through the following functions:

PROMPTWINDOW [Variable]

Global variable containing the prompt window.

(PROMPTPRINT EXP1 ... EXPN) [NoSpread Function]

Clears the prompt window, and prints EXP1 through EXPN in the prompt window.

27-3

WINDOWS AND MENUS

(CLRPROMPT) [Function]

Clears the prompt window.

The Medley window system allows the user to interactively manipulate the windows on the screen,
moving them around, changing their shape, etc. by selecting various operations from a menu.

For most windows, pressing the RIGHT mouse button when the cursor is inside a window during I/O
wait will cause the window to come to the top and a menu of window operations to appear.

If a command is selected from this menu (by releasing the right mouse key while the cursor is over a
command), the selected operation will be applied to the window in which the menu was brought up.
It is possible for an applications program to redefine the action of the RIGHT mouse button. In these
cases, there is a convention that the default command menu may be brought up by depressing the
RIGHT button when the cursor is in the header or border of a window (see the Mouse Activity in
Windows section in this chapter). The operations are:

Close [Window Menu Command]

Closes the window, i.e, removes it from the screen. (See CLOSEW in the Opening and
Closing Windows section in this chapter.)

Snap [Window Menu Command]

Prompts for a region on the screen and makes a new window whose bits are a snapshot of
the bits currently in that region. Useful for saving some particularly choice image before
the window image changes.

Paint [Window Menu Command]

Switches to a mode in which the cursor can be used like a paint brush to draw in a
window. This is useful for making notes on a window. While the LEFT button is down,
bits are added. While the MIDDLE button is down, they are erased. The RIGHT button
pops up a command menu that allows changing of the brush shape, size and shade,
changing the mode of combining the brush with the existing bits, or stopping paint mode.

Clear [Window Menu Command]

Clears the window and repositions it to the left margin of the first line of text (below the
upper left corner of the window by the amount of the font ascent).

27-4

 INTERLISP-D REFERENCE MANUAL

Bury [Window Menu Command]

Puts the window on the bottom of the occlusion stack, thereby exposing any windows
that it was hiding.

Redisplay [Window Menu Command]

Redisplays the window. (See REDISPLAYW in the Redisplaying Windows section in this
chapter.)

Hardcopy [Window Menu Command]

Prints the contents of the window to the printer. If the window has a window property
HARDCOPYFN, it is called with two arguments, the window and an image stream to print
to, and the HARDCOPYFN must do the printing. In this way, special windows can be set up
that know how to print their contents in a particular way. If the window does not have a
HARDCOPYFN, the bitmap image of the window (including the border and title) are
printed on the file or printer.

To save the image in a Press or Interpress-format file, or to send it to a non-default printer,
use the submenu of the Hardcopy command, indicated by a gray triangle on the right
edge of the Hardcopy menu item. If the mouse is moved off of the right of the menu item,
another pop-up menu will apear giving the choices "To a file" or "To a printer."
If "To a file" is selected, the user is prompted to supply a file name, and the format of
the file (Press, Interpress, etc.), and the specified region will be stored in the file.

If "To a printer" is selected, the user is prompted to select a printer from the list of
known printers, or to type the name of another printer. If the printer selected is not the
first printer on DEFAULTPRINTINGHOST (see Chapter 29), the user will be asked whether
to move or add the printer to the beginning of this list, so that future printing will go to
the new printer.

Move [Window Menu Command]

Moves the window to a location specified by pressing and then releasing the LEFT button.
During this time a ghost frame will indicate where the window will reappear when the
key is released. (See GETBOXPOSITION in the Interactive Display Functions section
below.)

Shape [Window Menu Command]

Allows the user to specify a new region for the existing window contents. If the LEFT
button is used to specify the new region, the reshaped window can be placed anywhere.
If the MIDDLE button is used, the cursor will start out tugging at the nearest corner of the
existing window, which is useful for making small adjustments in a window that is
already positioned correctly. This is done by calling the function SHAPEW (see the
Reshaping Windows section below).

Occasionally, a user will have a number of large windows on the screen, making it difficult to access
those windows being used. To help with the problem of screen space management, the Interlisp-D
window system allows the creation of "icons." An icon is a small rectangle (containing text or a

27-5

WINDOWS AND MENUS

bitmap) which is a "shrunken-down" form of a particular window. Using the Shrink and Expand
commands, the user can shrink windows not currently being used into icons, and quickly restore the
original windows at any time.

Shrink [Window Menu Command]

Removes the window from the screen and brings up its icon. (See SHRINKW in the
Shrinking Windows into Icons section in this chapter) The window can be restored by
selecting Expand from the window command menu of the icon.

If the RIGHT button is pressed while the cursor is in an icon, the window command menu will contain
a slightly different set of commands. The Redisplay and Clear commands are removed, and the
Shrink command is replaced with the Expand command:

Expand [Window Menu Command]

Restores the window associated with this icon and removes the icon. (See EXPANDW in the
Shrinking Windows into Icons section in this chapter.)

If the RIGHT button is pressed while the cursor is not in any window, a "background
menu" appears with the following operations:

Idle [Background Menu Command]

Enters "idle mode" (see Chapter 12), which blacks out the display screen to save the
phosphor. Idle mode can be exited by pressing any key on the keyboard or mouse. This
menu command has subitems that allow the user to interactively set idle options to erase
the password cache (for security), to request a password before exiting idle mode, to
change the timeout before idle mode is entered automatically, etc.

SaveVM [Background Menu Command]

Calls the function SAVEVM (see Chapter 12), which writes out all of the dirty pages of the
virtual memory. After a SAVEVM, and until the pagefault handler is next forced to write
out a dirty page, your virtual memory image will be continuable (as of the SAVEVM)
should you experience a system crash or other disaster.

Snap [Background Menu Command]

The same as the window menu command Snap described above.

Hardcopy [Background Menu Command]

Prompts for a region on the screen, and sends the bitmap image to the printer by calling
HARDCOPYW (see Chapter 29). Note that the region can cross window boundaries.

Like the Hardcopy window menu command (above), the user can print to a file or specify
a printer by using a submenu.

PSW [Background Menu Command]

Prompts the user for a position on the screen, and creates a "process status window" that
allows the user to examine and manipulate all of the existing processes (see Chapter 23).

27-6

 INTERLISP-D REFERENCE MANUAL

Various system utilities (TEdit, SEdit, TTYIN) allow information to be "copy-inserted" at
the current cursor position by selecting it with the "copy" key held down (Normally the
shift keys are the "copy" key; this action can be changed in the key action table.) To "copy-
insert" the bitmap of a snap into a Tedit document. If the right mouse button is pressed in
the background with the copy key held down, a menu with the single item "SNAP"
appears. If this item is selected, the user is prompted to select a region, and a bitmap
containing the bits in that region of the screen is inserted into the current tty process, if
that process is able to accept image objects.

Some built-in facilities and Lispusers packages add commands to the background menu,
to provide an easy way of calling the different facilities. The user can determine what
these new commands do by holding the RIGHT button down for a few seconds over the
item in question; an explanatory message will be printed in the prompt window.

Changing the Window System

The following functions provide a functional interface to the interactive window operations so that
user programs can call them directly.

(DOWINDOWCOM WINDOW) [Function]

If WINDOW is a WINDOW that has a DOWINDOWCOMFN window property, it APPLYs that
property to WINDOW. Shrunken windows have a DOWINDOWCOMFN property that presents
a window command menu that contains "expand" instead of "shrink".

If WINDOW is a WINDOW that doesn’t have a DOWINDOWCOMFN window property, it brings
up the window command menu. The initial items in these menus are described above. If
the user selects one of the items from the provided menu, that item is APPLYed to
WINDOW.

If WINDOW is NIL, DOBACKGROUNDCOM (below) is called.

If WINDOW is not a WINDOW or NIL, DOWINDOWCOM simply returns without doing anything.

(DOBACKGROUNDCOM) [Function]

Brings up the background menu. The initial items in this menu are described above. If
the user selects one of the items from the menu, that item is EVALed.

The window command menu for unshrunken windows is cached in the variable WindowMenu. To
change the entries in this menu, the user should change the change the menu "command lists" in the
variable WindowMenuCommands, and set the appropriate menu variable to a non-MENU, so the menu
will be recreated. This provides a way of adding commands to the menu, of changing its font or of
restoring the menu if it gets clobbered. The window command menus for icons and the background
have similar pairs of variables, documented below. The "command lists" are in the format of the
ITEMS field of a menu (see the Menu Fields section below), except as specified below.

Note: Command menus are recreated using the current value of MENUFONT.

27-7

WINDOWS AND MENUS

WindowMenu [Variable]
WindowMenuCommands [Variable]

The menu that is brought up in response to a right button in an unshrunken window is
stored on the variable WindowMenu. If WindowMenu is set to a non-MENU, the menu will
be recreated from the list of commands WindowMenuCommands. The CADR of each
command added to WindowMenuCommands should be a function name that will be
APPLYed to the window.

IconWindowMenu [Variable]
IconWindowMenuCommands [Variable]

The menu that is brought up in response to a right button in a shrunken window is stored
on the variable IconWindowMenu. If it is NIL, it is recreated from the list of commands
IconWindowMenuCommands. The CADR of each command added a function name that
will be APPLYed to the window.

BackgroundMenu [Variable]
BackgroundMenuCommands [Variable]

The menu that is brought up in response to a right button in the background is stored on
the variable BackgroundMenu. If it is NIL, it is recreated from the list of commands
BackgroundMenuCommands. The CADR of each command added to
BackgroundMenuCommands should be a form that will be EVALed.

BackgroundCopyMenu [Variable]
BackgroundCopyMenuCommands [Variable]

The menu that is brought up in response to a right button in the background when the
copy key is down is stored on the variable BackgroundCopyMenu. If it is NIL, it is
recreated from the list of commands BackgroundCopyMenuCommands. The CADR of
each command added to BackgroundCopyMenuCommands should be a form that will be
EVALed.

Interactive Display Functions

The following functions can be used by programs to allow the user to interactively specify positions or
regions on the display screen.

(GETPOSITION WINDOW CURSOR) [Function]

Returns a POSITION that is specified by the user. GETPOSITION waits for the user to
press and release the left button of the mouse and returns the cursor position at the time
of release. If WINDOW is a WINDOW, the position will be in the coordinate system of
WINDOW’s display stream. If WINDOW is NIL, the position will be in screen coordinates. If
CURSOR is a CURSOR (see Chapter 30), the cursor will be changed to it while
GETPOSITION is running. If CURSOR is NIL, the value of the system variable

CROSSHAIRS will be used as the cursor: .

27-8

 INTERLISP-D REFERENCE MANUAL

(GETBOXPOSITION BOXWIDTH BOXHEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function]

Allows the user to position a "ghost" region of size BOXWIDTH by BOXHEIGHT on the
screen, and returns the POSITION of the lower left corner of the region. If PROMPTMSG is
non-NIL, GETBOXPOSITION first prints it in the PROMPTWINDOW. GETBOXPOSITION

then changes the cursor to a box (using the global variable BOXCURSOR:). If ORGX and
ORGY are numbers, they are taken to be the original position of the region, and the cursor
is moved to the nearest corner of that region. A ghost region is locked to the cursor so
that if the cursor is moved, the ghost region moves with it. If ORGX and ORGY are
numbers, the corner of the region formed by (ORGX ORGY BOXWIDTH BOXHEIGHT) that
is nearest the cursor position is locked, otherwise the lower left corner is locked. The user
can change to another corner by holding down the right button. With the right button
down, the cursor can be moved across the screen without effect on the ghost region frame.
When the right button is released, the mouse will snap to the nearest corner, which will
then become locked to the cursor. (The held corner can be changed after the left or middle
button is down by holding both the original button and the right button down while the
cursor is moved to the desired new corner, then letting up just the right button.) When
the left or middle button is pressed and released, the lower left corner of the region at the
time of release is returned. If WINDOW is a WINDOW, the returned position will be in
WINDOW’s coordinate system; otherwise it will be in screen coordinates.

Example:

(GETBOXPOSITION 100 200 NIL NIL NIL
 "Specify the position of the command area.")

prompts the user for a 100 wide by 200 high region and returns its lower left corner in
screen coordinates.

(GETREGION MINWIDTH MINHEIGHT OLDREGION NEWREGIONFN NEWREGIONFNARG
INITCORNERS) [Function]

Lets the user specify a new region and returns that region in screen coordinates.
GETREGION prompts for a region by displaying a four-pronged box next to the cursor

arrow at one corner of a "ghost" region: . If the user presses the left button, the corner
of a "ghost" region opposite the cursor is locked where it is. Once one corner has been
fixed, the ghost region expands as the cursor moves.

To specify a region:

1. Move the ghost box so that the corner opposite the cursor is at one
corner of the intended region.

2. Press the left button.

3. Move the cursor to the position of the opposite corner of the intended
region while holding down the left button.

4. Release the left button.

27-9

WINDOWS AND MENUS

Before one corner has been fixed, one can switch the cursor to another corner of the ghost
region by holding down the right button. With the right button down, the cursor changes

to a "forceps" () and the cursor can be moved across the screen without effect on the
ghost region frame. When the right button is released, the cursor will snap to the nearest
corner of the ghost region.

After one corner has been fixed, one can still switch to another corner. To change to
another corner, continue to hold down the left button and hold down the right button
also. With both buttons down, the cursor can be moved across the screen without effect
on the ghost region frame. When the right button is released, the cursor will snap to the
nearest corner, which will become the moving corner. In this way, the region may be
moved all over the screen, before its size and position is finalized.

The size of the initial ghost region is controlled by the MINWIDTH, MINHEIGHT,
OLDREGION, and INITCORNERS arguments.

If INITCORNERS is non-NIL, it should be a list specifying the initial corners of a ghost
region of the form (BASEX BASEY OPPX OPPY), where (BASEX, BASEY) describes the
anchored corner of the box, and (OPPX, OPPY) describes the trackable corner (in screen
coordinates). The cursor is moved to (OPPX, OPPY).

If INITCORNERS is NIL, the ghost region will be MINWIDTH wide and MINHEIGHT high.
If MINWIDTH or MINHEIGHT is NIL, 0 is used. Thus, for a call to GETREGION with no
arguments specified, there will be no initial ghost region. The cursor will be in the lower
right corner of the region, if there is one.

If OLDREGION is a region and the user presses the middle button, the corner of
OLDREGION farthest from the cursor position is fixed and the corner nearest the cursor is
locked to the cursor.

MINWIDTH and MINHEIGHT, if given, are the smallest WIDTH and HEIGHT that the
returned region will have. The ghost image will not get any smaller than MINWIDTH by
MINHEIGHT.

If NEWREGIONFN is non-NIL, it will be called to determine values for the positions of the
corners. This provides a way of "filtering" prospective regions; for instance, by restricting
the region to lie on an arbitrary grid. When the user is specifying a region, the region is
determined by two of its corners, one that is fixed and one that is tracking the cursor.
Each time the cursor moves or a mouse button is pressed, NEWREGIONFN is called with
three arguments: FIXEDPOINT, the position of the fixed corner of the prospective region;
MOVINGPOINT, the position of the opposite corner of the prospective region; and
NEWREGIONFNARG. NEWREGIONFNARG allows the caller of GETREGION to pass
information to the NEWREGIONFN.

The first time a button is pressed and when the user changes the moving corner via right
buttoning, MOVINGPOINT is NIL and FIXEDPOINT is the position the user selected for the
fixed corner of the new region. In this case, the position returned by NEWREGIONFN will
be used for the fixed corner instead of the one proposed by the user. For all other calls,
FIXEDPOINT is the position of the fixed corner (as returned by the previous call) and

27-10

 INTERLISP-D REFERENCE MANUAL

MOVINGPOINT is the new position the user selected for the opposite corner. In these
cases, the value of NEWREGIONFN is used for the opposite corner instead of the one
proposed by the user. In all cases, the ghost region is drawn with the values returned by
NEWREGIONFN. NEWREGIONFN can be a list of functions in which case they are called in
order with each being passed the result of calling the previous and the value of the last
one used as the point.

(GETBOXREGION WIDTH HEIGHT ORGX ORGY WINDOW PROMPTMSG) [Function]

Performs the same prompting as GETBOXPOSITION and returns the REGION specified by
the user instead of the POSITION of its lower left corner.

(MOUSECONFIRM PROMPTSTRING HELPSTRING WINDOW DON’TCLEARWINDOWFLG)
[Function]

MOUSECONFIRM provides a simple way for the user to confirm or abort some action
simply by using the mouse buttons. It prints the strings PROMPTSTRING and

HELPSTRING in the window WINDOW, changes the cursor to a "little mouse" cursor:
(stored in the variable MOUSECONFIRMCURSOR), and waits for the user to press the left
button to confirm, or any other button to abort. If the left button was the last button
released, returns T, else NIL.

If PROMPTSTRING is NIL, it is not printed out. If HELPSTRING is NIL, the string "Click
LEFT to confirm, RIGHT to abort." is used. If WINDOW is NIL, the prompt
window is used.

Normally, MOUSECONFIRM clears WINDOW before returning. If DON’TCLEARWINDOWFLG
is non-NIL, the window is not cleared.

Windows

A window specifies a region of the screen, a display stream, functions that get called when the
window undergoes certain actions, and various other items of information. The basic model is that a
window is a passive collection of bits (on the screen). On top of this basic level, the system supports
many different types of windows that are linked to the data structures displayed in them and provide
selection and redisplaying routines. In addition, it is possible for the user to create new types of
windows by providing selection and displaying functions for them.

Windows are ordered in depth from user to background. Windows in front of others obscure the
latter. Operating on a window generally brings it to the top.

Windows are located at a certain position on the screen. Each window has a clipping region that
confines all bits written to it to a region that allows a border around the window, and a title above it.

Each window has a display stream associated with it (see Chapter 27), and either a window or its
display stream can be passed interchangeably to all system functions. There are dependencies

27-11

WINDOWS AND MENUS

between the window and its display stream that the user should not disturb. For instance, the
destination bitmap of the display stream of a window must always be the screen bitmap. The X offset,
Y offset, and Clipping Region fields of the display stream should not be changed.

Windows can be created by the user interactively, under program control, or may be created
automatically by the system.

Windows are in one of two states: "open" or "closed". In an "open" state, a window is visible on the
screen (unless it is covered by other open windows or off the edge of the screen) and accessible to
mouse operations. In a "closed" state, a window is not visible and not accessible to mouse operations.
Any attempt to print or draw on a closed window will open it.

Window Properties

The behavior of a window is controlled by a set of "window properties." Some of these are used by
the system. However, any arbitrary property name may be used by a user program to associate
information with a window. For many applications the user will associate the structure being
displayed with its window using a property. The following functions provide for reading and setting
window properties:

(WINDOWPROP WINDOW PROP NEWVALUE) [NoSpread Function]

Returns the previous value of WINDOW’s PROP aspect. If NEWVALUE is given, (even if
given as NIL), it is stored as the new PROP aspect. Some aspects cannot be set by the user
and will generate errors. Any PROP name that is not recognized is stored on a property
list associated with the window.

(WINDOWADDPROP WINDOW PROP ITEMTOADD FIRSTFLG) [Function]

WINDOWADDPROP adds a new item to a window property. If ITEMTOADD is EQ to an
element of the PROP property of the window WINDOW, nothing is added. If the current
property is not a list, it is made a list before ITEMTOADD added. WINDOWADDPROP
returns the previous property. If FIRSTFLG is non-NIL, the new item goes on the front of
the list; otherwise, it goes on the end of the list. If FIRSTFLG is non-NIL and ITEMTOADD
is already on the list, it is moved to the front.

Many window properties (OPENFN, CLOSEFN, etc.) can be a list of functions.
WINDOWADDPROP is useful for adding additional functions to a window property
without affecting any existing functions. Note that if the order of items in a window
property is important, the list can be modified using WINDOWPROP.

(WINDOWDELPROP WINDOW PROP ITEMTODELETE) [Function]

WINDOWDELPROP deletes ITEMTODELETE from the window property PROP of WINDOW
and returns the previous list if ITEMTODELETE was an element. If ITEMTODELETE was
not a member of window property PROP, NIL is returned.

Creating Windows

27-12

 INTERLISP-D REFERENCE MANUAL

(CREATEW REGION TITLE BORDERSIZE NOOPENFLG) [Function]

Creates a new window. REGION indicates where and how large the window should be by
specifying the exterior region of the window. The usable height and width of the
resulting window will be smaller than the height and width of the region by twice the
border size and further less the height of the title, if any. If REGION is NIL, GETREGION
is called to prompt the user for a region.

If TITLE is non-NIL, it is printed in the border at the top of the window. The TITLE is
printed using the global display stream WindowTitleDisplayStream. Thus the
height of the title will be (FONTPROP WindowTitleDisplayStream ’HEIGHT).

If BORDERSIZE is a number, it is used as the border size. If BORDERSIZE is not a number,
the window will have a border WBorder (initially 4) bits wide.

If NOOPENFLG is non-NIL, the window will not be opened, i.e. displayed on the screen.

The initial X and Y positions of the window are set to the upper left corner by calling
MOVETOUPPERLEFT (see Chapter 27).

(DECODE.WINDOW.ARG WHERESPEC WIDTH HEIGHT TITLE BORDER NOOPENFLG)
[Function]

This is a useful function for creating windows. WHERESPEC can be a WINDOW, a REGION,
a POSITION or NIL. If WHERESPEC is a WINDOW, it is returned. In all other cases,
CREATEW is called with the arguments TITLE BORDER and NOOPENFLG. The REGION
argument to CREATEW is determined from WHERESPEC as follows:

If WHERESPEC is a REGION, it is adjusted to be on the screen, then passed to CREATEW.

If WIDTH and HEIGHT are numbers and WHERESPEC is a POSITION, the region whose
lower left corner is WHERESPEC, whose width is WIDTH and whose height is HEIGHT is
adjusted to be on the screen, then passed to CREATEW.

If WIDTH and HEIGHT are numbers and WHERESPEC is not a POSITION, then
GETBOXREGION is called to prompt the user for the position of a region that is WIDTH
by HEIGHT.

If WIDTH and HEIGHT are not numbers, CREATEW is given NIL as a REGION argument.

If WIDTH and HEIGHT are used, they are used as interior dimensions for the window.

(WINDOWP X) [Function]

Returns X if X is a window, NIL otherwise.

Opening and Closing Windows

(OPENWP WINDOW) [Function]

Returns WINDOW, if WINDOW is an open window (has not been closed); NIL otherwise.

27-13

WINDOWS AND MENUS

(OPENWINDOWS) [Function]

Returns a list of all open windows.

(OPENW WINDOW) [Function]

If WINDOW is a closed window, OPENW calls the function or functions on the window
property OPENFN of WINDOW, if any. If one of the OPENFNs is the atom DON’T, the
window will not be opened. Otherwise the window is placed on the occlusion stack of
windows and its contents displayed on the screen. If WINDOW is an open window, it
returns NIL.

(CLOSEW WINDOW) [Function]

CLOSEW calls the function or functions on the window property CLOSEFN of
WINDOW, if any. If one of the CLOSEFNs is the atom DON’T or returns the atom DON’T
as a value, CLOSEW returns without doing anything further. Otherwise, CLOSEW
removes WINDOW from the window stack and restores the bits it is obscuring. If WINDOW
was closed, WINDOW is returned as the value. If it was not closed, (for example because its
CLOSEFN returned the atom DON’T), NIL is returned as the value.

WINDOW can be restored in the same place with the same contents (reopened) by calling
OPENW or by using it as the source of a display operation.

OPENFN [Window Property]

The OPENFN window property can be a single function or a list of functions. If one of the
OPENFNs is the atom DON’T, the window will not be opened. Otherwise, the OPENFNs
are called after a window has been opened by OPENW, with the window as a single
argument.

CLOSEFN [Window Property]

The CLOSEFN window property can be a single function or a list of functions that are
called just before a window is closed by CLOSEW. The function(s) will be called with the
window as a single argument. If any of the CLOSEFNs are the atom DON’T, or if the
value returned by any of the CLOSEFNs is the atom DON’T, the window will not be
closed.

Note: If the CAR of the CLOSEFN list is a LAMBDA word, it is treated as a
single function.

Note: A CLOSEFN should not call CLOSEW on its argument.

Redisplaying Windows

(REDISPLAYW WINDOW REGION ALWAYSFLG) [Function]

Redisplay the region REGION of the window WINDOW. If REGION is NIL, the entire
window is redisplayed.

27-14

 INTERLISP-D REFERENCE MANUAL

If WINDOW doesn’t have a REPAINTFN, the action depends on the value of ALWAYSFLG.
If ALWAYSFLG is NIL, WINDOW will not change and the message "Window has no
REPAINTFN. Can’t redisplay." will be printed in the prompt window. If
ALWAYSFLG is non-NIL, REDISPLAYW acts as if REPAINTFN was NILL.

REPAINTFN [Window Property]

The REPAINTFN window property can be a single function or a list of functions that are
called to repaint parts of the window by REDISPLAYW. The REPAINTFNs are called
with two arguments: the window and the region in the coordinates of the window’s
display stream of the area that should be repainted. Before the REPAINTFN is called, the
clipping region of the window is set to clip all display operations to the area of interest so
that the REPAINTFN can display the entire window contents and the results will be
appropriately clipped.

Note: CLEARW (see the Miscellaneous Window Functions section below)
should not be used in REPAINTFNs because it resets the window’s
coordinate system. If a REPAINTFN wants to clear its region first, it
should use DSPFILL (see Chapter 27).

