
F.G.H.

1/22/85

LispCourse #1: Getting InterLisp-D Up and Running

Topic 0: Bravery

Topic 1: Getting InterLisp-D Up and Running

A. InterLisp-D is a comprehensive environment

B. Basic differences between Dolphins, Dorados, & Dandelions

Alto Exec versus Installation Utilities

File Systems ž Partitions (2 vs 5 vs 19) versus Logical Volumes

C. Background Concepts

Memory ž core versus disk versus file-server

Virtual Memory ž pageing(swapping)

Lisp system contained in a virtual image

Vmems and Sysouts

D. Basic Procedure & Concepts

Set up local disk

Vmem file
Frequency: Once

Retrieve necessary Lisp files

Support files: microcode, run files, etc.
Lisp.Sysout (full.sysout; *.sysout)
Frequency: New releases

Start up Lisp

Clean Lisp (create new virtual image from sysout)
Restarting Lisp (use old virtual image)
Frequency: As necessary

Leaving Lisp

"(LOGOUT)"
"(LOGOUT T)"
Frequency: As necessary

E. Procedures ž Prefatory Remarks

Why are the getting started procedures such a mess?

Square pegs in round holes, insufficient resources, etc.

Assumption: You know how to boot the machines.

F. Procedures ž Dolphins and Dorados (Alto-based)

2LispCourse #1: Getting InterLisp-D Up and Running

Local disk configuration ž Files on a partition

Set up local disk ž NewUserDisk.cm

Needs to be a blank partition ž Use NewOs in NetExec to erase

Retrieve NewUserDisk.cm using FTP

(currently on {eris}<lisp>harmony>cm>newuserdisk.cis)

"@NewUserDisk"

Retrieve necessary Lisp files

Not necessary first time after NewUserDisk.cm

Thereafter for new releases use: UpdateLisp.cm

Retrieve UpdateLisp.cm using FTP
(currently on {eris}<lisp>harmony>cm>updatelisp.cis)

"@UpdateLisp"
Start up Lisp

Clean Lisp

"Lisp <sysout file name>"
 Examples:

"Lisp {eris}<lisp>harmony>basics>full.sysout"
"Lisp {dsk2}lisp.sysout"

Restarting Lisp

"Lisp"
Error msg: "Inconsistent Vmem"

Leaving Lisp

"(LOGOUT)" or "(LOGOUT T)" leaves you in Alto Exec

"Quit" and power-off machine

G. Procedures ž Dandelions

Note: There are several different utilities for setting up and running Lisp on a

Dandelion!!!!! The one described here is the most commonly used at

PARC.

Local disk configuration ž Logical volumes, Vmem = Logical Volume

Utilities: Othello and Hello

Set up local disk & Retrieve necessary Lisp files

3-Boot the DLion to load Othello from the net

"login"

Partition the disk into logical volumes & retrieve files

"@[eris]<lisp>harmony>cm>Partition43Lisp.othello"

3LispCourse #1: Getting InterLisp-D Up and Running

<Note: Alternative partitionings are available on

[eris]<lisp>harmony>cm> for Star users or 10/29 Mbyte

disks.>

Start up Lisp

Clean Lisp
1-Boot the DLion to load Hello from the local disk

"login"

"@[eris]<lisp>harmony>cm>InstallLisp.hello"

(or InstallFull.hello)

When Lisp comes up, you will be asked for the name of the init

file. At PARC: "{eris}<lisp>harmony>basics>init.cis"

[Details on init files will come in later class.]

If this is the first startup after the disk has been partitioned, the

LispFiles volume must be initialized by typing:

"DFSCREATEDIRECTORY[LispFiles]"

Restarting Lisp
0-Boot the DLion (goes directly into Lisp)

Flashing 217 in MP indicates "Inconsistent VMem"

Leaving Lisp

"(LOGOUT)" or "(LOGOUT T)" returns you to Hello

Turn off machine or get new lisp.

Alternative: Keeping clean sysouts on spare logical volumes

To install the sysout on the logical volume:

1-Boot the DLion to load Hello from the local disk
"login"
"open eris"
"lisp"

"<logical volume name>", e.g., "Lisp2"
To start up Lisp using this sysout on another logical volume:

1-Boot the DLion to load Hello from the local disk

"Copy"

"<source logical volume>", e.g. "Lisp2"

"<destination logical volume>", e.g., "Lisp"

"Boot"

"<destination logical volume>", e.g., "Lisp"

H. Interacting with InterLisp-D ž the top level tty window

4LispCourse #1: Getting InterLisp-D Up and Running

I. REFERENCES

{eris}<lisp>harmony>doc>GettingStarted.tedit (.press & .ip)

{eris}<lisp>harmony>doc>hello.tedit (.press)

Mesa Users Guide (Chapters 35, 2, & 3) [about Othello]

Xerox 1108 User’s Guide [this contains an alternative procedure for using

Dandelions]

Mesa Users Guide (Chapters 35, 2, & 3) [about Othello]

Alto User’s Handbook

F.G.H.

2/14/85

LispCourse #8: Tailoring Parameters, the File Package, Init Files

Tailoring Interlisp to your needs and desires: (FLGS, Parameters, etc.)

Parameters & FLGs

There are literally thousands of atoms in Interlisp whose values are used by the

system and/or by various packages to decide how to "behave". By setting the

values of these atoms, you can tailor Interlisp to your particular needs and to your

particular style of interaction.

For example, the system uses the value of the atom DEFAULTPRINTINGHOST

to determine what printer to use to print your output. SETQing

DEFAULTPRINTINGHOST to ’Quake will make your output go to Quake,

while SETQing it to ’Expresso will direct your output to Expresso. In general,

most packages in Interlisp use the value of DEFAULTPRINTINGHOST to

determine where to send their printed output. [There is no guarantee of this. But

when it comes to printer output, packages are very well behaved.]

DEFAULTPRINTINGHOST functions a parameter that you set to specify how

you want your system to behave. Its value can be the name of any available

printer, or it can be a list of the names of several printers of different types (e.g., a

Press, FullPress and an InterPress printer [e.g., (Quake LispPrint: Stinger)]).

Parameters that take on values of T (non-NIL) or NIL are generally known as

FLGs since in general their names end in "FLG". For example, PROMPT#FLG

determines whether or not the number appears before the back-arrow prompt in

your top-level tty window. If PROMPT#FLG is T, the number is there (e.g., the

prompt will be "12_"). If PROMPT#FLG is NIL, no number will be printed (e.g.,

the prompt will be "_").

FLGs are no different from any other parameters. They are just parameters used

to make a simple Yes-No decision. FLGs are to parameters what predicates are to

functions. Note also that not all parameters that function like FLGs have names

ending in "FLG". So it goes.

Note that DEFAULTPRINTINGHOST is a system-wide parameter. Its value is

used by Interlisp and all of the various packages.

Default Settings

2LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

All parameters and FLGs have default settings. You don’t have to fool with a

parameter unless you don’t like the default setting!

For example, PROMPT#FLG is set to T by the system. You don’t even have to

know about PROMPT#FLG unless you want to get rid of those pesky little

numbers, in which case you have to find out about PROMPT#FLG and set it to

NIL.

Parameters like DEFAULTPRINTINGHOST really have to be set differently for

every group of Interlisp users since they use different printers. BUT as a user you

generally don’t have to worry about it (unless your printer is down and you want

to change where your printout goes) because it will be set to the proper value in

your Init file (see below!!!).

Package-specific Parameters and FLGs

Almost all packages have their own set of parameters and FLGs that can be set to

slightly (or sometimes not so slightly) modify their behavior.

Example: DEdit has 3 parameters that determine its behavior.

EDITEMBEDTOKEN ž Value is used as the special "embed token"

described last class. Default value (used in examples last

class) is &.

DEditLinger ž if T, then when you exit DEdit, the DEdit window will

remain on the screen to be used for the next DEdit. If NIL,

the DEdit window will be closed when you exit and reopened

next time you call DEdit. Note this parameter applies only to

the top-level call to DEdit and not to recursive calls which

always close their windows. Default value is T. [Note: this is

a FLG without "FLG" in its name.]

DEDITTYPEINCOMS ž value is a list that defines the control character

commands that you can type in to DEdit. Default value is a

list that contains definitions for the Ctrl-F and Ctrl-S

described last time. Also contains a Ctrl-Z command not

described last time. [Note: this is a parameter for real hackers

only.]

3LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

Second Example: Chat has 5 parameters. (Note: Chat is a package we haven’t yet

covered, so if you aren’t familiar with it, don’t worry. Just look at the kind of things the

parameters allow you to tailor).

CLOSECHATWINDOWFLG ž If non-NIL, every Chat window is closed

on exit. If NIL, the initial setting, then the primary Chat

window is not closed. Default value is ????.

CHAT.FONT ž If non-NIL, the font that Chat windows are created with. If

CHAT.FONT is NIL, Chat windows are created with

(DEFAULTFONT ’DISPLAY) [To be covered in a later class!].

Default value is ????.

DEFAULTCHATHOST ž The host to which CHAT connects when it is

called with no HOST argument. Default value is ????.

CHAT.ALLHOSTS ž A list of host names, as uppercase litatoms, that the

user desires to Chat to. Chatting to a host not on the list adds

it to the list. These names are placed in the menu that the

background Chat command prompts with. Default value is

????.

CHAT.DISPLAYTYPE ž The type of display (a number) that Chat should

tell the remote host the user is on. If Datamedia emulation is

desired, this variable should be set to the number

corresponding to the terminal type Datamedia for the remote

host. If the remote host does not respond to the terminal type

protocol in Pup Telnet, this variable is irrelevant. Default

value is 10.

How to find out about available parameters and FLGs.

Package-specific parameters

Package-specific parameters are usually included in the package documentation.

For example, the DEdit parameters described above are described under the

heading "DEdit Parameters" in the DEdit section of the Interlisp Reference

Manual (see Section 20.1.4). The Chat parameters are described at the end of the

Chat section of the Interlisp Reference Manual (see Section 20.5). They have no

4LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

heading, but are preceded by the sentence: "The following variables control

aspects of Chat’s behavior."

If you want to change the behavior of some particular package, look in the

documentation for that package. You will almost certainly find a list of

parameters. To find the documentation of a package is another matter. Some are

documented in the IRM (Chat, DEdit, TEdit, etc.), the rest are documented in

separate documents usually stored in the same directory as their LOAD files.

You just have to poke around to find them.

System-wide parameters

Good luck!

Documentation for system-wide parameters is scattered all over the IRM.

Moreover, there is no independent listing or description of them in esistence

ANYWHERE.

If you want to change some system behavior, your only chance is to poke around

the IRM, looking for where that behavior is described. Sometimes along with the

description there will be a description of some interesting parameters.

You might expect DEFAULTPRINTINGHOST to be documented in the

INPUT/OUTPUT chapter (#6) of the IRM. After all most of the printing

functions are described there. But in fact, DEFAULTPRINTINGHOST is

documented in the Interlisp-D Sepcifics chapter (#18). This fact was easy to

discover because I could look up DEFAULTPRINTINGHOST in the index. But

if I wanted to find "the parameter that changes my default printer". Hah!

Learn to do the following:

Accept things as they are and don’t mess with parameters.

Wander around the IRM looking for interesting parameters and FLGs.

Look at the Init files from lots of experienced users. They are a gold mine

of parameters being set.

When you see someone whose system behaves differntly from yours, ask

how they did that.

5LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

Ask your local Interlisp wizard lots of questions.

Dream up and implement a good, permanent solution to the problem of

managing and documenting the thousands of system parameters.

Parameters are great, but only if you can find out about them.

Some More Interesting System-Wide Parameters and FLGs

INITIALSLST ž a list of the form ((UserName1 FirstName1 Initials1)(UserName2

FirstName2 Initials2) ... (UserNameN FirstNameN InitialsN)). The

system makes sure that if UserNamei is logs in, then various parts of

the system will use FirstNamei as the users first name and Initialsi as

the users initials. For example, my Init file sets this parameter to

((Halasz Frank fgh:)). Thus the system says "Hi, Frank." when is

comes up with a clean sysout. It also puts my initials "fgh:" in a

comment in the beginning of evey function that I edit. Note the

INITIALSLST must be set in your Init file or you must run

"(SETINITIALS)" after setting INITIALSLST to a new value so that

the system recognizes the changes INITIALSLST.

LOGINHOST/DIR ž the host and directory that is considered to be your home

directory by various programs. E.g., my Init file sets

LOGINHOST/DIR to be {PHYLUM}<HALASZ>.

DIRECTORIES ž a list of host/directories that the system will look on when it

can’t find a file. Used by the LOAD function and certain other

functions, but not by TEdit, COPYFILE and many other functions.

Ususally you just want to add on to the default value of this list. For

example, NoteCards does the following when it comes up: "(SETQ

DIRECTOIRES (CONS ’{PHYLUM}<NOTECARDS>CURRENT>

DIRECTORIES))". This just makes sure that the NoteCards

directories are searched along with all the standard Lisp ones when

the system can’t find a file.

WINDOWTITLESHADE ž the shade that the right part (i.e., the part to the right

of the title) of every window title bar will be. Value can be any

shade (i.e., a number less than 65535) but the values of

6LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

BLACKSHADE, WHITESHADE and GRAYSHADE are

particularly easy shades to use.

???? and many, many more I can’t think of now.

The File Package

Introduction

When you DEFINEQ a function, the function definition is entered into the

system’s virtual memory.

When you SETQ an atom to a value, the atom-value pair is entered into the

system’s virtual memory.

When you apply a function or when you evaluate an atom, the system just looks

up the function definition or atom in its virtual memory.

All is fine and dandy UNTIL your virtual memory is destroyed; for example,

when you copy a clean sysout to your disk and restart Lisp or when your machine

bombs leaving an inconsistent vmem.

When your vmem goes away, the effect of your DEFINEQs and SETQs goes

away as well. When a new sysout is loaded (i.e., a "new" vmem is started), you

have to redefine all the functions and reset all the variables.

You could type all those DEFINEQs and SETQs again. But there is an easier

way: the File Package.

The File Package helps you write out on a file all the Lisp function calls necessary

to redefine a given set of functions and/or to reset the values for a given set of

variables.

Then when you load a new vmem (or for that matter, in another person’s vmem),

LOADing this file will cause these DEFINEQs and SETQs on the file to be

evaluated just as if you had typed them in, thus redefining all the functions and

resetting the values of all the variables.

7LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

So LOADing is just the process of evaluating in a bunch of DEFINEQs and

SETQs from a file rather than from the user’s type-in.

MAKEFILE and LOAD, with LISTFILES too.

There are two major functions in the File Package:

MAKEFILE ž makes a LOADable file. The first argument specifies the name of

the file to be made. The making of a LOADable file is controlled by the files

COMS list described in the next section.

LOAD ž reads in a LOADable file made by MAKEFILE and evaluates all the Lisp

function calls thereon. The first argument is the name of the file.

A third, handy function is LISTFILES which prints a LOADable file on your

DEFAULTPRINTINGHOST with a handy little index included. Note that

LISTFILES is a special form (NLambda function).

The COMS list

Introduction

The COMS list contains a set of commands that the File Package uses to

determine what functions, variables, and other Lisp objects you want to

appear on a file made by MAKEFILE.

Each LOADable file (i.e., file made by MAKEFILE) has its own COMS

list.

Terminology: The root part of a file name is the file name without its

extension. For example, the root part of EXAMPLES.LISP is

EXAMPLES.

The COMS for a file is the value of the atom constructed by adding

COMS on to the root of its file name.

For example, if the name of a file is EXAMPLES, then the COMS for that

file is the value of the atom EXAMPLESCOMS.

Note this limits your choice of file names a bit. You cannot have two

LOADable files with the same root part. E.g., you can’t have an

8LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

EXAMPLES.OLD and an EXAMPLES.NEW because they both would

want to have the value of EXAMPLESCOMS as their COMS list and

hence would interfere with each other.

Warning: This is one place where Interlisp is case sensitive. All loadable

files must be named in ALL CAPS. The File Package does not handle

non-CAPS well at all. Your file name must be EXAMPLES and you

COMS must be EXAMPLESCOMS; Examples and ExamplesCOMS will

not work!

9LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

The structure of a COMS list

A COMS list has the following form:

((FilePackageCommand1 Arg1.1 Arg1.2 ... Arg1.P)

(FilePackageCommand2 Arg2.1 Arg2.2 ... Arg2.Q)

...

(FilePackageCommandN ArgN.1 ArgN.2 ... ArgN.R))

Each clause in this list tells the FilePackage to write something on the file.

What is written is determined by the FilePackageCommandi that is the

CAR of the clause and by the Args that are in the CDR of the clause.

There are many possible FilePackageCommands.

The most important are:

FNS ž tells the File Package to write function definitions on the file. The

FP essentially write a DEFINEQ for every function named in the

rest of the list.

Example: (FNS CountList CountAtoms CloseWindowList) tells

the FP to write DEFINEQs for the three functions onto the file.

VARS ž tells the file package to write the values of variables on the file.

The FP essentially writes SETQs for every variable named in the

Arg items in the rest of the list.

If a Arg is simply an atom, then the FP will write a SETQ that sets

the atom to the value it had WHEN THE FILE WAS WRITTEN.

So if Arg is simply MyVariable and if MyVariable has the

value 12 when the file is written, the FP will write (SETQ

MyVariable 12) onto the file. When the file is LOADed,

MyVariable will be set to 12. BUT if MyVariable had the

value 77 when the file was written, the SETQ would be

(SETQ MyVariable 77) , with the corresponding change

when the file was LOADed.

10LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

If a Arg is a list, then the FP will CONS a SETQ onto this list and

write the result down onto the file. For example, if Arg is

(MyVariable 5). The FP will write (SETQ MyVariable 5) onto

the file so that MyVariable will always be set to 5 when the file is

LOADed.

For example, (VARS DEFAULTPRINTINGHOST

(LOGINHOST/DIR ’{PHYLUM}<HALASZ>) (FOUR (PLUS 2

2))) is a FP COMS clause.

ADDVARS ž like VARS except that each Arg is a list of two items, the

CAR is a variable name and the CDR is a value. ADDVARS write

the necessary Lisp code on the file so that when the file is

LOADed, the value is added to the list that is already the value of

the variable.

Example: (ADDVARS (DIRECTORIES

{phylum}<notecards>current>)) .

Then when the file is LOADed, the atom

{phylum}<notecards>current> will be added to the list that

is already the value of DIRECTORIES. If DIRECTORIES

had the value ({PHYLUM}<HALASZ> {ERIS}<LISP>)

before the LOAD, then after the LOAD it would have the

value ({phylum}<notecards>current>

{PHYLUM}<HALASZ> {ERIS}<LISP>).

FILES ž tells the file package to write load commands for some other files

on this file. The FP essentially writes LOADs for every files

named in the rest of the list. When the file is LOADed, it will

cause these other files to be LOADed as well.

For example, (FILES NOTECARDS1 NOTECARDS2

NOTECARDS3 NOTECARDSREST) might be a clause in the

COMS file for NOTECARDS.LSP. Then whenever

NOTECARDS.LSP was LOADed, the files NOTECARDS1,

NOTECARDS2, NOTECARDS3, and NOTECARDSREST would

also be loaded.

11LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

P ž tells the FP to print each Arg item in the rest of the list out on the file.

Then when the file is LOADed, these items will be evaluated.

Example: (P (LAFITE ’ON)(PRINT "Hello, Tiger")(CLOSEW

LOGOW)) tells the FP to write (LAFITE ’ON), (PRINT "Hello,

Tiger"), and (CLOSEW LOGOW) on the file. Then when this file

is LOADed, these function calls will be executed causing LAFITE

to be turned on, "Hello, Tiger" to be printed in the tty window, and

the Interlisp-D logo window to be closed.

* ž tells the FP that this is a comment. * can be used to put comments in

your COMS lists so that they are more understandable.

Note that there can be as many FNS clauses as you like in a COMS list.

They can be in any order as well. It usually helps to group your functions

into FNS clauses in a way that makes some structural sense to you. Ditto

for VARS, P, ADDVARS, *.

What does MAKEFILE do?

MAKEFILE looks at the COMS list for the file it is making and simply follows

the instructions there.

Actually, the first thing it does is equivalent to (VARS FileCOMS). That is it

writes out a SETQ so that the COMS for File is reset when it is LOADed. So the

first thing you always see in a LOADable file is the SETQ for the file’s COMS

list.

Then, MAKEFILE follows the FP clauses in the COMS list in order. If the

COMS says FNS, MAKEFILE writes out DEFINEQs. If the COMS says VARS,

the FP writes out SETQs. And so on.

When its done, it returns the name of the file it just made.

How does LOAD work?

LOAD just reads in the file and evaluates each item (DEFINEQ, SETQ, etc.) in

the file, just like "normal" Lisp reads the user’s type-in and evaluates it.

12LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

How does the user work with the FP?

1. Define a few functions ž say, CarOfListItems, CountList and CloseWindowList.

2. SETQ a few variables ž say, AtomList, WhoCaresList and FranksAge

3. Create a COMS for this file, which we’ll call EXAMPLE.LSP.

(SETQ EXAMPLECOMS

’((FNS CarOfListItems CountList CloseWindowList)
 (VARS AtomList (WhoCaresList (LIST ’Who ’Cares))

FranksAge)))

4. Evaluate "(MAKEFILE ’EXAMPLE.LSP)", creating the file EXAMPLE.LSP.

5. Define a new function, say ExampleFunction.

6. Evaluate "(DC EXAMPLE)" which will call DEdit on EXAMPLECOMS.

You can then edit the EXAMPLECOMS list. In particular, add a new

clause (FNS ExampleFunction) or add ExampleFunction to the already

existing FNS clause.

7. Redo Step 4 to make an updated version of EXAMPLE.LSP.

8. Get a new sysout, i.e., wipe out your vmem.

9. Try to evaluate (CountList ’(A B C)). You will get a "undefined function"

error because in your clean vmem CountList has not yet been defined.

10. Evaluate "(LOAD ’EXAMPLE.LSP)".

11. Try to evaluate (CountList ’(A B C)), resulting in "3". CountList was defined

during the LOAD.

12. Change CountList to return 2 times the list length.

13. Evaluate "(MAKEFILE ’EXAMPLE.LSP)" to update EXAMPLE.LSP with

this change. No need to remake the EXAMPLECOMS because it was

properly set during the LOAD.

14. Define a new function, say LastExample.

15. Evaluate "(DC EXAMPLE)" and edit the COMS to add LastExample to some

FNS clause.

16. Evaluate "(MAKEFILE ’EXAMPLE.LSP)" to update EXAMPLE.LSP with

this change.

13LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

17. You get the picture.

Example LOADable File

A LISTFILES of the EXAMPLE.LSP file (created by "(LISTFILES

EXAMPLE.LSP)") is in the Appendix.

The first page is the handy index created by LISTFILES for your convenience in

handling large files. The MAKEFILE output really starts on the second page.

IMPORTANT NOTE: There are no SETQs. Thats because I’ve been lying a

bit. The FP uses the functions RPAQ and RPAQQ instead of SETQ and SETQQ.

Just translate in your head, the RPAQs and RPAQQs into SETQs and SETQQs.

For all practical purposes they are the same.

Note that the first variable set in the file is in fact the EXAMPLECOMS.

14LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

The FP has ways to make life really easy

FILES?

The function (FILES?) will list in your tty window all functions, variables

and other Lisp objects that you have defined but not saved using a

MAKEFILE. It will then ask you if you want to say where these things

go. If you say Yes, it will ask for each function and variable to what file it

belongs. You give it a file name, and it will add it to the appropriate

clause in the COMS for the file name.

You can even, specify a new file name and it will create the appropriate

COMS list from scratch.

If you give NIL as the file name, it will not add the function or variable to

any COMS and it will never ask you about it again.

If you simply type a <return>, it will not add it to any COMS, but will ask

again the next time you call FILES?.

MAKEFILES

Does a FILES? to capture all the orphans.

Then for each file that has to be updated for any reason, does a

MAKEFILE.

Note: Some users exist on FILES? and MAKEFILES alone and never touch a

COMS directly. Other (like me) prefer to keep track of our own changes, use

DEdit on the COMS, and then call MAKEFILE ourselves. The choice is yours to

make.

Final Note on the FP

I have described about 20% of the FP. But its probably all you need to know for a

while.

The FP is documented in glorious detail in Chapter 11 of the IRM.

Section 11.7 is probalby the most interesting because it describes the

FilePackageCommands you can put in your COMS lists.

Sections 11.1 and 11.2 cover LOAD and MAKEFILE et al.

15LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

At Last, Init Files

An Init file is just another LOADable file. Nothing mysterious about it all. In fact, as

LOADable files go its quite dull!

An Init file is a special LOADable file for the following reason:

When Lisp starts up from a clean sysout, the first thing it does is evaluate the

function "(GREET)".

GREET immediately goes out and finds a file called INIT.LISP on your

local disk (if it can’t find it, it asks you to specify where it is).

GREET LOADs INIT.LISP.

Then GREET tries to find another Init file, one that is somehow associated

with your login. It looks in a number of places like on your directory on

your file server.

The first Init file it finds, it LOADs.

So, Init files are just LOADable files that Lisp always LOADs the first time it comes up

froma clean sysout.

There are two Init files:

1) A site-specific Init file that is common to all users at a given site (e.g., ISL,

KSA, etc)

This init file sets things like DEFAULTPRINTINGHOST,

DIRECTORIES, FONTDIRECTORIES, CH.NET.HOSTS, etc. All those

parameters that have to do with what printer to use, what file server to use,

what your ethernet looks like, where to find the local copies of the Lisp

files, AND where to look for the user specific init files.

At PARC, the site-specific init files are located on

{eris}<lisp>harmony>basics>init.cis (for ISL) and init.ksa for KSA. The

appropriate file should be copied to your local disk and renamed to be

INIT.LISP.

2) A user-specific Init file that is setup by each user as he or she pleases

16LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

This init file is generally used to set all those parameters and FLGs to

make the system behave "correctly", to make the screen look pretty, to

load the files for all the packages that are frequently used, etc.

My Init file has four basic clauses:

A VARS clause that sets parameters like INITIALSLST,

WINDOWTITLESHADE, DeditLinger, CHAT.FONT,

CLOSECHATWINDOWFLG, etc. to my liking.

An ADDVARS clause something like: (ADDVARS

(DIRECTORIES

{PHYLUM}<HALASZ>LISP>)(DIRECTORIES

{PHYLUM}<NOTECARDS>RELEASE1.1>))

A FILES clause that loads CROCK, ARCHIVETOOL, SKETCH,

BITMAPFNS, FILEBROWSER, and other such optional packages

from either {eris}<lispusers> or from

{eris}<lisp>harmony>library>.

A P clause something like: (P (CROCK (CREATEREGION 816

687 128 115))(CLOSEW LOGOW)(LAFITE ’ON)) which causes

CROCK to start up, the Logo window to close and Lafite to start

up when my Init file is LOADed.

At PARC, your Init file should be named with one of the following names:

{ERIS}<user>LISP>INIT.DCOM, {ERIS}<user>LISP>INIT,

{ERIS}<user>INIT.DCOM,

{ERIS}<user>INIT.LISP,{PHYLUM}<user>LISP>INIT.DCOM,

{PHYLUM}<user>LISP>INIT, {PHYLUM}<user>INIT.DCOM,

{PHYLUM}<user>INIT.LISP, {IVY}<user>LISP>INIT.DCOM,

{IVY}<user>LISP>INIT, {IVY}<user>INIT.DCOM,

{IVY}<user>INIT.LISP, where user should be replaced by your

login name.

Commonly asked questions:

How do I change my init file?

17LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

Use "(DC INIT)" to DEdit the INITCOMS, then do a (MAKEFILE

’{PHYLUM}<user>LISP>INIT) or (MAKEFILE

’{IVY}<user>INIT.LISP) or whatever.

How do I start an Init file?

You have two choices:

Create an INITCOMS from scratch using (SETQ INITCOMS

’((FNS ...))), then edit it using DC, then do a MAKEFILE.

Copy someone elses INIT file to your directory, load Lisp, edit the

INITCOMS using DC to change all the "bad" parameters settings,

then do a MAKEFILE to update the INIT file with your changes.

What do I put in my Init file?

Whatever you like. Generally, you set parameters for the system and

specific packages you commonly use. You also load your commonly used

packages.

Don’t keep your own functions in your init file. Put your functions in a

file called MYUTILITIES.LISP or some such, and then put a (FILES

MYUTILITIES.LISP) clause in your INITCOMS so this file gets

LOADed when your Init file gets LOADed.

Final Comments:

1. You don’t need Init files. The system runs fine without them. Though, it can’t

find printers, etc. because DEFAULTPRINTINGHOST, etc, haven’t been set.

The system will run perfectly without your personal Init file. You might have to

load some packages by hand every time the system gets reloaded, but ...

2. If you want to take over an already loaded system from someone else, you can

call (GREET) yourself. This will "ungreet" the previous person and then redo the

GREET sequence with your Init file.

References

The IRM, Chapter 11

{ERIS}<LISP>HARMONY>DOC>INITFILES.TEDIT

18LispCourse #8: Tailoring (FLGS, Parameters, etc.), the File Package, Init files

The Init file documentation from the Sysdoc group.

Exercises

Define a few fucntions like CountAtoms and then save them on a file. Get a new sysout

and try LOADing the file. Etc.

Make yourself a nice, interesting Init file.

F.G.H.

2/19/85

LispCourse #9: Typing Into the TTY Window:
TTYIN & the Programmer’s Assistant

Introduction

"read-EVAL-print loop" versus "READ-eval-print loop"

Recall the following from class #2:

1. The user interacts with Lisp by typing into the top-level TTY window

(a.k.a. the Exec window).

2. In the TTY window Lisp is running in a read-eval-print loop:

WHILE T

Read user’s typed input
Evaluate user’s input
Print result of evaluation

3. This loop is really the read-EVAL-print loop because EVALUATION

IS THE THING that does all the work in Lisp.

In many Lisps, "read-EVAL-print" is an accurate picture of what goes on.

Reading the user input is a trivial operation, evaluation is the important "work-

doing" part of the loop.

Interlisp is different. The evaluator is the most important part, BUT the read part

of the read-eval-print loop in Interlisp is very complex and very powerful and in

fact does a lot of work over and above what the Lisp evaluator does.

So, the topic for the next couple of classes is the READ-eval-print loop.

Emphasis is on the READ part of the read-eval-print loop and all the help it gives

us in interacting with Interlisp.

The complexity issue once again

The mechanism Interlisp uses to read and process your type-in (i.e., the Lisp

Exec) is very complex. It represents the result of many years of non-coordinated

development by many different sets of people.

The mechanism consists of several different packages.

2LispCourse #9: TTYIN & the Programmer’s Assistant

Once again, each package is somewhat different, having different conventions,

etc.

Once again, the trade-off between increased functionality and ease of

use/learnability has been settled in favor of functionality.

BUT, if you accept things as they are and simply memorize the few things you

deal with frequently, the Lisp Exec can help you A LOT in doing your work!!!!

An overview of how Interlisp processes user input (i.e., the Lisp Exec)

The first page of the Appendix contains a flow diagram of how Interlisp processes

type-in in the Exec window.

The diagram illustrates the following components:

Most characters typed in by the user are input into a small text editor

called the TTYIN editor. The TTYIN editor allows you to make changes

to your type-in before it is actually processed by Lisp.

Note that some characters (e.g., Ctrl-D and Ctrl-E) don’t go to

TTYIN. These characters are special interrupt characters that can

interrupt or abort Lisp at any time. Thus theyare handled by a

special Interrupt mechanism.

After the input in the TTYIN editor is "completed" [e.g., by typing a

<RETURN> or by entering the last ")" in a list], the input is passed on to

the Programmer’s Assistant.

The P.A. is a general purpose "assistant" that keeps a history of

your type-in, allows you to repeat or undo previous function calls,

provides several short-hand methods for typing in Lisp function

calls, and so on.

When the P.A. receives a complete user input, it determines the

nature of the input.

If it is a P.A. command (e.g., a history reference), then it

executes the command.

3LispCourse #9: TTYIN & the Programmer’s Assistant

If it is P.A. short-hand for some Lisp expression, then it

translates the expression to a standard Lisp expression and

sends it on to the Lisp read mechanism.

If it is a standard Lisp expression, it just passes it on to the

Lisp read mechanism.

The Lisp reader, accepts standard Lisp expressions and expands any Lisp

short-hand thay may have. For example, if the input contains a ’(A B C),

the Lisp reader will change this to (QUOTE (A B C)) as required by the

evaluator.

The Lisp reader, then passes the standard Lisp expression to the Lisp

Evaluator. If all is correct, then the Lisp evaluator does its work as we

discovered in some detail a couple sessions ago.

If the evaluator discovers an error in the Lisp expression, it passes the

error off to the error handler which tries to handle the error in one of

several ways:

By getting CLISP to translate the syntactic sugar into

"real" Lisp.

By getting DWIM to automatically correct the error.

By calling on the Break Package to open a break window

so that the user can correct the error or abort the operation.

Note that in our earlier view, the Lisp evaluator was the only thing that did

"work" in Lisp. That is, when we give Lisp a "command", we said it was the

evaluator which carried out the command.

According to this diagram, there are several components that can be seen as

carrying out "work", i.e., carrying out user commands. In particular, there are

Programmer Assistant commands that are separate from Lisp function calls and

that allow you to do certain kinds of "work".

Note that in reality it is the Lisp Evaluator thats doing all of the work. The P.A. is just a

Lisp program. So, the process of interpreting and carrying out P.A. commands

eventually reduces to Lisp being evaluted by the Lisp evaluator.

Today’s topics: The main path through TTYIN and the P.A.

4LispCourse #9: TTYIN & the Programmer’s Assistant

The diagram on the second page of the Appendix contains a simplified version of

the complete diagram.

When all is well and there are no errors and no interrupt characters, this represents

the processing Interlisp does to your type-in. The major components are the

TTYIN editor and the Programmer’s Assistant.

We’ll cover these two parts today. Next time we’ll cover the Lisp READer and

the Interrupt mechanism as well as DWIM and CLISP.

The following time we’ll cover the Error Handler and the Break Package.

5LispCourse #9: TTYIN & the Programmer’s Assistant

6LispCourse #9: TTYIN & the Programmer’s Assistant

The TTYIN type-in editor

The Basics

The TTYIN editor is a simple text editor that uses both the mouse and key

commands.

The editor operates in an active region that contains only the current type-in

line(s) within the Lisp Exec window. Thus, you can only edit the current type-in

and no other text appearing in the Lisp Exec window.

If "94_" is the current uncompleted input line:

Then the boxed area is the region in which TTYIN is active:

TTYIN is always in insert mode: your type-in is inserted just before the blinking

caret on the input line.

7LispCourse #9: TTYIN & the Programmer’s Assistant

While you are typing in TTYIN helps you balance parentheses. Every time you

type a ")" or a "]", the blinking caret moves to the matching "(" or "[". It remains

there for 1 second or until you type a character and then returns to its previous

location. Note that any characters you type when the caret is in this "balancing indicator" mode

will go at the previous location of the caret and not at its current location near the balancing "(" or

"[".

Example: The ")" has just been typed. The left arrow points to the caret in

"balancing" mode. The right arrow points to the insertion point. After

one second, the caret will return to the insertion point.

The editor remains in operation in the type-in active region as long as the type-in

remains "uncompleted". Whe the input is completed, TTYIN sends it along to

the Programmer’s Assistant and you can no longer edit it.

TTYIN’s Definition of "Complete" Input

Completed input is defined similarly to the DEdit type-in:

An input beginning with a "(" is complete when a balancing or over-

balancing ")" is typed.

Examples:

(A B C) is complete

(A (B C) is not complete

A "]" balances any number of "(", until the most recent "[".

Examples:

8LispCourse #9: TTYIN & the Programmer’s Assistant

(A (B (C D] is complete

(A [B (C D] is not complete

(A [B (C D]) is complete

A <RETURN> causes a new line to be started in the Exec window,

but does not complete the current input.

An input beginning with an atom completes as follows:

If the first atom is immediately followed by a "(" or a "[", the input

completes when this a "(" or "[" is balanced by a ")" or a "]".

Examples:

SET[A B] is complete

SET(A B) is complete

SET (A B) is not complete

SET(A (B C) is not complete

The input always completes when an over-balancing ")" or "]" is

typed.

Examples:

SETQ A B] is complete

SETQ A B) is complete

SET (A B)) is complete

SET(A (B C) is not complete

9LispCourse #9: TTYIN & the Programmer’s Assistant

The input always completes when all parentheses are balanced and

a <RETURN> is typed.

Examples:

SET (A B)<RETURN> is complete

SET (A B<RETURN> is not complete

PLUS 2 3<RETURN> is complete

(PLUS 2 3<RETURN> is not complete

If all parentheses are NOT balanced and a <RETURN> is typed,

then input continues on the next line:

Mouse-based editing in TTYIN

The most convenient way to edit text in TTYIN is with the mouse.

The mouse buttons work as follows:

LEFT ž used to change the place where text will be inserted when you

type. When the LEFT button is held down, the TTYIN caret will follow

the mouse cursor as it moves about the TTYIN active region. If the mouse

cursor moves out of the active region, this tracking stops until the cursor

moves back into the active region.

MIDDLE ž Same as LEFT, except that the caret moves only to word

boundries (i.e., just before or just after any word in the active region,

10LispCourse #9: TTYIN & the Programmer’s Assistant

where words are separated by spaces, tabs, periods, commas, etc. as well

as the various types of parentheses.)

RIGHT ž used to delete the text from the caret position to the mouse

cursor position. As long as you hold down the RIGHT button with the

cursor in the active region, any text between the caret and the cursor is

complemented (i.e., reverse-videoed). When you let up on the RIGHT

button, the complemented text (i.e., the text between the caret and cursor

at that point in time) is deleted.

If you move out of the active region while holding down the RIGHT

button, the text complementing is stopped until you move back into the

active region with the button down. You can abort the delete by letting

up on the RIGHT button while outside the active region.

Copy, Move and Delete Text

Copy, Move and Delete selections are also available in TTYIN.

To make these secondary selections you hold down the SHIFT and/or

CTRL keys [see below] while making and (optionally) extending a

selection with the mouse.

In a secondary selection the mouse buttons work as follows:

LEFT ž selects the indicated letter

MIDDLE ž selects the indicated word

RIGHT ž extends a selection just made with the LEFT or MIDDLE

buttons. The selection is extended from the previous selection to

the current cursor position.

In all cases, the selection takes effect when the mouse button is released.

Moving within the active region with the mouse button held down, moves

the selection. Moving out of the active region and letting up on the mouse

button, aborts the selection.

The SHIFT/CTRL keys are used to determine whether the secondary

selection is a copy, a move, or a delete.

11LispCourse #9: TTYIN & the Programmer’s Assistant

Copy ž holding down the SHIFT key and making a secondary

selection will copy the selected text and insert it at the blinking

caret. During the secondary selection, the text to be copied is

underlined with a dotted line.

Move ž holding down the SHIFT and CTRL keys while making a

secondary selection will move the selected text to just after the

blinking caret. During the secondary selection, the text to be

moved is complemented.

Delete ž holding down the CTRL key while making a secondary

selection will delete the selected text. During the secondary

selection, the text to be deleted is complemented. Note: this is very

similar to the RIGHT button primary selection described above.

Copy, Move, and Delete do not take effect until you let up on the SHIFT

and CTRL keys. You are free to select and reselect while the CTRL

and/or SHIFT keys are down.

To abort a Copy, Move, or Delete just move the mouse outside the active

region while holding down the LEFT or MIDDLE buttons and then let up

on the CTRL and SHIFT keys.

Important Note: Pressing the middle-blank key on Dolphins/Dorados or

the OPEN key on the Dandelions will retrieve the last bit of deleted text

and insert it at the blinking caret. Hence, these keys can be used to UNDO

an mistaken deletion.

Key-based editing in TTYIN

TTYIN has a full-complement of key-based editing commands. These are mainly

meant for use on Interlisp-10 and Interlisp-Vax where there are no mice and bit-

mapped displays.

We will cover only those key commands that are handy for Interlisp-D users with

mice. Refer to the IRM (Section 20.7) for a full-description of all of the available

commands.

Key commands can be typed at any time while using TTYIN.

12LispCourse #9: TTYIN & the Programmer’s Assistant

The useful commands are:

BS, Ctrl-A ž deletes the character just before the blinking caret.

Ctrl-W ž deletes text from blinking caret backwards to nearest beginning

of a word. Word beginnings are usually marked by a space, period, or

parenthesis.

Ctrl-Q ž deletes the line of text containing the caret. If this line is blank,

Ctrl-Q will delete the previous line. So several Ctrl-Qs can be used to

delete all of the lines in a multi-line type-in.

Ctrl-X ž moves the blinking caret to the end of your current input. If the

parentheses in the input are balanced or over-balanced will "complete" the

current input.

Middle-blank/OPEN ž

If the last command was a Ctrl-A, a BS, a Ctrl-Q or a Ctrl-W,

undoes that command.

Otherwise, retrieves the last text deleted using the mouse and

inserts it at the blinking caret.

ESC ž Tries to complete the word that the caret is in. For example, typing

in "NC.T<ESC>" might result in "NC.TestFunction" because the only

"known" word matching "NC.T ..." is "NC.TestFunction".

TTYIN searches a list of words (the value of USERWORDS)

which contains all the words recently defined with a DEFINEQs or

set with a SETQ, and so on. If TTYIN cannot find a completion, it

places an ESC in the text (which appears on the terminal as a "$").

If TTYIN finds more than one possible completion, it flashes the

window.

Very specialized stuff -- Meta-key commands

Most of the more specialized commands in TTYIN are meta-key

commands. To use them you must use the Meta-key as well as the

commands key (or keys).

The Meta-key works in one of two ways:

13LispCourse #9: TTYIN & the Programmer’s Assistant

1. Meta can work like a CTRL key in that you depress the Meta

key and the command key simulateously.

2. Meta can be a prefix key where you hit the Meta key first and

then the command key.

The default Meta key is Top-Blank on Dolphins/Dorados and

KEYBOARD on Dandelions. This is a prefix meta-key. To change this to

a simultaneous Meta-key, see section 20.7.3 of the IRM.

Thus by default, the meta-key commands are activated by pressing Meta

followed by the command key(s).

The following are interesting Meta-key commands:

Meta-U ž upper-cases the word containing the caret.

Meta-L ž lower-cases the word containing the caret.

Meta-C ž capitalizes the word containing the caret.

Meta-Ctrl-Y ž lets you talk to a recursive call to Lisp. You can do

anything you want in this sub-Lisp (including do a further

recursion by typing Meta-Ctrl-Y to the sub-Lisp). When you are

done, type "OK<RETURN>". This will return you to the current

input at the point you typed Meta-Ctrl-Y.

Concluding remarks for TTYIN

90% of my editing with TTYIN is done using the notmal Left and Right mouse

button operations, BS, and Ctrl-X.

Another 5% is covered by the ESC completion and CTRL-Q commands.

The rest of the stuff I use very little. It comes in handy when I need it, but I could

easily live without it.

TTYIN Documentation

TTYIN is documented in Section 20.7 of the IRM. Sub-sections 20.7.1 thru

20.7.3 are most relevant to the non-programming user.

Section 20.7.10 described the parameters and FLGs for TTYIN, most of which

are fairly technical and none of which are especially useful.

14LispCourse #9: TTYIN & the Programmer’s Assistant

The Programmer’s Assistant

The Programmer’s Assistant is a tool that helps you manage your interactions with

Interlisp. The P.A. basically offers three services to the Interlisp user:

1. Alternative syntactic forms for some common, but clumsy Lisp synatx.

2. A history mechanism that keeps a record of the user’s interactions with Lisp

and allows the user to undo and/or redo interactions or sequences of interactions.

3. A set of special P.A. (and LISPX) commands that by-pass (to some extent) the

normal Lisp evaluation mechanism, allowing the user to carry out various tasks

for which there are no specific Lisp functions or for which the Lisp functions are

particularly clumsy to use.

Commentary: Except for the history list and a bit of the alternative syntax, most of this

stuff is seldom used. But it is there and you do occassionally have to interact with the

P.A. or with someone using the P.A., so its best to have some familiarity with how it

works.

The Good Stuff: The History Mechanism

The P.A. maintains a record of your inputs and the results of those inputs. An

input and its results are called an event. The P.A. automatically maintains a

record of the last 100 or so events. Through a series of P.A. commands, you have

access to these 100 events. You can undo or redo any of the events.

All events have an event number. This is the number that is printyed before each

input in the Exec window, e.g., "12_" is event number 12.

EventSpecs: All history P.A. commands refer to an event using a EventSpec

which can be one of the following:

N (i.e., a positive integer) ž refers to event number N.

žN (i.e., a negative integer) ž refers to N events prior to the current event

being input. E.g., -1 is the previous event and -3 is three events back.

Pattern ž refers to the last event that matches the given pattern. The

allowable patterns are as defined in the DEdit Find command and are

described on page 17.13 of the IRM.

15LispCourse #9: TTYIN & the Programmer’s Assistant

Examples:

ABC refers the last event that used ABC as an atom or
function name.

SETQ refers to the last event using SETQ.

SET<ESC> refers to the last event using any of SET,
SETQ or SETQQ, etc.

(LIST & &) refers to the last event that called LIST with
two arguments.

Empty (i.e., nothing) ž refers to event -1, i.e., the last event.

Compound Event Specs: EventSpecs can be combined to refer to ranges of

events. The combinations are:

EventSpec1 THRU EventSpec2 ž refers the events from EventSpec1

through EventSpec2 inclusive, e.g., "47 THRU 49" refers to event 47

through event 49.

EventSpec1 TO EventSpec2 ž refers to the events from EventSpec1 to

EventSpec2 non-inclusive of EventSpec2, e.g., "47 TO 49" refers to event

47 through event 48.

ALL EventSpec ž refers to all events matching EventSpec rather than just

the last one, e.g., "ALL SETQ" refers to all events with SETQ in them.

EventSpec1 AND EventSpec2 ž refers to EventSpec1 and EventSpec2, e.g.,

"SETQ AND 47 AND 34" refers to the last event with SETQ, event 47,

and to event 34.

P.A. History Commands: The following are P.A. commands that refer to the

history list. To execute, a P.A. command you can just type it into the Exec

window terminated by a <RETURN>. (See below for a discussion of P.A. commands in

general.)

?? EventSpec ž prints the event or events referred to EventSpec. Each

event is printed with the user’s input followed by Lisp’s response to this

input. If any event ended in an error, the Exec window will be flashed

when this event is printed. "??" alone will print the entire history list. "?? -

1" will print the last event.

16LispCourse #9: TTYIN & the Programmer’s Assistant

UNDO EventSpec ž UNDOes the events specified by EventSpec. Not all

events can be undone. However, the P.A. takes every effort to insure that

events the user types in are in fact undoable. For example, SETQ and

DEFINEQ are undoable. However, COPYFILE is not undoable since Lisp

doesn’t know how to undo a file copy.

Examples:

1_ (SETQ A 5)
5
2_ (SETQ A 10)
10
3_ A
10
4_ UNDO 2
SETQ undone.
5_ A
5
6_ UNDO UNDO
UNDO undone.
7_ A
10

REDO EventSpec ž REDOes the events specified by EventSpec.

REDOing an event has the same effect as if you retyped the same input

again.

Examples:

8_ (SETQ A ’(A B C D E F))
(A B C D E F)
9_ (SETQ A (CDR A))
(B C D E F)
10_ REDO
(C D E F)
11_ UNDO
REDO undone.
12_ A
(B C D E F)
13_ REDO SETQ
(C D E F)
14_ REDO 9

17LispCourse #9: TTYIN & the Programmer’s Assistant

(D E F)

FIX EventSpec ž If EventSpec refers to a single event, will reprint the input

for that event in the Exec window. You can then use TTYIN to edit the

input and then redo the event.

If EventSpec refers to more than one event, the P.A. will pop you into

DEdit with a list of the events’ inputs. You can then edit this list. When

you exit DEdit normally (i.e., with OK or Exit), then the P.A. will redo all

the events in the list with the modifications made in DEdit. If you exit

DEdit with STOP, then the P.A. will do nothing.

USE New FOR Old IN EventSpec ž REDOes every event in EventSpec

after substituting every New for every Old in the event. Note that New and

Old can be sequences, in which case New1 is substituted for Old1, New2 is

substituted for Old2, and so on. Note that both Old and New may conatin

wildcards and other special pattern match characters as specified in

Section 17.4 of the IRM.

Example:

14_ (SETQ FIE ’AAA)
AAA
15_ (SETQ FOO ’BAR)
BAR
16_ USE BAZ FOR BAR IN -1
BAZ
17_ FOO
BAZ
18_ (SETQ FOO ’JAR)
JAR
19_ USE FIE FOR FOO IN 15
BAR
20_ FOO
JAR
21_ FIE
BAR
22_ USE FIZ BANG FOR FIE BAR IN SETQ
BANG
23_ (LIST FIE FOO FIZ)
(BAR JAR BANG)

18LispCourse #9: TTYIN & the Programmer’s Assistant

Final Notes:

The History mechanism is real, real handy. Learn to use it effectively!!!!!

HistMenu: There is a menu-based interface to the history mechanism

available as a LispUser package on {eris}<lispusers>HistMenu.Dcom

(&.press, .tty for documentation). I find this interface much more difficult

to use that the P.A. command interface, but not everyone agrees. Load

HistMenu and try for yourself. BUT NOT UNTIL YOU BECOME

THOROUGHLY FAMILIAR WITH THE HISTORY MECHANISM.

Documentation: Can be found in Section 8.2 in the IRM. There’s lots of

details about the history mechanism there that we haven’t even touched on

here!

Parameters: See Section 8.3 of the IRM for a discussion of the

parameters that effect the hsitory mechanism.. In particular, the function

(CHANGESLICE ...) can be used to alter the number of events recoreded

in your history list.

Other parts of the P.A.: Alternative syntax

The P.A. allows several variants on standard Lisp syntax. It accepts this syntax

and then translates it into standard Lisp to be passed to the Lisp evaluator.

The syntax rules for the P.A. are the following:

Standard Lisp Format: If the input is a single atom or a standard Lisp

expression beginning with a "(" or "[" and ending in a balancing ")" or "]",

then this is standard Lisp syntax which the P.A. will pass directly to the

Lisp evaluator (with the very important exceptions about P.A. commands

noted below!!!).

EVAL-QUOTE Format: If the input begins with an atom immediately

followed by a single list, then the atom is assumed to be a function to be

applied to the quoted (i.e., unevaluated) elements of the list. This is

commonly known as EVAL-QUOTE format, but as APPLY-format in the

IRM. The EVAL-QUOTE expression is translated into its standard Lisp

equivalent before being passed to the Lisp evaluator.

19LispCourse #9: TTYIN & the Programmer’s Assistant

Examples:

LIST(A B) => (LIST (QUOTE A)(QUOTE B))

SET(A B) => (SETQ A (QUOTE B)) or to (SETQQ A B)

COPYFILE[FOO BAR] => (COPYFILE ’FOO ’BAR)

CONS[A (B C D)] => (CONS ’A ’(B C D))

Other formats: If the input begins with an atom followed by a space and

then zero or more other atoms and lists, then the P.A. uses the following

rules:

If input is a single atom, assume it is a single atom and ignore the

space.

If input is two atoms, then APPLY the function named by the first

atom to NIL.

If input is an atom followed by a list, then assume it is EVAL-

QUOTE format with an extra space.

If input has three or more atoms and lists, then wrap parentheses

around the beginning and the end of the list.

Examples:

Atom<space> => Atom

Function Argument => (Function)

MINUS 7 => (MINUS) {resulting in non-numeric arg

error}

LIST A => (LIST) {resulting in NIL}

LIST (A B) => LIST(AB) => (LIST ’A ’B)

PLUS 7 8 => (PLUS 7 8) {resulting in 15}

PLUS (MINUS 7) 8 => (PLUS (MINUS 7) 8)

Except for the EVAL-QUOTE format, syntax other than the standard Lisp syntax

is seldom used. The rules are too arcane to be effectively used.

EVAL-QUOTE format is handy and is frequently used. It cuts down on the

numer of QUOTES and ’s you have to type. BUT BE CAREFUL!!! EVAL-

20LispCourse #9: TTYIN & the Programmer’s Assistant

QUOTE format can lead to unexpected results when used with NLambda

functions that evaluate their arguments.

Example:

SET(A B) sets A to B as expected, but SETQ(A B) sets A to the

value of B just as does (SETQ A B)!! This is because the function

SETQ evaluates its second argument by itself.

Other parts of the P.A.: P.A. Commands and LISPX macros

The P.A. has a set of commands that the user can execute to do various things.

Most of these commands deal with manipulating the history list and are covered

in detail above. However, there are some non-history P.A. commands which will

be described briefly here.

Examples of P.A. commands include DIR, CONN and FB.

The user or programmer can also create his or her own P.A. commands called

LISPX macros. These LISPX macros are indistinguishable from the built-in P.A.

commands. Therefore, both the built-in P.A. commands and the LISPX macros

will be called P.A. commands here.

P.A. commands work as follows:

For all input, the P.A. checks to see if the first atom in the input matches a

P.A. command.

If the first atom is a P.A. command, the P.A. command is executed

using the rest of the input as its argument. No evaluation is carried

out on the rest of the input.

If the first atom is not a P.A. command, the input is processed as

described above and sent on to the Lisp evaluator.

NOTE: If an atom is a P.A. command, it will always be interpreted as a P.A.

command when the first atom in an input. It will mask the value and

function definitions of the atom from the user.

Example:

21LispCourse #9: TTYIN & the Programmer’s Assistant

If I create a P.A. command called SETQ, then "(SETQ A B)" will

always cause the P.A. command called SETQ to be carried out and

never the function SETQ.

But note that "(NULL (SETQ A B))" will cause the function SETQ

to be evaluated because SETQ is not the first atom in the input.

Bizzare!!!!

A P.A. command can be entered as either a series of atoms or as a standard Lisp

expression. All that matters is that the first atom be the P.A. command.

Example:

DIR is a P.A. command.

DIR {phylum}<halasz> is equivalent to (DIR {phylum}<halasz>)

"Interesting" P.A. Commands

There are no truely interesting P.A. commands. Any task worth doing is

better implemented as a full-fledged Lisp function!!!

But, here are some that aren’t:

DIR ž lists the files matching the given file specification.

CONN ž "connects" to the given directory, e.g. "CONN

{phylum}<halasz>".

FB ž starts a FileBrowser on the files described, e.g., "FB {DSK}".

PL ž prints the property list of the given atom, e.g., "PL NOTECARDS".

; ž ignores the rest of the line, allowing the user to type a comment that will

show up, for example, in a dribble file.

22LispCourse #9: TTYIN & the Programmer’s Assistant

Documentation on the Programmer’s Assistant

The Programmer’s Assistant is described in some detail in Chapter 8 of the IRM.

Sections 8.1, 8.2, and 8.3 may contain some useful information, though much of it

may be difficult to understand for beginners. Sections 8.4 and beyond: don’t

even bother looking there.

References

The aforementioned chapters and sections of the IRM.

Also see some of the references at the end of Section 1 of the old (1975) IRM.

There are pointer to articles about the original design of the P.A., which in its

time was quite a novel idea.

Exercises

Fool around with the TTYIN editor trying out some of the features.

Fool around with EVAL-QUOTE format.

Fool around with the history mechanism.

Do the old excercises you never did!

F.G.H.

2/21/85

LispCourse #10: Miscellaneous Issues Regarding Type-in

READ macros

In general, the Lisp reader just takes Lisp expressions from the P.A. and passes them on

to the Lisp evaluator.

However, the Lisp reader can be set to give special interpretation to certain characters or

character sequences it reads in. When it receives a Lisp expression containing one of

these special characters or character sequences, it carries out a prespecified action usually

resulting in some change to the Lisp expression it received.

The character sequences that are special to the Lisp reader together with their associated
actions are known as READ macros.

READ macros can be arbitrarily defined by any user. But doing so requires a fair

understanding of programming. So we won’t discuss it here.

However, there are three READ macros that are predefined in the standard Lisp reader.

The READ macro characters are "’", "|’" and "Ctrl-Y". When these characters are typed

in a Lisp expression, the reader carries out the following actions:

’ ž places the immediately following (i.e., with no spaces) S-expression within a

call to QUOTE. For example, ’A becomes (QUOTE A) and ’(A B C) becomes

(QUOTE (A B C)). Note that this only happens if the "’" is preceded by a space

or a parenthesis and followed by an S-expression. Otherwise, the "’" is not

altered by the reader.

|’ ž places the immediately following (i.e., with no spaces) S-expression within a

call to BQUOTE. For example, |’A becomes (BQUOTE A) and |’(A , B C)

becomes (BQUOTE (A B C)). Note that this only happens if the "|’" is preceded

by a space or a parenthesis and followed by an S-expression. Otherwise, the "|’"

is not altered by the reader.

Note: BQUOTE is like QUOTE except that it allows exceptions. Any

element in a BQUOTEd list that is preceded by a "," IS evaluated. The

rest of the elements are not evaluated (as in QUOTE). Example:

(BQUOTE (A , B C)) would evaluate to (A 7 C) when B had a value of 7.

2LispCourse #10: Miscellaneous Issues Regarding Type-in

If B had a value of (A B C), then (BQUOTE (Q , B)) would evaluate to (Q

(A B C)).

Ctrl-Y ž causes the immediately following S-expression to be evaluated before

the whole expression is passed to the Lisp evaluator. For example, if NEATO

has the value 7 then the expression (LIST 2 3 ^YNEATO ^Y(PLUS44 3)) will be

changed to (LIST 2 3 7 47) BEFORE it is passed to the Lisp Evaluator.

Note: this functionality is seldom used by mere mortals.

Documentation: Read macros are documentated in Section 6.6.3 of the IRM. But the

documentation is aimed mainly at programmers

Final Note: Read macros need seldom be worried about. You use "’" so often that it

becomes second nature. "|’" and "Ctrl-Y" are never used by the non-programmer.

But some documentation mentions Read macros and every once in a while you’ll here a

mentyion in the hall. Now you know what they are.

Redefining the keyboard

All of the keys on the Inerlisp-D keyboard are soft keys. The interpretation of each key

on the keyboard is not fixed, but can be changed by the user.

For example, the "A" key defaults to producing an "a" when the SHIFT key is up and an

"A" when the SHIFT key is down.

While, it is unlikely anyone would want to change the "A" key, users sometimes wish to

change the interpretation of the non-alphanumeric keys such as the blank keys on the

right of the Dolphin/Dorado keyboard or the row of editing keys on the top of the

Dandelion keyboard.

KEYACTION is the function that can be used to change the interpretation of a key.

Keyaction takes two arguments: a KeyName and an Action.

KeyName is the name of the key whose interpretation is to be changed. Most

keys are named by the character (or any of the characters) that appears on them.

For example, the "A" key is named "A" or "a", while the "1" key is named "1" or

"!".

3LispCourse #10: Miscellaneous Issues Regarding Type-in

Special keys are named in the obvious way: For the Dolphin/Dorado they

are: TAB, LF, DEL, BLANK-TOP, BLANK-MIDDLE, BLANK-

BOTTOM, SPACE, LSHIFT, RSHIFT, CTRL, ESC.

For the Dandelion, the special keys are SKIP, NEXT, UNDO, MOVE,

MARGINS, FIND, LARGER, SMALLER, etc.

Action is either NIL or the action that should be taken when the key is pushed

down and when it is let up.

If Action is NIL, then KEYACTION just returns the current interpretation

of the key.

Otherwise, Action is of the form (DownAction . UpAction), where

DownAction is the specification of what should happen when the key is

pressed down and UpAction is a specification of what should happen when

the key is let up.

Each action specifications can be one of the following:

NIL ž specifies that no action should be taken.

(Character ShiftedCharacter LockedShifted?) ž Character and

ShiftedCharacter are either single characters or ASCII character

codes standing for characters. Character is the code to be

transmitted when the key is pressed or let up without the SHIFT

key down. ShiftedCharacter is the code to be transmitted when the

SHIFT key is down.

LockedShifted can be either LOCKSHIFT or

NOLOCKSHIFT, indicating whether the Character or the

ShiftedCharacter is to be transmitted when the LOCK

SHIFT is down. For example, alphabetic keys are usually

LOCKSHIFT and numeric keys are usually

NOLOCKSHIFT. When the LOCK SHIFT is down, the

"1" key transmits a "1" and not a "!", but when the SHIFT

is down it transmits a "!". The "A" key transmits a "A"

when both the SHIFT and the LOCK SHIFT are down.

4LispCourse #10: Miscellaneous Issues Regarding Type-in

LOCKUP, LOCKDOWN, CTRLUP, CTRLDOWN,

METAUP, METADOWN, 1SHIFTUP, 1SHIFTDOWN,

2SHIFTUP, 2SHIFTDOWN ž when one of these is used as an

action specification it changes the internal variables in Lisp that

determine whether characters will be transmitted as Shifted,

Control, Meta, and or LockShifted characters.

For example, if a key is specified as having a down action

of LOCKDOWN, the pressing this key will be like pressing

down the LOCK key on most keyboards. If another key

has a down action of LOCKUP, the pressing down this key

will be like letting up on the LOCK key.

Examples:

To set the "A" key to its ordinary interpretation:

(KEYACTION ’A ’((a A LOCKSHIFT) . NIL))

To set the "1" key to its ordinary interpretation:

(KEYACTION ’1 ’((49 ! NOLOCKSHIFT) . NIL))

To set the "A" key so that it works when the key is let up rather than when

it is pressed down:

(KEYACTION ’A ’(NIL . (a A LOCKSHIFT)))

To set the "A" key so that it works BOTH when the key is let up and when

it is pressed down:

(KEYACTION ’A ’((a A LOCKSHIFT) . (a A LOCKSHIFT)))

To set the "A" key work only when pressed down, but to transmit a "B"

instead of an "A":

(KEYACTION ’A ’((b B LOCKSHIFT) . NIL))

On a Dandelion to make the LOCK key be the CTRL key:

(KEYACTION ’LOCK ’(CTRLDOWN . CTRLUP))

To make the BS key transmit a BS (Ctrl-A) when unshifted and a

BackWord (Ctrl-W) when shifted, both to take effect on the down press:

(KEYACTION ’BS ’((1 23 NOLOCKSHIFT) . NIL))

5LispCourse #10: Miscellaneous Issues Regarding Type-in

Documentation: KEYACTION is documented on page 18.8 of the IRM.

CHARCODE is a function that returns the ASCII code of a character. This is useful in

figuring out the Character and ShiftedCharacter arguments in KEYACTION.

CHARCODE takes one argument, a character. Since it is an NLAMBDA

function, this character need not be quoted. CTRL characters are indicated by a

"^" prefix, as in "^A". META characters are indicated by a "#" prefix as in "#A"

or "#^A". Certain special characters have their own names such as CR, LF,

SPACE, ESC, BS, TAB, and DEL.

Examples:

(CHARCODE BS) returns 8

(CHARCODE A) returns 65

(CHARCODE a) returns 97

(CHARCODE ^A) returns 1

(CHARCODE #A) returns 193

(CHARCODE #^A) returns 129.

Documentation can be found on page 2.12 of the IRM.

The TTY Process

At any given time, there are several things going on in your Interlisp-D environment. For

example, you may be editing a file in a TEdit window while you are copying another file

in your Exec window. Also the clock window is constantly updating the time and Lafite

is constanttly checking if you have new mail.

Roughly speaking, each thing that is going on in your environment at one time is called a

process. The Interlisp-D environment is said to allow multiple processes, i.e., many

things going on simultaneously.

A process usually is associated with one or more windows. For example, each TEdit is a

process and is associated with a TEdit window. There are, however, process with several

windows as well as processes without any windows.

Understanding multiple processes, how to manage them and how to use them effectively

is the topic for another whole session.

6LispCourse #10: Miscellaneous Issues Regarding Type-in

However, we need to know about one special process called the TTY process.

At any given time there may be many processes running in your environment, but there is

only one keyboard. Therefore, there is only one process that can receive input from the

keyboard at any given time. Interlisp handles this problem by allowing only one process

at a time to "own" the keyboard.

The process which "owns" the keyboard at a given moment is known as the TTY process.

When the user types at the keyboard, the typed input gets sent to the TTY process for

processing. If the TTY process is the Lisp exec, then the input gets evaluated. If the

TTY process is a TEdit, then the input gets entered into the file being edited.

The TTY process can be moved from process to process in many ways under both user

and program control.

Clicking with the mouse in a window usually makes the process associated with that

window become the TTY process. For example, if you have two TEdits running. If you

click in the first TEdit window, your type in will be dispatched to that TEdit. However,

if you then click in the second TEdit window subsequent type-in will be dispatched to the

second TEdit. If you then click in the Exec window, subsequent type-in will go to the

Lisp Exec.

A window whose process is the TTY process usually contains a blinking caret that

indicates where the type-in will be put. Usually, windows that are not associated with the

TTY process have a caret that is not blinking. Therefore, the blinking caret generally

indicates which window contains the TTY process.

The concept of a TTY process should become second nature to you as you use the

Interlisp environment.

Interrupt Characters

Some characters, known as interrupt characters, bypass the normal Lisp type-in

processing altogether. Immediately after these characters are typed-in, they are

dispatched to the interrupt mechanism. The interrupt mechanism then interrupts the

ongpoing Lisp processing. How processing is interrupted is determined by what specific

interrupt character was typed.

7LispCourse #10: Miscellaneous Issues Regarding Type-in

Interrupt characters generally affect only the current TTY process. Moreover, which

interrupt characters are activated at a given time is determined by the TTY process at that

time. Many programs (e.g., TEdit) turn off all or certain interrupt characters while they

are the TTY process. Thus interrupt characters may differ depending on what programs

are running and what programs have the TTY process.

There is a default set of interrupt characters that are generally in effect when you are

typing into the Lisp Exec window. These characters are the following:

Ctrl-B ž causes the TTY process to go into a break, opening abreak window.

Ctrl-C ž causes Lisp to enter RAID or TELERAID, a debugger where no sane

Lisp user wishes to tread.

Ctrl-D ž immediately aborts the current TTY process.

Ctrl-E ž causes a soft abort of the TTY process at the next sensible time. The

abort is soft because the aborted process can abort the abort if it has the

mechanism to handle the situation.

Ctrl-H ž Pops up a menu listing all currently running processes. Selecting a

process from this menu cause that process to go into a break.

Ctrl-T ž prints some statistics about the TTY process in the TTY processes

window.

INTERRUPTCHAR is a function that can be used to alter the interrupt status of a given

character. INTERRUPTCHAR takes two arguments: CharacterCode and InterruptType.

CharacterCode is the ASCII code for the character whose interrupot status is

being altered. The ASCII code can be obtained using CHARCODE. For

example, Ctrl-C is (CHARCODE ^C) is 3.

InterruptType is an atom stating what the new interrupt status should be. The

possible values are:

NIL ž turn off this character’s interrupt status altogether. The character

will no longer be processed by the interrupt mechanism.

RESET ž make this character act like Ctrl-D ordinarly does.

ERROR ž make this character act like Ctrl-E ordinarly does.

8LispCourse #10: Miscellaneous Issues Regarding Type-in

HELP ž make this character act like Ctrl-H ordinarly does.

BREAK ž make this character act like Ctrl-B ordinarly does.

RAID ž make this character act like Ctrl-C ordinarly does.

CONTROL-T ž make this character act like Ctrl-T ordinarly does.

Finally, if InterruptType is T, no change is made to the character’s interrupt

status, but its current status is returned as the value of the call to

INTERRUPTCHAR.

INTERRUPTCHAR is normally used to turn off unpleasant interrupt characters like Ctrl-

C or to change the location of interrupts assigned to characters that are often hit by

mistake. For example, Ctrl-H is BackSpace on many other systems such as the Vax. I

often hit Ctrl-H by mistake when I meant BackSpace, especially after an extended

session using the Vax. Therefore, I have the Ctrl-H function moved over to Ctrl-N.

For example, my Init file contains the following three calls to

INTERRUPTCHAR:

(INTERRUPTCHAR (CHARCODE ^C) NIL) ž turn off Ctrl-C

(INTERRUPTCHAR (CHARCODE ^H) NIL) ž turn off Ctrl-H

(INTERRUPTCHAR (CHARCODE ^N) ’HELP) ž make Ctrl-N be

old Ctrl-H

Documentation: interrupt characters and INTERRUPTCHAR are discussed in Sections

9.6, 18.1, and 18.20.6.2 of the IRM. Most of the documentation is pretty technical.

Final Note: Don’t fool with interrupt characters. Turn off the odious ones in your Init

file and then let them be. Don’t turn off Ctrl-D or Ctrl-E as it would then be hard to abort

a program running amok.

References

See Documentation notes under the various topics above.

Exercises

Work on old homeworks.

F.G.H.

2/28/85

LispCourse #11: Error Processing & DWIM

Completions and Corrections

1. KEYACTION and the "A"

I very stupidly used the "A" key in many of my examples of KEYACTION last

time. Don’t try out my examples on the "A" key. Use the "B" key. The reason

is that if you alter the "A" to produce, say, a "C", then you can never type in

"KEYACTION" to change the "A" key back since "KEYACTION" will come out

"KEYCCTION". Beware!

2. The variable IT in the P.A.

The P.A. maintains a variable called IT that is always bound to the value of the

last expression. You can use IT in the current expression to refer to the value

returned by the last expression.

For example:

1_ (CAR ’((A B C)(D E F))

(A B C)

2_ IT

(A B C)

3_ (CDR IT)

(B C)

4_ (CDR IT)

(C)

A more realistic example:

5_ (COPYFILE ’{DSK}ABC ’{DSK}NEW)

{DSK}NEW;1

6_ (TEDIT IT)

{PROCESS}#1,1232

3. The % quote in the Lisp READER

The Lisp READER uses special characters to delimit atoms and lists. In

particular, the "(" and ")" characters delimit lists and spaces delimit atoms.

Ordinarily (ABC) would be considered an list containing one atom. (ABC DEF)

would be a list containing two atoms.

2LispCourse #11: Error Processing & DWIM

A "%" preceding any special character can be used to surpress the special

interpretation of that character. When preceded by a "%", special characters are

considered ordinary characters.

For example, %(ABC%) would be considered a single atom and not a list because

the special meaning of the ")" and "(" characters are supressed by the preceding

"%".

Similarly, (ABC% DEF) is a list containing a SINGLE atom because the "%"

surpresses the delimiting function of the space between "ABC" and "DEF".

The "%" should be thought of as a QUOTE that works on characters rather than

Lisp S-expressions.

Since "%" is itself a special character, it has to be quoted if you want to use it in

an atom. For example, (A %% B) is a list containing three atoms, the middle of

which is the atom %.

An Overview of Error Processing

The diagram in the Appendix illustrates what happens when an error occurs in the Lisp

evaluator.

Errors occur when the Evaluator tries to evaluate an expression containing an unbound

atom (i.e., an atom with no value), an undefined function (i.e., a form whose CAR is not

the name of a function), an illegal argument to a functions, etc.

The major steps in the processing of errors are the following:

DWIM (and CLISP) ž unbound atom and undefined function errors are passed to

DWIM, which attempts to automatically "correct" the error. DWIM assumes that

the error is either a CLISP expression or a typo.

CLISP is a special syntax for Lisp that is "easier to use" (e.g., CLISP

allows infix notation). If the "error" was actually a CLISP expression,

then DWIM translates the expression into standard Lisp and returns the

translated expression to the Evaluator. (Note: CLISP is not an error, just a

special syntax that is implemented using the error mechanism. A very

poor piece of systems design!!!!)

3LispCourse #11: Error Processing & DWIM

If the error appears to be a typo, DWIM "corrects" it and returns the

corrected expression to the Lisp evaluator.

If it appears that the error is neither a typo nor a CLISP expression, then

DWIM just passes on to the Error Mechanism.

Error Mechanism ž u.b.a. and u.d.f. errors not corrected by DWIM and all other

errors are passed to the Error mechanism.

Each error is assigned an error number that identifies what kind of error it

is. There are about 50 such error numbers.

The Error Mechanism, then determines whether to enter a Break. This

determination depends on a number of factors including how many

function have already been called and how long the computation has been

going on.

If the error mechanism decides not to enter a Break, it prints an error

message on the TTY window and then aborts the evaluation.

Breaks ž when appropriate, the Error Mechanism passes control to the Break

Handler.

The Break Handler enters a "break", usually by opening a Break Window.

The Break Handler prints an error message and then passes control to the

Break Exec.

In the Break Exec, the user can evaluate any expression just as in the Lisp

Exec. Special commands for inspecting the state of the evaluation causing

the error are also available.

To end the Break, the user can either repair the error and then return to the

Lisp evaluator OR abort the evaluation in progress and return to the Lisp

Exec.

DWIM (Automatic Error Correction)

Introduction

DWIM stands for "Do What I Mean".

4LispCourse #11: Error Processing & DWIM

DWIM contains two major components: an automatic typo corrector and a

special set of Lisp-like syntax called CLISP. CLISP will be talked about in a later

section. Only the automatic error corrector will be described here.

The DWIM error correction is a valiant attempt at making a user interface that is

robust to simple user errors. It looks at an u.b.a. or a u.d.f. AND at the current

context and tries to figure out what the user actually meant.

DWIM embodies an implicit model of the user and the types of errors he is likely

to make. DWIM also embodies lots of assumptions about the way the Interlisp

system works. Unfortunately, neither DWIM’s model of the user nor DWIM’s

assumptions about the Interlisp environment are very good.

You can’t turn DWIM off. Too much of the system has been made dependent on

DWIM. So you have to learn to deal with DWIM and its idiosyncracies.

Spelling Correction

Basic idea:

The major function of the DWIM error corrector is spelling correction. When

given a u.b.a or u.d.f. error, DWIM compares the incorrect atom (i.e., the

unbound atom or the CAR of the u.d.f. form) against a list of atoms that it knows

about. If one of the atoms on the list is "close" to the error atom, DWIM replaces

the error atom by the "correct" atom.

DWIM uses a number of heuritics to determine the "closeness" of two atoms

Basically, closeness decreases with the number of letters that are different

between the two atoms. It increases as a function of the number of letters in the

longer atom.

Examples:

1. "CONX" is closer to "COND" than to "CORE"

2. "PRETTYPRNT " is closer to "PRETTYPRINT"

than "EQX" is to EQP"

DWIM ignores single transpositions (e.g., SD for DS) and doubled letters (e.g.,

SS for S). DWIM considers "CONS" and "CONNS" to be maximally close (i.e.,

identical) because they differ only by a doubled letter. Also "CONS" and

CNOS" are maximally close since they differ by a transposition.

5LispCourse #11: Error Processing & DWIM

DWIM’s spelling corrector works as follows:

It compares the error atom to each atom on its lists of atoms and if it can it

chooses one.

The choice rules are:

If one matches with maximum closeness, then it chooses that atom.

For example, if the error atom is CONSS and CONS is on the

known atoms list.

At the end of the list, if DWIM will choose the one atom that had

the maximum closeness measure, providing its closeness measure

is over some threshhold.

If there is no unique atom with a maximum closeness measure,

DWIM won’t choose any atom on the list. This can happen if

there are no close atoms are if the maximum closeness is shared by

two or more atoms on the list.

Lists of known atoms:

DWIM uses different lists of known atoms for different kinds of errors.

Basically, it keeps a list of known function names for undefined function errors

and it keeps a list of known variables for unbound atom errors.

These lists are automatically maintained by DWIM and by the Programmer’s

Assistant.

Some atoms are permenantly on these spelling lists. Others are temporary.

The temporary atoms are placed on the list when they are used in an expression in

which uses one of DEFINEQ, SETQ, COND, DF,

If a temporary atom gets used to correct an error, then it becomes permanent.

Otherwise, it falls off the list after 30 or so new temporary atoms are added to the

list.

Basically, the list of known atoms corresponds to the last 30 or so atoms or

function names that you referred to.

Note that these rules hold basically for user type-in.

6LispCourse #11: Error Processing & DWIM

DWIM also operates on errors occurring within a function. However, if an error

occurs within a function, DWIM acts slightly differently. In particular, it uses the

other atoms within the function definition to determine how to spelling correct an

unbound atom.

Other DWIM corrections

DWIM makes a few other corrections besides simple spelling corrections. These

corrections include the following:

’ followed by a space and an S-expression ž This would reuslt in an u.b.a. error

on the ’. DWIM will "correct" this expression to eliminate the space after the ’.

For example: (CONS ’A ’ (A B C)) would be corrected to (CONS ’A ’(A B C))

by DWIM. Similarly, (LIST ’ A ’ B) would be corrected to (LIST ’A ’B).

Misplaced T clause in COND expression ž DWIM will attempt to correct

various misplacements of a T clause in a COND expression. It uses various

heuristics to do so. For example:

(COND ((NUMBERP ’A) ’X)((T ’Y))) would get corrected to

(COND ((NUMBERP ’A) ’X)(T ’Y))

(COND ((NUMBERP ’A) ’X))(T ’Y) would get corrected to

(COND ((NUMBERP ’A) ’X)(T ’Y))

And other fairly esoteric stuff ž See the DWIM documentation for all the

Bells and whistles.

The DWIM user interface

DWIM is called automatically when an appropriate error occurs in the Lisp

evaluator. However, DWIM sometimes interacts with the user.

In particular, DWIM has two modes: CAUTIOUS and TRUSTING.

In TRUSTING mode, DWIM makes most corrections without asking the

user’s permission. It simply prints a record of the corrections it is making

in the TTY window.

Example:

5_ (COSN 4 (LIST 5))

7LispCourse #11: Error Processing & DWIM

=CONS

(4 5)

The "=CONS’ line is a message from DWIM saying that it did a

spelling correction that resulted in an atom being corrected to

CONS.

6_ (DEFINEQ (JUNK (LAMBDA NIL (ITIMSE 4 3))))

(JUNK)

7_ (JUNK)

ITIMSE {in JUNK} -> ITIMES

12

The "ITIMSE {in JUNK} -> ITIMES" line is a message from

DWIM saying that while executing JUNK it changed "ITIMSE" to

"ITIMES"

In CAUTIOUS mode, DWIM makes asks the user’s permission before

making most corrections.

DWIM will print out the correction message followed by a "?".

If the users types "Y", then DWIM will make the

correction.

If the user types "N", then DWIM will not mnake the

correction and return to the Error Mechanism.

If the user types a space or <RETURN>, then DWIM will

just wait until the user types a "Y" or "N".

If the user types nothing, DWIM will wait 10 seconds and

then assume a default answer. The default anser may be

"Y" or "N" depending on the type of correction being done.

Example:

6_ (DEFINEQ (JUNK (LAMBDA NIL (ITIMSE 4 3))))

(JUNK)

7_ (JUNK)

ITIMSE {in JUNK} ->

8LispCourse #11: Error Processing & DWIM

At this point DWIM waits for an answer of Y or N or for

10 seconds. In this case, the default answer after 10

seconds would be "Y".

When processing type-in DWIM is always in TRUSTING mode. The assumption

is that you can always undo what DWIM has done.

When processing a function, DWIM can be in either CAUTIOUS or TRUSTING

mode. The default is TRUSTING.

To change DWIM modes, use the function DWIM. DWIM takes one argument,

Mode.

If Mode is the atom C, then DWIM is set to CAUTIOUS mode.

If Mode is the atom T, then DWIM is set to TRUSTING mode.

If Mode is NIL, then DWIM is turned off.

Beware: Lots of stuff will stop working when DWIM is turned off. It is probably a

very bad idea to turn DWIM off, since you can never tell what depends on DWIM

to work correctly!!!

Some DWIM parameters

DWIMWAIT ž the number of seconds DWIM will wait for a response from the

user before assuming the default answer. Initially, 10 seconds.

FIXSPELLDEFAULT ž the default answer thatr DWIM uses after DWIMWAIT

seconds is up during a spelling correction in CAUTIOUS mode. Initially, y.

FIXSPELLREL ž the minimum closeness measure needed to accept a known

atom as a correction for an error atom. If 100, then only maximum matches will

be accepted. Note that maximum matches include atoms that differ by single

transpositions and doublings. Initially set to 70.

ADDSPELLFLG ž If NIL, suppresses the addition of items to the known atoms

lists. If T, enables the additions. Initially, T.

NOSPELLFLG ž If T suppresses all spelling correction in DWIM. If other non-

NIL value, suppresses spelling corrections in functions but not in type-in. If NIL,

spelling correction is done. Initially, NIL.

9LispCourse #11: Error Processing & DWIM

RUNONFLG ž If T, DWIM tries to correct run-on typos. E.g., (IPLUS 8A) might

be corrected to (IPLUS 8 A). If NIL, no run-on correction is done. Initially, NIL

because run-on corrections are not very good.

SPELLINGS1, SPELLINGS2, SPELLINGS3, USERWORDS ž these are the

lists of known atoms that DWIM and the P.A. maintain. You probably can’t do

much except look at these.

#SPELLINGS1, #SPELLINGS2, #SPELLINGS3, #USERWORDS ž these

parameters have integer values that determine the length of the known atoms lists.

If you want to increase the "history" of known atoms, increase the values of the

parameters. Initially, 20.

10LispCourse #11: Error Processing & DWIM

DWIM Documentation

DWIM is documented in Chapter 15 of the IRM. The chapter appears to be

significantly out-of-date!. It is very detailed and is probably hard to understand

for the average user.

The introduction to Chapter 15 and Section 15.1 are good overall descriptions.

Sections 15.4 and 15.6 are more detailed descriptions that may be of interest to

the non-programmer.

Caution is the bottom line with DWIM

DWIM doesn’t work very well as a user interface. It is very non-intuitive and

causes most users many problems than it solves. Tread with caution when

interacting with DWIM.

Examples: [This is a transcript of a short session with DWIM]

6_ (CNOS 4 5)

UNDEFINED CAR OF FORM

CNOS

7_ (CONS 4 5)

(4 . 5)

8_ (CNOS 4 5)

=CONS

(4 . 5)

9_ (CONNS 4 5)

=CONN

{PHYLUM}<4>

10_ UNDO

CONN undone.

11_ (COSN 4 5)

=CONS

(4 . 5)

12_ (CON 4 5)

11LispCourse #11: Error Processing & DWIM

=CONN

{PHYLUM}<4>

13_ (CONDD (T ’X))

=CONN

ILLEGAL ARG

(T (QUOTE X))

14_ (COND (T ’X))

X

15_ (CONDD (T ’X))

=CONN

ILLEGAL ARG

(T (QUOTE X))

16_ (CODN (T ’X))

=COND

X

17_ (CONX 4 5)

=CONN

{PHYLUM}<4>

F.G.H.

3/12/85

LispCourse #12: CLISP

CLISP

Introduction

CLISP (Conversational LISP) is a package that implements an alternative syntax

for Interlisp expressions. CLISP is intended to make Interlisp "easier to read and

write, especially for beginners".

An example of CLISP is the expression A_5. According to standard Interlisp, this

is simply an atom whose name is 3 characters long. However, according to

CLISP it is alternative syntax for (SETQ A 5).

Another example might be: A*5+(6/2). According to standard Interlisp, this is

simply an atom whose name is 4 characters long followed by a list containing a

single atom. However, according to CLISP it is alternative syntax for ((PLUS

(TIMES A 5) (QUOTIENT 6 2))).

CLISP is part of DWIM. It works as follows:

Expressions that the Lisp interpreter cannot intepret due to u.b.a

(unabound atom) or u.d.f. (undefined function) errors are passed to

DWIM.

DWIM checks to see if the "error" is in fact a legal CLISP expression. If

so, it translates the CLISP to standard Lisp and returns the standard

expression to the evaluator.

Otherwise, DWIM tries to automatically correct the error. DWIM knows

about CLISP as well as standard Lisp. Therefore, it will try to "correct"

expression that it thinks are CLISP expressions with typos. The

"automatic correction" of CLISP works just like the "automatic

correction" of standard Lisp described last time.

If the expression isn’t CLISP and can’t be corrected, it is passed to the

error handler.

For example, when the user types "A_5", a u.b.a error occurs because A_5 is an

atom with no value. The expression "A_5" is passed to DWIM/CLISP which

2LispCourse #12: CLISP

recognizes it as a CLISP expression. CLISP translates the expression into

"(SETQ A 5)" which is then evaluated. The result is the same as if (SETQ A 5)

had been typed in.

Note this all is a bit wacky!!! From the user’s point of view, CLISP expressions

are simply Lisp expressions written in an alternative syntax. They are in no way

"errors". From the system’s point of view a legal CLISP expression is an error

that is "corrected" by the CLISP translator in DWIM.

CLISP has four basic components:

1. CLISP character operators (including infix operators): CLISP

provides an alternative syntax based on a series of special characters. For

example, CLISP provides infix arithmetic expressions such as "A+B",

where the "+" is a CLISP character operator. CLISP uses the "+" as a

clue to translate this expression into (PLUS A B).

2. IF-THEN-ELSE statements: CLISP provides a "more intuitive"

syntax for the COND statement that is similar to the IF-THEN-ELSE

statements in PASCAL and FORTRAN. CLISP just translates these

statements into their equivalent COND forms.

3. Iterative statements: The FOR and WHILE loops discussed in

Session #5 are implemented in CLISP. CLISP translates these iterative

statements into a series of standard Lisp statements that carry out the

iteration.

4. Record Package: The Record Package is a package that implements

various data structures in addition to lists. We will cover the Record

Package in detail in the programming section of this course.

We will not discuss the Record Package until much later in the course.

We have already covered the Iterative statements (i.e., FOR and WHILE

statements) in detail. The fact that they are CLISP rather than standard Lisp has

little effect on the user. In most interactions with the system, the user will see

only FOR or WHILE statements and not their translations into standard Lisp.

Exceptions to this rule do exist, however. So you should remember that FOR and

WHILE loops are in fact CLISP and not standard Lisp expressions.

3LispCourse #12: CLISP

The CLISP character operators and the IF-THEN-ELSE statements are discussed

in detail below. The fact that these are CLISP rather than standard Lisp is very

evident to the user.

During the translation from CLISP to Lisp, the Lisp expression actually

replaces the CLISP statement. All future accesses to the expression return

the translation (i.e., Lisp) rather than the original (i.e., CLISP). For

example, the typed-in expression A_5 is replaced by the Lisp expression

(SETQ A 5). A_5 is forgotten. In particular, the entry on the history list is

(SETQ A 5) and NOT A_5. "FIX SETQ" will work but "FIX A_5" will

not.

CLISP Character Operators

CLISP interprets several characters as operators to be applied to the surrounding

S-expressions. Most of the CLISP operators are infix operators such as the "+" in

A+B. There are some prefix operators such as the "~" in the expression

~(NUMBERP X).

In a CLISP expression, an operator can be surrounded by spaces or it can be in the

middle of an atom. To CLISP, "A+B" is equivalent to "A + B".

CLISP uses these operators as the basis for translating CLISP expressions into the

appropriate Lisp function calls.

Arithmetic Operators:

+, -, *, /, ^ ž these are the CLISP infix arithmetic operators. They are

translated into the appropriate calls to PLUS, DIFFERENCE, TIMES,

QUOTIENT, and EXPT.

Examples:

4/2 translates to (QUOTIENT 4 2)

(4+5)*3 translates to (TIMES (PLUS 4 5) 3)

(A+(SETQ A 5))*(SETQ A 7)) translates to

(TIMES (PLUS A (SETQ A 5)) (SETQ A 7))

4LispCourse #12: CLISP

Parentheses can be used to insure that the operators are interpreted in the

correct order. For example: 5*4+6 can be either (5*4)+6 versus 5*(4+6).

In the absence of parentheses, normal rules of precedence are used. Thus,

^ is higher than * and / which in turn are higher than ÿ and +. Within a

precedence level, precedence is given to the leftmost operator.

Examples:

4*2+5 translates to (PLUS (TIMES 4 2) 5)

[rather than to (TIMES 4 (PLUS 2 5))]

4+2-3 translates to (DIFFERENCE (PLUS 4 2) 3)

[rather than to (PLUS 4 (DIFFERENCE 2 3))]

4*x^2 translates to (TIMES 4 (EXPT X 2))

[rather than to (EXPT (TIMES 4 X) 2)]

ÿ (i.e., unary minus) ž the minus sign can also be used as a prefix unary

minus to indicate arithmetic negation. Since the minus sign is both a

binary (infix) and a unary (prefix) operator the following rule is in effect:

the minus sign is interpreted as a binary minus except when it is the first

item in a list or it follows another operator. Examples: ÿA, (ÿA), (B*ÿA).

Logical Operators:

=, GT, LT, GE, LE ž are infix operators for EQUAL, GREATERP,

LESSP, "Greater than or equal to", and "Less than or equal to". These are

translated to a call to the appropriate predicate or predicate composition.

Examples:

A GT B translates to (GREATERP A B)

A=B translates to (EQUAL A B)

A LE B translates to (OR (EQUAL A B) (LESSP A B))

Note that except for the =, all of these operators must be surrounded by

spaces. For example, A GT B cannot be written AGTB. However, A = B

can be written A=B.

5LispCourse #12: CLISP

AND, OR, MEMBER, EQUAL ž are infix operators standing for the

Lisp functions of the same name. They are translated accordingly.

Examples:

A EQUAL B translates to (EQUAL A B)

A OR B translates to (OR A B)

A MEMBER B translates to (MEMBER A B)

~ (unary) ž is prefix operator meaning NOT (or NULL).

Examples:

~(MEMBER A ’(1 2 3)) translates to

(NULL (MEMBER A ’(1 2 3)))

~(A OR B) translates to (NULL (OR A B))

Note: Parentheses can be used to insure proper interpretation of logical

combinations: A OR B AND C EQUAL D can be written as (A OR B)

AND (C EQUAL D) or as (A OR (B AND (C EQUAL D)))

In the absence of parentheses, the precedence rules for the logical

operators are as follows:

=

LT, GT, LE, GE, EQUAL, MEMBER

AND

OR.

Otherwise, precedence goes from left to right.

All of the logical operators have a lower precedence than the arithmetic

operators.

Examples:

A=B OR C=D translates to (OR (EQUAL A B)(EQUAL C D))

A EQUAL B + C translates to (EQUAL A (PLUS B C))

A AND B OR C translates to (OR (AND A B) C)

Other Operators:

6LispCourse #12: CLISP

: ž is an infix operator that extracts elements from a list. X:N stands for

the Nth element of the list X. For example, X:2 stands for (CADR X)

while X:4 stands for (CAR (CDDDR X)).

The : operator has a higher precedence than any of the arithmetic

or logical operators.

A negative N indicates the Nth element from the end of the list.

For example X:-1 stands for the last element in the list.

The : operator can be composed as in X:2:3 which stands for the

third element of the second element of X or (CADDR (CADR X)).

:: ž is an infix operator that extracts tails of lists. For example: X::1 is the

(CDR X), X::3 is the (CDDDR X), and X::-1 is the (LAST X).

_ ž is an infix operator that indicates assignment. For our purposes,

assignment means SETQ. For example, X_Y translates to (SETQ X Y).

[Note: The _ operator can also be used in conjunction with the :

operator to alter the composition of a list. For example, X:2_5

means replace the second element of X with 5. However, we have

not yet covered how to say this in straight Lisp!].

<, > ž are special operators in CLISP used to construct lists. A balanced

pair of angle brackets indicates that a list is to be constructed containing

everything between the "<" and the ">". For example, <A B C> translates

to (LIST A B C), while <1 2 3 <4 5 6>> translates to (LIST 1 2 3 (LIST 4

5 6)).

IF-THEN-ELSE expressions

CLISP provides an IF-THEN-ELSE statement similar to that found in PASCAL

and FORTRAN.

The form of the IF-THEN-ELSE expression is:

(IF A THEN B ELSEIF C THEN D ELSEIF E THEN F ... ELSE G)

This expression is directly translated into:

(COND

7LispCourse #12: CLISP

(A B)
(C D)
(E F)
...
(T G))

In "English":

If A is non-NIL, then evaluate B and exit

Otherwise, if C is non-NIL, then evaluate D and exit

Otherwise, if E is non-NIL, then evaluate F and exit

...

Otherwise, evaluate G and exit.

The IF, THEN, ELSEIF and ELSE keywords have the lowest precedence of any
of the CLISP character operators.

Example:

(IF A = B + C THEN C + D ELSE E - F)

translates to

(COND

((EQUAL A (PLUS B C)) (PLUS C D))

(T (DIFFERENCE E F)))

Using CLISP - Advantage and Disadvantages

The advantage of CLISP is that it allows you to type-in complex expressions

using a syntax that is more concise and supposedly more intuitive than the

standard Lisp syntax.

The following examples make the case:

A^2+B^2+C^2

instead of (PLUS (EXPT A 2)(EXPT B 2)(EXPT C 2))

(IF A^2+B^2+C^2=C+D-E*2 THEN A_C+E ELSE C_X:2)

instead of

(COND

8LispCourse #12: CLISP

((EQ

(IPLUS (EXPT A 2) (EXPT B 2) (EXPT C 2))

(IDIFFERENCE (IPLUS C D) (ITIMES E 2)))

(SETQ A (IPLUS C E)))

(T (SETQ C (CADR X))))

The disadvantages of CLISP are many! First CLISP is another whole set of rules

for the user to learn. The rules are inconsistent with the rules of Lisp. For

example, CLISP violates the notion that every Lisp expression starts with the

name of a function to be applied to the arguments which follow. Thus, CLISP has

opted for a syntax that is locally optimized (or assumed to be optimized) for

certain special cases at the expense of consistency across the system as a whole.

It is not at all clear that this was a good trade-off to make!!

CLISP is not well integrated into the Interlisp environment.

When CLISP expressions are translated into Lisp, the Lisp expressions replace

the CLISP expressions. Thus if you look at an entry on the history list or if you

DEdit a function, the CLISP you typed-in will be gone and a very different

expression will be in its place. This can be very, very confusing!

Example:

65_ (COND (T NIL))

NIL

66_X_(IF ~(LISTP X) THEN A_C+D ELSE X:3)

3

67_REDO IF

IF ?

68_REDO COND

8

...

72_(DEFINEQ (TEST (LAMBDA (X) (IF ~(LISTP X) THEN

A_C+D ELSE X:3))))

(TEST)

73_PP TEST

9LispCourse #12: CLISP

(TEST

 (LAMBDA (X) **COMMENT**

 (IF ~(LISTP X)

 THEN A_C+D

 ELSE X:3)))

(TEST)

74_(TEST 1)

8

75_PP TEST

(TEST

 (LAMBDA (X) **COMMENT**

 (COND

 ((NLISTP X)

 (SETQ A (IPLUS C D)))

 (T (CADDR X)))))

(TEST)

A second example of problems with CLISP arises when DWIM error "correction"

interacts with CLISP. The following is a simple example of a DWIM/CLISP

interaction that is not at all intuitive:

86_ (SETQ PATIENT-RECORD 99)

99

87_(SETQ PATIENT 7)

7

88_(SETQ RECORD 2)

2

89_PATENT-RECORD

=PATIENT

5

10LispCourse #12: CLISP

[Why should DWIM correct this to (DIFFERENCE PATIENT RECORD)

rather than to the atom PATIENT-RECORD ????]

Moral: CLISP is nice, but watch out for all its traps. CLISP can be very handy

when typing complex expressions. But its utility is limited by the fact that it is

just a coating of syntactic sugar spread on top of Interlisp that is bothinconsistent

with the rest of Interlisp languageAND not well integrated into the eInterlisp

environment.

DWIMIFY and CLISPIFY

DWIMIFY is a function that applies DWIM to an expression returning the

expression with all of the "errors" corrected. This forces the translation of CLISP

expressions as well as other DWIM corrections.

DWIMIFY takes one argument which is either the name of a function or

an expression. DWIMIFY runs DWIM on the function or expression,

making all the necessary changes and returns the translated/corrected

expression.

Example:

99_(DWIMIFY ’(IF A=B THEN C+D ELSE E+F))

E+F TREAT AS CLISP ? yyes

(COND

 ((EQ A B)

 (IPLUS C D))

 (T (IPLUS E F)))

(COND ((EQ A B) (IPLUS C D)) (T (IPLUS E F)))

CLISPIFY is a function that takes a standard Lisp expression and translates it

into CLISP using as many CLISP operators as possible. CLISPIFY is a sort of

inverse to DWIMIFY.

CLISPIFY takes one argument which is either the name of a function or

an expression. CLISPIFY translates the function or expression to CLISP

11LispCourse #12: CLISP

and returns the translation. If X is a function name, the function is

redefined to the be the CLISPIFYed translation.

Example:

4_(CLISPIFY

(QUOTE

(COND ((LISTP X) (SETQ A 5))

(T (SETQ B 6)))))

(if (LISTP X) then A_5 else B_6)

DWIMIFY and CLISPIFY are available in DEdit as subcommands of the

EDITCOM command. Select the expression you want DWIMIFYed or

CLISPIFYed then click on EDITCOM in the DEdit menu with the missle mouse

button. Choose DW (DWIMIFY) or CL (CLISPIFY) from the submenu that

appears. The selected expression will be replaced by its DWIMIFYed or

CLISPIFYed equivalent.

Tailoring CLISP

There are several parameters and functions that alter the behavior of CLISP.

Some of the more interesting ones are the following:

CLISPFLG ž If NIL all CLISP infix and prefix operators are disabled but IF-

THEN-ELSE and Iterative expressios remain in force. If the value is TYPE-IN,

then CLISP is in effect only on user type-in and not on the body of defined

functions. If the value is T, CLISP is in effect on all evaluated expressions.

Initial value is T.

(CLDISABLE X) ž disables the CLISP operator X. For example, (CLDISABLE

’-) disables the - CLISP character operator while (CLDISABLE ’IF) disables IF

expressions.

CLISPIFTRANFLG ž If T, the original IF statements are left alone during CLISP

translation to Lisp. If NIL, the original CLSIP is replaced by the Lisp

translations. Initially, NIL.

12LispCourse #12: CLISP

CLISPIFYPRETTYFLG ž If ALL, causes PP and MAKEFILE to CLISPIFY

functions before printing them. If a list, causes all functions on the list to be

CLISPIFYed before printing. If NIL, nothing is CLISPIFYed before printing,

i.e., functions are printed as is.

13LispCourse #12: CLISP

CLISP Documentation

CLISP is documented in Chapter 16 of the IRM. Sections 16.1 thru 16.8 contain

material of general interest. Section 16.9 is for hackers only. Description of

tailoring parameters and functions appears mostly in Sections 16.6 thru 16.8.

IF-THEN-ELSE and Iterative expressions are covered in Chapter 4 of the IRM.

The Record Package is covered in Chapter 3.

F.G.H.

3/14/85

LispCourse #13: Error Handling and the Break Package

Background Concept: The Stack

Consider the following set of functions:

(DEFINEQ

(LoadMany (LAMBDA (LoadList)

(COND

(LoadList

(LoadOne (CAR LoadList))

(LoadMany (CDR LoadList))))))

(LoadOne (LAMBDA (File)

(LOAD File ’PROP))))

Trace the following function call down to the first call to LOAD: (LoadMany ’(FOO
BAR))

LoadMany: LoadList _ (FOO BAR)

LoadOne: File _ FOO

LOAD: FILE _ FOO LDFLG _ PROP

When the Lisp evaluator starts to process the call to LOAD, it is keeping track of three
function calls: the call to LoadMany, the call to LoadOne, and the call to LOAD.

The Lisp evaluator needs to keep track of lots of information about these three function
calls. For example for each function call the evaluator must record the exact function
called, the values of the arguments in the function call, where in the function body it
currently is, and so on.

2LispCourse #13: Error Handling and the Break Package

Lisp keeps this kind of information in a data structure called the stack.

The stack consists a set of stack frames. Each stack frame contains the information about
one function call. The stack frames are ordered from most recent at the top of the stack
to oldest at the bottom of the stack.

When a new function call is made, a new frame is added to the top of the stack. When a
function call completes, its frame is removed from the top of the stack. Thus the stack
grows and shrinks as function calls are made and then completed.

For example, at the start of the LOAD function call the Lisp stack would look
something like:

LOAD:

FILE _ FOO

LDFLG _ PROP

LoadOne:

File _ FOO

LoadMany:

LoadList _ (FOO BAR)

After FOO is loaded and LoadOne completes, the Lisp stack would be:

LoadMany:

LoadList _ (FOO BAR)

LoadMany then recurses to load BAR, so at the point that LOAD is called again
the stack would be:

LOAD:

FILE _ BAR

LDFLG _ PROP

LoadOne:

File _ BAR

LoadMany:

LoadList _ (BAR)

LoadMany:

LoadList _ (FOO BAR)

3LispCourse #13: Error Handling and the Break Package

Note that at each point, the stack contains an ordered list of the function calls that are in
progress. Each function call on the stack is waiting for function call just above it to
complete and return a value. The top of the stack contains information about the function
call currently being processed.

In short, at any given time the stack contains a record of the current state of a
computation in progress.

When an error occurs, the stack contains valuable information about the state the
computation was in when the error occured.

Errors: Break or Abort?

When the Lisp evaluator encounters an error that DWIM/CLISP cannot "correct", it does

one of two things:

1) it aborts the computation in progress. Unless the aborted program specifies

otherwise, control returns to the Lisp exec. (Programs can be written so that they

"handle" the abort by "fixing’ or ignoring the error.)

2) it suspends the computation in progress and enters a break. From the break,

the user can "fix" the error and resume (or abort) the computation.

The decision whether to Abort or Break is based on the heuristic that complex

computations should be broken while simple computations should be aborted. This

heuristic rests on the assumption that simple computations are easier redone rather than

fixed and resumed.

"Complex" in this case is based on two factors, "depth" of the computation and time

spent so far in the computation.

 Depth is basically the number of number of function calls on the stack when the

error occurs. If this number passes a given threshold (i.e., the value of

HELPDEPTH), the computation will be broken.

Time is measured by how long the computation has been in progress. If this time

passes a given threshold (i.e., the value of HELPTIME), then the computation

will be broken.

If neither the depth nor the time passes threshold, then the computation will be

aborted.

4LispCourse #13: Error Handling and the Break Package

Some programs choose to handle their own aborts using the error processing machinery

provided by Interlisp. The computation of "complexity" for these programs is slightly

different. The effect is that breaks are less likely to occur and aborts are more likely to

occur. When the abort does occur it is up to the program to decide what to do.

When an error causes an abort, the program can try to "fix" the error or decide to

ignore it. If it does either of these, the computation will proceed as if no error had

occurred (though the program will probably print out some sort of error message

to let you know that the error did occur.) The program can also decide to force a

break or it can force a "true" abort and return to the Lisp exec.

Standard packages like TEdit and DEdit almost always process their own aborts.

They try to ignore or fix all but the most drastic errors so that the user isn’t

constantly bombarded by breaks and/or aborts.

When a computation is aborted, an error message is always printed in its TTY window

before control is given to the Lisp exec. This message usually includes the type of error

and the offending object. For example: "Non-numeric arg: NIL" indicates that one of the

arguments to some function was NIL when it was to supposed to be some numeric value.

There are some 50 standard types of error in Interlisp. We will review some of these

later.

Examples:

12_(PLUS T)

NON-NUMERIC ARG
T

13_(QQQQQ 4)

UNDEFINED CAR OF FORM
QQQQQ

14_(SETQ NIL 5)

ATTEMPT TO SET NIL OR T
5

Breaks: the Break Exec and Break Windows

5LispCourse #13: Error Handling and the Break Package

When a Break occurs, the computation is suspended and a Break window is opened on

the screen. The title of this window is a message describing the error that caused the

break. This error message is also printed in the window.

A Break exec is started in the Break window. A Break exec is very similar to the Lisp

exec except it has an additional set of commands that can be used to "handle" the break.

The Break package is primarily intended as a debugging tool for programmers. Rather

than aborting a computation when an error occurs, Interlisp suspends the computation

and enters a break. The break gives the user an opportunity to examine the suspended

computation, make changes that "fix" the error, and then restart the computation from

any point. From a programmer’s point of view this is a fantastic opportunity.

Unfortunately, to make full use of breaks you need to have considerable expertise in

Interlisp programming. The average user doesn’t have sufficient expertise and therefore

can’t really take advantage of the power of breaks.

But, when an error occurs a break usually occurs. So the all users have to learn to deal

with breaks as best they can. We will cover "dealing with breaks" today and pick up the

"effective use of breaks" later in the programming part of the course.

What is a break and what is it good for?

When a break occurs the ongoing computation is suspended at the point at which

the error occurred. The break provides the tools for examining the state of the

computation including its stack, all of the variables its using, the definitions of the

functions it calls, etc. Functions can be edited, the values of variables reset,

previous events undone, and so on. The computation can then be restarted at any

point or it can be aborted completely.

Basically, a break is an opportunity for the user to do what she can to recover

from errors, thereby saving any work that has been done by the computaion

before the error occurred. The decision to abort the computation if the work can’t

be saved or isn’t worth savingis left in the hands of the user rather than the

system.

Examples:

6LispCourse #13: Error Handling and the Break Package

If during a COPYFILE you run out of space on your account on the file

server, the system will enter a break with a message saying "File system

resources exceeded". From the break, you can delete some files on your

account to free up some space. You can then type "OK" to restart the

COPYFILE. If you can’t find any files to delete and just want to stop the

COPYFILE, you can type "^" to abort the COPYFILE and return to the

Lisp exec.

If you type "(LOAD ’FOOBAR)" to the Lisp exec and FOOBAR doesn’t

exist, the system will (sometimes) enter a break with saying "File not

found FOOBAR". If you really meant to load FUZBAL, you can type

"(SETQ FILE ’FUZBAL)" followed by "OK". This will "correct" the

typo you made and restart the computation, causing the file FUZBAL to

be loaded.

The Break Exec

The Break exec running inside the Break window is a read-eval-print loop just

like the Lisp exec. The type-in prompt is a ":" rather than a "_" to distinguish the

Break exec from the Lisp exec.

The history event numbers that preceed the prompt are shared between the Lisp

exec and the Break exec, i.e., there is only one history list that serves all execs,

Lisp and Break alike.

The Break exec contains all of the functionality of the Lisp exec including TTYIN

and the Programmer’s Assistant. You can evaluate any Lisp expression, CLISP

expression, P.A. command, etc. just as you can in the Lisp exec.

The Break exec contains a number of additional commands for managing the

Break, for repairing the computation, and for restarting/aborting the computation.

These commands are like the P.A. commands in that you simply type them into

exec followed by a <RETURN>. No parentheses etc. are necessary.

BRKEXP: When you enter a break, the value of the variable BRKEXP is the S-

expression that caused the error in the evaluator. If you can’t figure out what to

do from the error message printed in the break window, you can always examine

the value of BRKEXP.

7LispCourse #13: Error Handling and the Break Package

BRKEXP can also be used as the expression to evaluate when leaving the break.

Several of the break exec commands involve modifying or re-evaluating the

BRKEXP expression.

Example:

In the LOAD example above, the value of BRKEXP was

(OPENFILE FILE ACCESS RECOG BYTESIZE). This suggests

that the variable FILE is the "cause" of the error and should be set

to the correct file name. Hence to fix the error, you SETQ FILE to

the correct name. You then use the OK break command to exit the

break and reevaluate the BRKEXP expression.

41_(LOAD ’FOOBAR)

FILE NOT FOUND

FOOBAR

(OPENSTREAM broken)

42:BRKEXP

(OPENFILE FILE ACCESS RECOG BYTESIZE)

43:FILE

FOOBAR

44:(SETQ FILE ’FUZBAL]

FUZBAL

45:FILE

FUZBAL

46:OK

{DSK}FUZBAL

47_

Break Exec Commands: The following are special commands that can be used

to manage breaks from the break exec.

Exiting from a break:

When exiting from a break, you return some value. This is used in by the

evaluator as the value of the expression that caused the error. For

8LispCourse #13: Error Handling and the Break Package

example, the expression (SETQ A (PLUS 1 T)) will cause a "non-numeric

arg" break while evaluating the (PLUS 1 T) expression. The value

returned from this break is used in place of the value of the (PLUS 1 T)

expression and hence is the value that A will be set to.

The following functions exit from a break, returning some value.

GO ž Evaluates the BRKEXP expression, prints the result in the

break window, and exits the break returning the evaluation result.

OK ž Like GO, except doesn’t print the result of the evaluation.

RETURN Form ž Evaluates Form and then exits from the break

returning the evaluation result.

The following function, exit from a break by aborting and hence doesn’t

return any value:

^ ž exits the break by causing an abort. This will cause a return to

the Lisp exec unless aborts are explicitly processed by the broken

program as described earlier.

Other Commands:

Many of the break exec commands rely on the value of the variable

LASTPOS. LASTPOS points to an entry on the stack, i.e., to a function

call somewhere on the stack. Many functions allow you to see various

characteristics of the LASTPOS function call. You can move the value of

LASTPOS in order to examine various function calls on the stack.

LASTPOS starts out at the expression causing the break.

EVAL ž evaluates the BRKEXP expression but does not exit from the

break. !VALUE is set to the result of the evaluation. Can be used to see

what the break would return, if GO or OK were used.

9LispCourse #13: Error Handling and the Break Package

@ Atom ž moves LASTPOS to the most recent call to the function named

by Atom. To search for the second most recent call to the function named

by atom use "@ Atom Atom" and so on.

?= ž prints out the values of the arguments to the function at LASTPOS.

For example, in the LOAD break described above with LASTPOS

pointing to the OPENFILE function call, ?= would print out the values of

FILE, ACCESS, RECOG and BYTESIZE.

BT DUMMYFRAMEPž prints out the names of the function calls on the

stack starting from the most recent to the oldest (called a backtrace). The

DUMMYFRAMEP is optional, but gets a more concise backtrace with

less junk in it.

REVERT ž removes from the stack all function calls from the error back

through the function call specified by LASTPOS. It then causes a break in

the function call specified by LASTPOS. Thus REVERT allows you to

back the computation up to some previous point before the error was

encountered.

EDIT ž calls DEdit on the function containing the BRKEXP expression.

For example: if in the definition of the function FOO there is an

expression like (PLUS 1 T), a break will occur with the value of BRKEXP

being (PLUS 1 T). In this break, EDIT will call DEdit on the function

FOO because FOO is the function that contains the incorrect statement

(PLUS 1 T).

Examples of Break Exec in use

99_(COPYFILE (QUOTE {DSK2}ABC)

 (QUOTE {DSK2}XYZ))

FILE NOT FOUND

{DSK2}ABC

(OPENSTREAM broken)

100:BRKEXP

(OPENSTREAM FILE ACCESS RECOG BYTESIZE PARAMETERS)

10LispCourse #13: Error Handling and the Break Package

1:BT DUMMYFRAMEP

OPENSTREAM

ERRORSET

COPYFILE

EVAL

LISPX

ERRORSET

EVALQT

ERRORSET

T

2:?=

FILE = {DSK2}ABC

ACCESS = INPUT

RECOG = NIL

BYTESIZE = NIL

PARAMETERS = ((SEQUENTIAL T))

3:(COPYFILE ’{DSK2}AAA ’{DSK2}ABC]

{DSK2}ABC.;1

4:OK

OPENSTREAM

{DSK2}XYZ.;1

5_

64_(DEFINEQ

(EXAMPLE (LAMBDA (A B C)

(PLUS

(EXAMPLEX A)

(EXAMPLEX B)

(EXAMPLEX C)))))

(EXAMPLE)

65_(DEFINEQ

(EXAMPLEX (LAMBDA (X)

(EXAMPLEY X 1))))

11LispCourse #13: Error Handling and the Break Package

(EXAMPLEX)

66_(DEFINEQ

(EXAMPLEY (LAMBDA (P Q)

(PLUS P Q))))

(EXAMPLEY)

67_(EXAMPLE 2 3 4)

12

...

77_(EXAMPLE 1 2 T)

NON-NUMERIC ARG

T

(PLUS broken)

80:BT DUMMYFRAMEP

PLUS

EXAMPLEY

EXAMPLEX

EXAMPLE

EVAL

LISPX

ERRORSET

EVALQT

ERRORSET

T

81:?=

ARG1 = T

ARG2 = 1

82:@ EXAMPLEY

EXAMPLEY

83:?=

12LispCourse #13: Error Handling and the Break Package

P = T

Q = 1

84:@ EXAMPLEX

EXAMPLEX

85:?=

X = T

86:REVERT

EXAMPLEX

(EXAMPLEX broken)

87: BT DUMMYFRAMEP

EXAMPLEX

EXAMPLE

EVAL

LISPX

ERRORSET

EVALQT

ERRORSET

T

88:?=

X = T

89:X

T

90:(SETQ X 55)

55

91:X

55

92:BRKEXP

(PROGN (* fgh: "13-Mar-85 22:54") (EXAMPLEY X 1))

93:EVAL

EXAMPLEX evaluated

13LispCourse #13: Error Handling and the Break Package

94:!VALUE

56

95:OK

EXAMPLEX

61

96_

Break Windows

When a break occurs, the system opens a break window and starts up the break

exec within this window. All interaction with the break exec takes place in this

window, just as all interaction with the Lisp exec takes place in the TTY window.

Break windows provide two other functions besides exec type-in:

1. menu-based access to many of the break exec commands

2. visual displays of the stack and stack frames

Menu-based access to the break exec:

Clicking on the middle mouse button anywhere in the break window will

bring up a menu consisting of 9 items: !EVAL, EVAL, EDIT, revert, ^, OK,

BT, BT!, ?=.

Choosing EVAL, EDIT, revert, ^, OK, or ?= from the menu simply carries

out the corresponding break exec command. For example, choosing the

OK entry will exit the break after evaluating the BRKEXP expression.

14LispCourse #13: Error Handling and the Break Package

Choosing the BT command from this menu will bring up a small window

(called the backtrace window) attached to the left or right edge of the

break window. The stack backtrace will be printed in this window, one

item (i.e., function call) per line. The window is scrollable if the whole

backtrace doesn’t fit in the window.

The !EVAL and BT! are simply specialized versions of the EVAL and BT

commands.

The backtrace window and the frame inspector:

Each item (i.e., function call) in the backtrace window is individually

selectable by clicking on the left or middle mouse buttons while the cursor

is over the item. The selected item will be highlighted with a gray

background.

Selecting an item in the backtrace window has two effects:

1. LASTPOS is set to the corresponding stack entry. This is the
menu-based equivalent of the @ command in the break exec.

2. a stack frame inspector is opened on the corresponding stack
entry. This stack frame inspector contains the name of the
function call and the functions arguments and their values.

15LispCourse #13: Error Handling and the Break Package

The stack frame inspector is a standard inspector window. It has lots of
functionality which will not be covered here. However, there are several
operations in the inspector that may be useful. In particular:

To call DEdit the function in the frame:

First select the function name at the top of the inspector
window by placing the cursor over the name and clicking
the left mouse button.

Then click the middle mouse button anywhere in the
inspector window. This will bring up a menu with three
choices. Choose the middle one: DisplayEdit. This will
bring up an editor on the function in the inspector window.

To change the value of one of the arguments:

First select the argument to be reset by placing the cursor
over the argument name and clicking the left mouse button.

Then click the middle mouse button anywhere in the
inspector window. This will bring up a menu with one
item. Choose this item: SET.

16LispCourse #13: Error Handling and the Break Package

This will bring up type-in window just above the inspector
window. Type the new value for the argument into this
window. NOTE that the expression you type in will be
evaluated before the argument is set. Hence to set the
argument to A, you have to type in (QUOTE A) and so on.

The new setting for the argument will be displayed
immediately in the inspector window.

17LispCourse #13: Error Handling and the Break Package

Breaks within Breaks

When working inside a break frequently evaluates an expression containing an

error. If this error causes a break, a second break window will be opened and a

break exec started in this window.

Exiting from this second break window using either a normal exit (OK, GO,

RETURN) or an abort (^) will simply return to the next higher level break exec,

i.e., the break in which the the break being exited occurred.

Breaks within breaks are like DEdits. You can exit from a higher level break only

by exiting from the next lower level break first.

If an error occurs in the break exec that would normally cause an abort rather than

another break, then the abort error message is simply printed in the break window

and control returns to the break exec.

18LispCourse #13: Error Handling and the Break Package

Tailoring the Break Package

The following parameters can be used to tailor various aspects of the error
handler, the break exec and break windows.

HELPDEPTH ž an integer used as a threshold for determing whether to break or
abort. When an error occurs, if the stack depth is greater than HELPDEPTH then
the computation is broken, otherwise its aborted. Initially, 7. A setting of 1 will
insure that a break always occurs.

HELPTIME ž an integer indicating the number of milliseconds that a
computation has to be in progress for a break to be used instead of an abort when
an error occurs. Initially, 1000.

HELPFLAG ž if NIL, no breaks will occur and all errors will cause an abort. If
BREAK!, a break will occur for every error. If T, the break or abort decision will
be made based on HELPDEPTH and HELPTIME as described above. Initially,
T.

Note HELPFLAG must be set with SETTOPVAL as in (SETTOPVAL
’HELPFLAG ’BREAK!). SETQ cannot be used to set this variable.

AUTOBACKTRACEFLG ž if non-NIL, a backtrace window is automatically
opened along with every break window. If NIL, then the BT menu command
must be used to open the backtrace window. Initially, NIL.

CLOSEBREAKWINDOWFLG ž if NIL, then a break window will remain on
the screen when the break is exited. The window must then be closed by hand. If
T, then each break window is closed as the break is exited. Initially, T.

Break Documentation

Breaks and the Break Exec are documented in Sections 9.1 thru 9.3 of the IRM.
Break Windows are documented in Section 20.3 of the IRM. All of these sections

contain a mix of user and programmer material.

19LispCourse #13: Error Handling and the Break Package

The Standard Interlisp Errors

There are currently fifty-plus standard types of errors in the Interlisp

system. When an abort or a break occurs, most errors will print the

offending expression following the error message for that type of error,

e.g., NON-NUMERIC ARG NIL is very common.

All of the standard Interlisp errors and error messages are described (very)

briefly in Section 9.8 of the IRM. This section is reproduced in the

Appendix.

Error #17 is a sort of generic error. Many packages and system function

use the function called ERROR! to indicate an error not on the standard

error types list. ERROR! will indicate an generic error and then print a

more specific error message given to it by the specific package or function

in which the error occurred.

Exercises

Set HELPDEPTH to 1. Then start entering Lisp expression containing errors. When
these expressions cause errors, browse around in the break trying to do various things.

Define a few functions with errors and then execute them. Browse around in the
resulting break. Try to correct the error and restart the computation.

F.G.H.

3/19/85

LispCourse #14: Multiple Processes and the Process Status Window

Processes and Multiple Processes

Consider how you start up a DEdit:

You type "(DF FOO)" in the Lisp Exec window. This opens a DEdit window

separate from the Exec window. You can then carry out your editing actions in

this DEdit window.

But note: as long as the DEdit window is active, the Exec window is inactive. If

you try to type into the Exec window, the input goes into the DEdit input buffer.

Only after you exit the DEdit, does a value (i.e., the name of the edited object) get

returned in the Exec window.

After the value is returned, the Exec window becomes active again and the DEdit

window (if its still on the screen) becomes inactive.

Conclusion: the Exec and DEdit use seprate windows but can not run

simultaneously. They must "take turns".

Contrast this behavior with that of TEdit:

You type "(TEDIT ’FOO)" in the Lisp Exec window. This opens a TEdit window

separate from the Exec window. You can then carry out your editing actions in

this TEdit window.

But note: TEdit reads in the file FOO (which make take some time if the file

server is slow) and then immediately returns a value (usually a "nonsense"

value!).

The Exec window remains active. After the value is returned, you can switch

back and forth between the Exec and TEdit windows, simultaneously doing edits

in the TEdit window while starting another TEdit, COPYFILE, doing a DEdit,

etc. in the Exec window.

Conclusion: the Exec and the TEdit use separate windows and can be run

simultaneously.

In technical terms, TEdit runs in a separate process from the Exec while DEdit runs in the

same process as the Exec.

2LispCourse #14: Multiple Processes and the Process Status Window

A process in computer jargon is a sequence of activities or tasks that must be carried out

one after another.

Interlisp-D supports multiple processes -- that is you can be carrying out several

sequences of activities simultaneously.

Within each of these processes or activity sequences, the activities are carried out

in a strict sequential order.

Across processes, several such activity sequences can be going on

simultaneously.

For complicated reasons, DEdit has been designed to run in the same activity sequence

(i.e., process) as the Exec. When DEdit starts, the Exec goes into suspension until DEdit

is finished.

Diagramatically:

{Process}#6,61400

... Exec DEdit Exec ...

TEdit has been designed to run in a separate activity sequence (i.e., process) than the

Exec. When TEdit starts, it starts up a new process. The Exec process then proceeds

simultaneously with the Exec process.

Diagramatically:

{Process}#6,61400

... Exec TEdit Exec

{Process}#6,61457

TEdit

...

Or if you start up two TEdits:

3LispCourse #14: Multiple Processes and the Process Status Window

{Process}#6,61400

... Exec TEdit Exec TEdit Exec ...

{Process}#6,61457

TEdit #2

{Process}#6,61457

TEdit

The process of starting a new process from an old one is (sometimes) called forking a

process.

Processes Scheduling: Time-sharing and all that

Time-sharing

Interlisp-D supports multiple processes in the sense that it (sometimes) appears

that you can do multiple activities at once.

But, your D-machine can only do ONE thing at a time.

What actually happens is that Interlisp runs a little bit of one process, then a little

bit of another process, then a little bit of a third process, and so on until the first

process gets its turn again.

It all works because most of the time in any one process is spent waiting: waiting

for the user to type the next character, waiting for the file server to respond,

waiting for the disk to position to the right page, etc.

While the first process is waiting, the rest of the processes can run. While the rest

of the processes are waiting, the first process can run.

This nifty little trick is called time-sharing.

The Scheduler

4LispCourse #14: Multiple Processes and the Process Status Window

There is a part of Interlisp called the scheduler that determines which process gets

its turn to run next.

The scheduler works as follows:

It runs through each process in the system giving each process control

(i.e., permission to run) in turn. When a process gets control, it runs until

it gives up that control. When a process gives up control, the control is

passed to the next process in line.

This is called a cooperative scheduler because each process has to take the effort

to give up control when it is waiting for something or when it feels like it has

hogged-up too much time. The act of giving up control is called blocking.

There are systems with preemptive schedulers that force processes to give up control at

regular intervals, so that every process gets a little bit each and every second. Proceses

need not worry about blocking.

One feature of a cooperative scheduler is that some processes don’t play by the

rules: they hog as much time as they like without blocking. When this happens,

other processes don’t get their turns to run.

For example, try starting up a TEdit. Then go back to the Exec window and start

a LISTFILES on a fairly large Lisp file. Go back a starting editing in TEdit. At

some point TEdit will just stop working for about 2 to 3 minutes. This is because

LISTFILES goes into a part where it doesn’t block for along period of time - it

gets control and just hangs on to it until its work is finished, not allowing the

TEdit and the other processes to have their turn to run.

E.F.S. -- An Experiment:

Try the following:

Start a TEdit.

Back in the Exec window, type "(FOR I FROM 1 do

(PROMPTPRINT I))"

Try to use TEdit.

To kill the FOR: point in the Exec window, then type Ctrl-E.

Now try the following: (Note: (BLOCK) causes a process to block!!)

5LispCourse #14: Multiple Processes and the Process Status Window

Start a TEdit.

Back in the Exec window, type "(FOR I FROM 1 do

(PROMPTPRINT I) (BLOCK))"

Try to use TEdit.

To kill the FOR: point in the Exec window, then type Ctrl-E.

Cautionary Note: control hogging processes are just one reason for delays in

Interlisp. Slow file servers are another. Don’t automatically assume that if a

process is slow, there is another process hogging the run time!

Job Control: Starting, Killing, Restarting, Suspending, & Waking
Processes

You can do a variety of things to help you manage the processes running in your

environment. The most important of these are the following:

Starting a process (& Process Names)

Most processes are started by programs forking a process to carry out a task.

Examples:

1. The function TEDIT opens a TEdit window and starts a TEdit

process in that window.

2. The function call (LAFITE ’ON) starts a process that runs in

the Lafite Status window and checks your mail every now and

then.

3. The function CROCK starts a process that updates a clock on

the screen once a minute.

You can also start a process by yourself from the Exec. The function

ADD.PROCESS forks a new process. ADD.PROCESS takes as its first argument

the form to be evaluated in the new process.

Example:

10_ (ADD.PROCESS ’(COPYFILE ’A ’B))

{PROCESS}#3,65600

6LispCourse #14: Multiple Processes and the Process Status Window

11_

Normally, COPYFILE runs as part of the Exec process, i.e., it

doesn’t automatically fork a process to do its work. Using

ADD.PROCESS will start a new process and do a COPYFILE

within that process. The COPYFILE will just run until its done.

While its running, you can progress with whatever you want in the

Exec, including starting another COPYFILE.

Process Names: Every process has a name. The name is usually the CAR of the

form in the call to ADD.PROCESS. Thus the process created in the example

above would have the name COPYFILE. If there is already a process with that

name, a number is tacked onto the end of the name. For example, COPYFILE#2.

You can also give the process a name using (ADD.PROCESS Form ’NAME

ProcessName). For example, (ADD.PROCESS ’(COPYFILE ’A ’B) ’NAME

’AtoB) would start a process named "AtoB".

Killing a process

Most processes just evaluate a single function call as in the COPYFILE example

above. These processes normally just run until the evaluation is completed. Then

they just disappear.

Sometimes a process takes to long, gets hung up, or goes into a break. In this

case, you may want to kill the process, i.e., stop the evaluation in progress and

force the process to disappear.

Example:

You start a LISTFILES to print a file. This starts a process to send the

files to the printer. But the printer is down. The process will just sit there

printing in the PromptWindow Quake not responding. This can drive you

crazy. So you kill the process started by LISTFILES and redo the

LISTFILES when you know the printer is up again.

Killing is usually done using the Process Status window (described below). But

can also be done by calling DEL.PROCESS from the Exec with the process name

as an argument. E.g., (DEL.PROCESS ’COPYFILE)

7LispCourse #14: Multiple Processes and the Process Status Window

Restarting a process

Some processes can be restarted from the beginning at any time before they

finish. Restarting a process is just like killing it and then redoing the

ADD.PROCESS that started the process to begin with.

Example:

You start a HARDCOPY in your TEdit window that never seems to finish

because the file servers are slow and TEdit can’t find the right fonts or

some such nonsense. You just want to kill the HARDCOPY command

and get on with your editing. Solution: Restart the TEdit process.

Note that yopu could kill the TEdit process. But then you’d have to go

through the trouble of restarting TEdit in order to get back to editing.

Moreover, if you hadn’t Put your edits, restarting TEdit may loose your

edits. Therefore, restarting is much safer.

Restarting is usually done using the Process Status window (described below).

But can also be done by calling RESTART.PROCESS from the Exec with the

process name as an argument. E.g., (RESTART.PROCESS ’TEdit#4)

8LispCourse #14: Multiple Processes and the Process Status Window

9LispCourse #14: Multiple Processes and the Process Status Window

Suspending a process

Suspending a process stops a running process, but doesn’t make it disppear. It

stays around and inactive until it is either awoken (i.e., unsuspended) or killed.

Suspending a process is usually done by programs. But it can be useful in other

ways.

Example:

You try to print something out with a LISTFILES. But the printer is down

and the LISTFILES keeps printing Quake not responding in the Prompt

window. You can stop this annoying printout by suspending the

LISTFILES process until you know the printer is back up.

Suspending is usually done using the Process Status window (described below).

But can also be done by calling SUSPEND.PROCESS from the Exec with the

process name as an argument. E.g., (SUSPEND.PROCESS ’\FILELISTING).

Waking a process

A suspended process can be started at the exact point at which it was suspended

by waking it.

Note that waking a process is a little like restarting a process. BUT a suspended

process must be woken, it cannot be restarted. Restarting a suspended process,

restarts the process from the beginning but does not unsuspend it. Therefore,

doing a restart followed by a wake is basically the same as doing a wake followed

by a restart. The wake unsuspends, the restart makes things start from the

beginning again.

Example:

The printer is now fixed and you want your LISTFILES to pick up where

it left off. You just wake the process you suspended earlier.

Waking a process requires that you return a value from the suspension. For

processes suspended by the user, tis value is usually NIL.

10LispCourse #14: Multiple Processes and the Process Status Window

Waking is usually done using the Process Status window (described below). But

can also be done by calling WAKE.PROCESS from the Exec with the process

name as an argument. E.g., (WAKE.PROCESS ’\FILELISTING).

Processes and Breaks

Every process has its own, separate stack.

When an error occurs and a break is entered, the break occurs within the process causing

the error. The Break Exec that is started is run in that process and the stack that you can

examine using the Break Exec is the stack of that process.

Thus you can have as many Break Execs running as there are processes to break.

Example:

Your TEdit breaks due to some wierd error. This causes a break in the TEdit

process, but will not effect any other running process. For example, if you have a

COPYFILE going at the same time. The COPYFILE will progress as usual since

the break has no effect on its process. If the COPYFILE then has an error, it will

enter its own, independent Break window.

You can force a process to enter a break at any time from the Process Status window

(described below). You cannot do this (easily) from the Exec.

You can also just observe the stack of a running process from the Process Status window.

You cannot do this (easily) from the Exec.

The Standard Processes

Most of the time there will be 5 to 10 processes running in your system. Most of these

processes are special system processes that handle things like the Ethernet, the mouse, the

Lisp exec, file servers and so on.

Below is a list of the processes currently running on my system:

11LispCourse #14: Multiple Processes and the Process Status Window

The processes that I was directly responsible for were the three TEdit processes, the

CROCK.PROCESS that is running my clock, and the LAFITEMAILWATCH process

that is checking my mail every now and again.

The rest are all system processes carrying out some sort of system monitoring task. In

general, I don’t worry much about these system processes.

The TTY Process

There may be many processes running that require input from a keyboard. However,

there is only one keyboard. In order to determine where the type-in from that keyboard

goes, there is a notion called the TTY process.

The TTY process is a special designation given to only one process at a time. The

process with this designation is the one that receives the keyboard input. The rest of the

processes requiring keyboard input have to wait until they become the TTY process

before getting any type-in.

For example, when you have multiple TEdits running, all but the one you are currently

typing into are just sitting there waiting to become the TTY process.

If the process that is the TTY process has a window (as is almost always the case), then

that window contains a blinking caret indicating where the typed input will appear.

When the process looses the TTY process designation, then the caret may remain, but it

no longer blinks. Thus, the blinking caret almost always designates the window whose

process is the TTY process.

12LispCourse #14: Multiple Processes and the Process Status Window

If a process has a window, you can usually make that process be the TTY process by

clicking a left or middle mouse button in its window. Basically, you point into the

window you want to type into, then you type into that window.

You can also move the TTY process around using the Process Status window as

described below.

Finally, many programs move the TTY process around. For example, when you start a

new TEdit, it grabs the TTY process for itself. When a TEdit quits, it gives the TTY

process to the Lisp Exec.

The Process Status Window

The Process Status window provides an easy-to-use mouse/window-based interface to

process management.

To open a PSW, select the PSW command from the background menu OR use the

function call (PROCESS.STATUS.WINDOW) in the exec. Either way, you’ll be asked

to place the window on the screen.

The window will look like the following:

13LispCourse #14: Multiple Processes and the Process Status Window

The upper box in this window contains a list of the names of all the processes currently in

the system, both running and suspended.

You can select any one of these processes by clicking over the process name.

This will shade this process name.

The lower box is a menu of commands that you can apply to the selected process.

The commands are: (starting from the right column)

KILL ž kills the selected process

RESTART ž restarts the selected process

WAKE ž wakes the selected process if its suspended. You will be given a menu

of values that can be returned. Choosing NIL from this menu will generally

work.

SUSPEND ž suspends the selected process

WHO? ž moves the selection to the process that has the TTY process.

This is very handy for telling multiple processes running the same

program apart. For example, if there are 4 TEdits running, there will be

14LispCourse #14: Multiple Processes and the Process Status Window

processes named TEdit, TEdit#2, TEdit#3, and TEdit#4. To find out

which TEdit you want to operate on you can bug inside that TEdit’s

window. This will pass the TTY process to that TEdit. The choose the

WHO? command in the PSW. This will select the TEdit corresponding to

the window you clicked in.

KBD_ ž gives the TTY process to the selected process.

Example: If TEdit has the TTY process, then selecting the EXEC process

and using the KBD_ command will move the TTY Process (i.e., the

blinking cursor) to the Exec window.

INFO ž returns any information the selected process wants to give. I have never

seen a process that wanted to give any information, but ...

BREAK ž forces the selected process into a break, thus opening a break window,

starting a break exec, etc.

This is handy to examine the state of a computation that has run amok:

Break the process and then muck around the stack using the Break Exec.

BT (BTV, ...) ž prints a backtrace of the stack of the selected process in an

attached window just above (below) the PSW. BT prints standard backtrace with

just the names of the functions called. BTV and the rest print backtraces with

some more information about each frame.

15LispCourse #14: Multiple Processes and the Process Status Window

This is a handy way to find out if a process is progressing or if its stuck at

some point: click BT many times in succession. If the stack is constantly

changing, then things are progressing. If the stack is unchanging with

AWAIT.EVENT or some such function at the top, then the process is

probably stuck waiting for a file server to respond or some other external

event to occur.

Whenever a process starts or finishes, the PSW gets shaded over. This indicates that the

information is no longer current.

16LispCourse #14: Multiple Processes and the Process Status Window

To update the information, just click the left or middle mouse buttons anywhere in the

PSW. This will redisplay the PSW with the current information.

Multiple Exec Processes

In default mode, Interlisp has only one Exec process. There are, however, a number of

Lisp Users packages that allow for multiple Exec windows and multiple Exec processes

to run simultaneously.

One such package is called EXEC.

Load {eris}<LispUsers>Exec.DCOM. This will add a "EXEC" choice to the

background menu.

Choosing EXEC from the background menu will prompt you for a region and then open a

new Exec window in that region running an independent Exec process. You can use this

new Exec simyultaneously with and in exactly the same manner as the original Exec

process.

For example, you can run a long COPYFILE in the original Exec window. While its

running, you can carry out your normal tasks (e.g., starting TEdits, doing DIRs, etc.)

using the second Exec.

You can open as many Exec windows and start as many Exec processes as you like.

17LispCourse #14: Multiple Processes and the Process Status Window

To terminate a given Exec, evaluate the function call (EXEC.QUIT) in its Exec window.

Note: There is one way in which the multiple Execs are not independent: they share a

common history list. Each event in every Exec updates the event number in all running

Execs. From any Exec window you can redo or undo events originally carried out in any

other Exec window.