Reshaping Windows

(SHAPEW WINDOW NEWREGION) [Function]

Reshapes WINDOW. If the window property RESHAPEFN is the atom DON’T or a list that
contains the atom DON’T, a message is printed in the prompt window, WINDOW is not
changed, and NIL is returned. Otherwise, RESHAPEFN window property can be a single
function or a list of functions that are called when a window is reshaped, to reformat or
redisplay the window contents (see below). If the RESHAPEFN window property is NIL,
RESHAPEBYREPAINTFN is the default.

If the region NEWREGION is NIL, it prompts for a region with GETREGION. When calling
GETREGION, the function MINIMUMWINDOWSIZE is called to determine the minimum
height and width of the window, the function WINDOWREGION is called to get the region
passed as the OLDREGION argument, the window property NEWREGIONFN is used as
the NEWREGIONFN argument and WINDOW as the NEWREGIONFNARG argument. If the
window property INITCORNERSFN is non-NIL, it is applied to the window, and the
value is passed as the INITCORNERS argument to GETREGION, to determine the initial
size of the "ghost region." These window properties allow the window to specify the
regions used for interactive calls to SHAPEW.

If the region NEWREGION is a REGION and its WIDTH or HEIGHT less than the
minimums returned by calling the function MINIMUMWINDOWSIZE, they will be
increased to the minimums.

If WINDOW has a window property DOSHAPEFN, it is called, passing it WINDOW and
NEWREGION (or the region returned by GETREGION). If WINDOW does not have a
DOSHAPEFN window property, the function SHAPEW1 is called to reshape the window.

27-15

WINDOWS AND MENUS

DOSHAPEFNs are provided to implement window groups and few users should ever
write them. They are tricky to write and must call SHAPEW1 eventually. The
RESHAPEFN window property is a simpler hook into reshape operations.

(SHAPEW1 WINDOW REGION) [Function]

Changes WINDOW’s size and position on the screen to be REGION. After clearing the
region on the screen, it calls the window’s RESHAPEFN, if any, passing it three
arguments: WINDOW; a bitmap that contains WINDOW’s previous screen image; and the
region of WINDOW’s old image within the bitmap.

RESHAPEFN [Window Property]

The RESHAPEFN window property can be a single function or a list of functions that are
called when a window is reshaped by SHAPEW. If the RESHAPEFN is DON’T or a list
containing DON’T, the window will not be reshaped. Otherwise, the function(s) are
called after the window has been reshaped, its coordinate system readjusted to the new
position, the title and border displayed, and the interior filled with texture. The
RESHAPEFN should display any additional information needed to complete the
window’s image in the new position and shape. The RESHAPEFN is called with four
arguments: (1) the window in its reshaped form, (2) a bitmap with the image of the old
window in its old shape, and (3) the region within the bitmap that contains the window’s
old image, and (4) the region of the screen previously occupied by this window. This
function is provided so that users can reformat window contents or whatever.
RESHAPEBYREPAINTFN (below) is the default and should be useful for many
windows.

NEWREGIONFN [Window Property]

If SHAPEW calls GETREGION to prompt the user for a region, the value of the
NEWREGIONFN window property is passed as the NEWREGIONFN argument to
GETREGION.

INITCORNERSFN [Window Property]

If this window property is non-NIL, it should be a function of one argument, a window,
that returns a list specifying the initial corners of a "ghost region" of the form (BASEX
BASEY OPPX OPPY), where (BASEX, BASEY) describes the anchored corner of the
box, and (OPPX, OPPY) describes the trackable corner. If SHAPEW calls GETREGION
to prompt the user for a region, this function is applied to the window, and the list
returned is passed as the INITCORNERS argument to GETREGION, to specify the initial
ghost region.

DOSHAPEFN [Window Property]

If this window property is non-NIL, it is called by SHAPEW to reshape the window
(instead of SHAPEW1). It is called with two arguments: the window and the new region.

(RESHAPEBYREPAINTFN WINDOW OLDIMAGE IMAGEREGION OLDSCREENREGION)
[Function]

27-16

 INTERLISP-D REFERENCE MANUAL

This the default window RESHAPEFN. WINDOW is a window that has been reshaped from
the screen region OLDSCREENREGION to its new region (available via (WINDOWPROP
WINDOW ’REGION)). OLDIMAGE is a bitmap that contains the image of the window
from its previous location. IMAGEREGION is the region within OLDIMAGE that contains
the old image.

RESHAPEBYREPAINTFN BITBLTs the old region contents into the new region. If the
new shape is larger in either or both dimensions, the newly exposed areas are redisplayed
via calls WINDOW’s REPAINTFN window property. RESHAPEBYREPAINTFN may call
the REPAINTFN up to four times during a single reshape.

The choice of which areas of the window to remove or extend is done as follows. If
WINDOW’s new region shares an edge with OLDSCREENREGION, that edge of the
window image will remain fixed and any addition or reduction in that dimension will be
performed on the opposite side. If WINDOW has an EXTENT property and the newly
exposed window area is outside of it, any extra will be added so as to show EXTENT that
was previously not visible. An exception to these rules is that the current X,Y position is
kept visible, if it was visible before the reshape.

Moving Windows

(MOVEW WINDOW POSorX Y) [Function]

Moves WINDOW to the position specified by POSorX and Y according to the following
rules:

If POSorX is NIL, GETBOXPOSITION is called to read a position from the user. If
WINDOW has a CALCULATEREGION window property, it will be called with WINDOW as
an argument and should return a region which will be used to prompt the user with. If
WINDOW does not have a CALCULATEREGION window property, the region of WINDOW
is used to prompt with.

If POSorX is a POSITION, POSorX is used.

If POSorX and Y are both NUMBERP, a position is created using POSorX as the XCOORD
and Y as the YCOORD.

If POSorX is a REGION, a position is created using its LEFT as the XCOORD and BOTTOM
as the YCOORD.

If WINDOW is not open and POSorX is non-NIL, the window will be moved without being
opened. Otherwise, it will be opened.

If WINDOW has the atom DON’T as a MOVEFN window property, the window will not be
moved. If WINDOW has any other non-NIL value as a MOVEFN property, it should be a
function or list of functions that will be called before the window is moved with the
WINDOW and the new positon as its arguments. If it returns the atom DON’T, the window
will not be moved. If it returns a position, the window will be moved to that position

27-17

WINDOWS AND MENUS

instead of the new one. If there are more than one MOVEFNs, the last one to return a value
is the one that determines where the window is moved to.

If WINDOW is moved and WINDOW has an AFTERMOVEFN window property, it should be a
function or a list of functions that will be called after the window is moved with WINDOW
as an argument.

MOVEW returns the new position, or NIL if the window could not be moved.

Note: If MOVEW moves any part of the window from off-screen onto the screen, that part
is redisplayed (by calling REDISPLAYW).

(RELMOVEW WINDOW POSITION) [Function]

Like MOVEW for moving windows but the POSITION is interpreted relative to the current
position of WINDOW. Example: The following code moves WINDOW to the right one screen
point.

(RELMOVEW WINDOW (create POSITION XCOORD ← 1 YCOORD

← 0))

CALCULATEREGION [Window Property]

If MOVEW calls GETBOXPOSITION to prompt the user for a region, the
CALCULATEREGION window property is called (passing the window as an argument.
The CALCULATEREGION should returns a region to be used to prompt the user with. If
CALCULATEREGION is NIL, the region of the window is used to prompt with.

MOVEFN [Window Property]

If the MOVEFN is DON’T, the window will not be moved by MOVEW. Otherwise, if the
MOVEFN is non-NIL, it should be a function or a list of functions that will be called before
a window is moved with two arguments: the window being moved and the new position
of the lower left corner in screen coordinates. If the MOVEFN returns DON’T, the window
will not be moved. If the MOVEFN returns a POSITION, the window will be moved to
that position. Otherwise, the window will be moved to the specified new position.

AFTERMOVEFN [Window Property]

If non-NIL, it should be a function or a list of functions that will be called after the
window is moved (by MOVEW) with the window as an argument.

Exposing and Burying Windows

(TOTOPW WINDOW NOCALLTOTOPFNFLG) [Function]

Brings WINDOW to the top of the stack of overlapping windows, guaranteeing that it is
entirely visible. If WINDOW is closed, it is opened. This is done automatically whenever a
printing or drawing operation occurs to the window.

27-18

 INTERLISP-D REFERENCE MANUAL

If NOCALLTOTOPFNFLG is NIL, the TOTOPFN of WINDOW is called. If
NOCALLTOTOPFNFLG is T, it is not called, which allows a TOTOPFN to call TOTOPW
without causing an infinite loop.

(BURYW WINDOW) [Function]

Puts WINDOW on the bottom of the stack by moving all the windows that it covers in front
of it.

TOTOPFN [Window Property]

If non-NIL, whenever the window is brought to the top, the TOTOPFN is called (with the
window as a single argument). This function may be used to bring a collection of
windows to the top together.

If the NOCALLTOPWFN argument of TOTOPW is non-NIL, the TOTOPFN of the window
is not called, which provides a way of avoiding infinite loops when using TOTOPW from
within a TOTOPFN.

Shrinking Windows Into Icons

Occasionally, a user will have a number of large windows on the screen, making it difficult to access
those windows being used. To help with the problem of screen space management, the Interlisp-D
window system allows the creation of Icons. An icon is a small rectangle (containing text or a bitmap)
which is a "shrunken-down" form of a particular window. Using the Shrink and Expand window
menu commands (see the beginning of this chapter), the user can shrink windows not currently being
used into icons, and quickly restore the original windows at any time. This facility is controlled by the
following functions and window properties:

(SHRINKW WINDOW TOWHAT ICONPOSITION EXPANDFN) [Function]

SHRINKW makes a small icon which represents WINDOW and removes WINDOW from the
screen. Icons have a different window command menu that contains "EXPAND" instead
of "SHRINK". The EXPAND command calls EXPANDW which returns the shrunken
window to its original size and place. The icon can also be moved by pressing the LEFT
button in it, or expanded by pressing the MIDDLE button in it.

The SHRINKFN property of the window WINDOW affects the operation of SHRINKW. If
the SHRINKFN property of WINDOW is the atom DON’T, SHRINKW returns. Otherwise,
the SHRINKFN property of the window is treated as a (list of) function(s) to apply to
WINDOW; if any returns the atom DON’T, SHRINKW returns.

TOWHAT, if given, indicates the image the icon window will have. If TOWHAT is a string,
atom or list, the icon’s image will be that string (currently implemented as a title-only
window with TOWHAT as the title.) If TOWHAT is a BITMAP, the icon’s image will be a
copy of the bitmap. If TOWHAT is a WINDOW, that window will be used as the icon.

If TOWHAT is not given (as is the case when invoked from the SHRINK window
command), then the following apply in turn:

27-19

WINDOWS AND MENUS

1. If the window has an ICONFN property, it gets called with the two
arguments WINDOW and OLDICON, where WINDOW is the window
being shrunk and OLDICON is the previously created icon, if any.
The ICONFN should return one of the TOWHAT entities described
above or return the OLDICON if it does not want to change it.

2. If the window has an ICON property, it is used as the value of
TOWHAT.

3. If the window has neither an ICONFN or ICON property, the icon will
be WINDOW’s title or, if WINDOW doesn’t have a title, the date and time
of the icon creation.

ICONPOSITION gives the position that the new icon will be on the screen. If it is NIL,
the icon will be in the corner of the window furthest from the center of the screen.

In all but the default case, the icon is cached on the property ICONWINDOW of WINDOW so
repeating SHRINKW reuses the same icon (unless overridden by the ICONFN described
above). Thus to change the icon it is necessary to remove the ICONWINDOW property or
call SHRINKW explicitly giving a TOWHAT argument.

(EXPANDW ICONW) [Function]

Restores the window for which ICONW is an icon, and removes the icon from the screen. If
the EXPANDFN window property of the main window is the atom DON’T, the window
won’t be expanded. Otherwise, the window will be restored to its original size and
location and the EXPANDFN (or list of functions) will be applied to it.

SHRINKFN [Window Property]

The SHRINKFN window property can be a single function or a list of functions that are
called just before a window is shrunken by SHRINKW, with the window as a single
argument. If any of the SHRINKFNs are the atom DON’T, or if the value returned by any
of the SHRINKFNs is the atom DON’T, the window will not be shrunk.

EXPANDREGIONFN [Window property]

EXPANDREGIONFN, if non-NIL, should be the function to be called (with the window as
its argument) before the window is actually expanded.

The EXPANDREGIONFN must return NIL or a valid region, and must not do any
window operations (e.g., redisplaying). If NIL is returned, the window is expanded
normally, as if the EXPANDREGIONFN had not existed. The region returned specifies the
new region for the main window only, not for the group including any of its attached
windows. The window will be opened in its new shape, and any attached windows will
be repositioned or rejustified appropriately. The main window must have a REPAINTFN
which can repaint the entire window under these conditions.

As with expanding windows normally, the OPENFN for the main window is not called.

27-20

 INTERLISP-D REFERENCE MANUAL

Also, the window is reshaped without checking for a special shape function (e.g., a
DOSHAPEFN).

ICONFN [Window Property]

If SHRINKW is called without begin given a TOWHAT argument (as is the case when
invoked from the SHRINK window command) and the window’s ICONFN property is
non-NIL, then it gets called with two arguments, the window being shrunk and the
previously created icon, if any. The ICONFN should return one of the TOWHAT entities
described above or return the previously created icon if it does not want to change it.

ICON [Window Property]

If SHRINKW is called without being given a TOWHAT argument, the window’s ICONFN
property is NIL, and the ICON property is non-NIL, then it is used as the value of
TOWHAT.

ICONWINDOW [Window Property]

Whenever an icon is created, it is cached on the property ICONWINDOW of the window,
so calling SHRINKW again will reuse the same icon (unless overridden by the ICONFN.

Thus, to change the icon it is necessary to remove the ICONWINDOW property or call
SHRINKW explicitly giving a TOWHAT argument.

DEFAULTICONFN [Variable]

Changes how an icon is created when a window having no ICONFN is shrunk or when
SHRINKW, with a TOWHAT argument of a string, is called. The value of
DEFAULTICONFN is a function of two arguments (window text); text is either NIL or a
string. DEFAULTICONFN returns an icon window.

The initial value of DEFAULTICONFN is MAKETITLEBARICON. It creates a window
that is a title bar only; the title is either the text argument, the window’s title, or "Icon
made <date>" for titleless windows. MAKETITLEBARICON places the title bar at some
corner of the main window.

An alternative behavior is available by setting DEFAULTICONFN to be TEXTICON.
TEXTICON creates a titled icon window from the text or window’s title.

You can now copy-select titled icons such as those used by FileBrowser, SEdit, TEdit,
Sketch. The default behavior is that the icon’s title is unread (via BKSYSBUF), but if the
icon window has a COPYFN property, that gets called instead, with the icon window as
its argument. For example, if the name displayed in an icon is really a symbol, and you
want copy selection to cause the name to be unread correctly with respect to the package
and read table of the exec you are copying into, you could put the following COPYFN
property on the icon window:

(LAMBDA (WINDOW)

27-21

WINDOWS AND MENUS

(IL:BKSYSBUF <fetch symbolic name from window> T))

EXPANDFN [Window Property]

The EXPANDFN window property can be a single function or a list of functions. If one of
the EXPANDFNs is the atom DON’T, the window will not be expanded. Otherwise, the
EXPANDFNs are called after the window has been expanded by EXPANDW, with the
window as a single argument.

Creating Icons with ICONW

ICONW is a group of functions available for building small windows of arbitrary shape. These
windows are principally for use as icons for shrinking windows; i.e., these functions are likely to be
invoked from within the ICONFN of a window. An icon is specified by supplying its image (a bitmap)
and a mask that specifies its shape. The mask is a bitmap of the same dimensions as the image whose
bits are on (black) in those positions considered to be in the image, and off (white) in those positions
where the background should show through. By using the mask and appropriate window functions,
ICONW maintains the illusion that the icon window is nonrectangular, even though the actual
window itself is rectangular. The illusion is not complete, of course. For example, if you try to select
what looks like the background (or an occluded window) around the icon but still within its
rectangular perimeter, the icon window itself is selected. Also, if you move a window occluded by an
icon, the icon never notices that the background changed behind it. Icons created with ICONW can
also have titles; some part of the image can be filled with text computed at the time the icon is created,
or text may be changed after creation.

Creating Icons

Two types of icons can be created with ICONW, a borderless window containing an image defined by
a mask and a window with a title.

(ICONW IMAGE MASK POSITION NOOPENFLG) [Function]

Creates a window at POSITION, or prompts for a position if POSITION is NIL. The
window is borderless, and filled with IMAGE, as cookie-cut by MASK. If MASK is NIL, the
image is considered rectangular (i.e., MASK defaults to a black bitmap of the same
dimensions as IMAGE). If NOOPENFLG is T, the window is returned unopened.

(TITLEDICONW ICON TITLE FONT POSITION NOOPENFLG JUST BREAKCHARS
OPERATION)
[Function]

27-22

 INTERLISP-D REFERENCE MANUAL

Creates a titled icon at POSITION, or prompts for a position if POSITION is NIL. If
NOOPENFLG is T, the window is returned unopened. The argument ICON is an instance of
the record TITLEDICON, which specifies the icon image and mask, as with ICONW, and
a region within the image to be used for displaying the title. Thus, the ICON argument is
usually of the form

(create TITLEDICON ICON ← someIconImage

MASK ← iconMask TITLEREG ← someRegionWithinICON)

The title region is specified in coordinates relative to the icon, i.e., the lower-left corner of
the image bitmap is (0, 0). The mask can be NIL if the icon is rectangular. The image
should be white where it is covered by the title region. TITLEDICONW clears the region
before printing on it. The title is printed into the specified region in the image, using
FONT. If FONT is NIL it defaults to the value of DEFAULTICONFONT, initially Helvetica
10. The title is broken into multiple lines if necessary; TITLEDICONW attempts to place
the breaks at characters that are in the list of character codes BREAKCHARS. BREAKCHARS
defaults to (CHARCODE (SPACE ÿ)). In addition, line breaks are forced by any carriage
returns in TITLE, independent of BREAKCHARS. BREAKCHARS is ignored if a long title
would not otherwise fit in the specified region. For convenience, BREAKCHARS = FILE
means the title is a file name, so break at file name field delimiters. The argument JUST
indicates how the text should be justified relative to the region. It is an atom or list of
atoms chosen from TOP, BOTTOM, LEFT, or RIGHT, which indicate the vertical
positioning (flush to top or bottom) and/or horizontal positioning (flush to left edge or
right). If JUST = NIL, the text is centered. The argument OPERATION is a display stream
operation indicating how the title should be printed. If OPERATION is INVERT, then the
title is printed white-on-black. The default OPERATION is REPLACE, meaning black-on-
white. ERASE is the same as INVERT; PAINT is the same as REPLACE.

For convenience, TITLEDICONW can also be used to create icons that consist solely of a
title, with no special image. If the argument ICON is NIL, TITLEDICONW creates a
rectangular icon large enough to contain TITLE, with a border the same width as that on
a regular window. The remaining arguments are as described above, except that a JUST
of TOP or BOTTOM is not meaningful.

In the Medley release, TITLEDICONW can create icons with white text on a black
background. To get this effect, your icon image must be black in the correct area, and you
must specify the OPERATION argument as INVERT.

In Medley, you can copy- select the title of an icon.

Modifying Icons

(ICONW.TITLE ICON TITLE) [Function]

27-23

WINDOWS AND MENUS

Returns the current title of the window ICON, which must be a window returned by
TITLEDICONW. In addition, if TITLE is non-NIL, makes TITLE the new title of the
window and repaints it accordingly. To erase the current title, make TITLE a null string.

(ICONW.SHADE WINDOW SHADE) [Function]

Returns the current shading of the window ICON, which must be a window returned by
ICONW or TITLEDICONW. In addition, if SHADE is non-NIL, paints the texture SHADE
on WINDOW. A typical use for this function is to communicate a change of state in a
window that is shrunken, without reopening the window. To remove any shading, make
SHADE be WHITESHADE.

Default Icons

When you shrink a window that has no ICONFN, the system currently creates an icon that looks like
the window’s title bar. You can make the system instead create titled icons by setting the global
variable DEFAULTICONFN to the value TEXTICON.

(TEXTICON WINDOW TEXT) [Function]

Creates a titled icon window for the main window WINDOW containing the text TEXT, or
the window’s title if TEXT is NIL.

DEFAULTTEXTICON [Variable]

The value that TEXTICON passes to TITLEDICONW as its ICON argument. Initially it is
NIL, which creates an unadorned rectangular window. However, you can set it to a
TITLEDICON record of your choosing if you would like default icons to have a different
appearance.

Coordinate Systems, Extents, And Scrolling

Note: The word "scrolling" has two distinct meanings when applied to Interlisp-D windows. This
section documents the use of "scroll bars" on the left and bottom of a window to move an object
displayed in the window. "Scrolling" also describes the feature where trying to print text off the
bottom of a window will cause the contents to "scroll up." This second feature is controlled by the
function DSPSCROLL (see Chapter 27).

One way of thinking of a window is as a "view" onto an object (e.g. a graph, a file, a picture, etc.) The
object has its own natural coordinate system in terms of which its subparts are laid out. When the
window is created, the X Offset and Y Offset of the window’s display stream are set to map the origin
of the object’s coordinate system into the lower left point of the window’s interior region. At the same
time, the Clipping Region of the display stream is set to correspond to the interior of the window.
From then on, the display stream’s coordinate system is translated and its clipping region adjusted
whenever the window is moved, scrolled or reshaped.

27-24

 INTERLISP-D REFERENCE MANUAL

There are several distinct regions associated with a window viewing an object. First, there is a region
in the window’s coordinate system that contains the complete image of the object. This region (which
can only be determined by application programs with knowledge of the "semantics" of the object) is
stored as the EXTENT property of the window (below). Second, the clipping region of the display
stream (obtainable with the function DSPCLIPPINGREGION, see Chapter 27) specifies the portion of
the object that is actually visible in the window. This is set so that it corresponds to the interior of the
window (not including the border or title). Finally, there is the region on the screen that specifies the
total area that the window occupies, including the border and title. This region (in screen coordinates)
is stored as the REGION property of the window (see the Miscellaneous Window Properties section
below).

The window system supports the idea of scrolling the contents of a window. Scrolling regions are on
the left and the bottom edge of each window. The LEFT button is used to indicate upward or
leftward scrolling by the amount necessary to move the selected position to the top or the left edge.
The RIGHT button is used to indicate downward or rightward scrolling by the amount necessary to
move the top or left edge to the selected position. The MIDDLE button is used to indicate global
placement of the object within the window (similar to "thumbing" a book). In the scroll region, the
part of the object that is being viewed by the window is marked with a gray shade. If the whole scroll
bar is thought of as the entire object, the shaded portion is the portion currently being viewed. This
will only occur when the window "knows" how big the object is (see window property EXTENT,
below).

When the button is released in a scroll region, the function SCROLLW is called. SCROLLW calls the
scrolling function associated with the window to do the actual scrolling and provides a programmable
entry to the scrolling operation.

(SCROLLW WINDOW DELTAX DELTAY CONTINUOUSFLG) [Function]

Calls the SCROLLFN window property of the window WINDOW with arguments WINDOW,
DELTAX, DELTAY and CONTINUOUSFLG. See SCROLLFN window property below.

(SCROLL.HANDLER WINDOW) [Function]

This is the function that tracks the mouse while it is in the scroll region. It is called when
the cursor leaves a window in either the left or downward direction. If N MWINDOW does
not have a scroll region for this direction (e.g. the window has moved or reshaped since it
was last scrolled), a scroll region is created that is SCROLLBARWIDTH wide. It then
waits for SCROLLWAITTIME milliseconds and if the cursor is still inside the scroll region,
it opens a window the size of the scroll region and changes the cursor to indicate the
scrolling is taking place.

When a button is pressed, the cursor shape is changed to indicate the type of scrolling (up,
down, left, right or thumb). After the button is held for WAITBEFORESCROLLTIME
milliseconds, until the button is released SCROLLW is called each
WAITBETWEENSCROLLTIME milliseconds. These calls are made with the
CONTINUOUSFLG argument set to T. If the button is released before
WAITBEFORESCROLLTIME milliseconds, SCROLLW is called with the
CONTINUOUSFLG argument set to NIL.

27-25

WINDOWS AND MENUS

The arguments passed to SCROLLW depend on the mouse button. If the LEFT button is
used in the vertical scroll region, DY is distance from cursor position at the time the button
was released to the top of the window and DX is 0. If the RIGHT button is used, the
inverse of this quantity is used for DY and 0 for DX. If the LEFT button is used in the
horizontal scroll region, DX is distance from cursor position to left of the window and DY
is 0. If the RIGHT button is used, the inverse of this quantity is used for DX and 0 for DY.

If the MIDDLE button is pressed, the distance argument to SCROLLW will be a FLOATP
between 0.0 and 1.0 that indicates the proportion of the distance the cursor was from the
left or top edge to the right or bottom edge.

Note: The scrolling regions will not come up if the window has a
SCROLLFN window property of NIL, has a non-NIL
NOSCROLLBARS window property, or if its SCROLLEXTENTUSE
property has certain values and its EXTENT is fully visible.

(SCROLLBYREPAINTFN WINDOW DELTAX DELTAY CONTINUOUSFLG) [Function]

SCROLLBYREPAINTFN is the standard scrolling function which should be used as the
SCROLLFN property for most scrolling windows.

This function, when used as a SCROLLFN, BITBLTs the bits that will remain visible after
the scroll to their new location, fills the newly exposed area with texture, adjusts the
window’s coordinates and then calls the window’s REPAINTFN on the newly exposed
region. Thus this function will scroll any window that has a repaint function.