This shared history list can sometimes be a great help. But it can also be problematic if

you forget the shared nature of the list. In particular, nevent numbers printed in the Exec

windows are not always up-to-date because they may change constantly due to events in

other Exec windows. You very often tend to undo or redo the wrong event number

because you rely on incorrect information printed in the Exec window and don’t check

the history list for the correct event number.

The Mouse Process and (SPAWN.MOUSE)

The process that sits in the background and watches your mouse movements and mouse

button clicks is called the MOUSE process.

When you click inside a menu or a window, the mouse process is responsible for getting

a decision about what to do from the menu or window, and then evaluating the correct

functions necessary to do it. Thus much work in Interlisp gets done within the mouse

process as button presses lead to the evaluation of various functions.

For example, when you choose TEDIT from the background menu, the MOUSE process

evaluates the function call (TEDIT) just as if you had typed it into an Exec window.

In general, you shouldn’t have to worry to much about the mouse process unless you are

programming.

Sometimes, however, something goes wrong and the mouse process gets stuck. For

example, a break can occur in a function being evaluated in the mouse process. Or a

function can go into an infinite loop when being evaluated in the mouse process.

When this happens, you can’t use your mouse for anything. You can often, however, still

type in to an Exec or a Break Exec.

When this happens, the function call (SPAWN.MOUSE) comes in very handy.

SPAWN.MOUSE will start up a new mouse process, replacing the old.

18LispCourse #14: Multiple Processes and the Process Status Window

The old function keeps going and finishes whatever it was doing when SPAWN.MOUSE

was called, except that it is renamed OLDMOUSE.

The new mouse process takes over control of the mouse and hence all of the mouse

functions are restored.

Example:

You choose an item from a Lafite Browser menu. This immediately causes a

break. However, in the Break window you discover that the mouse doesn’t work

at all. In fact, no where on the screen does the mouse have any effect.

If the flashing cursor is in the Break window or in a Exec window, then you could

type (SPAWN.MOUSE). This would free up the mouse by starting a new

MOUSE process. The break in the Lafite menu command would remain

unaffected, although its process would be renamed from MOUSE to

OLDMOUSE.

References

Processes are documented in Section 18.20 of the IRM.

Subsections 18.20.1, 18.20.2, & 18.20.5 are generally relevant for non-

programming users.

Subsection 18.20.6 covers the TTY process.

Subsection 18.20.7 covers the MOUSE process and SPAWN.MOUSE.

Subsection 18.20.8 covers the Process Status window.

F.G.H.

3/21/85

LispCourse #15: Files and Directories ž Part 1

Basic Concepts

What is a file?

A file is a "place" where you keep information.

A file is the basic unit of permanent external storage in Interlisp.

A file is a bunch of information or data that should be manipulated in one chunk.

A file is the basic organizational construct for storing data in Interlisp.

???

File Names

Every file has a name. In general, file names have two parts: a name and an

extension. Both the name and the extension are litatoms with no spaces or other

unusual characters such as Tabs, ":", ".", ","etc.

In the file name, the name and the extension are seprated by a period ("."). For

example, FILE.EXT is a file name. So is NewData3-3-85.TED. In this latter

example, NewData3-3-85 is the name part and TED is the extension part.

The extension part is optional. XYZZY is a perfectly good file name.

The name part of the file name is usually used to indicate what the file contains.

The extension part is usually indicative of the flavor of the file. (See discussion

of flavors below.)

Note that Interlisp is NOT case sensitive with respect to file names. The file

FOO.BAR and the file Foo.Bar are the SAME file according to Interlisp.

Flavors of files

From one point of view, all files are alike: they are an ordered stream of bits (1s

and 0s) that must be stored somewhere for later retrieval.

From another point of view, there are many different flavors of files.

The pattern of 1s and 0s in a file is really a code that stands for some

meaningful data or information.

2LispCourse #15: Files and Directories ž Part 1

In order to extract the meaningful information in a file, we need to know

how to interpret the format of the bits in that file.

Flavors of files arise because different files contain different kinds of

meaningful information and represent that information using differrent

codes and patterns of bits.

Examples:

TEdit files contain formatted text.

Bravo files also contain formatted text

(but using a different "code" than TEdit files)

Lafite mail files contain a sequence of mail messages

DCOM files contain compiled Lisp programs

SYSOUT files contain Interlisp virtual memories

Each of these types of file contains a different kind of information and/or

represents information using a different code.

You alternate between these two viewpoints when dealing with files in Interlisp,

depending on whether you are dealing with the file itself or with the information

in the file.

A function like COPYFILE deals with the file itself and therefore treats a

file like a stream of bits to be copied from one location to another. Thus

COPYFILE is very general and can operate on files of any flavor.

Functions like TEdit, LOAD, and LAFITE make use of the information

within a file and therefore work only with files of certain flavors. They

will totally misinterpret files of the wrong flavor. Or worse, they often

crash when processing files of the wrong flavor.

The flavor of a file is (in Interlisp) intensionally defined. There is no way (other

than naming conventions) to specifically declare a file to be of a particular flavor.

The system itself treats all files as bit streams. This bit stream will be

interpreted as meaningful information or as garbage depending on what

function you use to access it.

3LispCourse #15: Files and Directories ž Part 1

For example, you can access a DCOM file using TEdit, but it will appears

as (mostly) garbage in the TEdit window. Similarly, you can read in a

TEdit file using LOAD, but in all probablilty the LOAD will bomb in a

very short time.

Its up to each user to use TEdit on files that are meant to be TEdit files and

to use LOAD on files that are meant to be Lisp files.

The system provides only minimal help in helping you with this task!!

The most you can expect is that a function will detect and informa you

that you have asked it to work on a fuile it can’t interpret.

To overcome the lack of the distinction between flavors of files, the convention

has been established that the extension of each file name (see discussion of file

names below) gives some indication of the file’s flavor.

Examples:

TEdit files end in .TED or .TEDIT

DCOM files end in .DCOM

SYSOUT files end in .SYSOUT

Lafite files end in .MAIL

Devices

The stream of bits that makes up a file has to be stored on some "physical" device

such as a floppy, a disk, a file server, etc.

Interlisp supports file storage on many different kinds of devices.

Interlisp also tries to make file storage on all of the different devices behave as

similarly as possible.

But different devices have different characteristics, both hardware and

software, and Interlisp cannot always cover up these differences.

So. How you use files in Interlisp depends a little bit on what device the

file is stored on.

Moreover, as you move a file from device to device, its characteristics

may change slightly.

4LispCourse #15: Files and Directories ž Part 1

I will try to point out these device-dependencies as we go along.

The devices supported by Interlisp-D are the following:

Local Disk

DLion local disk ž 1 or more logical volumes used for Lisp files

Dolphin local disk ž 2 Alto partitions

Dorado local disk ž 5 or 19 Alto partitions

File Servers

IFS ž e.g., Phylum, Eris, etc.

NS ž e.g., LispFiles:, StarFiles:

Vax (Unix) ž e.g., PARC-CSLI, PARC-VAXC

Floppy Disks (Dlion only)

Core Devices (simulated devices in the Lisp virtual memory)

Device Names:

All devices have a name. When used to refer to a file, the name of the

device is enclosed in curly-brackets. The device name conventions are as

follows:

Local Disk

DLion local disk ž {DSK}

Dolphin local disk ž {DSK}, {DSK1}, {DSK2}

Dorado local disk ž {DSK}, {DSKi}

File Servers

IFS ž the name of the server, e.g., {Phylum}, {Eris}, etc.

NS ž the NS network adderess of the server or its abbreviation as in

{LispFiles:PARC:Xerox} or {LispFiles:} for short. Note the

abbreviated name always ends in a ":".

Vax (Unix) ž the name of the machine, e.g., {PARC-CSLI},

{PARC-VAXC}

5LispCourse #15: Files and Directories ž Part 1

Floppy Disks ž {FLOPPY}

Core Devices ž more than one core device can be created using the function

COREDEVICE. The name of the core device is set by this function. See

p. 18.13 of the IRM. The device {CORE} is already created in every

system.

Directories

Different devices organize the files they contain in different ways.

Some devices use a flat organization, i.e., the files are just stored on the device

one after the other. On some devices the files are ordered (e.g., alphabetically).

On some devices the files are randomly ordered.

Example:

 {DSK}
ACCOUNTANT.RUN;1
ALTOD0MC.EB;1
ALTOD1MC.EB;1
CHAT.RUN;1
Com.cm;1
DiskDescriptor.;1
DoradoLisp.MB;1
DORADOLISPMC.EB;1
Dumper.boot;1
EMPRESS.RUN;1
Executive.Run;1
Fonts.Widths;1
FOOTNOTES.TEDIT;2
FOOTNOTES.TEDIT;1
Ftp.log;1
Ftp.Run;1
INIT.LISP;1
LISP.RUN;1
LISP.SYMS;1
LISP.VIRTUALMEM;1
Rem.Cm;1
Swat.;1
Swatee.;1
Sys.Boot;1
SYS.ERRORS;1
SysDir.;1
SysFont.Al;1

6LispCourse #15: Files and Directories ž Part 1

User.Cm;1

However, most devices use directories and subdirectories to organize the files

they contain into logical groupings:

Basically a directory is just a list of 1 or more files that are stored

together in the same logical "place" on the device.

A subdirectory is a list of 1 or more files from a single directory that are

stored together in the same logical "place" within that directory.

Every directory and sub-directory has a name, which is usually a short atom.

Directories and subdirectories organize the files on a device into a tree structure.

The device is divided into a set of directories. Each directory is sub-divided into

zero or more sub-directories. Each sub-directory is in turn divided into zero or

more sub-sub-directories. Files can be placed in any directory or sub-directory in

this tree structure.

7LispCourse #15: Files and Directories ž Part 1

Diagramatically:

...

Halasz

Diss

Admin

Lisp.Mail
Lafite

Active.MAIL

PAs

XSIS.Letter

Chapter3.TED

Chapter2.TED

...
...

SIGCHI83.SKETCH

APATalk.TED

PA1984.TED

PA1983.TED

...

...

...

...
NoteCards

ARI ...

...
...

Phylum

8LispCourse #15: Files and Directories ž Part 1

Path Names

The directory or sub-directory that a file is located in can be uniquely

specified by a path that starts at the top-level directory and includes each

sub-directory in turn until the file is reached in the tree structure.

When refering to this path name, the directory name is enclosed in angle

brackets, while each sub-directory is terminated by an end angle bracket.

Examples:

PA1984.TED is in <Halasz>Admin>PAs>

APA.Talk is in <Halasz>

Lisp.mail is in <Halasz>Lafite>

Creating Directories/Sub-directories:

On some devices directories and sub-directories have to be explicitly

created before any files can be entered into them. The method for creating

directories and sub-directories differs between devices. On some devices,

e.g., IFSs, it requires an administrator with special priveleges to create a

new directory.

Directories that are created explicitly remain even if they have no

files in them, e.g., after the last file in the directory/sub-directory

has been deleted.

On devices that don’t require directories and/or sub-directories to be

explicitly created, you can create directories and/or sub-directories simply

by creating a file that has the new directory/sub-directory as part of its

name. The directory and/or sub-directory will be created when the file is

created.

Directories/sub-directories that are created implicitly by naming a

file disappear after the last file with the directory/sub-directory in

its name is deleted.

The various devices and their directory types are as follows:

Local Disk

9LispCourse #15: Files and Directories ž Part 1

DLion ž directories are logical volumes on disk created

during intial disk partitioning; sub-directories are created

implictly by naming.

Dolphin/Dorado ž each Alto parition is a separate device

(named DSK1 thru DSKn). No directories are supported

within these devices, i.e., each device has a FLAT

structure.

File Servers

IFS ž directories are created explicitly by an IFS

adminstrator, subdirectories are created implicitly by

naming.

NS ž directories (called file drawers) are created explicitly

by an administrator, sub-directories are created explicitly

by naming. Note, however, deleting the last file from a

sub-directory DOES NOT delete the sub-directory.

Vax (Unix) ž directories are created explicitly by an

administrator, sub-directories are created explicitly by the

user. To create a sub-directory, you must log into the Vax

and use the Unix mkdir command.

Floppy Disks ž support either a flat file structure or a hierarchical

(directory/sub-directory) file structure or both. Both directories

and sub-directories are created implicitly by naming.

Core Devices ž support either a flat file structure or a hierarchical

(directory/sub-directory) file structure or both. Both directories

and sub-directories are created implicitly by naming.

Versions

Interlisp supports file versions. That is, Interlisp allows two files with the same

name to be on the same device in the same directory/sub-directory.

10LispCourse #15: Files and Directories ž Part 1

When this happens, the files are considered to be different versions of the same

file.

Every file has a version number. When a file of a given name in a given

device/directory is first created, it is given a version number of 1. When a new

version is created, it is assigned a version number one higher than the highest

version already in existence.

In Interlisp, the version number is specified after the file name, preceded by a

semi-colon. For example, TESTFILE.TED;3 and TESTFILE.TED;4 are two

versions of the same file. NewFile;6 and NewFile;8 are two versions of another

file.

Different versions of the "same" file are actually totally separate files and could

be treated as such. Version1 of a file could be a TEdit file and version 2 a DCOM

file.

However, this would violate the intent of versioning. Different versions of a file

are supposed to be different versions (e.g., updates) of the "same" information.

Lots of little things in Interlisp support this notion.

Examples:

When you name a file without a version number, Interlisp always

thinks you mean the latest version of the file. To get to an earlier

version of a file, you have to specify the exact version number.
(Execption is in deleteing a file, where Interlisp always assumnes you mean the

lowest version number unless otherwise specified.)

When you PUT a file, TEdit just writes a new version of the file.

The old (unedited) version still exists.

When you do a MAKEFILE, the system just writes a new version

of the file. The old (i.e., previous) version still exists and can still

be LOADed by specifiying its version number in the LOAD

command.

Full File Names

A file is uniquely specified by a full file name containing the name of the device

its on, its path name, its file name and its version.

11LispCourse #15: Files and Directories ž Part 1

For example, {phylum}<halasz>lisp>init.lisp;4 is a full file name.

{DSK}FOO.TED;3 and {FLOPPY}<FOO>BAZ;55 are also full file names.

Ultimately ALL file references in Interlisp MUST specify a full file name. If this

wasn’t the case, there would be ambiguity as to which file was being referenced.

However, Interlisp allows elliptical references to files that allow you to use much

less than the full file name when refering to a file.

For example, if a version number is not specified, Interlisp assumes you

mean the highest version number.

Also, Interlisp will use your connected directory (see the CONN command

below) if you don’t specify a device and directory.

Thus, the name FOO.BAR may be an allowable abbreviation of

{phylum}<halasz>lisp>foo.bar;5 if you are connected to

{phylum}<halasz>lisp> and 5 is the highest version of FOO.BAR

in {phylum}<halasz>lisp>.

Note: it almost NEVER hurst to specify the full file name of a file if you

know it.

Reminder Note: Interlisp is not case-sensitive with regard to file names.

12LispCourse #15: Files and Directories ž Part 1

File Attributes

In addition to their name, all files have some attributes. The attributes attached to

a file depend somewhat on the device the file is on. However, in general a file

has the following attributes:

SIZE ž the size of the file in disk pages (512 bytes each)

LENGTH ž the length of the file in bytes (~ 512 times its size).

AUTHOR ž login name of person who created this file

CREATIONDATE ž the date and time of the creation of the file.

READDATE ž the date and time when this file was last read.

WRITEDATE ž the date and time when this file was last written to.

TYPE ž text or binary (to help along some older computers and file servers

for which this was an important distinction)

BYTESIZE ž in Interlisp-D always 8, but some older computers and file

servers allow other sizes.

The attributes of a file can be seen using the FILEBROWSER or the DIR

command. Both of these are described below.

You can also access the attributes of a file one at a time using the function

GETFILEINFO which has two arguments: the (full) file name and the name of

the attribute you want to see.

Example:

10_ (GETFILEINFO ’<halasz>lisp>init ’SIZE)

15

11_

In general, you do not change the attributes of a file directly. The attributes

change as you work with the file, e.g., as you add information to the file, its size

increases.

13LispCourse #15: Files and Directories ž Part 1

File Protection

Some devices allow an additional set of attributes for a file: the protection code.

The protection code of a file determines who can read or write the file.

Protection schemes vary from device to device.

On the Local Disk, Floppy and Core devices there are no protection codes for

files. Basically, anyone can read or write onto any file on these devices.

There is some protection for Dolphin/Dorado local disks since whole Alto

partitions are passworded. You cannot read from or write to any file on an

Alto partition (i.e., on {DSKi} for any i) unless you can supply the

password for that partition. However, once you give the correct password,

all the files on that partitin can be accessed at will.

On the IFS file servers, a file has three separate protections:

 a read protection ž who can read from this file

a write protection žwho can write on this file

an append protection ž who can append something to the end of this file

Each of these is a list of people or distribution lists who have the permission carry

out the specified action. The list is either a person’s grapevine name (e.g.,

Halasz.pa), a grapevine distribution list (e.g., USR^.pa), the atom owner

(indicating the AUTHOR of the file), or the atom USRegistries^.Internet

(basically indicating anyone with access to the Xerox network).

For example, {phylum}<halasz>lisp>init has the protection:

R: USRegistries^.Internet Owner; W: Owner; A: Owner

This means that any one in the Xerox world can read this file but only I

(as owner of the file) can write or append to it.

But, {ERIS}<LispCore>next>full.sysout has the protection:

R: Lispcore^.pa LispCoreAccess^.pa Owner; W: Lispcore^.pa Owner; A:

Lispcore^.pa Owner

14LispCourse #15: Files and Directories ž Part 1

This means that any one on the distribution lists called Lispcore^.pa and

LispCoreAccess^.pa can read this file but only people on Lispcore^.pa

(and its owner whoever it may be) can write or append to it.

To list or change the protection of a file on an IFS, you have to CHAT to the IFS.

To see the protection codes of a file type:

List FileName,<RETURN>

The IFS will respond with a @@ prompt.

Type:

Protection<RETURN><RETURN>

This will list the file with its protection codes as above.

To change the protection codes type:

Change Protection FileName<RETURN>

The IFS will respond with the @@ prompt.

Type:

Write PersonOrDistList<RETURN><RETURN>

This will add the designated person/group to the WRITE

permission list of the file. Use Read or Append instead of Write to

change the Read and Append protections. If the Read, Write, or

Append is preceded by a No, then the designated group/person is

remioved from the permission list. (E.g., No Read LispCore^.pa).

The Vax and NS file servers have similar, but different protection schemes. See

you file server administartor for information on the relevant protection schemes

and how to use them.

References

15LispCourse #15: Files and Directories ž Part 1

Files are covered in Chapter 6 and Sections 18.16 and 18.17 of the IRM. User relevant

material is scattered throughout these sections, so you’ll just have to skim for what you’re

interested in.

The file protection scheme for the IFS is covered in the "How to use the IFS" memo on

{indigo}<ifs>howtouse.bravo (or .press).

F.G.H.

3/26/85

LispCourse #16: Files and Directories ž Part 2

Update on Processes

When dealing with processes, I neglected to mention the following situation: For each

formatting menu that is used in TEdit, a new TEdit process is started. Thus if you have

one TEdit running with the Paragraph-Looks Menu open above that window, you will see

2 Tedit processes running in your PSW. The process called TEdit will refer to the TEdit

itself, and the process called TEDIT#2 will refer to the process operating the Paragraph

Menu. This situation can sometimes be confusing!!

Dealing with Directories

The Connected Directory

At any given time you are connected to some device and directory. Connecting to

a device and directory means that that device/directory is used as the default

whenever a file name is specified with no device and/or directory.

Whenever a file name is specified without a device and path name, the

device/pathname is assumed to be the current connected directory.

2LispCourse #16: Files and Directories ž Part 2

Essentially, the connected directory is appended to the beginning

of every file name that you type in without a device and path

name.

If a file name is specified with a path name but without a device, then the

device part of the current connected directory is used as the device.

Examples:

Connected Directory: {Phylum}<halasz>lisp>

File Name: init == {Phylum}<halasz>lisp>init

File Name: new>init == {Phylum}<halasz>lisp>new>init

File Name: <jones>lisp>init == {Phylum}<jones>lisp>init

File Name: {Eris}<jones>lisp>init == {Eris}<jones>lisp>init

Form: (DELFILE ’ABC) ==

(DELFILE ’{Phylum}<halasz>lisp>ABC)

Form: (DELFILE ’{Eris}<jones>lisp>init) ==

(DELFILE ’{Eris}<jones>lisp>init)

LOGINHOST/DIR

The value of the variable LOGINHOST/DIR is the default connected

directory. GREET sets your connected directory to this value (e.g.,

whenever you load a new sysout). CONN and CNDIR also use this

variable (see below).

Usually LOGINHOST/DIR is set in your INIT file to your "home"

directory. If not set in your INIT file, it will default to {DSK}.

Connecting to a directory:

There are two equivalent ways to change the current connected directory:

CONN device/pathname ž a P.A. command to change the currently

connect directory. device/pathname is the directory to connect to.

(CNDIR device/pathname) ž a function to change the current

connected directory. device/pathname is the directory to connect

to. CNDIR returns the full path name of the directory being

connected to.

3LispCourse #16: Files and Directories ž Part 2

 Examples:

10_ CONN {phylum}<halasz>

{phylum}<halasz>

11_ (CNDIR ’{phylum}<halasz>lisp>)

{phylum}<halasz>lisp>

12_ (CNDIR ’<jones>lisp>)

{phylum}<jones>lisp>

Notes:

1. If device/pathname is NIL, the value of the variable

LOGINHOST/DIR will be used.

 2. If pathname is NIL but there is a device specified, then

for any device that supports directories, the directory will

be set to the user’s login name.

Examples:

CONN {phylum} => CONN {phylum}<halasz>

CONN {dsk} => CONN {dsk}

3. CONN is UNDOable, but CNDIR is not.

4. As described above, certain devices require that a

directory be created before you can connect to it. Other

devices further require that all of the sub-directories in a

path name exist before you can connect to the directory

specified by that path name.

Examples:

CONN {phylum}<foo> == error

CONN {phylum}<halasz>foo == okay

CONN {FLOPPY}<FOO> == okay

Asking "what is the current connected directory?"

The function DIRECTORYNAME can be used to find out about

LOGINHOST/DIR and about the current connect directory.

4LispCourse #16: Files and Directories ž Part 2

(DIRECTORYNAME) returns the value of LOGINHOST/DIR

(DIRECTORYNAME T) returns the current connected directory.

The DIRECTORIES List

Whenever you specify a file name that can’t be found, DWIM tries to "correct"

the spelling of the name.

If there is no device/pathname specified and the file does not exist in the currently

connected directory, then DWIM will consult the value of the variable

DIRECTORIES.

DIRECTORIES is a ordered list of device/pathnames for DWIM to look on for

any file that it cannot find. DWIM will "temporarily connect" to each

device/pathname on this list until it finds one that contains the file name it is

looking for.

Example:

14_ (SETQ DIRECTORIES ’({phylum}<halasz> {phylum}<halasz>lisp>

{phylum}<notecards> {eris}<lispusers>))

({phylum}<halasz> {phylum}<halasz>lisp> {phylum}<notecards>

{eris}<lispusers>)

15_ CONN {eris}<lisp>

{eris}<lisp>

16_ (TEDIT ’INIT)

={PHYLUM}<HALASZ>LISP>INIT

{process}#6,24304

[Since there was no file called INIT on the connected directory, {eris}<lisp>,

DWIM tried to find the file. Using the DIRECTORIES list, it first looked for

the file {phylum}<halasz>init. Since that file doesn’t exists, it looked for the

file {PHYLUM}<HALASZ>LISP>INIT, which does exist. So it used that as

the "corrected" file name.

17_ (TEDIT ’{ERIS}<lisp>INIT]

FILE NOT FOUND

5LispCourse #16: Files and Directories ž Part 2

{ERIS}<lisp>INIT

[DWIM did not use the DIRECTORIES list here because the Device/Pathname

was already specified.]

DIRECTORIES should be set in your INIT file to a list of the directories where

you typically keep files of general interest. The DIRECTORIES list is initialized

in the system INIT file to include directories like {eris}<lispusers> and

{eris}<lisp>harmony>library>. Therefore, your INIT file should use the

ADDVARS file package command.

My INIT file contains the following clause:

(ADDVARS

(DIRECTORIES

{DSK}

{DSK2}

{PHYLUM}<HALASZ>LISP>

{PHYLUM}<HALASZ>

{PHYLUM}<NOTECARDS>RELEASE1.2>LIBRARY>

{PHYLUM}<NOTECARDS>RELEASE1.1>))

Finding out what files are in a directory ž DIR, FILDIR etc.

One of the most common operations in using files is finding out what files you

have in a given directory. For example, "what files do I have on

{phylum}<halasz>?".

The functions FILDIR, DIR, and DIRECTORY can be used to get this

information.

(FILDIR FileNamePattern) ž a function that returns a list of all of the full file

names matching the the FileNamePattern. The FileNamePattern can be any part

of a full file name. It may contain the * and ? wildcards, standing for any number

of any character and any one character, respectively.

The parts of the full file name are defaulted as follows:

If the device name is left out, the device name in the current

connected directory will be used.

6LispCourse #16: Files and Directories ž Part 2

If the device/pathname is left out, then the current connect

directory will be used.

If no file name is specified, then the name is assumed to be *.*;*.

If the extension is left off, then the extension and version is

assumed to be *;*. For example, FOO == FOO.*;*

If the version is left off, then the version is assumed to be *. For

example, FOO.BAR == FOO.BAR;*

Examples:

(FILDIR) == all files in the connected directory

(FILDIR ’*.DCOM) == all files in the connected directory that

have a DCOM extension

(FILDIR ’{ERIS}<LISP>LIBRARY>) == all files on

{eris}<lisp>library>

(FILDIR ’{phylum}<notecards>library>*.DCOM) == all files in

{phylum}<notecards>library> that have a DCOM extension.

(FILDIR ’{phylum}<halasz>*outline*) == all files on

{phylum}<halasz> and its subdirectories that contain the string

"outline".

Result is:

({PHYLUM}<HALASZ>LISPCOURSE>OUTLINE.FORM;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE01.TED;7
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE01.TED;8
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE01.TED;9
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE02.TED;2
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE02.TED;3
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE02.TED;4
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE03.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE04.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE04.TED;2
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE05.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE06.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE07.TED;13
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE07.TED;14
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE07.TED;15
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE08.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE09.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE10.TED;3
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE10.TED;4
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE10.TED;5

7LispCourse #16: Files and Directories ž Part 2

{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE11.TED;7
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE11.TED;8
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE11.TED;9
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE12.TED;9
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE12.TED;10
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE12.TED;11
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE13.TED;12
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE13.TED;13
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE13.TED;14
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE14.TED;1
{PHYLUM}<HALASZ>LISPCOURSE>OUTLINE15.TED;1)

DIR FileNamePattern Commands ž a P.A. command that returns a list of all of

the full file names matching the the FileNamePattern. The FileNamePattern is

exactly as in FILDIR.

The Commands consists of one of more atoms that specify the additional

attributes that should be printed for each file AND/OR an action that should be

carried out on each file listed. The possible atoms are:

READDATE ž print the date/time each file was last read

WRITEDATE ž print the date/time each file was last written on

CREATIONDATE ž print the date/time each file was created

SIZE ž print the size (in pages) of each file

LENGTH ž print the length (in bytes) of each file

AUTHOR ž print the author of each file

DELETE ž delete each file

PROMPT msg ž print msg then wait for the user to type "Y" or "N". If the

suer types "N" skip the rest of the commands for the current file.

Examples:

Print the names and creation dates of all the DCOM files in the connected

directory: DIR *.DCOM CREATIONDATE

Result:
 {PHYLUM}<notecards>RELEASE1.2>LIBRARY>

INTERVALTEST.DCOM;1 25-Mar-85 0:10:21 PST

NCCHAIN.DCOM;1 2-Jan-85 3:00:34 PST

NCCLUSTER.DCOM;1 12-Feb-85 3:11:14 PST

8LispCourse #16: Files and Directories ž Part 2

NCCLUSTER.DCOM;2 25-Mar-85 0:13:02 PST

NCFILECARD.DCOM;9 12-Feb-85 23:32:47 PST

NCFILECARD.DCOM;10 12-Feb-85 23:47:14 PST

NCFILECARD.DCOM;11 12-Mar-85 18:49:23 PST

NCFILESUBSTANCE.DCOM;1 12-Feb-85 23:33:04 PST

NCFILESUBSTANCE.DCOM;2 12-Feb-85 23:48:39 PST

NCFILESUBSTANCE.DCOM;3 12-Mar-85 18:48:46 PST

NCKEYS.DCOM;1 7-Feb-85 20:33:25 PST

NCKEYS.DCOM;2 22-Mar-85 11:06:40 PST

NCSCREEN.DCOM;1 11-Feb-85 14:38:00 PST

NCSCREEN.DCOM;2 25-Mar-85 0:15:05 PST

Print the names, creation dates and authors of all the files in

{phylum}<notecards>release1.1>library>:
DIR {phylum}<notecards>release1.1>library> CREATIONDATE AUTHOR

Result:
 {PHYLUM}<notecards>RELEASE1.1>LIBRARY>

NCCHAIN.;6 2-Dec-84 13:23:32 PST trigg.PA

NCCHAIN.;7 10-Dec-84 17:37:45 PST trigg.PA

NCCHAIN.;8 3-Jan-85 3:00:17 PST trigg.PA

NCCHAIN.DCOM;4 3-Jan-85 3:00:34 PST trigg.PA

NCCLUSTER.;11 3-Jan-85 3:01:00 PST trigg.PA

NCCLUSTER.;12 3-Jan-85 19:58:09 PST trigg.PA

NCCLUSTER.;13 3-Jan-85 23:52:03 PST trigg.PA

NCCLUSTER.;14 12-Feb-85 3:10:55 PST trigg.PA

NCCLUSTER.DCOM;9 3-Jan-85 23:52:55 PST trigg.PA

NCCLUSTER.DCOM;10 12-Feb-85 3:11:14 PST trigg.PA

NCKEYS.;3 4-Feb-85 13:08:12 PST Halasz.PA

NCKEYS.;4 4-Feb-85 13:10:46 PST Halasz.PA

NCKEYS.;5 4-Feb-85 13:12:35 PST Halasz.PA

NCKEYS.;6 4-Feb-85 19:32:46 PST Halasz.PA

NCKEYS.;7 4-Feb-85 22:16:11 PST Halasz.PA

NCKEYS.DCOM;3 4-Feb-85 19:33:05 PST Halasz.PA

NCKEYS.DCOM;4 4-Feb-85 22:16:34 PST Halasz.PA

NCKEYS.TED;2 4-Feb-85 18:05:06 PST Halasz.PA

NCKEYS.TED;3 4-Feb-85 18:14:39 PST Halasz.PA

NCKEYS.TED;4 4-Feb-85 18:15:39 PST Halasz.PA

NCKEYS.TED;5 4-Feb-85 18:24:10 PST Halasz.PA

NCKEYS.TED;6 4-Feb-85 18:26:46 PST Halasz.PA

NCSCREEN.;3 3-Jan-85 3:02:39 PST trigg.PA

NCSCREEN.;4 3-Jan-85 20:00:18 PST trigg.PA

NCSCREEN.;5 4-Jan-85 2:40:02 PST trigg.PA

NCSCREEN.;6 11-Feb-85 14:37:29 PST Trigg.PA

NCSCREEN.DCOM;4 4-Jan-85 2:40:59 PST trigg.PA

9LispCourse #16: Files and Directories ž Part 2

NCSCREEN.DCOM;5 11-Feb-85 14:38:00 PST Trigg.PA

VIDEOTAPE.;1 11-Feb-85 16:24:01 PST Halasz.PA

DELETE all of the files on the local disk’s partition 5: DIR {DSK5}

DELETE

Result:
 {DSK5}

ALTOD1MC.EB;1 c deleted

Com.cm;1 deleted

DiskDescriptor.;1 deleted

DORADOLISPMC.EB;1 deleted

Dumper.boot;1 deleted

Executive.Run;1 deleted

FONTS.WIDTHS;1 deleted

HOLD.NOTEFILE;1 deleted

INIT.LISP;1 deleted

LISP.RUN;1 deleted

LISP.SYMS;1 deleted

LISP.VIRTUALMEM;1 deleted

REM.CM;1 deleted

Swat.;1 deleted

Swatee.;1 deleted

Sys.Boot;1 deleted

SYS.ERRORS;1 deleted

SysDir.;1 deleted

SysFont.Al;1 deleted

User.Cm;1 deleted

Go thru all the files on {DSK5} and ask the user if they should be deleted:

DIR {DSK5} PROMPT "Delete? " DELETE

Result:
 {DSK5}

ALTOD1MC.EB;1 Delete? Yes deleted

Com.cm;1 Delete? Yes deleted

DiskDescriptor.;1 Delete? No

DORADOLISPMC.EB;1 Delete? No

Dumper.boot;1 Delete? No

Executive.Run;1 Delete? Yes deleted

FONTS.WIDTHS;1 Delete? Yes deleted

HOLD.NOTEFILE;1 Delete? Yes deleted

INIT.LISP;1 Delete? Yes deleted

LISP.RUN;1 Delete? Yes deleted

LISP.SYMS;1 Delete? Yes deleted

10LispCourse #16: Files and Directories ž Part 2

LISP.VIRTUALMEM;1 Delete? No

REM.CM;1 Delete? Yes deleted

Swat.;1 Delete? Yes deleted

Swatee.;1 Delete? Yes deleted

Sys.Boot;1 Delete? Yes deleted

SYS.ERRORS;1 Delete? Yes deleted

SysDir.;1 Delete? Yes deleted

SysFont.Al;1 Delete? Yes deleted

User.Cm;1 Delete? Yes deleted

Note: The Italics indicate the users response.

(DIRECTORY FileNamePattern Commands) ž is a function that acts just like

the DIR P.A. command. The only difference is that DIRECTORY doesn’t

automatically list the file names. There is an additional command (P) to do this.

Example: (DIRECTORY ’{PHYLUM}<HALASZ> ’P ’AUTHOR) is

equivalent to DIR {PHYLUM}<HALASZ> AUTHOR

Documentation of FILDIR, DIR, and DIRECTORY ž can be found in Section

14.3 of the IRM.

11LispCourse #16: Files and Directories ž Part 2

Manipulating Files

Basic Lisp File Manipulation Functions

There are a number of functions that allow you to manipulated files in Interlisp,

e.g., to copy, move, and delete files.

These functions work on the file per se and not on the information in the file.

Therefore, they apply to all flavors of files.

Each function takes one or two file name arguments. These arguments can not

contain wildcard characters. They can however, leave off the device/pathname of

the full file name. In this case, the connected directory and the DIRECTORIES

list will be used as described above. If the version number is not specified, all

function assume the HIGHEST version is intended (except DELFILE, which

assumes the lowest version).

(DELFILE FileName) ž deletes FileName (i.e., gets rid of it forever and ever!!!)

Example: (DELFILE ’<HALASZ>LISP>INIT)

(COPYFILE FromFile ToFile) ž makes a copy of FromFile and places on

ToFile. If a file named ToFile already exists, the copied file becomes the next

higher version number.

Example: (COPYFILE ’<HALASZ>LISP>INIT

’{ERIS}<JONES>LISP>INIT)

(RENAMEFILE OldName NewName) ž renames the file OldName to be

NewName. If a file named NewName already exists, the copied file becomes the

next higher version number. On some devices, RENAMEFILE actually does a

rename (and hence is relatively fast). On other devices, RENAMEFILE actually

does a COPYFILE from OldName to NewName and then a DELFILE of

OldName (and hence is relatively slow). RENAMEFILE from one device to

another device always does a COPYFILE followed by a DELFILE.

Example: (RENAMEFILE ’{phylum}<halasz>lisp>init;5 ’<halasz>init)

Example: (RENAMEFILE ’{phylum}<halasz>lisp>init

’{eris}<jones>init)

12LispCourse #16: Files and Directories ž Part 2

(SEE FileName) [Note: SEE is an NLAMBDA function] ž prints FileName to the TTY

window so that you can examine it. SEE does no formatting, it just dumps it on

your screen character by character.

Example: (SEE ’{phylum}<halasz>lisp>test)

Result printed in TTY window:

69_SEE <HALASZ>LISP>TEST
(FILECREATED "21-Feb-85 15:50:09" {PHYLUM}<HALASZ>LISP>TEST.;3 1096
 changes to: (FILEPKGCOMS ANNOUNCEDFILES)
 (VARS TESTCOMS)
 previous date: "21-Feb-85 15:48:38" {PHYLUM}<HALASZ>LISP>TEST.;2)
COMMENT
(PRETTYCOMPRINT TESTCOMS)
(RPAQQ TESTCOMS ((ANNOUNCEDFILES ONE TWO THREE)
 (FILEPKGCOMS ANNOUNCEDFILES)))
(PRINT "Loading ONE")
(FILESLOAD ONE)
(PRINT "Loading TWO")
(FILESLOAD TWO)
(PRINT "Loading THREE")
(FILESLOAD THREE)
(PUTDEF (QUOTE ANNOUNCEDFILES) (QUOTE FILEPKGCOMS) (QUOTE
 ((COM
 MACRO
 (X
 (P
 *
 (FOR File in (QUOTE X)
 join
 (LIST (BQUOTE (PRINT ,
 (CONCAT

"Loading "
 File)))
 (BQUOTE (FILESLOAD , File))))))
 CONTENTS
 (LAMBDA (COM NAME TYPE)
 (AND (EQ TYPE (QUOTE ANNOUNCEDFILES))
 (SUBSET (INFILECOMTAIL COM)
 (FUNCTION LITATOM))))))))
(PUTPROPS TEST COPYRIGHT ("Xerox Corporation" 1985))
(DECLARE: DONTCOPY
 (FILEMAP (NIL)))
STOP
NIL
70_

(LISTFILES FileName1 FileName2 ...) [Note: LISTFILES is an NLAMBDA

function] ž prints hardcopies of FileName1, FileName2, etc. on the

DEFAULTPRINTINGHOST. LISTFILES is not strictly independent of file

flavors. LISTFILES actually determines what flavor of file each FileNamei is

and then calls the appropriate hardcopy function for that flavor of file.

COPYFILES LispUsers Package

13LispCourse #16: Files and Directories ž Part 2

The COPYFILES LispUsers package makes it easy to copy or move groups of

files from one place to another using wildcard facilities like those in DIR and

FILDIR.

(COPYFILES source destination options) ž Copies the files designated by

source to the place designated by destination. source is a pattern such as given to

DIRECTORY or DIR; it can also be a list of file names. destination is either a

directory name, or a file-name pattern, with a 1-1 match of "*"s in to to "*"s in

source. (The number of *’s in each source pattern needs to match the number of

*’s in each destination pattern.) The argument options is a (list of) options (if you

have only one and its an atom, you can supply it as an atom), as follows:

You can specify whether COPYFILES should ask before each transfer.
Default is not to ask.

ASK ž ask each time before moving/copying a file (default is to not

ask).

(ASK N) ž Ask, with default to No after DWIMWAIT seconds.

(ASK Y) ž Ask, with default to Yes after DWIMWAIT seconds.

COPYFILES normally uses COPYFILE to create a new file. It also usually

only copies the "highest version", and creates a new version at the

destination. Alternatively, you can specify any of the following:

RENAME or MOVE ž use RENAMEFILE instead of COPYFILE,

i.e., the source is deleted afterwards.

ALLVERSIONS ž Copy all versions, and preserve version numbers.

REPLACE ž If a file by the same name exists on the destination,

overwrite it (don’t create a new version)

After COPYFILES gets done, it can be instructed to delete some files

afterward:

PURGE ž This involves a separate pass (afterwards): any file on the

destination which doesn’t have a counterpart on the *source* is

deleted.

14LispCourse #16: Files and Directories ž Part 2

PURGESOURCE ž converse of PURGE (and used by it): if the file

is on the source and not on the destination, delete it.

Examples:

(COPYFILES ’{ERIS}<MASINTER>*.MAIL

’{PHYLUM}<MASINTER>OLD-*.MAIL) will copy the any mail file on

{Eris}<Masinter> to {Phylum}<Masinter>, renaming FOO.MAIL to OLD-

FOO.MAIL.

(COPYFILES ’{ERIS}<MASINTER>*.MAIL

’{PHYLUM}<MASINTER>OLD-*.MAIL ’RENAME) will use

RENAMEFILE instead.

(COPYFILES ’({DSK}TEST {DSK}WEST) ’{PHYLUM}<MYDIR>) will

move the files TEST and WEST from {DSK} to {PHYLUM}<MYDIR>.

COPYFILES({DSK}*.; {FLOPPY}) will copy all files on {DSK} with no

extension to {FLOPPY}.

(COPYFILES ’{ERIS}<LISPUSERS> ’{PHYLUM}<LISPUSERS>

’(PURGE)) will make {Phylum}<LISPUSERS> look like

{ERIS}<LISPUSERS>; bringing over any file that isn’t already on Phylum and

then deleting the ones that were on {PHYLUM} and aren’t on {ERIS} any more.

Still to come about files and directories:

Using the FileBrowser

CHATing to an IFS

Dealing with Devices

Using Floppies on the Dlion

Archiving Files

Opening and closeing Files

References

Connected directories are covered in Section 18.16.6 of the IRM.

15LispCourse #16: Files and Directories ž Part 2

The DIRECTORIES list is covered in Section 18.16.6 and page 15.20 of the IRM.

DIR, FILDIR and DIRECTORY are covered in Section 14.3 of the IRM.

The file manipulation functions are documented on pages 6.3 and 18.10-11 of the IRM.

COPYFILES is documented on {eris}<lisp>harmony>library>CopyFiles.TEdit.

F.G.H.

3/28/85

LispCourse #17: Files and Directories ž Part 3

The FileBrowser Package

The FileBrowser is a window/mouse-based interface to the manipulation of files.

To start a file browser, use the function call: (FB FileNamePattern) where

FileNamePattern is a wildcarded file name of the form allowed by FILDIR and DIR (See

LispCourse #16, p. 6).

Example: (FB ’{phylum}<halasz>lisp>*.dcom) will open a file browser on all of

the DCOM files in the {phylum}<halasz>lisp> directory. FB will first prompt

you for the region in which to place the window.

The result:

The FileBrowser display consists of the following 5 divisions from top to bottom:

1) Prompt window ž the place where the FileBrowser prints messages and gets

input from you.

2) Command menu ž these are commands that can be applied to the selected file(s).

2LispCourse #17: Files and Directories ž Part 3

3) Title bar ž shows the FileNamePattern for this FileBrowser.

4) Files listing ž a scrollable listing of the names and attributes of files matching

FileNamePattern.

5) Info Options menu ž a menu of the file attributes to be displayed in the Files

listing.

The Files Listing and Selecting Files

The files listing can be scrolled like any window; just roll out the left side of a window to

get the scroll bar.

One or more files in the files listing can be selected at any given time. To select a file,

point to the left end of any line and click a mouse button. When the cursor nears the left

edge of the window, it turns into a right pointing arrow (-->).

The mouse buttons are interpreted as follows:

LEFT ž selects the file and unselects all other files (i.e., makes the file the ONLY

selection).

MIDDLE ž inverts the selection of the file, i.e., if the file was selected then it

unselects the file otherwise it selects the file. All other selections are unaffected.

(This button is used for selecting several files that are not contiguous.)

RIGHT ž extends a selection, i.e., selects the file and all files between this file and

the nearest selected file. Exceptions: Has no affect if the file is already selected.

Has no affect if the chosen file is BEWTEEN two already selected files.

Note: The LEFT and MIDDLE buttons can actually be clicked when the cursor is

anywhere in the line. The RIGHT button must be clicked when the cursor is at the left

edge of the line.

Selecting a file inverts the line:

3LispCourse #17: Files and Directories ž Part 3

The Command Menu

Most of the commands in the command menu carry out an operation on the selected files.

The commands work as follows:

Edit ž Starts up an editor (TEdit or DEdit) on each of the selected files. If the

command is selected using the LEFT mouse button, DEdit is called on Lisp

symbolic files and TEdit on all other files. If the command is selected using the

MIDDLE mouse button, you will be asked to choose the editor to use from a

menu.

Delete ž Marks the selected files for deletion but does not actually delete them. An

expunge command is required to do the actually deletion. Files marked for

deletion have a line drawn thru them.

4LispCourse #17: Files and Directories ž Part 3

Undelete ž Removes the deletion marks (if any) from the selected files so that

they will not be deleted in the next expunge.

Expunge ž Actually deletes all of the files that have been marked for deletion and

them updates the files listing. Not this command ignores the selected files. It

operates on the marked files instead.

Load ž Applies LOAD to the selected files.

Compile ž Compiles the selected files.

Copy ž Copies the selected files using a COPYFILE for each file. You will be

prompted for the destination of the COPYFILEs in the FileBrowser’s prompt

window. If there is a single selected file, you will be asked for a destination file

name. If there is more than one file selected, you will be asked for a destination

path name (i.e., a directory). In the latter case, each of the selected files will be

copied to the specified directory retaining their old file name.

Rename ž Like Copy, except does a RENAMEFILE for each selected file.

See ž For each selected file, opens a separate window (prompting for a region) and

prints the contents of the file in the window. The windows are scrollable but not

editable.

Update ž Updates the files listing. Updates are necessary if a change is made to

the listed directory. Except following the Expunge command, the FileBrowser

does not automatically update the files listing when changes are made to the files.

5LispCourse #17: Files and Directories ž Part 3

The Update command must be used to insure that the file listing reflects the true

state of the files listed.

If this command is selected using the LEFT mouse button, a file listing is

made using the current FileNamePattern. If the MIDDLE mouse button is

used, you are given the a choice of using the current FileNamePattern or

specifying a new FileNamePattern for the file listing. If the new

FileNamePattern option is chosen, you will be promptyed for the new

pattern in the prompt window.

Hardcopy ž Applies LISTFILES (See LispCourse #16, p. 13) to the selected files.

The Info Options Menu

The Info Options menu can be used to set what attributes of a file get displayed in the file

listing. Each item in the menu represents one of the attribute of a file (e.g., Length,

CreationDate, Author, etc.).

Clicking the mouse in the item inverts the selectedness of the item. Selected items are

shaded.

When the file listing is updated (e.g., using the Update command) the line for each file

will include the selected attributes.

Example: Only Length attribute selected.

Using the FileBrowser

6LispCourse #17: Files and Directories ž Part 3

You can simultaneously open as many FileBrowsers as you like.

Beware of the order in which files are listed in the FileBrowser. Each device appears in a

different order. In particular, you should be careful to observe the order in which the

several versions of a file are listed. On some devices, versions will be in ascending order,

on other devices in descending order, on still other devices in lexical or even random

order.

Dealing with Devices

In general, you deal with files and directories and NOT directly with the devices these

files and directories are stored. However, there are several properties of devices that are

important to the user:

1. Amount of available space on the device

Each device can store only a limited amount of data. Often you want to know

how much of this space is left. The following functions provide that information

for various devices:

Local Disk ž the function (DISKFREEPAGES DeviceName) returns the number

of pages (512 bytes) still availabel on the named local disk partition.

Example:

77_(DISKFREEPAGES ’DSK5)

8341

78_

File Servers ž There is no Interlisp interface to finding out the amount of space left

on a directory on a file server. For the IFSs, you can CHAT to the IFS and then

CONNECT to the directory and issue the DSKSTAT command.

Example:

Phylum IFS 1.38.1L Executive ...

@login (user) halasz (password)

@connect (to directory) notecards

@dskstat

35373 pages used out of 40000 in directory <notecards>.

495072 pages used, 28872 left in the system.

@quit

7LispCourse #17: Files and Directories ž Part 3

Floppy ž To find out the amount of space left on a floppy disk, use the

(FLOPPY.FREE.PAGES) function call.

Example:

79_(FLOPPY.FREE.PAGES)

345

80_

Core Devices ž The concept of space is not relevant here since these are

"simulated" devices. In general, there is only about 5000 pages available for

COREDEVICE files in an Interlisp virtualmem.

2. Random access versus No random access

Some device allow programs to access the contents of a file in a random order.

Other devices allow access to a file in a strict sequential order from start to finish.

Some programs require random access devices. Lafite, in particular, require mail

files to be stored on random access devices.

All devices we have discussed allow random access EXCEPT the NS file servers.

Therefore many programs including Lafite cannot be used with NS file servers.

3. Location of your virtual memory file

The function call (DISKPARTITION) returns the number (on Dolphin/Dorado) or

name (on DLion) of the local disk partition from which the currently running Lisp

has been started, i.e., the partition with the currently active virtual memory file.

On Dolphin/Dorados, this will also be the partition number of the {DSK}

partition.

Using Floppies on the Dlion

On the whole, floppies on the DLion can be treated like any other device. You can

COPYFILE to a from a floppy, RENAMEFILE files on a floppy, etc.

There are some special procedures for dealing with floppies.

The Physical Floppy

Insertion

8LispCourse #17: Files and Directories ž Part 3

Write Enable Tab

Floppy Modes

There are three modes for writing on floppies. The modes are defined as follows:

PILOT ž This is the normal mode. In PILOT mode, each floppy can

contain many files. No file can be bigger than the amount of information

that can fit on one floppy (about 2200 pages).

HUGEPILOT ž In HUGEPILOT mode, there is exactly one file per

floppy AND each file can spread across several floppies. HUGEPILOT is

generally used for files that are bigger than a single floppy.

SYSOUT ž SYSOUT mode is like HUGEPILOT mode. It is used for Lisp

sysouts, which are always large files that take up more than one floppy.

Note: That the floppy mode is a property of each floppy in the sense that any

given floppy can be written on in only one of these modes. You cannot write on a

floppy in HUGEPILOT mode once and then PILOT mode the next time.

(FLOPPY.MODE Mode) is the function to change the current floppy mode.

Mode must be one of the three modes described above. The value returned is the

previous floppy mode. (FLOPPY.MODE) just returns the current floppy mode.

When reading from a floppy (e.g., COPYFILEing from a floppy to another

device), the system will detect what mode is appropriate a read the file from the

floppy in the correct mode.

When writing to a floppy (e.g., COPYFILEing from a file server to a floppy), you

must set the floppy mode as appropriate. If you are in HUGEPILOT or SYSOUT

mode, the system will prompt you for another floppy whenever it needs one.

Example: Copying a sysout from phylum to floppy.

8_ (FLOPPY.MODE ’PILOT)

PILOT

9_ (COPYFILE ’{PHYLUM}<halasz>Init ’{FLOPPY}INIT)

{FLOPPY}INIT;1

10_ (FLOPPY.MODE ’SYSOUT)

9LispCourse #17: Files and Directories ž Part 3

PILOT

11_ (COPYFILE ’{phylum}<halasz>new.sysout

’{floppy}lisp.sysout)

Please insert floppy for Lisp Sysout #1

<about 15 min passes>

Please insert floppy for Lisp Sysout #2

<about 15 min passes>

Please insert floppy for Lisp Sysout #3

{floppy}lisp.sysout;1

12_ (FLOPPY.MODE ’PILOT)

SYSOUT

Formatting, Compacting, Scavenging

(FLOPPY.FORMAT Name) ž Before being used, every new floppy must be

formatted. Formatting gives the floppy a name and sets up the floppy so Interlisp

can write on it. The Name of a floppy is any arbitrary atom.

Formatting a floppy erases the information already on the floppy which

can be good or bad, depending on whether you intended to erase the

information or not.

(FLOPPY.COMPACT) ž files on a floppy need to take up contiguous space.

Sometimes you may have enough free space on your floppy for a file, but the file

still won’t fit because the free space is not contiguous but spread out between

existing files. (FLOPPY.COMPACT) will compact the free space on a floppy so

that all free space is contiguous.

For example, if you create three files and then delete the middle one, you

will have some discontiguous free space (i.e., the space previously taken

up by the deleted file between the two existing files and the free space

after the third file). The space between the two files cannot be used by

large files. (FLOPPY.COMPACT) will move the last file so that all the

free space is in one block at the end of the floppy, thus making it possible

for all of the free space to be used by large files.

10LispCourse #17: Files and Directories ž Part 3

(FLOPPY.SCAVENGE) ž tries to fix up a floppy that has gotten messed up for

some reason or another.

FLOPPY.SCAVENGE will also retrieve files that have been accidentally

deleted, providing the space used by those files has not already been

overwritten by another file. In particular, if you accidentally delete a file

and run FLOPPY.SCAVENGE before writing another files on the disk,

you will always get back your deleted files.

Storing and Retrieving Floppy Images

Sometimes its convenient to treat each floppy as one giant file, no matter how

many files are actually stored on the floppy. For example, you might want to

copy a floppy containing several files to a file server and then make a copy of the

floppy from the file server. One procedure would be to do the copies file by file

using COPYFILE. A quicker procedure, however, would be to treat the floppies

as one giant file and copy that one file back and forth to the file server.

The functions FLOPPY.TO.FILE and FLOPPY.FROM.FILE allow you to treat a

whole floppy as a single giant file.

(FLOPPY.TO.FILE FileName) ž will copy a whole floppy (treated as a single

file) to the file named by FileName.

(FLOPPY.FROM.FILE FileName) ž will copy the file named by FileName to a

whole floppy (treated as a single file).

Example:

10_ (FLOPPY.TO.FILE ’{PHYLUM}<halasz>WHOLEFLOPPY)

{PHYLUM}<halasz>WHOLEFLOPPY;1

<<Insert a blank floppy>>

11_ (FLOPPY.FROM.FILE ’{PHYLUM}<halasz>WHOLEFLOPPY)

{PHYLUM}<halasz>WHOLEFLOPPY;1

<<Insert a blank floppy>>

12_ (FLOPPY.FROM.FILE ’{PHYLUM}<halasz>WHOLEFLOPPY)

{PHYLUM}<halasz>WHOLEFLOPPY;1

11LispCourse #17: Files and Directories ž Part 3

Documentation

Can be found on {eris}<lisp>harmony>doc>floppy.tty.

Opening and Closing Files

Before a program to read from or write to a file, the file must be opened by Interlisp. The

file remains open as long as the program is reading from or writing on the file. When the

program is finished, it closes the file.

If one program is writing on an open file, no other program can open that file. The

second program will get a "File won’t open" error when it tries to access the file.

Two programs can read from the same file at the same time.

Ordinarily, opening and closing of files is done automatically. Sometimes, however, a

program bombs without properly closing its files. In this case, the files remain open and

can prevent orther programs from accessing the files. When this happens, the user has to

close the open files by hand.

The following function are used for closing files:

(OPENP) ž returns a list of all the open files.

(CLOSEALL) ž closes all open files

(CLOSEF FullFileName) ž closes the file specified by FullFileName.

Example:

10_ (TEDIT ’{phylum}<halasz>test.ted)

File won’t open

{phylum}<halasz>test.ted;1

11_ (OPENP)

({phylum}<halasz>test.ted;1)

12_ (CLOSEALL)

({phylum}<halasz>test.ted;1)

13_ (TEDIT ’{phylum}<halasz>test.ted)

{process}#6.23456

14_

12LispCourse #17: Files and Directories ž Part 3

References

There is no FileBrowser documentation

Floppy documentation is on {eris}<lisp>harmony>doc>floppy.tty.

Opening and closing files is covered in Section 6.1 of the IRM

F.G.H.

4/2/85

LispCourse #18: Files and Directories ž Part 4

Methods for Dealing with Files Outside of Interlisp

Interlisp provides a nearly uniform interface for dealing with files on a wide variety of

devices. Because it attempts to be uniform, it does not take full advantage of the full

capabilities of each device.

Many devices allow you to log into the device directly and interact with a specialized

Exec for that device. These device Execs give you access to the full power of each

device. However, each such Exec is different, depending on the software running on that

device.

There is NO access to the following devices outside of Interlisp:

DLion Local Disk

Floppies

Core Devices

There is are non-Interlisp Execs on the following devices:

IFS file servers (the IFS Exec)

NS file servers

Vax-Unix file servers

Dolphin/Dorado Local Disk (the Alto Exec)

For devices that run as file servers, you can login from within Interlisp by using the

CHAT program. For the Dolphin/Dorado Local Disk, you must log out of Lisp and use

the Alto Exec.

CHATing to an IFS

CHAT is a package in Interlisp that allows you to open a window that is a virtual

terminal to any other device on the network (that supports virtual terminals). This

window acts exactly like a standard character-type computer terminal of the type you

never see around PARC. From this virtual terminal you can log onto the device and enter

commands into its Exec directly without going through Interlisp.

Files stored on an IFS can be manipulated by using CHAT to log into the IFS and then

using the file manipulation commands of the IFS executive.

2LispCourse #18: Files and Directories ž Part 4

Opening a CHAT window

To log into an IFS, use the CHAT package. To start CHAT, type (CHAT Host)

into the Lisp Exec window. Host is the name of the IFS you want to login to. If

Host is not specified, then you will be prompted for a name in the Exec window.

Alternatively, you can choose the CHAT entry from the BackgroundMenu. You

will then be given a menu with a list of IFS (and other non-IFS) servers. Choose

the appropriate name or Other, which will prompt you for a Host server (i.e., an

IFS server in this case) name in the Prompt window.

CHAT will reuse the most recent CHAT window, if it is available. Otherwise, it

will prompt you for a region and open a new Chat window in that region.

Once the window opens, you are "chatting" to the IFS executive in the Chat

window. Everything you type in is just forwarded to the IFS and is NOT

intepreted by Lisp.

CHAT will automatically log you on to the IFS. If you want to prevent CHAT from

logging in (e.g., if yopu want to log in under someone else’s name), start CHAT using (CHAT

Host ’NONE) in the Lisp Exec window.

The IFS executive

The IFS executive has an @ prompt. All commands must be terminated by

<RETURN>.

Some commands have sub-commands. When the IFS is in sub-command mode

(i.e., is expecting a sub-command), then the prompt will be a @@. In sub-

command mode, a <RETURN> will exit the sub-command mode and execute the

current command.

When typing into the IFS exec:

BS ž erases the preceding character

CTRL-W ž deletes a word

DEL ž deletes an entire command or sub-command.

CTRL-C may be used to abort any command.

3LispCourse #18: Files and Directories ž Part 4

Typeout will stop whenever the window fills up with text and IFS will wait for

you to type any character before continuing. If you type ahead, this feature is

disabled.

When typing a command to the IFS exec, you need only type enough of each

command to make it uniquely identifiable. For example, the Directory command

can be specified by typing Di, but not by typing just D because D is not sufficient

to distinguish between the Directory and Delete commands.

The available commands are:

Login (user) user-name (password) password ž Logs you into IFS.

This is necessary before issuing most other commands. Ordinarly,

Chat will do this for you automatically.

Logout or Quit ž Logs you out and closes the CHAT window.

Connect (to directory) directory-name (password) password ž Sets

your default directory to be directory-name, and gives you owner-like

access to it. The password may be omitted if directory-name is your

own directory or one to which you have connect privileges.

Directory (default) directory-name ž Sets your connected directory to

be directory-name, but without changing your access rights (and

therefore without requiring a password). Connected directories behave

as in Interlisp (see LispCourse #16, p. 1).

List (files) file-designators ž Lists the names of all files matching file-

designators, which is a list of up to 10 file names (separated by spaces),

any of which may contain ‘*’s to denote multiple files. The files

matching each file-designator are listed in alphabetical order.

If you terminate the last file-designator with a comma followed

by <RETURN> (rather than just <RETURN>), IFS enters a

sub-command mode (with the @@ prompt) in which you may

specify additional information to be printed about each file:

Type file type and byte size

Size size in pages

Length length in bytes

Creation date of file creation

4LispCourse #18: Files and Directories ž Part 4

Write date of last write

Read date of last read

Backup date of last backup

Times times as well as dates

Author creator of file

Protection file protection

Verbose same as Type Size Write Read Author

Everything

Sub-command mode is terminated when you type just

RETURN in response to the ‘@@’ prompt..

Delete file-designator ž Deletes all files matching file-designators,

which is a list of up to 10 file names (separated by spaces), any of

which may contain ‘*’s to denote multiple files. The version number

defaults to the lowest existing version; to delete all versions, you must

end each file-designator with ‘!*’.

IFS prints out each file name, followed by ‘[Confirm]’. You should

respond with ‘Y’ or <RETURN> to delete the file, or with ‘N’ or

 to leave it alone.

If you terminate the last file-designator with a comma followed

by <RETURN>, IFS enters a sub-command mode (@@

prompt) in which you may request the following additional

actions:

Confirm (all deletes automatically) ž IFS will not ask

you to confirm deleting each file but will just go ahead

and do it.

Keep (# of versions) number ž IFS will retain the

number most recent versions of each file and delete all

remaining versions. That is, to delete all but the most

recent version of each file, specify ‘Keep 1’.

Rename existing-filename (to be) new-filename ž Changes the name

of existing-filename to be new-filename. If you terminate new-filename

5LispCourse #18: Files and Directories ž Part 4

with ESC rather than RETURN, the body of old-filename (with

directory and version stripped off) will be appended to new-filename.

Print (files) file-designator or Press (files) file-designator ž Requests

that all Press files matching file-designator be sent to your default

printing server (‘Print’ and ‘Press’ are synonyms).

IFS prints out the name of each file followed by ‘[Confirm]’; you

should respond with ‘Y’ or <RETURN> to print the file, or with ‘N’ or

 to skip over it.

If you terminate the last file-designator with a comma followed

by <RETURN>, IFS enters a sub-command mode (@@

prompt) in which you may specify the following parameters:

Copies number ž Specifies the number of copies of each

Press document to print.

Server server-name ž Specifies the name of the printing

server to which the Press files are to be transmitted.

This may be either a registered name or an internetwork

address of the form ‘net#host#’ (don’t leave off the

trailing ‘#’).

In the absence of any sub-commands, IFS will cause one copy

of each Press file to be printed on your default printing server.

Printing request may be examined and canceled with the

commands Show Printing-requests and Cancel (printing

requests), respectively.

Note that only Press-format files can be printed; IFS checks that

every file is a Press file and will refuse to print any file that is

not.

DskStat ž Prints the number of used pages and the maximum allowed

in the connected directory, followed by the number of free pages in the

system. One IFS page is 1024 words or 2048 characters, which is

equivalent to four Alto pages.

6LispCourse #18: Files and Directories ž Part 4

Systat ž Shows who is presently using IFS, what service they are

accessing (FTP, Telnet, CopyDisk, or Mail), and the name or inter-

network address of the machine they are coming from.

Commands dealing with protections

The Chat Executive contains several commands by means of which you

may manipulate protections of files and directories.

Change Protection (of files) file-designators ž See LispCourse #15,

p.14)

Change Directory-Parameters (of directory) directory-name ž

Changes the information associated with the directory as a whole in the

manner specified by the sub-commands. Sub-command mode is

entered autromatically. The directory must be either your own or one

to which you are connected.

You may change the default file protection by means of the

Read, Write, and Append sub-commands in the same manner as

in the Change Protection command. Additionally, you may

change the create and connect access using the sub-commands:

Create (access permitted to) groups

Connect (access permitted to) groups

The ‘No’ prefix may be applied to these as well as to the others.

You may change your default printing server by means of the

sub-command:

Printing-Server host-name

Show Directory-Parameters (of directory) directory-name ž Displays

all information about directory-name, and additionally prints some

other parameters, such as the disk limit and the owner of a files-only

directory, that may be changed only by an IFS administrator.

The Interlisp CHAT program

7LispCourse #18: Files and Directories ž Part 4

While CHATing to an IFS (or any other kind of host) you can communicate with

the Interlisp CHAT program by clicking the MIDDLE mouse button in the CHAT

window. This will bring up a menu with the following options:

Close ž Close this connection. Once the connection is closed, control is

handed over to the main tty window. Closes the window.

Suspend ž Same as Close, but always leaves the window open.

New ž Closes the current connection and prompts for a new host to which

to open a connection in the same window.

Freeze ž Hold typeout from this Chat window. Bugging the window in any

way releases the hold. This is most useful if you want to switch to

another, overlapping window and there is typeout in this window that

would compete for screen space.

Dribble ž Open a typescript file for this Chat connection (closing any

previous dribble file for the window). The user is prompted for a file

name; a name of NIL just closes the old dribble file.

Input ž Prompts for a file to take input from. When the end of the file is

reached, input reverts to T.

Clear ž Clears the window and resets the simulated terminal to its default

state. This is useful if undesired terminal commands have been received

from the remote host that place the simulated terminal into a funny state.

The mouse button LEFT, when inside a CHAT window, holds output as long as

the button is down.

The following variable control CHATs behavior:

CLOSECHATWINDOWFLG ž If non-NIL, every Chat window is closed

on exit. If NIL, the initial setting, then the primary Chat

window is not closed. Default value is ????.

CHAT.FONT ž If non-NIL, the font that Chat windows are created with. If

CHAT.FONT is NIL, Chat windows are created with

(DEFAULTFONT ’DISPLAY) [To be covered in a later class!].

Default value is ????.

8LispCourse #18: Files and Directories ž Part 4

DEFAULTCHATHOST ž The host to which CHAT connects when it is

called with no HOST argument. Default value is ????.

CHAT.ALLHOSTS ž A list of host names, as uppercase litatoms, that the

user desires to Chat to. Chatting to a host not on the list adds

it to the list. These names are placed in the menu that the

background Chat command prompts with. Default value is

????.

CHAT.DISPLAYTYPE ž The type of display (a number) that Chat should

tell the remote host the user is on. If Datamedia emulation is

desired, this variable should be set to the number

corresponding to the terminal type Datamedia for the remote

host. If the remote host does not respond to the terminal type

protocol in Pup Telnet, this variable is irrelevant. Default

value is 10.

CHAT is documented in Section 20.5 of the IRM.

CHATing to an NS File Server

You can use CHAT to access an NS file server as well. The CHAT package works the

same way as in CHATing to an IFS. However, the Exec running on the NS server is very

different from the IFS Exec.

See ??? for documentation on the NS Exec.

CHATing to an Vax-Unix File Server

You can use CHAT to access a Vax-Unix file server. The CHAT package works the

same way as in CHATing to an IFS.

When CHATing to a Vax-Unix file server, you are interacting with a full-scale computer

system equal in complexity to Interlisp. The Unix shell (the Unix term for an Exec)

supports much more extensive repetoire of file manipulation capabilities than does

Interlisp. Unfortunately, the philosophies are somewhat different, so that it is sometimes

hard to manipulate Interlisp files using Unix programs .

9LispCourse #18: Files and Directories ž Part 4

See any of a number of Unix books on the market or the Unix programmer’s manual for

more information on using Unix.

The Alto Exec on Dolphin/Dorado Local Disk

When you boot a Dolphin or Dorado set up for Lisp, you enter into an Exec called the

Alto Exec. From this Exec, you type "Lisp" to get inot Lisp. When you LOGOUT from

Lisp, you are returned to the Alto Exec.

The Alto Exec has a few file manipulation capabilities that you can use to manipulate file

on your local disk. Commands include DELETE, RENAME, FILESTAT. There are also

separate Alto programs that run under the Alto Exec called Neptune (like the

FileBrowser) and FTP (analogous COPYFILE) that can be used to manipulate files.

See the Alto Users Guide for documentation on the Alto Exec, Neptune and FTP.

F.G.H.

4/4/85

LispCourse #19: Living in the Network World

Basic Concepts

Advantages of Networks

Interlisp-D runs perfectly well in a stand-alone, single machine world.

But, the full power of Interlisp-D comes when your D-machine is attached to a

network and can communicate to the other machines on the network.

Networked machines have two basic advantages:

1) Communication ž you can communicate with other users on other

machines on the network. Examples: electronic mail and sharing

information by storing a common file on a file server.

2) Sharing of expensive resources ž many machines can share expensive

resources such as printers, disk drives, etc. Without a network, every

machine would need its own printer, its own large disk, its own tape drive,

etc.

Basic Network Concepts ž Servers and Clients on a Local Network

Xerox’s brand of network is called an Ethernet. At the level of this discussion,

the Ethernet is pretty much like most of the Local-area networks one can buy to

connect together groups of computers.

The Ethernet is simply a coaxial (i.e., cable television) cable. Two or machines

can "tap" onto this cable with a special piece of hardware called a transceiver.

The various computers on the Ethernet can communicate to each other by sending

messages over this cable.

2LispCourse #19: Living in the Network World

Interlisp-D
Machine AltoInterlisp-D

Machine

Transceiver

MailFile Grapevine

Ethernet
Cable

Server Server

Dover
Printer

In principle, any two machines on this network can communicate with each other.

For example, the two Interlisp-D machines could communicate with each other

directly.

In pactice, machines on an Ethernet are usually separated into two classes:

servers and clients.

Servers ž machines that exists to perform one or more specialized services

such as storing files, printing documents, processing mail, etc. These

machines sit on the network and wait for a client machine to request some

service. Once the request arrives, they perform the service.

Clients ž the ordinary user machines. Programs (e.g., Interlisp-D) that the

user runs on these machines occasionally need some specialized service

(e.g., a file printed, a file stored, mail sent or retrieved) that they request

from a server somewhere on the network.

Most communication on a network takes place between clients and servers.

3LispCourse #19: Living in the Network World

Communication between servers and servers also take places as different servers

need to coordinate their services. For example, when I send mail to you, my mail

server communicates with your mail server in the process of transfering the mail.

Some typical servers:

Boot Servers ž provide programs necessary to boot machines over the

network. For example, provide Othello during 3-boot of the DLion or

provide the NetExec while net-booting a Dorado/Dolphin.

Name Servers ž provide translations from names to locations on the

network. For example, tells Interlisp-D that PHYLUM is located on

network number 6, and is machine number 255 on that network.

Authentication Servers ž provide name and password checking. When a

user wants to log into any machine on the network, that machine okays the

user’s name and password with an authentication server.

File Servers ž provide space to store files.

Mail Servers ž provide electronic mail delivery, distribution lists, etc.

Print Servers ž computer attached to a printer; queues and prints

documents.

Specialized Servers ž e.g., dictionary server, dial-in servers, tape servers,

etc.

NOTE: A server is a program, i.e., a piece of software. On any given machine,

there may be several servers (i.e., programs) running at once. The servers are

logically separate, though physically dependent. For example, it is standard to

run the Boot server and the Name server on the same machine on a network.

Moreover, on PUP networks (see below), the same Grapevine "server" (read,

machine) provides both mail and authentication service.

The Internet: Connecting Together Many Local Networks

A single local network can handle only a limited number of machines that are

located within a relatively small distance of each other.

4LispCourse #19: Living in the Network World

Typically, local Ethernets are connected together to form a larger "network of

networks" called an internet, as in "The Xerox Internet".

Local networks are connected together using gateways.

Interlisp-D

GATEWAY

Interlisp-D

Ethernet #1 Ethernet #2

IFS

Interlisp-D

Printer

A gateway is a computer that is connected to two or more networks. If a machine

on one network wants to send a message to a machine on another network, it

sends the message to a gateway on its network. The gateway takes the message

off of the network of the originating machine and puts it on the network of the

destination machine.

In short a gateway transfers message from one local network to another local

network. If your machine is on one network and your file server is on another

5LispCourse #19: Living in the Network World

network, when the gateway goes down you are effectively cut off from your file

server.

The Xerox Internet consists of many, many (100??) local Ethernets connected

together by gateways. There are maps of this network on ????.

In the Xerox Internet not all of the Ethernets can talk directly through a single

getway to all of the other Ethernet. A message may have to pass through several

networks and several gateways to get from one machine to another. For example,

to get from an Interlisp-D machine on Ethernet#1 to a Printer on Ethernet#3, the

message would have to pass from Ethernet#1 through Gateway#1, Ethernet#2,

and Gateway#2 to Ethernet#3.

Interlisp-D IFS Altio

Gateway
#1

Gateway
#2

Gateway
#3

Interlisp-D Interlisp-D Printer

Ethernet #1 Ethernet #2 Ethernet #3 Ethernet #4

6LispCourse #19: Living in the Network World

Gateways also do routing, i.e. they help figure out what sequence of Ethernets

and Gateways will get a message from its source to its destination.

In particular, the source machine sends the message to a gateway on its

network. This first gateway transfers the message to a second network

and sends the message on to some other gateway on the second network

that is also connected to a network that is closer to the destination. This

gateway passes the message on to an even closer gateway. This process

repeats until the message reaches its destination.

The point is that no gateway needs to "know" the entire route for the

message. Each gateway only needs to know what networks are likely to

be "closer" to the destination machine than the gateway that gave it the

message.

You don’t need to know much about gateways. Internetwork transfer and routing

is all done for you (the Interlisp-D user) automatically.

But: gateways do go down sometimes and sometimes they get overworked and

slow down. In this case, message traffic on the Internet can slow down or stop

altogether for some machines.

Example:

The ISL Dorados are on Ethernet #6.

Phylum is also on Ethernet #6.

The ISL Dlions are on Ethernet #204.

NewWing is a gateway between Ethernets #6 and #204.

If NewWing goes down or slows down, then the Dorados will be able to

get at Phylum with no problem, but the DLion will have problems because

their message are not being transfered from net #204 to net #6.

Note: In general the machines that run gateways are the same machines that run

the Name server and the Boot server on the Ethernet, althouh all three are

logically seprate services that could be run on three different machines.

Physical Ethernets ž 3Mb Experimental versus 10Mb Product

7LispCourse #19: Living in the Network World

There are two different kinds of physical Ethernets: the 3Mb Experimental

Ethernet and the 10Mb Product Ethernet. The two are distinguished by the

transceiver hardware and the type of coaxial cable used. They also transmit at

different speeds - 3 million bits per second versus 10 million bits per second.

Most machines have the hardware to support either the 3Mb Ethernet or the 10Mb

Ethernet, but not both.

In general DLions and all product equipment uses the 10Mb Product Ethernet.

The Altos (including all IFSs and many mail servers), Dolphins, and Dorados use

the 3Mb Experimental Ethernet (i.e., the original PARC invention).

There are NO logical or functional differences between the two Ethernets. In the

Xerox Internet, 3Mb and 10Mb Ethernets are mixed together. There are gateways

containing both 3Mb and 10Mb Ethernet hardware that transfer messages

between 3Mb networks and 10Mb networks.

The bottom line: if you have both a Dorado and a Dlion, they can’t be on the

same network. You’ll need two separate Ethernets running through your office,

one 10 and one 3. The two machines can speak to each other, but only through a

gateway that connects 3 and 10 Mb networks. (Special note: you can actually but

Dorados with 10Mb hardware, but we don’t have any in ISL.)

Communicating on an Ethernet ž Packets and Protocols (PUP versus NS)

Packets

The Ethernet is a packet network: each message between two machines is

broken down into short packets of information. These packets are then

sent out over the Ethernet one after the other until the entire message has

been transmitted.

The transmission of a packet between two machines is actually a

"conversation" between two the two machines. The source machine sends

out a packet. The source machine then waits before sending out the next

packet until it recieves some sort of acknowledgement. If the destination

machine receives the packet correctly, then it sends an "okay"

acknowledgment packet to the source machine. If it receives the packet

with some sort of error, it sends back an error acknowledgment packet. If

8LispCourse #19: Living in the Network World

the source receives an error acknowledgment , it resends the packet,

otherwise it goes on to the next packet.

 Several "conversations" can be going on at once on an Ethernet. While

one computer is preparing the next packet to be sent, another computer

can be actually sending its packet on the cable. Thus, the various

machines on an Ethernet share (technically, multiplex) the available time

on the Ethernet.

Protocols (PUP versus NS (versus TCP/IP))

For two machines to carry on a conversation over a network, they must

see eye-to-eye on a few matters. In particular, they must agree on the

format of each packet and they must agree on the exact meaning of each

of the message transmitted.

There are standards, called protocols, that specify these two things.

Level One Protocols

The standards for the format of each packet are called level-one

protocols.

There are three different level-one protocols in use within Xerox:

the PUP protocol ž the original PARC protocol

the NS protocol ž the product protocol

the TCP/IP protocol ž the Arpanet and university-favorite

protocol

Each of these protocols specifies a slightly different format for

each packet of information sent across the network. The major

difference is in how you specify the network and machine

numbers.

Most systems can speak (and understand) only one of the

protocols. For example, Star and the NS file servers speak only

NS. Cedar, the IFSs and the Grapevine speak only PUP protocols.

Only the Vax speaks TCP/IP.

9LispCourse #19: Living in the Network World

This means that a Star cannot speak to an IFS or to a Grapevine

mail server because the two cannot agree on the format of the

Ethernet packets.

Interlisp-D, however, can speak all three level-one protocols

(TCP/IP will be available in Intermezzo). Therefore, Interlisp-D

can exchange packets with Star and the NS file servers AND with

the IFSs and Grapevine mail servers AND with the Vaxes running

TCP/IP.

[Note: Some gateways handle only NS packets. I have been stuck in

the situation where there are two machines that both speak PUP and

were physically connected together by a sequence of gatewayst. But

the two machines could not communicate because one of the gateways

connecting the two machines could not handle PUP packets. Ugh!!!]

Higher Level Protocols

Agreeing on a packet format is not enough. To communicate, two

machines must agree on the set of possible messages and the exact

meaning of these messages.

For example, if one machine wants to ship a file to another

machine, the two machines must agree on the exact set of

messages to exchange in order to get this done: how to

specify the file name on the destination machine, how to

encode the data in the file, how to signal errors in the

received packets, how to notify the destination machine

that the file transmission is complete, and so on.

The standards for the exchange of these "task-oriented" messages

are known as higher-level protocols.

There are a multitude of higher level protocols:

file transfer protocols

mail protocols

telnet (CHAT) protocols

leaf (page level file access) protocols

and many, many more

10LispCourse #19: Living in the Network World

Each of these protocols specifies the set of messages that need to

be interchanged between two machines to carry out some specific

task like transferring a file, delivering mail, opening a CHAT

connection, etc.

Example:

An file transfer protocol might have the following

messages:

Here’s the file name to call the file: Name

Here’s the next 100 bytes of the file: Data

Here’s bytes N thru M of the file: Data

File transmission is done.

Bytes N thru M received okay (in error).

File name not allowed.

...

The bottom line: if two machines speak the same task-oriented

protocol, they can effectively communicate in carryoing out a task,

e.g., in transfering a file. If they don’t speak the same task-

oriented protocol, therte is no way they could communicate well

enough to carry out the task.

The PUP World versus the NS World

In principle, the same higher-level protocol could be

carried out using either NS or PUP level-one packets.

In practice, the PUP-based higher-level protocols are

entirely different from the NS-based higher level protocols.

Basically, when PUP was redesigned into NS, all of the

PUP-based higher-level protocols were totally redesigned

as well.

For example, the file transfer protocol for PUP-

based file servers (i.e., FTP protocol) is entirely

11LispCourse #19: Living in the Network World

different from the file transfer protocol for NS file

servers (the NS filing protocol).

Star can’t speak to an IFS because it can’t produce PUP

packets AND it doesn’t support the FTP protocol.

Interlisp-D exists in both worlds (in fact in three worlds

because there are also TCP/IP higher level protocols).

From Interlisp-D you can access both IFSs (using the FTP

protocol) and the NS file servers (using the NS filing

protocol).

The PUP World

Addresses

In the PUP world, every machine is uniquely identified (i.e., addressed) by an 8-

bit (0 to 255) network number and an 8-bit machine number. The complete

address of the machine is the network number and the machine number, each

followed by a "#".

Examples:

Phylum’s address is 6#225#

My Dorado is 6#60#

The pool DLion in ISL is 204#36#

QUAKE is 6#357#

EXPRESSO is 64#154#

Certain programs require you to specify a destination machine by its PUP

address; TeleRaid, for example.

Interlisp-D also allows you to specify a PUP address in place of a device name for

any device reference. For example, instead of (CHAT ’PHYLUM), you can use

(CHAT ’6#225#). Instead of DIR {PHYLUM}<HALASZ>, you can use DIR

{6#225#}<halasz>. These addresses can come in handy when the name server is

down.

Name Service

12LispCourse #19: Living in the Network World

Most machines in the PUP world are given a litatom for a name; this is true of all

servers and most client machines. Thus the name of my machine is Halasz, the

name of machine 6#225 is Phylum, etc. Note: some DLions in ISL do not have name

because they ran out of space in the name tables.

The name servers running on the PUP-gateways keep a table that translates these

names into PUP addresses. Whenever you refer to a machine by name [as in

(CHAT ’PHLYUM)], Interlisp-D consults the name server for the address

corresponding to that name.

In order to get to a to a particular type of server in the PUP-world, you have to

know the name or PUP address of the particular machine or the machine running

the server.

The PUP name servers cannot answer interesting questions like "What machines

are on net 36" or "What IFSs do you know about?".

In Interlisp:

(ETHERHOSTNAME PupAddress) ž returns the name of the machine

whose address is PupAddress. (ETHERHOSTNAME ’6#225#) returns

Phylum.

(PORTSTRING (ETHERHOSTNUMBER Name)) ž returns the Pup

address of the machine specified by Name. (PORTSTRING

(ETHERHOSTNUMBER ’Halasz)) returns 6#60#.

Authenication Service

In the PUP world, users are registered using the Grapevine mail system.

All users are registered on a Grapevine mail server in their location (called a

registry). A user’s Grapevine name is usually his last name followed by the

registry where he works. For example, my Grapevine name is Halasz.pa since

.pa is the Palo Alto registry. Other registries are:

.wbst ž Webster, N.Y.

.pasa ž Pasadena

.es ž El Segundo

.sthq ž Stamford Headquarters

.henr ž Henrietta, N.Y.

13LispCourse #19: Living in the Network World

.dlos ž Dallas

???

When a user logs onto any machine on the network, that machine asks the nearest

Grapevine server to authenticate the user and her password.

Because all Grapevine mail servers are in constant communication, you can log

into a machine anywhere on the Xerox Internet. That machine will query the

Grapevine server nearest to it, which in turn will query your Grapevine server

here at PARC. If you typed in the right password, the PARC Grapevine will say

okay to the remote Grapevine server which will say okay to the machine you are

logging in to.

The Grapevine is a very limited database of all of the users on the Xerox PUP-

based Internet. The Grapevine system maintains a list of all the user’s on the

Xerox Internet. However, it keeps only the user’s name and no other interesting

information such as office number or phone number or position in the company.

Moreover, you can’t even access the list of users in any very interesting way. For

example, you can’t ask "what users are there in Palo Alto whose last name is

Jackson?" or even "Who works at PARC?".

(This contrasts with the NS world, where more interesting queries are possible).

14LispCourse #19: Living in the Network World

Mail Service

Mail in the PUP world is also handled by the Grapevine system. The recepient of

a mail message is specified by his or her Grapevine user name (e.g., Halasz.pa).

When you send mail in Interlisp-D, Lafite sends the mail to the nearest Grapevine

server which then distributes the mail to the Grapevine servers of each of the

recipients of the mail. The Grapevine system does the work of figuring out the

relevant Grapevine server for each of the recepients.

When you retrieve mail, Lafite queries the Grapevine servers for your registry to

see if there is any mail waiting for you. If so, it copies the mail from the

Grapevine server to your Lafite mailbox.

In addition to delivering and storing mail, the Grapevine provides for the

maintenance of a set of distribution lists. Each distribution list consists of a name

ending in an "^" (e.g., LispUsers^), a registry (as in LispUsers^.pa), and a list of

members of that list. Sending mail addressed to a distribution list will cause the

mail to be sent to all of the members of the distribution list.

You can log into the Grapevine and alter various aspects of distribution lists. For

example, you can add or removbe yourself from a distribution list, see who is on a

distribution list, etc.

To do this from Interlisp, LOAD the library package

{eris}<lisp>harmony>library>maintain.dcom. When the LOAD is finished, the

function call (MAINTAIN) will log you into the Grapevine and start up a

Grapevine "exec" in your TTY window.

From the Grapevine "exec" you can execute a number of commands to query or

change distribution lists.

Example:

When you are finished with your interaction with Grapevine, type "Quit" to the

exec. This will return you to the Lisp Exec in the TTY window.

For full documentation of the Grapevine "exec", see the document

{indigo}<laurel>maintain.press.

File Service, Print Service

In the PUP-world, file service is provided by the oft-discussed IFSs.

15LispCourse #19: Living in the Network World

In the PUP-world, print service is provided by the Dover printers such as Quake

and Expresso and the full-press printers such as Jedi and RockNRoll.

Before a file can be printed, it must be translated into a format that the printer can

understand. Printers in the PUP-world print PRESS format files, in contrast the

NS-wporld printers which print InterPress format files. While these file formats

have nothing to do with PUP and NS in principle, in practice Press versus

Interpress follows the PUP versus NS distinction.

Still to Come on Networks

The NS World

Cross-overs between PUP and NS worlds

F.G.H.

4/9/85

LispCourse #20 : Living in the Network World ž Part 2

Completions and Corrections

FTP Server package

There is a Lisp Library package that allows a Lisp machine to act as a server for

PUP FTP.

Load {eris}<lisp>harmony>library>ftpserver.dcom and run eval the function

(FTPSERVER). This will start up a FTP server process that runs in the

background.

Once the server is running you can copy files back and forth to your machine’s

local disk from another machine running Interlisp (or running Alto FTP).

For example, if I start up FTPSERVER on my machine, I can go over to ISLPool

DLion and do a (COPYFILE ’{DSK}<LISPFILES>INIT ’{HALASZ}INIT) to

copy an INIT file from the DLion local disk to the local disk on my machine (i.e..,

the Dorado named Halasz). I could also have refered to my machine by number

as in (COPYFILE ’{DSK}<LISPFILES>INIT ’{6#60#}INIT).

Copying works both ways: (COPYFILE ’{HALASZ}INIT

’{DSK}<LISPFILES>INIT) would work just as well.

You can also do a DIR and run the FILEBROWSER to a machine running the

Interlisp FTP sever. For example, if my Dorado is running FTPSERVER then I

can do a (FB {HALASZ}) or (FB {6#60#}) from the ISL Dlion to get a listing of

the files on my Dorado.

Documentation is on {eris}<lisp>harmony>library>ftpserver.tedit (& .press).

Note on the use of the word host.

In the Interlisp documentation, the word "host" is often used to refer to a machine.

A host name is what we refer to here as a machine name. For example, Phylum

is refered to as a host and "Phylum" as a host name. The distinction between

machines and hosts is non-existent.

2LispCourse #20: Living in the Network World ž Part 2

The NS World

Machine Addresses

Machine addressess seem to be less important (from the user’s point of view) in

the NS world than in the PUP world.

Each machine on the NS network has an address: a 32-bit (i.e., between 0 and a

very big number) network number and a 48-bit machine number. As in the PUP

world, both the network number and the machine number are followed by a "#".

When printed out, the machine number prints as three 16-bit quantities separated

by periods.

To find the address of your machine, evaluate the variable \MY.NSADDRESS.

To find the address of some other machine from its name (see below for NS name

conventions) use the function LOOKUP.NS.SERVER as in

(LOOKUP.NS.SERVER ’Phylex:), which returns 204#0.125000.20217#.

Examples:

Phylex:’s address is

StarFile:’s address is 131#0.125000.24314#

PaperMate:’s address is 142#0.125000.12122#

ISLPoolDlion’s address is 142#0.125000.32462#

Halasz’s Dorado address is 6#0.52612.100312#

Note: The NS network number is, by convention, the same as the PUP

network number for the same physical network. For example: the

ISLPoolDlion is known as 204#36# in the PUP world and

204#0.125000.32462# in the NS world.

Moreover, Phlyex: is on the same physical network (i.e., cable) as the

ISLPoolDLion. Phylex: is known as 204#0.125000.20217# in the NS

world. Phylex: has no PUP address because it does not speak PUP.

NS Names: Machines and people are part of a common name space

Basic Concepts: Objects, Domains, and Organizations

In the PUP world, the naming of machines is separate from the naming of

people (or groups of people). Machines are named using a litatom

3LispCourse #20: Living in the Network World ž Part 2

processed by a Name server. People are named using a Grapevine name

and password processed by a Grapevine authetication server.

For example:

PHYLUM and ERIS refer to machines

Halasz.pa and Feuerman.pasa refer to people

LispUsers^.pa and NoteCardsInfo^.pasa refer to groups of

people.

In the NS world all objects, including machines, people, and groups, are

named in the same way, i.e., according to the NS naming standard.

The NS naming standard is hierarchical and works as follows:

Every object has an object name. An object is a machine, a

person, a group, or any other "thing" in the NS world.

Every object also belongs to a particular domain, which has a

domain name. There are always many objects within a given

domain.

Every domain belongs to an organization, which has an

organization name. There are generally many domains within an

organization.

4LispCourse #20: Living in the Network World ž Part 2

Names

Organization3

Organization2

Xerox OSBU North

Domain1

Domain2

Domain1

PARC

Object4

Object2

Object1

Object4

Object3

Object2

Object1

Phylex

PaperMate

Frank Halasz

Object2

Object1

Object2
XICTMD

An organization is intended to refer to a single company or major division

within a company. For example: all of Xerox is considered a single

organization.

A domain is intended to be a small division of an organization that shares

common resources such as file servers and printers. A domain might be

anywhere from large facilties like PARC (with 160 people) to small

projects like WBST129UL (with 25 people).

Unlike Grapevine registries (e.g., .pa), a domain is not intended to

specifically refer to geographic location. Often, however, domains are

used to divide an organization into organizational/geographic groups.

Examples from within Xerox:

PARC is a domain

OSBU North is one domain.

OSBU South is another domain.

OSBU Bayshore is a third domain.

The Webster, N.Y. facility has 20 or so different domains

corresponding to different organizational groups located in

5LispCourse #20: Living in the Network World ž Part 2

Webster. Examples: WBST128, WBST129, WBST129UL,

and WRC.

NS Names and Aliases; Properties of Objects

An object’s NS name consists of an object name, a domain name, and an

organization name separated by ":"’s.

Examples:

Frank Halasz:PARC:Xerox

Phylex:PARC:Xerox

Pluto:OSBU North:Xerox

Bill Liles:XSIS:Xerox

Within a domain, an object may have several alternative object names

known as aliases. An object’s alias can always be used in place of its real

object name to refer to the object.

Examples:

Within PARC:Xerox

Halasz: is an alias for Frank Halasz:

aifile: is an alias for Phylex:

print: is an alias of LispPrint:

Thus:

Frank Halasz:PARC:Xerox and

Halasz:PARC:Xerox refer to the same object. So

do Phylex:PARC:Xerox and aifile:PARC:Xerox

Every named object in the NS world has a bunch of properties that

describe the object. For example, every object name has an address, either

a NS network address or a NS mail server address. For the most part these

properties are not accessible to the ordinary user.

However, every object has a property that tells what type of object it is.

For example: people have a property called USER. FileServers have a

property called FILE.SERVICE.

The possible properties that define types of objects are:

6LispCourse #20: Living in the Network World ž Part 2

USER ž a person

PRINT.SERVICE ž a print server

FILE.SERVICE ž a file server

MEMBERS ž a distribution list

These properties come in handy when you want to know all the file

servers in PARC or all the people in the OSBU North domain. (See below

for how to do these querires).

Default Domain and Organization

In Lisp, you can leave the domain and organization parts off of any NS

name. If you do so, the values of the atoms CH.DEFAULT.DOMAIN

and CH.DEFAULT.ORGANIZATION will be used for the domain and

organization parts of a name whereever necessary.

Usually, CH.DEFAULT.DOMAIN and
CH.DEFAULT.ORGANIZATION are set in your system INIT file. You
can change them in your personal INIT file or by SETQing them in the
Lisp Exec if you refer to domains and/or organizations different than the
ones set in the system INIT file.

At Parc, CH.DEFAULT.DOMAIN is set to PARC and
CH.DEFAULT.ORGANIZATION is set to Xerox.

Examples: Given the standard settings for PARC,

Phylex: refers to Phylex:PARC:Xerox

StarFile: refers to StarFile:PARC:Xerox

Tundra:OSBU North: refers to Tundra:OSBU North:Xerox

Clearinghouses: Name and Authentication Servers for NS World

Introduction

In the NS world, a server called a Clearinghouse carries out the

functions of both the PUP Name server (machine name to machine

address translation) and the Grapevine authentication service

(checking peoples names/passwords and distribution list

maintenance).

7LispCourse #20: Living in the Network World ž Part 2

Every domain has one or more Clearinghouses.

Every Clearinghouse knows the names and addresses of the

Clearinghouses for every domain and organization on the NS

internet.

Every so often (each night or every other night), all the

Clearinginghouses on the network exchange information

about who they are and what domains they cover, etc.

Thus, every Clearinghouse has reasonably up-to-date

information about all other Clearinghouses.

Clearinghouse Services

Name Service

Every time you type in an NS name, your D-machine

interrogates its Clearinghouse server for the translation for

the name. For example, if you type in DIR

{Phylex:Parc:Xerox}<halasz>*, your machine will

interrogate its Clearinghouse for the address of

Phylex:Parc:Xerox.

If the named object is not in the same domain as your

Clearinghouse, then your Clearinghouse tells your machine

the appropriate Clearinghouse to contact for the domain of

the object. Your machine then queries that Clearinghouse

to get the address of the named object.

Authentication Service

Similarly, if you attempt to login to a NS file server (which

is done every time you access it, even for a DIR), the file

server will ask its Clearinghouse about your NS name and

password. If you are registered on that Clearinghouse, you

will be okayed. Otherwise, that Clearinghouse will give

the file server the location of the Clearinghouse for your

domain and the file server will check with your

Clearinghouse.

8LispCourse #20: Living in the Network World ž Part 2

For example, if I log into Tundra:Osbu

North:Xerox, Tundra gets the location of the PARC

Clearinghouse (since my name is

Halasz:PARC:Xerox) from the Osbu North

Clearinghouse. Tundra then checks the name and

password with the PARC Clearinghouse . If I am

registered on the PARC Clearinghouse, then I am

allowed to login on Tundra.

Note: The NS world and the PUP/Grapevine world are

totally separate. You must be registered on a

Clearinghouse somewhere to access NS servers of any

type. A Grapevine user name and password is not enough!!

Distribution Lists

Clearinghouses also maintain distribution lists for the NS

mail system. Unfortunately, there is no interface like

MAINTAIN whereby normal users can make changes to

these distribution lists. All changes to the lists on a given

Clearinghouse must be done by the administrator of that

Clearinghouse. (At PARC, Carol Lehner is the

Clearinghouse administrator).

Your Clearinghouse and the set of known Clearinghouses

Your Clearinghouse

The previous descriptions refer to "your Clearinghouse". In the

NS world, each D-machine has to discover for itself the location of

its Clearinghouse (i.e., the nearest Clearinghouse that is up). This

works as follows:

The first time you refer to an NS object (e.g., an NS file

server or an NS printer) your D-machine goes out and tries

to find the nearest Clearinghouse server to it. It does this

by looking around in turn on each of the various networks

it knows about until it finds a Clearinghouse.

9LispCourse #20: Living in the Network World ž Part 2

While its looking, you will see messages of the

form Looking for Clearinghouse servers on net 132

appearing in your Prompt window. Each such

message represents one net that your machine is

looking for Clearinghouses on. When a

Clearinghouse has been found, it prints out

something like Noting Clearinghouse

131#0.125000.77654 in the Prompt window.

The parameter CH.NET.HINT determines the network on

which your machine begins its search for a Clearinghouse.

It should be set in your system or personal INIT files. If

CH.NET.HINT is set to correct network number, the search

for a Clearinghouse will be efficient (providing your

Clearinghouse is up). If CH.NET.HINT is incorrectly set,

your machine may look on many, many nets before it finds

a Clearinghouse. At PARC, CH.NET.HINT should be set to 89.

The function call (START.CLEARINGHOUSE T) will

carry out a search for the nearest Clearinghouse and set the

appropriate variables to make it "your" Clearinghouse. this

function is done automatically for you whenever you make

your first NS reference. However, if your Clearinghouse

goes down you may have to manually reinitiate the search

using START.CLEARINGHOUSE.

The set of known Clearinghouses

Every time you refer to an NS domain other than your own, your

machine asks your Clearinghouse for the location of the

Clearinghouse for that domain. It then tries to make contact with

that Clearinghouse.

While contact is being made a message like Finding

Clearinghouse server for WBST129 is displayed in your

Prompt window. When it finds the Clearinghouse the

10LispCourse #20: Living in the Network World ž Part 2

message Noting Clearinghouse 204#0.125000.23452 will

be printed.

Your machine then remembers the location of that

domain/Clearinghouse pair so that the next time you access the

domain, it will know what Clearinghouse to contact.

Example: If I type DIR {Tundra:OSBU% North}, my

machine firsts makes contact with the OSBU North

Clearinghouse printing the appropriate messages in the

Prompt window. It then queries that Clearinghouse for the

address of Tundra.

The function call (SHOW.CLEARINGHOUSE) will print a

graph of all of the Clearinghouses that your machine knows about.

It prompts for a region for the graph window.

Accessing the Clearinghouse Information from Interlisp

Interlisp allows provides several functions that allow you to query

the information on the Clearinghouse network. These function

allow you, for example, to find the names of all the NS print

servers in PARC.

The functions are the following:

(CH.LIST.ORGANIZATIONS ObjectPattern) ž returns a list of

all of the organizations on the NS Internet whose organization

name matches the OrganizationPattern. OrganizationPattern can

include the * wildcard character, standing for 0 or more of any

characters. If OrganizationPattern is NIL or just *, then the list

returned will contain all of the organizations known.

Examples:

10_(CH.LIST.ORGANIZATIONS)

("..." "a long organization." "aflc" "AIL" "airgate" "Allen-
Bradley Co." "Boeing" "Comm Test" "Conserve"
"C S̈ervers" "CTMD" "Demo" "DPI" "Earth" "Fuji Xerox"
"G/C" "GDP" "Leesburg" "Lou OPD" "MANKKAA"

11LispCourse #20: Living in the Network World ž Part 2

"MATRA" "NASA/JSC" "Nash" "Ois-l" "org" "R&D" "Rx"
"RX IT" "RX Sweden" "RX-N" "RX/Denmark" "Rxa"
"RXCH" "RXDK" "RXEG" "RXF" "RXFINLAND" "Rxg"
"rxhh" "rxhol" "rxihq" "Rxihq Tsd" "rxn" "RXS" "RXSF"
"RXSweden" "rxtsd" "RXUK" "Sanyo Kiko" "SBD"
"SIEMENS" "SiemensAG" "SMD" "TA" "veroh" "Versatec"
"Xci" "XCSS" "Xerox" "Xerox OSD" "Xerox Visitors"
"Xopd" "XOS" "xosm") 11_(CH.LIST.ORGANIZATIONS
’Xerox*]

("Xerox" "Xerox OSD" "Xerox Visitors")

(CH.LIST.DOMAINS DomainPattern) ž returns a list of all of the

domains whose domain name matches the DomainPattern.

DomainPattern consists of the domain and organization parts of an

NS name. The domain part (but not the organization part) can

include the * wildcard character, standing for 0 or more of any

characters. If the organization part is left off, the default

organization (i.e., the value of CH.DEFAULT.ORGANIZATION)

is used. If DomainPattern is NIL or just *, then the list returned

will be a list of all domains in the default organization.

Examples:

20_(CH.LIST.DOMAINS "*:")

("A&E1" "A&E2" "A&E3" "AAAI" "Albany"
"Albuquerque" "AlphaMesa" "Alphaservices-Es"
"Alphaservices-Pa" "AlphaServices-PTL"
"Alphaservices-Rx" "alphaservoices-rx" "ATL-
ECE" "Atlanta" "Austin" "BIRMINGHAM" "Bones"
"Brookriver" "CIN OPS" "CrashTest" "ctmd"
"dagobah" "DallasInfomart" "DEMO ROOM"
"detroit" "DlosCE" "DlosEtron" "DLOSL200"
"DlosL300" "DlosLC" "DlosLV" "DlosLV-Comm"
"DlosMBT" "DlosNSC" "DlosSkeff" "Ece-Hq" "ECE-
WASH" "ecewest" "EDGE-Net" "EDNPS Test" "El
Segundo" "´el`e¸c`at`uˆo¨u" "Es A&E1" "ES A&E1 CHS"
"ES A&E2" "ES A&E3" "ES EDNPS Test" "ES GSD"
"ES GSD/WCO" "eS M1" "ES M4" "ES PSI Test" "ES
XC OST" "ES XC Pri" "ES XC XDMS" "ES XC16"
"Evaluation" "FAX-TEST" "GGW-Test" "Grnch"
"Harb" "HENR801A" "HENR801B" "HENR801C"
"HENR801E" "Henr801F" "HENR868" "Houston" "HUB
TEST" "HWDENGDlos" "ISD-NAM" "lac" "LAS VEGAS"
"loop ECE" "LSBG-ECE" "M1 ES" "Minneapolis
Demo" "MWEAOC" "mwwaoc" "NCRHQ" "NEFSO2" "NER-

12LispCourse #20: Living in the Network World ž Part 2

OSM" "NetA" "NetB" "ns/csc" "NSC" "NSC-5.0"
"OGC" "OPD-ENG" "OPD-HQ" "OPD-IS" "OPD-LE"
"OPD-MFG" "OPD-MPO" "OPD-MS" "orange" "OS
Service" "osba" "Osbu Bayshore" "OSBU North"
"OSBU South" "OSD Associates" "OSM-OKC" "OSM-
TRG" "OSMDB" "Parc" "Parc Place" "Phoenix"
"PQAnet1" "PQAnet2" "PQAnet3" "PR" "ProdTest"
"ProductTest" "Psd-Executive" "PSD5700"
"Rainbow" "Raisin" "roch" "ROCH041" "Roch805"
"Roch805t" "ROCH853" "Roch888" "ROCH892"
"RochECE" "SalmonDomain" "San Antonio" "Santa
Fe" "South" "STHQ" "Test Base" "Test Net"
"TestServices" "TOMF" "TransientRoutes" "TSC"
"TYSON" "Vista" "Walnut Creek" "waoc" "WBST MFG
HUB" "WBST102A" "wbst102t" "wbst102tchs"
"WBST105" "Wbst105B" "WBST114" "Wbst128"
"WBST129" "WBST129UL" "WBST200" "WBST200LL"
"WBST200UL" "WBST205LL" "wbst205t" "WBST205UL"
"WBST207" "Wbst207ul" "WBST208" "WBST212"
"WBST218LL" "WBST218UL" "WBST223" "WBST223CHS2"
"WBST300" "WBST304" "WBST311" "WBST311C"
"wbst311J" "WBST311X" "WBST845" "WRC" "xais-
demo" "xc es" "XNS-DLBK" "XNS-MAR" "XOS WR"
"XOS-MAR" "xos-mwr" "XOS-OPS" "XOS-SCBC" "XOS-
SR" "XRCC" "Xsis" "XSIS North" "Xsis-Ai" "XSIS-
HQ")

21_(CH.LIST.DOMAINS "P*C:Xerox"]

("Parc")

22_(CH.LIST.DOMAINS "WBST*:")

("WBST MFG HUB" "WBST102A" "wbst102t"
"wbst102tchs" "WBST105" "Wbst105B" "WBST114"
"Wbst128" "WBST129" "WBST129UL" "WBST200"
"WBST200LL" "WBST200UL" "WBST205LL" "wbst205t"
"WBST205UL" "WBST207" "Wbst207ul" "WBST208"
"WBST212" "WBST218LL" "WBST218UL" "WBST223"
"WBST223CHS2" "WBST300" "WBST304" "WBST311"
"WBST311C" "wbst311J" "WBST311X" "WBST845")

(CH.LIST.OBJECTS ObjectPattern Property) ž returns a list of

all of the objects whose object name matches the ObjectPattern

AND who have property Property. ObjectPattern consists of an

NS name. The object part (but not the domain and organization

parts) can include the * wildcard character, standing for 0 or more

of any characters. If the domain and/or organization parts are left

off, the default domain and/or organization is used. If

13LispCourse #20: Living in the Network World ž Part 2

ObjectPattern is NIL or just *, then the list returned will be a list

of all objects in the default domain and organization.

The Property argument indicates the type of object to look for and

can be one of: USER, PRINT.SERVICE, FILE.SERVICE,

MAIL.SERVICE, MEMBERS, or ALL as described above. If the

Property argument is NIL, then ALL will be used meaning all

types of objects.

Examples:

28_(CH.LIST.OBJECTS (QUOTE *:Parc:Xerox)

 (QUOTE FILE.SERVICE]

("phylex" "Starfile")

29_(CH.LIST.OBJECTS (QUOTE *:Parc:Xerox)

 (QUOTE PRINT.SERVICE]

("Kukai" "PaperMate" "print")

30_(CH.LIST.OBJECTS ’*:Parc:Xerox ’USER)

("Akis Doganis" "Ann Derrick" "Arnold J Blum"
"Art Farley" "Barbara Hemstad" "Bart Kinne"
"Beaumont Sheil" "Benny Pugh" "Bev Manes" "Bill
Hunter" "Bill Jackson" "Bill van Melle" "Bill
Winfield" "Bob Allen" "Bob Ritchie" "Brad
Burns" "CA Lehner" "Cari Sullivan" "Carlin
DeCato" "Carol Lehner" "Cathy Turner" "Charles
Orgish" "Cheryl James" "Courtney Tagupa" "Cyndi
Vanderhorst" "D. Austin Henderson" "Dale Mann"
"Dan Jordan" "Dan Russell" "Dave Pirogowicz"
"David Myron Levy" "David Porter" "David
Vinayak Wallace" "David Weckler" "Diane
Hutchins" "Don Charnley" "Dorene Allen" "Doug
Walters" "Ed Fiala" "Eric Rawson" "Eric Schoen"
"Eric Steffensen" "Facilities Monitoring"
"Fernando Ponce" "Frances Grimble" "Frank
Halasz" "Frank Shih" "Frank Vest" "Fumiko
Mannes" "Gary Chang" "Gary Emanuel" "Gary
Rhoades" "Gary Toyama" "Gene Hall" "Giuliana
Lavendel" "Gloria Warner" "Greg Nuyens" "Gregor
Kiczales" "Guest" "Hal Murray" "Harriet Weeks"
"Henry S. Thompson" "Herb Jellinek" "Hugh Vander
Plas" "I-Wei Wu" "Irene Lile" "Jacqeline M.
Guibert" "Jay Trow" "Jean Gascon" "Jeanette
Figueroa" "Jeannie Lewandowski" "Jim Cooper"
"Jim D’Alfonso" "John Brown" "John D. Sybalsky"
"John L. White" "John Larson" "John S. Brown"
"John Shaw" "John White" "Jon Bokelman" "Joseph
Kaminski" "Julian Orr" "Karen Martelli" "Kathy
Jarvis" "Kelly Roach" "Kenneth Beckman" "Kerry

14LispCourse #20: Living in the Network World ž Part 2

Brown" "Larry Masinter" "Librarian" "Lillian
Barth" "Lorraine Watanabe" "LouAnne Johnson"
"Lynne Seymour" "Maia Pindar" "Mariela Esser"
"Mark Chow" "Mary Hausladen" "Meg Withgott"
"Melissa Monty" "Michael Dawson" "Michael
Fisher" "Michael Herring" "Michael Plass"
"Michael Sannella" "Michael Young" "Michalene
Casey" "Michel Desmarais" "Mike Dixon" "Mimi
Gardner" "Mitchell Lichtenberg" "Nancy Freige"
"Neil Gunther" "Nicholas Briggs" "PARCPublic"
"Patricia Sheehan" "Paul Ricci" "Paul Turner"
"PC Demo" "Per-Kristian Halvorsen" "Peter
Struss" "Richard Burton" "Richard E. Sweet"
"Richard Martin" "Robert Allen" "Robert
Bachrach" "Robert Spinrad" "Robert Tremain"
"Ronald Kaplan" "Ronald Schmidt" "Salina
Snipes" "Sharon Johnson" "Sharon Penner" "Star1"
"Star2" "Star3" "Star4" "Stephen Jackson"
"Stephen Quarterman" "Steve Martino" "Steve
Wallgren" "Steven Purcell" "Susan Newman" "Susi
Lilly" "Susie Mulhern" "Sweetsun Chen" "Tak
Oki" "Tami DeMerritt" "Tayloe Stansbury" "Terry
Haney" "Thomas Hartmann" "Tiao-Yuah Huang" "Tim
Brunner" "Tim Diebert" "Toby Morrill" "Tom
Moran" "Victor Bojorquez" "Victoria Carlson"
"Wes Dorman" "Yoko Nonaka" "Zoran Popovic")

(CH.LIST.ALIASES.OF ObjectPattern) ž returns a list of all of

the aliases of Object, where Object is an NS name.

The object part (but not the domain and organization parts) can include the *

wildcard character. However, the function will return the aliases of only the

first object found that matches the pattern. Thus, it makes little sense to use

wildcards in this function.

If the domain and/or organization parts are left off, the default domain and/or

organization is used. If Object is NIL, * is assumed and the aliases of the first

object in the default domain will be returned.

Examples:

36_(CH.LIST.ALIASES.OF (QUOTE Frank% Halasz))

(Halasz:)

37_(CH.LIST.ALIASES.OF (QUOTE StarFile:))

(Help Server: Help Service:)

38_(CH.LIST.ALIASES.OF (QUOTE Phylex:))

(aifile:)

15LispCourse #20: Living in the Network World ž Part 2

39_(CH.LIST.ALIASES.OF (QUOTE aifile:))

(aifile:)

40_(CH.LIST.ALIASES.OF (QUOTE *:PARC:))

(ht: HThompson:)

(CH.RETRIEVE.MEMBERS Object ’MEMBERS) ž retrieves

the list of members of a distribution list. Object is the NS name of

the distribution list. A distribution list is an NS object with a

MEMBERS property, i.e., an object returned by

(CH.LIST.OBJECTS "*:PARC:XEROX" ’MEMBERS).

Example:

48_(CH.LIST.OBJECTS ’* ’MEMBERS]

("AllParc" "AllXerox" "Alpha BWS" "BWS Users"
"HelpGroup" "ICL Star Users" "LispAccess"
"LISPCORE" "NewXAISEmployees" "PTS")

49_(CH.RETRIEVE.MEMBERS (QUOTE PTS:)
’MEMBERS]

(Carol Lehner: Toby Morrill:)

Mail Service

The NS world provides a mail delivery service similar to, but separate from, the

Grapevine mail system. To use this mail system, you will need get registered in a

Clearinghouse and have a mail folder set up for you on some mail server. At

PARC, see Carol Lehner to have this done.

If you load {eris}<lisp>harmony>library>nsmail.dcom then evaluate the function

call (LAFITEMODE ’NS), you can use Lafite to gain access to your NS mail.

The Lafite Get Mail command will retrieve mail from your NS mail folder and

the Send Mail command will send the mail out using the NS mail system.

You can send and recieve mail in only one world at a time. To read your

Grapevine mail again, evaluate (LAFITEMODE ’GV). To return to NS mail use

(LAFITEMODE ’NS) again.

You can intermix Grapevine and NS mail messages in a Lafite mail folder. That

is, you needn’t use different mail folders as you switch between the two mail

16LispCourse #20: Living in the Network World ž Part 2

systems. However, the Answer and Forward will not work correctly for NS mail

when the LAFITEMODE is GV, and vice versa.

When sending NS mail, you need to include the full NS name of the recipient

(i.e., name/alias, domain, and organization). If the recipient belongs to the same

domain and/or organization, you can omit these parts of the NS name. For

example, to send mail to me the receipient list should be Halasz:PARC:Xerox or

Frank Halasz:PARC:Xerox.

Your NS mail server and the Clearinghouse take care of delivering the mail to the

appropriate mail server for each recipient.

I think there are distribution lists allowed in the NS mail system. These are the

NS objects with the MEMBERS property discussed above. Mailing to these

distributiuon lists is like mailing to each member of the list. For example. mailing

to PTS:PARC:Xerox is like mailing to Lehner:PARC:Xerox and

Morril:PARC:Xerox, since these are the only two MEMBERS of

PTS:PARC:Xerox.

Unlike in Grapevine, these distribution lists can be changed only by the

Clearinghouse administrator. Although they can be examined using the

CH.LIST.OBJECTS and CH.RETRIEVE.MEMBERS functions described

above.

File Service, Print Service, Press versus Interpress printers

File service in the NS world is provided by NS file servers. These are similar to

IFSs, but do not have some of the IFS features. The salient points of NS file

server have been discussed in the LispCourse sections on filing.

Print service in the NS world is provided by NS printers (the Xerox 8044 printer).

The 8044 NS printers are abysmally slow but in general have much higher print

quality than the Dover and full-press printers in the PUP world. All NS printers

print files only in the Interpress document format. Press files cannot be printed in

the NS world.

Most files in Interlisp can printed on either the Press (Pup) or Interpress (NS)

printers. But note that the fonts available on the two printers are different.

17LispCourse #20: Living in the Network World ž Part 2

Interlisp does most of its screen displays in PUP-world fonts like Gacha,

TimesRoman, and Helvetica. Whenprinted on an Press printer, these fonts appear

as they do on the screen (except at higher resolution). When printed on an

Interpress printer, these fonts are translated into their NS analogs: Terminal,

Modern, and Classic. For most applications, this is okay. But files which are, for

example, carefully adjusted to fit on a Press page will not fit in the same way (or

not at all) on an Interpress page.

You can use the NS fonts on the screen (e.g., in a TEdit window) by

setting the correct font variables. When printed on a Press printer, these

fonts will be printed in their Pup-world analogs. When printed on an

Interpress printer, these fonts will appear as they do on the screen (modulo

the resolution).

Interfaces Between the PUP and NS Worlds ž Interlisp-D and Mail Gateways

The PUP and NS world are generally separate worlds. But since Interlisp-D speaks to

both worlds, you can often mix and match operations in the PUP world with operations in

the NS world. For example, you can COPYFILE a file between an IFS and an NS file

server as in (COPYFILE ’{phylex:}<halasz>init ’{phylum}<halasz>init).

In all of the interactions where you are dealing with a mix of NS and PUP, your Interlisp

machine is the intermediary between the two worlds. For example, COPYFILE copies

the file from the NS server to the Lisp virtual memory using the NS filing protocol and

then copies it from the Lisp virtual memory to the IFS using the FTP protocol.

There is one interface between the PUP and NS worlds that exists apart from your

machine: the mail gateway between the Xerox PUP Internet and the Xerox NS Internet.

The mail gateway is a machine running somewhere in OSD that takes Grapevine mail

addressed to NS mail recipients, translates it into NS mail and gives it the NS mail

system to deliver. Similarly, it takes NS mail intended for Grapevine recipients,

translates it to Grapevine mail, and then gives it to the Grapevine to deliver.

To send mail through the gateway from Grapevine to an NS mail recipient, you

should address the mail to "NSName".ns, where NSName is the NS Name of the

recipient. For example, to send me NS mail from Lafite running in GV mode,

18LispCourse #20: Living in the Network World ž Part 2

you should address the mail to "Halasz:PARC:Xerox".ns (don’t forget the "

before and after the NS Name).

To send mail through the gateway, from the NS world to the Grapevine world,

you have to carry out a similar, but presently (9-Apr-85 00:16:00) unknown trick

in specifying the recipients address.

Documentation on Networks

There is relatively little documentation on the Interlisp/NS world.

The Interlisp/PUP world is scattered throughout the IRM and package documentation,

since almost all parts of Interlisp take advantage of the network at times.

The Interlisp interface to both NS and PUP networks is covered in Chapter 21 of the

IRM. All of the Clearinghouse functions described above are covered here. Most of the

chapter, however, is aimed at programmer’s interface to the PUP and NS networks.

The Lafite interface to NS mail is documented in

{eris}<lisp>harmony>library>nsmail.tedit (&.press).

There are several PARC Blue&White reports covering various apsects of both the PUP

and NS network designs. You can probably get a list of these from the TIC.

F.G.H.

4/23/85

LispCourse #21: Fonts

Fonts ž Characterized by Family, Size, Face, Rotation, and Device

A font is a description of how alphanumeric characters should look when displayed on

the screen or on printed hardcopy.

Every font has five basic characteristics, family, size, face, rotation, and device:

Family ž the "style" of the font, e.g., TimesRoman, Gacha, Helvetica, Modern, etc.

In the Interlisp-D (and most Xerox products), style characteristics like

sans-serif and proportional spacing are not independent characteristics of a

font. Each font family simply has a particular set of style characteristics.

For example, Helvetica is sanserif, proportionally spaced; TimesRoman is

serif, proportionally spaced; Gacha is sanserif, fixed space; etc.

In Interlisp-D, family is specified by a single atom, e.g., GACHA,

TIMESROMAN, or TERMINAL.

Size ž the size of the characters measured in points (72 points to an inch).

Size actually measures the distance from the top of the tallest character to

the bottom of the lowest character (e.g. the distance between the top of the

L and the bottom of the g).

In Interlisp-D, size is specified by an integer.

Face ž the weight, slant, and spacing of the characters. Bold, Italic, and BoldItalic

are the typical examples of font faces. In general, a font face has three

parameters:

Weight ž measure the thickness of the characters. Possible values in

Interlisp-D are BOLD, MEDIUM or LIGHT.

Slope ž indicates the slant of the characters. Possible values in

Interlisp-D are ITALIC and REGULAR.

Expansion ž measures the spacing between characters. Possible

values in Interlisp-D are REGULAR, COMPRESSED, and

EXPANDED.

2LispCourse #21: Fonts

In Interlisp-D, a font’s face is generally specified by a list of three atoms

where the three atoms corrspond to the weight, slope, and expansion

parameters, respectively.

Three character atoms using the first letter of each feild in the list are also

allowed. For example, MIC can be used in place of (MEDIUM ITALIC

COMPRESSED).

A few special atoms also exist for the common faces. These atoms are:

STANDARD = (MEDIUM REGULAR REGULAR) = MRR

ITALIC = (MEDIUM ITALIC REGULAR) = MIR

BOLD = (BOLD REGULAR REGULAR) = BRR

BOLDITALIC = (BOLD ITALIC REGULAR) = BIR

Rotation ž a number between 0 and 360 that indicates the degree to which the

characters are rotated (clockwise?) from upright.

Font rotations are generally 0 degrees, except in special applications.

Many devices (see below) allow only 0 and 90 degree rotations, where 0 is

the portrait mode orientation (as on this page) and 90 is the landscape

mode orientation. Other devices support a full range of font rotations

from 0 to 360.

Device ž specifies the device on which the font is to be displayed or printed.

In Interlisp-D, the standard devices are DISPLAY, PRESS, and

INTERPRESS, refering to the D-machine display, Press printers, and

Interpress printers respectively. Other device an be added to the system

by loading various packages.

In Interlisp-D, a font is specified by a list of five items, its family, its size, its face, its

rotation, and its device.

There are no defaults for the family and size parameters. If absent, face defaults

to STANDARD; rotation defaults to 0; and device defaults to DISPLAY.

Examples:

(TIMESROMAN 12 BOLD 0 PRESS)

3LispCourse #21: Fonts

(MODERN 10 (MEDIUM MEDIUM REGULAR))

(HELVETICAD 24 STANDARD 90 INTERPRESS)

(TIMESROMAND 36 MRR NIL DISPLAY)

Not all combinations of family, size, face, rotation and device exist as actual fonts. For

example, GACHA does not exist for size bigger than 12 points.

Moreover, the Modern, Terminal, and Classic dynasty of font families (the

Interpress fonts from the NS world) does not generally exist for Press devices.

Similarly, the Helvetica, Gacha, and TimesRoman dynasty of font families (the

Press fonts from the PUP world) does not generally exist for Interpress devices.

Each font as characterized by family, size, face, rotation and device contains all the

information necessary for displaying and/or printing some set of alphanumeric characters ÿ

usually the alphabet, the digits, plus most of the common special characters like period,

colon, semi-colon, etc.

Note: Not all fonts, however, contain all characters. For example, the LOGO font

has information describing only the characters X, E, R, & O.

Fonts differ widely on how many of the special characters they handle. Some

fonts have all of them, other have only a few of the most common. There are font

dictionaries on ???.

Describing Fonts to Interlisp-D ž font lists & font descriptors

When specifying a font to Interlisp-D, you can use one of two descriptions: a font list or

a font descriptor.

A font list is the list of 5 elements described above, i.e., (Family Size Face Rotation

Device).

A font descriptor is an Interlisp object that specifies a font. To create a font descriptor,

use the function call (FONTCREATE Family Size Face Rotation Device), where

Family, Size, Face, Rotation, and Device are as decribed above. This will return a font

descriptor object which you can use to specify a font.

All Interlisp functions eventually use font descriptors. If you specify a font list to a

function, it will create the font descriptor for you.

4LispCourse #21: Fonts

The difference is one of time: FONTCREATE immediately goes out to the file server

containing the font information, finds the correct font information, and loads it into

virtual memory. This takes time, sometimes a lot of time.

If you want control over when to spend this time, then you call FONTCREATE

yourself and use font descriptors.

If you don’t want control over the time, then use font lists. The first time any

function needs to use each font, there will be long delay while FONTCREATE

goes and fetches the font information.

I always use FONTCREATE in my INIT file for all my default fonts. Therefore,

I spend the font finding time altogether at the beginning (i.e., whenever I load my

system).

Fontclasses ž the "same" font for different devices

Because not all devices support the same fonts, Interlisp-D has an entity called a

fontclass. A fontclass contains a list of font-device pairs describing what should be

considered to be the "same" font on the different devices.

The list is of the format (DisplayFont PressFont InterpressFont OtherFontPair1

OtherFontPair2 ...). DisplayFont is a font specification for a font with device

DISPLAY. PressFont is a font specification for a font with device PRESS.

InterpressFont is a font specification for a font with device INTERPRESS. Each

OtherFontPairi is a list of two items: a device name and a font specification for that

device.

Examples of fontclass lists:

((TIMESROMAN 12)

 (TIMESROMAN 10 STANDARD NIL PRESS)

 (CLASSIC 10 STANDARD NIL INTERPRESS)

 (IRIS (ROMAN 10 STANDARD 0 IRIS)))

To create a fontclass, use the function call (FONTCLASS Name FontClassList). Name

is an arbitrary (and optional) atom that names the fontclass. FontClassList is a fontclass

list as described above. The function will return an Interlisp object called a fontclass.

5LispCourse #21: Fonts

Almost any function in Interlisp-D that accepts a font list or a font descriptor as an

argument will accept a fontclass object instead. It will then extract from the fontclass the

appropriate font description for the device it is working with.

Fontdirectories ž Telling Interlisp where to find font information

Font Information Files

Before Interlisp can use a font, it has to load in all of the information about that

font (e.g., the bit maps of the characters, the width and height of each character,

etc.). This loading is done by the FONTCREATE function, either when called by

the user or automatically as described above.

Once the font information for a given font has been loaded in, it stays in virtual

memory and is used each time the font is used.

The exact information necessary for Interlisp to use a font differs between

devices. In particular, for the DISPLAY device Interlisp needs an exact rendition

(i.e., a bit map) of the character it displays on the screen. For PRESS and

INTERPRESS devices, Interlisp needs only the exact size (width, height) or each

character. The exact rendition of the character is stored ONLY on the printer

itself.

This leads to a problem sometimes. It can happen that PRESS or

INTERPRESS font information is available to Interlisp, but the printer on

which you print your file does not have the required font. In this case, the

printer will usually try to substitute a similar font that it does have

information for. If the printer can’t do the substitution, then it prints an

error message on the header page. Note: this happens after the file has left

Interlisp and been sent to the printer. Interlisp cannot detect error like this.

For example, if you send a file with TimesRoman 16 to Quake, it

prints it as TimesRoman 17 with an appropriate warning on the

header page.

Font information for the DISPLAY device is stored in files located on file servers

or on the local disk. One font is stored per file. The name of the file is used to

6LispCourse #21: Fonts

indicate the font contained in the file. The file name extension is one of

.DISPLAYFONT, .STRIKE, or .AC.

For example, TimesRoman10.strike contains information about the

TimesRoman 10 font for displays.

Font information for the PRESS device is all stored on one giant file call

FONTS.WIDTHS stored on a file server or on your local disk.

Font information for the INTERPRESS device is stored in files located on file

servers or on the local disk. The name of the file is used to indicate the font

contained in the file. The extension is always .WD.

For example, CLASSIC10-C100.WD is a file containing information

about the Classic 10 font for Interpress printers.

Font Directories

Various fonts are located on various directories on various file servers. So

Interlisp is designed to search through all known font directories until it finds the

font it is looking for. (This is what usually takes the time during a

FONTCREATE). If it can’t find the font, an error occurs.

There are several global variables that specify what directories/files Interlisp

should know about when looking for font information. These variables are:

DISPLAYFONTDIRECTORIES ž a list of the directories Interlisp

should search in (in order) when looking for the files containing font

information for the DISPLAY device.

Default in ISL is ({ERIS}<LISP>FONTS>

{PHYLUM}<STARFONTS>SCREEN>LFONTS>

{PHYLUM}<ALTOFONTS>

{PHYLUM}<ALTOFONTS>ORIGINAL>

{INDIGO}<ALTOFONTS>

{INDIGO}<ALTOFONTS>ORIGINAL> {DSK})

DISPLAYFONTEXTENSIONS ž a list of file name extension Interlisp

should use to look for font information for the DISPLAY device.

7LispCourse #21: Fonts

Default is (DISPLAYFONT STRIKE AC). When looking for

information on TimesRoman 10 Interlisp will look for

TimesRoman10.displayfont, TimesRoman10.strike, or

TimesRoman10.ac.

PRESSFONTWIDTHSFILES ž list of FONTS.WIDTHS files Interlisp

should search in (in order) when looking for the font information for the

PRESS device.

Default in ISL is ({ERIS}<LISP>FONTS>FONTS.WIDTHS

{PHYLUM}<ALTOFONTS>FONTS.WIDTHS

{INDIGO}<FONTS>FONTS.WIDTHS

{DSK}FONTS.WIDTHS)

INTERPRESSFONTDIRECTORIES ž a list of the directories Interlisp

should search in (in order) when looking for files containing the font

information for the INTERPRESS device.

Default in ISL is ({ERIS}<LISP>FONTS>

{PHYLUM}<STARFONTS>FORMATTER>WIDTHS>)

These variables are usually set in the site INIT file. You may want to set them to

include additional directories. For example, you may create your own display

fonts (see below) and store them in your personal font directory.

You may also want to move some frequently used font files to your local disk so

that you don’t have to wait on the file server all the time. In this case, you should

make sure that these gloabl variables are set to include the partition/directory on

your local disk that contains the fonts. For example, I keep fonts on partition 4 of

my Dorado disk. My INIT filehas the following clause (ADDVARS

(DISPLAYFONTDIRECTORIES {DSK4})

(INTERPRESSFONTDIRECTORIES {DSK4})

(PRESSFONTWIDTHSFILES {DSK4})).

Available Fonts

8LispCourse #21: Fonts

You can find out what fonts are already loaded into your virtual memory and/or

what fonts are available to be loaded into your virtual memory given the current

settings of the font directoires/files global variables. To do so use the function

call (FONTSAVAILABLE Family Size Face Rotation Device FilesTooFlg).

Family, Size, Face, Rotation, and Device are as specified above, except that any

or all can be the wildcard atom * indicating all values of the field (e.g., all sizes or

all rotations).

FONTSAVAILABLE returns a list of font lists for all of the fonts already in

virtual memory that match the Family, Size, Face, Rotation, and Device specified.

If FilesTooFlg is non-NIL, then the list returned will include all fonts that

COULD be loaded into virtual memory given the current global variable settings.

Examples:

50_(FONTSAVAILABLE ’GACHA ’* NIL 0 ’DISPLAY NIL)

((GACHA 8 (MEDIUM REGULAR REGULAR) 0 DISPLAY)

 (GACHA 12 (MEDIUM REGULAR REGULAR) 0

 DISPLAY)

(GACHA 10 (MEDIUM REGULAR REGULAR) 0 DISPLAY))

Default Fonts

When a particular Interlisp application prints something on the screen or on a printer, it

has to make a choice of what font to use. If there is no way for the user to specify which

font to use (e.g., as in DEdit) or if the user hasn’t specified a specific font (e.g., as in

TEdit), Interlisp will use some sort of default font.

Often you want to change this default font. For example, you might want to change the

font used in DEdit windows. Or, you might want to change the font that TEdit starts-up

using.

Unfortunately, the status of default fonts in the system is very, very sad. There are

several different mechanisms in use for setting default fonts. Different packages use

different combinations of these mechanisms.

Worse yet, some packages use the same mechanism and same global variables to set

default fonts. When this happens changing a default font for one package (e.g., DEdit)

9LispCourse #21: Fonts

automatically changes the font for some other unrelated package (e.g., TEdit), and vice

versa.

Even in this chaos, there is some order. There are three basic ways of specifying default

fonts.

FONTPROFILE ÿ beginnings of a central mechanism for fonts

There is a global variable called FONTPROFILE. Its value is a list. Each item

on the list is of the form (Name Number FontClassList) or of the form (Name

OldName). Each item defines a font named Name. In the first format, Name is

defined by the font class specified by FontClassList. The Number represents the

font number for purposes of printing out Lisp code in the LISTFILES package. In

the second format, Name is simply defined to be the same as the font previously

called OldName.

The standard FONTPROFILE list looks like:

((DEFAULTFONT 1 (GACHA 10) (GACHA 8) (TERMINAL 8))

(BOLDFONT 2 (HELVETICA 10 BRR) (HELVETICA 8 BRR) (MODERN 8

BRR))

(LITTLEFONT 3 (HELVETICA 8) (HELVETICA 6 MIR) (MODERN 8

MIR))

(BIGFONT 4 (HELVETICA 12 BRR) (HELVETICA 10 BRR) (MODERN 10

BRR))

(USERFONT BOLDFONT)

(COMMENTFONT LITTLEFONT)

(LAMBDAFONT BIGFONT)

(SYSTEMFONT)

(CLISPFONT BOLDFONT)

(CHANGEFONT)

(PRETTYCOMFONT BOLDFONT)

(FONT1 DEFAULTFONT)

(FONT2 BOLDFONT)

(FONT3 LITTLEFONT)

(FONT4 BIGFONT)

10LispCourse #21: Fonts

(FONT5 5 (HELVETICA 10 BIR) (HELVETICA 8 BIR) (MODERN 8

BIR))

(FONT6 6 (HELVETICA 10 BRR) (HELVETICA 8 BRR) (MODERN 8

BRR))

(FONT7 7 (GACHA 12) (GACHA 12) (TERMINAL 12)))

Various packages use the named fonts to print things out. For example, when

printing comments in Lisp code, Interlisp uses the font called COMMENTFONT

to print out comments. It uses the font called LAMBDAFONT to print out the

name of functions. And so on.

In fact, most of the entries on FONTPROFILE are concerned with printing out

Lisp code.

HOWEVER, the DEFAULTFONT entry is used for a number of other packages,

in fact way, way to many packages. Changing the DEFAULTFONT entry on

FONTPROFILE will affect the following default fonts:

DEdit ÿ the font used to print things out in the DEdit window

TEdit ÿ the font that TEdit starts up in and uses if you don’t specify

another font

Exec ÿ the font the Lisp Exec and the Break Exec use to print in their Exec

windows. Note: changing DEFAULTFONT does not immediately change

the font being used in the top level Exec window. To do this, you should

type (DSPFONT DEFAULTFONT TOPW) into the Exec window after

changing the FONTPROFILE. The Exec window will then change fonts

immediately to the DEFAULTFONT.

??? ÿ DEFAULTFONT is probably used by many other package I don’t

know about.

Note the problem. Since all of these packages use DEFAULTFONT, you cannot

change them independently; changing one changes them all.

Changing the FONTPROFILE

To change the FONTPROFILE, you have to do two things:

11LispCourse #21: Fonts

1) Edit the FONTPROFILE list using DEdit; i.e., execute (DV

FONTPROFILE). Change any entry (most probably the

DEFAULTFONT entry) to the desired font.

2) Execute the function call (FONTPROFILE FONTPROFILE). This

will install your changes in the system.

Most often you want to change your DEFAULTFONT for all time. In this case,

you have to put an entry into yout INIT file. The procedure for doing this is the

following:

1) Edit the FONTPROFILE list using DEdit; i.e., execute (DV

FONTPROFILE). Change any entry (most probably the

DEFAULTFONT entry) to the desired font.

2) Edit your INIT COMS list using DEdit; i.e., call (DC INIT). Place the

following two clauses into your INITCOMS:

(VARS FONTPROFILE)

(P (FONTPROFILE FONTPROFILE))

This will save the edited FONTPROFILE list and cause it to be

installed whenever your INIT file is loaded.

3) Save your new INIT file by doing a (MAKEFILE ’INIT) after

connecting to your home or lisp directory.

The Future

In the future, I hope that all fonts will go through this FONTPROFILE and that

there will be separate entries for each package (e.g., a TEDITDEFAULTFONT

entry, a DEDITFONT entry and so on.). But, ...

Per package global variables ÿ the decentralized mechanism for fonts

Many packages maintain their own set of global variables that they use to

determine their default fonts. To change the default font for these packages, you

have to set the appropriate global variables for the package to the desired font

description (i.e., font list, font descriptor, or font class).

12LispCourse #21: Fonts

Example: Lafite has 7 global variables that determine the font to use for

various windows and tasks in Lafite. The variables are:

LAFITEEDITORFONT, LAFITEMENUFONT, LAFITETITLEFONT,

LAFITEDISPLAYFONT, LAFITEHARDCOPYFONT,

LAFITEBROWSERFONT, and LAFITEENDOFMESSAGEFONT

If you want to change, for example, the font in which LAFITE displays it

message on the screen you have to set the variable

LAFITEDISPLAYFONT to a new font descriptor.

(SETQ LAFITEDISPLAYFONT (FONTCREATE ’Helvetica 10

’BOLD))

You may want to put these changes in your INIT file to make them permanent.

For example, in my INIT file I have several clauses of the form:

(VARS (LAFITEDISPLAYFONT (FONTCREATE ’Helvetica 10 ’BOLD)))

To determine the global variables to set to change the default font for a package,

you have to look in the parameters/variables section of the documentation for that

package. There is no global directory for font related global variables!!!!.

Window title font

Setting the default font for window title bars has its own mechanism.

To change the title bar font, use the funtion call:

(DSPFONT FontDescription WindowTitleDisplayStream), where

FontDescription is a description of the desired font for the window title

bars.

Example, in my INIT file I have the following clause:

(P (DSPFONT (FONTCREATE ’HELVETICA 14 ’BOLD)

 WindowTitleDisplayStream))

Designing your own screen fonts

13LispCourse #21: Fonts

You can design your own screen fonts (put not printer fonts) using the LispUser package

EDITFONT. See the documentation on EDITFONT for further details.

References

What is documented about fonts is described in Section 19.8 of the IRM.

FONTPROFILE is documented in Section 6.8.5 of the IRM.

Fontclasses are documented in the Harmony Release Notes.

Also, see the parameters/variables sections for all the Lisp packages like CHAT and

LAFITE.

F.G.H.