If WINDOW has an EXTENT property, SCROLLBYREPAINTFN will limit scrolling in the X
and Y directions according to the value of the window property SCROLLEXTENTUSE.

If DELTAX or DELTAY is a FLOATP, SCROLLBYREPAINTFN will position the window so
that its top or left edge will be positioned at that proportion of its EXTENT. If the window
does not have an EXTENT, SCROLLBYREPAINTFN will do nothing.

If CONTINUOUSFLG is non-NIL, this indicates that the scrolling button is being held
down. In this case, SCROLLBYREPAINTFN will scroll the distance of one linefeed
height (as returned by DSPLINEFEED, see Chapter 27).

Scrolling is controlled by the following window properties:

EXTENT [Window Property]

Used to limit scrolling operations. Accesses the extent region of the window. If non-NIL,
the EXTENT is a region in the window’s display stream that contains the complete image
of the object being viewed by the window. User programs are responsible for updating
the EXTENT. The functions UNIONREGIONS, EXTENDREGION, etc. (see Chapter 27)
are useful for computing a new extent region.

In some situations, it is useful to define an EXTENT that only exists in one dimension.
This may be done by specifying an EXTENT region with a width or height of -1.

27-26

 INTERLISP-D REFERENCE MANUAL

SCROLLFN handling recognizes this situation as meaning that the negative EXTENT
dimension is unknown.

SCROLLFN [Window Property]

If the SCROLLFN property is NIL, the window will not scroll. Otherwise, it should be a
function of four arguments: (1) the window being scrolled, (2) the distance to scroll in the
horizontal direction (positive to right, negative to left), (3) the distance to scroll in the
vertical direction (positive up, negative down), and (4) a flag which is T if the scrolling
button is being held down. For more information, see SCROLL.HANDLER. For most
scrolling windows, the SCROLLFN function should be SCROLLBYREPAINTFN.

NOSCROLLBARS [Window Property]

If the NOSCROLLBARS property is non-NIL, scroll bars will not be brought up for this
window. This disables mouse-driven scrolling of a window. This window can still be
scrolled using SCROLLW.

SCROLLEXTENTUSE [Window Property]

SCROLLBYREPAINTFN uses the SCROLLEXTENTUSE window property to limit how
far scrolling can go in the X and Y directions. The possible values for
SCROLLEXTENTUSE and their interpretations are:

NIL This will keep the extent region visible or near visible. It will not scroll
the window so that the top of the extent is below the top of the window,
the bottom of the extent is more than one point above the top of the
window, the left of the extent is to the right of the window and the right
of the extent is to the left of the window. The EXTENT can be scrolled
to just above the window to provide a way of "hiding" the contents of a
window. In this mode the extent is either in the window or just of the
top of the window.

T The extent is not used to control scrolling. The user can scroll the
window to anywhere. Having the EXTENT window property does all
thumb scrolling to be supported so that the user can get back to the
EXTENT by thumb scrolling.

LIMIT This will keep the extent region visible. The window is only allowed to
view within the extent.

+ This will keep the extent region visible or just off in the positive
direction in either X or Y (i.e., the image will be either be visible or just
off to the top and/or right.)

- This will keep the extent region visible or just off in the negative
direction in either X or Y (i.e., the image will be either be visible or just
off to the left and/or bottom).

+-

27-27

WINDOWS AND MENUS

-+ This will keep the extent region visible or just off in the window (i.e. the
image will be either be visible or just off to the left, bottom, top or right).

(XBEHAVIOR . YBEHAVIOR) If the SCROLLEXTENTUSE is a list, the CAR is interpreted as the
scrolling limit in the X behavior and the CDR as the scrolling limit in the
Y behavior. XBEHAVIOR and YBEHAVIOR should each be one of the
atoms (NIL T LIMIT + - +- -+). The interpretations of the
atoms is the same as above except that NIL is equivalent to LIMIT.

Note: The NIL value of SCROLLEXTENTUSE is equivalent to (LIMIT
. +).

Example: If the SCROLLEXTENTUSE window property of a window
(with an extent defined) is (LIMIT . T), the window will scroll
uncontrolled in the Y dimension but be limited to the extent region in
the X dimension.

Mouse Activity in Windows

The following window properties allow the user to control the response to mouse activity in a
window. The value of these properties, if non-NIL, should be a function that will be called (with the
window as argument) when the specified event occurs.

These functions should be "self-contained", communicating with the outside world solely via their
window argument, e.g., by setting window properties. In particular, these functions should not
expect to access variables bound on the stack, as the stack context is formally undefined at the time
these functions are called. Since the functions are invoked asynchronously, they perform any terminal
input/output operations from their own window.

WINDOWENTRYFN [Window Property]

Whenever a button goes down in the window and the process associated with the
window is not the tty process, the WINDOWENTRYFN is called. The default is
GIVE.TTY.PROCESS which gives the process associated with the window the tty and
calls the BUTTONEVENTFN. WINDOWENTRYFN can be a list of functions and all will be
called.

CURSORINFN [Window Property]

Whenever the mouse moves into the window, the CURSORINFN is called. If
CURSORINFN is a list of functions, all will be called.

CURSOROUTFN [Window Property]

The CURSOROUTFN is called when the cursor leaves the window. If CURSOROUTFN is a
list of functions, all will be called.

CURSORMOVEDFN [Window Property]

27-28

 INTERLISP-D REFERENCE MANUAL

The CURSORMOVEDFN is called whenever the cursor has moved and is inside the
window. CURSORMOVEDFN can be a list of functions and all will be called. This allows a
window function to implement "active" regions within itself by having its
CURSORMOVEDFN determine if the cursor is in a region of interest, and if so, perform
some action.

BUTTONEVENTFN [Window Property]

The BUTTONEVENTFN is called whenever there is a change in the state (up or down) of
the mouse buttons inside the window. Changes to the mouse state while the
BUTTONEVENTFN is running will not be interpreted as new button events, and the
BUTTONEVENTFN will not be re-invoked.

RIGHTBUTTONFN [Window Property]

The RIGHTBUTTONFN is called in lieu of the standard window menu operation
(DOWINDOWCOM) when the RIGHT button is depressed in a window. More specifically,
the RIGHTBUTTONFN is called instead of the BUTTONEVENTFN when (MOUSESTATE
(ONLY RIGHT)). If the RIGHT button is to be treated like any other key in a window,
supply RIGHTBUTTONFN and BUTTONEVENTFN with the same function.

When an application program defines its own RIGHTBUTTONFN, there is a convention
that the default RIGHTBUTTONFN, DOWINDOWCOM , may be executed by pressing the
RIGHT button when the cursor is in the header or border of a window. User
RIGHTBUTTONFNs are encouraged to follow this convention, by calling DOWINDOWCOM
if the cursor is not in the interior region of the window.

BACKGROUNDBUTTONEVENTFN [Variable]
BACKGROUNDCURSORINFN [Variable]
BACKGROUNDCURSOROUTFN [Variable]
BACKGROUNDCURSORMOVEDFN [Variable]

These variables provide a way of taking action when there is cursor action and the cursor
in in the background. They are interpreted like the corresponding window properties. If
set to the name of a function, that function will be called, respectively, whenever the
cursor is in the background and a button changes, when the cursor moves into the
background from a window, when the cursor moved from the background into a window
and when the cursor moves from one place in the background to another.

Terminal I/O and Page Holding

Each process has its own terminal i/o stream (accessed as the stream T, see Chapter 25). The terminal
i/o stream for the current process can be changed to point to a window by using the function
TTYDISPLAYSTREAM, so that output and echoing of type-in is directed to a window.

(TTYDISPLAYSTREAM DISPLAYSTREAM) [Function]

Selects the display stream or window DISPLAYSTREAM to be the terminal output channel,
and returns the previous terminal output display stream. TTYDISPLAYSTREAM puts

27-29

WINDOWS AND MENUS

DISPLAYSTREAM into scrolling mode and calls PAGEHEIGHT with the number of lines
that will fit into DISPLAYSTREAM given its current Font and Clipping Region. The line
length of TTYDISPLAYSTREAM is computed (like any other display stream) from its
Left Margin, Right Margin, and Font. If one of these fields is changed, its line length is
recalculated. If one of the fields used to compute the number of lines (such as the
Clipping Region or Font) changes, PAGEHEIGHT is not automatically recomputed.
(TTYDISPLAYSTREAM (TTYDISPLAYSTREAM)) will cause it to be recomputed.

If the window system is active, the line buffer is saved in the old TTY window, and the
line buffer is set to the one saved in the window of the new display stream, or to a newly
created line buffer (if it does not have one). Caution: It is possible to move the
TTYDISPLAYSTREAM to a nonvisible display stream or to a window whose current
position is not in its clipping region.

(PAGEHEIGHT N) [Function]

If N is greater than 0, it is the number of lines of output that will be printed to
TTYDISPLAYSTREAM before the page is held. A page is held before the N+1 line is
printed to TTYDISPLAYSTREAM without intervening input if there is no terminal input
waiting to be read. The output is held with the screen video reversed until a character is
typed. Output holding is disabled if N is 0. PAGEHEIGHT returns the previous setting.

PAGEFULLFN [Window Property]

If the PAGEFULLFN window property is non-NIL, it will be called with the window as a
single argument when the window is full (i.e., when enough has been printed since the
last TTY interaction so that the next character printed will cause information to be scrolled
off the top of the window.)

If the PAGEFULLFN window property is NIL, the system function PAGEFULLFN is
called. PAGEFULLFN simply returns if there are characters in the type-in buffer for
WINDOW, otherwise it inverts the window and waits for the user to type a character.
PAGEFULLFN is user advisable.

Note: The PAGEFULLFN window property is only called on windows
which are the TTYDISPLAYSTREAM of some process.

TTY Process and the Caret

At any time, one process is designated as the TTY process, which is used for accepting keyboard
input. The TTY process can be changed to a given process by calling GIVE.TTY.PROCESS (see
Chapter 23), or by clicking the mouse in a window associated with the process. The latter mechanism
is implemented with the following window property:

PROCESS [Window Property]

If the PROCESS window property is non-NIL, it should be a PROCESS and will be made
the TTY process by GIVE.TTY.PROCESS (see Chapter 23), the default

27-30

 INTERLISP-D REFERENCE MANUAL

WINDOWENTRYFN property (see above). This implements the mechanism by which the
keyboard is associated with different processes.

The window system uses a flashing caret () to indicate the position of the next window typeout.
There is only one caret visible at any one time. The caret in the current TTY process is always visible;
if it is hidden by another window, its window is brought to the top. An exception to this rule is that
the flashing caret’s window is not brought to the top if the user is buttoning or has a shift key down.
This prevents the destination window (which has the tty and caret flashing) from interfering with the
window one is trying to select text to copy from.

(CARET NEWCARET) [Function]

Sets the shape that blinks at the location of the next output to the current process.
NEWCARET should be one of the following:

a CURSOR object If NEWCARET is a CURSOR object (see Chapter 30), it is used to
give the new caret shape

OFF Turns the caret off

NIL The caret is not changed. CARET returns a CURSOR
representing the current caret

T Reset the caret to the value of DEFAULTCARET.
DEFAULTCARET can be set to change the initial caret for new
processes.

The hotspot of NEWCARET indicates which point in the new caret bitmap should be located
at the current output position. The previous caret is returned. Note: the bitmap for the
caret is not limited to the dimensions CURSORWIDTH by CURSORHEIGHT.

(CARETRATE ONRATE OFFRATE) [Function]

Sets the rate at which the caret for the current process will flash. The caret will be visible
for ONRATE milliseconds, then not visible for OFFRATE milliseconds. If OFFRATE is NIL
then it is set to be the same as ONRATE. If ONRATE is T, both the "on" and "off" times are
set to the value of the variable DEFAULTCARETRATE (initially 333). The previous value
of CARETRATE is returned. If the caret is off, CARETRATE return NIL.

Miscellaneous Window Functions

(CLEARW WINDOW) [Function]

Fills WINDOW with its background texture, changes its coordinate system so that the origin
is the lower left corner of the window, sets its X position to the left margin and sets its Y
position to the base line of the uppermost line of text, ie. the top of the window less the
font ascent.

(INVERTW WINDOW SHADE) [Function]

27-31

WINDOWS AND MENUS

Fills the window WINDOW with the texture SHADE in INVERT mode. If SHADE is NIL,
BLACKSHADE is used. INVERTW returns WINDOW so that it can be used inside
RESETFORM.

(FLASHWINDOW WIN? N FLASHINTERVAL SHADE) [Function]

Flashes the window WIN? by "inverting" it twice. N is the number of times to flash the
window (default is 1). FLASHINTERVAL is the length of time in milliseconds to wait
between flashes (default is 200). SHADE is the shade that will be used to invert the
window (default is BLACKSHADE).

If WIN? is NIL, the whole screen is flashed. In this case, the SHADE argument is ignored
(can only invert the screen).

(WHICHW X Y) [Function]

Returns the window which contains the position in screen coordinates of X if X is a
POSITION , the position (X,Y) if X and Y are numbers, or the position of the cursor if X is
NIL. Returns NIL if the coordinates are not in any window. If they are in more than one
window, it returns the uppermost.

Example: (WHICHW) returns the window that the cursor is in.

(DECODE/WINDOW/OR/DISPLAYSTREAM DSORW WINDOWVAR TITLE BORDER) [Function]

Returns a display stream as determined by the DSORW and WINDOWVAR arguments. If
DSORW is a display stream, it is returned. If DSORW is a window, its display stream is
returned. If DSORW is NIL, the litatom WINDOWVAR is evaluated. If its value is a window,
its display stream is returned. If its value is not a window, WINDOWVAR is set to a newly
created window (prompting user for region) whose display stream is then returned. If
DSORW is NEW, the display stream of a newly created window is returned. If a window is
involved in the decoding, it is opened and if TITLE or BORDER are given, the TITLE or
BORDER property of the window are reset. The DSORW = NIL case is most useful for
programs that want to display their output in a window, but want to reuse the same
window each time they are called. The non-NIL cases are good for decoding a display
stream argument passed to a function.

(WIDTHIFWINDOW INTERIORWIDTH BORDER) [Function]

Returns the width of the window necessary to have INTERIORWIDTH points in its
interior if the width of the border is BORDER. If BORDER is NIL, the default border size
WBorder is used.

(HEIGHTIFWINDOW INTERIORHEIGHT TITLEFLG BORDER) [Function]

Returns the height of the window necessary to have INTERIORHEIGHT points in its
interior with a border of BORDER and, if TITLEFLG is non-NIL, a title. If BORDER is NIL,
the default border size WBorder is used.

27-32

 INTERLISP-D REFERENCE MANUAL

WIDTHIFWINDOW and HEIGHTIFWINDOW are useful for calculating the width and height for a call to
GETBOXPOSITION for the purpose of positioning a prospective window.

(MINIMUMWINDOWSIZE WINDOW) [Function]

Returns a dotted pair, the CAR of which is the minimum width WINDOW needs and the CDR
or which is the minimum height WINDOW needs.

The minimum size is determined by the value of the window property MINSIZE of
WINDOW. If the value of the MINSIZE window property is NIL, the width is 26 and the
height is the height WINDOW needs to have its title, border and one line of text visible. If
MINSIZE is a dotted pair, it is returned. If it is a litatom, it should be a function which is
called with WINDOW as its first argument, which should return a dotted pair.

Miscellaneous Window Properties

TITLE [Window Property]

Accesses the title of the window. If a title is added to a window whose title is NIL or the
title is removed (set to NIL) from a window with a title, the window’s exterior (its region
on the screen) is enlarged or reduced to accomodate the change without changing the
window’s interior. For example, (WINDOWPROP WINDOW ’TITLE "Results")
changes the title of WINDOW to be "Results". (WINDOWPROP WINDOW ’TITLE NIL)
removes the title of WINDOW.

BORDER [Window Property]

Accesses the width of the border of the window. The border will have at most 2 point of
white (but never more than half) and the rest black. The default border is the value of the
global variable WBorder (initially 4).

WINDOWTITLESHADE [Window Property]

Accesses the window title shade of the window. If non-NIL, it should be a texture which
is used as the "backgound texture" for the title bar on the top of the window. If it is NIL,
the value of the global variable WINDOWTITLESHADE (initially BLACKSHADE) is used.
Note that black is always used as the background of the title printed in the title bar, so that
the letters can be read. The remaining space is painted with the "title shade".

HARDCOPYFN [Window Property]

If non-NIL, it should be a function that is called by the window menu command
Hardcopy to print the contents of a window. The HARDCOPYFN property is called with
two arguments, the window and an image stream to print to. If the window does not
have a HARDCOPYFN, the bitmap image of the window (including the border and title) are
printed on the file or printer.

DSP [Window Property]

27-33

WINDOWS AND MENUS

Value is the display stream of the window. All system functions will operate on either the
window or its display stream. This window property cannot be changed using
WINDOWPROP.

HEIGHT [Window Property]
WIDTH [Window Property]

Value is the height and width of the interior of the window (the usable space not counting
the border and title). These window properties cannot be changed using WINDOWPROP.

REGION [Window Property]

Value is a region (in screen coordinates) indicating where the window (counting the
border and title) is located on the screen. This window property cannot be changed using
WINDOWPROP.

Example: A Scrollable Window

The following is a simple example showing how one might create a scrollable window.

CREATE.PPWINDOW creates a window that displays the pretty printed expression EXPR. The window
properties PPEXPR, PPORIGX, and PPORIGY are used for saving this expression, and the initial
window position. Using this information, REPAINT.PPWINDOW simply reinitializes the window
position, and prettyprints the expression again. Note that the whole expression is reformatted every
time, even if only a small part actually lies within the window. If this window was going to be used to
display very large structures, it would be desirable to implement a more sophisticated REPAINTFN
that only redisplays that part of the expression within the window. However, this scheme would be
satisfactory if most of the items to be displayed are small.

RESHAPE.PPWINDOW resets the window (and stores the initial window position), calls
REPAINT.PPWINDOW to display the window’s expression, and then sets the EXTENT property of the
window so that SCROLLBYREPAINTFN will be able to handle scrolling and "thumbing" correctly.

(DEFINEQ

(CREATE.PPWINDOW
 [LAMBDA (EXPR) (* rrb " 4-OCT-82 12:06")
 (* creates a window that displays
 a pretty printed expression.)

(PROG (WINDOW)
 (* ask the user for a piece of the
 screen and make it into a window.)
 (SETQ WINDOW (CREATEW NIL "PP window"))
 (* put the expression on the
 property list of the window so that
 the repaint and reshape functions
 can access it.)
 (WINDOWPROP WINDOW (QUOTE PPEXPR) EXPR)
 (* set the repaint and reshape
 functions.)

27-34

 INTERLISP-D REFERENCE MANUAL

 (WINDOWPROP WINDOW (QUOTE REPAINTFN)
 (FUNCTION REPAINT.PPWINDOW))
 (WINDOWPROP WINDOW (QUOTE RESHAPEFN)
 (FUNCTION RESHAPE.PPWINDOW))
 (* make the scroll function
 SCROLLBYREPAINTFN, a system
 function that uses the repaint
 function to do scrolling.)
 (WINDOWPROP WINDOW (QUOTE SCROLLFN)
 (FUNCTION SCROLLBYREPAINTFN))
 (* call the reshape function to
 initially print the expression and
 calculate its extent.)
 (RESHAPE.PPWINDOW WINDOW)
 (RETURN WINDOW])

(REPAINT.PPWINDOW
 [LAMBDA (WINDOW REGION) (* rrb " 4-OCT-82 11:52")

 (* the repainting function for a window with a
 pretty printed expression. This repainting
 function ignores the region to be repainted
 and repaints the entire window.)

 (* set the window position to the
 beginning of the pretty printing
 of the expression.)
 (MOVETO (WINDOWPROP WINDOW (QUOTE PPORIGX))
 (WINDOWPROP WINDOW (QUOTE PPORIGY))
 WINDOW)
 (PRINTDEF (WINDOWPROP WINDOW (QUOTE PPEXPR))
 0 NIL NIL NIL WINDOW])

(RESHAPE.PPWINDOW
 [LAMBDA (WINDOW) (* rrb " 4-OCT-82 12:01")
 (* the reshape function for a
 window with a pretty printed
 expression.)
 (PROG (BTM)

 (* set the position of the window so that the
 first character appears in the upper left corner
 and save the X and Y for the repaint function.)

 (DSPRESET WINDOW)
 (WINDOWPROP WINDOW (QUOTE PPORIGX)
 (DSPXPOSITION NIL WINDOW))
 (WINDOWPROP WINDOW (QUOTE PPORIGY)
 (DSPYPOSITION NIL WINDOW))
 (* call the repaint function to
 pretty print the expression in

27-35

WINDOWS AND MENUS

 the newly cleared window.)
 (REPAINT.PPWINDOW WINDOW)

 (* save the region actually covered by the pretty
 printed expression so that the scrolling routines
 will know where to stop. The pretty printing of
 the expression does a carriage return after the
 last piece of the expression printed so that the
 current position is the base line of the next line
 of text. Hence the last visible piece of the
 expression (BTM) is the ending position plus the
 height of the font above the base line (its ASCENT).)

 (WINDOWPROP WINDOW (QUOTE EXTENT)
 create REGION
 LEFT ← 0
 BOTTOM ← [SETQ BTM (IPLUS
 (DSPYPOSITION NIL WINDOW)
 (FONTPROP WINDOW (QUOTE ASCENT]
 WIDTH ←(WINDOWPROP WINDOW (QUOTE WIDTH))
 HEIGHT ←(IDIFFERENCE
 (WINDOWPROP WINDOW (QUOTE HEIGHT))
 BTM])
)

Menus

A menu is basically a means of selecting from a list of items. The system provides common layout
and interactive user selection mechanisms, then calls a user-supplied function when a selection has
been confirmed. The two major constituents of a menu are a list of items and a "when selected
function." The label that appears for each item is the item itself for non-lists, or its CAR if the item is a
list. In addition, there are a multitude of different formatting parameters for specifying font, size, and
layout. When a menu is created, its unspecified fields are filled with defaults and its screen image is
computed and saved.

Menus can be either pop up or fixed. If fixed menus are used, the menu must be included in a
window.

(MENU MENU POSITION RELEASECONTROLFLG —) [Function]

This function provides menus that pop up when they are used. It displays MENU at
POSITION (in screen coordinates) and waits for the user to select an item with a mouse
key. Before any mouse key is pressed, the item the mouse is over is boxed. After any key
is down, the selected menu item is video reversed. When all keys are released, MENU’s
WHENSELECTEDFN field is called with four arguments: (1) the item selected, (2) the
menu, (3) the last mouse key released (LEFT, MIDDLE, or RIGHT), and (4) the
reverse list of superitems rolled through when selecting the item and MENU returns its

27-36

 INTERLISP-D REFERENCE MANUAL

value. If no item is selected, MENU returns NIL. If POSITION is NIL, the menu is brought
up at the value from MENU’s MENUPOSITION field, if it is a POSITION, or at the current
cursor position. The orientation of MENU with respect to the specified position is
determined by its MENUOFFSET field.

If RELEASECONTROLFLG is NIL, this process will retain control of the mouse. In this
case, if the user lets the mouse key up outside of the menu, MENU return NIL. (Note: this
is the standard way of allowing the user to indicate that they do not want to make the
offered choice.) If RELEASECONTROLFLG is non-NIL, this process will give up control of
the mouse when it is outside of the menu so that other processes can be run. In this case,
clicking outside the menu has no effect on the call to MENU. If the menu is closed (for
example, by right buttoning in it and selecting "Close" from the window menu), MENU
returns NIL. Programmers are encouraged to provide a menu item such as "cancel" or
"abort" which gives users a positive way of indicating "no choice".

Note: A "released" menu will stay visible (on top of the window stack) until it
is closed or an item is selected.

(ADDMENU MENU WINDOW POSITION DONTOPENFLG) [Function]

This function provides menus that remain active in windows. ADDMENU displays MENU
at POSITION (in window coordinates) in WINDOW. If the window is too small to display
the entire menu, the window is made scrollable. When an item is selected, the value of
the WHENSELECTEDFN field of MENU is called with three arguments: (1) the item
selected, (2) the menu, and (3) the mouse button that the item was selected with (LEFT,
MIDDLE, or RIGHT). More than one menu can be put in a window, but a menu can only
be added to one window at a time. ADDMENU returns the window into which MENU is
placed.

If WINDOW is NIL, a window is created at the position specified by POSITION (in screen
coordinates) that is the size of MENU. If a window is created, it will be opened unless
DONTOPENFLG is non-NIL. If POSITION is NIL, the menu is brought up at the value of
MENU’s MENUPOSITION field (in window coordinates), if it is a position, or else in the
lower left corner of WINDOW. If both WINDOW and POSITION are NIL, a window is
created at the current cursor position.

Warning: ADDMENU resets several of the window properties of WINDOW. The
CURSORINFN, CURSORMOVEDFN, and BUTTONEVENTFN window properties
are replaced with MENUBUTTONFN, so that MENU will be active.
MENUREPAINTFN is added to the REPAINTFN window property to update the
menu image if the window is redisplayed. The SCROLLFN window property is
changed to SCROLLBYREPAINTFN if the window is too small for the menu, to
make the window scroll.

(DELETEMENU MENU CLOSEFLG FROMWINDOW) [Function]

This function removes MENU from the window FROMWINDOW. If MENU is the only menu in
the window and CLOSEFLG is non-NIL, its window will be closed (by CLOSEW).

27-37

WINDOWS AND MENUS

If FROMWINDOW is NIL, the list of currently open windows is searched for one that
contains MENU. If none is found, DELETEMENU does nothing.