4/25/85

LispCourse #22: Overview of Lisp Packages; Using the Documentation

Lisp Packages

Recall: Lisp packages are sets of related functions contained on a single file (or small set

of files) that are designed to carry out some particular task in the Interlisp environment,

e.g., text editing, file transfer, etc.

There are by convention two types of public packages in the Interlisp world, LispUsers

packages and Lisp Library packages. The former are random packages submitted by

random hackers. The latter are packages maintained by the AISBU Lisp development

group.

A third kind of "package" are the large application systems build on top of Interlisp such

as LFG and NoteCards. We will not talk about these types of large applications here.

To get the functionality of a package (if it is not already contained in the default sysout),

you need to find and then load the file(s) containing the package.

LISP LIBRARY Packages of Interest to the Non-Programmer

At PARC, the following packages are stored on {eris}<lisp>release>library> [where

release is Hormony or Intermezzo, or ...]. They are packages designed and implemented

and maintained by the AISBU Lisp group. Thus their reliability and usability is

extremely high.

The Big Ones

FILEBROWSER ž Edit, Delete, Load, Compile, Copy, Rename, See, Hardcopy,
& Info on files on any file device through a common graphic interface. Call:
(FILEBROWSER FILEPATTERN). Documentation = ???

SKETCH ž Sketch is a drawing program that enables you to place text and
graphics to achieve desired images. The figures can be copy-selected into TEdit
documents to allow a mixture of text and graphics in the same document.
Documentation = SKETCH.TEDIT

TEDIT ž The Interlisp-D text editor. Documentation = IRM

2LispCourse #22: Overview of Lisp Packages; Using the Documentation

GRAPHER ž contains a collection of functions and an editor for laying out,
displaying, and editing graphs (i.e., networks of nodes and links).
Documentation = GRAPHER.TEDIT

Mail Handling

LAFITE ž Interlisp mail program, a la Laurel/Hardy. Documentation =
LAFITE.TED

MAINTAIN ž Lisp implementation of Grapevine MAINTAIN program for adding
or deleting names from mail distribution lists. Documentation = ???

NSMAIL ž Add on to Lafite for handling NS Mail. Documentation =
NSMAIL.TEDIT

MAILSCAVENGE ž The Lisp Library package MAILSCAVENGE is used to
rebuild the internal pointers in a mail file that has been damaged. Lafite generally
reports ‘‘Can’t parse file’’ and terminates its Browse command when it detects
damage in a file. The simplest remedy is to call MAILSCAVENGE, then browse
the file again. Documentation = MAILSCAVENGE.TEDIT

Networks & Files

COPYFILES ž Functions for copying sets of files from one directory to another.
Documentation = COPYFILES.TEDIT

FTPSERVER ž Lisp implementation of PUP FTP (File Transfer Protocol) server.
Lets others FTP from you while you’re running lisp. Documentation =
FTPSERVER.TEDIT

RS232, RS232CHAT, RS232EXEC, RS232FTP, RS232LOGIN ž Basic
software drivers for serving the RS232 serial interface including CHAT and FTP
service. Documentation = RS232.TTY

TCP, TCPCHAT, TCPFTP ž Basic software drivers for communicating with
TCP/IP (Arpanet protocols) hosts (e.g., Sun workstations, Vaxes, etc.) including
CHAT and FTP service. Documentation = TCP.TEDIT

TELERAID Interlisp-D has facilities for looking at sysout files and machines
across the network, used by hackers to debug when your DLion goes into a 9XXX
error in the maintenance panel. Documentation =TELERAID.TEDIT

3LispCourse #22: Overview of Lisp Packages; Using the Documentation

Special Printers

FX80STREAM ž a library of routines used for driving an Epson FX-80 dot-matrix
printer. With FX80STREAM you can use the full set of Interlisp-D device-
independent graphical operations to compose pages on your FX-80, including
printing TEdit documents. FX80STREAM.TEDIT

FXPRINTER, FXPARALLELPRINTER ž allows a user to print Lisp files to an
Epson FX-80 printer. Documentation = FXPRINTER.TED &
FXPARALLELPRINTER.TED

PRINTER ž package to do hardcopy of bitmaps and listfiles with multiple fonts
for C.ITOH (Cheap!!!) printer connected to Dolphin parallel port.
Documentation = PRINTER.TTY

Fonts & Bitmaps

READAIS ž Read, write, transform AIS (color/grey scale) files (common files
containing pretty images). Documentation = READAIS.TXT

BIG ž Function NEWFONT sets up default fonts to be "size", where size is one of
the atoms BIG, MEDIUM, STANDARD, SMALL. Changes the prettyprint fonts,
the default font for the break window, tyipin, etc. Does this by resetting
FONTPROFILE and then setting the fonts for all of the known windows.
Documentation = BIG.TTY

BITMAPFNS ž Miscellaneous functions for manipulating BITMAPs. Reading
and writing bitmaps, reading certain press files, creating window with image of
bitmap. Documentation = BITMAPFNS.TTY

EDITBITMAP ž provides an interface (EDIT.BITMAP) for manipulating
bitmaps. It puts up a menu of bitmap manipulation commands, one of which is
HAND.EDIT which accesses EDITBM, the Interlisp-D bitmap editor. Other
commands include shifting (in four directions), rotation (left and right 90 degree),
inverting (horizontally, vertically, about diagonals), interchanging black and
white, adding a border. Documentation = EDITBITMAP.TTY

Misc Tools

PAGEHOLD ž Redefines the default PAGEFULLFN, and provides hooks for
making individual non-TTYDISPLAYSTREAM windows scrollable. Scrolling
is "held" for up to PAGE.WAIT.SECS seconds, during which time an attached

4LispCourse #22: Overview of Lisp Packages; Using the Documentation

"button" on the window softly flashes, and then the hold is "released". Holding
down either SHIFT key will continue the "hold" (i.e., prevent "release"); letting
up on either SHIFT key will "release" the "hold". Documentation =
PAGEHOLD.TEDIT

SAMEDIR ž Advises MAKEFILE so that user can’t inadvertently write out a file
onto a directory other than the one it came from. Checks FILEDATES property
against connected directory. Documentation = SAMEDIR.TTY

SINGLEFILEINDEX ž Package for giving user an alphabetical function index on
the front of any lisp file listed thru lisp. Index number for a function indicates
function’s linear occurence within file. Within the lisp source, each function is
preceded by it’s index number right justified on the page. Documentation =
SINGLEFILEINDEX.TEDIT

Games & Demos

HANOI ž Displays and solves famous Towers of Hanoi problem. Can run as a
background process. HANOIWINDOW can be reshaped. Call: (HANOI
NRINGS WINDOW FONT ONCE). Documentation = HANOI.TTY

KINETIC ž Graphics demo. Fast random BITBLTs on a window. Call:
(KINETICDEMO). Documentation = ???

UTILPROC ž Simple utility processes, including hall-of-mirrors demo.
Documentation = ???

WINK ž Movie of Marilyn Monroe winking. Call: (SHOWMOVIE). Needs
BITMAPFNS. Documentation = ???

LISPUSERS Packages of Interest to the Non-Programmer

The following packages are stored on {eris}<lispusers> at PARC. They are packages

designed and implemented by random Lisp hackers and are not supported by the AISBU

Lisp group. Their reliability and usability various greatly.

Tools ž Editors, Printing functions, Graphics, etc.

AREDIT ž Tool for submitting, viewing, & editing Lisp ARs (action
requests/Interlisp bug reports) from within Interlisp. Type (AR.FORM) to create

5LispCourse #22: Overview of Lisp Packages; Using the Documentation

a form for Getting, Putting, & Submitting ARs. Documentation =
AREDIT.TEDIT

ARCHIVETOOL ž An Interlisp-D interafce to the PARC Cedar Archive system.
Based on the FileBrowser and Lafite. It automatically composes and sends
archive messages to the Archivist. It also parses the returned messages and
deletes the archived files. Retrieve requests are not yet supported.
Documentation = ARCHIVETOOL.TED

BIZGRAFIX ž Pie & bar chart, line graph creation. Documentation =
BIZGRAFIX.TEDIT

CALENDAR ž A calendar/appointment-reminder program. Displays any year,
month or day. Messages alert you at predetermined time, or can optionally be
mailed (via Lafite) to any desired recipients. CALL: (CALENDAR).
Documentation = CALENDAR.TED

COMAPRETEXT ž COMPARETEXT is a rather non-standard text file
comparison program which tries to address two problems: (1) the problem of
detecting certain types of changes, such as detecting when a paragraph is moved
to a different part of a document; and (2) the problem of showing the user what
changes have been made in a document. Documentation =
COMPARETEXT.TXT

DIRECTORYTOOLS ž DirectoryTools contains one user function:
GRAPH.DIRECTORY which is used for graphing the subdirectory structure
under a file pattern. e.g:

Documentation = DIRECTORYTOOLS.TEDIT

EDITFONT ž Gives the user functions for creating and editting DISPLAY fonts
which can be read and written as STRIKE font files. Includes: EDITFONT,
BLANKFONTCREATE, READSTRIKEFONTFILE, and
WRITESTRIKEFONTFILE. Documentation = EDITFONT.TTY

EDITHIST ž An extension to Interlisp’s file package that permanently preserves
the history of new versions of files. Every time a file is remade, a new entry

6LispCourse #22: Overview of Lisp Packages; Using the Documentation

containing DATE, AUTHOR, FILE, CHANGES, & COMMENTS info is added.
Documentation = EDITHIST.DOC

EXEC ž This small package allows the user to create extra EXEC windows in
which to do EVALQTing. A new EXEC window may be created in either of two
ways. The user may either do (EXEC) or button the EXEC menu item added to
the background menu. Documentation = EXEC.TTY

FINGER ž Finger is a facility for determining and displaying information about
other users running Interlisp-D. It displays the user’s name, the Etherhostname
(or the octal net address when no nameserver is available) and the user’s idle time
(time since last keystroke or mouseaction). Only other users who have the finger
server loaded will be displayed. Documentation = FINGER.TEDIT

HEADLINE ž Three functions for manipulating windows containing headlines:
HEADLINE, BILLBOARD, and CLOSEHEADLINES. Useful for titling a
screen image or leaving message on screen while away. Documentation =
HEADLINE.TTY

HISTMENU ž Provides simple way to access Interlisp history list using menu.
REDO, UNDO, FIX, and ?? selected items. Call: (HistoryMenu histMenuLength
histMenuPosition). Documentation = HISTMENU.TED

LANDPRESS ž Allows landscape printing of ASCII text files on press printers
(e.g., Dovers). Function LANDPRESS produces same product as MAKEPRESS,
only printed sideways on the page allowing for wider output. Documentation =
LANDPRESS.TTY

MAILOPS ž Functions for poking into and "scavenging" Laurel/Lafite/... mail
files. Documentation = MAILOPS.TEDIT

NOTEPAD ž Allows user to do artwork at bitmap level in NOTEPAD windows.
Trajectories: sketch, line, circle, ellipse, open curve, closed curve.
Objects/editting: text, are of screen, shade rectangle, fill, edit area. Style: brush,
use mask, mask, use grid, grid, use symmetry, point of symmetry, text font, shade.
Documentation = NOTEPAD.TTY

PRESSTOIP ž PRESS TO InterPress. Converts PRESS files to INTERPRESS
files. Call: (PRESS.TO.IP PRESSFILE IPFILE). Documentation =
PRESTOIP.TTY

7LispCourse #22: Overview of Lisp Packages; Using the Documentation

PROMPTREMINDERS ž User can be periodically reminded of important things
by messages which are aggressively winked and flashed in the
PROMPTWINDOW. Documentation = PROMPTREMINDERS.TTY

REMIND ž Facility for scheduling LISP events to take place at a specified later
time. Reminders are stored on REMINDERS.LISP on user’s directory and an
entry on AFTERSYSOUTFORMS causes them to be loaded via
LOADREMINDERS which may also be put in user’s init file. Documentation =
REMIND.TTY

SPACEWINDOW ž Puts a small "Space Allocation" window on screen. Shows a
bar-chart of the amounts of the four types of memory space that have been
allocated (fixed data, variable data, atoms, pnames). Display is updated every 60
seconds. Documentation = SPACEWINDOW.TXT

Hardcopying Screen Images

COPYIMAGE ž a small utility which facilitates making hardcopy or PRESS
output of either ANY window on a screen, or else the entire screen. To use load
COPYIMAGE.DCOM which updates the background menu, and then button the
CopyImage item of the background menu. Hardcopy output goes to the
FULLPRESS printer of your DEFAULTPRINTINGHOST. Documentation =
COPYIMAGE.TTY

FULLSCREEN ž This package allows an entire screen’s image to be printed on

an Interpress printer. Documentation = FULLSCREEN.TXT

Changes/Additions to the Interlisp-D Interface

ANIMATE ž This small package contains functions for moving a non-rectangular
bitmap smoothly around the screen, ways of using these to get big cursors, and
bitmaps for a large arrow and a hand to be used as large cursors. Documentation
= ANIMATE.TTY

AUXMENU ž This package creates a middle button background menu containing
a number of convenient functions. These functions include a menu-driven
CNDIR, LOGOUT, and other functions that require little user-interaction. The
purpose of the package is to minimize typeing. Documentation =
AUXMENU.TEDIT

8LispCourse #22: Overview of Lisp Packages; Using the Documentation

DEDITK ž Adds single button method for combining the most frequently
combined pairs of BI/BO and BEFORE/AFTER/DELETE/REPLACE in DEDIT -
Load and call (DEDITK). Documentation = DEDITK.TED

MACWINDOW ž Advises SHRINKW and EXPANDW to produce a zooming
effect by showing the outline of their window arguments as they shrink or grow.
Documentation = MACWINDOW.TXT

MOVE-WINDOWS ž MOVE-WINDOWS is a tool to help you re-arrange your
screen quickly. Once loaded, buttoning in the background will shift you into
window-moving mode. Buttoning again in the background will get you out of that
mode. In window-moving mode, buttoning in a window with either the LEFT or
MIDDLE button will either reshape or move the window: if you button down near
a corner, the corner is moved; near a side, that side is moved; in the center, the
whole window is moved. Buttoning in a window with the RIGHT button will call
the usually window menu (DOWINDOWCOM). This is the best way to close
windows, for example. Documentation = MOVE-WINDOWS.TEDIT

SNAPSCROLL ž Loading SNAPSCROLL advises (SNAPW) so that snapshot
windows are henceforth shapeable and scrollable. This enables the user to, for
example, snap a long list off the screen, and then reshape it to a reasonable size
and scan it at will. Documentation = SNAPSCROLL.TED

TEDITKEY ž TEditKey is a package which provides a keyboard interface to
TEdit. On a Dandelion, the interface takes advantage of the non-Alto keys. On
Dorados and Dolphins, a window mimicking the Dlion function keys provides the
same abilities. Documentation = TEDITKEY.TEDIT

TINYTIDY ž TINYTIDY takes the icons on your screen and lines them up along
the edge. Documentation = TINYTIDY.TEDIT

Clocks

CROCK ž Function for creating and manipulating an analog face clock. Menu
allows user to change style of clock. Call: (CROCK REGION). Documentation
= CROCK.TEDIT

LCROCK ž Puts a digital/analog clock in the unused area of the LOGOW.
(START.LCROCK <myLogo> <Position>) starts it up. <myLogo>, if non-NIL,
will replace the "Interlisp-D" logo; and <Position>, if non-NIL, will be the lower-
left corner (NIL means to use the position of the existing logo window). The

9LispCourse #22: Overview of Lisp Packages; Using the Documentation

glovalvar CROCKUPDATERATE.MS is the number of milliseconds between
automatic updates. Documentation = LCROCK.DOC

10LispCourse #22: Overview of Lisp Packages; Using the Documentation

Games & Demos

BLTDEMO ž Implements Smalltalk graphics demo in Interlisp. Spinning star,
bouncing ring & box. Call: (BOUNCE X Y) where X and Y are velocities
defaulting to 3. Box shows whatever is near cursor. Interseting recursive effects
can be seen if you move the cursor near the box. Documentation =
BLTDEMO.TXT

FACEINVADER ž A game. The object of the game is to shoot the bouncing
’face’ before it overruns your base. Call: (FI INSTRUCTIONS?).
Documentation = ???

JARGON ž N random broken definitions from the imfamous hacker’s dictionary,
snarfed from MIT-AI. (The globalvar JARGON.FILE.LOCATION points to the
database file.) Starts up on load, or type (JARGON.READ) Documentation =
???

KAL ž Kaleidoscope demo. Call: (KAL). Control with middle button menu.
Documentation = KAL.TED

LIFE ž This Life program is a translation of the SmallTalk version in the book
Goldberg, Robson: The Language and its Implementation. Documentation =
LIFE.TXT

LINEDEMO ž This package contains a couple of random demonstration programs
having to do with drawing random lines or polygons. Documentation =
LINEDEMO.TED

NQUEENS ž Solves N Queens problem. How to place N queens on a chess board
so that they don’t attack each other. Graphics demo. Call: (NQUEENS N).
Documentation = ???

PACMAN ž Game. Runs in b/w or color. CALL: (PACMAN). Documentation
= ???

PEANO ž Peano curves graphics demo. CALL: (PEANODEMO LEVEL
SCALE). Documentation = ???

PLAY ž Offers Interlisp-D users a disciplined way to play simple musical
melodies on Xerox 1108 machines. (PLAY.DEMO) demos the PLAY package.
Main functions: PLAY.NOTES, PLAY.MELODY, PLAY.KEYBOARD.
Documentation = PLAY.TTY

11LispCourse #22: Overview of Lisp Packages; Using the Documentation

QIX ž QIX is a small graphic demo modelled after the videogame of the same
name. Documentation = QIX.TEDIT

SOLITAIRE ž The card game Solitaire (graphics demo). Call: (SOLO).
Documentation = ???

TRAJECTORY-FOLLOWER ž Provides a function which causes a snake to
crawl along a trajectory. Trajectory is specified by a set of KNOTS and a
CLOSED flag. Documentation = TRAJECTORY-FOLLOWER.TTY

DMT Equivalents (i.e., run after machine has been idle for a bit)

BLACKOUT ž (Blackout text interval) makes a back window the size of the
screen and bounces a square around on it, like DMT, etc. Good for servers. Text
and interval default to "Type Key" and NIL (= forever) if not given.
Documentation = BLACKOUT.TEDIT

BOUNCE ž Is another dmt variant. Blacks out the screen & draws patterns on it
until you hit a mouse button or type any character. Can be started 3 ways.
Documentation = ???

FRACTAL ž An eyewash DMT program that draws fractals. Documentation =
FRACTAL.TEDIT

Alternative Page Hold Schemes

NOWAITPRINT ž a function which will temporarily diddle a window’s pagehold
characteristics so that a print-without-holding may be performed. Documentation
= NOWAITPRINT.TTY

YAPFF ž is Yet Another Page Full Function. I actually don’t like this one much
better than any of the others around, but its another point in the space of possible
actions on end-of-page. Documentation = YAPFF.TEDIT

Using the Interlisp-D Documentation

The State of Interlisp-D w.r.t. Documentation

Sad, sad, sad, sad.

Interlisp-D documentation is:

1. Incomplete ÿ much of Interlisp is simply undocumented

12LispCourse #22: Overview of Lisp Packages; Using the Documentation

2. Out of date ÿ last major manual revision was October, 1983

3. Dispersed ÿ documentation is spread across various binders, files, file

servers, etc.

4. For programmer’s only ÿ There is almost no user level documentation

for the Interlisp-D environment; its all oriented toward the programmer

and the system implementor. Interlisp-D the language is not properly

distinguished from Interlisp-D the computer environment.

Bottom line is that documentation is THE major flaw of Interlisp-D, especially for

the non-programming user of the Interlisp-D environment.

How to Use the Available Documentation

Isolate the user information from among the programmer/implementor

information.

How? Beats me!!!!!!

Documentation Sources

General

Interlisp Reference Manual

(October 1983 version, plus updates available on
{eris}<lispmanual>)

Release Notes (Chorus, Fugue 1 to 6, Carol, Harmony, Intermezzo)

Documentation files for LispUsers and LispLibrary Packages

Installation and use on a Dlion

1108 Users Guide

Mesa Users Guide (Chapter 2, Getting Started & Chapter 35, Othello)

{eris}<lisp>harmony>doc>Hello.tedit (PARC only)

{eris}<lisp>release>doc>GettingStarted.tedit (PARC only)

{eris}<lisp>harmony>doc>LocalFile.TEDIT

13LispCourse #22: Overview of Lisp Packages; Using the Documentation

Installation and use on a Dolphin/Dorado

{eris}<lisp>release>doc>GettingStarted.tedit (PARC only)

{indigo}<altodocs> (PARC only)

Introductions (?)

Friendly DLion primer from LRDC

Sysdoc stuff?

Overview of the relevant sections of the IRM (October, 1983 version)

Sections 6.1, 18.16, & 18.17 ÿ files from lisp’s point of view

Chapter 8 ÿ the P.A. including the history list

Chapter 9 ÿ Error handling and Breaks

Chapter 11 ÿ the File package including INIT file maintenance

Section 14.1 ÿ Sysouts

Section 14.2 ÿ GREET and INIT files

Section 14.3 ÿ Directories

Section 14.7 ÿ GAINSPACE when arrays full

Section 18.14 ÿ the keyboard

Section 18.18 ÿ Hardcopies

Section 18.20 ÿ Processes and the PSW

Section 19.20 ÿ Windows

Chapter 20 ÿ DEdit, TEdit, CHAT, Break windows, EDITBM, TTYIN

Basically, ignore the rest if you don’t know how to program well.

Release Notes

Since the manual is constantly being made obsolete by new releases of the

system, you should learn to use the release notes.

14LispCourse #22: Overview of Lisp Packages; Using the Documentation

For each new release, study the release notes carefully trying to remember the

things that have changed; just have to wade through looking for things that make

sense from user’s point of view. The index at front is a rough guide.

It is often best to consult the release notes before going to the IRM, since much of

the information contained in the IRM will be out-of-date compared to the Release

Notes.

Online help - the APROPOS function

In general, there is no online help facilty in Interlisp-D.

There is one handy function, however, called APROPOS. APROPOS takes a

single argument which is an aribitrary literal atom. (APROPOS LitAtom) will

search through your virtual memory, looking for all atoms whose name contains

the atom LitAtom. (APROPOS ’FLG) prints the names, values, and function

definitions for all atoms in the current virtual memory that have FLG in their

name. (APROPOS ’FONT) prints the names, values, and function arguments for

all atoms in the current virtual memory that have FONT in their name.

Example, find the name of the variable that tells the name of the release (e.g.,

Harmony or Intermezzo) being used:

96_(APROPOS (QUOTE RELEASE]

RELEASE.MONITORLOCK
 - Function arglist: (LOCK EVENIFNOTMINE)
RELEASE.PUP - Function arglist: (EPKT)
RELEASERESOURCE
 - Property list: (MACRO (ARGS (& &) (SUBPAIR
&
ARGS --)))
RELEASEBREAKWINDOW
 - Function arglist: (BRKDS PREVIOUSDS)
RELEASE.XIP - Function arglist: (EPKT)
NIL
97_(APROPOS ’NAME]
FILENAME - Function arglist: (NAME)
FILENAMEFIELD - Function arglist: (FILE FIELDNAME)
PACKFILENAME - Function arglist: U
NAMEFIELD - Function arglist: (FILE SUFFIXFLG DIRFLG)
FULLNAME - Function arglist: (X RECOG)
DIRECTORYNAME - Function arglist: (DIRNAME STRPTR CREATE?)
PACKFILENAME.STRING
 - Function arglist: U
HOSTNAME - Function arglist: U
 - Variable value: NIL
DIRECTORYNAMEP - Function arglist: (DIRNAME HOSTNAME)
HOSTNAMEP - Function arglist: (NAME)
TYPENAME - Function arglist: (DATUM)

15LispCourse #22: Overview of Lisp Packages; Using the Documentation

STKNTHNAME - Function arglist: (N POS)
STKNAME - Function arglist: (POS)
SETSTKNAME - Function arglist: (POS NAME)
STKARGNAME - Function arglist: (N POS)
SETSTKARGNAME - Function arglist: (N POS NAME)
COMPILEDTYPENAMEP
 - Function arglist: (X)
RENAMEFILE - Function arglist: (OLDFILE NEWFILE)
UNPACKFILENAME - Function arglist: (FILE ONEFIELDFLG DIRFLG
STRING)
UNPACKFILENAME.STRING
 - Function arglist: (FILE ONEFIELDFLG
DIRFLG)
USERNAME - Function arglist: (FLG STRPTR
PRESERVECASE)
 - Variable value: HALASZ
SETUSERNAME - Function arglist: (NAME)
ALTOFILENAME - Function arglist: (X)
TYPENAMEP - Function arglist: (DATUM TYPE)
 - Property list: (DMACRO (X
(COMPILEDTYPENAMEP X
)))
CHANGENAME1 - Function arglist: (DEF X Y)
CHANGENAME1A - Function arglist: (DEF OLD NEW MAP)
PROPNAMES - Function arglist: (ATM)
ROOTFILENAME - Function arglist: (NAME COMPFLG)
PROCESS.NAME - Function arglist: (PROC NAME)
ETHERHOSTNAME - Function arglist: (PORT USE.OCTAL.DEFAULT)
CANONICAL.HOSTNAME
 - Function arglist: (HOSTNAME)
GREETFILENAME - Function arglist: (USER)
CHANGENAME - Function arglist: (FN FROM TO)
FSTKNAME - Function arglist: (POS)
FIRSTNAME - Variable value: FRANK
FONTNAME - Function arglist: (NAME)
 - Variable value: PARC
DIRFILENAME - Function arglist: (FILEGROUP)
DIRPRINTNAME - Function arglist: (FILEGROUP FLG)
UPPERCASEFILENAMES
 - Variable value: T
RESTORENAMES - Function arglist: (FN)
MSHASHFILENAME - Variable value: NIL
DEFAULTRENAMEMETHOD
 - Variable value: NIL
RECORDFIELDNAMES
 - Function arglist: (RECORDNAME FLG)
RENAME - Function arglist: (OLD NEW TYPES FILES
METHOD)
RESOURCENAME - Property list: (CLISPWORD (FORWORD .
resourceName))
COMP.NAMEDLET - Function arglist: (ARGS)
NAMEDLET - Property list: (DMACRO COMP.NAMEDLET)
MSWORDNAME - Function arglist: (X)
MOUSESTATE-NAME
 - Function arglist: (KEYNAME MOUSEONLYFLG)
NONSYSPROPNAMES
 - Function arglist: (ATM)
INSPECTABLEFIELDNAMES
 - Function arglist: (DECL TOPONLYFLG)
NAMEOFEDITW - Function arglist: (NAME TYPE)
PARSE.NSNAME - Function arglist: (NAME #PARTS
DEFAULTDOMAIN)
NSNAMETYPE# - Variable value: 89
 - Property list: (GLOBALVAR T)

16LispCourse #22: Overview of Lisp Packages; Using the Documentation

JOBNAME - Variable value: {LPT}LISPPRINT:PARC.;1
NSNAME - Property list: (COURIERDEF (
COURIER.READ.NSNAME COURIER.WRITE.NSNAME
COURIER.NSNAME.LENGTH))
NSNAME.TO.STRING
 - Function arglist: (NSNAME FULLNAMEFLG)
COURIER.READ.NSNAME
 - Function arglist: (STREAM PROGRAM TYPE)
COURIER.WRITE.NSNAME
 - Function arglist: (STREAM NAME PROGRAM
TYPE)
COURIER.NSNAME.LENGTH
 - Function arglist: (NSNAME PROGRAM TYPE)
NSNAME2 - Property list: (COURIERDEF (
COURIER.READ.NSNAME COURIER.WRITE.NSNAME))
NS.SERVER.NAMES.TO.ADDRESSES
 - Variable value: NIL
EQUAL.CH.NAMES - Function arglist: (NAME1 NAME2)
CH.NAME.TO.STRING
 - Function arglist: (NSNAME FULLNAMEFLG)
CANONICAL.CH.NAME
 - Function arglist: (NAME)
CH.CANONICAL.NAME
 - Function arglist: (NAME)
FONTNAME.IP - Function arglist: (FONTDESC)
FLOPPY.NAME - Function arglist: (NAME)
FLOPPY.SET.NAME
 - Function arglist: (NAME)
FLOPPY.GET.NAME
 - Function arglist: NIL
MAKESYSNAME - Variable value: INTERMEZZO
MBUTTON.CHANGENAME
 - Function arglist: (TEXTOBJ OBJ NEWNAME)
GV.PORTFROMNAME
 - Function arglist: (SERVERNAME)
FULLUSERNAME - Function arglist: (UNPACKEDFLG)
GV.NEWNAME - Function arglist: (NAME GV.NEWNAME
IDENTIFYUSER PASSWORD)
GVNAMETYPE - Variable value: 1
REGROOTNLSNAME - Variable value: "GrapevineRServer"
LA.SHORTFILENAME
 - Function arglist: (FILE EXT
KEEPVERSIONFLG)
DEFAULTMAILFOLDERNAME
 - Variable value: {DSK2}ACTIVE.MAIL
LA.LONGFILENAME
 - Function arglist: (FILENAME EXT)

PROFILEFILENAME
 - Function arglist: NIL
TOCFILENAME - Function arglist: (MAILFILE)
PROMPTFORFILENAME
 - Function arglist: (WINDOW DEFAULT PROMPT)
LAFITEPROFILE.NAME
 - Variable value: LAFITE
LAFITETEMPFILEHOSTNAME
 - Variable value: CORE
LAFITE.READ.NAME.FIELD
 - Function arglist: (STREAM ARGS)
FB.FETCHFILENAME
 - Function arglist: (ENTRY)
FB.RENAMECOMMAND
 - Function arglist: (PREFIX FILEENTRY
WINDOW)

17LispCourse #22: Overview of Lisp Packages; Using the Documentation

FB.STARTOFNAME - Function arglist: (FILENAME SPEC)
VTYPENAME - Function arglist: (DATUM)
DISPLAY/NAME - Function arglist: (ND)
 - Property list: (CODE {CCODEP}#65,43610)
FONTNAMELIST - Function arglist: (FONTDESC)
 - Property list: (CODE {CCODEP}#65,43524)
AR.USERNAME - Function arglist: NIL
AR.GET.FILENAME
 - Function arglist: (NUM PUTFLG)
AR.SUBMIT.NUM.FILE.NAME
 - Variable value:
{PHYLUM}<LISPARS>LISPARS.NUM
AR.FILENAME - Function arglist: (ARN)
AR.SUBMIT.FILE.NAME
 - Variable value:
{PHYLUM}<LISPARS>LISPARS.SUBMIT
AR.INFO.FILE.NAME
 - Variable value:
{PHYLUM}<LISPARS>LISPARS.TDS
AR.INDEX.DEFAULT.FILE.NAME
 - Variable value: {PHYLUM}<LISPARS>AR.INDEX
HASHFILENAME - Function arglist: (HASHFILE)
SKETCH.ELEMENT.TYPE.NAMES
 - Variable value: (MAP SKIMAGEOBJ GROUP
TEXTBOX
BOX --)
SKETCH.ELEMENT.NAMEP
 - Function arglist: (X)
SK.UNDO.NAME - Function arglist: (HISTEVENT)
SK.GET.HARDCOPY.FILENAME
 - Function arglist: (SKW)

APROPOS can be very handy to go wandering around the system looking for a

partially remembered variable or function name or for discovering what variables

effect, e.g., FONTS.

Note the success of APROPOS at these tasks depends on the variables and

functions be named in a sensible manner. A font-related variable named SIXTH-

BASE would never be found by the (APROPOS ’FONT) function call. Such is

not always the case in Interlisp-D.

Homework

Start reviewing the Lisp programming covered in the first six or so sessions.

F.G.H.

4/30/85

LispCourse #23: What is Programming; Basic Lisp Revisited

What is Programming?

Procedures and Data: The Semantics of Programming

A program is basically a description of a sequence of actions (i.e., a procedure) to

be carried out on a set of objects. In the computer world, the objects are different

types of "information" and are thus called data.

For example: (PLUS 3 4) is a trivial Lisp program. The procedure PLUS

takes the action of adding two numbers. The objects or data are the

numbers, in this case 3 and 4.

Writing a program involves specifying two things:

1) a description of the procedure to be followed

2) a description of the data to be used.

The abstract description of the procedural component of a program is called its

control structure. The abstract descriptions of the data components of a program

are called its data structures.

Programming is all about control structures and data structures. Learning

to program means learning to build combinations of control and data

structures that accomplish target tasks effectively and efficiently.

For example:

Assume that the goal is to program up a simple database

mapping people in ISL to serial numbers of their machines.

The first task is to determine a data structure for the

database, e.g., a list of lists where each sublist begins with a

name the second and subsequent items are serial numbers

for that person’s machine(s). Note that I would have to

further specify the data structure for the name and serial

numbers (e.g., they could be atoms or they could be lists,

2LispCourse #23: Programming; Basic Lisp

depending on what operations I would want to perorm on

them).

The second task is to write the Lisp procedures to create,

access, and modify the chosen data structure. This may

feed back to modify the data structure ÿ for example, you

might discover that the procedures would be much simpler

if the second element of each person’s list were the number

of machines that the person had.

Lisp is a language for specifying the control and data structures of a program.

Fortran, Basic, C, Pascal, Mesa, etc. are alternative languages for doing the same

thing.

The same basic concepts of control structure and data structure appear in

all of these languages. They differ only in how they express various

control and data structures. Control/data structures that are easy to

express in Lisp may be painfully hard to express in Fortran, and vice

versa.

Lisp is unusual among these languages in that it blurs the distinction

between procedures and data, both syntactically and semantically. A list

[e.g., (PLUS 2 3)] that is a piece of data to one Lisp program, may be a

description of a procedure that is executed by another Lisp program.

Languages like Fortran and Pascal make a much cleaner distinction

between procedure and data.

Blurring the distinction between procedure and data can be good or bad,

depending on the task you are trying to program.

In this course, we’ll start out making clear distinctions between procedure

and data in our Lisp programming style. Later, we may look at some of

the advantages of bluring over this distinction a bit.

Procedure versus Process: Running a Program

A program is a procedure, i.e., a description of a sequence of actions to be carried

out.

3LispCourse #23: Programming; Basic Lisp

For the program to be useful, this description must be transformed into the actual

sequence of actions being described. This transformation is commonly called

"running the program".

The sequence of actual actions that take place when a program runs is called a

process.

The entity that transforms the procedure description (i.e., program) into a running

process is an interpreter.

At the bottom level, the ultimate interpreter of any program is the

hardware of the computer on which the program is running. But in most

languages (as in Lisp) , there is another program (an interpreter) that is

responsible for transforming the program from the higher level-language

into the running process. This interpreter is the entity responsible for

"understanding" the language and carrying out the requested actions.

Note that the interpreter is itself a program being interpreted

(directly or indirectly) by the machine hardware.

Understanding Lisp requires understanding the Lisp interpreter, the program that

transforms Lisp code into a running process. The nice thing about Lisp is that the

interpreter is itself a Lisp program, making it easy to understand (and modify) if

you know Lisp.

Seems a bit circular ÿ but its really a process of decomposition where you

break Lisp down into simpler and simpler actions until you get to those

actions the machine hardware can execute directly.

So, theoretically, there are three components to understand about programming:

control structures, data structures, and interpreters. Unfortunately, this analysis

skips all of the pragmatic aspects of programming in the real world.

Correctness, Efficiency, Maintainability, & Adaptability Quickly and with Minimal

Effort: The Pragmatics of Programming

A good program is:

Correct ÿ it correctly accomplishes the task it is intended to

4LispCourse #23: Programming; Basic Lisp

Efficient ÿ it make efficient use of the available resources; in particular, it

works as quickly as possible using as few of the computer’s resources

(memory, disk space) as possible.

Maintainable ÿ it should be easy to debug and make minor changes to; in

particular, it should be easy enough to understand that someone other than

the original programmer can do the maintenance

Adaptable ÿ it should be easy to make large changes to the original

program

Good programs must also be written quickly and with minimal effort: i.e.,

using as little programming time and as little programming effort as possible. A

program that takes 1000 person-years to write will never get written.

Programming is a constant trade-off between these five goals since it is nearly

impossible to satisfy all five simultaneously.

Interlisp takes a definite stand on which of these are important. In particular,

correctness and efficiency are discarded in favor rapid-prototyping, i.e.,

programming quickly and with minimal effort.

Efficiency and correctness are achievable in Interlisp, but only extremely careful

programming and close attention to issues of efficiency and exact correctness.

Maintainablilty and adaptablility in Interlisp (and in most modern programing

languages) are a matter of good programming style. If you follow the rules of

good programming, then your programs will be maintainable and adaptable.

In this course we will focus in particular on these "rules of good

programming", covering in detail the notions of abstraction and

modularity. In the later part of the course, we will briefly consider the

tools for writing efficient and correct programs in Interlisp.

Reviewing the Basics of Lisp Prgramming

The READ-EVAL-PRINT Loop

5LispCourse #23: Programming; Basic Lisp

Lisp is in a continual loop in the Exec window

Read user input

Evaluate user input

Print result of evaluation

All work in Lisp is done in the Evaluation phase of this loop!

Basic Syntactic Building Blocks: Atoms and Lists

One defining feature of Lisp is that its syntax is trivial.

There are two basic building blocks of Lisp: Atoms and Lists.

Together Atoms and Lists are known as S-expressions ÿ (almost)

everything in Lisp is an S-expression.

An atom is a symbol represented by one or more alphnumeric characters. Atoms

are the "words" of Lisp; they provide a way in which to reference the actions and

objects in Lisp world.

Examples: Sam, FOO, 123, A2233, VeryLongAtomName, Dashed-Atom.

A list is a "(", followed by zero or more atoms or lists, followed by a ")". Lists

are the "sentences" of Lisp; they provide the structure to glue atoms together to

make statements or to represent things.

Examples: (A B C); (A (FOO BAR) C); (SETQ A 5); (CAR (CAR A)).

Facts about atoms:

Every atom can reference three things: a value, a function definition, and a

property list.

Atom

Property List

Function Definition

Value

An atom’s value is some other Lisp object; e.g., another atom, a

list, a window, a process, etc.

6LispCourse #23: Programming; Basic Lisp

Function definitions are discussed below.

An atom’s property list is simply a list with a special format:

(Prop1 Value1 Prop2 Value2 ... PropN ValueN), where each PropI

is an atom and each ValueI is some other Lisp object; e.g., another

atom, a list, a window, a process, etc.

When evaluated by the Lisp evaluator, an atom evaluates to its value.

Numeric atoms are atoms whose name consists of digits only. The value

of a numeric atom is the atom itself.

Non-numeric atoms are called litatoms.

T and NIL are special atoms. The value of T is T and the value of NIL is

NIL. NIL is also a list, in particular, the empty list (). NIL is the only

thing that is both a list and an atom.

Facts about lists:

The first item in a list is called its CAR.

The rest of the list, after the CAR is removed, is called its CDR.

The operation of the Lisp evaluator w.r.t. lists is discussed in the next

section.

Thats all there is of Lisp syntax: all Lisp programs are build up from

combinations of atoms and lists.

Forms and the Lisp Interpreter

The basic building block for procedures in Lisp is the form or function call. A

form is simply a list structure, the CAR of which is the name of a function (i.e., an

atom that references a function definition) and the CDR of which is a list of the

arguments passed to the function.

Example: (IDIFFERENCE 5 2), IDIFFERENCE is the function name and

(5 2) is a list of the arguments to be passed to the IDIFFERENCE

function.

7LispCourse #23: Programming; Basic Lisp

The Lisp evaluator evaluates forms in the following manner:

The CAR of the list is assumed to be the name of a function.

First, each element in the CDR of the list is evaluated, resulting in a list of

evaluated arguments.

Then, the function named by the CAR is applied to the resulting evaluated

argument list.

What it means to apply a function to an argument list is discussed in the following

section.

Special Forms & QUOTE

There are some functions which are special in the sense that their

arguments are NOT evaluated before they are executed. They are

executed using their unevaluated arguments. [Called NLambda functions]

QUOTE is such a special form. QUOTE simply returns its unevaluated

argument. QUOTE can be abbreviated by a ’. (QUOTE A) is equivalent

to ’A.

QUOTE is used to prevent evaluation where it is not required.

Example:

31_ (SETQ A 4)
4
32_ (SETQ B 5)
5
33_ (COPYFILE A B)
4: File not found
5: File not found
NIL
34_ (COPYFILE ’A ’B)
{PHYLUM}<HALASZ>B;5

EVAL

8LispCourse #23: Programming; Basic Lisp

EVAL is a function which evaluates its arguments. Note

that means that the arguments of EVAL are evaluated

TWICE!

33_ (SETQ Harp ’Viola)

Viola

34_ (SETQ Viola ’Tuba)

Tuba

35_ Harp

Viola

36_ Viola

Tuba

37 _ (EVAL Harp) [means evaluate the value of Harp]

Tuba

Lisp Control Structures

Basically, a Lisp procedure is a list of forms to be evaluated one after the other in

sequence.

Example, the following might be considered a Lisp procedure:

(SETQ A 55)

(SETQ B 66)

(IPLUS A B)

Note a sequence of actions is a very limited control structure. Using this control

structure, it is impossible to specify an action to be done only under certain

circumstances or to be repeated a variable number of times.

Interlisp has many special forms that provide more interesting control structures.

We covered two: COND and Iterative Loops.

COND

COND is a special form that implements a conditional control structure.

COND has the following form:

(COND

(Test1 Consequents1)

9LispCourse #23: Programming; Basic Lisp

(Test2 Consequents2)

(Test2 Consequents2)

...

(TestN ConsequentsN))

Each Testi is an S-expression (usually a predicate) that evaluates to NIL or

non-NIL. Each Consequentsi consists of 0 or more S-expressions.

COND works as follows:

Test1 is evaluated.

If it returns a non-NIL value, each S-expression in

Consequents1 is evaluated in turn, and then the COND

is exitted. The value of the COND is the value of the

last S-expression in Consequents1.

If it returns a NIL value, go on to Test2

Test2 is evaluated.

If it returns a non-NIL value, each S-expression in

Consequents2 is evaluated in turn, and then the COND

is exitted. The value of the COND is the value of the

last S-expression in Consequents2.

If it returns a NIL value, go on to Test3.

...

TestN is evaluated.

If it returns a non-NIL value, each S-expression in

ConsequentsN is evaluated in turn, and then the

COND is exitted. The value of the COND is the value

of the last S-expression in ConsequentsN.

If it returns a NIL value, the COND is exitted with a value

of NIL.

Example:

Return X if X is an atom, NIL otherwise.

(COND

((LITATOM X) X)

((NUMBERP X) X)))))

10LispCourse #23: Programming; Basic Lisp

Iterative control structures: The FOR Loop and its cousins

Iteration is a control structure that makes it possible to repeat the same

operation on each element in a sequence (list) of things.

"To iterate" means "to repeat".

The FOR Loop

The major iterative construct in Interlisp is the FOR loop.

[Footnote: The FOR loop construct is not a standard part of most
Lisps. The iterative control structure is available in all Lisps, it just has
a different syntax than the Interlisp FOR loop.]

The FOR loop has the following form:

(FOR variable IN list DO operation)

Note: FOR is a special form; the elements of the

CDR are not evaluated automatically.

IN and DO are keywords.

Variable is unevaluated. It is the name of an atom

to be used as the local variable in the iteration.

List is evaluated. It is a S-expression whose value

is a list.

Operation consists of 0 or more S-expressions to be

evaluated. Ordinarily, these S-expression make

some use of the value of the atom in the variable

role.

FOR works as follows:

The variable is bound (i.e., temporarily SETQed) to

the CAR of the list. The S-expressions in operation

are then evaluated.

Then the variable is bound to the second item in the

list and the the S-expressions in operation are again

evaluated.

Then the variable is bound to the third item in the list

and the S-expressions in operation are evaluated.

11LispCourse #23: Programming; Basic Lisp

...

The variable is bound to the last item in the list and

the S-expressions in operation are evaluated.

The FOR loop returns NIL.

Example:

(FOR Window in (OPENWINDOWS) DO (CLOSEW

Window))

Alternative FOR loops

1. DO versus COLLECT

The DO keyword can be replaced by the COLLECT keyword in

the FOR loop. In this case, on every iteration the value of the last

S-expression in operation will be saved. The FOR loop will then

return a list of these values (in order) instead of returning NIL.

Example:

4_ (FOR Item IN ’((A B)(C D)(E F)) COLLECT (CAR

Item)(CDR Item))

((B)(D)(F))

2. "IN list" versus "FROM n TO m BY k"

FOR also allows for iteration over a sequence of numbers. To do

this, replace the "IN list" construction with the construction

"FROM n TO m BY k", where n, m, and k evaluate to numbers.

Note: The "BY k" is optional and defaults to "BY 1" if it is not

specified.

Example:

5_ (FOR N FROM 1 TO 10 COLLECT (PLUS N

6))

(7 8 9 10 11 12 13 14 15 16)

WHILE and UNTIL loops: Alternatives to FOR

12LispCourse #23: Programming; Basic Lisp

WHILE and UNTIL loops allow repetative operations without an

explicit sequence.

WHILE has the form:

(WHILE predicate {DO, COLLECT} operations)

Note: WHILE is a special form.

Predicate is evaluated. It is an S-expression that evaluates

to NIL or non-NIL.

Operations is 0 or more S-expression to be evaluated.

The WHILE loop repeatedly evaluates operations as long

as predicate evaluates to non-NIL.

DO versus COLLECT works exactly as in FOR. If DO is used,

then the WHILE loop always returns NIL. If COLLECT is used,

the WHILE loop returns a list containing, in order, the value of the

last S-expression in operations from each iteration.

Example:

11_ (WHILE (MouseButtonDown) COLLECT

(WHICHW))

UNTIL is similar to while, but it iterates until its predicate

becomes non-NIL, i.e., as long as its predicate is NIL.

"UNTIL predicate" is equivalent to "WHILE (NULL

predicate)".

Defining and Applying Functions

All of the work in Lisp is done when the Lisp evaluator evaluates a form

or function call.

Recall that evaluating a form involves applying a function to a list of

evaluated arguments.

A function is simply a sequence of forms that have been packaged into a

unit and named.

13LispCourse #23: Programming; Basic Lisp

Once packaged into a function, the sequence of forms can be

manipulated as a single entity. The process of treating a sequence

of forms as a single entity that carries out a single (but compound)

action is known as procedural abstraction. We’ll have more to

say about procedural abstraction later in the course.

In Lisp packaging and naming a sequence of forms is known as defining a

function. Programming in Lisp consists of defining functions that call

other functions you have already defined (or will define before you run the

program).

Defining functions

DEFINEQ is a special form that allows you to define functions in

Lisp. It has the form:

(DEFINEQ Defn1 Defn2 ...)

Each Defni is the name and definition of a function

and has the form: (FunctionName FunctionDefn).

FunctionName is any atom.

FunctionDefn has the form:

(LAMBDA ParameterList

FunctionBody)

LAMBDA is a keyword indicating

that the list is function a definition.

Just put it there. It is an historical

remnent from Church’s Lambda

calculus, on which Lisp was

originally built.

ParameterList is a list of the

parameters (arguments) for the

function.

FunctionBody is 1 or more Lisp

forms.

Example:

14LispCourse #23: Programming; Basic Lisp

(DEFINEQ

(SumOfSquares [FunctionName]

(LAMBDA [Keyword]

(X Y) [ParameterList]

(PLUS (TIMES X X)(TIMES Y

Y) [FunctionBody]

Applying functions

Recall that the final step in evaluating a form involves applying the

function named by the CAR to the list of evaluated arguments.

APPLY works as follows:

1. The value of each parameter in the function definition is

(temporarily) set to the corresponding element of

the evaluated argument list.

2. All of the forms of the function body are evaluated in

turn using the normal rules of Lisp evaluation.

3. The value returned by the function is the value of the

last (only) form in the function body.

4. All parameters (i.e., L) are set to back to their original

value.

The process of setting the values of the parameters to the values of

the arguments is known as binding the local variables. Note that

binding affects the parameters only locally within the function.

The value of the same atom outside of the function is unaffected.

Lisp Interpreter: A combination of EVAL and APPLY

EVAL and APPLY combine to produce the Lisp interpreter, as the

following example illustrates:

Evaluating the form (SumOfSquares (TIMES 2 3) 2)

1. Each item in the CDR of the form is evaluated

in turn:

15LispCourse #23: Programming; Basic Lisp

1.1) (TIMES 2 1) evaluates to 6 (by

recursive call to the Lisp evaluation of a

form).

1.2) 2 evaluates to itself.

2. The SumOfSquares function is applied to the

list (6 2).

2.1) X is bound to 6 and Y is bound to 2.

2.2) (PLUS (TIMES X X)(TIMES Y Y)) is

evaluated by recursive call to the Lisp

evaluation of forms, resulting in the value

40.

2.3) X and Y are rebound to their previous

values (if any).

2.4) SumOfSquares is exited returning, 40.

3. The value of the form (40) is printed.

Lists: the primary Lisp data strucuture

The primary data structure in Lisp is the list. When you want to

erepresent an object or piece of data in Lisp, the first thing you think of is

a list!!!

There are other data structures in Lisp, but lists are the only ones we covered in

the earlier part of the course.

Lists can be used to represent almost any data:

Examples:

A person’s name might be a list of three atoms: (First

Middle Last) as in (Frank Geza Halasz) or (John Seely

Brown).

16LispCourse #23: Programming; Basic Lisp

ISL-People might be represented by a list of names (which

are themselves lists): ((John Seely Brown) (Dana ??

Bloomberg)(Thomas P. Moran)(Frank Geza Halasz))

PARC-Personnel might be a futher aggregation of lists

representing each lab. Each lab list would consist of two

items, a lab name and a list of lab people: (PARC (ISL

((John Seely Brown) (Dana ?? Bloomberg)(Thomas P.

Moran)(Frank Geza Halasz)))(CSL (Robert ??

Ritchie)(Robert ?? Haggman) ...)(SCL (Adele ?? Goldberg)

...)))

List Maniupulation Functions

Interlisp has lots and lots of fucntions for creating, maintaining and

decomposing these list data structures. Some of those we covered

earlier (See LispCourses #2 & #3) were:

List Decomposition Functions

CAR ž returns the first element of the list

CDR ž returns the list minus the first element

CxxR (where x=A or D) ž compisitions of CAR and

CDR.

NTH ž returns the list tail starting at the Nth element

LAST ž returns the list tail containing only the last

element

List Composition Functions

APPEND ž returns the concatenation of two or more

lists

LIST ž creates a list consisting of its arguments

CONS ž (CONS Arg1 Arg2) returns a list with Arg1

as its CAR and Arg2 as its CDR.

List Manipulation Functions

17LispCourse #23: Programming; Basic Lisp

REVERSE ž returns list with reverse order of top-

level elements

LENGTH ž returns number of top-level elements in

list

List Formats

Each of the lists given in as examples above has a format that

determines the meaning of the elements of the list. Programs that

might use these lists would have to have built into them the

necessary procedures for making use of these formats.

For example, the name list has three elements representing the

first, middle and last names. If a program needs the first name of a

person, the programmer would have to know enough about the

formatto take the CAR of the person’s name list.

The examples given above were ad-hoc list formats. Much of Lisp

programming involves creating (and documenting) such ad-hoc list

formats. But, there are some special list formats that are

commonly used as data structures in Lisp:

An ASSOC list has the following form: ((key1 data1)(key2

data2)(key3 data3)(key4 data4) ... (keyn datan)), where each keyi

is an atom and each datai consists of 0 or more S-expressions.

The function ASSOC is used to retrieve items from an

ASSOC list. ASSOC takes two arguments, a key and an

ASSOC list. It returns the first key-data pair in the list

whose key is equal to the key argument.

A Prop list has the form: (prop1 value1 prop2 value2 prop3

value3 ... propn valuen), where each propi is an atom and each

valuei is exactly one S-expression.

The function LISTGET retrieves a prop values from a

PROP list. LISTGET takes 2 arguments, a prop list and a

prop. It returns the value corresponding to prop on the

prop list.

18LispCourse #23: Programming; Basic Lisp

LISTPUT adds a prop-value pair to an already existing

prop list. Its three arguments are a prop list, a prop, and a

value. If the prop is already on the list, it simply updates its

value. It returns the value.

Exercise: Learning Data Abstraction

Write a program that manipulates a database of people in ISL, their office numbers and

their phone numbers.

First, determine a data structure for your database.

Then write functions for:

creating the database

adding people to the database

getting a list of all the first names in ISL

getting a list of all the last names in ISL

getting a list of all the phone numers in ISL.

(Hint: you will find FOR-COLLECT loops very handy here.)

References

LispCourse Notes #2 thru #6.

F.G.H.

5/2/85

LispCourse #24: Data Abstraction

Programs as Representations of the Real World

Extensionally, computer programs carry out a sequence of information manipulating

actions on a set of computational objects called data.

Intensionally, computer programs the actions and objects are usually designed to be some

sort of model of some "real world" actions and objects. In other words, computer

programs are representations of real world actions and objects.

Data is used to represent real world objects. Data structures represent the structure of

real world objects.

In talking about computer programs, we often blur the distinction between data structures

and the real world objects which they represent.

Data, Compound Data & Data Structures

Atoms are the primitive data structures in Lisp.

Some objects can be represented by atoms alone; e.g., numbers by NUMBERPs and

English words by LITATOMS.

However, most objects are more complicated and can only be represented by a

combination of many simpler pieces of data. In Lisp, this combination is usually

achieved using lists that "glue" together atoms and other lists. A list is compound data.

A data structure is a "scheme" for using compound data to represent a complex object.

Example:

A persons name is an object with some structure, i.e., it has a first name, a

middle initial, and a last name. In Lisp, we might represent this structure

using a list data structure with three elements. where the first element was

an atom representing the first name, tyhe second element an atom

reprersenting the middle initial, and the third element an atom representing

the last name.

2LispCourse #24: Data Abstraction

Compound data is important because it allows us to deal with the many pieces of simpler

data as a single entity, just as we deal with the real world complicated object as a single

entity.

Data structures are important because they allow us to take a very simple and straight-

forward compounding scheme (i.e., lists) and represent very complex objects. The data

structure provides the "rules" by which to interpret a list structure into representation of a

complex object.

Data Abstraction: Dealing with Compound Data

Dealing with compound data and data structures can lead to difficult programming if the

proper rules are not followed.

The Need for Data Abstraction

Example 1

Consider the following programming problem:

write a set of functions that fill out tax forms. There will be one

function for each tax form. On each tax form, you need to fill in

the person’s name at least once and sometimes two or three times .

The name is passed to you as a list of three items of the form (First

Middle Last).

How should you handle the placing of names on the tax forms?

One solution is the following: every time you need to print the persons

name, print the CAR of the name list, then the CADR of the name list and

then the CADDR of the name list.

What happens if for some reason you start getting names in the form (Last

First Middle).

You would have to go through each function looking for each

place that you print out the person’s name and change the

procedure to be CADR of name list followed by CADDR of name

3LispCourse #24: Data Abstraction

list followed by CAR of name list. UGH!! This could be a god-

awful job.

BUT - what if you had done the following to begin with: Write three

functions called FirstName, MiddleName and LastName that take a

name and return the indicated part of the name. FirstName would simply

take the CAR of the NameList, the MiddleName function the CADR and

the LastName the CADDR.

Then every time you want to print the person’s name, you would

print (FirstName NameList) followed by (MiddleName NameList)

followed by (LastName NameList). Everything would work as in

the initial case above.

However, when the name format change can along, you would have to

change only the three functions FirstName, MiddleName and LastName

to use CADR, CADDR, and CAR respectively.

None of the tax form function would have to change at all!!!!

Thus the change in name formats would be trivial.

Example 2

Consider the following programming problem:

You are writing the program for filling out Schedule G (Income

Averaging). You have a record of the person’s last 4 years’ tax

liabilities in the form (NameList Year-1 Year-2 Year-3 Year-4). In

your calculations, you need the Year-i tax liability.

Solution: you write four functions called Year-1 thru Year-4 that take the

liability list and return the Year-I tax liability. You implement these

functions by taking the (CAR (NTH LiabilityList N)) for the correct N in

each case.

BUT - what if the liability list format changed a bit to be (LastName

Firstname Year-1 Year-2 Year-3 Year-4). Then you would have to go

back and change all four functions.

4LispCourse #24: Data Abstraction

However, if you had written a function called ListOfLiabilities that took

the liability record and returned a list of the four liabilites. Then you

could have written the Year-I functions to use the value returned by

ListOfLiabilities.

If you did this, then when the liability list format changed, you would have

had to change only one function, ListOfLiabilities, instead of four.

Not a big deal, but if there were 100 variables instead of 4 it might

be a big deal.

Data Abstraction

What do these examples show? The need for data abstraction to improve program

maintainability and adaptability.

Data abstraction is a programming design methodology in which:

1) You carefully separate functions that USE data from functions that

ACCESS and manipulate data structures. Changes to the data structures

will then affect only the data structure functions and not the data using

functions.

2) You carefully separate functions dealing with the various levels of a

compound data structure. Changes to one level will then effect only the

functions dealing with that level of the compound data and not all other

levels.

5LispCourse #24: Data Abstraction

Abstraction Barriers

Data abstraction is accomplished by creating abstraction barriers between

function that use data and functions that access data AND between the

functions that access various levels of data from a compound structure.

An abstraction barrier is a line that separates the functions of a program.

Functions on one side of the line can make no (unnecessary) assumptions

about the data structures used by functions on the other side of the line,

except as described in the well-defined interface between the two sets of

functions.

Example

In the tax forms/name list example above, an abstraction barrier

was required between the form filling programs and the name list

data structure.

Abstraction

Barrier

Functions that
fill-in tax forms

atoms
 (=partial names)

name
list

Functions that
access the name list

e.g., LastName

The form filling programs should not make any assumptions about

the format of the name list (or even that it is a list instead of an

atom or a string or whatever).

6LispCourse #24: Data Abstraction

Instead, if they need to access the name list structure, they should

call the functions (FirstName, LastName, etc) on the other side of

the abstraction barrier that deal specifically with accessing the

name list structure.

There should be a well defined protocol that states that whenever a

data using function (i.e., one that fills in a tax form) calls an access

function (e.g., LastName), it passes down a name thing and gets

back an atom that represent the first, middle or last name, as

indicated.

How this is to be accomplished is entirely up to the access

function.

The using function should make no assumptions what-so-

ever about the format of the name thing.

Similarly, the access functions should make no

assumptions about how the atom they return will be used.

Constructing Access Functions: Constructors, Selectors & Mutators

The trick in writing a program with strong abstraction barriers is to write a

good set of access functions for isolating the access to your data structures

from the rest of your program (and for isolating the access to low levels of

the data structure from functions that deal with higher levels of the data

structure).

These access functions serve as the interface between the rest of

your program and your data structures. If your program wants

access to the data structures, it has to call one of these access

functions.

The access functions take data in an agreed upon form and

do whatever work is necessary to translate it into a form

compatiable with the chosen data structures.

7LispCourse #24: Data Abstraction

They also take data from the data structures and do

whatever work is necessary to translate it into an agreed

upon form to pass back to the rest of the program.

Constructors, Selectors and Mutators

There are basically three kinds of access functions: constructors,

selectors and mutators.

Constructors take individual pieces of simpler data and build a

data structure from them, returning the data structure.

Example: (MakeName First Middle Last) takes three

atoms and returns a name data structure.

Selectors take a compound data structure and return individual

pieces of data from that data structure.

Example: (FirstName NameList) takes a name data

structure as an argument and returns the first name portion

of that name data structure.

Mutators take a compound data structure and alter individual

pieces of data in that data structure.

Example: (ChangeFirstName NewFirstName) takes a

name data structure as an argument and returns the same

data structure with the first name portionaltered to be

NewFirstName.

A complete set of access functions for a name data structure might

be the following:

Constructor: MakeName takes three atoms representing

the first, middle and last names and returns a name object.

Selectors: FirstName takes a name object and returns the

first name. LastName and MiddleName do the

corrsponding thing.

8LispCourse #24: Data Abstraction

Mutators: ChangeFirstName takes a name object and

returns the altered name object. ChangeLastName and

ChangeMiddleName do the corrsponding thing.

In a program with good data abstraction, any function that wanted

to create a new name would have to call MakeName. Any

function that wanted to access part of the full name would have to

call the appropriate selector function. Any function that wanted to

change part of the name would have to call the appropriate mutator

function.

Other than these seven functions NO other functions in the

program could make any assumptions about the format of the

name object.

Example: Problem from LispCourse #23

Attached is a solution to the problem at the end of LispCourse#23 that makes strong use

of data abstraction, both to separate the use functions from the access functions AND to

separate the access functions that deal with different levels of the database data structure.

A diagram of the abstraction barriers in this program is the following:

9LispCourse #24: Data Abstraction

Database

Database Access Functions

Name Office Number

Database Entry

Name
Access

Functions

Office
Number
Access

Functions

Database Entry Access Functions

Phone
Number
Access

Functions

Phone Number

References

Winston & Horn, Chapter 5, pages 97 thru 100

Sussman & Abelson, Chapter 2, pages 71 thru 88 (and beyond)

Exercises

Rewrite your program from LispCourse #23 using good principles of data abstraction.

Try changing the format of you database entries and seeing how many functions you

have to change to adapt to this format change.

Do this before you study in detail the attached example program.

F.G.H.

5/7/85

LispCourse #25: The Record Package; The Inspector

Records: Data Abstraction in Interlisp

There is a package in Interlisp called the Record Package that makes data abstraction

syntactically easy. The Record Package provides a simple syntax that supports writing

constructors, selectors, and mutators.

The Record Package is part of CLISP ž statements written in the Record Package syntax

are translated by the Lisp interpreter (or compiler) into standard Lisp and then executed.

All of the syntax described here is just a "pretty" way of stating in CLISP what

you could do directly, but less clearly, with CARs, CDRs, GETPROPs, ASSOCs,

etc. in straight Interlisp.

The Record Package actually includes an interface to two related functionalities in

Interlisp ÿ records and datatypes. We will discuss records first and datatypes a bit later.

Records: Basic Stuff

A record is basically a description of a list structure. The description names the

whole structure (i.e., the record) and names each of the parts of the structure.

In the terminology of the Record Package, each part of the overall record

is called a field of the record.

Once you have described a record structure, you can create instances of the record

and can access any field of these instances by name using the special Record

Package syntax.

Example:

(fetch (Message Header) of NextMessage) is a statement that

retrieves the Header part of a Message record that is the value of

the atom NextMessage.

Important note: the word record is used to denote both the description of the

list structure and the actual lists that are instances of the structure described.

Which of these is intended should be clear from the context.

Record Declarations

2LispCourse #25: The Record Package; The Inspector

Before a record can be used it must be declared.

A record declaration statement names the record and describes all of the

fields in the record. It has the form:

(RECORD RecordName Fields ExtraStuff1 ExtraStuff2 ...)

RECORD is a keyword indicating that this is a record

declaration.

RecordName is the name of the record. RecordNames

must be unique in the whole system (among both records

and datatypes).

Fields is a list of the parts (i.e., fields) of the record. Each

element in the list is a non-NIL litatom that serves as the

name of the field.

The list can also contain NILs, which stand for unnamed (and

therefore unaccessible) fields. Finally, the list can contain

integers, which stand for the specified number of unnamed

fields.

The ExtraStuffI staements are optional. If present, each

ExtraStuffI can be any of several kinds of information.

Most importantly, the ExtraStuffI can be an

assignment statement of the form:

FieldName _ Form

FieldName is one of the named fields from

the Fields list.

Form is any Lisp form.

This assignment statement specifies the default

value for the field named FieldName in the record.

When you create an instance of the record, if

FieldName is not explicitly given a value in the

CREATE statement, then the value returned by

evaluating Form will be used to fill-in the field.

3LispCourse #25: The Record Package; The Inspector

Examples:

(RECORD PersonsName (First Middle Last)

First _ ’John Middle _ ’Dunce Last _ ’Doe)

(RECORD DatabaseEntry (Name OfficeNumber

PhoneNumber))

Note: A record declaration statement is NOT an executable statement ÿ

i.e., it doesn’t evaluate to anything. It just serves to describe the record to

CLISP, which will use this information to translate the executable

statements that access instances of this record.

Constructing Record Instances: The CREATE statement.

Once a record has been declared, you can construct instances of the record

using the CREATE statement.

The CREATE statement has the following format:

(CREATE RecordName Assignment1 Assignment2 ...)

RecordName is the name of the record you want to create an

instance of.

The AssignmentI statements are optional. If present, each

AssignmentI is a statement that specifies the value to be given to a

particular field of the record when it is created. This statement

should have the format:

FieldName _ Form

FieldName is the name of one of the fields of RecordName.

Form is any Interlisp form, the value of which will be

placed in the field FieldName when the record is created.

When the CREATE statement is evaluated, it returns a list that is an

instance of the specified record. The value of each field in the record is

determined as follows:

4LispCourse #25: The Record Package; The Inspector

If there was an assignment statement for that field in the CREATE

statement, then the value of the form in that assignment statement

is used.

Otherwise, if there was default assignment statement for that field

in the record declaration for the record, then the value of the form

in that assignment statement is used.

Otherwise, the field is set to NIL.

Examples:

30_(RECORD PersonsName (First Middle Last)

First _ ’John Last _ ’Doe)

PersonsName

31_(CREATE PersonsName)

(John NIL Doe)

32_(CREATE PersonsName First _ ’Sam)

(Sam NIL Doe)

33_(CREATE PersonsName First _ ’Sam Last _ ’Smith
Middle _ (CAR (LIST ’A. ’B.)))

(Sam A. Smith)

5LispCourse #25: The Record Package; The Inspector

Selecting Fields in a Record: The fetch statement

Given a record (instance), you can select any of its fields using the fetch

statement.

The fetch has the following format:

(fetch (RecordName FieldName) of Form)

fetch and of are keywords.

RecordName is the name of the record (description) being

used.

FieldName is the name of the field to be selected from the

record instance of type RecordName.

Form is an Interlisp form that evaluates to a record of type

RecordName.

When the fetch statement is evaluated, it will return the value of the

named field from the record that is the value of the given form.

Examples:

33_(SETQ Person (CREATE PersonsName First _ ’Sam Last _
’Smith
Middle _ ’A))

(Sam A. Smith)

34_Person

(Sam A. Smith)

35_ (fetch (PersonsName Last) of Person)

Smith

36_ (fetch (PersonsName First) of Person)

Sam

37_ (fetch (PersonsName First) of (CREATE PersonsName))

John

Note: if the FieldName is unambiguous, FieldName can be used in place

of (RecordName FieldName). FieldName is unambiguous if there is only

one record in the entire system having a field with that name.

6LispCourse #25: The Record Package; The Inspector

Opinion: Using FieldName instead of (RecordName FieldName) is

just lousy programming style because it can lead to lots of trouble

when you (or more likely someone else) adds a second record to

the system that just happens to use FieldName.

Mutating Fields in a Record: The replace statement

Given a record (instance), you can mutate (i.e., change) any of its fields

using the replace statement.

The replace has the following format:

(replace (RecordName FieldName) of Form1 with Form2)

replace, of, and with are keywords.

RecordName is the name of the record (description) being

used.

FieldName is the name of the field to be changed from the

record instance of type RecordName.

Form1 is an Interlisp form that evaluates to a record of type

RecordName.

Form2 is an Interlisp form whose value will be used as the

new value of the field.