Menu Fields

A menu is a datatype with the following fields:

ITEMS [Menu Field]

The list of items to appear in the menu. If an item is a list, its CAR will appear in the
menu. If the item (or its CAR) is a bitmap, the bitmap will be displayed in the menu. The
default selection functions interpret each item as a list of three elements: a label, a form
whose value is returned upon selection, and a help string that is printed in the prompt
window when the user presses a mouse key with the cursor pointing to this item. The
default subitem function interprets the fourth element of the list. If it is a list whose CAR
is the litatom SUBITEMS , the CDR is taken as a list of subitems.

SUBITEMFN [Menu Field]

A function to be called to determine if an item has any subitems. If an item has subitems
and the user rolls the cursor out the right of that item, a submenu with that item’s
subitems in it pops up. If the user selects one of the items from the submenu, the selected
subitem is handled as if it were selected from the main menu. If the user rolls out of the
submenu to the left, the submenu is taken down and selection resumes from the main
menu.

An item with subitems is marked in the menu by a grey, right pointing triangle following
the label.

The function is called with two arguments: (1) the menu and (2) the item. It should return
a list of the subitems of this item if any. (It is called twice to compute the menu image and
each time the user rolls out of the item box so it should be moderately efficient. The
default SUBITEMFN, DEFAULTSUBITEMFN, checks to see if the item is a list whose
fourth element is a list whose CAR is the litatom SUBITEMS and if so, returns the CDR of
it.

For example:

(create MENU
 ITEMS ← ’(AAAA (BBBB ’BBBB "help string for
BBBB"
 (SUBITEMS BBBB1 BBBB2 BBBB3))))

will create a menu with items A and B in which B will have subitems B1, B2 and B3. The
following picture below shows this menu as it first appears:

27-38

 INTERLISP-D REFERENCE MANUAL

The following picture shows the submenu, with the item BBBB3 selected by the cursor

():

WHENSELECTEDFN [Menu Field]

A function to be called when an item is selected. The function is called with three
arguments: (1) the item selected, (2) the menu, and (3) the mouse key that the item was
selected with (LEFT, MIDDLE, or RIGHT). The default function
DEFAULTWHENSELECTEDFN evaluates and returns the value of the second element of
the item if the item is a list of at least length 2. If the item is not a list of at least length 2,
DEFAULTWHENSELECTEDFN returns the item.

Note: If the menu is added to a window with ADDMENU, the default WHENSELECTEDFN
is BACKGROUNDWHENSELECTEDFN, which is the same as
DEFAULTWHENSELECTEDFN except that EVAL.AS.PROCESS is used to evaluate the
second element of the item, instead of tying up the mouse process.

WHENHELDFN [Menu Field]

The function which is called when the user has held a mouse key on an item for
MENUHELDWAIT milliseconds (initially 1200). The function is called with three
arguments: (1) the item selected, (2) the menu, and (3) the mouse key that the item was
selected with (LEFT, MIDDLE, or RIGHT). WHENHELDFN is intended for prompting
users. The default is DEFAULTMENUHELDFN which prints (in the prompt window) the
third element of the item or, if there is not a third element, the string "This item will be
selected when the button is released."

WHENUNHELDFN [Menu Field]

If WHENHELDFN was called, WHENUNHELDFN will be called: (1) when the cursor leaves
the item, (2) when a mouse key is released, or (3) when another key is pressed. The
function is called with the same three argument values used to call WHENHELDFN. The
default WHENUNHELDFN is the function CLRPROMPT, which just clears the prompt
window.

MENUPOSITION [Menu Field]

The position of the menu to be used if the call to MENU or ADDMENU does not specify a
position. For popup menus, this is in screen coordinates. For fixed menus, it is in the
coordinates of the window the menu is in. The point within the menu image that is
placed at this position is determined by MENUOFFSET. If MENUPOSITION is NIL, the
menu will be brought up at the cursor position.

MENUOFFSET [Menu Field]

27-39

WINDOWS AND MENUS

The position in the menu image that is to be located at MENUPOSITION. The default
offset is (0,0). For example, to bring up a menu with the cursor over a particular menu
item, set its MENUOFFSET to a position within that item and set its MENUPOSITION to
NIL.

MENUFONT [Menu Field]

The font in which the items will be appear in the menu. Default is the value of
MENUFONT.

TITLE [Menu Field]

If non-NIL, the value of this field will appear as a title in a line above the menu.

MENUTITLEFONT [Menu Field]

The font in which the title of the menu will be appear. If this is NIL, the title will be in the
same font as window titles. If it is T, it will be in the same font as the menu items.

CENTERFLG [Menu Field]

If non-NIL, the menu items are centered; otherwise they are left-justified.

MENUROWS [Menu Field]
MENUCOLUMNS [Menu Field]

These fields control the shape of the menu in terms of rows and columns. If MENUROWS
is given, the menu will have that number of rows. If MENUCOLUMNS is given, the menu
will have that number of columns. If only one is given, the other one will be calculated to
generate the minimal rectangular menu. (Normally only one of MENUROWS or
MENUCOLUMNS is given.) If neither is given, the items will be in one column.

ITEMHEIGHT [Menu Field]

The height of each item box in the menu. If not specified, it will be the maximum of the
height of the MENUFONT and the heights of any bitmaps appearing as labels.

ITEMWIDTH [Menu Field]

The width of each item box in the menu. If not specified, it will be the width of the largest
item in the menu.

MENUBORDERSIZE [Menu Field]

The size of the border around each item box. If not specified, 0 (no border) is used.

MENUOUTLINESIZE [Menu Field]

The size of the outline around the entire menu. If not specified, a maximum of 1 and the
MENUBORDERSIZE is used.

CHANGEOFFSETFLG [Menu Field]

27-40

 INTERLISP-D REFERENCE MANUAL

(popup menus only) If CHANGEOFFSETFLG is non-NIL, the position of the menu offset
is set each time a selection is confirmed so that the menu will come up next time in the
same position relative to the cursor. This will cause the menu to reappear in the same
place on the screen if the cursor has not moved since the last selection. This is
implemented by changing the MENUOFFSET field on each use. If CHANGEOFFSETFLG
is the atom X or the atom Y, only the X or the Y coordinate of the MENUOFFSET field will
be changed. For example, by setting the MENUOFFSET position to (-1,0) and setting
CHANGEOFFSETFLG to Y, the menu will pop up so that the cursor is just to the left of
the last item selected. This is the setting of the window command menus.

The following fields are read only.

IMAGEHEIGHT [Menu Field]

Returns the height of the entire menu.

IMAGEWIDTH [Menu Field]

Returns the width of the entire menu.

Miscellaneous Menu Functions

(MAXMENUITEMWIDTH MENU) [Function]

Returns the width of the largest menu item label in the menu MENU.

(MAXMENUITEMHEIGHT MENU) [Function]

Returns the height of the largest menu item label in the menu MENU.

(MENUREGION MENU) [Function]

Returns the region covered by the image of MENU in its window.

(WFROMMENU MENU) [Function]

Returns the window MENU is located in, if it is in one; NIL otherwise.

(DOSELECTEDITEM MENU ITEM BUTTON) [Function]

Calls MENU’s WHENSELECTEDFN on ITEM and BUTTON. It provides a programmatic
way of making a selection. It does not change the display.

(MENUITEMREGION ITEM MENU) [Function]

Returns the region occupied by ITEM in MENU.

(SHADEITEM ITEM MENU SHADE DS/W) [Function]

Shades the region occupied by ITEM in MENU. If DS/W is a display stream or a window, it
is assumed to be where MENU is displayed. Otherwise, WFROMMENU is called to locate the

27-41

WINDOWS AND MENUS

window MENU is in. Shading is persistent, and is reapplied when the window the menu is
in gets redisplayed. To unshade an item, call with a SHADE of 0.

(PUTMENUPROP MENU PROPERTY VALUE) [Function]

Stores the property PROPERTY with the value VALUE on a property list in the menu MENU.
The user can use this property list for associating arbitrary data with a menu object.

(GETMENUPROP MENU PROPERTY) [Function]

Returns the value of the PROPERTY property of the menu MENU.

Examples of Menu Use

Example: A simple menu:

(MENU (create MENU ITEMS _ ’((YES T) (NO (QUOTE
NIL)))))

Creates a menu with items YES and NO in a single vertical column:

If YES is selected, T will be returned. Otherwise, NIL will be returned.

Example: A simple menu, with centering:

(MENU (create MENU TITLE ← "Foo?"
 ITEMS ← ’((YES T "Adds the Foo feature.")
 (NO ’NO "Removes the Foo feature."))
 CENTERFLG ← T))

Creates a menu with a title Foo? and items YES and NO centered in a single vertical column:

The strings following the YES and NO are help strings and will be printed if the cursor remains over
one of the items for a period of time. This menu differs from the one above in that it distinquishes the
NO case from the case where the user clicked outside of the menu. If the user clicks outside of the
menu, NIL is returned.

Example: A multi-column menu:

(create MENU ITEMS ← ’(1 2 3 4 5 6 7 8 9 * 0 #)
 CENTERFLG ← T

27-42

 INTERLISP-D REFERENCE MANUAL

 MENUCOLUMNS ← 3
 MENUFONT ← (FONTCREATE ’MODERN 10 ’BOLD)
 ITEMHEIGHT ← 15
 ITEMWIDTH ← 15
 CHANGEOFFSETFLG ← T)

Creates a touch-tone-phone number pad with the items in 15 by 15 boxes printed in Modern 10 bold
font:

If used in pop up mode, its first use will have the cursor in the middle. Subsequent use will have the
cursor in the same relative location as the previous selection.

Example: A program using a previously-saved menu:

(SELECTQ [MENU
 (COND ((type? MENU FOOMENU)
 (* use previously computed menu.)
 FOOMENU)
 (T (* create and save the menu)
 (SETQ FOOMENU
 (create MENU
 ITEMS ← ’((A ’A-SELECTED "prompt string
for A")

 (B ’B-SELECTED "prompt string for B"]
 (A-SELECTED (* if A is selected) (DOATHING))
 (B-SELECTED (* if B is selected) (DOBTHING))
 (PROGN (* user selected outside the menu) NIL)))

This expression displays a pop up menu with two items, A and B, and waits for the user to select one.
If A is selected, DOATHING is called. If B is selected, DOBTHING is called. If neither of these is
selected, the form returns NIL.

The purpose of this example is to show some good practices to follow when using menus. First, the
menu is only created once, and saved in the variable FOOMENU. This is more efficient if the menu is
used more than once. Second, all of the information about the menu is kept in one place, which makes
it easy to understand and edit. Third, the forms evaluated as a result of selecting something from the
menu are part of the code and hence will be known to masterscope (as opposed to the situation if the
forms were stored as part of the items). Fourth, the items in the menu have help strings for the user.
Finally, the code is commented (always worth the trouble).

27-43

WINDOWS AND MENUS

Free Menus

Free Menus are powerful and flexible menus that are useful for applications needing menus with
different types of items, including command items, state items, and items that can be edited. A Free
Menu is part of a window. It can can be opened and closed as desired, or attached as a control menu
to the application window.

Making a Free Menu

A Free Menu is built from a description of the contents and layout of the menu. As a Free Menu is
simply a group of items, a Free Menu Description is simply a specification of a group of items. Each
group has properties associated with it, as does each Free Menu Item. These properties specify the
format of the items in the group, and the behavior of each item. The function FREEMENU takes a Free
Menu Description, and returns a closed window with the Free Menu in it.

The easiest way to make a Free Menu is to define a specific function which calls FREEMENU with the
Free Menu Description in the function. This function can then also set up the Free Menu window as
required by the application. The Free Menu Description is saved as part of the specific function when
the application is saved. Alternately, the Free Menu Description can be saved as a variable in your
file; then just call FREEMENU with the name of the variable. This may be a more difficult alternative if
the backquote facility is used to build the Free Menu Description.

Free Menu Formatting

A Free Menu can be formatted in one of four ways. The items in any group can be automatically laid
out in rows, in columns, or in a table, or else the application can specify the exact location of each item
in the group. Free Menu keeps track of the region that a group of items occupies, and items can be
justified within that region. This way an item can be automatically positioned at one of the nine
justification locations, top-left, top-center, top-right, middle-left, etc.

Free Menu Description

A Free Menu Description, specifying a group of items, is a list structure. The first entry in the list is an
optional list of the properties for this group of items. This entry is in the form:

(PROPS <PROP> <VALUE> <PROP> <VALUE> ...)

The keyword PROPS determines whether or not the optional group properties list is specified..

One important group property is FORMAT. The four types of formatting, ROW, TABLE, COLUMN, or
EXPLICIT, determine the syntax of the rest of the Free Menu Description. When using EXPLICIT
formatting, the rest of the description is any number of Item Descriptions which have LEFT and
BOTTOM properties specifying the position of the item in the menu. The syntax is:

27-44

 INTERLISP-D REFERENCE MANUAL

((PROPS FORMAT EXPLICIT ...)
 <ITEM DESCRIPTION>
 <ITEM DESCRIPTION> ...)

When using ROW or TABLE formatting, the rest of the description is any number of item groups, each
group corresponding to a row in the menu. These groups are identical in syntax to an EXPLICIT
group description. The groups have an optional PROPS list and any number of Item Descriptions. The
items need not have LEFT and BOTTOM properties, as the location of each item is determined by the
formatter. However, the order of the rows and items is important. The menu is laid out top to bottom
by row, and left to right within each row. The syntax is:

((PROPS FORMAT ROW ...) ; props of this group
 (<ITEM DESCRIPTION> ; items in first row
 <ITEM DESCRIPTION> ...)
 ((PROPS ...) ; props of second row
 <ITEM DESCRIPTION> ; items in second row
 <ITEM DESCRIPTION> ...))

(The comments above only describe the syntax.)

For COLUMN formatting, the syntax is identical to that of ROW formatting. However, each group of
items corresponds to a column in the menu, rather than a row. The menu is laid out left to right by
column, top to bottom within each column.

Finally, a Free Menu Description can have recursively nested groups. Anywhere the description can
take an Item Description, it can take a group, marked by the keyword GROUP. A nested group inherits
all of the properties of its mother group, by default. However, any of these properties can be
overridden in the nested groups PROPS list, including the FORMAT. The syntax is:
(; no PROPS list, default row format
(<ITEM DESCRIPTION> ; first in row
(GROUP ; nested group, second in row
 (PROPS FORMAT COLUMN ...) ; optional props
 (<ITEM DESCRIPTION> ...) ; first column
 (<ITEM DESCRIPTION> ...))
 <ITEM DESCRIPTION>)) ; third in row

Here is an example of a simple Free Menu Description for a menu which might provide access to a
simple data base:

(((LABEL LOOKUP SELECTEDFN MYLOOKUPFN)
 (LABEL EXIT SELECTEDFN MYEXITFN))
 ((LABEL Name: TYPE DISPLAY) (LABEL "" TYPE EDIT ID NAME))
 ((LABEL Address: TYPE DISPLAY) (LABEL "" TYPE EDIT ID ADDRESS))
 ((LABEL Phone: TYPE DISPLAY)

27-45

WINDOWS AND MENUS

 (LABEL "" TYPE EDIT LIMITCHARS MYPHONEP ID PHONE)))

This menu has two command buttons, LOOKUP and EXIT, and three edit fields, with IDs NAME,
PHONE, and ADDRESS. The Edit items are initialized to the empty string, as in this example they
need no other initial value. The user could select the Name: prompt, type a person’s name, and then
press the LOOKUP button. The function MYLOOKUPFN would be called. That function would look at
the NAME Edit item, look up that name in the data base, and fill in the rest of the fields
appropriately. The PHONE item has MYPHONEP as a LIMITCHARS function. This function would be
called when editing the phone number, in order to restrict input to a valid phone number. After
looking up Perry, the Free Menu might look like:

Here is a more complicated example:

((PROPS FONT (MODERN 10))
 ((LABEL Example FONT (MODERN 10 BOLD) HJUSTIFY CENTER))
 ((LABEL NORTH) (LABEL SOUTH) (LABEL EAST) (LABEL WEST))
 ((PROPS ID ROW3 BOX 1)
 (LABEL ONE) (LABEL TWO) (LABEL THREE))
 ((PROPS ID ROW4)
 (LABEL ONE ID ALPHA)
 (GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)
 ((TYPE NWAY LABEL A BOX 1 COLLECTION COL1 NWAYPROPS (DESELECT
T))
 (TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
 (TYPE NWAY LABEL C BOX 1 COLLECTION COL1))
 ((TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
 INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA)))
 (TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35)))
 (LABEL THREE)))

which will produce the following Free Menu:

27-46

 INTERLISP-D REFERENCE MANUAL

And if the Free Menu were formatted as a Table, instead of in Rows, it would look like:

The following breakdown of the example explains how each part contributes to the Free Menu shown
above.

(PROPS FONT (MODERN 10))

This line specifies the properties of the group that is the entire Free Menu. These
properties are described in Section 28.7.4, Free Menu Group Properties. In this example,
all items in the Free Menu, unless otherwise specified, will be in Modern 10.

((LABEL Example FONT (MODERN 10 BOLD) HJUSTIFY CENTER))

This line of the Free Menu Description describes the first row of the menu. Since the
FORMAT specification of a Free Menu is, by default, ROW formatting, this line sets the first
row in the menu. If the menu were in COLUMN formatting, this position in the description
would specify the first column in the menu.

In this example the first row contains only one item. The item is, by default, a type
MOMENTARY item. It has its own Font declaration (FONT (MODERN 10 BOLD)),
that overrides the font specified for the Free Menu as a whole, so the item appears bolded.

Finally, the item is justified, in this case centered. The HJUSTIFY Item Property indicates
that the item is to be centered horizontally within its row.

((LABEL NORTH) (LABEL SOUTH) (LABEL EAST) (LABEL WEST))

27-47

WINDOWS AND MENUS

This line specifies the second row of the menu. The second row has four very simple
items, labeled NORTH, SOUTH, EAST, and WEST next to each other within the same row.

((PROPS ID ROW3 BOX 1)
 (LABEL ONE) (LABEL TWO) (LABEL THREE))

The third row in the menu is similar to the second row, except that it has a box drawn
around it. The box is specified in the PROPS declaration for this row. Rows (and
columns) are just like Groups in that the first thing in the declaration can be a list of
properties for that row. In this case the row is named by giving it an ID property of
ROW3. It is useful to name your groups if you want to be able to access and modify their
properties later (via the function FM.GROUPPROP). It is boxed by specifying the BOX
property with a value of 1, meaning draw the box one dot wide.

 ((PROPS ID ROW4)
 (LABEL ONE ID ALPHA)
 (GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)
 ((TYPE NWAY LABEL A BOX 1 COLLECTION COL1 NWAYPROPS (DESELECT T))
 (TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
 (TYPE NWAY LABEL C BOX 1 COLLECTION COL1))
 ((TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
 INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA)))
 (TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35)))
 (LABEL THREE)))

This part of the description specifies the fourth row in the menu. This row consists of: an
item labelled ONE, a group of items, and an item labelled THREE. That is, Free Menu
thinks of the group as an entry, and formats the rest of the row just as it it were a large
item.

 (GROUP (PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4)
 ((TYPE NWAY LABEL A BOX 1 COLLECTION COL1 NWAYPROPS (DESELECT T))
 (TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
 (TYPE NWAY LABEL C BOX 1 COLLECTION COL1))
 ((TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
 INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA)))
 (TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35)))

The second part of this row is a nested group of items. It is declared as a group by placing
the keyword GROUP as the first word in the declaration. A group can be declared
anywhere a Free Menu Description can take a Free Menu Item Description (as opposed to
a row or column declaration).

The first thing in what would have been the second item declaration in this row is the
keyword GROUP. Following this keyword comes a normal group description, starting
with an optional list of properties, and followed by any number of things to go in the
group (based on the format of the group).

27-48

 INTERLISP-D REFERENCE MANUAL

This group’s Props declaration is:

(PROPS FORMAT COLUMN BACKGROUND 23130 BOX 2 BOXSPACE 4).

It specifies that the group is to be formatted as a number of columns (instead of rows, the
default). The entire group will have a background shade of 23130, and a box of width 2
around it, as you can see in the sample menu. The BOXSPACE declaration tells Free
Menu to leave an extra four dots of room between the edge of the group (ie the box
around the group) and the items in the group.

The first column of this group is a Collection of NWAY items:

((TYPE NWAY LABEL A BOX 1 COLLECTION COL1 NWAYPROPS (DESELECT T))
 (TYPE NWAY LABEL B BOX 1 COLLECTION COL1)
 (TYPE NWAY LABEL C BOX 1 COLLECTION COL1))

The three items, labelled A, B, and C are all declared as NWAY items, and are also specified
to belong to the same NWAY Collection, Col1. This is how a number of NWAY items are
collected together. The property NWAYPROPS (DESELECT T) on the first NWAY item
specifies that the Col1 Collection is to have the Deselect property enabled. This simply
means that the NWAY collection can be put in the state where none of the items (A, B, or C)
are selected (highlighted). Additionally, each item is declared with a box whose width is
one dot (pixel) around it.

The second column in this nested group is specified by:

((TYPE STATE LABEL "Choose Me" BOX 1 MENUITEMS (BRAVO DELTA)
 INITSTATE DELTA LINKS (DISPLAY (GROUP ALPHA)))
 (TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35))

Column two contains two items, a STATE item and a DISPLAY item. The STATE item is
labelled "Choose Me." A Label can be a string or a bitmap, as well as an atom. Selecting
the STATE item will cause a pop-up menu to appear with two choices for the state of the
item, BRAVO and DELTA. The items to go in the pop-up menu are designated by the
MENUITEMS property.

The pop-up menu would look like:

The initial state of the "Choose Me" item is designated to be DELTA by the INITSTATE
Item Property. The initial state can be anything; it does not have to be one of the items in
the pop-up menu.

Next, the STATE item is Linked to a DISPLAY item, so that the current state of the item
will be displayed in the Free Menu. The link’s name is DISPLAY (a special link name for

27-49

WINDOWS AND MENUS

STATE items), and the item linked to is described by the Link Description, (GROUP
ALPHA). Normally the linked item can just be described by its ID. But in this case, there
is more than one item whose ID is ALPHA (for the sake of this example), specifically the
first item in the fourth row and the display item in this nested group. The form (GROUP
ALPHA) tells Free Menu to search for an item whose ID is ALPHA, limiting the search to
the items that are within this lexical group. The lexical group is the smallest group that is
declared with the GROUP keyword (i.e., not row and column groups) that contains this
item declaration. So in this case, Free Menu will link the STATE item to the DISPLAY
item, rather than the first item in the fourth row, since that item is outside of the nested
group. For further discussion of linking items, see Section 28.7.12, Free Menu Item Links.

Now, establish the DISPLAY item:

(TYPE DISPLAY ID ALPHA LABEL "" BOX 1 MAXWIDTH 35)

We have given it the ID of Alpha that the above STATE item uses in finding the proper
DISPLAY item to link to. This display item is used to display the current state of the item
"Choose Me." Every item is required to have a Label property specified, but the label for
this DISPLAY item will depend on the state of "Choose Me." That is, when the state of the
"Choose Me" item is changed from DELTA to BRAVO, the label of the DISPLAY item will
also change. The null string serves to hold the place for the changeable label.

A box is specified for this item. Since the label is the empty string, Free Menu would
draw a very small box. Instead, the MAXWIDTH property indicates that the label, whatever
it becomes, will be limited to a stringwidth of 35. The width restriction of 35 was chosen
because it is big enough for each of the possible labels for this display item. So Free Menu
draws the box big enough to enclose any item within this width restriction.

Finally we specify the final item in row four:

(LABEL THREE)

Free Menu Group Properties

Each group has properties. Most group properties are relevant and should be set in the group’s
PROPS list in the Free Menu Description. User properties can be freely included in the PROPS list. A
few other properties are set up by the formatter. The macros FM.GROUPPROP or FM.MENUPROP allow
access to group properties after the Free Menu is created.

ID The identifier of this group. Setting the group ID is desirable, for
example, if the application needs to get handles on items in particular
groups, or access group properties.

FORMAT One of ROW, COLUMN, TABLE, or EXPLICIT. The default is ROW.

FONT A font description of the form (FAMILY SIZE FACE), or a
FONTDESCRIPTOR data type. This will be the default font for each item

27-50

 INTERLISP-D REFERENCE MANUAL

in this group. The default font of the top group is the value of the
variable DEFAULTFONT.

COORDINATES One of GROUP or MENU. This property applies only to EXPLICIT
formatting. If GROUP, the items in the EXPLICIT group are positioned
in coordinates relative to the lower left corner of the group, as
determined by the mother group. If MENU, which is the default, the items
are positioned relative to the lower left corner of the menu.

LEFT Specifies a left offset for this group, pushing the group to the right.

BOTTOM Specifies a bottom offset for this group, pushing the group up.

ROWSPACE Specifies the number of dots between rows in this group.

COLUMNSPACE Specifies the number of dots between columns in this group.

BOX Specifies the number of dots in the box around this group of items.

BOXSHADE Specifies the shade of the box.

BOXSPACE Specifies the number of bits between the box and the items.

BACKGROUND The background shade of this group. Nested groups inherit this
background shade, but items in this group and nested groups do not.
This is because, in general, it is difficult to read text on a background, so
items appear on a white background by default. This can be overridden
by the BACKGROUND Item Property.

Other Group Properties

The following group properties are set up and maintained by Free Menu. The application should
probably not change any of these properties.

ITEMS A list of the items in the group.

REGION The region that is the extent of the items in the group.