When the replace statement is evaluated, it will replace the old value of

the specified field in the specified record (i.e., the record returned by

evaluating Form1) using the specified new value (i.e., the value returned

by evaluating Form2). The value returned by the replace statement is the

new value.

Examples:

38_Person

(Sam A Smith)

39_ (replace (PersonsName Last) of Person with ’Jones)

Jones

40_ (fetch (PersonsName Last) of Person)

7LispCourse #25: The Record Package; The Inspector

Jones

41_Person

(Sam A Jones)

42_(replace (PersonsName First) of Person with ’Jane)

Jane

43_(replace (PersonsName Middle) of Person with ’Maria)

Maria

44_Person

(Jane Maria Jones)

Records as Data Abstraction

Since records allow you access to data structures by name rather than by

structure, they (to a great extent) isolate the program from changes in the

underlying data structure.

Consider the alternative record definitions: (RECORD Name (First Middle Last))

and (RECORD Name (Last First Middle)) and (RECORD Name (SS# BirthPlace

Last Middle First)

CREATE, fetch, and replace statements for all of these would be identical.

For example: (fetch (Name First) of NewName) would always return the

first name field, although it would be the CAR of the first type of record,

the CADR of the second type of record, and the 5th element of the third

type of record.

Therefore changing the underlying record stucture between any of these three

record declarations (and many more alternative declarations) would have no

effect on the programs that accessed the records using CREATE, fetch, and

replace.

Hierarchical Data Structures

Often data structrues are hierarchical, with smaller data structures embedded in

more global data structures.

8LispCourse #25: The Record Package; The Inspector

An example from last time is the DatabaseEntry list structure. Each

DatabaseEntry consisted of three items: a name, a phone number, and an

office number. Each of these three items was in turn a list structure

consisting of two or three atoms.

DatabaseEntry: List of three items

Name: List of three items

First: atom

Middle: atom

Last: atom

PhoneNumber: List of two items

Prefix: atom

Extension: atom

OfficeNumber: List of two items

BldgNumber: atom

RoomNumber: atom

To deal with this hierarchical data structure using the Record Package, you would

define four independent records for DatabaseEntry, Name, PhoneNumber, and

OfficeNumber.

For example:

(RECORD DatabaseEntry (Name PhoneNumber OfficeNumber))

(RECORD Name (First Middle Last))

(RECORD PhoneNumber (Prefix Extension) Prefix _ 494)

(RECORD OfficeNumber (Bldg RoomNumber) Bldg _ 35)

To select the Extension or RoomNumber from a given database entry you could

use embedded fetch statements:

Example:

45_ Entry

((Sam A Smith)(494 4431)(35 2319))

46_ (fetch (PhoneNumber Extension) of

(fetch (DatabaseEntry PhoneNumber) of Entry))

4431

9LispCourse #25: The Record Package; The Inspector

47_ (fetch (OfficeNumber RoomNumber) of

(fetch (DatabaseEntry OfficeNumber) of Entry))

2319

The Record Package provides a shorthand syntax for these embedded access (i.e.,

fetch and replace) statements, provided that you have named the fields of the

various records correctly.

In particular, if the field name of the embedding record is the same as the

record name of the embedded record, then you can combine the fetch

statements by using a path name as the field specification in a single fetch

statement. This path name should name the highest level record followed

by the field that contains the second level record followed by the field that

contains the third level record and so on until the target field is named.

Examples:

48_Entry

((Sam A Smith)(494 4431)(35 2319))

49_ (fetch (DatabaseEntry PhoneNumber Extension) of Entry)

4431

50_ (fetch (DatabaseEntry OfficeNumber RoomNumber) of

Entry))

2319

Example that doesn’t work with the shorthand syntax because the

embedding record field name is not the same as the embedded record

name:

60_(RECORD DatabaseEntry (Name Phone OfficeNumber))

DatabaseEntry

61_(RECORD PhoneNumber (Prefix Extension) Prefix _ 494)

PhoneNumber

62_(SETQ Entry
(CREATE DatabaseEntry Name _ ’Foo

Phone _ (CREATE PhoneNumber
Extension _ 4456)

10LispCourse #25: The Record Package; The Inspector

OfficeNumber _ 99))

(Foo (494 4456) 99)

63_(fetch (DatabaseEntry Phone Extension) of Entry)
 no such record path
 at ... (DatabaseEntry Phone Extension) of Entry)
in (fetch (DatabaseEntry Phone Extension) of Entry)

UNDEFINED CAR OF FORM
fetch

64_(fetch (DatabaseEntry PhoneNumber Extension) of Entry)

 no such record path
 at ... (DatabaseEntry PhoneNumber Extension) of Entry)
in (fetch (DatabaseEntry PhoneNumber Extension) of Entry)

UNDEFINED CAR OF FORM
fetch

65_(fetch (PhoneNumber Extension) of
(fetch (DatabaseEntry Phone) of Entry))

4456

11LispCourse #25: The Record Package; The Inspector

Records constructed from different list structures

The (RECORD ...) statement declares a record data structure that is to be

constructed from an ordinary list. Each field in the record declaration is to be an

element in that list.

There are many alternative list structures that can be constructed using the Record

Package. These alternative list structures are declared, created, and accessed

using the same statements as are RECORDs, except that the declaration statement

starts with the given record type instead of RECORD.

Some of the most important alternative list structures are:

TYPERECORD ž just like a RECORD except that the first element of the

list is always the name of record.

Example:

51_ (TYPERECORD Name (First Middle Last))
Name
52_ (CREATE Name

First _ ’Sam Middle _ ’Ishikawa Last _
’Watanabe)

(Name Sam Ishikawa Watanabe)
53_ (fetch (Name First) of IT)

Sam

ASSOCRECORD ž the list created is in ASSOC list format with the field

names as keys.

Example:

54_ (ASSOCRECORD Name (First Middle Last))
Name
55_ (CREATE Name

First _ ’Sam Middle _ ’Ishikawa Last _
’Watanabe)

((First . Sam)(Middle . Ishikawa)(Last . Watanabe))

56_ (fetch (Name First) of IT)

Sam

12LispCourse #25: The Record Package; The Inspector

PROPRECORD ž the list created is in Prop list format with the field

names as props.

Example:

57_ (PROPRECORD Name (First Middle Last))
Name
58_ (CREATE Name

First _ ’Sam Middle _ ’Ishikawa Last _
’Watanabe)

(First Sam Middle Ishikawa Last Watanabe)

59_ (fetch (Name First) of IT)

Sam

Determining the record type of an object: The TYPE? statement

There is a fourth tool (in addition to constructors, selectors, and mutators) that is

very handy in writing programs with data abstraction ž the predicator.

A predicator for a given data structure is a predicate that returns a non-NIL value

if ist argument is an example of the data structure and NIL otherwise.

For example, a predicator for the name list from last week might be:

(DEFINEQ (LC.NameP

(LAMBDA (List)

(* * Check if List is a name list structure)

(AND

(LISTP List)

(EQUAL (LENGTH List) 3)

(LITAOM (CAR List))

(LITATOM (CADR List))

(LITATOM (CADDR List))))))

The TYPE? statement is the Record Package mechanism for dealing with

predicators.

To use the TYPE? mechanism, you must add a predicator as one of the

ExtraStuffI arguments in the record declaration statement for each record. The

argument must have the format:

13LispCourse #25: The Record Package; The Inspector

(TYPE? Form)

TYPE? is a keyword.

Form can be an Interlisp expression using the variable DATUM.

DATUM is bound to the record instance to be tested and

then the expression is evaluated, returning a NIL or a non-

NIL value. Form can also be an atom which is the name of

a function having one argument, the record instance to be

tested. In this case, the function is applied to the record

instance to get the NIL or non-NIL value.

Example:

(RECORD Name (First Middle Last)

(TYPE?

(AND

(LITATOM (fetch (Name First) of

DATUM))

(LITATOM (fetch (Name Middle) of

DATUM))

(LITATOM (fetch (Name Last) of

DATUM)))))

Once you have a TYPE? clause in the record declaration for a record, you can ask

of any Lisp object whether it is an instance of that record type. To do this, use the

TYPE? statement.

The TYPE? statement has the following format:

(TYPE? RecordName Form)

TYPE? is a keyword.

RecordName is the name of an already declared record type.

Form is any Interlisp form.

When the TYPE? statement is evaluated, the TYPE? entry is retrieved from the

record declaration for RecordName and applied (as described under the TYPE?

14LispCourse #25: The Record Package; The Inspector

clause above) to the value returned by evaluating Form. The value of the TYPE?

statement is the value of this application.

For example, the record declarations for the database entries might be ammended

as follows:

(RECORD DatabaseEntry (Name PhoneNumber OfficeNumber)

(TYPE?

(AND (EQUAL (LENGTH DATUM) 3)

(TYPE? Name (fetch (DatabaseEntry Name) of DATUM))

(TYPE? PhoneNumber

(fetch (DatabaseEntry PhoneNumber) of DATUM))

(TYPE? OfficeNumber

(fetch (DatabaseEntry OfficeNumber) of

DATUM)))))

(RECORD Name (First Middle Last)

(TYPE?

(AND

(LITATOM (fetch (Name First) of DATUM))

(LITATOM (fetch (Name Middle) of DATUM))

(LITATOM (fetch (Name Last) of DATUM)))))

(RECORD PhoneNumber (Prefix Extension) Prefix _ 494

(TYPE?

(AND

(NUMBERP (fetch (PhoneNumber Prefix) of

DATUM))

(NUMBERP (fetch (PhoneNumber Extension) of

DATUM)))))

(RECORD OfficeNumber (Bldg RoomNumber) Bldg _ 35

(TYPE?

(AND

(NUMBERP (fetch (OfficeNumber Bldg) of

DATUM))

(NUMBERP (fetch (OfficeNumber RoomNumber)

of DATUM)))))

15LispCourse #25: The Record Package; The Inspector

With these declarations, you can do the following:

60_(TYPE? DatabaseEntry ’(Foo (494 4456) Bar))

NIL

61_(TYPE? DatabaseEntry ’((Frank G Halasz)(494 4320)(35 1654)))

1654

Final note: For TYPERECORD records you don’t need to specify a TYPE? clause

in the reord declaration statement for the TYPE? statement to work. There is a

default TYPE? clause that just checks for a name match between the RecordName

given in the TYPE? statement and the CAR of the record instance.

DATATYPES: Defining New Objects in the Interlisp System

Records build data structures out of list structures. As such, records don’t really create

new types of objects in your Interlisp system; they just provide a convenient interface to

lists that have a particular format.

In contrast, a DATATYPE creates a whole new type of object in the Interlisp system.

Basically, a DATATYPE behaves much like a RECORD. The CREATE, fetch, replace,

and TYPE? statements all work exactly the same for DATATYPEs and for RECORDs.

But when you declare a DATATYPE, Interlisp goes through a lot of overhead to

create a new type of object in its world.

Then, when you create an instance of the DATATYPE, you are not

creating a list structure but a object of the new type with its own internal

representation different from lists. Similarly, when you access the

DATATYPE, you are accesings this new object type rather than a list.

The advantage of DATATYPEs over RECORDs is that access to any field in a

DATATYPE is much, much faster.

The disadvantage of DATATYPEs is that there is a big overhead for the system in

defining and managing new DATATYPEs.

16LispCourse #25: The Record Package; The Inspector

Thus, if you are going to create lots and lots of instances of a given data structure and

access these instances frequently, then you might want to make that structure a

DATATYPE. If you are creating a few instance that are accessed infrequently, then you

might want to make the structure a RECORD.

Since RECORDs and DATATYPEs are created and accessed in the same way, you can

easily write and test a program using RECORDs and then switch to DATATYPEs when

the program goes into real use.

Example:

To make the Name RECORD into a DATATYPE, all you would have to

do is declare a DATATYPE instead of a RECORD as follows:

(DATATYPE Name (First Middle Last))

Note that TYPE? is automatically defined when the DATATYPE

is declared, you do not need a TYPE? clause in the DATATYPE

declaration statement.

Thereafter, Name will behave exaclty as in all the examples above, except

it will be a Name object rather than a list structure.

In particular, when you CREATE a Name, you will get back a Name

object rather than a list.

87_ (CREATE Name First _ ’Sam Last _ ’Smith Middle _ ’A)

{Name}#51,142770

88_ (fetch (Name First) of IT)

Sam

89_ (TYPE? Name NewName)

T

90_ (TYPE? Name ’Foo)

NIL

System DATATYPEs

Many, many data structures in the Interlisp system are implemented in terms of

DATATYPES.

17LispCourse #25: The Record Package; The Inspector

For example, Windows are just a DATATYPE data structure. The function CREATEW

calls (CREATE WINDOW ...) and eventually returns the WINDOW object returned by

this CREATE statement.

In fact, the following is the DATATYPE declaration for WINDOW from the Interlisp

system code:

(DATATYPE WINDOW
(DSP NEXTW SAVE REG BUTTONEVENTFN RIGHTBUTTONFN

CURSORINFN CURSOROUTFN CURSORMOVEDFN REPAINTFN

RESHAPEFN EXTENT USERDATA VERTSCROLLREG

HORIZSCROLLREG SCROLLFN VERTSCROLLWINDOW

HORIZSCROLLWINDOW CLOSEFN MOVEFN WTITLE

NEWREGIONFN WBORDER PROCESS WINDOWENTRYFN))

A typical window might be filled in as follows:

18LispCourse #25: The Record Package; The Inspector

Editing record declarations and record instance: EditRec and The Inspector

To be completed in class

References

Chapter 3 of the IRM.

Exercises

Redo the problem from LispCourse #23 using the Record Package.

F.G.H.

5/9/85

LispCourse #26: Reprise; Continuation of Record Package from #25

Reprise: Sample Programming Exercise

The Problem

Consider an existing database containing the membership roster for the ACM.

The database is a list of entries.

Each entry corresponds to a person and contains the person’s

name, a list of dates relevant to that person’s membership, a list of

special interest groups(SIGs) that person belongs to, and an atom

indicating whether the person’s membership status.

The person’s name is a list of three atoms corresponding to

the persons first, middle, and last names in that order.

The date list contains two dates, the date of the person

joined ACM and the date of the last renewal.

Each date is a list of three numbers: day, month,

and year.

The list of SIGs consists of any number (including 0) of

atoms like SIGOA and SIGART.

The membership status is one of the following atoms:

Member, Associate, or Student.

Example Database:

(((JoAnn A Jones)((23 10 75)(01 10 84))(SIGCHI SIGART SIGED)

Member)

 ((Bill B Smith)((12 03 82)(01 04 85))(SIGOA) Associate)

 ((Jill Jane Jerzy)((15 09 80)(14 09 84)) NIL Student))

2LispCourse #26: Reprise; Continuation of #25

Write functions to:

1. Add a new person entry to this database.

2. Return a list of all SIGCHI members in the ACM.

3. Given a last name, update that person’s membership status to Member.

4. Given a last name and a date, update that person’s last renewal date.

You can assume that the database is the value of the atom ACM.Members.

Step 1: Describe the database

(RECORD ACMEntry (Name Dates SIGs Status))

(RECORD Name (First Middle Last))

(RECORD ACMDates (JoinDate RenewalDate))

(RECORD Date (Day Month Year))

Note: The whole database and the SIGs list are variable length and therefore

cannot be described as RECORDs. In fact, they are likely to be the kind of data

structures that you search looking for something rather than the kind of data

structures you want to get a particular part (i.e., field) of.

3LispCourse #26: Reprise; Continuation of #25

Database List of ACMEntry

Name

Last

Middle

First

Day
Month

JoinDate
ACMDates

Year

Month
RenewalDate Day

SIGs List of Atoms

Year

Status One of:
(Member Associate Stud

ent)

Step 2: Write the constructors, selectors, and mutators for the data structures

A. Start with the lowest level structures (i.e., the one that consist of atoms)

i. Names: Deal with the Name RECORD

(DEFINEQ

(ACM.CreateName

(LAMBDA (First Middle Last)

(CREATE Name First _ First Middle _ Middle last _

Last)))

(ACM.FirstName

(LAMBDA (OldName NewFirst)

(COND

(NewFirst (replace (Name First) of OldName with

NewFirst))

(T (fetch (Name First) of OldName)))))

(ACM.MiddleName

(LAMBDA (OldName NewMiddle)

(COND

4LispCourse #26: Reprise; Continuation of #25

(NewMiddle (replace (Name Middle) of OldName

with NewMiddle))

(T (fetch (Name Middle) of OldName)))))

(ACM.LastName

(LAMBDA (OldName NewLast)

(COND

(NewLast (replace (Name Last) of OldName with

NewLast))

(T (fetch (Name Last) of OldName)))))))

ii. Dates: Deal with the Date RECORD

(DEFINEQ

(ACM.CreateDate

(LAMBDA (Day Month Year)

(CREATE Date Day _ Day Month _ Month Year _ Year)))

(ACM.Day

(LAMBDA (OldDate NewDay)

(COND

(NewDay (replace (Date Day) of OldDate with

NewDay))

(T (fetch (Date Day) of OldDate)))))

(ACM.Month

(LAMBDA (OldDate NewMonth)

(COND

(NewMonth (replace (Date Month) of OldDate with

NewMonth))

(T (fetch (Date Month) of OldDate)))))

(ACM.Year

(LAMBDA (OldDate NewYear)

(COND

(NewYear (replace (Date Year) of OldDate with

NewYear))

(T (fetch (Date Year) of OldDate)))))))

B. Continue with next level structures: the ones that use Names and Dates

5LispCourse #26: Reprise; Continuation of #25

i. ACMDates

(DEFINEQ

(ACM.CreateACMDateList

(LAMBDA (JoinDate RenewalDate)

(CREATE ACMDates JoinDate _ JoinDate RenewalDate _

RenewalDate)))

(ACM.JoinDate

(LAMBDA (DatesList NewJoinDate)

(COND

(NewJoinDate (replace (ACMDates JoinDate) of

DatesList with NewJoinDate))

(T (fetch (ACMDates JoinDate) of DatesList)))))

(ACM.RenewalDate

(LAMBDA (DatesList NewRenewalDate)

(COND

(NewRenewalDate (replace (ACMDates

RenewalDate) of DatesList with

NewRenewalDate))

(T (fetch (ACMDates RenewalDate) of

DatesList))))))

C. Highest level record structure: the ACMEntry

(DEFINEQ

(ACM.CreateACMEntry

(LAMBDA (Name Dates SIGs Status)

(CREATE ACMEntry Name _ Name Dates _ Dates SIGs _ SIGs

Status _ Status)))

(ACM.Name

(LAMBDA (Entry NewName)

(COND

(NewName (replace (ACMEntry Name) of Entry

with NewName))

(T (fetch (ACMEntry Name) of Entry)))))

(ACM.DatesList

6LispCourse #26: Reprise; Continuation of #25

(LAMBDA (Entry NewDatesList)

(COND

(NewDatesList (replace (ACMEntry Dates) of

Entry with NewDatesList))

(T (fetch (ACMEntry Dates) of Entry)))))

(ACM.SIGs

(LAMBDA (Entry NewSIGs)

(COND

(NewSIGs (replace (ACMEntry SIGs) of Entry with

NewSIGs))

(T (fetch (ACMEntry SIGs) of Entry))))))

(ACM.Status

(LAMBDA (Entry NewStatus)

(COND

(NewStatus (replace (ACMEntry Status) of Entry

with NewStatus))

(T (fetch (ACMEntry Status) of Entry))))))

Step 3: Write the functions that do the work as required.

1. Add a new person entry to this database.

Plan: Create an entry record for he new person and CONS it onto the existing

datatbase list.

(DEFINEQ

(ACM.AddPerson

(LAMBDA (First Middle Last JoinDate RenewalDate SIGs Status)

(SETQ ACM.Members

(CONS

(ACM.CreateACMEntry

(ACM.CreateName First Middle

Last)

(ACM.CreateACMDatesList

JoinDate

RenewalDate)

7LispCourse #26: Reprise; Continuation of #25

SIGs Status)

ACM.Members)))))

2. Return a list of all SIGCHI members in the ACM.

Plan: Iterate through list of entries. For each entry that is a member of SIGCHI,

add it to a list of the SIGCHI members (which is the value of the atom

SIGCHI.Members).

(DEFINEQ

(ACM.SIGCHIMembers

(LAMBDA NIL

(SETQ SIGCHI.Members NIL)

(FOR Entry in ACM.Members DO

(COND

((MEMBER ’SIGCHI (ACM.SIGS Entry))

(SETQ SIGCHI.Members

(CONS Entry

SIGCHI.Members))))

SIGCHI.Members)))

8LispCourse #26: Reprise; Continuation of #25

3. Given a last name, update that person’s membership status to Member.

Plan: Iterate through list of entries. For the entry that matches on last name,

change the Status field.

(DEFINEQ

(ACM.ChangeStatusToMember

(LAMBDA (LastName)

(FOR Entry in ACM.Members DO

(COND

((EQUAL LastName

(ACM.LatName (ACM.Name

Entry)))

 (ACM.Status Entry ’Member)))))))

4. Given a last name and a date, update that person’s last renewal date.

Plan: Iterate through list of entries. For the entry that matches on last name,

change the renewal date.

(DEFINEQ

(ACM.ChangeRenewalDate

(LAMBDA (LastName NewRenewalDate)

(FOR Entry in ACM.Members DO

(COND

((EQUAL LastName

(ACM.LatName (ACM.Name

Entry)))

 (ACM.RenewalDate

(ACM.DatesList Entry)

NewRenewalDate)))))))

9LispCourse #26: Reprise; Continuation of #25

Step 4: Save your work on a file and list it.

Decide to call the file ACMLIST.

Set up the COMS list for MAKEFILE

(SETQ ACMLISTCOMS (QUOTE (

(RECORDS ACMEntry Name ACMDates Date)

(VARS ACM.Members)

(* * Constructors, Selectors, and Mutators)

(FNS ACM.CreateName ACM.FirstName ACM.MiddleName

ACM.LastName)

(FNS ACM.CreateDate ACM.Day ACM.Month ACM.Year)

(FNS ACM.CreateACMDateList ACM.JoinDate

ACM.RenewalDate)

(FNS ACM.CreateACMEntry ACM.Name ACM.DatesList

ACM.SIGs ACM.Status)

(* * Work-doing functions)

(FNS ACM.AddPerson ACM.SIGCHIMembers

ACM.ChangeStatusToMember ACM.ChangeRenewalDate)

)))

Do the MAKEFILE

(MAKEFILE ’{PHYLUM}<HALASZ>LISPCOURSE>ACMLIST)

Do the LISTFILES

(LISTFILES {PHYLUM}<HALASZ>LISPCOURSE>ACMLIST)

Step 5: Test, Debug, and redo the MAKEFILE.

EFS.

10LispCourse #26: Reprise; Continuation of #25

Continuation from #25: Editing Record/Datatype Declarations and Instances

Examining and Editing Record/Datatype Declarations: RECLOOK and EDITREC

To see the declaration for record or datatype named RecordName, use

(RECLOOK RecordName).

61_ (RECORD ACMDate (Month Day Year) Month _ 01 Day _ 01 Year

_ 00)

ACMDate

62_ (RECLOOK ’ACMDate)

(RECORD ACMDate (Month Day Year) Month _ 01 Day _ 01 Year _ 00)

63_ (DATATYPE ACMDate (Month Day Year))

(record ACMDate redeclared)

ACMDate

64_ (RECLOOK ’ACMDate)

(DATATYPE ACMDate (Month Day Year))

To edit (i.e., change) the declaration for record or datatype named RecordName,

use (EDITREC RecordName). [EDITREC is an NLAMBDA function]

This will pop you into a DEdit on the record/datatype declaration. If you

exit DEdit with OK, the record/datatype will be redeclared. If you exit

with Stop, no change in the declaration will happen.

(EDITREC ACMDate)

11LispCourse #26: Reprise; Continuation of #25

Examining and Editing Record/Datatype Instances: The Inspector

To examine or change the value of a field in a record/datatype instance, use the

Inspector. The Inspector is called as follows:

(INSPECT Instance)

If Instance is a record, then a menu will be displayed with the following choices:

DisplayEdit, TtyEdit, Inspect, AsRecord.

Choose: AsRecord

This will bring up a menu of all the RECORD types in the system.

Choose the appropriate record type from this menu (e.g., choose

ACMDate if the record is an ASCMDate).

Finally, his brings up an Inspect window (after prompting for a location)

displaying the fields and values of the fields for the given Instance of the

chosen record type.

12LispCourse #26: Reprise; Continuation of #25

If Instance is a datatype, then an Inspect window will be displayed immediately

(after prompting for a location) showing the fields and values of the fields for the

given Instance.

An Inspect window looks as follows:

75_ (RECORD ACMDate (Month Day Year) Month _ 01 Day _ 01 Year _ 00)

ACMDate

76_ (SETQ Test (CREATE ACMDate Month _ March Year _ 85 Day _ 25))

(March 25 1985)

77_ (INSPECT Test)

{WINDOW}#33,123456

The Inspect window has two columns:

The Left-hand column lists the field names of the ACMDate record type.

The Right-hand column lists the corresponding values of these fields in

the instance being inspected.

You can select any item in the Inspect window by pointing to it an clicking the

LEFT mouse button. The selected item will be inverted.

You can act on the selected item by clicking the MIDDLE mouse button

anywhere inside the Inspect window. The action taken depends on whether the

selected items is a field (left column) or a value (right column).

13LispCourse #26: Reprise; Continuation of #25

If the selected item is a field: You can change the value for that field as

follows:

Clicking the MIDDLE button will bring up a menu of one item:

Set

Choose this item. (selecting off the menu aborts the interchange)

This will bring up a small prompt box above the Inspect window.

Type an S-expression that will evaluate to the new value

you wish the field to have. This expression will be

evaluated and the value of the selected field will be set to

the result.

If the selected item is a value: (INSPECT value) will be evaluated. This

is useful for Inspecting embedded record structures.

14LispCourse #26: Reprise; Continuation of #25

Example: Inspecting an ACMEntry instance

Selecting the value of the Name field using the LEFT

button

Clicking the MIDDLE button to INSPECT the name value.

Note: the interaction sequence to bring up the

second inspector is the same as for the first

inspector, i.e., I had to specify AsRecord and choose

the Name record type from the menu of all record

types.

To get rid of an Inspect window ž just close it using the RIGHT button menu.

Using the Inspector

15LispCourse #26: Reprise; Continuation of #25

The inspector is very useful to examine your data structures in an

interpretable way while you are debugging.

For example:

Consider the RECORD definitions given in the ACM problem above.

Consider the sample database:

 (SETQ ACM.Members

’(((Jones JoAnn A) Member ((23 10 75)(01 10 84))(SIGCHI

SIGART))

 ((Smith Bill B) Associate ((12 03 82)(01 04 85))(SIGOA))

 ((Jerzy Jill Jane) Student ((15 09 80)(14 09 84)) NIL)))

None of our functions we defined above would work on this sample

database. Why? A quick inspect shows why.

1. Inspect the first entry: (INSPECT (CAR ACM.Members))

Notice that the fields and values don’t quite match up; e.g.,

Status field is a list.

2. Notice that Name doesn’t look quite right. So Inspect it.

16LispCourse #26: Reprise; Continuation of #25

Notice that the fields and values don’t quite match up in the

name either; e.g., Last name field is a middle initial.

Bottom line: Either the sample database is in error or our RECORD

declarations are in error. In this case, its the former.

References

The Inspector is described in Section 20.4 of the IRM.

EDITREC and RECLOOK are in Section 3.7 of the IRM.

Exercise

For the following exercise, it might be handy to know about the following embellishment

of the FOR loop:

(FOR Variable IN List WHEN Predicate DO S-Exprs)

Instead of executing the S-Exprs following the DO on every iteration, this FOR loop

evaluates the Predicate following the WHEN on every iteration. If Predicate evaluates

to a non-NIL value, then the S-exprs following DO are evaluated. If Predicate evaluates

to NIL, then the FOR loop skips the S-exprs after the DO on this iteration.

Note that the WHEN clause works with COLLECT as well as DO.

Examples:

76_(FOR A IN ’((T 1)(NIL 2)(T 3)(NIL 4))

WHEN (CAR A) COLLECT (CADR A))

(1 3)

17LispCourse #26: Reprise; Continuation of #25

77_(FOR A IN ’((T 1)(NIL 2)(T 3)(NIL 4))

WHEN (NULL (CAR A)) COLLECT (CDR A))

((2) (4))

Exercise from Touretzky, p. 179. (See following few pages)

F.G.H.

5/14/85

LispCourse #27: Homework from #26; Completion of #25 & #26

Solution to Homework from #26 is attached.

F.G.H.

5/16/85

LispCourse #28: Type Checking; Strings; Arrays

Type Checking in Interlisp

The Concept of Type Checking

Many programming languages insist that each parameter to a function be typed ÿ

i.e., that it be declared to be a variable whose value is a given type of data (e.g.,

an litatom, a number, or a list).

In these languages when you call a function, the language checks the type

of each argument in the argument list to make sure that it matches the

declared type of each parameter in the parameter list.

An error results if you call a function with arguments of the wrong type.

Example from PASCAL:

function SumOfSquares (X: INTEGER, Y: INTEGER): INTEGER

BEGIN

SumOfSquares := (X * X) + (Y * Y)

END

This PASCAL function definition says that SumOfSquares is a function

that takes two integer arguments and returns an integer.

Therefore:

(SumOfSquares 2 3) is okay

But (SumOfSquares "Foo" 4) causes an immediate error because

"Foo" is not an integer, but a string of characters.

The error will say something like "First argument to

SumOfSquares is not an integer as required."

Note that (SumOfSquares 1.234 4) also causes an error because

1.234 is not an integer, but a floating point number.

2LispCourse #28: Type Checking; Strings; Arrays

Interlisp does not do this type checking. You do not have to declare the expected

type of a parameter in your function definitions AND Interlisp does not check the

type of the arguments when you call the function.

Example:

(DEFINEQ

(SumOfSquares

(LAMBDA (X Y)

(PLUS (TIMES X X)(TIMES Y Y))))))

(SumOfSquares 2 3) works fine and returns an integer, 13.

(SumOfSquares 1.234 4) also works fine, but returns a floating point

number 17.52276.

But, (SumOfSquares ’Foo 4) will cause an error (i.e., a BREAK).

The error will occur somewhere deep inside the SumOfSquares function

and the error message will not reflect the real problem ž i.e., that the

argument to SumOfSquares was of the wrong type.

3LispCourse #28: Type Checking; Strings; Arrays

Note that the error occurs in FTIMES, not in SumOfSquares where it

really should have happened.

In this case, its easy to trace back to see that in fact SumOfSquares

has a bad argument. But if these were complex functions

embedded many levels deep, it could be very difficult to figure out

where the ’Foo that tripped up the FTIMES actually came from.

This example points out both the strengths and weaknesses of the Interlisp

scheme of no type checking.

The strength is that you can easily write a single function that handles

many different kinds of data ÿ e.g., both integers and floating numbers.

The weakness is that data of the wrong type may be passed through many

layers of a program before an error is tripped up. When this happens, it is

very difficult to trace where the bad data came from.

4LispCourse #28: Type Checking; Strings; Arrays

Adding type checking to your Interlisp functions

The solution to Interlisp’s lack of explicit type checking is to judiciously add type

checking to the functions you write.

The basic goal of type checking is to catch data of the wrong type at the earliest

point at which you can detect that it is wrong.

In particular, at any point where new data enters the system ž e.g., at user

type-in or when reading from a database ž make sure the data is of the type

expected.

For example, if you are getting information from a user to add to

the database, check the arguments to the add-to-database function

to make sure that the user is entering the correct type of data.

Also, at any other point where there is a possibilty of a wrong type of data

being passed to a function, check the type of the arguments within that

function.

It is important to type check only where necessary because type checking does

take some time.

Too much type checking will make your program very inefficient.

On the other hand, with too little type checking your program may not run

at all.

Type Checking Technique

To check the arguments being passed to a function, just put a COND clause at the

beginning of the function. The COND should have a cluase for each parameter

that aborts the function and reports an error to the user if the value of the

parameter is not an allowable type (i.e., if the calling function had an incorrectly

typed argument).

5LispCourse #28: Type Checking; Strings; Arrays

Example:

(DEFINEQ

(SumOfSquares (LAMBDA (X Y)

(COND

((NOT (NUMBERP X))

(ERROR "Incorrect first argument to

SumOfSquares -- must be a number. But it

is --" X))

((NOT (NUMBERP Y))

(ERROR "Incorrect second argument to

SumOfSquares -- must be a number. But it

is --") Y)

(T

(PLUS (TIMES X X)(TIMES Y Y)))))))

Second Example:

Define a function to return the tail of a list starting from its second

to last element.

6LispCourse #28: Type Checking; Strings; Arrays

(DEFINEQ

(SecondFromLast (LAMBDA (List)

(* * Return the tail of a list starting from its second

to last element. Make sure List is in fact a list and

is of length 2 or more.)

(COND

((NOT (LISTP List))

(ERROR "SecondFromLast:

Argument must be a list. It is --"

List))

((LESSP (LENGTH List) 2)

(ERROR "SecondFromLast: List

argument must be at least 2 items

long. Its current length is --"

(LENGTH List)))

(T

(NTH List (DIFFERENCE

(LENGTH List) 2)))))))

7LispCourse #28: Type Checking; Strings; Arrays

Type checking predicates

The predicates necessary for checking the type of a given piece of data have

already been discussed.

LispLecture #4 (page 3), discusses the predicates LITATOM,

NUMBERP, and LISTP that check if their argument is of type litatom,

number, and list, respectively.

LispLecture #25 (page 13) discusses the TYPE? statement that allows one

to build predicates that check if their argument is a particular type of

RECORD or a particular DATATYPE.

The next section contains an overview of the types of data in Interlisp, including

the predicates that check for each of the types.

8LispCourse #28: Type Checking; Strings; Arrays

Overview of the Types of Data in Interlisp

Below is a list of the types of data supported by Interlisp. In parentheses following each

data type is the predicate that checks for that data type.

Primitive data types (those provided as part of the core Interlisp system).

Atoms (ATOM)

Litatoms (LITATOM)

Numbers (NUMBERP)

Integers (FIXP)

Floating Point Numbers (FLOATP)

Lists (LISTP)

[Prop Lists]

[Assoc Lists]

Strings (STRINGPs)

Arrays (ARRAYPs)

Compound data types (those built by combining primitive data types)

RECORDs

RECORDs defined by the Interlisp implementors

SKETCHs (TYPE? SKETCH)

GRAPHs (no type checking predicate!)

...

User defined RECORDs (TYPE? RecordName)

DATATYPEs

DATATYPEs defined by the Interlisp implementors

BITMAPs (BITMAPP)

9LispCourse #28: Type Checking; Strings; Arrays

HARRAYs (HARRAYP)

WINDOWs (WINDOWP)

PROCESSes (PROCESSP)

STREAMs (STREAMP)

...

User defined DATATYPEs (TYPE? DataTypeName)

Print Names

Every data object in Interlisp has something called a print name (often called a pname).

A data object’s print name is the thing that gets printed when Lisp needs to communicate

with the outside world ÿ e.g., in the PRINT phase of the READ-EVAL-PRINT loop.

Examples:

Atoms: the print name is the name of the atom. E.g., FOOBAR.

Lists: the print name starts with a "(", followed by the print names of all of the

items in the list separated by spaces, followed by a ")". E.g., (1 (2 3) A).

DATATYPES: the print name is the DatatypeName in "{ }" followed by some

numbers. E.g., {WINDOW}#65,12345 and {PROCESS}#12,12399

Print names are NOT unique.

For example:

{WINDOW}#65,1234 is the print name for some window. But it is also

the print name for an atom whose name (i.e., print name) is exactly

{WINDOW}65,1234.

For some data types, the Lisp object can be referred to by typing its print nameinto the

Lisp Exec.

For example, to refer to an atom, you just type its print name (i.e., its name) into

the Lisp Exec.

10LispCourse #28: Type Checking; Strings; Arrays

For other data types, the print name is just for printing; you can’t type it back into the

Lisp exec to refer to the object.

For example, if you type in {WINDOW}#65,12345 into the Lisp Exec, the Lisp

Exec will think you mean the atom by that name, not the window that has that

pname.

Arrays

An array is a primitive data type that represents a fixed number (N) of other Interlisp

objects stored in a one-dimensional vector.

An Array with 7 Elements

1: (1 2 3 (3 4))

4442:
FooBar3:

{WINDOW}#1,22344:
(List of Elements)5:

1.23456:
{PROCESS}#1,22347:

Think of an array as a set of mailboxes arranged in one column and N rows. In

each mailbox is some arbitrary Interlisp object (an atom, a list, a window, etc.)

You can get at any object stored in the array of mailboxes only by specifying the

row number of the mailbox it is stored in.

Alternatively, an array is like a RECORD with N fields, but the fields can be

accessed by number only and not by name.

An array is also like a list, but it has a fixed length: you can’t add or remove

elements from an array.

11LispCourse #28: Type Checking; Strings; Arrays

Moreover, you can’t deal with parts of the array as a single entity as you

can a list (e.g., there is no operation like CDR for arrays).

For certain applications, arrays are much more efficient than lists.

In general, however, any program that uses arrays can be rewritten using lists ÿ

with possible loss of efficiency and elegance.

Array manipulation functions

Interlisp has a number of functions that allow you to manipulate arrays, i.e., to

create arrays, to access the objects stored in an array, etc.

Creating arrays

(ARRAY Size) ž Creates an array of size Size (i.e., with Size entries).

Returns (a pointer to) the array. The array is initialized to have every

element contain NIL.

Example:

1_(SETQ MyArray (ARRAY 10))

{ARRAY}#65,51054

2_MyArray

{ARRAY}#65,51054

Array predicate

(ARRAYP Arg) ž Returns Arg if Arg is an array, NIL otherwise.

Examples:

3_(ARRAYP MyArray)

{ARRAY}#65,51054

4_(ARRAYP 10)

NIL

5_ (ARRAYP (LIST 1 2 3 4 5))

NIL

6_ (ARRAYP ’ARRAY)

12LispCourse #28: Type Checking; Strings; Arrays

NIL

Accessing the entries of an array

(SETA Array N Value) ž Sets the Nth element of Array to have the value

Value (i.e., puts the Lisp object specified by Value into the Nth element of

Array).

Examples:

7_(SETA MyArray 1 (LIST 1 2 3))

(1 2 3)

8_(SETA MyArray 2 (PLUS 2 3))

5

9_ (SETA MyArray 12 15)

ILLEGAL ARG

12

10_ (SETA MyArray 3 15)

15

(ELT Array N) ž Returns the Lisp object stored in the Nth element of

Array.

Examples:

11_(ELT MyArray 1)

(1 2 3)

12_(ELT MyArray 2)

5

13_ (ELT MyArray 12)

ILLEGAL ARG

12

14_ (ELT MyArray 5)

NIL

Finding out the size of an array

13LispCourse #28: Type Checking; Strings; Arrays

(ARRAYSIZE Array) ž Returns the size of array Array.

Example:

15_(ARRAYSIZE MyArray)

10

16_ (ARRAYSIZE (ARRAY 50))

50

Using arrays

Problem:

Imagine you work for a company that has 20 products (numbered 1 thru

20). Each product has a "list price" and an "our price".

1. Write a function that takes a product number and returns the "list

price".

2. Write a function that takes a product number and returns the "our

price".

3. Write a function that replaces the price entry field with the atom

OutOfStock for a given product number.

Solution:

Store the data in an array of size 20, where each entry is a RECORD

called Prices with 2 fields named ListPrice and OurPrice.

(SETQ PriceArray (ARRAY 20))

(SETA PriceArray 1 (CREATE Prices ListPrice _ 1.00 OurPrice

1.25))

... {Fill in rest of proce array with values}

(DEFINEQ

(LC.ListPrice (LAMBDA (ProductNumber)

14LispCourse #28: Type Checking; Strings; Arrays

(fetch (Prices ListPrice) of

(ELT PriceArray ProductNumber)))

(LC.OurPrice (LAMBDA (ProductNumber)

(fetch (Prices OurPrice) of

(ELT PriceArray ProductNumber)))

(LC.MarkOutOfStock (LAMBDA (ProductNumber)

(SETA PriceArray ProductNumber ’OutOfStock))))

The advantage of using an array in this case is that you need to get to and

CHANGE any element of the data structure at any time.

This is easy with arrays using ELT and SETA.

It is harder with lists.

First, (CAR (NTH List N)) takes longer than (ELT Array N).

Second, there is no easy way to do SETA with list structures.

(Though we will learn how to do so not easily later!!!).

15LispCourse #28: Type Checking; Strings; Arrays

Strings

Strings are a primitive data type in Interlisp used for representing sequences of

characters. (As opposed to atoms which are used as symbols for arbitrary objects.)

A string is an arbitrary sequence of characters, including spaces and tabs.

The print name of a string encloses the characters in the string in double quotes.

Examples:

"B"

"abc"

"Frank G. Halasz"

"This is a very long string. It consists of several sentences. The sentences

are separated by spaces."

Strings can be from 0 to any number of characters in length.

The string "" is the empty string having 0 characters.

Strings can contain any characters except the double quote character and %.

To include these characters they must be preceded by the % escape as in atom

names.

Example:

"String with single %% percent sign"

String manipulation functions

Interlisp has a number of functions that allow you to manipulate strings, i.e., to

create strings, to concatenate strings, to decompose strings, to search through

strings, etc.

String predicate

(STRINGP Arg) ž Returns Arg if Arg is a string, NIL otherwise.

Examples:

16LispCourse #28: Type Checking; Strings; Arrays

1_(STRINGP "ABC")

"ABC"

2_(STRINGP ’ABCDEF)

NIL

3_(STRINGP (LIST 1 2 3 4))

NIL

8_(STRINGP (TEDIT))

NIL

Creating strings

(MKSTRING Arg) ž If Arg is already a string, returns Arg. Otherwise,

makes and returns a string containing the print name of Arg.

Examples:

5_(MKSTRING "ABC")

"ABC"

6_(MKSTRING ’ABCDEF)

"ABCDEF"

7_(MKSTRING (LIST 1 2 3 4))

"(1 2 3 4)"

8_(MKSTRING (TEDIT))

"{PROCESS}#61,130000"

(ALLOCSTRING N Character) ž Returns a string N characters long

where each character is Character. Character can be a single character

string/atom or a character code (see LispCourse #10, page 5)

Examples:

9_(ALLOCSTRING 5 "A")

"AAAAA"

10_(ALLOCSTRING 15 ’B)

"BBBBBBBBBBBBBBB"

11_(ALLOCSTRING (PLUS 3 4) 63)

"???????"

17LispCourse #28: Type Checking; Strings; Arrays

12_(ALLOCSTRING 7 (CHARCODE ?))

"???????"

Comparing strings

(STREQUAL Str1 Str2) ž Returns T is Str1 and Str2 are both strings and

contain the same sequence of characters.

Examples:

13_(STREQUAL "ABCDEF "ABCDEF")

T

14_(STREQUAL (ALLOCSTRING 5 ’A) "AAAAA")

T

15_(STREQUAL ’A "A")

NIL

16_(STREQUAL (MKSTRING ’AAA)(ALLOCSTRING 3

"A"))

T

Concatenating strings

(CONCAT Str1 Str2 ...) ž Returns a new string that consists of the

concatenation of the characters in Str1, Str2, Str3 If any StrI is not a

string, the MKSTRING of that STRI is used instead of StrI.

Examples:

17_(CONCAT "ABCDEF "GHIJKL")

"ABCDEFGHIJKL"

18_(CONCAT (ALLOCSTRING 5 ’A) "FOO BAR")

"AAAAAFOO BAR"

19_(CONCAT 1234 " " 5678 " " (LIST 9 0))

"1234 5678 (9 0)"

20_(CONCAT "This is the kind of value that TEdit returns

-- " (TEDIT))

18LispCourse #28: Type Checking; Strings; Arrays

"This is the kind of value that TEdit returns --

{PROCESS}#61,130000"

Decomposing strings

(SUBSTRING Str Start End) ž Returns a new string that consists of the

characters of Str starting at character number Start and ending at character

number End.

If End is NIL, the last character of Str is used.

If Start or End are negative, they are interpreted as being positions

from the end of Str.

Examples:

21_(SUBSTRING "ABCDEF 2 4)

"BCD"

22_(SUBSTRING "FOO BAR" 4)

" BAR"

23_(SUBSTRING "FOO BAR" ÿ3)

"BAR"

24_(SUBSTRING "FOO BAR" 2 -2)

"OO BA"

Searching strings

(STRPOS Pattern String Start SkipChar) ž Searches through string String

looking for any sequences of characters that matches the characters in

string Pattern. If a match is found, STRPOS returns the number of the

character in String where the match starts. If no match is found, STRPOS

returns NIL.

If Start is specified, the search begins at character number Start in

String.

If SkipChar is specified, any instance of SkipChar in the Pattern

string will match any character in String. (SkipChar is the

wildcard character).

19LispCourse #28: Type Checking; Strings; Arrays

If Pattern and/or String are not strings, their MKSTRINGs will be

used instead.

Examples:

25_(STRPOS "Q" "ABCDEF")

NIL

26_(STRPOS "D" "ABCDEF")

4

27_(STRPOS "C*E" "ABCDEF" NIL "*")

3

28_(STRPOS "O" "FOO BAR" 4)

NIL

Using Strings

Given a list of strings of the format: "Name: Last,First".

Write a function to extract all names with "sz" in them. The function should

return a list of strings with the format "First Last".

(DEFINEQ

(LC.szP (LAMBDA (String)

(* * Does String have an sz in it?)

(OR (STRPOS "sz" String)

(STRPOS "Sz" String)

(STRPOS "sZ" String)

(STRPOS "SZ" String))))

(LC.GetLastName (LAMBDA (String)

(* * Extract the last name from the string)

(SUBSTRING String

(PLUS 1 (STRPOS " " String))

(DIFFERENCE (STRPOS "," String) 1))))

(LC.GetFirstName (LAMBDA (String)

20LispCourse #28: Type Checking; Strings; Arrays

(* * Extract the first name from the string)

(SUBSTRING String (PLUS 1 (STRPOS "," String)))))

(LC.FindSzNames (LAMBDA (List)

(* * Extract all names with sz in the last name)

(FOR Entry in List

WHEN (LC.szP Entry)

COLLECT

(CONCAT

(LC.GetFirstName Entry)

" "

(LC.GetLastName Entry))))))

6_(SETQ TestList (QUOTE
("Name: Halasz,Frank" "Name: Smith, Sam"
"Name: Beals, Szmatha" "Name: Schatz,Sheila")))

("Name: Halasz,Frank" "Name: Smith, Sam" "Name: Beals, Szmatha"
"Name: Schatz,Sheila")
7_(LC.szP (CAR TestList))
11
8_(LC.GetFirstName (CAR TestList))
"Frank"
9_(LC.GetLastName (CAR TestList))
"Halasz"
10_(LC.FindSzNames TestList)
("Frank Halasz" " Szmatha Beals")

References

In general, primitive data types are covered in Chapter 2 of the IRM.

Arrays are covered in Section 2.7.

Strings are covered in Section 2.6.

F.G.H.

5/21/85

LispCourse #29: Solutions for Homework #28

Sample solution functions attached.

Sample Run:
20_(LC.CreateDatabase ’TestDB]

NIL

21_(LC.AddEntry ’TestDB ’Frank ’G. ’Halasz 331404999 15 04

84 11000)

(((Frank G. Halasz) 331404999 (15 4 84) 11000))

22_(LC.AddEntry (QUOTE TestDB)

 (QUOTE George)

 (QUOTE B.)

 (QUOTE Smith)

 100455467 5 6 83 17000)

(((George B. Smith) 100455467 (5 6 83) 17000) ((Frank G. Halasz)

331404999 (15 4 84) 11000))

23_(LC.AddEntry (QUOTE TestDB)

 (QUOTE Ann)

 (QUOTE Q.)

 (QUOTE Merrick)

 345223431 14 2 80 29000)

(((Ann Q. Merrick) 345223431 (14 2 80) 29000) ((George B. Smith)

100455467 (5 6 83) 17000) ((Frank G. Halasz) 331404999 (15 4 84)

11000))

24_(LC.AddEntry (QUOTE TestDB)

 (QUOTE Zoltan)

 (QUOTE Z.)

 (QUOTE Zolka)

 995761234 01 1 27 98000)

(((Zoltan Z. Zolka) 995761234 (1 1 27) 98000) ((Ann Q. Merrick)

345223431 (14 2 80) 29000) ((George B. Smith) 100455467 (5 6 83)

17000) ((Frank G. Halasz) 331404999 (15 4 84) 11000))

25_(LC.AddEntry (QUOTE TestDB)

 (QUOTE Arnie)

 (QUOTE A.)

 (QUOTE Aardvark)

 100101000 12 12 85 10000)

2LispCourse #29: Solutions for Homework #28

(((Arnie A. Aardvark) 100101000 (12 12 85) 10000) ((Zoltan Z.

Zolka) 995761234 (1 1 27) 98000) ((Ann Q. Merrick) 345223431 (14 2

 80) 29000) ((George B. Smith) 100455467 (5 6 83) 17000) ((Frank

G. Halasz) 331404999 (15 4 84) 11000))

26_(LC.AddEntry (QUOTE TestDB)

 (QUOTE Melinda)

 (QUOTE F.)

 (QUOTE Twiddle)

 446891876 25 8 76 34000)

(((Melinda F. Twiddle) 446891876 (25 8 76) 34000) ((Arnie A.

Aardvark) 100101000 (12 12 85) 10000) ((Zoltan Z. Zolka) 995761234

 (1 1 27) 98000) ((Ann Q. Merrick) 345223431 (14 2 80) 29000) ((

George B. Smith) 100455467 (5 6 83) 17000) ((Frank G. Halasz)

331404999 (15 4 84) 11000))

27_(LC.SortDatabaseByField ’TestDB ’SS#]

(((Arnie A. Aardvark) 100101000 (12 12 85) 10000) ((George B.

Smith) 100455467 (5 6 83) 17000) ((Frank G. Halasz) 331404999 (15

4 84) 11000) ((Ann Q. Merrick) 345223431 (14 2 80) 29000) ((

Melinda F. Twiddle) 446891876 (25 8 76) 34000) ((Zoltan Z. Zolka)

995761234 (1 1 27) 98000))

28_PP IT

 (((Arnie A. Aardvark)

 100101000

 (12 12 85)

 10000)

 ((George B. Smith)

 100455467

 (5 6 83)

 17000)

 ((Frank G. Halasz)

 331404999

 (15 4 84)

 11000)

 ((Ann Q. Merrick)

 345223431

3LispCourse #29: Solutions for Homework #28

 (14 2 80)

 29000)

 ((Melinda F. Twiddle)

 446891876

 (25 8 76)

 34000)

 ((Zoltan Z. Zolka)

 995761234

 (1 1 27)

 98000))

(IT)

29_(LC.SortDatabaseByField (QUOTE TestDB)

(QUOTE Salary]

(((Arnie A. Aardvark) 100101000 (12 12 85) 10000) ((Frank G.

Halasz) 331404999 (15 4 84) 11000) ((George B. Smith) 100455467 (5

 6 83) 17000) ((Ann Q. Merrick) 345223431 (14 2 80) 29000) ((

Melinda F. Twiddle) 446891876 (25 8 76) 34000) ((Zoltan Z. Zolka)

995761234 (1 1 27) 98000))

30_PP IT

 (((Arnie A. Aardvark)

 100101000

 (12 12 85)

 10000)

 ((Frank G. Halasz)

 331404999

 (15 4 84)

 11000)

 ((George B. Smith)

 100455467

 (5 6 83)

 17000)

 ((Ann Q. Merrick)

4LispCourse #29: Solutions for Homework #28

 345223431

 (14 2 80)

 29000)

 ((Melinda F. Twiddle)

 446891876

 (25 8 76)

 34000)

 ((Zoltan Z. Zolka)

 995761234

 (1 1 27)

 98000))

(IT)

31_(LC.SortDatabaseByField (QUOTE TestDB)

(QUOTE Name]

(((Arnie A. Aardvark) 100101000 (12 12 85) 10000) ((Frank G.

Halasz) 331404999 (15 4 84) 11000) ((Ann Q. Merrick) 345223431 (14

 2 80) 29000) ((George B. Smith) 100455467 (5 6 83) 17000) ((

Melinda F. Twiddle) 446891876 (25 8 76) 34000) ((Zoltan Z. Zolka)

995761234 (1 1 27) 98000))

32_PP IT

 (((Arnie A. Aardvark)

 100101000

 (12 12 85)

 10000)

 ((Frank G. Halasz)

 331404999

 (15 4 84)

 11000)

 ((Ann Q. Merrick)

 345223431

 (14 2 80)

 29000)

 ((George B. Smith)

5LispCourse #29: Solutions for Homework #28

 100455467

 (5 6 83)

 17000)

 ((Melinda F. Twiddle)

 446891876

 (25 8 76)

 34000)

 ((Zoltan Z. Zolka)

 995761234

 (1 1 27)

 98000))

(IT)

33_(LC.SortDatabaseByField (QUOTE TestDB)

(QUOTE StartDate]

(((Zoltan Z. Zolka) 995761234 (1 1 27) 98000) ((Melinda F. Twiddle

) 446891876 (25 8 76) 34000) ((Ann Q. Merrick) 345223431 (14 2 80)

 29000) ((George B. Smith) 100455467 (5 6 83) 17000) ((Frank G.

Halasz) 331404999 (15 4 84) 11000) ((Arnie A. Aardvark) 100101000

(12 12 85) 10000))

34_PP IT

 (((Zoltan Z. Zolka)

 995761234

 (1 1 27)

 98000)

 ((Melinda F. Twiddle)

 446891876

 (25 8 76)

 34000)

 ((Ann Q. Merrick)

 345223431

 (14 2 80)

 29000)

 ((George B. Smith)

6LispCourse #29: Solutions for Homework #28

 100455467

 (5 6 83)

 17000)

 ((Frank G. Halasz)

 331404999

 (15 4 84)

 11000)

 ((Arnie A. Aardvark)

 100101000

 (12 12 85)

 10000))

(IT)

F.G.H.

5/23/85

LispCourse #30: Conceptual Models for Atoms, Lists et al.

Introduction

So far, we’ve been talking about data objects in Lisp in terms of how they appear to us as

programmer’s, i.e., in terms of how we type them in and how they are printed on the

screen.

Example: We defined a list as a thing that begins with a "(", followed by one or

more atoms or lists, and terminated by a ")".

This way of talking is not wrong, but it does not reflect how Lisp itself "thinks" about the

various data objects.

In particular, Lisp translates the data objects that we type-in into an internal

representation. All functions dealing we these data objects then work on this

internal representation of the objects. Only when it comes time to print out some

result, does Lisp translate the internal; representation back into the external

representation (i.e., into the print name described in LispCourse #28, page 9).

You can’t get very far in Lisp programming without understanding something about the

underlying internal representations for atoms, lists, etc.

For example, the semantics of many Lisp functions can be expressed only in

terms of this underlying representation. There are many examples of this below.

There are many levels at which one could describe the internal representation of Lisp

data objects.

For example, the harware actually processes bits that represent numbers and

addresses in its memory.

However, here we will discuss internal representaion at a conceptual level.

The goal is to provide a conceptual model of Lisp data that provides all of the necessary

concepts and mechanism for understanding the semantics of Lisp functions, BUT without

going into the grubby details of how the data is actually implemented at the

hardware/microcode level.

Everything in Lisp is a Pointer

2LispCourse #30: Conceptual Models for Atoms, Lists et al.

The first lesson is that everything in Lisp is a pointer.

A pointer is simply a one-way connection between two data objects. If A points to B,

then we can get to B from A, but not vice versa.

When we say that atom A has the value 5, Lisp represents this by a pointer between the

thing that is the atom A and the thing that is the atom 5.

A

The atom A points to the atom 5

5

Similarly, when we represent the fact that the value of the atom NewList is the list (1 2 3),

Lisp represents that by a pointer between the atom NewList and the thing that represents

the list (1 2 3).

The atom NewList points to the list (1 2 3)

NewList The thing: (1 2 3)

Also, when we say function Foo returns a list, we actually mean that function Foo returns

a pointer to a list.

In some sense, you seldom actually hold a Lisp data object in you hands when

you program in Lisp. Its more like you are holding one end of a rope in your

hand. The other end of the rope is a Lisp data object. You operate in Lisp by

passing around the free end of this rope, e.g., functions return to you a free end of

the rope which you then pass onto other functions, etc.

3LispCourse #30: Conceptual Models for Atoms, Lists et al.

Representing Atoms

In our conceptual model, atoms will be represented by their print name. So to represent

the aton ManyWordAtom, we simply type use ManyWordAtom.

An atom can have three pointers coming from it, representing its value, its prop list and

its function definition.

Example:

AnyAtom Any Function Defintion

A Prop List

Any Lisp Data Object

Function

Value

Prop List

The SET functions (SET, SETQ, SETQQ) can be used to establish the pointer between an

atom and its value.

For example, (SETQ A ’B) sets up a (value) pointer between the atom A and the

atom B.

The function DEFINEQ establishes the pointer between an atom and a function

definition.

For example, (DEFINEQ (MyFunc (LAMBDA NIL (PLUS 1 3)))) sets up a

(function) pointer between the atom MyFunc and the given function definition

(LAMBDA ...).

The function SETPROPLIST establishes the pointer between an atom and a prop list

object.

4LispCourse #30: Conceptual Models for Atoms, Lists et al.

For example, (SETPROPLIST ’MyAtom ’(Size 5)) sets up a (prop list) pointer

between the atom MyAtom and the given prop list.

Note: The functions PUTPROP and GETPROP add to and retrieve from

from the prop list pointed to the given atom.

Representing Lists

The CONS cell

Lists are constructed from basic building blocks called CONS cells.

A CONS cell can be represented by a box divided into two halves. The left half is

called the CAR and the right half is called the CDR.

A CONS cell

CAR CDR

Both the CAR and the CDR portions of a CONS cell contain pointers to other

Lisp data objects.

A CONS cells is printed as a dotted pair, (X . Y), where X is the print name of the

thing pointed to by the CAR of the CONS cell and Y is the print name of the thing

pointed to by the CDR.

5LispCourse #30: Conceptual Models for Atoms, Lists et al.

The CONS cell: (55 . 789)

CDRCAR

55 789

Creating a CONS cell is done using the function CONS.

Example: (CONS 55 789) prints the result (55 . 789) and actually creates

a CONS cell like the one shown above.

Second example: (CONS ’A ’FooBar) prints the result (A . FooBar) and

actually creates a CONS cell like the one shown below.

The result of (CONS ’A ’FooBar)

CDRCAR

A FooBar

Lists are built from CONS cells

Lists are constructed from CONS cells in the following manner:

There is a CONS cell for each item in the list.

The CAR of the CONS cell points to the item.

6LispCourse #30: Conceptual Models for Atoms, Lists et al.

The CDR of the CONS cell points to the CONS cell for the next item in

the list.

The CDR of the CONS cell for the last item in the list (i.e., where there is

no next item) points to the atom NIL.

Example: Representation of the list (1 2 3 4)

1 2

The list (1 2 3 4)

4 NIL

3

7LispCourse #30: Conceptual Models for Atoms, Lists et al.

8LispCourse #30: Conceptual Models for Atoms, Lists et al.

Second example: Representation of the list (Fe Fie (Fum Fu))

Fe Fie

The list (Fe Fie (Fum Fu))

Fum

NIL

Fu

NIL

9LispCourse #30: Conceptual Models for Atoms, Lists et al.

10LispCourse #30: Conceptual Models for Atoms, Lists et al.

Third example: Representation of the list ((Yes No)(Black White))

The list ((Yes No)(Black White))

NIL

NIL

Black White

Yes No

NIL

Fourth example: The result of (SETQ XYZ ’(Foo Bar))

The result of (SETQ XYZ ’(Foo Bar))

NIL

Foo Bar

XYZ

Value

Function

Prop List

11LispCourse #30: Conceptual Models for Atoms, Lists et al.

CAR and CDR revisited

CAR and CDR can be defined in terms of CONS cells as follows:

CAR ž returns contents of the CAR part of the CONS cell pointed to by its

argument.

CDR ž returns contents of the CDR part of the CONS cell pointed to by its

argument.

Note: when the CONS cell is part of list, then the CDR part points

to the CONS cell that begins the rest of the list as per our previous

definition of CDR.

1 2

The list (1 2 3)

3

NIL

CAR returns
this pointer

CDR returns
this pointer

CONSing onto a list and LIST revisited

Recall that CONS creates a new CONS cell with the first argument as its CAR

and the second argument as its CDR.

When the second argument is a list (i.e., a pointer to the first CONS cell in a list)

then the result is a new list with a different CONS cell at the head of the list.

Example: (SETQQ B (1 2)) then (SETQ B (CONS ’A B))

12LispCourse #30: Conceptual Models for Atoms, Lists et al.

After (SETQQ B (1 2))

NILB

1 2

After (SETQ B (CONS ’A B))

NIL

21

B

A

New CONS cell

13LispCourse #30: Conceptual Models for Atoms, Lists et al.

14LispCourse #30: Conceptual Models for Atoms, Lists et al.

Second example: (SETQQ B (1 2)) then (SETQ C (CONS ’A B))

After (SETQQ B (1 2))

NILB

1 2

After (SETQ C (CONS ’A B))

NIL

21

B

A

New CONS cell

C ???

C

The function LIST constructs a list with its arguments as the items in the list.

Example: (LIST 1 2 3 ’(3 4)) returns the list (1 2 3 (3 4)). LIST works by

successive CONSes, i.e., by building the list one CONS cell at a time.

EFS: Define the function NewLIST using the CONS function.

APPEND revisited

APPEND works very differently from CONS.

In particular, APPEND copies all but the last list it is appending before it

does the append.

15LispCourse #30: Conceptual Models for Atoms, Lists et al.

It then changes the last CDR cell in each copy to point to the head of the

next copy rather than to NIL.

Example: (SETQQ B (1 2)), (SETQQ C (3 4)) then (SETQ D (APPEND B

C))

NILB

1 2

C NIL

3 4

NIL

4321

D

NIL

21

B

C

Copies

The COPY function

The function COPY makes a copy of a list by copying all the CONS cells in the

list.

APPEND uses COPY to make its copies.

16LispCourse #30: Conceptual Models for Atoms, Lists et al.

Note: COPY copies only the top-level of a list. If the CAR of any CONS cell

points to another list, then that list is NOT copied.

Example: (SETQQ B ((1 2) (3 4)) then (SETQ C (COPY B))

NIL NIL

NILB

-->1 -->2 -->3 -->4

B NIL

-->1 -->2 NIL -->3 -->4 NIL

C NIL

Copies

RPLACA, RPLACD, and NCONC -- The destructive functions

17LispCourse #30: Conceptual Models for Atoms, Lists et al.

RPLACA, RPLACD, and NCONC are three function that "do surgery on lists."

Unlike APPEND, they don’t make copies and then carry out actions on the

copies, rather they actually change the list they are passed as an argument.

Because of this they are dangerous functions and should be used with some

care!!!!

(RPLACA X Y)ž replaces the CAR of the CONS cell X with a pointer Y.

RPLACA returns X.

Example:

1_(SETQQ A (1 2 3))

(1 2 3)

2_(RPLACA A ’(7 8))

((7 8) 2 3)

Note: No SETQ is necessary because the actual list is changed.

3_ A

((7 8) 2 3)

4_ (RPLACA (CDR A) ’(5 6))

((5 6) 3)

5_ A

((7 8) (5 6) 3)

NIL-->1 -->2 -->3A

18LispCourse #30: Conceptual Models for Atoms, Lists et al.

NIL-->2 -->3A

-->7 -->8 NIL

NIL-->3A

-->7 -->8 NIL

NIL-->6-->5

(RPLACD X Y)ž replaces the CDR of the CONS cell X with a pointer Y.

RPLACD returns X.

Example:

6_(SETQQ A (1 2 3))

(1 2 3)

7_(RPLACD A ’(7 8))

(1 7 8)

Note: No SETQ is necessary because the actual list is changed.

8_ A

(1 7 8)

9_ (RPLACD (CDR A) ’((5 6)))

(7 (5 6))

10_A

19LispCourse #30: Conceptual Models for Atoms, Lists et al.

(1 7 (5 6))

NIL-->1 -->2 -->3A

NIL-->1 -->3A

-->7 -->8 NIL

-->2

Garbage

NIL-->3A

-->7 -->8 NIL

NIL-->6-->5

-->2-->1

NIL

Garbage

(NCONC X1 X2 X3 ...)ž Like APPEND, but does not copy the lists before doing

the list splicing.

20LispCourse #30: Conceptual Models for Atoms, Lists et al.

Example:

11_(SETQQ B (1 2))

(1 2)

12_(SETQQ C (3 4))

(3 4)

13_ (NCONC B C)

(1 2 3 4)

Note: No SETQ is necessary because the actual B list is changed.

14_ B

(1 2 3 4)

15_ C

(3 4)

NIL

-->1 -->2

-->4

B

-->3C

NIL

NIL

-->1 -->2

-->4

B

-->3C

21LispCourse #30: Conceptual Models for Atoms, Lists et al.

Some dangers in using the destructive functions

If you are not careful, RPLACA, RPLACD, and NCONC can cause many strange

things to happen to your list structures.

Two of typical strnage things are changing things you didn’t mean to change and

circular list structures.

Example: Changing what you didn’t mean to change.

Plan: you are going to change A, so you hold on to the original by

SETQing B to the original value of A.

23_(SETQQ A (1 2 3))

(1 2 3)

24_ (SETQ B A)

(1 2 3)

25_ (NCONC A ’(4 5))

(1 2 3 4 5)

26_ A

(1 2 3 4 5)

27_ B

(1 2 3 4 5)

Note that the NCONC effects the value of B even though it is not

mentioned at all in the NCONC function call.

NIL-->1 -->2 -->3A

22LispCourse #30: Conceptual Models for Atoms, Lists et al.

NIL-->1 -->2 -->3A

B

-->1 -->2 -->3A

B

NIL-->5-->4

Second example: Circular lists.

43_(SETQQ B (1 2))

(1 2)

44_(SETQQ C (3 4))

(3 4)

45_ (NCONC B C B)

(1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 ... forever!!!!!!

46_ B

(1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

23LispCourse #30: Conceptual Models for Atoms, Lists et al.

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
4 1 2 3 4 ... forever!!!!!!

46_ C

(3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1
2 ... forever!!!!!!

NIL

-->1 -->2

-->4

B

-->3C

NIL

-->1 -->2

-->4

B

-->3C

24LispCourse #30: Conceptual Models for Atoms, Lists et al.

Representing Datatypes and Arrays

Datatypes and Arrays can be modelled as a fixed-length one-dimensional vector of cells,

each of which contains a pointer to some Lisp data object. Note: the cells are NOT

CONS cells because they contain only a single pointer.

For arrays, the cells are index by number. For Datatypes, the cells are indexed by field

name.

Example:

55_(SETQ Arr (ARRAY 5))

{Array}#6,12345

56_(FOR X IN ’(55 77 23 45 (12 14)) AS I FROM 1 DO (SETA Arr I X))

NIL

Arr

2:

1:

3:

4: 45

23

77

5: --> 12 --> 14 NIL

Second example:

34_(DATATYPE LC.Name (First Last Middle))

LC.Name

35_(SETQ Nm (CREATE LC.Name First _ Frank Last _ Halasz))

{LC.Name}#34,12378

25LispCourse #30: Conceptual Models for Atoms, Lists et al.

Nm

First:

Middle:

Last:

Frank

NIL

Halasz

Representing Strings

The internal representation of a string has two parts: a string pointer and a character

vector.

The string pointer is a cell (not a CONS cell) containing two things:

1. The number of characters in the string.

2. A pointer to the start of the characters for this string in the character

vector.

The character vector is just a sequence of characters.

A pointer to a string is a pointer to the string’s string pointer.

Example: (SETQ Foo "this is a string")

Foo
16

 t | h | i | s | | i | s | | a | | s | t | r | i | n | g |

There can be more characters in the character vector that there in the string.

Example: (SETQ Bar (SUBSTRING Foo 11)) returns "string".

26LispCourse #30: Conceptual Models for Atoms, Lists et al.

Bar
5

 t | h | i | s | | i | s | | a | | s | t | r | i | n | g |

Some functions that create and return strings create only a new string pointer and use an

old character vector. Other functions create both a new string pointer and a new

character vector.

As shown above, SUBSTRING creates just a new string pointer and uses the old

charactre vector.

MKSTRING and ALLOCSTRING create both string pointers and character

vectors.

There are destructive string functions analogous to RPLACA, etc. for lists. These are

GNC, GLC, and RPLSTRING.

GNC ž returns the first character of a string (as an atom) and then removes that

character from the string by updating the string pointer. If the argument is not a

string, it is made into a string using its print name.

Example:

12_(SETQ S "abcd")

"abcd"

13_(GNC S)

a

14_S

"bcd"

15_ (GNC S)

b

16_ S

"cd"

27LispCourse #30: Conceptual Models for Atoms, Lists et al.

S
4

 a | b | c | d

After (SETQ S "abcd")

S
3

 a | b | c | d

After first (GNC S)

S
2

 a | b | c | d

After second (GNC S)

GLC ž returns the last character of a string (as an atom) and then removes that

character from the string by updating the string pointer. If the argument is not a

string, it is made into a string using its print name.

Example:

12_(SETQ S "abcd")

"abcd"

13_(GLC S)

d

14_S

"abc"

15_ (GLC S)

28LispCourse #30: Conceptual Models for Atoms, Lists et al.

c

16_ S

"ab"

S
4

 a | b | c | d

After (SETQ S "abcd")

S
3

 a | b | c | d

After first (GLC S)

S
2

 a | b | c | d

After second (GLC S)

(RPLSTRING String1 N String2) ž changes the character vector of String1 to

include the characters in String2, starting at position N in the String1. N can be

negative just as in SUBSTRING. If String1 and/or String1 are not strings, they

are made into strings using their print names.

Example:

12_(SETQ S "abcd")

"abcd"

29LispCourse #30: Conceptual Models for Atoms, Lists et al.

13_(SETQ R (SUBSTRING S 2))

"bcd"

14_ (RPLSTRING S 2 "xy")

"axyd"

15_ S

"axyd"

Note: since RPLSTRING is destructive, R is messed up too.

16_ R

"xyd"

S
4

 a | b | c | d

After (SETQ S "abcd") and (SETQ R (SUBSTRING S 1))

R 3

S
4

 a | x | y | d

After (RPLSTRING S 2 "xy")

R 3

Sameness and Equality in Lisp: EQ versus EQUAL

Consider the following:

30LispCourse #30: Conceptual Models for Atoms, Lists et al.

1_(SETQ A (LIST 1 2 3))

(1 2 3)

2_ (SETQ B (LIST 1 2 3))

(1 2 3)

Do A and B have the same value? Are the values of A and B equal?

By most peoples definition, the answer is Yes. But in Lisp, the answer is it

depends what you mean by equal.

The values of A and B are equal in the sense that they are both lists

containing the identical sequence of items.

The values of A and B are NOT equal in the sense that they are made up

of entirely different CONS cells. This is because the function LITS works

by creating new CONS cells to make a list out of its arguments (see

above).

The situation is clear if you diagram the two lists.

NILA

B NIL

1 2 3

Contrast the previous situation with the following situation:

1_(SETQ A (LIST 1 2 3))

(1 2 3)

2_ (SETQ B A)

(1 2 3)

Do A and B have the same value? Are the values of A and B equal?

31LispCourse #30: Conceptual Models for Atoms, Lists et al.

By most peoples definition, the answer is Yes. And in Lisp, the answer is Yes.

The values of A and B are equal in the sense that they are both lists

containing the identical sequence of items.

The values of A and B are also equal in the sense that they are made up of

exaclty the same CONS cells. This is because the function SETQ just sets

the value of its first argument to be its second argument without creating

any new structures (see above).

The situation is clear if you diagram the list.

NIL
A

B

1 2 3

Lisp has two concepts of sameness or equality:

1) containing the same "information"

2) being exactly the same data objects

Data objects in Lisp can be equal in the first sense without being equal in the second

sense. The opposite is NOT true ÿ identical data object always contain the same

"information".

EQ ž returns T if its two arguments are pointers to the exact same internal data

object. NIL, otherwise.

EQUAL ž returns T if its two arguments are the same type of data object and

contain the same information. NIL, otherwise.

Same information is determined as follows:

1) The two arguments are EQ

2) The two arguments are equal numbers

32LispCourse #30: Conceptual Models for Atoms, Lists et al.

3) The two arguments are strings that are STREQUAL (have the

same sequence of characters).

4) The two arguments are lists, where the CARs are EQUAL and

the CDRs are EQUAL.

Basically, two lists are EQUAL if they contain the same set of atoms

within the same list format.

Examples:

The results of (LIST 1 2 3) and (LIST 1 2 3) are EQUAL but not EQ.

The results of (LIST 1 (LIST 2 3)) and (LIST 1 (LIST 2 3)) are EQUAL but not

EQ.

The results of (MKSTRING ’AB) and (MKSTRING ’AB) are EQUAL but not

EQ.

Following (SETQ A B), (EQ A B) and (EQUAL A B) return T.

If A points to a list, (EQ (CDDR A) (CDR (CDR A))) is T.

If A points to a list, (EQ (CDR (CONS 1 A)) A) is T.

If A points to a list, (EQ (RPLACA A 1) A) is T.

If A points to a list, (EQ (CONS 22 A)(CONS 22 A)) is NIL, but (EQUAL

(CONS 22 A)(CONS 22 A)) is T.

(EQ ’Atom ’Atom) is always T.

For integers less than 65,000, (EQ SmallInteger SmallInteger) is T.

For larger integers and for floating numbers, (EQ Number Number) is generally

NIL, but (EQUAL Number Number) is T.

As a general rule, use EQUAL unless you know you want to test for the same exact data

structure or you are comparing atoms.

References

33LispCourse #30: Conceptual Models for Atoms, Lists et al.

CONS cells and lists represented as CONS cells is covered in:

Winston & Horn, Chapter 9

Touretzky, Chapter 2

RPLACA, et al. are covered in Section 2.5 of the IRM.

GNC et al. are covered in Section 2.6 of the IRM.

EQ et al. are covered in Section 2.2 of the IRM and in Touretzky, page 155 and in

Winston and Horn, page 142.

Exercises

Attached.

F.G.H.

5/28/85

LispCourse #31: Solutions for Homework #30, Problems 2 and 3

Sample solutions attached.

F.G.H.

5/30/85

LispCourse #32: Homework on circular queues

Exercise

Overall problem

Write the functions to manage a circular queue. Randomly add and delete

random numbers to and from this queue. Print out the contents of the queue after

each addition or deletion.

Defintions

A queue is a data structure that can hold from 1 to N other data objects. The

queue has a beginning (called its head) and an end (called its tail). You can add

new data data items to the queue (as long as you don’t exceed N items) and you

can remove data items from the queue. New data objects are always added to the

tail of the queue and old data items are always removed from the head of the

queue, just like in the queues at banks, airline counters, etc.

A circular queue is one where the N places for data objects are arranged in a

circle. There is a pointer for the head and a pointer for the tail. When you add a

new data object, you put it into the place indicated by the head pointer, and then

move the head pointer clockwise by one. When you remove a data object, you

take the one indicated by the tail pointer, and then move the tail pointer clockwise

by one. You can keep adding and deleteing elements until the head pointer equals

the tail pointer, in which case the queue is either empty or full, depending on

whether you just removed or added an item.

TAIL
12

16

22HEAD

Circular Queue
Containing Numbers

Subproblems

2LispCourse #32: Homework on circular queues

1) Write a function that produces a list of N NILs.

2) Write a function that creates a circular list out of a non-circular list by making

the CDR of the last CONS cell in the list point to the CAR of the first CONS

cell in the list. (Caution: You will have to ^D when Lisp starts printing the

result of this function otherwise it will go on forever.)

3) Use the functions from 1 and 2 to create a circular queue (i.e., list) containing

all NILs. (See caution from 2). SETQ LC.Queue to this circular list.

4) Set up the pointers LC.Head and LC.Tail. Originally both should point to the

same CONS cell that LC.Queue does, indicating that the queue is empty.

5) Diagram the CONS cells in the queue and the LC.Queue, LC.Head, and

LC.Tail pointers. Use this diagram to help you in the following problems.

6) Write a function that adds a number to the tail of the queue. Be sure to check

first that the queue is not full. If it is return NIL, otherwise return T. (Hint:

RPLACA and CDR are critical here).

7) Write a function that removes a number from the head of the queue. Be sure

to check first that the queue is not empty. If it is, return NIL. (Hint: CAR and

CDR are critical here).

8) Write a function the prints all the numbers in the queue. (Hint: Produce a list

starting at the tail and going to the head, then reverse this list and print it.)

Note: Use the function (PRIN1 X) to print a X in the Exec window. Use

(TERPRI) to print end a line.

9) Write a function that randomly excercises the queue as follows:

Repeat the following 100 times.

Print the queue.

Generate a random integer between 0 and 1, inclusive.

If this random integer is 0, then remove an item from the queue

and print it preceded by an appropriate message. If the delete

3LispCourse #32: Homework on circular queues

fails because the queue is empty, just print an appropriate

message.

If this random integer is 1, then generate a second random

integer between 1 and 99. Add this second random integer to

the queue and print the number preceded by an appropriate

message. If the add fails because the queue is full, just print an

appropriate message.

Note: The function call (RAND N M) generates a random integer

between N and M.

F.G.H.

6/4/85

LispCourse #33: Solutions for Homework #32

Note

This solution differs slightly from the assignment. Instead of keeping global pointers

called LC.Head and LC.Tail, I created a record called LC.Queue with Head and Tail

fields (as well as a field to indicate the last operation done on the queue to be used in the

empty and full predicates). This scheme allows multiple queues to be created at once,

each with its own head and tail pointers.

Solutions to #1 thru 4, and 6 thru 9

Attached

2LispCourse #33: Solutions for Homework #32

3LispCourse #33: Solutions for Homework #32

Solution to #5

Head

Result of (SETQ Queue (LC.MakeCircularQueue 10))

Tail

LC.Queue

--> NIL

--> NIL

Queue

--> NIL

--> NIL

--> NIL --> NIL

--> NIL

--> NIL

--> NIL

--> NIL

--> Add

LastOperation

NIL

4LispCourse #33: Solutions for Homework #32

Test Run of Exerciser

83_(LC.ExerciseQueue 100 (LC.MakeCircularQueue 30))

ITERATION # 1
Queue is empty!
Adding Item: 17
ITERATION # 2
Head of Queue: 17 :Tail of Queue
Adding Item: 71
ITERATION # 3
Head of Queue: 17 71 :Tail of Queue
Adding Item: 9
ITERATION # 4
Head of Queue: 17 71 9 :Tail of Queue
Adding Item: 13
ITERATION # 5
Head of Queue: 17 71 9 13 :Tail of Queue
Adding Item: 5
ITERATION # 6
Head of Queue: 17 71 9 13 5 :Tail of Queue
Removing Item: 17
ITERATION # 7
Head of Queue: 71 9 13 5 :Tail of Queue
Removing Item: 71
ITERATION # 8
Head of Queue: 9 13 5 :Tail of Queue
Removing Item: 9
ITERATION # 9
Head of Queue: 13 5 :Tail of Queue
Adding Item: 46
ITERATION # 10
Head of Queue: 13 5 46 :Tail of Queue
Adding Item: 89
ITERATION # 11
Head of Queue: 13 5 46 89 :Tail of Queue
Adding Item: 63
ITERATION # 12
Head of Queue: 13 5 46 89 63 :Tail of Queue
Adding Item: 43
ITERATION # 13
Head of Queue: 13 5 46 89 63 43 :Tail of Queue
Adding Item: 84
ITERATION # 14
Head of Queue: 13 5 46 89 63 43 84 :Tail of Queue
Removing Item: 13
ITERATION # 15
Head of Queue: 5 46 89 63 43 84 :Tail of Queue
Adding Item: 51
ITERATION # 16
Head of Queue: 5 46 89 63 43 84 51 :Tail of Queue
Adding Item: 43
ITERATION # 17
Head of Queue: 5 46 89 63 43 84 51 43 :Tail of Queue

5LispCourse #33: Solutions for Homework #32

Removing Item: 5
ITERATION # 18
Head of Queue: 46 89 63 43 84 51 43 :Tail of Queue
Adding Item: 68
ITERATION # 19
Head of Queue: 46 89 63 43 84 51 43 68 :Tail of Queue
Adding Item: 8
ITERATION # 20
Head of Queue: 46 89 63 43 84 51 43 68 8 :Tail of Queue
Removing Item: 46
ITERATION # 21
Head of Queue: 89 63 43 84 51 43 68 8 :Tail of Queue
Removing Item: 89
ITERATION # 22
Head of Queue: 63 43 84 51 43 68 8 :Tail of Queue
Adding Item: 71
ITERATION # 23
Head of Queue: 63 43 84 51 43 68 8 71 :Tail of Queue
Adding Item: 19
ITERATION # 24
Head of Queue: 63 43 84 51 43 68 8 71 19 :Tail of Queue
Adding Item: 30
ITERATION # 25
Head of Queue: 63 43 84 51 43 68 8 71 19 30 :Tail of Queue
Adding Item: 3
ITERATION # 26
Head of Queue: 63 43 84 51 43 68 8 71 19 30 3 :Tail of Queue
Removing Item: 63
ITERATION # 27
Head of Queue: 43 84 51 43 68 8 71 19 30 3 :Tail of Queue
Adding Item: 97
ITERATION # 28
Head of Queue: 43 84 51 43 68 8 71 19 30 3 97 :Tail of Queue
Adding Item: 69
ITERATION # 29
Head of Queue: 43 84 51 43 68 8 71 19 30 3 97 69 :Tail of Queue
Removing Item: 43
ITERATION # 30
Head of Queue: 84 51 43 68 8 71 19 30 3 97 69 :Tail of Queue
Removing Item: 84
ITERATION # 31
Head of Queue: 51 43 68 8 71 19 30 3 97 69 :Tail of Queue
Adding Item: 4
ITERATION # 32
Head of Queue: 51 43 68 8 71 19 30 3 97 69 4 :Tail of Queue
Adding Item: 41
ITERATION # 33
Head of Queue: 51 43 68 8 71 19 30 3 97 69 4 41 :Tail of Queue
Removing Item: 51
ITERATION # 34
Head of Queue: 43 68 8 71 19 30 3 97 69 4 41 :Tail of Queue
Adding Item: 37
ITERATION # 35
Head of Queue: 43 68 8 71 19 30 3 97 69 4 41 37 :Tail of Queue

6LispCourse #33: Solutions for Homework #32

Adding Item: 61
ITERATION # 36
Head of Queue: 43 68 8 71 19 30 3 97 69 4 41 37 61 :Tail of Queue
Adding Item: 90
ITERATION # 37
Head of Queue: 43 68 8 71 19 30 3 97 69 4 41 37 61 90 :Tail of Queue
Removing Item: 43
ITERATION # 38
Head of Queue: 68 8 71 19 30 3 97 69 4 41 37 61 90 :Tail of Queue
Removing Item: 68
ITERATION # 39
Head of Queue: 8 71 19 30 3 97 69 4 41 37 61 90 :Tail of Queue
Adding Item: 16
ITERATION # 40
Head of Queue: 8 71 19 30 3 97 69 4 41 37 61 90 16 :Tail of Queue
Removing Item: 8
ITERATION # 41
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 :Tail of Queue
Adding Item: 21
ITERATION # 42
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 21 :Tail of Queue
Adding Item: 52
ITERATION # 43
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 21 52 :Tail of Queue
Adding Item: 89
ITERATION # 44
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 21 52 89 :Tail of Queue
Adding Item: 18
ITERATION # 45
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 21 52 89 18 :Tail of Queue
Adding Item: 43
ITERATION # 46
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 21 52 89 18 43 :Tail of Queue
Adding Item: 91
ITERATION # 47
Head of Queue: 71 19 30 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91
:Tail of Queue
Removing Item: 71
ITERATION # 48
Head of Queue: 19 30 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91 :Tail of Queue
Adding Item: 12
ITERATION # 49
Head of Queue: 19 30 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12
:Tail of Queue
Removing Item: 19
ITERATION # 50
Head of Queue: 30 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 :Tail of Queue
Removing Item: 30
ITERATION # 51
Head of Queue: 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 :Tail of Queue
Adding Item: 65
ITERATION # 52
Head of Queue: 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 :Tail of Queue
Adding Item: 7

7LispCourse #33: Solutions for Homework #32

ITERATION # 53
Head of Queue: 3 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7
:Tail of Queue
Removing Item: 3
ITERATION # 54
Head of Queue: 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 :Tail of Queue
Adding Item: 39
ITERATION # 55
Head of Queue: 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39
:Tail of Queue
Adding Item: 1
ITERATION # 56
Head of Queue: 97 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1
:Tail of Queue
Removing Item: 97
ITERATION # 57
Head of Queue: 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1
:Tail of Queue
Adding Item: 36
ITERATION # 58
Head of Queue: 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36
:Tail of Queue
Adding Item: 34
ITERATION # 59
Head of Queue: 69 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34
:Tail of Queue
Removing Item: 69
ITERATION # 60
Head of Queue: 4 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34
:Tail of Queue
Removing Item: 4
ITERATION # 61
Head of Queue: 41 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34
:Tail of Queue
Removing Item: 41
ITERATION # 62
Head of Queue: 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34 :Tail of Queue
Adding Item: 72
ITERATION # 63
Head of Queue: 37 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34 72
:Tail of Queue
Removing Item: 37
ITERATION # 64
Head of Queue: 61 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34 72 :Tail of Queue
Removing Item: 61
ITERATION # 65
Head of Queue: 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34 72 :Tail of Queue
Adding Item: 85
ITERATION # 66
Head of Queue: 90 16 21 52 89 18 43 91 12 65 7 39 1 36 34 72 85 :Tail of Queue
Removing Item: 90
ITERATION # 67
Head of Queue: 16 21 52 89 18 43 91 12 65 7 39 1 36 34 72 85 :Tail of Queue
Adding Item: 53

8LispCourse #33: Solutions for Homework #32

ITERATION # 68
Head of Queue: 16 21 52 89 18 43 91 12 65 7 39 1 36 34 72 85 53 :Tail of Queue
Removing Item: 16
ITERATION # 69
Head of Queue: 21 52 89 18 43 91 12 65 7 39 1 36 34 72 85 53 :Tail of Queue
Removing Item: 21
ITERATION # 70
Head of Queue: 52 89 18 43 91 12 65 7 39 1 36 34 72 85 53 :Tail of Queue
Removing Item: 52
ITERATION # 71
Head of Queue: 89 18 43 91 12 65 7 39 1 36 34 72 85 53 :Tail of Queue
Adding Item: 80
ITERATION # 72
Head of Queue: 89 18 43 91 12 65 7 39 1 36 34 72 85 53 80 :Tail of Queue
Adding Item: 97
ITERATION # 73
Head of Queue: 89 18 43 91 12 65 7 39 1 36 34 72 85 53 80 97 :Tail of Queue
Removing Item: 89
ITERATION # 74
Head of Queue: 18 43 91 12 65 7 39 1 36 34 72 85 53 80 97 :Tail of Queue
Removing Item: 18
ITERATION # 75
Head of Queue: 43 91 12 65 7 39 1 36 34 72 85 53 80 97 :Tail of Queue
Removing Item: 43
ITERATION # 76
Head of Queue: 91 12 65 7 39 1 36 34 72 85 53 80 97 :Tail of Queue
Removing Item: 91
ITERATION # 77
Head of Queue: 12 65 7 39 1 36 34 72 85 53 80 97 :Tail of Queue
Adding Item: 36
ITERATION # 78
Head of Queue: 12 65 7 39 1 36 34 72 85 53 80 97 36 :Tail of Queue
Adding Item: 40
ITERATION # 79
Head of Queue: 12 65 7 39 1 36 34 72 85 53 80 97 36 40 :Tail of Queue
Adding Item: 1
ITERATION # 80
Head of Queue: 12 65 7 39 1 36 34 72 85 53 80 97 36 40 1 :Tail of Queue
Removing Item: 12
ITERATION # 81
Head of Queue: 65 7 39 1 36 34 72 85 53 80 97 36 40 1 :Tail of Queue
Adding Item: 28
ITERATION # 82
Head of Queue: 65 7 39 1 36 34 72 85 53 80 97 36 40 1 28 :Tail of Queue
Removing Item: 65
ITERATION # 83
Head of Queue: 7 39 1 36 34 72 85 53 80 97 36 40 1 28 :Tail of Queue
Removing Item: 7
ITERATION # 84
Head of Queue: 39 1 36 34 72 85 53 80 97 36 40 1 28 :Tail of Queue
Adding Item: 85
ITERATION # 85
Head of Queue: 39 1 36 34 72 85 53 80 97 36 40 1 28 85 :Tail of Queue
Adding Item: 22

9LispCourse #33: Solutions for Homework #32

ITERATION # 86
Head of Queue: 39 1 36 34 72 85 53 80 97 36 40 1 28 85 22 :Tail of Queue
Removing Item: 39
ITERATION # 87
Head of Queue: 1 36 34 72 85 53 80 97 36 40 1 28 85 22 :Tail of Queue
Removing Item: 1
ITERATION # 88
Head of Queue: 36 34 72 85 53 80 97 36 40 1 28 85 22 :Tail of Queue
Adding Item: 9
ITERATION # 89
Head of Queue: 36 34 72 85 53 80 97 36 40 1 28 85 22 9 :Tail of Queue
Adding Item: 77
ITERATION # 90
Head of Queue: 36 34 72 85 53 80 97 36 40 1 28 85 22 9 77 :Tail of Queue
Adding Item: 50
ITERATION # 91
Head of Queue: 36 34 72 85 53 80 97 36 40 1 28 85 22 9 77 50 :Tail of Queue
Adding Item: 59
ITERATION # 92
Head of Queue: 36 34 72 85 53 80 97 36 40 1 28 85 22 9 77 50 59 :Tail of Queue
Removing Item: 36
ITERATION # 93
Head of Queue: 34 72 85 53 80 97 36 40 1 28 85 22 9 77 50 59 :Tail of Queue
Removing Item: 34
ITERATION # 94
Head of Queue: 72 85 53 80 97 36 40 1 28 85 22 9 77 50 59 :Tail of Queue
Adding Item: 21
ITERATION # 95
Head of Queue: 72 85 53 80 97 36 40 1 28 85 22 9 77 50 59 21 :Tail of Queue
Adding Item: 73
ITERATION # 96
Head of Queue: 72 85 53 80 97 36 40 1 28 85 22 9 77 50 59 21 73 :Tail of Queue
Adding Item: 49
ITERATION # 97
Head of Queue: 72 85 53 80 97 36 40 1 28 85 22 9 77 50 59 21 73 49
:Tail of Queue
Removing Item: 72
ITERATION # 98
Head of Queue: 85 53 80 97 36 40 1 28 85 22 9 77 50 59 21 73 49 :Tail of Queue
Removing Item: 85
ITERATION # 99
Head of Queue: 53 80 97 36 40 1 28 85 22 9 77 50 59 21 73 49 :Tail of Queue
Adding Item: 64
ITERATION # 100
Head of Queue: 53 80 97 36 40 1 28 85 22 9 77 50 59 21 73 49 64 :Tail of Queue
Adding Item: 83
Head of Queue: 53 80 97 36 40 1 28 85 22 9 77 50 59 21 73 49 64 83
:Tail of Queue
NIL
84_

F.G.H.

6/6/85

LispCourse #34: Variable Binding and the Interlisp Stack

Variable Reference Inside Functions: Bound and Free Variables

Consider the following function definition from the solution to Homework #30:

(DEFINEQ

 (LC.ParseNameString

 (LAMBDA (String)

(SETQ String (CONCAT String))

(SETQ Comma (STRPOS "," String))

(SETQ Space (STRPOS " " String Comma))

(create LC.Name

Last _

(MKATOM

 (SUBSTRING String 1 (SUB1 Comma)))

First _

(MKATOM

 (SUBSTRING String (ADD1 Comma) (SUB1 Space)))

Middle _

(MKATOM

 (SUBSTRING String (ADD1 Space))))

In this function, there are three variables: String, Comma, and Space.

String differs from Comma and Space in that before the function is entered during a

function call evaluation, the value of String is temporarily set (i.e., bound) to the value of

the argument in the function call.

Moreover, the old value of String is reset to its previous value when the function

is exited, despite the new value assigned to String by the SETQ in the function.

In contrast, Comma and Space have unknown values when the function is entered

and the SETQ operations on Comma and Space permanently change the value of

these variables.

2LispCourse #34: Variable Binding and the Interlisp Stack

String is known as a bound variable within the function LC.ParseNameString.

A bound variable is one whose value is set when the function is entered and reset

to the previous value when the function is exited.

In particular, a bound variable has the following property: You can change the

name of the variable, and the operation of the function will not change.

Substituting NameString for String throughout the definition of

LC.ParseNameString would not change how the function worked.

Comma and Space are known as free variables within the function LC.ParseNameString.

A variable is a free variable in a function definition if it is not bound within that

function definition.

The value of a free variable when the function is entered cannot be specified a

priori. The free variable may have a value or it may not.

Moreover, when the function is exited, the free variable is not reset to its

previous value.

In particular, a free variable has the following property: If you change the name

of the variable, and the operation of the function may change, depending on the

context of the evaluation.

For example, if the variables ListSize and StringSize were used by the

Lisp Exec to hold important information, then changing Comma to

ListSize and Space to StringSize in the definition of LC.ParseNameString

might have serious side-effects on the Lisp Exec, since evaluating a call to

LC.ParseNameString would change the value of these variables.

The problem with free variables in a function definition is that there is some ambiguity as

to what is being refered to by the free variable. Interpreting the free variable reference

depends on some context outside of the function itself.

Consider the following example:

1_ (DEFINEQ

(LC.FindComma

3LispCourse #34: Variable Binding and the Interlisp Stack

(LAMBDA (String SearchLetter)

(SETQ SearchLetter ",")

(LC.FindLetter String)))

(LC.FindLetter

(LAMBDA (String)

(STRPOS SearchLetter String))))

(LC.FindComma LC.FindLetter)

2_ (SETQ SearchLetter "+")

"+"

3_ (LC.FindLetter "AB,CD+EF")

6

4_(LC.FindComma "AB,CD+EF")

????

Problem: What is the value of this function call?

There are two possible answers, depending on how the free variable

SearchLetter is resolved in the call to LC.FindLetter.

1. If SearchLetter in LC.FindLetter refers to the global value in

the Exec environment, then the result would be 6 since

LC.FindLetter would be searching for a "+" as determined by

event 2.

2. If SearchLetter in LC.FindLetter refers to the most recent

binding of SearchLetter anywhere, then the result would be 3

since LC.FindLetter would be searching for a "," as

determined by the binding and SETQ statements in

LC.FindComma.

In fact, in Interlisp the value returned by (LC.FindComma "AB,CD+EF") in event

4 would be 3, because a free variable reference in a function always references the

most recent binding of that variable.

The following several sections, explain in detail how Interlisp handles variable

references, both free and bound, within function definitions.

4LispCourse #34: Variable Binding and the Interlisp Stack

The main point of these sections is that the model of variables we have been using until

now is far too simple.

Until now, we have assumed that the value of a variable in a function definition is

the value of the atom with the same name as the varaible.

This is true "at the top level", i.e. for variable references typed directly to the Lisp

Exec.

However, for variable references within a function, Interlisp uses a much more

complex scheme to set and determine the value of an variable.

Review: Evaluating S-expressions using EVAL and APPLY

Recall that all of the significant work in Lisp is done by the Lisp evaluator during the

EVAL part of the read-EVAL-print loop.

Recall also that the Lisp evaluator is built around two functions: EVAL and APPLY.

Hence, understanding Lisp function evaluation requires understanding the two functions

EVAL and APPLY.

5LispCourse #34: Variable Binding and the Interlisp Stack

EVAL

The following defines a function that could be used by the Lisp evaluator to

evaluate arbitrary S-expressions (i.e., EVAL):

(DEFINEQ

 (EVAL

(LAMBDA (SExpr)

 (COND

 ((NLISTP SExpr) (LookUpValue SExpr))

 (T

 (APPLY (CAR SExpr)

 (FOR Arg IN (CDR SExpr)

 COLLECT (EVAL Arg)))

Note: The function LookUpValue is some mysterious function that can

look up the value of atoms, arrays, etc. in the Lisp environment.

In natural language, EVAL does the following:

If SExpr is not a list, then look up the value of SExpr and return it.

If SExpr is a list, then APPLY the function named by the first element

(i.e., CAR) of SExpr to the list obtained by collecting the evaluation each

item in the rest (i.e., CDR) of SExpr.

Aside from LookUpValue (which will remain mysterious for a while), the central

function used in defining EVAL is the function APPLY.

6LispCourse #34: Variable Binding and the Interlisp Stack

APPLY

APPLY could be defined as follows:

(DEFINEQ

 (APPLY

(LAMBDA (Function Arguments)

(FOR Parameter IN (CADR (GetFunctionDefn Function))

AS Argument IN Arguments

DO (Bind Parameter Argument))

(FOR SExpr IN (CDDR (GetFunctionDefn Function))

AS Ctr FROM 1 TO

(DIFFERENCE

(LENGTH (GetFunctionDefn
Function)) 3)

DO (EVAL SExpr))

(SETQ Result

 (EVAL (CAR (LAST (GetFunctionDefn Function)))))

(FOR Parameter IN (CADR (GetFunctionDefn Function))

DO (Unbind Parameter))

Result)))

Note: The functions GetFunctionDefn, Bind, and Unbind are some

mysterious functions that can look up the defintion of a function, bind a

parameter to a value, and unbind a parameter, respectively.

In natural language, APPLY does the following:

For each parameter in the parameters list in the function definition of

Function, bind that parameter to the corresponding argument in the

Arguments list.

Then, for each S-expression in the body of the function definition except

for the last, EVAL the S-expression.

Then, EVAL the last S-expression in the body of the function definition

and hold on to the resulting value.

7LispCourse #34: Variable Binding and the Interlisp Stack

Then, for each parameter in the parameters list in the function definition of

Function, unbind that parameter.

Finally, return the result already derived by EVALing the last S-

expression.

EXAMPLE (from LispCourse #3, page 6)

(DEFINEQ

(MOVEFILE

(LAMBDA (FromFile ToFile)

(COPYFILE FromFile ToFile)

(DELFILE FromFile)

(QUOTE AllDone))))

Evaluating (MOVEFILE ’OLD.LISP ’NEW.LISP) proceeds as follows:

EVAL:

1. ’OLD.LISP evaluates to OLD.LISP

2. ’NEW.LISP evaluates to NEW.LISP

3. APPLY the function MOVEFILE to (OLD.LISP NEW.LISP)

APPLY:

1. FromFile is bound to OLD.LISP

2. ToFile is bound to NEW.LISP

3. (COPYFILE FromFile ToFile) is evaluated using current bindings of

FromFile and ToFile (i.e., FromFile will evaluate to OLD.LISP and

ToFile will evaluate to NEW.LISP).

4. (DELFILE FromFile) is evaluated similarly.

5. (QUOTE AllDone) is evaluated to AllDone.

6. FromFile and ToFile are reset to their previous values (if any).

7. APPLY returns AllDone.

8LispCourse #34: Variable Binding and the Interlisp Stack

Missing Pieces

The foregoing explanation references several functions that have not yet been

explained.

In particular, LookUpValue, Bind, Unbind, and GetFunctionDefn are

critical functions used by EVAL and/or APPLY in the process of

evaluating S-expressions.

The following sections explain the operation of these functions in the Interlisp-D

evaluator.

The Lisp Stack, Variable Binding, Variable Lookup, and Related Topics

In the APPLY phase of evaluating a Lisp function call, the first step is to bind the

parameters of the function to the corresponding arguments in the function call.

In LispCourse #3 (page 6), binding a parameter to an argument was described as

"temporarily SETQing the parameter to the argument value". The implication was that

binding simply temporarily resets the value assigned to the atom of the same name as the

parameter.

In actuality, binding is much more complex and relies on a special data structure called

the stack.

The Lisp Stack

The stack is a data structure that contains a variable number of stack frames

arranged in an ordered one-dimensional vector.

Each stack frame contains a variable number of binding records.

Each binding record is a pair consisting of a variable name (i.e., a

litatom) and a value.

The stack has a top and a bottom.

Stack frames can only be added to the bottom of the stack.

Stack frames can only be removed from the bottom of the stack.

9LispCourse #34: Variable Binding and the Interlisp Stack

Adding a stack frame to the bottom of the stack

Top
Frame

Bottom
Frame

ZAP Frame

XYZ Frame

FOO Frame

(BAR 7)
(FOO 5)

(ITEM A)
(SUMX 12)

(BAZ 88)
(FOO 6)

Stack Before Add Stack After Add

FOO Frame
(FOO 5)
(BAR 7)

Top
Frame

(FOO 6)
XYZ Frame

ZAP Frame

(BAZ 88)

(ITEM A)
(SUMX 12)

MOVEFILE Frame
Bottom
Frame (FromFile Old.Lisp)

(ToFile New.Lisp)

The stack implements a first-in/last-out access scheme.

If we add Frame X to the bottom of the stack and subsequently add N

more frames to the bottom of the stack, then we have to remove the last N

frames before we can remove Frame X.

The analogy is to a stack of boxes. To remove the Nth box down in the

stack, you have to first remove the N-1 boxes sitting on top of that box.

(Contrast the stack with the queue data structure in Homework #32, which

implemented a first-in/first-out access scheme.)

Variable Binding

Every time the Lisp evaluator evaluates a new function call, APPLY creates a

new stack frame and adds it to the bottom of the Interlisp stack.

10LispCourse #34: Variable Binding and the Interlisp Stack

When APPLY binds the parameters of the function to the arguments of the

function call, it simply adds a binding record to this stack frame for each

parameter.

When APPLY unbinds the parameters at the end, it simply removes this stack

frame from the stack.

Example:

Evaluating the function call: (MOVEFILE ’Old.Lisp ’New.Lisp)

Stack Before APPLY

(FOO 5) Top
Frame(BAR 7)

(FOO 6)
(BAZ 88)

(SUMX 12)
(ITEM A)

Bottom
Frame (FromFile Old.Lisp)

Top
Frame

Bottom
Frame

Stack During APPLY

MOVEFILE Frame

(ToFile New.Lisp)

Stack After APPLY

FOO Frame

XYZ Frame

ZAP Frame

(FOO 5)
FOO Frame

(BAR 7)

XYZ Frame
(FOO 6)
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

Top
Frame

FOO Frame
(FOO 5)
(BAR 7)

XYZ Frame

Bottom
Frame

ZAP Frame

(ITEM A)
(SUMX 12)

(BAZ 88)
(FOO 6)

Looking up the Value of a Variable

After binding all of the parameters, APPLY calls EVAL on each S-expression in

the function body. These S-expression often refer to variables.

Example: Inside the body of MOVEFILE is the S-expression

(COPYFILE FromFile ToFile), which refers to 2 variables FromFile and

ToFile.

11LispCourse #34: Variable Binding and the Interlisp Stack

EVALualting these S-expressions involves EVALuating these variables.

Looking at EVAL, evaluating a variable (i.e., a NLISTP) involves a function,

LookUpValue, that looks up the value of the variable.

The LookUpValue function works as follows:

Starting at the bottom of the stack, search each stack frame for a binding

record with a variable name EQ to the variable being looked up.

Return the value associated with the FIRST such binding record found on

the stack.

If there is no binding record on the stack, then get the value attached to the

atom with the same name as the variable being looked up.

If the atom has no value, then break with an "unbound atom" error.

12LispCourse #34: Variable Binding and the Interlisp Stack

Examples:

Given the following stack and atom values:

Top
Frame

Bottom
Frame (FromFile Old.Lisp)

Stack

MOVEFILE Frame

(ToFile New.Lisp)

(FOO 5)
FOO Frame

(BAR 7)

XYZ Frame
(FOO 6)
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

XYZ 567

(LookUpValue ’FromFile) would return Old.Lisp

(LookUpValue ’FOO) would return 6

(LookUpValue ’BAR) would return 7

(LookUpValue ’XYZ) would return 567

(LookUpValue ’PRQ) would return u.b.a. error

Setting the Value of a Variable

Within a function body being processed by APPLY, the SET functions work in a

manner analogous to variable lookup.

In particular, (SETQQ Variable Value) will search up the stack starting at the

bottom for a binding record for the variable Variable. If it finds one, it will

change the value portion of this binding record to be Value.

13LispCourse #34: Variable Binding and the Interlisp Stack

If no binding record is found on the stack, then SETQQ will set the value

of the atom Variable.

SET and SETQ work analogously.

Examples of variable setting:

All of the following assume that the SET statement is part of the

MOVEFILE function definition.

Evaluating: (SETQQ FromFile XYZZY)

Bottom
Frame (FromFile XYZZY)

Stack After SETQQ

MOVEFILE Frame

(ToFile New.Lisp)

(FOO 5)
FOO Frame

(BAR 7)

XYZ Frame
(FOO 6)
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

Top
Frame

Top
Frame (BAR 7)

(FOO 5)
FOO Frame

Stack Before SETQQ

XYZ Frame
(FOO 6)
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

MOVEFILE Frame
Bottom
Frame (FromFile Old.Lisp)

(ToFile New.Lisp)

14LispCourse #34: Variable Binding and the Interlisp Stack

Evaluating: (SETQQ FOO (A B C))

Bottom
Frame (FromFile XYZZY)

Stack After SETQQ

MOVEFILE Frame

(ToFile New.Lisp)

(FOO 5)
FOO Frame

(BAR 7)

XYZ Frame
(FOO (A B C))
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

Top
Frame

Top
Frame (BAR 7)

(FOO 5)
FOO Frame

Stack Before SETQQ

XYZ Frame
(FOO 6)
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

MOVEFILE Frame
Bottom
Frame (ToFile New.Lisp)

(FromFile XYZZY)

15LispCourse #34: Variable Binding and the Interlisp Stack

Evaluating: (SETQ XYZ 9995)

Bottom
Frame (FromFile XYZZY)

Stack After SETQ

MOVEFILE Frame

(ToFile New.Lisp)

(FOO 5)
FOO Frame

(BAR 7)

XYZ Frame
(FOO (A B C))
(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

Top
Frame

Top
Frame (BAR 7)

(FOO 5)
FOO Frame

Stack Before SETQ

XYZ Frame

(BAZ 88)

ZAP Frame
(SUMX 12)
(ITEM A)

MOVEFILE Frame
Bottom
Frame (ToFile New.Lisp)

(FromFile XYZZY)

Atoms
Before SETQ

XYZ 678

(FOO (A B C))

Atoms
After SETQ

XYZ 9995

Function Definition Lookup

There is no such thing as binding a function name in Interlisp.

All function names in Interlisp refer to the function definition attached to the atom

of the same name.

The function GetFunctionDefn in the definition of APPLY simply accesses the

function definition for the named atom.

16LispCourse #34: Variable Binding and the Interlisp Stack

In particular, it does not search the stack for new bindings of the function

name.

Note: This is different in other dialects of Lisp. Some Lisps allow binding of function names as

well as variables names on the stack.

Variable Reference in Practice: LET and PROG are used to bind variables

Avoid Free Variables!

In practice the rule is: Bound variables are good, free variables are bad.

The effect of evaluating a function with bound variables is always

predictable.

In contrast, evaluating a function that uses free variables can lead

to differing results, depending on the context of the evaluation.

Examples:

Interference between variable names

1_ (DEFINEQ

(Circumference (LAMBDA (Radius)

(TIMES 2 PI Radius))))

(Circumference)

2_ (SETQ PI 3.1416)

3.1416

3_ (DEFINEQ

(MakeProgrammersInterface (LAMBDA NIL

(SETQ PI (CREATE ProgInt)))))

(MakeProgrammersInterface)

4_ (MakeProgrammersInterface)

{ProgInt}#32,33412

5_ (Circumference 5)

NON-NUMBERIC ARG

{ProgInt}#32,33412

17LispCourse #34: Variable Binding and the Interlisp Stack

Inadvertantly altering system parameters

6_ (DEFINEQ

(FontNameToFontNumber (LAMBDA (FontName)

(SETQ DEFAULTFONT 1)

(FOR Name in ’(Helvetica TimesRoman

Gacha Modern)

AS Number FROM 1

WHEN (EQ FontName Name)

DO (SETQ DEFAULTFONT

Number))

DEFAULTFONT)

(FontNameToFontNumber)

7_ (FontNameToFontNumber ’Gacha)

3

8_ (TEDIT "XXXXXX")

ILLEGAL ARG

{FONTCLASS}#71,10500

(because DEFAULTFONT has been reset to an

illegal value)

The Funarg Problem

9_ (DEFINEQ

(Sum (LAMBDA (List Transform)

(FOR N IN List SUM (APPLY* Transform

N)))))

(Sum)

10_(DEFINEQ

(SumSquares#1 (LAMBDA (List)

(Sum List (FUNCTION SQUARE))))

(SumSquares#2 (LAMBDA (List)

(SETQ N 2)

(Sum List (FUNCTION NthPower))))

18LispCourse #34: Variable Binding and the Interlisp Stack

(SumCubes (LAMBDA (List)

(SETQ N 3)

(Sum List (FUNCTION NthPower))))

(NthPower (LAMBDA (X)

(EXPT X N))))

(SumSquares#1 SumSquares#2 SumCubes NthPower)

11_ (SumSquares#1 (LIST 1 2 3 4 5))

55

12_ (SumSquares#2 (LIST 1 2 3 4 5))

3413

13_ (SumCubes (LIST 1 2 3 4 5))

3413

The examples illustrate the problems involved in using free variables in

defining functions. Because of these problems, it is best to avoid using

free variables.

The LET Special Form

Consider the following function that computes the average of all the

numbers in a list of numbers and litatoms:

(DEFINEQ

(AverageOfNumbers (List)

(SETQ Sum 0.0)

(SETQ N 0)

(FOR Item IN List

WHEN (NUMBERP Item)

DO

(SETQ Sum (PLUS Sum Item))

(SETQ N (ADD1 N)))

(COND

((NOT (ZEROP N))

(QUOTIENT Sum N))

19LispCourse #34: Variable Binding and the Interlisp Stack

(T NIL)))))

It would not be possible to write this function without the Sum and N

variables, since they are used to store intermediate results as the function

iterates through the list.

There is no reason, however, for Sum and N to be free variables.

Their function should be limited to the scope of the

AverageOfNumbers function body.

On the other hand, Sum and N are not a parameters either and

therefore should not be made into a bound variables by placing

them in the parameter list of the function.

The LET special form provides the means to bind variables without

making them part of the parameter list.

LET has the format:

(LET BindingList S-Expression1 S-Expression2 ...)

BindingList is a list of variable-value pairs, i.e.,

(VariableName InitialValue). A variable can also be

expressed by just its VariableName, which is equivalent to

the list (VariableName NIL).

The S-Expressioni are arbitrary Lisp S-expressions to be

evaluated.

LET works as follows:

The variables specified in the binding list are bound on the

stack and set to the specified initial values.

The S-expressions are evaluated in order.

The LET form returns the value of the last S-expression,

unbinding the variables in the binding list before it exits.

20LispCourse #34: Variable Binding and the Interlisp Stack

Variables in the binding list are bound "in parallel" and thus the

order of mention in the binding list is unimportant.

If the binding list is ((X 55) (Y X)), the value of X within the

LET will be 55 and the value of Y will be whatever was the

value of X before the LET (and not 55 as might be

expected).

The same effect could have been achieved by the

binding list ((Y X) (X 55)).

The proper defintion for AverageOfList would thus be:

(DEFINEQ

(AverageOfList (List)

(LET ((Sum 0.0)(N 0))

(FOR Item IN List

WHEN (NUMBERP Item)

DO

(SETQ Sum (PLUS Sum
Item))

(SETQ N (ADD1 N)))

(COND

((NOT (ZEROP N))

(QUOTIENT Sum N))

(T NIL)))))

In this definition, List, Sum, and N are all bound variables.

When the function is enetered, List is bound since it is in

the parameter list.

When the LET is entered, Sum and N are bound on the

stack and set to their initial values of zero.

When the LET is exited, Sum and N are unbound.

When the function is exited, List is unbound.

21LispCourse #34: Variable Binding and the Interlisp Stack

As a second example, consider a function (slightly modified) from the
solution to Homework#32:

(DEFINEQ

(LC.PrintQueue

 (LAMBDA (Q)

(COND

((NOT (LC.QueueEmptyP Q))

 (SETQ NextPtr (fetch (LC.Queue Head)

of Q))

 (PRINT (CAR NextPtr))

 (until (EQ

 (SETQ NextPtr (CDR

NextPtr))

 (fetch (LC.Queue Tail) of

Q)

 DO (PRIN1 (CAR NextPtr)))

 (TERPRI))))

Note the unnecessary use of NextPtr as free variable.

The proper defintion for LC.PrintQueue is:

(DEFINEQ

(LC.PrintQueue

 (LAMBDA (Q)

(LET (NextPtr)

 (COND

((NOT (LC.QueueEmptyP Q))

 (SETQ NextPtr (fetch (LC.Queue Head)

of Q))

 (PRINT (CAR NextPtr))

 (until (EQ

 (SETQ NextPtr (CDR

NextPtr))

22LispCourse #34: Variable Binding and the Interlisp Stack

 (fetch (LC.Queue Tail) of

Q)

 DO (PRIN1 (CAR NextPtr)))

 (TERPRI)))))

In this definition, NextPtr is bound within the context of the LET

statement (and hence within the entire function body).

The PROG Special Form

The PROG special form is very much like the LET special form, but it

allows a little more flexibility in how and when the special form is exited.

PROG has the format:

(PROG BindingList S-Expression1 S-Expression2 ...)

BindingList is as in the LET special form.

The S-Expressioni are arbitrary Lisp S-expressions to be

evaluated. One or more of these S-expressions may

contain a sub-expression of the form (RETURN S-

expression)

PROG works as follows:

The variables specified in the binding list are bound on the

stack and set to the specified initial values.

The S-expressions are evaluated in order until an

expression (or sub-expression) of the form (RETURN S-

expression) is evaluated.

Evaluating this RETURN expression evaluates the

embedded S-expression, then causes the PROG

special form to be exited, returning the value of this

evaluation. On exit, the variables in the binding list

are unbound.

23LispCourse #34: Variable Binding and the Interlisp Stack

If no RETURN statement is encountered while

evaluating the S-expressions, PROG unbinds the

variables in the binding list and returns NIL.

As in LET, variables in the PROG binding list are bound "in

parallel" and thus the order of mention in the binding list is

unimportant.

PROG should be used where one might want to exit at one of

several places in a function, depending on certain conditions.

For example, the following is a function that transfers a list

of numbers to an array and then places the sum of the

numbers in the last cell of the array. The program

immediately exits with NIL if the Array is not on larger

than the length of the list.

(DEFINEQ
(TransferListToArray (LAMBDA (List Array)

(PROG

 ((LstLen (LENGTH List))
 (ArrSize (ARRAYSIZE Array))

 (Sum 0.0))

(COND

((OR

(ZEROP LstLen))

(NEQ LstLen (SUB1
ArrSize)))

 (RETURN NIL))

(FOR Item IN List

AS Index FROM 1

DO

(ELT Array Index
Item)

(SETQ Sum (PLUS
Sum Item)))

(ELT Array ArrSize Sum)

(RETURN Sum))

24LispCourse #34: Variable Binding and the Interlisp Stack

FOR and WHILE are implemented using PROG

The FOR and WHILE clisp forms are implemented using the PROG

special form.

An important side-effect of this is that the (RETURN S-expr) form

can be used to exit from FOR or WHILE loops before their normal

termination.

For example, the following will sum the item in a list until

a negative number is reached.

(DEFINEQ

(SumTillMinus (LAMBDA (List)

(PROG ((Sum 0.0))

(FOR Item IN List

DO (COND

((MINUSP
Item)(RETURN
NIL)))

(SETQ Sum (PLUS Sum
Item)))

(RETURN Sum)))))

In this example, the RETURN inside the FOR loop will

exit only out of the PROG implicit in the FOR. It will not

exit out of the PROG that contains the FOR loop.

This is true for all RETURN statements: each

RETURN exits out only the lowest level enclosing

PROG and not out of any PROGs that in turn

enclose the lowest level PROG.

Note also that the previous example, would probably best

be written using a LET as follows:

(DEFINEQ

(SumTilLMinus (LAMBDA (List)

25LispCourse #34: Variable Binding and the Interlisp Stack

(LET ((Sum 0.0))

(FOR Item IN List

DO (COND

((MINUSP
Item)(RETURN
NIL)))

(SETQ Sum (PLUS Sum
Item)))

Sum))))

As another example, the following function takes a list of numbers and

returns a list of as many of the initial numbers as necessary to sum to just

of 100. If any of the items in the initial list is non-numeric the function

exits and returns the bad item.

(DEFINEQ

(FirstHundred (LAMBDA (List)

(LET ((Sum 0.0))

(WHILE (LESSP Sum 100)

FOR Item IN List

COLLECT

(COND

((NOT (NUMBERP
Item))

 (RETURN Item)))

(SETQ Sum (PLUS Sum
Item))

Item)))))

Note: The RETURN statement inside of a COLLECT loop will

cause the COLLECT loop to return with the value of the S-expr in

the RETURN clause instead of the list being COLLECTed.

3_ (FirstHundred (LIST 1 2 3 44 55 66 77 88))

(1 2 3 44 55)

4_ (FirstHundred (LIST 1 2 ’A 44 55 66 77))

26LispCourse #34: Variable Binding and the Interlisp Stack

A

27LispCourse #34: Variable Binding and the Interlisp Stack

Global Variables: Free variables used as system or package parameters

Free variables are sometimes necessary.

In particular, system or package parameters (e.g., DEFAULTPRINTINGHOST,

CHAT.FONT, DEFAULTFONT, LAFITEDEFAULTHPOST&DIR, etc.) are set outside

of any function (e.g., in an Init file or in the Lisp Exec) but must be used (and

sometinmes set) within various system or user functions.

These system/package parameters must be globally accessible, i.e., avaialable to

all functions in all contexts.

Therefore, they cannot be bound on the stack inside of some particular

function.

When setting or retrieving the value of one of these global parameters, you

want to go directly to the value attached to the atom, skipping the search

up the stack for other bindings.

For example, when a function definition includes the form

(SEND.FILE.TO.PRINTER ’{DSK}FOO (CAR

DEFAULTPRINTINGHOST)), the DEFAULTPRINTINGHOST variable

should reference the global value of this variable. If one of the calling

functions of this function has stupidly rebound

DEFAULTPRINTINGHOST, the rebinding should probably be ignored.

The functions GETTOPVAL and SETTOPVAL can be used to directly access the global

value of a variable (i.e., the value attached to the atom) skipping the search for rebindings

on the stack.

GETTOPVAL takes a single LITATOM as an argument and returns the value

attached to that LITATOM.

SETTOPVAL takes a LITATOM and a value and sets the value of the LITATOM

to be value, returning the value.

Example:

1_ (SETQ LineLength 107)

28LispCourse #34: Variable Binding and the Interlisp Stack

107

2_ (DEFINEQ

(Tester

(LAMBDA NIL

(PROG ((LineLength 223))

(PRINT

(CONCAT "Initial values: " LineLength " "
(GETTOPVAL ’LineLength)))

(SETQ LineLength 55)

(SETTOPVAL ’LineLength 88)

(PRINT

(CONCAT "LineLength: " LineLength "
TopVal of LineLength: " (GETTOPVAL
’LineLength)))))))

(Tester)

3_ (Tester)

Initial values: 223 107

LineLength: 55 TopVal of LineLength: 88

NIL

References

In the IRM:

PROG is on Page 4.3. LET is not in the IRM, but is essentially the same as

PROG, except for the RETURN and GO features.

GETTOPVAL and SETTOPVAL are on page 2.5

Free variables and binding are covered in both Winston & Horn and Touretzky. But be

careful. CommonLisp uses a different sort of binding scheme than does Interlisp, so not

everything said in these books applies to Interlisp.

Look at Chapter 5 of Touretzky and page 53 of Winston and Horn.

Also LET is explained starting on page 57 of W&H and on page 250 of T.

Exercise

29LispCourse #34: Variable Binding and the Interlisp Stack

Overall Task: Write a simple Lisp evaluator.

For each of the functions you write, put a print statement at the ned of the function that

prints on the screen some information about what the function just did. This way, you

can watch you evaluator in action when it all gets put together.

1. Write a function to do variable binding on a stack.

The stack should just be a list: use CONS and CDR to add and remove items.

The binding function should take two equal length lists, one of variables and one

of values.

It should put a marker on the stack (e.g., the litatom MARKER) and then put a

binding pair on the stack for each variable and its corresponding value in the lists.

2. Write a function that unbinds variables. It should basically remove items from the

stack up to and including the next marker.

3. Write a function that looks up the value of a variable on the binding stack. If its not

on the stack, get its top level value using GETTOPVAL.

4. Write a function that sets the value of a variable. If the variable is on the binding

stack, then just reset the value in that binding. Otherwise, set its top level value using

SETTOPVAL.

5. Rewrite the EVAL and APPLY procedures from the course notes.

A. Rename the functions so as not to mess up the original EVAL and APPLY in

Interlisp.

B. Use your bind, unbind and lookup functions.

C. In your apply, if the function name is SET, SETQ, or SETQQ, then use your

set value of variable function to carry out the appropriate setting action

instead of looking the definition of SET, SETQ, or SETQQ.

D. In your apply use GETD to get a function definition. If the value of GETD

is a list, then proceed as in the course notes. If the value of GETD is not a

30LispCourse #34: Variable Binding and the Interlisp Stack

list, then assume it is a primitive function and just invoke the standard

APPLY function instead of the rest of your apply function.

6. Write a procedure (called CountAtoms) that recursively counts all the atoms in a list.

(See page 12 of LispCourse #5).

7. Use your eval to evaluate (CountAtoms ’(A (B C D) (E (F (G (H) I) J K) L))) and

watch the evaluator in action as it prints out its action summaries.

F.G.H.

6/11/85

LispCourse #35: Solutions to Homework #34

Apologies

Homework #34 was poorly planned out. In doing the homework myself, I ran into a

number of conceptual rough spots that I did not point out in the problem specifications.

Some of these problems are:

1) I forgot to account for numbers (and arrays, etc.) that evaluate to themselves. In

LC.Eval, LITATOMs should have theior value looked up on the stack, LISTPs

should be evaluated as per the rules, and everything else (including numbers) should

evaluate to themselves. Its this last clause I left out of my description.

2) I did not account for NLAMBDA functions. In the LC.Eval function, NLAMBDA

functions have to be handled specially, since their arguments should not be

evaluated before LC.Apply is called. On page 8 of the solution printout is a magic

function LC.NlambdaP that determines if its argument is the name of an

NLAMBDA function.

3) As part of the LC.Apply function, I specified that if the function definition was not a

list, then you should use the standard Interlisp APPLY procedure instead of your

own. This is true, except it doesn’t quite work for functions that use free variables.

What happens is this: For functions with LISTP definitions, you bind variables on

your own stack. For non-LISTP definitions, you use Interlisp which has its own

stack. When Interlisp wants to look up a free variable, it looks on its own stack.

But the variable might have last been bound on your stack. Therefore, Interlisp will

either not find the binding or find an old binding.

Solution: Before you call the Interlisp APPLY, you have to bind on the interlisp

stack all of the variables that are bound on your stack. One way to do this is to

construct a LET or PROG statement with the necessary bindings and containing the

appropriate APPLY statement. You can then Interlisp EVAL this LET/PROG

statement. This solution is captured in the function LC.LispApply on page 8 of the

solution printout. In my LC.Apply, I called this function rather than calling APPLY

directly to get around this problem.

2LispCourse #35: Solutions to Homework #34

4) Things get dull after you call LC.LispApply, since thereafter Lisp is doing all the

EVALs and APPLYs. Therefore, you want to call standard Interlisp function as late

as possible so that you can watch functions with LISTP definitions (i.e., one you

have defined) being evaluated.

LC.CountAtoms has a COND at its top level. Therefore, most of the work in

evaluating LC.CountAtoms ends up being done by Lisp and not by your LC.Eval

and LC.Apply. I have one function, LC.CountAtoms1, that works this way. But I

also wrote a second function, LC.CountAtoms2, that uses my own version of COND

called LC.Cond. When I LC.Eval this second CountAtoms much more of the work

is done by my evaluator because I bomb into Lisp much later in the evaluation

process.

Solutions

Attached.

Sample Runs

Attached.

F.G.H.

6/12/85

LispCourse #36: More on Variable Binding; Control Structures in Lisp

NLAMBDA Functions

Recall that NLAMBDA functions are treated specially by the Lisp interpreter.

In particular, when evaluating a function call containing an NLAMBDA function,

the interpreter does not evaluate the arguments before the function is applied.

To define an NLAMBDA function, just use the keyword NLAMBDA instead of

LAMBDA in the function definition.

For example:

1_ (DEFINEQ

(E (NLAMBDA (FileName)

(* * Call TEdit on the named file)

(TEDIT FileName))))

(E)

2_ (E <LISPCOURSE>OUTLINE01.TED)

{PROCESS}#32,12345 (Starts up a TEdit)

3_ (SETQQ File <LISPCOURSE>OUTLINE01.TED)

<LISPCOURSE>OUTLINE01.TED

4_ (E File)

{DSK}File not found

Contrast the preceeding NLAMBDA with an analogous LAMBDA function:

5_ (DEFINEQ

(EX (LAMBDA (FileName)

(* * Call TEdit on the named file)

(TEDIT FileName))))

(EX)

6_ (EX ’<LISPCOURSE>OUTLINE01.TED)

{PROCESS}#32,12337 (Starts up a TEdit)

7_ (SETQQ File <LISPCOURSE>OUTLINE01.TED)

<LISPCOURSE>OUTLINE01.TED

2LispCourse #36: More on Variable Binding; Control Structures in Lisp

8_ (EX File)

{PROCESS}#32,12678 (Starts up a TEdit)

The NLAMBDA version of this function has the advantage that user/programmer

does not have to QUOTE the file name argument when calling the function since

the argument is not evaluated.

I.e., compare events 2 and 6 in the preceding examples.

However, the NLAMBDA version has the disadvantage that it is less easily

integrated into the workings of the Lisp Exec.

For example, you cannot set a variable to the name of the desired file and

then use this variable to refer to the file when calling the NLAMBDA

function. This is shown in the comparison between events 4 and 8 above.

The bottom line is that NLAMBDA function have their uses, especially when writing

functions that interface with the user, but they also have their drawbacks in terms of

flexibility.

For example: LISTFILES is an NLAMBDA function.

It is nice to be able to type: (LISTFILES {DSK}HOMEWORK34)

without worrying about the QUOTE.

On the other hand, you can do: (FOR File in ListOfFiles DO (LISTFILES

File)) to print out each file in a list of files.

You would have to type (FOR File in ListOfFiles DO (APPLY

’LISTFILES (LIST File))), which is more than a bit clumsy.

The other place that NLAMBDA function are very handy is when you want to write

functions that evaluate a bunch of SExpressions in a non-standard order.

For example, the following function evaluates the first of two SExpressions only

if the first evaluates to non-NIL:

(DEFINEQ

(FirstOnlyIfSecond

(NLAMBDA (SExpr1 SExpr2)

3LispCourse #36: More on Variable Binding; Control Structures in Lisp

(COND ((EVAL SExpr2) (EVAL SExpr1))))))

Note that COND, AND, OR, PROG, etc. are all standard Interlisp functions that

use this trick to change the order in which a set of SExpressions are evaluated.

Spread and NoSpread Functions

The Spread/NoSpread distinction is a second classification of functions in Interlisp that

is orthogonal to the LAMBDA/NLAMBDA distinction.

So far, we have been looking only at spread functions.

A spread function is one whose parameter list is in fact a LISTP.

Thus, a spread function definition has the form (LAMBDA List SExpr1 ...

SExprN) or the form (NLAMBDA List SExpr1 ... SExprN).

When APPLYing spread functions, the Interlisp interpreter matches each

parameter in this parameter list with the corresponding argument in the function

call.

Note that the effect of this scheme is that each spread function has a fixed

number of parameters. If there are more arguments then parameters, the

arguments are just ignored.

In contrast, a nospread function has a parameter "list" consisting of a single LITATOM.

Thus, a nospread function definition has the form (LAMBDA Litatom SExpr1 ...

SExprN) or the form (NLAMBDA Litatom SExpr1 ... SExprN).

When APPLYing a nospread function, Interlisp sets up this LITATOM to point to

the list of all arguments in the function call. Using the LITATOM as a reference

(as described below), you can access this list from within the function.

This scheme allows a single parameter to refer to an arbitrarily long list of

arguments. Thus, nospread functions have no fixed number of parameters.

The manner in which one can reference the arguments of a nospread function differs for

LAMBDA and NLAMBDA functions.

4LispCourse #36: More on Variable Binding; Control Structures in Lisp

NLAMBDA nospread functions

Interlisp simply sets the LITATOM that is the parameter "list" to the list of

arguments (unevaluated). You can then get to any element of the this list using

CAR, CDR, LAST, etc.

For example, the following function calls TEdit for each of an arbitrary

number of files:

10_(DEFINEQ

(TEDs

(NLAMBDA Files

(FOR File in Files DO (TEDIT File)))))

(TEDs)

11_(TEDs {DSK}FOO)

NIL (Starts TEdit on a single file {DSK}FOO)

12_ (TEDs {DSK}BAR {ERIS}<HALASZ>BAZ {DSK}ARG)

NIL (Starts 3 TEdits on three files as specified)

13_ (TEDs A B C D E F G H J K)

NIL (Starts 10 TEdits on ten files as specified)

5LispCourse #36: More on Variable Binding; Control Structures in Lisp

LAMBDA nospread functions

LAMBDA nospread functions are a bit more complicated.

The LITATOM that is the parameter "list" is bound to the number of

arguments being passed in the current function call.

The arguments can be accessed individually using the functions ARG and

SETARG.

(ARG Litatom M) ž In a LAMBDA nospread function whose

parameter specification is the LITATOM Litatom, ARG returns the

Mth argument of the current function call. ARG is itself an

NLAMBDA function that doesn’t evaluate its argument but DOES

evaluate its second argument.

(SETARG Litatom M Value) ž In a LAMBDA nospread function

whose parameter specification is the LITATOM Litatom,

SETARG sets the Mth argument of the current function call to

Value. SETARG is itself an NLAMBDA function that doesn’t

evaluate its argument but DOES evaluate its second and third

arguments.

For example, the following (nonsense) function collects the results of

evaluating an arbitrary number of SExprs, where each result is made into a

string:

14_(DEFINEQ

(ResultsAsStrings

(LAMBDA SExprs

(FOR Index FROM 1 to SExprs

COLLECT

(MKSTRING (ARG SExprs

Index))))))

(ResultsAsStrings)

15_ (ResultsAsStrings (PLUS 1 2) ’ABC (REVERSE ’(A B C)))

6LispCourse #36: More on Variable Binding; Control Structures in Lisp

("3" "ABC" "(C B A)")

16_ (ResultsAsStrings (PLUS 2 3) ’(PLUS 2 3) (EVAL (PLUS 2

3)))

("5" "(PLUS 2 3)" "5")

What are nospread functions good for?

Nospread functions are handy whenever you want to write a function that handles

an arbitrary number of arguments.

COND, PROG, AND, OR, and PLUS are all implemented as nospread functions

since they all handle an arbitrary number of arguments.

Another example might be the print function, LC.Print, from Homework #35.

LC.Print was defined as a spread function as follows:

(DEFINEQ (LC.Print

(LAMBDA (#Items Thing1 Thing2 Thing3 Thing4

Thing5)

(FOR Thing

IN (LIST Thing1 Thing2 Thing3 Thing4

Thing5)

AS Ctr FROM 1 TO #Items

DO (PRIN1 Thing))

(TERPRI))))

This version of LC.Print could handle at most 5 things to be printed and

required a sixth argument specifying how many actual arguments there

were if there were less than 5.

But LC.Print should have been defined as a nospread function as follows:

(DEFINEQ

(LC.Print (LAMBDA Things

(FOR Index FROM 1 TO Things

7LispCourse #36: More on Variable Binding; Control Structures in Lisp

DO (PRIN1 (ARG Things Index)))

(TERPRI))))

Note that this nospread version of LC.Print can print an arbitrary number

of things and does not require an explicit parameter specifying how many

arguments there are.

Summary of 4 function types

Since Spread/Nospread and LAMBDA/NLAMBDA are orthogonol distinctions,

there are a total of 4 different kinds of functions in Interlisp:

LAMBDA spread

LAMBDA nospread

NLAMBDA spread

NLAMBDA nospread

You can find out the type of an arbitrary function in Interlisp using the ?= facility

in the Lisp Exec.

In the Lisp Exec, just type a "(", the function name, a space, the characters

"?=" and a carriage return.

Once the return is typed, the ?= will be erased and on the next line

there will be a print out the parameter "list" of the named function.

Following the parameter list will be a indication of the type of the

function as follows:

LAMBDA spread -- Blank

LAMBDA nospread -- {L*}

NLAMBDA spread -- {NL}

NLAMBDA nospread -- {NL*}

Examples:

LAMBDA spread

8LispCourse #36: More on Variable Binding; Control Structures in Lisp

LAMBDA nospread

NLAMBDA spread

NLAMBDA nospread

Functions as Arguments in Function Calls

In Lisp, using a function as an argument in a function call is no big deal. Functional

arguments follow the same rules as any other argument.

Example:

1_(DEFINEQ

(DoItToFiveAndFour

(LAMBDA (ItFn)

(APPLY ItFn (LIST 5 4)))))

9LispCourse #36: More on Variable Binding; Control Structures in Lisp

(DoItToFiveAndFour)

2_(DoItToFiveAndFour ’PLUS)

9

3_(DoItToFiveAndFour ’DIFFERENCE)

1

4_(DoItToFiveAndFour (MKATOM (CONCAT "TI" ’MES)))

20

5_ (DoItToFiveAndFour (LIST ’PLUS))

UDEFINED FUNCTION

(PLUS)

Note: you can generally use a function definition (i.e., a list beginning with a LAMBDA)

where a function name is required. This is because most Lisp functions that require a

function name, will accept a function definition instead.

Example:

6_ (DoItToFiveAndFour ’(LAMBDA (X Y) (SUB1 (PLUS X

Y))))

8

7_ (DoItToFiveAndFour ’(LAMBDA (X Y) (TIMES (PLUS X Y)

Y)))

36 [=(5+4)*4]

When passing functions as arguments, it is important to pass down function with the

appropriate characteristics, e.g., the required number of parameters.