MOTHER The ID of the group that is the mother of this group.

 DAUGHTERS A list of ID of groups which are daughters to this group.

Free Menu Items

Each Free Menu Item is stored as an instance of the data type FREEMENUITEM. Free Menu Items can
be thought of as objects, each item having its own particular properties, such as its type, label, and
mouse event functions. A number of useful item types, described in Section 28.7.11, Predefined Item
Types, are predefined by Free Menu. New types of items can be defined by the application, using

27-51

WINDOWS AND MENUS

Display items as a base. Each Free Menu Item is created from a Free Menu Item Description when the
Free Menu is created.

CAUTION: Edit (and thus Number) Freemenu Items do not perform well
when boxed or when there is another item to the right in the same
row. The display to the right of the edit item may be corrupted under
editing and fm.changelabel operations.

Free Menu Item Descriptions

A Free Menu Item Description is a list in property list format, specifying the properties of the item.
For example:

(LABEL Refetch SELECTEDFN MY.REFETCHFN)

describes a MOMENTARY item labelled Refetch, with the function MY.REFETCHFN to be called when the
item is selected. None of the property values in an item description are evaluated. When constructing
Free Menu descriptions that incorporate evaluated expressions (for example labels that are bitmaps) it
is helpful to use the backquote facility. For instance, if the value of the variable MYBITMAP is a
bitmap, then

(FREEMENU ‘(((LABEL A) (LABEL ,MYBITMAP))))

would create a Free Menu of one row, with two items in that row, the second of which has the value
of MYBITMAP as its label.

Free Menu Item Properties

The following Free Menu Item Properties can be set in the Item Description. Any other properties
given in an Item Description will be treated as user properties, and will be saved on the USERDATA
property of the item.

TYPE The type of the item. Choose from one of the Free Menu Item type keywords
MOMENTARY, TOGGLE, 3STATE, STATE, NWAY, EDITSTART, EDIT,
NUMBER, or DISPLAY. The default is MOMENTARY.

LABEL An atom, string, or bitmap. Bitmaps are always copied, so that the original
will not be changed. This property must be specified for every item.

FONT The font in which the item appears. The default is the font specified for the
group containing this item. Can be a font description of the form (FAMILY
SIZE FACE), or a FONTDESCRIPTOR data type.

ID May be used to specify a unique identifier for this item, but is not necessary.

27-52

 INTERLISP-D REFERENCE MANUAL

LEFT and BOTTOM When ROW, COLUMN, or TABLE formatting, these specify offsets, pushing the
item right and up, respectively, from where the formatter would have put the
item. In EXPLICIT formatting, these are the actual coordinates of the item, in
the coordinate system given by the group’s COORDINATES property.

HJUSTIFY Indicates horizontal justification type: LEFT, CENTER, or RIGHT. Specifies
that this item is to be horizontally justified within the extent of its group.
Note that the main group, as opposed to the smaller row or column group, is
used.

VJUSTIFY Specifies that this item is to be vertically justified. Values are TOP, MIDDLE,
or BOTTOM.

HIGHLIGHT Specifies the highlighted looks of the item, that is, how the item changes when
a mouse event occurs on it. See Section 28.7.12, Free Menu Item
Highlighting, for more details on highlighting.

MESSAGE Specifies a string that will be printed in the prompt window after a mouse
cursor selects this item for MENUHELDWAIT milliseconds. Or, if an atom,
treated as a function to get the message. The function is passed three
arguments, ITEM, WINDOW, and BUTTONS, and should return a string. The
default is a message appropriate to the type of the item.

INITSTATE Specifies the initial state of the item. This is only appropriate to TOGGLE,
3STATE, and STATE items.

MAXWIDTH Specifies the width allowed for this item. The formatter will leave enough
space after the item for the item to grow to this width without collisions.

MAXHEIGHT Similar to MAXWIDTH, but in the vertical dimension.

BOX Specifies the number of bits in the box around this item. Boxes are made
around MAXWIDTH and MAXHEIGHT dimensions. If unspecified, no box is
drawn.

BOXSHADE Specifies the shade that the box is drawn in. The default is BLACKSHADE.

BOXSPACE Specifies the number of bits between the box and the label. The default is one
bit.

BACKGROUND Specifies the background shade on which the item appears. The default is
WHITESHADE, regardless of the group’s background.

LINKS Can be used to link this item to other items in the Free Menu.

Mouse Properties

The following properties provide a way for application functions to be called under certain mouse
events. These functions are called with the ITEM, the WINDOW, and the BUTTONS passed as
arguments. These application functions do not interfere with any Free Menu system functions that
take care of handling the different item types. In each case, though, the application function is called

27-53

WINDOWS AND MENUS

after the system function. The default for all of these functions is NILL. The value of each of the
following properties can be the name of a function, or a lambda expression.

SELECTEDFN Specifies the function to be called when this item is selected. The Edit and
EditStart items cannot have a SELECTEDFN. See the Edit Free Menu item
description in Section 28.7.11, Predefined Item Types, for more information.

DOWNFN Specifies the function to be called when the item is selected with the mouse
cursor.

HELDFN Specifies the function to be called repeatedly when the item is selected with
the mouse cursor.

MOVEDFN Specifies the function to be called when the mouse cursor moves off this item
(mouse buttons are still depressed).

System Properties

The following Free Menu Item properties are set and maintained by Free Menu. The application
should probably not change these properties directly.

GROUPID Specifies the ID of the smallest group that the item is in. For example, in a
row formatted group, the item’s GROUPID will be set to the ID of the row that
the item is in, not the ID of the whole group.

STATE Specifies the current state of TOGGLE, 3STATE, or STATE items. The state of
an NWAY item behaves like that of a toggle item.

BITMAP Specifies the bitmap from which the item is displayed.

REGION Specifies the region of the item, in window coordinates. This is used for
locating the display position, as well as determining the mouse sensitive
region of the item.

MAXREGION Specifies the maximum region the item may occupy, determined by the
MAXWIDTH and MAXHEIGHT properties (see Section 28.7.8, Free Menu item
Properties). This is used by the formatter and the display routines.

SYSDOWNFN

SYSMOVEDFN

SYSSELECTEDFN These are the system mouse event functions, set up by Free Menu according
to the item type. These functions are called before the mouse event functions,
and are used to implement highlighting, state changes, editing, etc.

USERDATA Specifies how any other properties are stored on this list in property list
format. This list should probably not need to be manipulated directly.

Predefined Item Types

27-54

 INTERLISP-D REFERENCE MANUAL

MOMENTARY [Free Menu Item]

MOMENTARY items are like command buttons. When the button is selected, its associated
function is called.

TOGGLE [Free Menu Item]

Toggle items are simple two-state buttons. When pressed, the button is highlighted; it
stays that way until pressed again. The states of a toggle button are T and NIL; the initial
state is NIL.

3STATE [Free Menu Item]

3STATE items rotate through NIL, T, and OFF, states each time they are pressed. The
default looks of the OFF state are with a diagonal line through the button, while T is
highlighted, and NIL is normal. The default initial state is NIL.

The following Item Property applies to 3STATE items:

OFF Specifies the looks of a 3STATE item in its OFF state. Similar to
HIGHLIGHT. The default is that the label gets a diagonal slash through it.

NOTE: If you specify special highlighting (a different bitmap of
string) for Toggle or 3State items AND use this item in a group
formatted as a Column or a Table, the highlight looks of the item may
not appear in the correct place.

STATE [Free Menu Item]

STATE items are general multiple state items. The following Item Property determines
how the item changes state:

CHANGESTATE This Item Property can be changed at any time to change the effect of the item.
If a MENU data type, this menu pops up when the item is selected, and the user
can select the new state. Otherwise, if this property is given, it is treated as a
function name, which is passed three arguments, ITEM, WINDOW, and
BUTTONS. This function can do whatever it wants, and is expected to return
the new state (an atom, string, or bitmap), or NIL, indicating the state should
not change. The state of the item can automatically be indicated in the Free
Menu, by setting up a DISPLAY link to a DISPLAY item in the menu (see
Section 28.7.13, Free Menu Item Links). If such a link exists, the label of the
DISPLAY item will be changed to the new state. The possible states are not
restricted at all, with the exception of selections from a pop-up menu. The
state can be changed to any atom, string, or bitmap, manually via
FM.CHANGESTATE.

The following Item Properties are relevant to STATE items when building a Free Menu:

MENUITEMS If specified, should be a list of items to go in a pop-up menu for this item.
Free Menu will build the menu and save it as the CHANGESTATE property of
the item.

27-55

WINDOWS AND MENUS

MENUFONT The font of the items in the pop-up menu.

MENUTITLE The title of the pop-up menu. The default title is the label of the STATE item.

NWAY [Free Menu Item]

NWAY items provide a way to collect any number of items together, in any format within
the Free Menu. Only one item from each Collection can be selected at a time, and that
item is highlighted to indicate this. The following Item Properties are particular to NWAY
items:

COLLECTION An identifier that specifies which NWAY Collection this item belongs to.

NWAYPROPS A property list of information to be associated with this collection. This
property is only noticed in the Free Menu Description on the first item in a
COLLECTION. NWAY Collections are formed by creating a number of NWAY
items with the same COLLECTION property. Each NWAY item acts
individually as a Toggle item, and can have its own mouse event functions.
Each NWAY Collection itself has properties, its state for instance. After the
Free Menu is created, these Collection properties can be accessed by the
macro FM.NWAYPROPS. Note that NWAY Collections are different from Free
Menu Groups. There are three NWAY Collection properties that Free Menu
looks at:

DESELECT If given, specifies that the Collection can be deselected, yielding a state in
which no item in the Collection is selected. When this property is set, the
Collection can be deselected by selecting any item in the Collection and
pressing the right mouse button .

STATE The current state of the Collection, which is the actual item selected.

INITSTATE Specifies the initial state of the Collection. The value of this property is an
Item Link Description

EDIT [Free Menu Item]

EDIT items are textual items that can be edited. The label for an EDIT item cannot be a
bitmap. When the item is selected an edit caret appears at that cursor position within the
item, allowing insertion and deletion of characters at that point. If selected with the right
mouse button, the item is cleared before editing starts. While editing, the left mouse
button moves the caret to a new position within the item. The right mouse button deletes
from the caret to the cursor. CONTROL-W deletes the previous word. Editing is stopped
when another item is selected, when the user moves the cursor into another TTY window
and clicks the cursor, or when the Free Menu function FM.ENDEDIT is called (called when
the Free Menu is reset, or the window is closed). The Free Menu editor will time out after
about a minute, returning automatically. Because of the many ways in which editing can
terminate, EDIT items are not allowed to have a SELECTEDFN, as it is not clear when this
function should be called. Each EDIT item should have an ID specified, which is used
when getting the state of the Free Menu, since the string being edited is defined as the
state of the item, and thus cannot distinguish edit items. The following Item Properties
are specific to EDIT items.

27-56

 INTERLISP-D REFERENCE MANUAL

MAXWIDTH Specifies the maximum string width of the item, in bits, after which input will
be ignored. If MAXWIDTH is not specified, the items becomes infinitely wide
and input is never restricted.

INFINITEWIDTH This property is set automatically when MAXWIDTH is not specified. This tells
Free Menu that the item has no right end, so that the item becomes mouse
sensitive from its left edge to the right edge of the window, within the vertical
space of the item.

In Medley, Changestate of an infinite width Edit item to a smaller item clears
the old item properly.

LIMITCHARS The input characters allowed can be restricted in two ways: If this item
property is a list, it is treated as a list of legal characters; any character not in
the list will be ignored. If it is an atom, it is treated as the name of a test
predicate, which is passed three arguments, ITEM, WINDOW, and
CHARACTER, when each character is typed. This predicate should return T if
the character is legal, NIL otherwise. The LIMITCHARS function can also
call FM.ENDEDIT to force the editor to terminate, or FM.SKIPNEXT, to cause
the editor to jump to the next edit item in the menu.

ECHOCHAR This item property can be set to any character. This character will be echoed
in the window, regardless of what character is typed. However the item’s
label contains the actual string typed. This is useful for operations like
password prompting. If ECHOCHAR is used, the font of the item must be fixed
pitch. Unrestricted EDIT items should not have other items to their right in
the menu, as they will be replaced. If the item is boxed, input is restricted to
what will fit in the box. Typing off the edge of the window will cause the
window to scroll appropriately. Control characters can be edited, including
the carriage return and line feed, and they are echoed as a black box. While
editing, the Skip/Next key ends editing the current item, and starts editing
the next EDIT item in the Free Menu.

NUMBER [Free Menu Item]

NUMBER items are EDIT items that are restricted to numerals. The state of the item is
coerced to the the number itself, not a string of numerals. There is one NUMBER- specific
Item Property:

NUMBERTYPE If FLOATP (or FLOAT), then decimals are accepted. Otherwise only whole
numbers can be edited.

EDITSTART [Free Menu Item]

EDITSTART items serve the purpose of starting editing on another item when they are
selected. The associated Edit item is linked to the EditStart item by an EDIT link (see Free
Menu Item Links below). If the EDITSTART item is selected with the right mouse button,
the Edit item is cleared before editing is started. Similar to EDIT items, EDITSTART
items cannot have a SELECTEDFN, as it is not clear when the associated editing will
terminate.

27-57

WINDOWS AND MENUS

In Medley, EDITSTART items linked to a Number item properly set number state
when editing has completed.

DISPLAY [Free Menu Item]

DISPLAY items serve two purposes. First, they simply provide a way of putting dummy
text in a Free Menu, which does nothing when selected. The item’s label can be changed,
though. Secondly, DISPLAY items can be used as the base for new item types. The
application can create new item types by specifying DOWNFN, HELDFN, MOVEDFN, and
SELECTEDFN for a DISPLAY item, making it behave as desired.

Free Menu Item Highlighting

Each Free Menu Item can specify how it wants to be highlighted. First of all, if the item does not
specify a HIGHLIGHT property, there are two default highlights. If the item is not boxed, the label is
simply inverted, as in normal menus. If the item is boxed, it is highlighted in the shade of the box.
Alternatively, the value of the HIGHLIGHT property can be a SHADE, which will be painted on top of
the item when a mouse event occurs on it. Or the HIGHLIGHT property can be an alternate label,
which can be an atom, string or bitmap. If the highlight label is a different size than the item label, the
formatter will leave enough space for the larger of the two. In all of these cases, the looks of the
highlighted item are determined when the Free Menu is built, and a bitmap of the item with these
looks is created. This bitmap is stored on the item’s HIGHLIGHT property, and simply displayed
when a mouse event occurs. The value of the highlight property in the Item Description is copied to
the USERDATA list, in case it is needed later for a label change.

Free Menu Item Links

Links between items are useful for grouping items in abstract ways. In particular, links are used for
associating EDITSTART items with their item to edit, and STATE items with their state display. The
Free Menu Item property LINKS is a property list, where the value of each Link Name property is a
pointer to another item. In the Item Description, the value of the LINK property should be a
property list as above. The value of each Link Name property is a Link Description. A Link
Description can be one of the following forms:

<ID> An ID of an item in the Free Menu. This is acceptable if items can be
distinguished by ID alone.

(<GROUPID> <ID>) A list whose first element is a GROUPID, and whose second element is the ID
of an item in that group. This way items with similar purposes, and thus
similar ID’s, can be distinguished across groups.

(GROUP <ID>) A list whose first element is the keyword GROUP, and whose second element
is an item ID. This form describes an item with ID, in the same group that this
item is in. This way you do not need to know the GROUPID, just which
group it is in.

27-58

 INTERLISP-D REFERENCE MANUAL

Then after the entire menu is built, the links are set up, turning the Link Descriptions into
actual pointers to Free Menu Items. There is no reason why circular Item Links cannot be
created, although such a link would probably not be very useful. If circular links are
created, the Free Menu will not be garbage collected after it is not longer being used. The
application is responsible for breaking any such links that it creates.

Free Menu Window Properties

FM.PROMPTWINDOW Specifies the window that Free Menu should use for displaying the item’s
messages. If not specified, PROMPTWINDOW is used.

FM.BACKGROUND The background shade of the entire Free Menu. This property can be set
automatically by specifying a BACKGROUND argument to the function
FREEMENU. The window border must be 4 or greater when a Free Menu
background is used, due to the way the Window System handles window
borders.

FM.DONTRESHAPE Normally, Free Menu will attempt to use empty space in a window by
pushing items around to fill the space. When a Free Menu window is
reshaped, the items are repositioned in the new shape. This can be disabled
by setting the FM.DONTRESHAPE window property.

Free Menu Interface Functions

(FREEMENU DESCRIPTION TITLE BACKGROUND BORDER) [Function]

Creates a Free Menu from a Free Menu Description, returning the window. This function
will return quickly unless new display fonts have to be created.

Accessing Functions

(FM.GETITEM ID GROUP WINDOW) [Function]

Gets item ID in GROUP of the Free Menu in WINDOW. This function will search the Free
Menu for an item whose ID property matches, or secondly whose LABEL property
matches ID. If GROUP is NIL, then the entire Free Menu is searched. If no matching item
is found, NIL is returned.

(FM.GETSTATE WINDOW) [Function]

Returns in property list format the ID and current STATE of every NWAY Collection and
item in the Free Menu. If an item’s or Collection’s state is NIL, then it is not included in
the list. This provides an easy way of getting the state of the menu all at once. If the state
of only one item or Collection is needed, the application can directly access the STATE
property of that object using the Accessing Macros described in Section 28.7.20, Free
Menu Macros. This function can be called when editing is in progress, in which case it
will provide the label of the item being edited at that point.

27-59

WINDOWS AND MENUS

Changing Free Menus

Many of the following functions operate on Free Menu Items, and thus take the item as an argument.
The ITEM argument to these functions can be the Free Menu Item itself, or just a reference to the item.
In the second case, FM.GETITEM (see Section 28.7.16, Accessing Functions) will be used to find the
item in the Free Menu. The reference can be in one of the following forms:

<ID> Specifies the first item in the Free Menu whose ID or LABEL property
matches <ID>.

(<GROUPID> <ID>) Specifies the item whose ID or LABEL property matches <ID> within the
group specified by <GROUPID>.

(FM.CHANGELABEL ITEM NEWLABEL WINDOW UPDATEFLG) [Function]

Changes an ITEM’s label after the Free Menu has been created. It works for any type of
item, and STATE items will remain in their current state. If the window is open, the item
will be redisplayed with its new appearance. NEWLABEL can be an atom, a string, or a
bitmap (except for EDIT items), and will be restricted in size by the MAXWIDTH and
MAXHEIGHT Item Properties. If these properties are unspecified, the ITEM will be able to
grow to any size. UPDATEFLG specifies whether or not the regions of the groups in the
menu are recalculated to take into account the change of size of this item. The application
should not change the label of an EDIT item while it is being edited. The following Item
Property is relevant to changing labels:

CHANGELABELUPDATE Exactly like UPDATEFLG except specified on the item, rather than as a function
paramater.

(FM.CHANGESTATE X NEWSTATE WINDOW) [Function]

Programmatically changes the state of items and NWAY Collections. X is either an item or
a Collection name. For items NEWSTATE is a state appropriate to the type of the item.
For NWAY Collections, NEWSTATE should be the desired item in the Collection, or NIL to
deselect. For EDIT and NUMBER items, this function just does a label change. If the
window is open, the item will be redisplayed.

(FM.RESETSTATE ITEM WINDOW) [Function]

Sets an ITEM back to its initial state.

(FM.RESETMENU WINDOW) [Function]

Resets every item in the menu back to its initial state.

(FM.RESETSHAPE WINDOW ALWAYSFLG) [Function]

Reshapes the WINDOW to its full extent, leaving the lower-left corner unmoved. Unless
ALWAYSFLG is T, the window will only be increased in size as a result of resetting the
shape.

(FM.RESETGROUPS WINDOW) [Function]

27-60

 INTERLISP-D REFERENCE MANUAL

Recalculates the extent of each group in the menu, updating group boxes and
backgrounds appropriately.

(FM.HIGHLIGHTITEM ITEM WINDOW) [Function]

Programmatically forces an ITEM to be highlighted. This might be useful for ITEMs
which have a direct effect on other ITEMs in the menu. The ITEM will be highlighted
according to its HIGHLIGHT property, as described in Section 28.7.12, Free Menu Item
Highlighting. This highlight is temporary, and will be lost if the ITEM is redisplayed, by
scrolling for example.

Editor Functions

(FM.EDITITEM ITEM WINDOW CLEARFLG) [Function]

Starts editing an EDIT or NUMBER ITEM at the beginning of the ITEM, as long as the
WINDOW is open. This function will most likely be useful for starting editing of an ITEM
that is currently the null string. If CLEARFLG is set, the ITEM is cleared first.

(FM.SKIPNEXT WINDOW CLEARFLG) [Function]

Causes the editor to jump to the beginning of the next EDIT item in the Free Menu. If
CLEARFLG is set, then the next item will be cleared first. If there is not another EDIT item
in the menu, this function will simply cause editing to stop. If this function is called when
editing is not in progress, editing will begin on the first EDIT item in the menu. This
function can be called from any process, and can also be called from inside the editor, in a
LIMITCHARS function.

(FM.ENDEDIT WINDOW WAITFLG) [Function]

Stops any editing going on in WINDOW. If WAITFLG is T, then block until the editor has
completely finished. This function can be called from another process, or from a
LIMITCHARS function.

(FM.EDITP WINDOW) [Function]

If an item is in the process of being edited in the Free Menu WINDOW, that item is returned.
Otherwise, NIL is returned.

Miscellaneous Functions

(FM.REDISPLAYMENU WINDOW) [Function]

Redisplays the entire Free Menu in its WINDOW, if the WINDOW is open.

(FM.REDISPLAYITEM ITEM WINDOW) [Function]

Redisplays a particular Free Menu ITEM in its WINDOW, if the WINDOW is open.

27-61

WINDOWS AND MENUS

(FM.SHADE X SHADE WINDOW) [Function]

X can be an item, or a group ID. SHADE is painted on top of the item or group. Note that
this is a temporary operation, and will be undone by redisplaying. For more permanent
shading, the application may be able to add a REDEDISPLAYFN and SCROLLFN for the
window as necessary to update the shading.

(FM.WHICHITEM WINDOW POSorX Y) [Function]

Locates and identifies an item from its known location within the WINDOW. If WINDOW is
NIL, (WHICHW) is used, and if POSorX is NIL, the current cursor location is used.

(FM.TOPGROUPID WINDOW) [Function]

Returns the ID of the top group of this Free Menu.

Free Menu Macros

These Accessing Macros are provided to allow the application to get and set information in the Free
Menu data structures. They are implemented as macros so that the operation will compile into the
actual access form, rather than figuring that out at run time.

(FM.ITEMPROP ITEM PROP {VALUE}) [Macro]

Similar to WINDOWPROP, this macro provides an easy access to the fields of a Free Menu
Item. The function FM.GETITEM gets the ITEM, described in Section 28.7.16, Accessing
Function. VALUE is optional, and if not given, the current value of the PROP property will
be returned. If VALUE is given, it will be used as the new value for that PROP, and the old
value will be returned. When a call to FM.ITEMPROP is compiled, if the PROP is known
(quoted in the calling form), the macro figures out what field to access, and the
appropriate Data Type access form is compiled. However, if the PROP is not known at
compile time, the function FM.ITEMPROP, which goes through the necessary property
selection at run time, is compiled. The TYPE and USERDATA properties of a Free Menu
Item are Read Only, and an error will result from trying to change the value of one of
these properties.

(FM.GROUPPROP WINDOW GROUP PROP {VALUE}) [Macro]

Provides access to the Group Properties set up in the PROPS list for each group in the Free
Menu Description. GROUP specifies the ID of the desired group, and PROP the name of
the desired property. If VALUE is specified, it will become the new value of the property,
and the old value will be returned. Otherwise, the current value is returned.

(FM.MENUPROP WINDOW PROP {VALUE}) [Macro]

Provides access to the group properties of the top-most group in the Free Menu, that is to
say, the entire menu. This provides an easy way for the application to attach properties to
the menu as a whole, as well as access the Group Properties for the entire menu.

27-62

 INTERLISP-D REFERENCE MANUAL

(FM.NWAYPROP WINDOW COLLECTION PROP {VALUE}) [Macro]

This macro works just like FM.GROUPPROP, except it provides access to the NWay Collections.

Attached Windows

The attached window facility makes it easy to manipulate a group of window as a unit. Standard
window operations like moving, reshaping, opening, and closing can be done so that it appears to the
user as if the windows are a single entity. Each collection of attached windows has one main window
and any number of other windows that are "attached" to it. Moving or reshaping the main window
causes all of the attached windows to be moved or reshaped as well. Moving or reshaping an
attached window does not affect the main window.

Attached windows can have other windows attached to them. Thus, it is possible to attach window A
to window B when B is already attached to window C. Similarly, if A has other windows attached to
it, it can still be attached to B.

(ATTACHWINDOW WINDOWTOATTACH MAINWINDOW EDGE POSITIONONEDGE
WINDOWCOMACTION) [Function]

Associates WINDOWTOATTACH with MAINWINDOW so that window operations done to
MAINWINDOW are also done to WINDOWTOATTACH (the exact set of window operations
passed between main windows and attached windows is described in the Window
Operations and Attached Windows section below). ATTACHWINDOW moves
WINDOWTOATTACH to the correct position relative to MAINWINDOW.

Note: A window can be attached to only one other window. Attaching a window to a
second window will detach it from the first. Attachments can not form loops. That is, a
window cannot be attached to itself or to a window that is attached to it.
ATTACHWINDOW will generate an error if this is attempted.

EDGE determines which edge of MAINWINDOW the attached window is positioned along: it
should be one of TOP, BOTTOM, LEFT, or RIGHT. If EDGE is NIL, it defaults to TOP.

POSITIONONEDGE determines where along EDGE the attached window is positioned. It
should be one of the following:

LEFT The attached window is placed on the left (of a TOP or BOTTOM edge).

RIGHT The attached window is placed on the right (of a TOP or BOTTOM
edge).

BOTTOM The attached window is placed on the bottom (of a LEFT or RIGHT
edge).

TOP The attached window is placed on the top (of a LEFT or RIGHT edge).

CENTER The attached window is placed in the center of the edge.

27-63

WINDOWS AND MENUS

JUSTIFY

or NIL The attached window is placed to fill the entire edge. ATTACHWINDOW
reshapes the window if necessary.

Note: The width or height used to justify an attached window includes
any other windows that have already been attached to MAINWINDOW.
Thus (ATTACHWINDOW BBB AAA ’RIGHT ’JUSTIFY) followed
by (ATTACHWINDOW CCC AAA ’TOP ’JUSTIFY) will put CCC
across the top of both BBB and AAA:

WINDOWCOMACTION provides a convenient way of specifying how
WINDOWTOATTACH responds to right button menu commands. The
window property PASSTOMAINCOMS determines which right button
menu commands are directly applied to the attached window, and
which are passed to the main window (see the Window Operations and
Attached Windows section below). Depending on the value of
WINDOWCOMACTION, the PASSTOMAINCOMS window property of
WINDOWTOATTACH is set as follows:

NIL PASSTOMAINCOMS is set to (CLOSEW MOVEW SHAPEW SHRINKW
BURYW), so right button menu commands to close, move, shape,
shrink, and bury are passed to the main window, and all others are
applied to the attached window.

LOCALCLOSE PASSTOMAINCOMS is set to (MOVEW SHAPEW SHRINKW
BURYW), which is the same as when WINDOWCOMACTION is NIL,
except that the attached window can be closed independently.

HERE PASSTOMAINCOMS is set to NIL, so all right button menu commands
are applied to the attached window.

MAIN PASSTOMAINCOMS is set to T, so all right button menu commands are
passed to the main window.

Note: If the user wants to set the PASSTOMAINCOMS window
property of an attached window to something else, it must be
done after the window is attached, since ATTACHWINDOW modifies
this window property.

(DETACHWINDOW WINDOWTODETACH) [Function]

27-64

 INTERLISP-D REFERENCE MANUAL

Detaches WINDOWTODETACH from its main window. Returns a dotted pair (EDGE .
POSITIONONEDGE) if WINDOWTODETACH was an attached window, NIL otherwise.
This does not close WINDOWTODETACH.

(DETACHALLWINDOWS MAINWINDOW) [Function]

Detaches and closes all windows attached to MAINWINDOW.

(FREEATTACHEDWINDOW WINDOW) [Function]

Detaches the attached window WINDOW. In addition, other attached windows above (in
the case of a TOP attached window) or below (in the case of a BOTTOM attached window)
are moved closer to the main window to fill the gap.

Note: Attached windows that "reject" the move operation (see
REJECTMAINCOMS below) are not moved.

Note: FREEATTACHEDWINDOW currently doesn’t handle LEFT or RIGHT
attached windows.

(REMOVEWINDOW WINDOW) [Function]

Closes WINDOW, and calls FREEATTACHEDWINDOW to move other attached windows to fill
any gaps.

(REPOSITIONATTACHEDWINDOWS WINDOW) [Function]

Repositions every window attached to WINDOW, in the order that they were attached. This
is useful as a RESHAPEFN for main windows with attached window that don’t want to be
reshaped, but do want to keep their position relative to the main window when the main
window is reshaped.

Note: Attached windows that "reject" the move operation (see
REJECTMAINCOMS below) are not moved.

(MAINWINDOW WINDOW RECURSEFLG) [Function]

If WINDOW is not a window, it generates an error. If WINDOW is closed, it returns WINDOW.
If WINDOW is not attached to another window, it returns WINDOW itself. If RECURSEFLG is
NIL and WINDOW is attached to a window, it returns that window. If RECURSEFLG is T, it
returns the first window up the "main window" chain starting at WINDOW that is not
attached to any other window.

(ATTACHEDWINDOWS WINDOW COM) [Function]

Returns the list of windows attached to WINDOW.

If COM is non-NIL, only those windows attached to WINDOW that do not reject the window
operation COM are returned (see REJECTMAINCOMS).

(ALLATTACHEDWINDOWS WINDOW) [Function]

27-65

WINDOWS AND MENUS

Returns a list of all of the windows attached to WINDOW or attached to a window attached
to it.

(WINDOWREGION WINDOW COM) [Function]

Returns the screen region occupied by WINDOW and its attached windows, if it has any.

If COM is non-NIL, only those windows attached to WINDOW that do not reject the window
operation COM are considered in the calculation (see REJECTMAINCOMS).

(WINDOWSIZE WINDOW) [Function]

Returns the size of WINDOW and its attached windows (if any), as a dotted pair (WIDTH
. HEIGHT).

(MINATTACHEDWINDOWEXTENT WINDOW) [Function]

Returns the minimum size that WINDOW and its attached windows (if any) will accept, as a
dotted pair (WIDTH . HEIGHT).

Attaching Menus To Windows

The following functions are provided to associate menus to windows.

(MENUWINDOW MENU VERTFLG) [Function]

Returns a closed window that has the menu MENU in it. If MENU is a list, a menu is created
with MENU as its ITEMS menu field. Otherwise, MENU should be a menu. The returned
window has the appropriate RESHAPEFN, MINSIZE and MAXSIZE window properties
to allow its use in a window group.

If both the MENUROWS and MENUCOLUMNS fields of MENU are NIL, VERTFLG is used to
set the default menu shape. If VERTFLG is non-NIL, the MENUCOLUMNS field of MENU
will be set to 1 (the menu items will be listed vertically); otherwise the MENUROWS field of
MENU will be set to 1 (the menu items will be listed horizontally).

(ATTACHMENU MENU MAINWINDOW EDGE POSITIONONEDGE NOOPENFLG) [Function]

Creates a window that contains the menu MENU (by calling MENUWINDOW) and attaches it
to the window MAINWINDOW on edge EDGE at position POSITIONONEDGE. The menu
window is opened unless MAINWINDOW is closed, or NOOPENFLG is T.

If EDGE is either LEFT or RIGHT, MENUWINDOW will be called with VERTFLG = T, so
the menu items will be listed vertically; otherwise the menu items will be listed
horizontally. These defaults can be overridden by specifying the MENUROWS or
MENUCOLUMNS fields in MENU.

(CREATEMENUEDWINDOW MENU WINDOWTITLE LOCATION WINDOWSPEC) [Function]

27-66

 INTERLISP-D REFERENCE MANUAL

Creates a window with an attached menu and returns the main window. MENU is the only
required argument, and may be a menu or a list of menu items. WINDOWTITLE is a string
specifying the title of the main window. LOCATION specifies the edge on which to place
the menu; the default is TOP. WINDOWSPEC is a region specifying a region for the
aggregate window; if NIL, the user is prompted for a region.

Examples:

(SETQ MENUW
 (MENUWINDOW
 (create MENU
 ITEMS ← ’(smaller LARGER)
 MENUFONT ← ’(MODERN 12)
 TITLE ← "zoom controls"
 CENTERFLG ← T
 WHENSELECTEDFN ← (FUNCTION ZOOMMAINWINDOW))))

creates (but does not open) a menu window that contains the two items "smaller" and
"LARGER" with the title "zoom controls" and that calls the function ZOOMMAINWINDOW
when an item is selected. Note that the menu items will be listed horizontally, because
MENUWINDOW is called with VERTFLG = NIL, and the menu does not specify either a
MENUROWS or MENUCOLUMNS field.

(ATTACHWINDOW MENUW
 (CREATEW ’(50 50 150 50))
 ’TOP
 ’JUSTIFY)

creates a window on the screen and attaches the above created menu window to its top:

(CREATEMENUEDWINDOW
 (create MENU
 ITEMS ← ’(smaller LARGER)
 MENUFONT ← ’(MODERN 12)
 TITLE ← "zoom controls"
 CENTERFLG ← T
 WHENSELECTEDFN ← (FUNCTION ZOOMMAINWINDOW))))

creates the same sort of window in one step, prompting the user for a region.

Attached Prompt Windows

Many packages have a need to display status information or prompt for small amounts of user input
in a place outside their standard window. A convenient way to do this is to attach a small window to
the top of the program’s main window. The following functions do so in a uniform way that can be
depended on among diverse applications.

27-67

WINDOWS AND MENUS

(GETPROMPTWINDOW MAINWINDOW #LINES FONT DONTCREATE) [Function]

Returns the attached prompt window associated with MAINWINDOW, creating it if
necessary. The window is always attached to the top of MAINWINDOW, has DSPSCROLL
set to T, and has a PAGEFULLFN of NILL to inhibit page holding. The window is at least
#LINES lines high (default 1); if a pre-existing window is shorter than that, it is reshaped
to make it large enough. FONT is the font to give the prompt window (defaults to the font
of MAINWINDOW), and applies only when the window is first created. If DONTCREATE is
true, returns the window if it exists, otherwise NIL without creating any prompt window.

(REMOVEPROMPTWINDOW MAINWINDOW) [Function]

Detaches the attached prompt window associated with MAINWINDOW (if any), and closes
it.

Window Operations And Attached Windows

When a window operation, such as moving or clearing, is performed on a window, there is a question
about whether or not that operation should also be performed on the windows attached to it or
performed on the window it is attached to. The "right" thing to do depends on the window operation:
it makes sense to independently redisplay a single window in a collection of windows, whereas
moving a single window usually implies moving the whole group of windows. The interpretation of
window operations also depends on the application that the window group is used for. For some
applications, it may be desirable to have a window group where individual windows can be moved
away from the group, but still be conceptually attached to the group for other operations. The
attached window facility is flexible enough to allow all of these possibilities.

The operation of window operations can be specified by each attached window, by setting the
following two window properties:

PASSTOMAINCOMS [Window Property]

Value is a list of window commands (e.g. CLOSEW, MOVEW) which, when selected from
the attached window’s right-button menu, are actually applied to the central window in
the group, instead of being applied to the attached window itself. The "central window"
is the first window up the "main window" chain that is not attached to any other window.

If PASSTOMAINCOMS is NIL, all window operations are directly applied to the attached
window. If PASSTOMAINCOMS is T, all window operations are passed to the central
window.

Note: ATTACHWINDOW allows this window property to be set to commonly-used
values by using its WINDOWCOMACTION argument. ATTACHWINDOW always
sets this window property, so users must modify it directly only after attaching the
window to another window.

REJECTMAINCOMS [Window Property]

27-68

 INTERLISP-D REFERENCE MANUAL

Value is a list of window commands that the attached window will not allow the main
window to apply to it. This is how a window can say "leave me out of this group
operation."

If REJECTMAINCOMS is NIL, all window commands may be applied to this attached
window. If REJECTMAINCOMS is T, no window commands may be applied to this
attached window.

The PASSTOMAINCOMS and REJECTMAINCOMS window properties affect right-button menu
operations applied to main windows or attached windows, and the action of programmatic window
functions (SHAPEW, MOVEW, etc.) applied to main windows. However, these window properties do
not affect the action of window functions applied to attached windows.

The following list describes the behavior of main and attached windows under the window
operations, assuming that all attached windows have their REJECTMAINCOMS window property set
to NIL and PASSTOMAINCOMS set to (CLOSEW MOVEW SHAPEW SHRINKW BURYW) (the default if
ATTACHWINDOW is called with WINDOWCOMACTION = NIL).

The behavior for any particular operation can be changed for particular attached windows by setting
the standard window properties (e.g., MOVEFN or CLOSEFN) of the attached window. An exception
is the TOTOPFN property of an attached window, that is set to bring the whole window group to the
top and should not be set by the user (although users can add functions to the TOTOPFN window
property).

Move If the main window moves, all attached windows move with it, and the
relative positioning between the main window and the attached
windows is maintained. If the region is determined interactively, the
prompt region for the move is the union of the extent of the main
window and all attached windows (excluding those with MOVEW in
their REJECTMAINCOMS window property).

If an attached window is moved by calling the function MOVEW, it is
moved without affecting the main window. If the right-button window
menu command Move is called on an attached window, it is passed on
to the main window, so that all windows in the group move.

Reshape If the main window is reshaped, the minimum size of it and all of its
attached windows is used as the minimum of the space for the result.
Any space greater than the minimum is distributed among the main
window and its attached windows. Attached windows with SHAPEW
on their REJECTMAINCOMS window property are ignored when
finding the minimum size, creating a "ghost" region, or distributing
space after a reshape.

If an attached window is reshaped by calling the function SHAPEW, it is
reshaped independently. If the right-button window menu command
Shape is called on an attached window, it is passed on to the main
window, so the whole group is reshaped.

27-69

WINDOWS AND MENUS

Note: Reshaping the main window will restore the conditions
established by the call to ATTACHWINDOW, whereas moving the main
window does not. Thus, if A is attached to the top of B and then moved
by the user, its new position relative to B will be maintained if B is
moved. If B is reshaped, A will be reshaped to the top of B.
Additionally, if, while A is moved away from the top of B, C is attached
to the top of B, C will position itself above where A used to be.

Close If the main window is closed, all of the attached windows are closed
also and the links from the attached windows to the main window are
broken. This is necessary for the windows to be garbage collected.

If an attached window is closed by calling the function CLOSEW, it is
closed without affecting the main window. If the right-button window
menu command Close is called on an attached window, it is passed
on to the main window. Note that closing an attached window
detaches it.

Open If the main window is opened, it opens all attached windows and
reestablishes links from them to the main window.

Attached windows can be opened independently and this does not
affect the main window. Note that it is possible to reopen a closed
attached window and not have it linked to its main window.

Shrink The collection of windows shrinks as a group. The SHRINKFNs of the
attached windows are evaluated but the only icon displayed is the one
for the main window.

Redisplay The main or attached windows can be redisplayed independently.

Totop If any main or attached window is brought to the top, all of the other
windows are brought to the top also.

Expand Expanding any of the windows expands the whole collection.

Scrolling All of the windows involved in the group scroll independently.

Clear All windows clear independently of each other.

Window Properties Of Attached Windows

Windows that are involved in a collection either as a main window or as an attached window have
properties stored on them. The only properties that are intended to be set be set by the user are the
MINSIZE, MAXSIZE, PASSTOMAINCOMS, and REJECTMAINCOMS window properties. The other
properties should be considered read only.

MINSIZE [Window Property]
MAXSIZE [Window Property]

27-70

 INTERLISP-D REFERENCE MANUAL

Each of these window properties should be a dotted pair (WIDTH . HEIGHT) or a
function to apply to the window that returns a dotted pair. The numbers are used when
the main window is reshaped. The MINSIZE is used to determine the size of the smallest
region acceptable during reshaping. Any amount greater than the collective minimum is
spread evenly among the windows until each reaches MAXSIZE. Any excess is given to
the main window.

If you give the main window of an attached window group a MINSIZE or MAXSIZE
property, its value is moved to the MAINWINDOWMINSIZE or MAINWINDOWMAXSIZE
property, so that the main window can be given a size function that computes the
minimum or maximum size of the entire group. Thus, if you want to change the main
window’s minimum or maximum size after attaching windows to it, you should change
the MAINWINDOWMINSIZE or MAINWINDOWMAXSIZE property instead.

 This doesn’t address the hard problem of overlapping attached windows side to side, for
example if window A was attached as [TOP, LEFT] and B as [TOP, RIGHT]. Currently,
the attached window functions do not worry about the overlap.

The default MAXSIZE is NIL, which will let the region grow indefinitely.

MAINWINDOW [Window Property]

Pointer from attached windows to the main window of the group. This link is not
available if the main window is closed. The function MAINWINDOW is the preferred way
to access this property.

ATTACHEDWINDOWS [Window Property]

Pointer from a window to its attached windows. The function ATTACHEDWINDOWS is
the preferred way to access this property.

WHEREATTACHED [Window Property]

For attached windows, a dotted pair (EDGE . POSITIONONEDGE) giving the edge
and position on the edge that determine how the attached window is placed relative to its
main window.

The TOTOPFN window property on attached windows and the properties TOTOPFN, DOSHAPEFN,
MOVEFN, CLOSEFN, OPENFN, SHRINKFN, EXPANDFN and CALCULATEREGIONFN on main
windows contain functions that implement the attached window manipulation facilities. Care should
be used in modifying or replacing these properties.

Communication of Window Menu Commands between Attached Windows is dependent on the name
of function used to implement the window command, e.g., CLOSEW implements CLOSE (refer to
PASSTOMAINCOMS documentation under Attached Windows). Consequently, if an application
intercepts a window command by changing WHENSELECTEDFN for an item in the WindowMenu
(for example, to advise the application that a window is being closed), windows may not behave
correctly when attached to other windows.

27-71

WINDOWS AND MENUS

To get around this problem, the Medley release provides the variable *attached-window-
command-synonyms*. This variable is an alist, where each element is of the form (new-
command-function-name . old-command-function-name).

For example, if an application redefines the WindowMenu to call my-close-window when CLOSE is
selected, that application should:

(cl:push ’(my-close-window . il:closew) il:*attached-window-
command-synonyms*)

 in order to tell the attached window system that my-close-window is a synonym function for
CLOSEW.

28-1

28. HARDCOPY FACILITIES

Interlisp-D includes facilities for generating hardcopy in "Interpress" format and "Press" format.
Interpress is a file format used for communicating documents to Xerox Network System printers such
as the Xerox 8044 and Xerox 5700. Press is a file format used for communicating documents to Xerox
laser Xerographic printers known by the names "Dover", "Spruce", "Penguin", and "Raven". There are
also library packages available for supporting other types of printer formats (4045, FX-80, C150, etc.).
The hardcopy facilities are designed to allow the user to support new types of printers with minimal
changes to the user interface.

Files can be in a number of formats, including Interpress files, plain text files, and formatted Tedit
files. In order to print a file on a given printer, it is necessary to identify the format of the file, convert
the file to a format that the printer can accept, and transmit it. Rather than require that the user
explicitly determine file types and do the conversion, the Interlisp-D hardcopy functions generate
Interpress or other format output depending on the appropriate choice for the designated printer. The
hardcopy functions use the variables PRINTERTYPES and PRINTFILETYPES (described below) to
determine the type of a file, how to convert it for a given printer, and how to send it. By changing
these variables, the user can define other kinds of printers and print to them using the normal
hardcopy functions.

(SEND.FILE.TO.PRINTER FILE HOST PRINTOPTIONS) [Function]

The function SEND.FILE.TO.PRINTER causes the file FILE to be sent to the printer
HOST. If HOST is NIL, the first host in the list DEFAULTPRINTINGHOST which can
print FILE is used.

PRINTOPTIONS is a property list of the form (PROP1 VALUE1 PROP2 VALUE2
...). The properties accepted depends on the type of printer. For Interpress printers,
the following properties are accepted:

DOCUMENT.NAME The document name to appear on the header page (a string). Default is
the full name of the file.

DOCUMENT.CREATION.DATE The creation date to appear on the header page (a Lisp integer date,
such as returned by IDATE). The default value is the creation date of the
file.

SENDER.NAME The name of the sender to appear on the header page (a string). The
default value is the name of the user.

RECIPIENT.NAME The name of the recipient to appear on the header page (a string). The
default is none.

MESSAGE An additional message to appear on the header page (a string). The
default is none.

#COPIES The number of copies to be printed. The default value is 1.

28-2

INTERLISP-D REFERENCE MANUAL

PAGES.TO.PRINT The pages of the document that should be printed, represented as a list
(FIRSTPAGE# LASTPAGE#). For example, if this option is (3 5), this
specifies that pages 3 through 5, inclusive, should be printed. Note that
the page numbering used for this purpose has no connection to any page
numbers that may be printed on the document. The default is to print all
of the pages in the document.

MEDIUM The medium on which the master is to be printed. If omitted, this
defaults to the value of NSPRINT.DEFAULT.MEDIUM, as follows:
NIL means to use the printer’s default; T means to use the first medium
reported available by the printer; any other value must be a Courier value
of type MEDIUM. The format of this type is a list (PAPER
(KNOWN.SIZE TYPE)) or (PAPER (OTHER.SIZE (WIDTH
LENGTH))). The paper TYPE is one of US.LETTER, US.LEGAL, A0
through A10, ISO.B0 through ISO.B10, and JIS.B0 through
JIS.B10. For users who use A4 paper exclusively, it should be
sufficient to set NSPRINT.DEFAULT.MEDIUM to (PAPER
(KNOWN.SIZE "A4")).

When using different paper sizes, it may be necessary to reset the
variable DEFAULTPAGEREGION, the region on the page used for
printing (measured in micas from the lower-left corner).

STAPLE? True if the document should be stapled.

#SIDES 1 or 2 to indicate that the document should be printed on one or two
sides, respectively. The default is the value of EMPRESS#SIDES.

PRIORITY The priority of this print request, one of LOW, NORMAL, or HIGH. The
default is the printer’s default.

Note: Press printers only recognize the options #COPIES, #SIDES,
DOCUMENT.CREATION.DATE, and DOCUMENT.NAME.

For example,

(SEND.FILE.TO.PRINTER ’FOO NIL

 ’(#COPIES 3 #SIDES 2 DOCUMENT.NAME "For John"))

SEND.FILE.TO.PRINTER calls PRINTERTYPE and PRINTFILETYPE to determine
the printer type of HOST and the file format of FILE. If FILE is a formatted file already in
a form that the printer can print, it is transmitted directly. Otherwise,
CONVERT.FILE.TO.TYPE.FOR.PRINTER is called to do the conversion. [Note: If
the file is converted, PRINTOPTIONS is passed to the formatting function, so it can
include properties such as HEADING, REGION, and FONTS.] All of these functions use
the lists PRINTERTYPES and PRINTFILETYPES to actually determine how to do the
conversion.

28-3

 HARDCOPY FACILITIES

LISTFILES (Chapter 17) calls the function LISTFILES1 to send a single file to a
hardcopy printing device. Interlisp-D is initialized with LISTFILES1 defined to call
SEND.FILE.TO.PRINTER.

(HARDCOPYW WINDOW/BITMAP/REGION FILE HOST SCALEFACTOR ROTATION
PRINTERTYPE HARDCOPYTITLE) [Function]

Creates a hardcopy file from a bitmap and optionally sends it to a printer. Note that some
printers may have limitations concerning how big or how "complicated" the bitmap may
be printed.

WINDOW/BITMAP/REGION can either be a WINDOW (open or closed), a BITMAP, or a
REGION (interpreted as a region of the screen). If WINDOW/BITMAP/REGION is NIL, the
user is prompted for a screen region using GETREGION.

If FILE is non-NIL, it is used as the name of the file for output. If HOST = NIL, this file
is not printed. If FILE is NIL, a temporary file is created, and sent to HOST.

To save an image on a file without printing it, perform (HARDCOPYW IMAGE FILE).
To print an image to the printer PRINTER without saving the file, perform
(HARDCOPYW IMAGE NIL PRINTER).

If both FILE and HOST are NIL, the default action is to print the image, without saving
the file. The printer used is determined by the argument PRINTERTYPE and the value
of the variable DEFAULTPRINTINGHOST. If PRINTERTYPE is non-NIL, the first host
on DEFAULTPRINTINGHOST of the type PRINTERTYPE is used. If PRINTERTYPE is
NIL, the first printer on DEFAULTPRINTINGHOST that implements the BITMAPSCALE
(as determined by PRINTERTYPES) operation is used, if any. Otherwise, the first
printer on DEFAULTPRINTINGHOST is used.

The type of hardcopy file produced is determined by HOST if non-NIL, else by
PRINTERTYPE if non-NIL, else by the value of DEFAULTPRINTINGHOST, as
described above.

SCALEFACTOR is a reduction factor. If not given, it is computed automatically based on
the size of the bitmap and the capabilities of the printer type. This may not be supported
for some printers.

ROTATION specifies how the bitmap image should be rotated on the printed page. Most
printers (including Interpress printers) only support a ROTATION of multiples of 90.

PRINTERTYPE specifies what type of printer to use when HOST is NIL. HARDCOPYW
uses this information to select which printer to use or what print file format to convert the
output into, as described above.

The background menu contains a "Hardcopy" command (Chapter 28) that prompts the
user for a region on the screen, and sends the image to the default printer.

Hardcopy output may also be obtained by writing a file on the printer device LPT, e.g.
(COPYFILE ’FOO ’{LPT}). When a file on this device is closed, it is converted to
Interpress or some other format (if necessary) and sent to the default printer (the first host

28-4

INTERLISP-D REFERENCE MANUAL

on DEFAULTPRINTINGHOST). One can include the printer name directly in the file
name, e.g. (COPYFILE ’FOO {LPT}TREMOR:) will send the file to the printer
TREMOR:.

HARDCOPYTITLE is a string specifying a title to print on the page containing the screen
image. If NIL, the string "Window Image" is used. To omit a title, specify the null string.

(PRINTERSTATUS PRINTER) [Function]

Returns a list describing the current status of the printer named PRINTER. The exact form
of the value returned depends on the type of printer. For InterPress printers, the status
describes whether the printer is available or busy or needs attention, and what type of
paper is loaded in the printer.

Returns NIL if the printer does not respond in a reasonable time, which can occur if the
printer is very busy, or does not implement the printer status service.

DEFAULTPRINTINGHOST [Variable]

The variable DEFAULTPRINTINGHOST is used to designate the default printer to be
used as the output of printing operations. It should be a list of the known printer host
names, for example, (QUAKE LISPPRINT:). If an element of
DEFAULTPRINTINGHOST is a list, is interpreted as (PRINTERTYPE HOST),
specifying both the host type and the host name. The type of the printer, which
determines the protocol used to send to it and the file format it requires, is determined by
the function PRINTERTYPE.

If DEFAULTPRINTINGHOST is a single printer name, it is treated as if it were a list of
one element.

(PRINTFILETYPE FILE —) [Function]

Returns the format of the file FILE. Possible values include INTERPRESS, TEDIT, etc.
If it cannot determine the file type, it returns NIL. Uses the global variable
PRINTFILETYPES.

(PRINTERTYPE HOST) [Function]

Returns the type of the printer HOST. Currently uses the following heuristic:

1. If HOST is a list, the CAR is assumed to be the printer type and CADR
the name of the printer

2. If HOST is a litatom with a non-NIL PRINTERTYPE property, the
property value is returned as the printer type

3. If HOST contains a colon (e.g., PRINTER:PARC:XEROX) it is
assumed to be an INTERPRESS printer

28-5

 HARDCOPY FACILITIES

4. If HOST is the CADR of a list on DEFAULTPRINTINGHOST, the CAR
is returned as the printer type

5. Otherwise, the value of DEFAULTPRINTERTYPE is returned as the
printer type.

Low-level Hardcopy Variables

The following variables are used to define how Interlisp should generate hardcopy of different types.
The user should only need to change these variables when it is necessary to access a new type of
printer, or define a new hardcopy document type (not often).

PRINTERTYPES [Variable]

The characteristics of a given printer are determined by the value of the list
PRINTERTYPES. Each element is a list of the form

(TYPES (PROPERTY1 VALUE1) (PROPERTY2 VALUE2)
...)

TYPES is a list of the printer types that this entry addresses. The (PROPERTYn
VALUEn) pairs define properties associated with each printer type.

The printer properties include the following:

CANPRINT Value is a list of the file types that the printer can print directly.

STATUS Value is a function that knows how to find out the status of the printer,
used by PRINTERSTATUS.

PROPERTIES Value is a function which returns a list of known printer properties.

SEND Value is a function which invokes the appropriate protocol to send a file
to the printer.

BITMAPSCALE Value is a function of arguments WIDTH and HEIGHT in bits which
returns a scale factor for scaling a bitmap.

BITMAPFILE Value is a form which, when evaluated, converts a bitmap to a file format
that the printer will accept.

Note: The name 8044 is defined on PRINTERTYPES as a synonym for the
INTERPRESS printer type. The names SPRUCE, PENGUIN, and
DOVER are defined on PRINTERTYPES as synonyms for the PRESS
printer type. The printer types FULLPRESS and RAVEN are also
defined the same as PRESS, except that these printer types indicate
that the printer is a "Full Press" printer that is able to scale bitmap
images, in addition to the normal Press printer facilities.

28-6

INTERLISP-D REFERENCE MANUAL

PRINTFILETYPES [Variable]

The variable PRINTFILETYPES contains information about various file formats, such as
Tedit files and Interpress files. The format is similar to PRINTERTYPES. The properties
that can be specified include:

TEST Value is a function which tests a file if it is of the given type. Note that
this function is passed an open stream.

CONVERSION Value is a property list of other file types and funcitons that convert from
the specified type to the file format.

EXTENSION Value is a list of possible file extensions for files of this type.

29-1

29. TERMINALINPUT/OUTPUT

Most input/output operations in Interlisp can be simply modeled as reading or writing on a linear
stream of bytes. However, the situation is much more complex when it comes to controlling the user’s
"terminal," which includes the keyboard, the mouse, and the display screen. For example, Interlisp
coordinates the operation of these separate I/O devices so that the cursor on the screen moves as the
mouse moves, and any characters typed by the user appear in the window currently containing a
flashing cursor. Most of the time, this system works correctly without need for user modification.

The purpose of this chapter is to describe how to access the low-level controls for the terminal I/O
devices. It documents the use of interrupt characters, the keyboard characters that generate
interrupts. Then, it describes terminal tables, used to determine the meaning of the different editing
characters (character delete, line delete, etc.). Then, the "dribble file" facility that allows terminal I/O
to be saved onto a file is presented (see the Dribble Files section below). Finally, the low-level
functions that control the mouse and cursor, the keyboard, and the screen are documented.

Interrupt Characters

Errors and breaks can be caused by errors within functions, or by explicitly breaking a function. The
user can also indicate his desire to go into a break while a program is running by typing certain
control characters known as "interrupt characters". The following interrupt characters are currently
enabled in Interlisp-D:

Note: In Interlisp-D with multiple processes, it is not sufficient to say that "the computation" is
broken, aborted, etc; it is necessary to specify which process is being acted upon. Usually, the user
wants interrupts to occur in the TTY process, which is the one currently receiving keyboard input.
However, sometimes the user wants to interrupt the mouse process, if it is currently busy executing a
menu command or waiting for the user to specify a region on the screen. Most of the interrupt
characters below take place in the mouse process if it is busy, otherwise the TTY process. Control-G
can be used to break arbitrary processes. For more information, see Chapter 23.

Control-B Causes a break within the mouse process (if busy) or the TTY process.
Use Control-G to break a particular process.

Control-D Aborts the mouse process (if busy) or the TTY process, and unwinds its
stack to the top level. Calls RESET (see Chapter 14).

Control-E Aborts the mouse process (if busy) or the TTY process, and unwinds its
stack to the last ERRORSET. Calls ERROR! (see Chapter 14).

Control-G Pops up a menu listing all of the currently-running processes. Selecting
one of the processes will cause a break to take place in that process.

Control-P This interrupt is no longer supported in Medley.

29-2

INTERLISP-D REFERENCE MANUAL

Control-T Flashes the TTY process’ window and prints status information for the
TTY process. First it prints "IO wait," "Waiting", or "Running,"
depending on whether the TTY process is currently in waiting for
characters to be typed, waiting for some other reason, or running. Next,
it prints the names of the top three frames on the stack, to show what is
running. Then, it prints a line describing the percentage of time (since
the last control-T) that has been spent running a program, swapping,
garbage collecting, doing local disk I/O, etc. For example:

Running in TTWAITFORINPUT in TTBIN in TTYIN1

95% Util, 0% Swap, 4% GC

DELETE Clears typeahead in all processes.

The user can disable and/or redefine Interlisp interrupt characters, as
well as define new interrupt characters. Interlisp-D is initialized with
the following interrupt channels: RESET (Control-D), ERROR
(Control-E), BREAK (Control-B), HELP (Control-G), PRINTLEVEL
(Control-P), RUBOUT (DELETE), and RAID. Each of these channels
independently can be disabled, or have a new interrupt character
assigned to it via the function INTERRUPTCHAR described below. In
addition, the user can enable new interrupt channels, and associate with
each channel an interrupt character and an expression to be evaluated
when that character is typed.

(INTERRUPTCHAR CHAR TYP/FORM HARDFLG —) [Function]

Defines CHAR as an interrupt character. If CHAR was previously defined as an interrupt
character, that interpretation is disabled.

CHAR is either a character or a character code (see Chapter 2). Note that full sixteen-bit NS
characters can be specified as interrupt characters (see Chapter 2). CHAR can also be a
value returned from INTERRUPTCHAR, as described below.

If TYP/FORM = NIL, CHAR is disabled.

If TYP/FORM = T, the current state of CHAR is returned without changing or disabling it.

If TYP/FORM is one of the literal atoms RESET, ERROR, BREAK, HELP, PRINTLEVEL,
RUBOUT, or RAID, then INTERRUPTCHAR assigns CHAR to the indicated Interlisp
interrupt channel, (reenabling the channel if previously disabled).

If the argument TYP/FORM is a symbol designating a predefined system interrupt
(RESET, ERROR, BREAK, etc), and HARDFLG is omitted or NIL, then the hardness
defaults to the standard hardness of the system interrupt (e.g., MOUSE for the ERROR
interrupt).

If TYP/FORM is any other literal atom, CHAR is enabled as an interrupt character that when
typed causes the atom TYP/FORM to be immediately set to T.

29-3

TERMINAL INPUT/OUTPUT

If TYP/FORM is a list, CHAR is enabled as a user interrupt character, and TYP/FORM is the
form that is evaluated when CHAR is typed. The interrupt will be hard if HARDFLG = T,
otherwise soft.

(INTERRUPTCHAR T) restores all Interlisp channels to their original state, and disables
all user interrupts.

HARDFLG determines what process the interrupt should run in. If HARDFLG is NIL, the
interrupt will run in the TTY process, which is the process currently receiving keyboard
input. If HARDFLG is T, the interrupt will occur in whichever process happens to be
running. If HARDFLG is MOUSE, the interrupt will happen in the mouse process, if the
mouse is busy, otherwise in the TTY process.

INTERRUPTCHAR returns a value which, when given as the CHAR argument to
INTERRUPTCHAR, will restore things as they were before the call to INTERRUPTCHAR.
Therefore, INTERRUPTCHAR can be used in conjunction with RESETFORM or
RESETLST (see Chapter 14).

INTERRUPTCHAR is undoable.

(RESET.INTERRUPTS PERMITTEDINTERRUPTS SAVECURRENT?) [Function]

PERMITTEDINTERRUPTS is a list of interrupt character settings to be performed, each of
the form (CHAR TYP/FORM HARDFLG). The effect of RESET.INTERRUPTS is as if
(INTERRUPTCHAR CHAR TYP/FORM HARDFLG) were performed for each item on
PERMITTEDINTERRUPTS, and (INTERRUPTCHAR OTHERCHAR NIL) were
performed on every other existing interrupt character.

If SAVECURRENT? is non-NIL, then RESET.INTERRUPTS returns the current state of
the interrupts in a form that could be passed to RESET.INTERRUPTS, otherwise it
returns NIL. This can be used with a RESET.INTERRUPTS that appears in a
RESETFORM, so that the list is built at "entry", but not upon "exit".

(LISPINTERRUPTS) [Function]

Returns the initial default interrupt character settings for Interlisp-D, as a list that
RESET.INTERRUPTS would accept.

(INTERRUPTABLE FLAG) [Function]

if FLAG = NIL, turns interrupts off. If FLAG = T, turns interrupts on. Value is
previous setting. INTERRUPTABLE compiles open.

Any interrupt character typed while interrupts are off is treated the same as any other
character, i.e., placed in the input buffer, and will not cause an interrupt when interrupts
are turned back on.

29-4

INTERLISP-D REFERENCE MANUAL

Terminal Tables

A read table (see Chapter 25) contains input/output information that is media-independent. For
example, the action of parentheses is the same regardless of the device from which the input is being
performed. A terminal table is an object that contains information that pertains to terminal
input/output operations only, such as the character to type to delete the last character or to delete the
last line. In addition, terminal tables contain such information as how line-buffering is to be
performed, how control characters are to be echoed/printed, whether lowercase input is to be
converted to upper case, etc.

Using the functions below, the user may change, reset, or copy terminal tables, or create a new
terminal table and install it as the primary terminal table via SETTERMTABLE. However, unlike read
tables, terminal tables cannot be passed as arguments to input/output functions.

(GETTERMTABLE TTBL) [Function]

If TTBL = NIL, returns the primary (i.e., current) terminal table. If TTBL is a terminal
table, return TTBL. Otherwise, generates an ILLEGAL TERMINAL TABLE error.

(COPYTERMTABLE TTBL) [Function]

Returns a copy of TTBL. TTBL can be a real terminal table, NIL (copies the primary
terminal table), or ORIG (returns a copy of the original system terminal table). Note that
COPYTERMTABLE is the only function that creates a terminal table.

(SETTERMTABLE TTBL) [Function]

Sets the primary terminal table to be TTBL. Returns the previous primary terminal table.
Generates an ILLEGAL TERMINAL TABLE error if TTBL is not a real terminal table.

(RESETTERMTABLE TTBL FROM) [Function]

Copies (smashes) FROM into TTBL. FROM and TTBL can be NIL or a real terminal table. In
addition, FROM can be ORIG, meaning to use the system’s original terminal table.

(TERMTABLEP TTBL) [Function]

Returns TTBL, if TTBL is a real terminal table, NIL otherwise.

Terminal Syntax Classes

A terminal table associates with each character a single "terminal syntax class", one of CHARDELETE,
LINEDELETE, WORDDELETE, RETYPE, CTRLV, EOL, and NONE. Unlike read table classes, only one
character in a particular terminal table can belong to each of the classes (except for the default class
NONE). When a new character is assigned one of these syntax classes by SETSYNTAX (see Chapter 25),
the previous character is disabled (i.e., reassigned the syntax class NONE), and the value of
SETSYNTAX is the code for the previous character of that class, if any, otherwise NIL.

29-5

TERMINAL INPUT/OUTPUT

The terminal syntax classes are interpreted as follows:

CHARDELETE (Initially BackSpace and Control-A in Interlisp-D) Typing
this character deletes the previous character typed.
Repeated use of this character deletes successive
characters back to the beginning of the line.

LINEDELETE (Initially Control-Q in Interlisp-D) Typing this character
deletes the whole line; it cannot be used repeatedly.

WORDDELETE (Initially Control-W in Interlisp-D) Typing this character
deletes the previous "word", i.e., sequence of non-
separator characters.

RETYPE (Initially Control-R) Causes the line to be retyped as
Interlisp sees it (useful when repeated deletions make it
difficult to see what remains).

CTRLV
CNTRLV (Initially Control-V) When followed by A, B, ... Z, inputs

the corresponding control character control-A, control-B,
... control-Z. This allows interrupt characters to be input
without causing an interrupt.

EOL On input from a terminal, the EOL character signals to the
line buffering routine to pass the input back to the calling
function. It also is used to terminate inputs to READLINE
(see Chapter 13). In general, whenever the phrase
carriage-return linefeed is used, what is meant is the
character with terminal syntax class EOL.

NONE The terminal syntax class of all other characters.

GETSYNTAX, SETSYNTAX, and SYNTAXP all work on terminal tables as well as read tables (see page
X.XX). As with read tables, full sixteen-bit NS characters can be specified in terminal tables (see
Chapter 2). When given NIL as a TABLE argument, GETSYNTAX and SYNTAXP use the primary read
table or primary terminal table depending on which table contains the indicated CLASS argument.
For example, (SETSYNTAX CH ’BREAK) refers to the primary read table, and (SETSYNTAX CH
’CHARDELETE) refers to the primary terminal table. In the absence of such information, all three
functions default to the primary read table; e.g., (SETSYNTAX ’{ ’%[) refers to the primary read
table. If given incompatible CLASS and table arguments, all three functions generate errors. For
example, (SETSYNTAX CH ’BREAK TTBL), where TTBL is a terminal table, generates an ILLEGAL
READTABLE error, and (GETSYNTAX ’CHARDELETE RDTBL) generates an ILLEGAL TERMINAL
TABLE error.

Terminal Control Functions

(ECHOCHAR CHARCODE MODE TTBL) [Function]

29-6

INTERLISP-D REFERENCE MANUAL

ECHOCHAR sets the "echo mode" of the character CHARCODE to MODE in the terminal table
TTBL. The "echo mode" determines how the character is to be echoed or printed. Note
that although the name of this function suggests echoing only, it affects all output of the
character, both echoing of input and printing of output.

CHARCODE should be a character code. CHARCODE can also be a list of characters, in which
case ECHOCHAR is applied to each of them with arguments MODE and TTBL. Note that
echo modes can be specified for full sixteen-bit NS characters (see Chapter 2).

MODE should be one of the litatoms IGNORE, REAL, SIMULATE, or INDICATE which
specify how the character should be echoed or printed:

IGNORE CHARCODE is never printed.

REAL CHARCODE itself is printed. Some terminals may respond to
certain control and meta characters in interesting ways.

SIMULATE Output of CHARCODE is simulated. For example, control-I
(tab) may be simulated by printing spaces. The simulation is
machine-specific and beyond the control of the user.

INDICATE For control or meta characters, CHARCODE is printed as #
and/or ↑ followed by the corresponding alphabetic
character. For example, Control-A would echo as ↑A, and
meta-Control-W would echo as #↑W.

The value of ECHOCHAR is the previous echo mode for CHARCODE. If MODE = NIL,
ECHOCHAR returns the current echo mode without changing it.

Warning: In some fonts, control and meta characters may be used for printable characters.
If the echomode is set to INDICATE for these characters, they will not print out correctly.

(ECHOCONTROL CHAR MODE TTBL) [Function]

ECHOCONTROL is an old, limited version of ECHOCHAR, that can only specify the echo
mode of control characters. CHAR is a character or character code. If CHAR is an alphabetic
character (or code), it refers to the corresponding control character, e.g., (ECHOCONTROL
’Z ’INDICATE) if equivalent to (ECHOCHAR (CHARCODE ↑Z) ’INDICATE).

(ECHOMODE FLG TTBL) [Function]

If FLG = T, turns echoing for terminal table TTBL on. If FLG = NIL, turns echoing off.
Returns the previous setting.

Note: Unlike ECHOCHAR, this only affects echoing of typed-in characters, not printing of
characters.

(GETECHOMODE TTBL) [Function]

Returns the current echo mode for TTBL.

29-7

TERMINAL INPUT/OUTPUT

The following functions manipulate the "raise mode," which determines whether lower case
characters are converted to upper case when input from the terminal. There is no "raise mode" for
input from files.

(RAISE FLG TTBL) [Function]

Sets the RAISE mode for terminal table TTBL. If FLG = NIL, all characters are passed
as typed. If FLG = T, input is echoed as typed, but lowercase letters are converted to
upper case. If FLG = 0, input is converted to uppercase before it is echoed. Returns the
previous setting.

(GETRAISE TTBL) [Function]

Returns the current RAISE mode for TTBL.

(DELETECONTROL TYPE MESSAGE TTBL) [Function]

Specifies the output protocol when a CHARDELETE or LINEDELETE is typed, by
specifying character strings to print when characters are deleted.

Interlisp-10 (designed for use on hardcopy terminals) echos the characters being deleted,
preceding the first by a \ and following the last by a \, so that it is easy to see exactly
what was deleted. Interlisp-D is initially set up to physically erase the deleted characters
from the display, so the DELETECONTROL strings are initialized to the null string.

The various values of TYPE specify different phases of the deletion, as follows:

1STCHDEL MESSAGE is the message printed the first time CHARDELETE
is typed. Initially "\" in Interlisp-10.

NTHCHDEL MESSAGE is the message printed when the second and
subsequent CHARDELETE characters are typed (without
intervening characters). Initially "" in Interlisp-10.

POSTCHDEL MESSAGE is the message printed when input is resumed
following a sequence of one or more CHARDELETE
characters. Initially "\" in Interlisp-10.

EMPTYCHDEL MESSAGE is the message printed when a CHARDELETE is
typed and there are no characters in the buffer. Initially
"##cr" in Interlisp-10.

ECHO If TYPE = ECHO, the characters deleted by CHARDELETE
are echoed. MESSAGE is ignored.

NOECHO If TYPE = NOECHO, the characters deleted by
CHARDELETE are not echoed. MESSAGE is ignored.

LINEDELETE MESSAGE is the message printed when the LINEDELETE

character is typed. Initially "##cr".

29-8

INTERLISP-D REFERENCE MANUAL

Note: In Interlisp-10, the LINEDELETE, 1STCHDEL, NTHCHDEL, POSTCHDEL, and
EMPTYCHDEL messages must be 4 characters or fewer in length.

DELETECONTROL returns the previous message as a string. If MESSAGE = NIL, the
value returned is the previous message without changing it. For TYPE = ECHO and
NOECHO, the value of DELETECONTROL is the previous echo mode, i.e., ECHO or
NOECHO.

(GETDELETECONTROL TYPE TTBL) [Function]

Returns the current DELETECONTROL mode for TYPE in TTBL.

Line-Buffering

Characters typed at the terminal are stored in two buffers before they are passed to an input function.
All characters typed in are put into the low-level "system buffer", which allows type-ahead. When an
input function is entered, characters are transferred to the "line buffer" until a character with terminal
syntax class EOL appears (or, for calls from READ, when the count of unbalanced open parentheses
reaches 0). Note that PEEKC is an exception; it returns the character immediately when its second
argument is NIL. Until this time, the user can delete characters one at a time from the line buffer by
typing the current CHARDELETE character, or delete the entire line buffer back to the last carriage-
return by typing the current LINEDELETE.

This line editing is not performed by READ or RATOM, but by Interlisp, i.e., it does not matter (nor is it
necessarily known) which function will ultimately process the characters, only that they are still in the
Interlisp line buffer. However, the function that is requesting input at the time the buffering starts
does determine whether parentheses counting is observed. For example, if a program performs
(PROGN (RATOM) (READ)) and the user types in "A (B C D)", the user must type in the
carriage-return following the right parenthesis before any action is taken, because the line buffering is
happening under RATOM. If the program had performed (PROGN (READ) (READ)), the line-
buffering would be under READ, so that the right parenthesis would terminate line buffering, and no
terminating carriage-return would be required.

Once a carriage-return has been typed, the entire line is "available" even if not all of it is processed by
the function initiating the request for input. If any characters are "left over", they are returned
immediately on the next request for input. For example, (LIST (RATOM) (READC) (RATOM))
when the input is "A Bcr" returns the three-element list (A % B) and leaves the carriage-return in the
buffer.

If a carriage-return is typed when the input under READ is not "complete" (the parentheses are not
balanced or a string is in progress), line buffering continues, but the lines completed so far are not
available for editing with CHARDELETE or LINEDELETE.

The function CONTROL is available to defeat line-buffering:

(CONTROL MODE TTBL) [Function]

29-9

TERMINAL INPUT/OUTPUT

If MODE = T, eliminates Interlisp’s normal line-buffering for the terminal table TTBL. If
MODE = NIL, restores line-buffering (normal). When operating with a terminal table in
which (CONTROL T) has been performed, characters are returned to the calling
function without line-buffering as described below.

CONTROL returns its previous setting.

(GETCONTROL TTBL) [Function]

Returns the current control mode for TTBL.

The function that initiates the request for input determines how the line is treated when
(CONTROL T) is in effect:

READ If the expression being typed is a list, the effect is the same as
though done with (CONTROL NIL), i.e., line-buffering
continues until a carriage-return or matching parentheses. If
the expression being typed is not a list, it is returned as soon
as a break or separator character is encountered, e.g.,
(READ) when the input is "ABC<space>" immediately
returns ABC. CHARDELETE and LINEDELETE are
available on those characters still in the buffer. Thus, if a
program is performing several reads under (CONTROL T),
and the user types "NOW IS THE TIME" followed by
Control-Q, only TIME is deleted, since the rest of the line has
already been transmitted to READ and processed.

An exception to the above occurs when the break or
separator character is an opening parenthesis, bracket or
double-quote, since returning at this point would leave the
line buffer in a "funny" state. Thus if the input to (READ) is
"ABC(", the ABC is not read until a carriage-return or
matching parentheses is encountered. In this case the user
could LINEDELETE the entire line, since all of the characters
are still in the buffer.

RATOM Characters are returned as soon as a break or separator
character is encountered. Until then, LINEDELETE and
CHARDELETE may be used as with READ. For example,
(RATOM) followed by "ABC<control-A><space>" returns
AB. (RATOM) followed by "(<control-A>" returns (and types
indicating that control-A was attempted with nothing in
the buffer, since the (is a break character and would
therefore already have been read.

READC
PEEKC The character is returned immediately; no line editing is

possible. In particular, (READC) is perfectly happy to return

29-10

INTERLISP-D REFERENCE MANUAL

the CHARDELETE or LINEDELETE characters, or the ESCAPE
character (%).

The system buffer and line buffer can be directly manipulated using the following functions.

(CLEARBUF FILE FLG) [Function]

Clears the input buffer for FILE. If FILE is T and FLG is T, the contents of Interlisp’s
system buffer and line buffer are saved (and can be obtained via SYSBUF and LINBUF
described below).

When you type Control-D or Control-E, or any of the interrupt characters that require
terminal interaction (Control-G, or Control-P), Interlisp automatically performs
(CLEARBUF T T). For Control-P and, when the break is exited normally, control-H,
Interlisp restores the buffer after the interaction.

The action of (CLEARBUF T), i.e., clearing of typeahead, is also available as the RUBOUT
interrupt character, initially assigned to the delete key in Interlisp-D. Note that this
interrupt clears both buffers at the time it is typed, whereas the action of the CHARDELETE
and LINEDELETE character occur at the time they are read.

(SYSBUF FLG) [Function]

If FLG = T, returns the contents of the system buffer (as a string) that was saved at the
last (CLEARBUF T T). If FLG = NIL, clears this internal buffer.

(LINBUF FLG) [Function]

Same as SYSBUF for the line buffer.

If both the system buffer and Interlisp’s line buffer are empty, the internal buffers associated with
LINBUF and SYSBUF are not changed by a (CLEARBUF T T).

(BKSYSBUF X FLG RDTBL) [Function]

BKSYSBUF appends the PRIN1-name of X to the system buffer. The effect is the same as
though the user typed X. Some implementations have a limit on the length of X, in which
case characters in X beyond the limit are ignored. Returns X.

If FLG is T, then the PRIN2-name of X is used, computed with respect to the readtable
RDTBL. If RDTBL is NIL or omitted, the current readtable of the TTY process (which is to
receive the characters) is used. Use this for copy selection functions that want their output
to be a readable expression in an Exec.

Note that if you are typing at the same time as the BKSYSBUF is being performed, the
relative order of the typein and the characters of X is unpredictable.

(BKLINBUF STR) [Function]

29-11

TERMINAL INPUT/OUTPUT

STR is a string. BKLINBUF sets Interlisp’s line buffer to STR. Some implementations
have a limit on the length of STR, in which case characters in STR beyond the limit are
ignored. Returns STR.

(BKSYSCHARCODE CODE) [Function]

This function appends the character code CODE to the system input buffer. The function
BKSYSBUF is implemented by repeated calls to BKSYSCHARCODE.

BKLINBUF, BKSYSBUF, LINBUF, and SYSBUF provide a way of "undoing" a CLEARBUF. Thus to
"peek" at various characters in the buffer, one could perform (CLEARBUF T T), examine the
buffers via LINBUF and SYSBUF, and then put them back.

The more common use of these functions is in saving and restoring typeahead when a program
requires some unanticipated (from the user’s standpoint) input. The function RESETBUFS provides
a convenient way of simply clearing the input buffer, performing an interaction with the user, and
then restoring the input buffer.

(RESETBUFS FORM1, FORM2,... FORMN) [NLambda NoSpread Function]

Clears any typeahead (ringing the terminal’s bell if there was, indeed, typeahead),
evaluates FORM1, FORM2,... FORMN, then restores the typeahead. Returns the value of

FORMN. Compiles open.

Dribble Files

A dribble file is a "transcript" of all of the input and output on a terminal. In Interlisp-D, DRIBBLE
opens a dribble file for the current process, recording the terminal input and output for that process.
Multiple processes can have separate dribble files open at the same time.

(DRIBBLE FILE APPENDFLG THAWEDFLG) [Function]

Opens FILE and begins recording the typescript. Returns the old dribble file if any,
otherwise NIL. If APPENDFLG = T, the typescript will be appended to the end of FILE.
If THAWEDFLG = T, the file will be opened in "thawed" mode, for those implementations
that support it. (DRIBBLE) closes the dribble file for the current process. Only one
dribble file can be active for each process at any one time, so (DRIBBLE FILE1)
followed by (DRIBBLE FILE2) will cause FILE1 to be closed.

(DRIBBLEFILE) [Function]

Returns the name of the current dribble file for the current process, if any, otherwise NIL.

29-12

INTERLISP-D REFERENCE MANUAL

Terminal input is echoed to the dribble file a line buffer at a time. Thus, the typescript produced is
somewhat neater than that appearing on the user’s terminal, because it does not show characters that
were erased via Control-A or Control-Q. Note that the typescript file is not included in the list of files
returned by (OPENP), nor will it be closed by a call to CLOSEALL or CLOSEF. Only (DRIBBLE)
closes the typescript file.

Cursor and Mouse

A mouse is a small box connected to the computer keyboard by a long wire. On the top of the mouse
are two or three buttons. On the bottom is a rolling ball or a set of photoreceptors, to detect when the
mouse is moved. As the mouse is moved on a surface, a small image on the screen, called the cursor,
moves to follow the movement of the mouse. By moving the mouse, the user can cause the cursor to
point to any part of the display screen.

The mouse and cursor are an important part of the Interlisp-D user interface. The Interlisp-D window
system allows the user to create, move, and reshape windows, and to select items from displayed
menus, all by moving the mouse and clicking the mouse buttons. This section describes the low-level
functions used to control the mouse and cursor.

Changing the Cursor Image

Interlisp-D maintains the image of the cursor on the screen, moving it as the mouse is moved. The
bitmap that becomes visible as the cursor can be accessed by the following function:

(CURSORBITMAP) [Function]

Returns the cursor bitmap.

CURSORWIDTH [Variable]
CURSORHEIGHT [Variable]

Value is the width and height of the cursor bitmap, respectively.

The cursor bitmap can be changed like any other bitmap by BITBLTing into it or pointing a display
stream at it and printing or drawing curves. The CURSOR datatype has the following field names
CUBITSPERPIXEL CUIMAGE, CUMASK, CUHOTSPOTX, CUHOTSPOTY, CUDATA

CURSOR objects can be saved on a file using the file package command CURSORS, or the UGLYVARS
file package command.

(CURSORCREATE BITMAP X Y) [Function]

Returns a cursor object which has BITMAP as its image and the location (X,Y) as the hot
spot. If X is a POSITION, it is used as the hot spot. If BITMAP has dimensions different
from CURSORWIDTH by CURSORHEIGHT, the lesser of the widths and the lesser of the

29-13

TERMINAL INPUT/OUTPUT

heights are used to determine the bits that actually get copied into the lower left corner of
the cursor. If X is NIL, 0 is used. If Y is NIL, CURSORHEIGHT-1 is used. The default
cursor is an uparrow with its tip in the upper left corner and its hot spot at
(0,CURSORHEIGHT-1).

(CURSOR NEWCURSOR —) [Function]

Returns a CURSOR record instance that contains (a copy of) the current cursor
specification. If NEWCURSOR is a CURSOR record instance, the cursor will be set to the
values in NEWCURSOR. If NEWCURSOR is T, the cursor will be set to the default cursor

DEFAULTCURSOR, an upward left pointing arrow: .

(SETCURSOR NEWCURSOR —) [Function]

If NEWCURSOR is a CURSOR record instance, the cursor will be set to the values in
NEWCURSOR. This does not return the old cursor, and therefore, provides a way of
changing the cursor without using storage.

(FLIPCURSOR) [Function]

Inverts the cursor.

The following list describes the cursors used by the Interlisp-D system. Most of them are
stored as the values of various variables.

In variable DEFAULTCURSOR. This is the default cursor.

In variable WAITINGCURSOR. Represents an hourglass. Used during
long computations.

In variable MOUSECONFIRMCURSOR. Indicates that the system is
waiting for the user to confirm an action by pressing the left mouse
button, or aborting the action by pressing any other button. Used by
the function MOUSECONFIRM (see Chapter 28).

In variable SYSOUTCURSOR. Indicates that the system is saving the
virtual memory in a sysout file. See SYSOUT, Chapter 12.

In variable SAVINGCURSOR. Indicates that SAVEVM has been called
automatically to save the virtual memory state after the system is idle
for long enough. See SAVEVMWAIT, Chapter 12.

In variable CROSSHAIRS. Used by GETPOSITION (see Chapter 28)
to indicate a position.

29-14

INTERLISP-D REFERENCE MANUAL

In variable BOXCURSOR. Used by GETBOXPOSITION (see Chapter
28) to indicate where to place the corner of a box.

In variable FORCEPS. Used by GETREGION (see Chapter 28) when
the user switches corners.

In variable EXPANDINGBOX. Used by GETREGION (see Chapter 28)
when a box is first displayed.

In variable UpperRightCursor.

In variable LowerRightCursor.

In variable UpperLeftCursor.

In variable LowerLeftCursor.

The previous four cursors are used by GETREGION (see Chapter 28) to indicate the four
corners of a region.

In variable VertThumbCursor. Used during scrolling to indicate
thumbing in a vertical scroll bar.

In variable VertScrollCursor.

In variable ScrollUpCursor.

In variable ScrollDownCursor.

The previous four cursors are used by SCROLL.HANDLER (see Chapter 28) during
vertical scrolling.

In variable HorizThumbCursor. Used during scrolling to indicate
thumbing in a horizontal scroll bar.

In variable HorizScrollCursor.

In variable ScrollLeftCursor.

In variable ScrollRightCursor.

The previous four cursors are used by SCROLL.HANDLER (see Chapter 28) during
horizontal scrolling.

29-15

TERMINAL INPUT/OUTPUT

, , ,

, , These cursors are used by the Teleraid low-level debugger. These
cursors are not accessable as standard Interlisp-D cursors.

Flashing Bars on the Cursor

The low-level Interlisp-D system uses the cursor to display certain system status information, such as
garbage collection or swapping. This is done because changing the cursor image is very quick, and
does not require interacting with the window system. Interlisp inverts horizontal bars on the cursor
when the system is swapping pages, or doing certain stack operations. Normally, these bars are only
inverted for a very short time, so they look like they are flashing. These cursor changes are
interpreted as follows:

Inverted cursor: Whatever image is being displayed as the cursor, whenever Interlisp
does a garbage collection, the whole cursor is inverted.

Top bar: Swap read. On when Interlisp is swapping in a page from the virtual
memory file into the real memory. It is also on when Interlisp allocates
a new virtual memory page, even though that doesn’t involve a disk
read. If this is flashing a lot, the system is doing a lot of swapping. This
is an indication that the virtual memory working set is fragmented (see
Chapter 22). Performance may be improved by reloading a clean
Interlisp system.

Upper middle bar: Stack operations. If this is flashing a lot, it suggests that some process is
neglecting to release stack pointers in a timely fashion (see Chapter 11).

Lowereler middle bar: Stack operations. On when Interlisp is moving frames on the stack. If
the system is slow, and this is flashing a lot, HARDRESET (see Chapter
23) sometimes helps.

Bottom bar: Swap write. On when Interlisp writes a dirty virtual memory page
from the real memory back into the virtual memory file.

Cursor Position

The position at which the cursor bitmap is being displayed can be read or set using the following
functions:

(CURSORPOSITION NEWPOSITION DISPLAYSTREAM OLDPOSITION) [Function]

Returns the location of the cursor in the coordinate system of DISPLAYSTREAM (or the
current display stream, if DISPLAYSTREAM is NIL). If NEWPOSITION is non-NIL, it

29-16

INTERLISP-D REFERENCE MANUAL

should be a position and the cursor will be positioned at NEWPOSITION. If NEWPOSITION
is NIL, the current position is simple returned.

 The current position of the cursor is the position of the "hot spot" of the cursor, not the
position of the cursor bitmap.

If OLDPOSITION is a POSITION object, this object will be changed to point to the
location of the cursor and returned, rather of allocating a new POSITION. This can
improve performance if CURSORPOSITION is called repeatedly to track the cursor.

 To get the location of the cursor in absolute screen coordinates, use the variables
LASTMOUSEX and LASTMOUSEY.

(ADJUSTCURSORPOSITION DELTAX DELTAY) [Function]

Moves the cursor DELTAX points in the X direction and DELTAY points in the Y direction.
DELTAX and DELTAY default to 0.

Mouse Button Testing

There are two or three keys on the mouse. These keys (also called buttons) are referred to by their
location: LEFT, MIDDLE, or RIGHT. The following macros are provided to test the state of the
mouse buttons:

(MOUSESTATE BUTTONFORM) [Macro]

Reads the state of the mouse buttons, and returns T if that state is described by
BUTTONFORM. BUTTONFORM can be one of the key indicators LEFT, MIDDLE, or RIGHT;
the atom UP (indicating all keys are up); the form (ONLY KEY); or a form of AND, OR,
or NOT applied to any valid button form.

For example: (MOUSESTATE LEFT) will be true if the left mouse button is down.
(MOUSESTATE (ONLY LEFT)) will be true if the left mouse button is the only one
down. (MOUSESTATE (OR (NOT LEFT) MIDDLE)) will be true if either the left
mouse button is up or the middle mouse button is down.

(LASTMOUSESTATE BUTTONFORM) [Macro]

Similar to MOUSESTATE, but tests the value of LASTMOUSEBUTTONS (below) rather
than getting the current state. This is useful for determining which keys caused
MOUSESTATE to be true.

(UNTILMOUSESTATE BUTTONFORM INTERVAL) [Macro]

BUTTONFORM is as described in MOUSESTATE. Waits until BUTTONFORM is true or until
INTERVAL milliseconds have elapsed. The value of UNTILMOUSESTATE is T if
BUTTONFORM was satisfied before it timed out, otherwise NIL. If INTERVAL is NIL, it
waits indefinitely. This compiles into an open loop that calls the TTY wait background

29-17

TERMINAL INPUT/OUTPUT

function. This form should not be used inside the TTY wait background function.
UNTILMOUSESTATE does not use any storage during its wait loop.

Low Level Mouse Functions

This section describes the functions and variables that provide low level access to the mouse and
cursor.

(LASTMOUSEX DISPLAYSTREAM) [Function]

Returns the value of the cursor’s X position in the coordinates of DISPLAYSTREAM (as of
the last call to GETMOUSESTATE, below).

(LASTMOUSEY DISPLAYSTREAM) [Function]

Returns the value of the cursor’s Y position in the coordinates of DISPLAYSTREAM (as of
the last call to GETMOUSESTATE, below).

LASTMOUSEX [Variable]

Value is the X position of the cursor in absolute screen coordinates (as of the last call to
GETMOUSESTATE, below).

LASTMOUSEY [Variable]

Value is the Y position of the cursor in absolute screen coordinates (as of the last call to
GETMOUSESTATE, below).

LASTMOUSEBUTTONS [Variable]

Value is an integer that has bits on corresponding to the mouse buttons that are down (as
of the last call to GETMOUSESTATE, below). Bit 4Q is the left mouse button, 2Q is the right
button, 1Q is the middle button.

LASTKEYBOARD [Variable]

Value is an integer encoding the state of certain keys on the keyboard (as of the last call to
GETMOUSESTATE, below). Bit 200Q = lock, 100Q = left shift, 40Q = ctrl, 10Q = right shift,
4Q = blank Bottom, 2Q = blank Middle, 1Q = blank Top. If the key is down, the
corresponding bit is on.

(GETMOUSESTATE) [Function]

Reads the current state of the mouse and sets the variables LASTMOUSEX, LASTMOUSEY,
and LASTMOUSEBUTTONS. In polling mode, the program must remember the previous
state and look for changes, such as a key going up or down, or the cursor moving outside
a region of interest.

(DECODEBUTTONS BUTTONSTATE) [Function]

29-18

INTERLISP-D REFERENCE MANUAL

Returns a list of the mouse buttons that are down in the state BUTTONSTATE. If
BUTTONSTATE is not a small integer, the value of LASTMOUSEBUTTONS (above) is used.
The button names that can be returned are: LEFT, MIDDLE, RIGHT (the three mouse keys).

Keyboard Interpretation

For each key on the keyboard and mouse there is a corresponding bit in memory that the hardware
turns on and off as the key moves up and down. System-level routines decode the meaning of key
transitions according to a table of "key actions", which may be to put particular character codes in the
sysbuffer, cause interrupts, change the internal shift/control status, or create events to be placed in the
mouse buffer.

(KEYDOWNP KEYNAME) [Function]

Used to read the instantaneous state of any key, independent of any buffering or pre-
assigned key action. Returns T if the key named KEYNAME is down at the moment the
function is executed.

Most keys are named by the characters on the key-top. Therefore, (KEYDOWNP ’a) or
(KEYDOWNP ’A) returns T if the "A" key is down.

There are a number of keys that do not have standard names printed on them. These can
be accessed by special names as follows:

Space SPACE

Carriage return CR

Line-feed LF

Backspace BS

Tab TAB

Blank keys on 1132 The 1132 keyboard has three unmarked keys on the
right of the normal keyboard. These can be accessed by
BLANK-BOTTOM, BLANK-MIDDLE, and BLANK-
TOP.

Escape ESCAPE

Shift keys LSHIFT for the left shift key, RSHIFT for the right
shift key.

Shift lock key LOCK

Control key CTRL

Mouse buttons The state of the mouse buttons can be accessed using
LEFT, MIDDLE, and RIGHT.

29-19

TERMINAL INPUT/OUTPUT

If KEYNAME is a small integer, it is taken to be the internal key number. Otherwise, it is
taken to be the name of the key. This means, for example, that the name of the "6" key is
not the number 6. Instead, spelled-out names for all the digit keys have been assigned.
The "6" key is named SIX. It happens that the key number of the "6" key is 2. Therefore,
the following two forms are equivalent:

(KEYDOWNP ’SIX)

(KEYDOWNP 2)

(SHIFTDOWNP SHIFT) [Function]

Returns T if the internal "shift" flag specified by SHIFT is on; NIL otherwise.

If SHIFT = 1SHIFT, 2SHIFT, LOCK, META, or CTRL, SHIFTDOWNP returns the state of
the left shift, right shift, shift lock, control, and meta flags, respectively.

If SHIFT = SHIFT, SHIFTDOWNP returns T if either the left or right shift flag is on.

If SHIFT = USERMODE1, USERMODE2, or USERMODE3, SHIFTDOWNP returns the state
of one of three user-settable flags that have no other effect on key interpretation. These
flags can be set or cleared on character transitions by using KEYACTION (below).

(KEYACTION KEYNAME ACTIONS —) [Function]

Changes the internal tables that define the action to be taken when a key transition is
detected by the system keyboard handler. KEYNAME is specified as for KEYDOWNP.
ACTIONS is a dotted pair of the form (DOWN-ACTION . UP-ACTION), where the
acceptable transition actions and their interpretations are:

NIL

IGNORE Take no action on this transition (the default for up-transitions on all
ordinary characters).

(CHAR SHIFTEDCHAR LOCKFLAG)

If a transition action is a three-element list, CHAR and SHIFTEDCHAR
are either character codes or (non-numeric) single-character litatoms
standing for their character codes. Note that CHAR and
SHIFTEDCHAR can be full sixteen-bit NS characters (see page X.XX).
When the transition occurs, CHAR or SHIFTEDCHAR is transmitted to
the system buffer, depending on whether either of the two shift keys are
down.

LOCKFLAG is optional, and may be LOCKSHIFT or NOLOCKSHIFT.
If LOCKFLAG is LOCKSHIFT, then SHIFTEDCHAR will also be
transmitted when the LOCK shift is down (the alphabetic keys initially
specify LOCKSHIFT, but the digit keys specify NOLOCKSHIFT). For

29-20

INTERLISP-D REFERENCE MANUAL

example, (a A LOCKSHIFT) and (61Q ! NOLOCKSHIFT) are
the initial settings for the down transitions of the "a" and "1" keys
respectively.

1SHIFTUP, 1SHIFTDOWN

2SHIFTUP, 2SHIFTDOWN

CTRLUP, CTRLDOWN

METAUP, METADOWN Change the status of the internal "shift" flags for the left shift, right shift,
control, and meta keys, respectively. These shifts affect the
interpretation of ordinary key actions. If either of the shifts is down,
then SHIFTEDCHARs are transmitted. If the control flag is on, then the
the seventh bit of the character code is cleared as characters are
transmitted. If the meta flag is on, the the eighth bit of the character
code is set (normally cleared) as characters are transmitted. For
example, the initial keyactions for the left shift key is (1SHIFTDOWN
. 1SHIFTUP).

LOCKUP, LOCKDOWN, LOCKTOGGLE

Change the status of the internal "shift" flags for the shift lock key. If
the lock flag is down, then SHIFTEDCHARs are transmitted if the key
action specified LOCKSHIFT. LOCKUP and LOCKDOWN clear and set
the shift lock flag, respectively. LOCKTOGGLE complements the flag
(turning it off if the flag is on; on if the flag is off).

USERMODE1UP, USERMODE1DOWN, USERMODE1TOGGLE

USERMODE2UP, USERMODE2DOWN, USERMODE2TOGGLE

USERMODE3UP, USERMODE3DOWN, USERMODE3TOGGLE

Change the status of the three user flags USERMODE1, USERMODE2,
and USERMODE3, whose status can be determined by calling
SHIFTDOWNP (above). These flags have no other effect on key
interpretation.

EVENT An encoding of the current state of the mouse and selected keys is
placed in the mouse-event buffer when this transition is detected.

KEYACTION returns the previous setting for KEYNAME. If ACTIONS
is NIL, returns the previous setting without changing the tables.

(MODIFY.KEYACTIONS KEYACTIONS SAVECURRENT?) [Function]

KEYACTIONS is a list of key actions to be set, each of the form (KEYNAME .
ACTIONS). The effect of MODIFY.KEYACTIONS is as if (KEYACTION KEYNAME
ACTIONS) were performed for each item on KEYACTIONS.

29-21

TERMINAL INPUT/OUTPUT

If SAVECURRENT? is non-NIL, then MODIFY.KEYACTIONS returns a list of all the
results from KEYACTION, otherwise it returns NIL. This can be used with a
MODIFY.KEYACTIONS that appears in a RESETFORM, so that the list is built at "entry",
but not upon "exit".

(METASHIFT FLG) [NoSpread Function]

If FLG is T, changes the keyboard handler (via KEYACTION) so as to interpret the "stop"
key on the 1108 as a metashift: if a key is struck while the meta is down, it is read with the
200Q bit set. For CHAT users this is a way of getting an "Edit" key on your simulated
Datamedia.

If FLG is other than NIL or T, it is passed as the ACTIONS argument to KEYACTION.
The reason for this is that if someone has set the "STOP" key to some random behavior,
then (RESETFORM (METASHIFT T) --) will correctly restore that random
behavior.

Display Screen

Medley supports a high-resolution bitmap display screen. All printing and drawing operations to the
screen are actually performed on a bitmap in memory, which is read by the computer hardware to
become visible as the screen. This section describes the functions used to control the appearance of
the display screen.

(SCREENBITMAP) [Function]

Returns the screen bitmap.

SCREENWIDTH [Variable]
SCREENHEIGHT [Variable]

Value is the width and height of the screen bitmap, respectively.

WHOLEDISPLAY [Variable]

Value is a region that is the size of the screen bitmap.

The background shade of the display window can be changed using the following function:

(CHANGEBACKGROUND SHADE —) [Function]

Changes the background shade of the window system. SHADE determines the pattern of
the background. If SHADE is a texture, then the background is simply painted with it. If
SHADE is a BITMAP, the background is tesselated (tiled) with it to cover the screen. If
SHADE is T, it changes to the original shade, the value of WINDOWBACKGROUNDSHADE.
It returns the previous value of the background.

WINDOWBACKGROUNDSHADE [Variable]

29-22

INTERLISP-D REFERENCE MANUAL

Value is the default background shade for the display.

(VIDEOCOLOR BLACKFLG) [NoSpread Function]

Sets the interpretation of the bits in the screen bitmap. If BLACKFLG is NIL, a 0 bit will be
displayed as white, otherwise a 0 bit will be displayed as black. VIDEOCOLOR returns
the previous setting. If BLACKFLG is not given, VIDEOCOLOR will return the current
setting without changing anything.

Note: This function only works on the Xerox 1100 and Xerox 1108.

(VIDEORATE TYPE) [Function]

Sets the rate at which the screen is refreshed. TYPE is one of NORMAL or TAPE. If TYPE is
TAPE, the screen will be refreshed at the same rate as TV (60 cycles per second). This
makes the picture look better when video taping the screen. Note: Changing the rate may
change the dimensions of the display on the picture tube.

Maintaining the video image on the screen uses cpu cycles, so turning off the display can improve the
speed of compute-bound tasks. When the display is off, the screen will be white but any printing or
displaying that the program does will be visible when the display is turned back on.

Note: Breaks and PAGEFULLFN waiting (see Chapter 28) turn the display on, but
users should be aware that it is possible to have the system waiting for a response to
a question printed or a menu displayed on a non-visible part of the screen. The
functions below are provided to turn the display off.

Note: These functions have no effect on the Xerox 1108 display.

(SETDISPLAYHEIGHT NSCANLINES) [Function]

Sets the display to only show the top NSCANLINES of the screen. If NSCANLINES is T,
resets the display to show the full screen. Returns the previous setting.

(DISPLAYDOWN FORM NSCANLINES) [Function]

Evaluates FORM (with the display set to only show the top NSCANLINES of the screen),
and returns the value of FORM. It restores the screen to its previous setting. If
NSCANLINES is not given, it defaults to 0.

Miscellaneous Terminal I/O

(RINGBELLS N) [Function]

Flashes (reverse-videos) the screen N times (default 1). On the Xerox 1108, this also beeps
through the keyboard speaker.

(PLAYTUNE Frequency/Duration.pairlist) [Function]

29-23

TERMINAL INPUT/OUTPUT

On the Xerox 1108, PLAYTUNE plays a sequence of notes through the keyboard speaker.
Frequency/Duration.pairlist should be a list of dotted pairs (FREQUENCY .
DURATION). PLAYTUNE maps down its argument, beeping the 1108 keyboard buzzer at
each frequency for the specified amount of time. Specifying NIL for a frequency means to
turn the beeper off the specified amount of time. The units of time are TICKS (Chapter
12), which last about 28.78 microseconds on the Xerox 1108. PLAYTUNE makes no sound
on a Xerox 1132. The default "simulate" entry for Control-G (ASCII BEL) on the 1108
uses PLAYTUNE to make a short beep.

PLAYTUNE is implemented using BEEPON and BEEPOFF:

(BEEPON FREQ) [Function]

On the Xerox 1108, turns on the keyboard speaker playing a note with frequency FREQ,
measured in Hertz (see Chapter 12). The speaker will continue to play the note until
BEEPOFF is called.

(BEEPOFF) [Function]

Turns off the keyboard speaker on the Xerox 1108.

(SETMAINTPANEL N) [Function]

On the Xerox 1108, this sets the four-digit "maintanance panel" display on the front of the
computer to display the number N.

	001-TITLEPAGE
	003-TOC
	01-INTRO
	02-LITATOM
	03-lists
	04-STRINGS
	05-ARRAY
	06-HASHARRAYS
	07-NUMBERS
	08-RECORDPACKAGE
	09-conditionals
	10-FUNC-DEF
	11-VAR-BINDINGS
	12-MISC
	13-EXECUTIVE
	14-ERRORS
	15-BREAKING
	16-SEDIT
	17-FILEPACKAGE
	18-COMPILER
	19-DWIM
	20-CLISP
	21-PERFORMANCE
	22-PERFORMANCE
	22-PROCESSES
	23-PROCESSES
	23-SSTREAMS
	23-STREAMS
	24-IO
	25-USERIO-PACKAGES
	26-GRAPHICS
	27-WINDOWS
	28-HARDCOPY
	29-TERMINAL