Example:

8_ (DoItToFiveAndFour ’(LAMBDA (X Y Z) (PLUS X Z Y))))

NON-NUMERIC ARG

NIL

[Because Z is bound to NIL when (PLUS X Y Z) is evaluated.]

FUNCTION ž in the preceeding examples, I used QUOTE to prevent evaluation of

function names or function definitions used as arguments in a function call.

10LispCourse #36: More on Variable Binding; Control Structures in Lisp

I actually should have used the function FUNCTION in place of QUOTE in these

cases.

FUNCTION behaves much like QUOTE, but tells Lisp that it is dealing with a

function rather than a data object. In some cases (e.g., in the compiler) this will

allow Lisp to behave much more efficiently.

Example:

9_ (DoItToFiveAndFour (FUNCTION (LAMBDA (X Y) (SUB1 (PLUS

X Y)))))

8

10_(DoItToFiveAndFour (FUNCTION PLUS))

9

A more realistic example

1_ (DEFINEQ

(WindowOp (LAMBDA (Op Window)

(OR (WINDOWP Window)(SETQ Window (GetWindow)))

(APPLY* Op Window)))

(WindowOp)

2_ (WindowOp (FUNCTION CLOSEW) W)

CLOSED [Closes the window that is the value of W]

3_ (WindowOp (FUNCTION MOVEW))

(100 . 100) [Gets a window from the user, then moves that window]

Control Structures in Lisp

Procedural Abstraction

If there’s one important concept in programming, its abstraction.

Abstraction starts with the process of breaking down a large task into a

set of sub-tasks, breaking down each sub-task into a set of sub-sub-tasks,

and so on until you get to atomic tasks that can’t be further decomposed.

11LispCourse #36: More on Variable Binding; Control Structures in Lisp

You then write the primitive functions to carry out the lowest-level, most

detailed sub-sub-... tasks. Once these functions are written, you can write

the functions that carry out the next higher level in terms of these more

primitive, lower level functions. And so on, until the function that

accomplishes the top-level task can be written in terms of the functions

that carry out its compoenent sub-tasks.

The important concept here is that the functions at each level should be as

independent as possible from both the lower level functions it uses and the

higher level function that use it.

The only assumptions that should be made are about these higher

or lower level functions concern the syntax and semantics of their

arguments and returned values, and some information about their

side-effects on the environment.

In particular, NO assumptions should be made about the details of

how they are implemented.

The goal of abstraction is to be able to write programs in which bugs,

required changes, etc. will be isolated to only those few functions that are

directly relevent to the bug or change or whatever.

For example:

Consider a program that does some complex computations,

printing out intermediate results in the Exec window along

the way.

The task of printing out the intermediate results on the

screen should be isolated into a separate function (or

functions) and not be part of the functions that do the

calculations.

Then, if you want to change the printout to use special

fonts or to go to a file rather than the screen, you have to

change only the printing function(s). No changes will have

to made to all of the functions that do the computational

work.

12LispCourse #36: More on Variable Binding; Control Structures in Lisp

The advantages of properly abstracted programs are too many to

enumerate!!! Ease of programming, ease of debugging, ease of

modification, and so on.

We covered data abstraction, i.e. abstraction when dealing with data structures,

in glorious detail earlier (see LispCourse #s 24 thru 26).

Procedural abstraction is the analogous concept in the realm of writing

procedures to carry out arbitrary tasks.

Procedural abstraction is the art of writing functions by combining calls to

other, more detailed functions.

There are various schemes for doing this combination of function calls to

make interesting and useful functions in Lisp.

The various schemes are called control structures and are the topic of the

next section.

Interlisp Control Structures

A control structure is a scheme for controlling the order of a set of function calls

being made in order to accomplish some task.

In Lisp, there are a number of basic control structures available for use in writing

your functions.

These control structures are generally implemented as functions that take

an arbitrary number of SExpressions (i.e., function calls) and evaluate

them in some specific order.

Review: Control Structures Already Covered

The following are basic control structures that we’ve already covered in

previous LispCourses.

Sequential evaluation

As a default rule, when you can specify an arbitrary

number of SExprerssions for evaluation, these

13LispCourse #36: More on Variable Binding; Control Structures in Lisp

SExpressions are evaluated in sequential order and the

value of the last SExpression is returned as the value of the

whole set of SExpressions.

The most salient instance of this is in the body of a function

definition.

Another instance is after the DO or COLLECT in a FOR

loop.

Embedding

Perhaps, the most prevelant control structure in Lisp is

embedding function calls as arguments to other

(LAMBDA) function calls.

Example:

(SQRT

(PLUS

(SQUARE (DIFFERENCE

X1 X2))

(SQUARE (DIFFERENCE

Y1 Y2))))

For LAMBDA function calls, the Lisp evaluator insures

that the arguments will be evaluated in sequential order

(from left to right) before the function is applied.

In the precedding example this means that before

the SQRT function is applied, the PLUS is

evaluated. But before the PLUS is applied, the two

SQUARE calls are evaluated in order. And so on.

Note: NLAMBDA functions to not have this property.

If the arguments to an NLAMBDA function are

evaluated at all, they are evaluated by the function

itself and not by the Lisp evaluator.

14LispCourse #36: More on Variable Binding; Control Structures in Lisp

Since the function can evaluate its arguments in any

order, the order of evaluation of an NLAMBDA

function’s arguments is impossible to predict, a

priori.

However, if you happen to know how an

NLAMBDA function evaluates it arguments, you

can use embedding.

Example:

(SETQ FOO (SETQ BAR (PLUS A

B))) Sets both FOO and BAR to the

result of (PLUS A B).

COND

COND implements a conditional (IF-THEN-ELSE) control

structure in Lisp. (See LispCourse #4, page 5)

COND has the form:

(COND (Test1 Consequent1)(Test2 Consequent2)

...)

COND evaluates each TestI in turn until the first

one that evaluates to non-NIL.

It then evaluates each SExpression in the

Consequent after this first non-NIL Test and

returns the value of the last of these

SExpressions. (Or the value of the Test if

there are no SExpressions in the

Consequent.)

If there is no TestI that evaluates to non-NIL,

COND returns NIL.

Example:

(COND

((LITATOM SExpr)(LookupValue SExpr

Stack))

15LispCourse #36: More on Variable Binding; Control Structures in Lisp

((LISTP SExpr)(LC.Eval SExpr Stack))

(T SExpr))

In English:

If SExpr is a LITATOM, Lookup its

value;

Else if SExpr is a list, the eval that

list,

Otherwise, return SExpr.

16LispCourse #36: More on Variable Binding; Control Structures in Lisp

17LispCourse #36: More on Variable Binding; Control Structures in Lisp

 AND, OR

AND and OR are two functions that are meant to be logical

functions, but often serve to control the order of evaluation

of SExpressions.

Both AND and OR take an arbitrary number of

SExpressions as arguments.

AND ž evaluates the SExpressions in sequential

order but stops at the first SExpression that

evaluates to NIL and returns NIL. If no such

SExpression is found, AND returns the value of the

last SExpression.

OR ž evaluates the SExpressions in sequential order

but stops at the first SExpression that evaluates to

non-NIL and returns its value. If no such

SExpression is found, OR returns NIL.

AND is often used to replace single clause COND

expressions:

1. (AND YesFlg (SETQQ Blat Fumble))

is equivalent to

(COND (YesFlg (SETQQ Blat Fumble))).

2. (AND (SETQ Baz (CAR Fu)) (PLUS 3 Baz))

is equivalent to

(COND ((SETQ Baz (CAR Fu)) (PLUS 3

Baz))).

3. (AND Window TextStream ID

(LC.SetID ID Window TextStream))

is equivalent to

(COND

((AND ID Window TextStream)

18LispCourse #36: More on Variable Binding; Control Structures in Lisp

(LC.SetID ID Window

TextStream))))

OR is often used to replace COND statements with a

number of clauses, each having a test and no consequents:

1. (OR

(WINDOWP Window)

(SETQ Window (CREATEW)))

is equivalent to

(COND

((WINDOWP Window))

((SETQ Window (CREATEW))))

2. (OR List Array

(ERROR "Neither list nor array

present"))

is equivalent to

(COND

(List)

(Array)

((ERROR "..")))

3. (SETQ Foo

(OR Arg1 Arg2 (SETQ Arg1 (SETQ Arg2

Arg3))))

is equivalent to

(SETQ Foo

(COND

(Arg1)

(Arg2)

((SETQ Arg1 (SETQ Arg2

Arg3))))

Iteration: FOR, WHILE, and UNTIL

19LispCourse #36: More on Variable Binding; Control Structures in Lisp

FOR, WHILE, and UNTIL implement iterative loops in

Interlisp that allow you to repeat a set of operations for

each element in a sequence or list of elements.

The basic notion of an iterative loop is that there is an

iteration sequence (e.g., a list or a sequence of integers),

an iterative variable, and a body of SExpressions that (may)

use the iterative variable.

For each element in the iteration sequence in turn,

the iteration loop binds the iterative variable to this

element and then evaluates the SExpressions in the

body.

The clauses in a basic FOR, WHILE, or UNTIL

statement specify the iteration sequence, the

iteration variable, and the body.

See LispCourse #5, page 1 for a description

of the basic FOR, WHILE and UNTIL

loops.

Additional clauses, can specify what to do with the

results of evaluating the body (e.g., the COLLECT

statement), under what conditions to terminate the

iteration before the iteration sequence is exhausted,

etc.

In particular,

For conditional execution of the body of an

iterative loop, see LispCourse #26, page 16

for a description of the WHEN clause in

FOR/WHILE loops.

For multiple iteration variables, see

LispCourse Homework #28, page 6 for a

description of the AS clause in

FOR/WHILE loops.

20LispCourse #36: More on Variable Binding; Control Structures in Lisp

Loaded example:

(FOR Item IN List

AS Index FROM 1 TO (LENGTH List) BY

1

WHILE (KEYDOWNP ’A)

WHEN (NUMBERP (ELT Array Index))

COLLECT (ADD1 (SETA Array Index

Item)))

This example has 2 iterative sequences (List &

FROM 1 TO (LENGTH List) BY 1) and,

correspondingly, two iterative variables (Item &

Index).

It has a standard body thgat uses both iteration

variables -- (ADD1 ...)

It has an early termination condition -- WHILE ...

It has conditional evaluation of its body -- WHEN ...

And it returns the list of evaluation results from

each iteration -- COLLECT ...

21LispCourse #36: More on Variable Binding; Control Structures in Lisp

LET

LET is an implementation of the basic sequential

evaluation of SExpressions. Thus as a control structure its

not very interesting. Its basic use is for binding variables.

(SEE LispCourse #34, page 19)

PROG with RETURN

Like LET, PROG is used basically for binding variables.

(SEE LispCourse #34, page 23)

Basically, PROG implements a sequential evaluation of

SExpressions.

However, with an embedded RETURN statement, you can

terminate this sequential evaluation at any point and force

PROG to return an arbitrary value.

PROG with RETURN together with COND, AND, OR,

etc. can be used to built tailor-made control structures.

Example:

(PROG NIL

(AND (WINDOWP Window)(RETURN

Window))

(AND

(WINDOWP

(SETQ Window

(WindowOfText

TextStream))

(RETURN Window))

(SETQ Window (CREATEW))

(AND

(WindowOffScreenP Window)

(RETURN Window))

22LispCourse #36: More on Variable Binding; Control Structures in Lisp

... Do lots of work with the window ...

(RETURN Window))

This is an example of using PROG with no binding

list just to take advantage of the RETURN

statments.

The example is actually equivalent to the following

COND statement. But the PROG version is much

easier to follow that the COND version (at least for

an old FORTRAN programmer!).

(COND

((WINDOWP Window) Window)

((WINDOWP

(SETQ Window

(WindowOfText

TextStream)))

 Window)

((WindowOffScreenP

(SETQ Window

(CREATEW)))

 Window)

(T ... Do lots of work with the

window ...

 Window))

23LispCourse #36: More on Variable Binding; Control Structures in Lisp

PROG with GO

Note that PROG also supports a GO clause that can be used

to construct tailor-made iterative loops.

The GO clause is like the FORTRAN GOTO.

Since GOTOs are considered BAD programming style, we

won’t cover GO here.

See pages 4.3 & 4.4 of the IRM for more information.

Note, however, that FOR/WHILE/UNTIL loops are

actually constructed by CLISP from

PROG/GO/RETURN!!!

Other Control Structures

SELECTQ

SELECTQ is a control structure that will select a sequence of

SExpressions to evaluate based on the value of its first argument.

SELECTQ has the following format:

(SELECTQ Selector Clause1 Clause2 ... DefaultSExpr)

SELECTQ is an NLAMBDA function.

Selector is an arbitrary SExpression that evaluates

to an atomic value.

DefaultSExpr is an arbitrary SExpression. It MUST

be present. (Its a common mistake to forget it!!)

Each ClauseI is an SExpression of the format:

(Key SExpr1 SExpr2 ...)

Key is either a single atom or a list of atoms.

24LispCourse #36: More on Variable Binding; Control Structures in Lisp

The SExprI are arbitrary SExpressions.

SELECTQ works as follows:

Selector is evaluated. And then compared against

the Key (which is unevaluated) of each Clause in

turn until a match is found.

A match is defined as follows:

If Key is an atom, then Key

must be EQ to the value of

Selector.

If Key is a list, then the value

of Selector must be a

MEMEBER of Key.

For the first Clause whose Key matches,

each of the SExprs in the Clause are

evaluated in turn, and the value of the

SELECTQ is the result of the last

evaluation.

If no matching clause is found, then

DefaultSExpr is evaluated and the result is

returned as the value of the SELECTQ.

Example:

1_(DEFINEQ

 (ProcessCommand

 (LAMBDA (Command)

(SELECTQ Command

(Create

(CREATEW))

(Close

(SETQ Window

(GetWindow))

(CLOSEW Window)

25LispCourse #36: More on Variable Binding; Control Structures in Lisp

Window)

(Move

(SETQ Window

(GetWindow))

(MOVEW Window)

Window)

((Shape Reshape)

(SETQ Window

(GetWindow))

(SHAPEW Window)

Window)

(ERROR "Unknown Command"

Command))))

(ProcessCommand)

3_ (ProcessCommand ’Create)

[Prompt for a region and create a window in it.]

{WINDOW}#43,12557

4_ (ProcessCommand ’Shape)

[Prompt for a window and reshape it.]

{WINDOW}#43,12345

4_ (ProcessCommand ’Display)

Unknown Command

Display

EFS: What is the format of the COND statement equivalent to

SELECTQ.

PROG1, PROG2, PROGN

PROG1, PROG2, and PROGN are three variations on the theme of

sequential evaluation.

26LispCourse #36: More on Variable Binding; Control Structures in Lisp

All of these functions sequential evaluate an arbitrary number of

SExpressions.

They differ in the value that they return. In particular:

PROG1 returns the value the first SExpression.

PROG2 returns the value of the second SExpression.

PROGN returns the value of the last SExpression.

Note: These are NOT variations of the PROG, they do NOT bind

any variables.

PROG1 and PROG2 are used when need to evaluated a sequence

of SExpressions in a particular order, but want to return the value

of the first or second SExpression rather than the last as is usually

the case.

Example from LC.Apply from Homework#35:

(LAMBDA

...

(PROG1

(LC.Eval (CAR (LAST SExprs))

Stack)

(LC.Unbind Stack)))

The problem here is that LC.Apply has to evaluate

the last SExpr BEFORE unbinding the stack, but

needs to return the value of the evaluatiuon AFTER

unbinding the stack.

PROG1 solves the problem efficiently. In the

Homework #35 solutions, we needed to bind an

extra variable (i.e., Result) using LET in order to

accomplish the same thing:

(LAMBDA

...

27LispCourse #36: More on Variable Binding; Control Structures in Lisp

(LET (Result)

...

(SETQ Result

(LC.Eval (CAR (LAST

SExprs)) Stack)

(LC.Unbind Stack)

Result))

PROGN is used where only a single SExpr is allowed, but you

need to evaluate several SExpressions in order. In this case, you

just wrap the SExpressions in a PROGN, which counts as a single

SExpression.

Example:

(SELECTQ

Command

(Create (CREATEW) ’Created)

(Close

(SETQ Window

(GetWindow))

(CLOSEW Window)

’Closed)

(PROGN

(SETQ Window

(GetWindow))

(MOVEW Window)

’Moved))

The problem here is that the default clause of a

SELECTQ must be a single SExpression. But we

want to do three things in the default case: get the

window, move it, and return the atom Moved.

Solution is to use a PROGN to wrap the three

function calls into a single unit.

28LispCourse #36: More on Variable Binding; Control Structures in Lisp

Simple Repetition: RPT and RPTQ

RPT and RPTQ implement a simple repetition control structure.

(RPT N SExpr) ž Evaluates SExpr N times and returns the value of

the last evaluation. Before each evaluation the free variable RPTN

is set to the number of repetitions still to take place. RPTN can be

used inside of SExpr.

RPT is a LAMBDA-spread function. Therefore, it is

actually the value of the argument that is being repeatedly

evaluated.

Example:

1_ (RPT 5 (QUOTE (PRINT RPTN)))

5

4

3

2

1

2_ (RPT 3 (QUOTE (CREATEW)))

[Creates 3 windows]

{WINDOW}#34,00123

(RPTQ N SExpr1 SExpr2 ...) ž Evaluates each SExprI N times and

returns the value of the last evaluation. Order of evaluation is to

do each SExprI once, then repeat. Before each evaluation the free

variable RPTN is set to the number of repetitions still to take

place. RPTN can be used inside of SExpr.

RPT is a NLAMBDA-nospread function.

Example:

3_ (SETQ A 6)

6

29LispCourse #36: More on Variable Binding; Control Structures in Lisp

4_(RPTQ 6 (SETQ A (ADD1 A)) (SETQ A (SUB1

(SUB1 A))))

0

5_ A

0

6_(RPTQ 2 (PRINT "A")(PRINT "B"))

"A"

"B"

"A"

"B"

"B"

Mapping functions: MAP, MAPC, MAPLIST, MAPCAR

Mapping functions are a common Lisp control structure.

A mapping function iterates over some data structure (usually a

list) and applies some other function to each element of the data

structure in turn.

Interlisp has several built in mapping functions for lists. We will

cover only MAPC and MAPCAR.

(MAPC List WorkFn NextFn) ž Does (APPLY* WorkFn (CAR

List)), then does (APPLY* WorkFn (CAR (NextFn List))), then

does (APPLY* WorkFn (CAR (NextFn (NextFn List)))) and so on

until (NextFn (... (NextFn List))) returns NIL. MAPC always

returns NIL.

If NextFn is NIL, CDR is used.

Examples:

(MAPC (OPENWINDOWS) ’CLOSEW) will

CDR down the list of OPENWINDOWS and

CLOSEW each window in turn.

30LispCourse #36: More on Variable Binding; Control Structures in Lisp

(MAPC (OPENWINDOWS) ’CLOSEW ’CDDR)

will map down every other window in the

OPENWINDOWS list (due to the use of CDDR

rather than CDR) and CLOSEW each of these

windows in turn.

(MAPCAR List WorkFn NextFn) ž Essentially the same as

MAPC, but returns a list of the values returned by all the

evaluations of WorkFn.

Examples:

(MAPC (LIST 1 2 3 4 5 6 7) ’ADD1) will CDR

down the list (1 2 3 4 5 6 7) and ADD1 each item in

turn, returning the result of all the ADD1s, i.e., (2 3

4 5 6 7 8).

(MAPC (LIST 1 2 3 4 5 6 7) ’ADD1 ’CDDDR)

will map down every third element the list (1 2 3 4

5 6 7) and ADD1 each of these elements in turn,

returning the result of all the ADD1s, i.e., (2 5 8).

Note: Section 5.3 of the IRM describes several relatives of MAPC

and MAPCAR.

Note: MAPC and MAPCAR are nearly identical in functionality to

various FOR/COLLECT constructions. (In fact, CLISP actually

implements many FOR loops as MAPC/MAPCAR type functions)

Since FOR is much easier to use, I seldom use MAPC and

MAPCAR and their relatives.

But, the notion of a mapping function appears other places

in Lisp, where functions like FOR are not available.

For example, TEdit has a function called

TEDIT.MAPPIECES that allows you to apply an

arbitrary function to every "piece" of text in a TEdit

text.

31LispCourse #36: More on Variable Binding; Control Structures in Lisp

Recursion -- The ultimate control structure in Lisp

To be completed

References

The LAMBDA/NLAMBDA and Spread/Nospread distinctions are covered in 5.1 of the

IRM. Sections 5.1.0 thru 5.1.4 are most relevent. Also look at Section 5.1.7.

Functional arguments and FUNCTION are covered in Section 5.4 of the IRM.

Most control structures (e.g., COND, AND, OR, SELECTQ, PROG, PROG1, PROGN,

etc.) are covered in Chapter 4 of the IRM.

RPT, RPTQ, MAPC and MAPCAR are covered in Section 5.3 of the IRM.

F.G.H.

6/18/85

LispCourse #37: Recursion; Organizing Large Programs

Rercursion ÿ The ultimate Lisp control structure

Recursion is THE control structure in Lisp.

Reasons:

Recursion is the right way to organize many procedures!

The structure of Lisp encourages you to think recursively.

The structure of Lisp makes it very convenient to write recursive

functions.

To review: Recursion a control structure in which the definition of a function includes a

function call to itself.

The basic idea: many problems can be solved by combining the solutions to two

or more smaller problems, each of the same nature as the larger problem.

For example: to count the number of atoms in a list, you can combine by addition

the number of atoms in the CAR of the list and the number of atoms in the CDR

of the list.

This works fine as long as the CAR and CDR are both non-empty lists,

because you can then (recursively) apply the same procedure to count their

atoms.

But you must have an alternative procedure when the CAR and/or CDR is

a non-list or an empty list because the count atoms in list procedure won’t

work in these cases.

All recursive functions have the same basic underlying structure:

2LispCourse #37: Recursion; Organizing Large Programs

(DEFINEQ

(RecursiveFunction (LAMBDA (Args...)

(COND

((Is Args... a terminating case?) (Process terminating case))

(T (Call combining function with args:

(Call RecursiveFunction using first "part" of Args...)

(Call RercursiveFunction using second "part" of Args...)

...

(Call RercursiveFunction using last "part" of Args...)))))

The CountAtoms procedure from LispCourse #5, page 12 implements the count-atoms-

in-a-list procedure outlined in the example above and follows exactly this standard

recursive function format:

(DEFINEQ

 (CountAtoms (LAMBDA (List)

(COND

((NULL List) 0) [Terminating case]

((LITATOM List) 1) [Terminating case]

(T (PLUS [Combining Function]

(CountAtoms (CAR List)) [Recursion: 1st part of List]

(CountAtoms (CDR List))))))) [Recursion: 2nd part of List]

As another example, consider the function EVAL (LispCourse #34, page 5):

(DEFINEQ

 (EVAL (LAMBDA (SExpr)

(COND

((LITATOM SExpr)

(LookupValue SExpr) [Terminating case]

((NLISTP SExpr) SExpr)) [Terminating case]

(T (APPLY (CAR SExpr) [Combining Function]

(FOR Item in (CDR SExpr)

DO (EVAL Item))))))

[Recursive call on each part of SExpr]

3LispCourse #37: Recursion; Organizing Large Programs

EFS: Trace EVAL and APPLY during the evaluation of (CountAtoms ’((A B) D E)).

You will see that recursion works in Lisp because each time CountAtoms is APPLYed to

another sub-list, a new stack frame is created and List is rebound to the value of that sub-

list.

Recursion works in Lisp because

1) the stack is a expandable data structure that holds the results of

incomplete calculations while (recursive) sub-calculations are going on

2) the process of rebinding variables on the stack allows you to apply a

given function to a new set of arguments while the processing of a prior

call to that same function is still incomplete

Recursion can be indirect, e.g., a FunctionA calls FunctionB which in turn calls

FunctionA again.

The Lisp evaluator (LispCourse #34, pages 5 & 6) is an execellent example:

EVAL recursively calls EVAL, but it also calls APPLY.

APPLY in turn calls EVAL.

So EVAL calls APPLY which calls EVAL.

For example on a list:

EVAL calls EVAL on each item in the CDR of the list, then calls APPLY

using the CAR and the evaluated arguments.

APPLY in turn calls EVAL on each list in the function definition of the

CAR of the original list.

4LispCourse #37: Recursion; Organizing Large Programs

Types of Recursion

Single Recursion (and tail recursion)

Singly recursive functions are recursive functions that call themselves

only once during each application of the function.

Note the a call to itself may appear several times in the function

defintion (e.g., in several clauses of a COND statement), but only

one of these should be evaluated during each call to APPLY.

Examples:

(DEFINEQ

(MEMBER (Thing List)

(* * Is Thing EQUAL to any item in List?)

(COND

((NULL List) NIL)

((EQUAL Thing (CAR List)) T)

(T (MEMBER Thing (CDR List))))))

(DEFINEQ

(LENGTH (List)

(* * Return the number of items in List)

(COND

((NULL List) 0)

(T (ADD1 (LENGTH (CDR List)))))))

(DEFINEQ

(REVERSE (List)

(* * Make a copy of List with the items in reverse

order)

(COND

((NULL List) NIL)

(T (APPEND (REVERSE (CDR List))

(CAR List))))))

5LispCourse #37: Recursion; Organizing Large Programs

Note that these three function are all singly recursive, but differ in what

they do to the result returned by the recursive function call.

Each call to MEMBER just returns the value of the recursive

function call (or NIL if List is NULL).

Each call to LENGTH returns 1 plus the result returned by the

recursive function call.

Each call to REVERSE returns a computation based on the value

returned by the recursive function call and a computation based on

the value of the main argument.

Because of these differences, an all-knowing Lisp evaluator would have to

maintain different amount of state about each of these recursive functions

during evaluation. In particular,

For MEMBER, the evaluator could thow out all information about

a function call (i.e., its stack frame) once it made its recursive call.

This is because there is no information about the state of

the computation to be maintained once the recursive call is

made. The value of the highest level call is the value of the

lowest-level function call, with no modifications.

For LENGTH and REVERSE, the evaluator needs to maintain

information about each recursive call until the recursion is

complete.

This is because when the recursive call is made, the

computation at the current level is incomplete. In

LENGTH, for example, the recursive computation is being

done in the middle of an ADD1 evaluation. Information

about the status of ADD1 needs to be maintained until the

recursive call to LENGTH has returned a value.

MEMBER is a tail recursive function, LENGTH and REVERSE are not.

A tail recursive function is recursive function whose value

depends only on the value returned by a recursive call or some

value that is computed directly without a recursive call.

6LispCourse #37: Recursion; Organizing Large Programs

Tail recursive function are important because a good Lisp

evaluator can eliminate the unnecessary stack frames

during the computation. making these computations very

efficient. (See comparison of iteration and recursion

below).

Recursive functions that are not tail recursive need to

maintain their intermediate state on the stack ,and therefore

can be relatively expensive to compute.

Double (or more) Recursion

Doubly recursive functions are functions that during each application call

themselves two (or more) times.

CountAtoms (above) is a perfect example: for each invocation (where List

is a LISTP) it recurses once on its CAR and once on its CDR.

As a second example, the following function is like MEMBER but rather

than just looking at the top-level elements in a list, it descends into each

sub-list looking for a sub-item that might be EQUAL to its first argument:

(DEFINEQ

(MEMBER*

(LAMBDA (Thing List)

(COND

((NULL List) NIL)

((NLISTP List) (EQUAL Thing

List))

(T (OR

(MEMBER* Thing (CAR

List))

(MEMBER* Thing (CDR

List))))))))

7LispCourse #37: Recursion; Organizing Large Programs

In general, doubly recursive functions cannot be tail recursive because the

evaluator always needs to maintain state (i.e., the result of) about the result of the

first recursive call while evaluating the second recursive call.

The exception to this rule is doubly recursive functions that are evaluated for side-effect

only and do not return a useful value. In this case, computation can be done on the

returned value of a recursive call, so no state has to be maintained.

Double recursion is often called tree recursion because it is used to traverse tree

structures. See Homework for examples.

Iteration versus Recursion

Iteration and recursion are in many ways similar control structures.

In fact, any iterative procedure can be automatically converted into an equivalent

recursive procedure.

For example:

(LET ((Sum 0))

(FOR Item IN List DO (SETQ Sum (PLUS Sum Item)))

Sum)

can be converted to

(DEFINEQ

(Sum (LAMBDA (List)

(COND

((NULL List) 0)

(T (PLUS (CAR List) (Sum (CDR List)))))))

In contrast, not every recursive procedure can be converted into an equivalent

iterative procedure:

CountAtoms, for example, has no iterative equivalent.

Tail recursive procedures are important, however, because they can

always be rewritten in an equivalent iterative form.

For example, MEMBER can be written as:

8LispCourse #37: Recursion; Organizing Large Programs

(FOR Item IN List WHEN (EQUAL Thing Item) DO

(RETURN T))

It is interesting that the Sum function just above is NOT tail recursive, but

is equivalent to an iterative procedure. The reason is that the Sum

function can be rewritten as the following equivalent tail recursive

procedure, which in turn can be rewritten as an iterative procedure:

(DEFINEQ

(Sum2 (LAMBDA (List Total)

(COND

((NULL List) Total)

(T (Sum2 (CDR List) (PLUS (CAR List)

Total))))))

The ability to rewrite recursive procedures as iterative procedure is important

because iterative computations are in general much more efficient than recursive

computations.

This is because recursive function calls require the evaluator to maintain a

set of stack frames containing information about partially completed

computations. This stack grows as the recursion gets deeper.

In contrast, iterative procedures require only a fixed set of state variables

to be maintained (e.g., the iterative variable). The number of these state

variables does not increase with the number of iterations.

It is important to not that while recursive procedures cannot always be rewritten

as iterative procedures, it is often the case that a given problem can be solved

using a recursive procedure or an iterative procedure that is not strictly equivalent

to the recursive procedure.

For example:

The REVERSE function above cannot be written iteratively

because it is not tail recursive.

But we can write two slightly different procdures that reverse the

order of a list:

9LispCourse #37: Recursion; Organizing Large Programs

(DEFINEQ (ReverseTR (LAMBDA (List ResultSoFar)

(COND

((NULL List) ResultSoFar)

(T (ReverseTR

(CDR List)

(CONS (CAR List) ResultSoFar))))))

(DEFINEQ (ReverseIt (LAMBDA (List)

(LET (Result)

(FOR Item IN List

DO (SETQ Result (CONS Item

Result)))

Result))))

Untimately, the choice between iteration and recursion is one of programming

style and programming ease.

Some problems are best thought about recursively. In this case, it easiest

and clearest to write recursive functions.

Other problem are best thought of iteratively. In this case, iterative

functions are probably best.

The only exception is when efficiency considerations are important. In

this case, iterative solutions, if possible, are probably called for.

Organizing Large Programs by Object and Operation

Many large programming projects have the structure that there are a number of different

types of objects in the world and a number of operations that can be applied to any of

these types of objects.

For example, in arithmetic programming the objects are integers, real numbers,

complex numbers, etc. There are also a few standard operations, addition,

subtraction, multiplication and division.

In a text editor, the objects are characters, words, lines, and paragraphs. The

operations might be insert, delete, replace, transpose, etc.

10LispCourse #37: Recursion; Organizing Large Programs

It is helpful to illustrate the structure of these programming projects using a table of

objects and operations.

For example:

Integer Real

Objects

Complex

Addition

Operations
Subtraction

Division

Multiplication

AddInts AddReals

SubInts

...

...

...

Each cell of this table defines the need for a function to carry out the designated

operation on the designated type of object.

For example, the cell in the first row and first column of the table above indicates

the need for a function to add integers.

Similarly, the cell in the first row, second column defines the need for a function

that adds real numbers.

And so on.

When organizing the program to handle the given objects and operations, you have

several choices:

1) You can organize your functions by the rows in the table, i.e., by operation.

2) You can organize your functions by the columns in the table, i.e., by object

type.

3) You can organize your functions using the whole table.

Organization by Operation

11LispCourse #37: Recursion; Organizing Large Programs

If you organize by operation, you would write a single operation for each

operation. This function would then determine the type of its arguments and then

call the appropriate function to do the work.

For example:

The addition function might look like:

(DEFINEQ

 (ADD

(LAMBDA (N1 N2)

(COND

((AND (FIXP N1)(FIXP N2))

(IntegerAdd N1 N2))

((AND (FLOATP N1)(FLOATP

N2))

(RealAdd N1 N2))

((AND (ComplexP N1)(ComplexP

N2))

(ComplexAdd N1 N2))

(T (ERROR "Unknown argument

types or argument types different"

(LIST N1 N2)))))))

The subtraction. multiplication, and division functions would have

similar structures.

Once the generic operations functions were written, you could write all further

functions in terms of the generic operators.

For example, the following function would add the items in a list of

integers or a list of reals or a list of complex numbers:

(DEFINEQ (Sum (LAMBDA (List)

((NULL List) 0)

(T (ADD (CAR List)(Sum (CDR List)))))))

Organization by Type of Object

Alternatively, you could organize your program by object type.

12LispCourse #37: Recursion; Organizing Large Programs

In this case, you might create a RECORD or DATATYPE for each object type

containing each a function for each operation to be carried out on that object type.

For example, the following RECORD would be used for defining the

arithmetic object types:

(RECORD ArithObjectType (PredicateFn AddFn SubFn MultFn

DivFn))

Integers would then be defined by:

(create ArithObjectType

PredicateFn _ (FUNCTION FIXP)

AddFn _ (FUNCTION IntegerAdd)

SubFn _ (FUNCTION IntegerSubtraction)

MultFn _ (FUNCTION IntegerMultiplication)

DivFn _ (FUNCTION IntegerDivision))

You would then maintain a list of all of the arithmetic object types in the system.

Once this list was created, you could write a generic ADD function as follows:

(DEFINEQ (ADD (LAMBDA (N1 N2)

 (LET (TypeRecord)

(FOR Type IN ListOfSystemTypes

WHEN (AND (APPLY* (fetch PredicateFn of

Type) N1)

(APPLY* (fetch PredicateFn of

Type) N2))

DO (RETURN Type)))

(COND

(TypeRecord

(APPLY* (fetch AddFn of TypeRecord) N1

N2))

(T

(ERROR "Unknown argument types or

argument types different" (LIST N1 N2))

13LispCourse #37: Recursion; Organizing Large Programs

Organization using the table: Data-directed programming

Alternatively, you could organize your program by operation and object type.

In this case, you would create a table of functions indexed by object type and

operations.

For example:

(SETQ Table

((Integer Add IntegerAdd)

 (Integer Subtract IntegerSubtract)

 ...

 (Real Add RealAdd)

...

 (Complex Divide ComplexDivide)))

You could then create a generic function called Operate that carried out a given

operation on a given set of arguments.

Operate would look like:

(DEFINEQ (Operate (LAMBDA (Operation N1 N2)

(LET (TypeN1 TypeN2 Function)

(* * Get the type of the arguments)

(SETQ TypeN1 (GetType N1))

(SETQ TypeN2 (GetType N2))

(COND

((OR

(NEQ TypeN1 TypeN2)

(NULL TypeN1)

(NULL TypeN2))

 (ERROR ...))

(* * Lookup the function in the table)

(SETQ Function (FOR Item IN Table

WHEN (AND (EQ (CAR

Item) TypeN1)

14LispCourse #37: Recursion; Organizing Large Programs

(EQ (CADR

Item)

Operation))

DO (RETURN (CADDR

Item))))

(* * Apply the function)

(COND

(Function (APPLY* Function N1 N2))

(T (ERROR ...)))))))

The Sum function could then be written as:

(DEFINEQ (Sum (LAMBDA (List)

((NULL List) 0)

(T (Operate ’Add (CAR List)(Sum (CDR List)))))))

Organization by Object Instance: Object-oriented programming

All of the preceding organizations looked at the type of an object in order to

determine what functions to use on that object.

An alternative method would be to allow each data object to carry around with it

the functions that are necessary to operate on that object.

In this case, each data object would be a RECORD or DATATYPE of the

following form:

(RECORD ArithObject (TypeName Value AddFn SubFn MultFn DivFn))

You could then write an ADD function as follows:

(DEFINEQ (ADD (LAMBDA (N1 N2)

(COND

((NEQ (fetch (ArithObject TypeName) of N1)

(fetch (ArithObject TypeName) of N2))

 (ERROR ...)))

15LispCourse #37: Recursion; Organizing Large Programs

(APPLY* (fetch (ArithObject AddFn) of N1)

(fetch (ArithObject Value) of N1)

(fetch (ArithObject Value) of N2)))))

You would still need one function indexed by object type, the function that

creates a new object of that type. This would create a new object with its own

attached functions. The attached functions could be supplied specially for each

individual object or could be the same for all objects of a given object type.

For example, the following might be a function that creates the integer

object:

(DEFINEQ (MakeInt (LAMBDA (Value AddFn SubFn MultFn

DivFn)

(create ArithObject

TypeName _ ’Integer

Value _ Value

AddFn _ (OR AddFn

(FUNCTION DefaultIntegerAddFn))

SubFn _ (OR SubFn

(FUNCTION DefaultIntegerSubFn))

MultFn _ (OR MultFn

(FUNCTION

DefaultIntegerMultFn))

DivFn _ (OR DivFn

(FUNCTION

DefaultIntegerDivFn))))))

The integer of value 5, with default functions would then be created using

the function call: (MakeInt 5).

Similarly, an integer of value 7 with a special AddFn would be created

using: (MakeInt 7 (FUNCTION MyAddFn))

Much of the Interlisp system is programmed in this style.

16LispCourse #37: Recursion; Organizing Large Programs

For example, each window in the system is a DATATYPE of the

following form:

(DATATYPE WINDOW (... CLOSEFN SHRINKFN MOVEFN

...))

Each window in the system has attached to it the functions that specify

how to close it, how to shrink it, how to move it, etc.

When the window is created, default functions are placed in these

fields in the WINDOW datatype unless otherwise specified by the

user.

The function CLOSEW (SHRINKW, MOVEW etc) in Interlisp is

implemented as follows:

(DEFINEQ (CLOSEW (LAMBDA (Window)

(APPLY* (fetch (WINDOW CLOSEFN) of

Window) Window))))

At any time, the user can change the behavior of a window by

changing its CLOSEFN, MOVEFN, SHRINKFN or whatever.

17LispCourse #37: Recursion; Organizing Large Programs

Choosing from among these organizations

Choosing among these organizations is largely a matter of programming style and

the type of problem you are dealing with.

If the program has a fixed number of objects, but may increase in the

number of operations, then an operation-based organization may be best

since each added operation means adding a single new function.

If the program has a fixed number of operations but an increasing number

of object types, then an object type-based organization might be best since

each added object type would involve only a new object-type record or

datatype.

If there is a variability in both object types and operations, table-based

data-directed programming might be best.

Finally, if there are many specialized individual objects that need to be

treated differently from the rest of the objects of their basic type (as is the

case for windows), then an object-oriented organization would be the most

efficient.

References

Recursion

Winston & Horn, Chapter 4

Touretzky, Chapter 8

Program Organization

Abelson and Sussman, Section 2.3

F.G.H.

6/20/85

LispCourse #38: Files; Streams; Input/Output

Files

Files From the Programmer’s Point of View

A file is just a data structure that is "outside of Lisp", e.g., on the local disk, on a

file server, on the screen, etc.

Because a file is not part of any Lisp virtual memory, it can (generally) be

shared with other Lisp virtual memories or with other programming

environments, etc.

Sinces files not part of Lisp, there are special protocols for creating and accessing

files that are somewhat different from the way we access standard Lisp data

structures.

What kind of data structure a file represents is largely determined by the protocols

we use for accessing that file.

At the lowest level, all files are just variable-length one-dimensional

vectors of bytes (i,.e., 8-bit packets or integers between 0 & 255).

However, with the proper choice of input/output statements in Lisp, a file

can be made to look like any arbitrary data structure, e.g., a list of

SExpressions, a TEdit text, a Sketch, etc.

When dealing with files in a Lisp program, you frequently shift between viewing

the file as simply an unstructured vector of bytes and viewing the file as some

higher-level data structure.

File Names

Every file has a file name. The file name basically tells Lisp where to find the file

in the outside world.

The syntax and use of file names was discussed in LispCourse #15, pages 1 to 15.

The following are Interlisp functions that allow the programmer to construct and

decompose file names:

2LispCourse #38: Files; Streams; Input/Output

(FILENAMEFIELD FileName FieldName) ÿ returns the part of

FileName that is specified by FieldName. Allowable FieldNames are

HOST, DIRECTORY, NAME, EXTENSION, and VERSION. (See

LispCourse #15 for the semantics of these field names. HOST is the same

as Device).

Example:

1_ (FILENAMEFIELD ’{dsk}<halasz>lisp>init.lisp ’NAME)

init

2_ (FILENAMEFIELD ’{dsk}<halasz>lisp>init.lisp

’DIRECTORY)

halasz>lisp

(UNPACKFILENAME FileName) ÿ returns FileName in prop list format,

where the props are the allowable field names listed under

FILENAMEFIELD.

Example:

3_ (UNPACKFILENAME ’{dsk}<halasz>lisp>init.lisp;37)

(HOST dsk DIRECTORY halasz>lisp NAME init EXTENSION lisp

VERSION 37)

(PACKFILENAME FieldName1 FieldContents1 ... FieldNameN

FieldContentsN) ÿ returns a FileName constructed using the information in

the FieldName/FieldContents pairs. The FieldNames should be chosen

from among the field names listed under FILENAMEFIELD plus the

atom BODY.

If a FieldName is specified twice, the first is used.

If any FieldName is BODY, then the corresponding FieldContents

is unpacked (using UNPACKFILENAME) and the resulting

FieldName/FieldContents pairs are used in place of the

BODY/FieldContents pair.

Also, if FieldName1 is a list, it is assumed to be a prop list of the

format returned by UNPACKFILENAME, in which case

PACKFILENAME is APPLYed to this list (ignoreing the

remaining arguments!).

3LispCourse #38: Files; Streams; Input/Output

Example:

4_ (PACKFILENAME ’(HOST dsk DIRECTORY halasz>lisp

NAME init EXTENSION lisp VERSION 37))

{dsk}<halasz>lisp>init.lisp;37

5_ (PACKFILENAME ’HOST ’{DSK} ’NAME ’FileX)

{DSK}FileX

Streams

In the old days, Interlisp dealt with files directly, i.e., anytime you needed to refer to a

file you used its file name.

This convention has been replaced by the concept of streams in Interlisp-D.

Streams are a uniform interface between Interlisp and devices or data structures that exist

in the "outside world" including files, TEdit texts, display screens, etc.

Interlisp Programs

Stream Interface

Files TEdit texts Display
Screens ...

In this new scheme, Interlisp programs deal with files through the stream interface. For

example, you generally refer to files using the stream that represents the file rather than

by the name of the file.

A stream is a data type. Each stream instance represents an active interaction with an

"external" device or data structure, e.g. a file.

Each instance stores with it all kinds of information about the status of the

interaction and the status of the external device or data structure.

4LispCourse #38: Files; Streams; Input/Output

For example, a stream for a file stores information about the file’s name,

where you are in the file, how long the file is, etc.

Low-level Access to Files Using Streams

Opening and Closing

Before a file can be accessed, it must be opened.

Opening a file, creates a stream for that file and caches in the stream

instance all the necessary information. It also opens all the necessary

communication pathways if the file is stored on a remote device such as a

file server.

Opening a file also notifies the remote device to prevent access to

the file by other users, if thats appropriate.

To open a file use:

(OPENSTREAM FileName Access Recognition) ž opens a file

and creates a stream for it. OPENSTREAM returns the stream it

creates. This stream should be used to refer to the file.

FileName is a standard Interlisp file name.

Access is one of INPUT, OUTPUT, APPEND, or BOTH.

If Access is INPUT, subsequent accesses to this file

is limited to reading from the file

If Access is OUTPUT, subsequent access is limited

to writing to the file. Moreover, if the file already

exists it is erased.

If Access is APPEND, subsequent access is limited

to writing to the file, but the current contents of the

file (if any) are not erased.

If Access is BOTH, both reading and writing will be

allowed.

Recognition is one of OLD, NEW, or OLD/NEW.

5LispCourse #38: Files; Streams; Input/Output

If Recognition is OLD, OPENSTREAM will look

for an already existing file of the given file name.

If Recognition is NEW, OPENSTREAM will create

a new version of the file with the given file name.

If Recognition is OLD/NEW, OPENSTREAM will

look for an existing file first, but will create a new

file if the old one doesn’t exist.

Example:

6_ (SETQ FileX (OPENSTREAM ’{DSK}Halasz.Lisp

’INPUT ’OLD)

{STREAM}#54,23123

(OPENP FileNameOrStream Access) ž returns the name of the

file specified by FileNameOrStream, if that file is open with the

access mode specified by Access. Returns NIL otherwise.

FileNameOrStream can be a file name or a stream

or NIL. Access is one of the atoms described under

OPENSTREAM or NIL.

If Access is NIL, then OPENP will return the file name if

the file is open with any access mode.

If FileNameOrStream is NIL, then OPENP will just return

a list of all open files.

Example:

7_ (SETQ FileX (OPENSTREAM ’{DSK}Halasz.Lisp

’INPUT ’OLD)

{STREAM}#54,23123

8_ (OPENP Filex)

{DSK}Halasz.Lisp;23

9_ (OPENP ’{DSK}Halasz.Lisp)

{DSK}Halasz.Lisp;23

10_ (OPENP Filex ’OUTPUT)

NIL

6LispCourse #38: Files; Streams; Input/Output

Once you are finished accessing a file, you should close the file.

Closing the file uncaches the information stored in the stream, deletes the

stream, closes the communication pathways, and frees the file to be used

by other users.

To close a file use:

(CLOSEF? Stream) ž closes the file specified by Stream, if that

file is open. Returns the name of the file that it closed.

Stream should be a stream on an open file.

Example:

11_ (CLOSEF? Filex)

{DSK}Halasz.Lisp;23

12_ (CLOSEF? Filex)

NIL

(CLOSEALL) ž closes all currently open files. Returns a list of the

names of the files that were closed.

File Pointers

Every open file has a file pointer associated with it.

The file pointer indicates the position in the file at which the next read or

write will take place.

After each access to the file, the file pointer is updated to indicate the next

position in the file (i.e., the next place to start reading or the next place to

write).

Positions are measured in bytes, where the first byte in the file is position

0. So the file pointer varies between 0 and the one less than the length of

the file.

When a file is first opened, the file pointer is set to 0 except if the access mode is

append in which case the file pointer is set to the position of the end of the file.

7LispCourse #38: Files; Streams; Input/Output

At any point you can read the value of the file pointer to figure out where you are

in the file.

For files that are on devices that support random access (e.g., local disk, IFS file

servers, floppies but NOT NS file servers), you can set the file pointer to any

arbitrary location in the file. The next read or write will then take place at this

location.

The following functions read the file pointer:

(GETFILEPTR Stream) ÿ Returns the current file pointer for the open file

represented by Stream, which should be a stream datatype.

(GETEOFPTR Stream) ÿ Returns the file pointer value for the location at

the end of the open file represented by Stream (i.e., the number of bytes in

the file).

The following functions can change the file pointer:

(RANDACCESSP Stream) ÿ Returns the file name of Stream, if that file

is random accessable. NIL otherwise. Stream should represent an open

file. If RANDACCESSP returns the file name, then SETFILEPTR can be

used on the file.

(SETFILEPTR Stream Position) ž Sets the file pointer for the file

represented by Stream to be Position. Position is any positive integer.

(SETFILEPTR Stream -1) is a special case meaning to set the file

pointer to the end of the file.

SETFILEPTR results in s an error if the file is not

RANDACCESSP.

(FILEPOS Pattern Stream Start End Skip) ž analogous to STRPOS (See

LispCourse #28, page 18). Searches through the file referenced by

Stream looking for any sequences of characters that matches the

characters in string Pattern. If a match is found, FILEPOS sets the file

pointer to the file position where the match starts and returns this position

as its value. If no match is found, FILEPOS returns NIL and the file

pointer is unchanged

8LispCourse #38: Files; Streams; Input/Output

If Start is specified, the search begins at file position Start,

otherwise search starts at the current file pointer.

If End is specified, the search terminates at file position End (if no

match has been found), otherwise search ends at the end of the file.

If SkipChar is specified, any instance of SkipChar in the Pattern

string will match any character in the file. (SkipChar is the

wildcard character).

Reading and Writing

The following two functions are used to read/write a byte from/to an open file:

(BIN Stream) ž Reads the next byte, i.e., the byte right after the file pointer

and returns it. The file pointer is updated one byte. The byte returned is a

number between 0 and 255.

(BOUT Stream Byte) ž Write Byte at the next position in the file, i.e., the

position right after the file pointer. The file pointer is updated one byte.

Byte should be a number between 0 and 255.

Example

The following is an implementation of a COPYBYTES function that copies the

specified bytes from a source file to a destination file:

(DEFINEQ (COPYBYTES

(LAMBDA (SourceFile DestFile Start End)

(LET (StopLoc

(SourceStream (OPENSTREAM SourceFile

’INPUT ’OLD))

(DestStream (OPENSTREAM DestFile ’OUTPUT

’NEW)))

(* * Set up correct start and stop pointers)

(AND (NOT Start)(SETQ Start 0))

(AND (NOT End)(SETQ End (GETEOFPTR

SourceStream)))

9LispCourse #38: Files; Streams; Input/Output

(COND

((NOT (GREATERP Start End)) (ERROR "Error

Msg")

(SETQ StopLoc (MIN (GETEOFPTR SourceStream)End))

(* * Move to start location)

(COND

((RANDACCESSP SourceStream)

(SETFILEPTR SourceStream Start))

(T (FOR Index FROM 0 TO (SUB1 Start)

DO (BIN SourceStream))))

(* * Copy bytes until stop location)

(FOR Index FROM Start TO StopLoc

DO (BOUT DestStream (BIN SourceStream)))

(* * Close files and return)

(LIST (CLOSEF? SourceStream) (CLOSEF?

DestStream))))))

Higher-level File Input and Output

For most applications, accessing files a byte at a time is unnecessarily detailed.

Interlisp provides a number of higer-level input/output routines that can read and write

Lisp objects (i.e., SExpressions) rather than bytes.

These higher-level routines are, of course, simply functions that eventually call

BIN and BOUT to access the file.

They just provide an more convenient interface to files for most applications.

Higher-level Input Functions

The standard input function is READ:

(READ Stream) ÿ reads and returns the next SExpression (litatom, number,

list, string, etc.) from the file referenced by Stream. Stream must

reference an open file.

10LispCourse #38: Files; Streams; Input/Output

READ will start at the current file position and skip over white

space characters (i.e., space, tab, carriage return) until the first non-

space character. It will the read in the SExpression that begins at

this character.

The interpretation of SExpressions is done using the same rules as

in the Lisp Exec ž lists are bounded by parentheses, strings are

bounded by double quotes, atoms are bounded by white space or

by the start/end of a list or string, numbers are atoms containing

only digits, etc.

At the end of the READ, the file pointer for the file is set just after

the last character of the SExpression.

(SKREAD Stream) ž moves the file pointer for the file referenced by

Stream ahead as if a READ had been done, but does not actually read

anything. SKREAD returns NIL.

Used for skipping over things you don’t actually want to read.

Some more specialized input functions are:

(READC Stream) ž reads and returns the next character from the file

referenced by Stream. The file pointer is moved ahead by 1.

READC reads all characters alike, ignoring the special effects of

characters like double quotes and parentheses that would affect

READ.

READC is like BIN, except it returns a character (i.e., a single

character atom) rather than a byte (i.e., a number).

(RATOM Stream) ž reads and returns one atom from the file referenced

by Stream. Stream must reference an open file. Works like READ,

except that parentheses and double quotes are considered to be single

character atoms.

Example: If the next SExpression on the file is (FOO), then

RATOM would return the atom %(. But if the next SExpression

were ABC, then RATOM would return the atom ABC.

11LispCourse #38: Files; Streams; Input/Output

(RSTRING Stream) ž reads characters from the file referenced by Stream

up to but not including the next white space character, parentheses, or

double quote. Returns the characters read as a string.. Stream must

reference an open file. Sets the file pointer to right after the last character

read.

Example: If the next character on the file on the file is a space,

then RSTRING would return the null string "". But if the next

characters were ABC, then RSTRING would return the string

"ABC".

Finally, it is some times desireable to read a whole file in a single shot using the

following function:

(READFILE StreamOrFileName) ž reads SExpressions from the file

referenced by StreamOrFileName up to but not including the first

occurrance of the atom STOP, or until the end of the file is reached if no

STOP is encountered. Returns a list of the SExpressions read.

StreamOrFileName will be opened if necessary.

READFILE uses READ to do its reading.

Higher-level Output Functions

Interlisp has a number of functions for printing SExpressions onto files.

Note that these functions just print the print name of each lisp object on the file.

This is no problem for atoms, lists, numbers, and strings.

But, arrays and datatype have print names which are particularly non-

informative. In order to print these kinds of objects, you generally have to

decompose them and print their parts separately using your own functions.

When writing outSExpressions on a file, you have a to make a decision as to how

the SExpressions should be written:

· in a way that can be read back into Lisp using READ

· in a way that is more human-readable but cannot be read back in

by READ.

12LispCourse #38: Files; Streams; Input/Output

Example:

When you print a string you can print the double quotes or not.

If you print the double quotes, then READ can recognize the

characters as a string when it is reading the file later.

If you don’t print the double quotes, then your output may look

nicer, but READ will not be able to recognize the charactres as a

string when it tries to later read the file.

Interlisp provides higher-level output functions for both of these modes.

General Printing

The basic output functions are:

(PRIN1 SExpression Stream) ž prints SExpression on the open file

referenced by Stream. Printing is done in a way that does not necessarily

make it possible to READ the SExpression, e.g., the double quotes are

omitted from strings and spaces inside of atoms are not escaped.

Examples:

The atom Foo% Bar is printed as Foo Bar

The string "ABC" is printed as ABC

The list (A B C) is printed as (A B C)

(PRIN2 SExpression Stream) ž prints SExpression on the open file

referenced by Stream. Printing is done in a way that makes it possible to

READ the SExpression, e.g., the double quotes are printed for strings and

spaces inside of atoms are escaped.

Examples:

The atom Foo% Bar is printed as Foo% Bar

The string "ABC" is printed as "ABC"

The list (A B C) is printed as (A B C)

(TERPRI Stream) ž prints a carriage return on the open file referenced by

Stream.

13LispCourse #38: Files; Streams; Input/Output

(SPACES N Stream) ž prints N spaces on the open file referenced by

Stream.

(PRINT SExpression Stream) ž equivalent to (PRIN2 SExpression

Stream) followed by a (TERPRI Stream).

Printing Numbers

The printing of numbers can be more precisely controlled using the

following function:

(PRINTNUM Format Number Stream) ž prints Number on the open file

referenced by Stream using the format specified by Format.

Format is a list structure with one of the following formats:

(FIX Width Base Pad0Flg LeftFlushFlg)

Indicates that Number is to be printed as a integer.

Width is the number of character spaces to

reserve for the integer.

Base is the base in which the integer is to be

printed. (Defaults to base 10.)

If LeftFlushFlg is NIL, then the number is

right justified in the Width spaces.

Otherwise, it is left justified and the unused

spaces to the right are filled with blanks.

If Pad0Flg is T, then any part of the Width

spaces that are to the left of the number are

filled with zeros.

Examples: (Note: the | characters are for exposition

only!):

(PRINTNUM ’(FIX 4) 100) prints | 100|.

(PRINTNUM ’(FIX 4 NIL T NIL) 100) prints

|0100|.

14LispCourse #38: Files; Streams; Input/Output

(PRINTNUM ’(FIX 4 NIL NIL T) 100) prints |100

|.

(FLOAT Width DecWidth ExpWidth Pad0Flg)

Indicates that Number is to be printed as a real

number.

Width is the number of character spaces to

reserve for the number.

DecWidth is the number of digits to appear

to the right of the decimal point.

ExpWidth is non-NIL, specifies that the

number should be printed in exponent

format (i.e., scientific notation) with

ExpWidth charactre spaces used for the

exponent part.

PadChar if non-NIL specifies that the

leading spaces to the left of the number are

to be filled with zeros.

Examples: (Note: the | characters are for exposition

only!):

(PRINTNUM ’(FLOAT 4 2) 4.23) prints |4.23|.

(PRINTNUM ’(FLOAT 5 2) 4.23) prints | 4.23|.

(PRINTNUM ’(FLOAT 5 2 NIL 22) 4.23) prints

|04.23|.

(PRINTNUM ’(FLOAT 5 1 NIL 22) 4.23) prints

|004.2|.

PRINTOUT

Finally, any reasonably complex output will involve lots of PRIN1s,

TERPRIs, PRINTNUMs, etc. in very complex combinations. The

PRINTOUT CLISP statement provides a simpler (sometimes) interface to

all of this.

15LispCourse #38: Files; Streams; Input/Output

PRINTOUT is very complex and we will cover on a small bit of it here.

See section 6.5 of the IRM for more details.

PRINTOUT has the format:

(PRINTOUT Stream Command1 Command2 ...)

Stream references an open file.

Each CommandI is either one of the printing commands

discussed below or an arbitrary Lisp SExpression.

PRINTOUT iterates through the CommandIs. If it encounters a

command, it carries out that command. Otherwise, it prints the

SExpression using PRIN1.

Note that numbers are PRINTOUT commands. Therefore

the only way to print numbers is as the result of a

coomand!

Some of the commands are:

.SP N ž print N spaces

T ž print a carriage return

.SKIP N ž skip N lines, i.e., print N returns

.PAGE ž print a form feed character

.FONT FontSpec ž change the font for printing to the file.

FontSpec is a font list like (TIMESROMAN 12 BOLD).

.P2 SExpr ž PRIN2s SExpr

.FR ÿN SExpr ž PRIN1s SExpr right-flushed in the next N

character positions.

.CENTER ÿN SExpr ž PRIN1s SExpr centered in the next N

character positions.

.IFormat Number žprints Number as an integer using

Format as a format spec. Format is like the FIX format in

16LispCourse #38: Files; Streams; Input/Output

PRINTNUM, except that rather than parts of a list, you use

atoms separated by periods.

Example: .I5.NIL.T is the same as (FIX 5 NIL T)

in PRINTNUM.

.FFormat Number žprints Number as an real number using

Format as a format spec. Format is like the FLOAT

format in PRINTNUM, except that rather than parts of a

list, you use atoms separated by periods.

Example: .F5.2 is the same as (FLOAT 5 2) in

PRINTNUM.

SExpr ž evaluates SExpr for side-effect only. Nothing is

printed except as a result of the evaluation. USed to tailor

your own PRINTOUT commands.

’XXX will print nothing.

(PRIN1 ’XXX Stream) will print XXX on the file.

Eamples:

(PRINTOUT Stream "This is Line 1" T "This is Line 2" T)

prints
This is Line 1

This is Line 2

(PRINTOUT Stream .I5 445 .SP 6 .F3.2 0.3456 T)

prints
| 445 .34|

Miscellaneous Considerations

The File T

There is one special input file in the system known as T. T is both an input and

an output file. On the input end, it is the keyboard. On the output end, it is the

Lisp Exec window.

17LispCourse #38: Files; Streams; Input/Output

You can use T as the Stream argument to any of the Lisp input/output functions

discussed above.

Example:

(PRINT "Hello" T) prints Hello in the Exec window.

(READ T) reads the next SExpression the user types in.

When reading from T, the functions READ, RATOM,READC, etc. all wait for

the user to type something before returning.

Line Buffering When Reading Keyboard Input

The file T and all other input that comes from the keyboard is subject to line

buffering, i.e., the user type-in is held in a buffer until a carriage return is typed.

Until the return is typed, the user input is not available to be read by a

program.

Once the return is typed, the user type-in can be read by a program.

Line buffering can be turned off using the function CONTROL:

(CONTROL T) ž turns the line-buffering off.

(CONTROL NIL) ž turns the line buffering on.

With line-buffering off, input can be read by the program immediately after it is

typed in.

Example: If you want to do something immediately after the user types

the next character, you should turn line buffering off and wait for the

character press using READC or BIN as follows:

(DEFINEQ (WaitForChar

(LAMBDA NIL

(* * Turn off buffering)

(CONTROL T)

(PROG1

(READC T)(* * wait for a character press)

18LispCourse #38: Files; Streams; Input/Output

(CONTROL NIL) (* * Turn on buffering

again)))))

Default Input/Output File

Almost all of the Lisp input/output functions will accept NIL as their Stream

argument. In this case they will use the current default input or output file.

Initially, the default input and output is set to T, i.e., the default input file is the

keyboard and the default output file in the Lisp Exec window.

The following functions can be used to change the default files:

(INPUT Stream) ž makes the open file referenced by Stream be the default

input file. Returns the old default input file. If Stream is NIL, just returns

the default input file without changing it.

(OUTPUT Stream) ž makes the open file referenced by Stream be the

default output file. Returns the old default output file. If Stream is NIL,

just returns the default output file without changing it.

References

Input/Output is covered in Chapter 6 and Section 18.16 of the IRM.

Beware, however, this documentation is somewhat out of date. In particular, streams are

not covered. Instead, files are said to be referenced by full file name, i.e., in the old

manner.

F.G.H.

6/25/85

LispCourse #39: Solutions to Homework #38

Solution functions are attached.

Notes on Problem C

Problem C requires a breadth-first search of the family tree. In particular, starting at the

node for the given person, you want to check all one-away relatives (e.g., parents and

children). If none of these match, you want to check all two-away relatives (i.e., all one-

away relatives of the one-away relatives). And so on until you find an N-away relative

that matches or you are out of relatives.

This contrasts with a depth-first search, where you would search all of the

person’s mothers relatives first, then his or her father’s relatives, then his or her

childrens releative (where children are considered in some arbitrary order). For

each of the mother’s relatives, you would first search that persons’ mother’s

relatives, then their father’s and so on. Basically, you search one branch of the

family tree until it ends, then search the next branch and so on.

In a breadth-first search, at each step you have the a set of N-away relatives, none of

whom match the thing you are searching for. For each of these N-away relatives, you

want to compute their 1-away relatives (i.e., the N+1-away relatives). While you are

computing the N+1-away relatives for each of the N-away relatives, you need to maintain

lots of information ž in particular, you need to keep a list of the N-away relatives that still

have to be worked on AND you need to maintain a list of the N+1-away relatives already

discovered (who will be "expanded" during the next round if no match is found among

the N+1 relatives).

The best way to maintain this information is in a global queue (see Homework

#32 & LispCourse #33).

Just keep repeating the following until the queue becomes empty:

Take a person off of the head of the queue.

If he matches what you’re looking for, you’re done ž exit.

If there’s no match, expand the person into a set of his 1-away

relatives and add all these relatives to the end of the queue.

2LispCourse #39: Solutions to Homework #38

Note that with this scheme, you don’t need to keep explicit track of what level

(i.e., K-away or L-away, or whatnot) you are working on. Because you always

add the N+1-away to the end of the queue but take the next person to "expand"

from the front of the queue, you are certain to process all the N-away relatives

before you start on the N+1 away relatives. The moment you find a match, you

just stop and you can be sure that you’ve found the closest relative that matches.

However, if there are more than one matching relative at the Nth level,

you will find only one and then stop. To find all closest relatives in case

of a tie requires some small variations on this scheme.

F.G.H.

7/2/85

LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Introduction

Interaction with the display from Interlisp-D programs involves 3 basic types of Interlisp

objects ž bitmaps, display streams, and windows.

A bitmap is a two-dimensional array of bits (1s and 0s) in your computer’s memory.

You deal with bitmaps by setting specific bits to 1 or 0, or by copying

rectanglular arrays of bits around from bitmap to bitmap.

The Interlisp-D display screen is just a special bitmap (called the

SCREENBITMAP) that is 808 bits high and 1024 bits wide that is displayed on

the screen with every 1-bit is black and every 0-bit is white (or vice versa if you

change the VIDEOCOLOR parameter as per page 19.7 in the IRM).

Display streams represent an interface that allows you to deal with bit maps at a level

higher than bits, i.e., in terms of characters, fonts, lines, circles, regions, etc.

You can call functions like DRAWCURVE on a display stream. The result will

be a curve drawn on the destination bitmap of that display stream.

A display stream is a datatype that represents some destination bitmap. Stored in

this datatype are fields that contain things like the current font to be used for

writing characters to the destination bitmap, the X-Y position of the "cursor" in

the bitmap, left and right margins for writing and drawing on the bitmap, etc.

Windows are a way of managing what is being displayed on the most important bitmap of

all, the Interlisp-D display screen.

A window is a datatype that represents the window object that can be displayed

on the Interlisp screen.

Stored in the fields of the window datatype are all kinds of functions that

specify what is to be done when various operations are carried on the

window, e.g., when the window is opened, closed, shrunk, or moved.

2LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Also stored in each window datatype is a display stream through which

characters, lines, curves, etc. are drawn on the window’s bitmap (i.e., the

display stream’s destination bitmap) which is always SCREENBITMAP.

In summary, the data structures underlying each window you see on the screen are as

follows:

SCREENBITMAP

DisplayStream

Fields: Destination bitmap , X-Y cursor
position, font, offset within destination bitmap,
etc.

Window

Fields: DisplayStream , location on screen,
order in window stack, open function, close
function, etc.

Screen
Management

Drawing objects
like characters

and curves

The actual bits
displayed

on the screen

3LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Coordinate Systems, Positions, & Regions

Coordinate Systems for Specifying Locations in Bitmaps, et al.

Each bitmap, display stream, and window has its own coordinate system used to

specify locations within the object.

When dealing with the display, these coordinate systems are always measured in

bits (or screen units or the area that it takes to display 1 bit on the screen or

1/72nd of an inch).

For all three objects, the coordinate system is a standard Cartesian system in the

standard orientation.

(0,Y)

(0,0)
(--X,0)

(0,--Y)

(X,0)

Bitmaps have a finite size. Thus, for bitmaps the origin of the coordinate system

is placed at the lower-left corner of the bitmap and only the upper-right quadrant

(positive X and Y) is used to specify locations in the bitmap.

Display streams and windows are considered to look onto an infinite plane. Thus

the origin is arbitrarily placed (see below) and the entire coordinate system is

used.

The coordinate system for a window is the same as the coordinate system for its

underlying display stream. The coordinate system for a display stream is mapped

onto the coordinate system for its destination bitmap using X and Y translation

parameters as discussed below.

Positions and Regions

4LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Positions and regions are data structures that represent X-Y locations and

rectangles, respectively, in an arbitrary coordinate system.

A POSITION is a record with two fields, XCOORD and YCCORD. Most

functions that take an X-Y location as an argument require a POSITION record.

To create a POSITION record:

(create POSITION XCOORD _ X YCOORD _ Y)

A REGION is a record with four fields: LEFT, BOTTOM, WIDTH, and

HEIGHT specifying the lower-left corner and extent of a rectangular region in

some coordinate space.

To create a REGION record:

(CREATEREGION Left Bottom Width Height)

There are several functions available to manipulate positions and regions,

including the following:

(INSIDEP Region Position) ž returns T if Position is inside Region.

Examples:

1_ (INSIDEP (CREATEREGION 100 100 10 10)(create

POSITION XCOORD _ 150 YCOORD _ 100))

NIL

2_ (INSIDEP (CREATEREGION 100 100 100 10)(create

POSITION XCOORD _ 150 YCOORD _ 100))

T

(INTERSECTREGIONS Region1 Region2 ... RegionN) ž returns the

region that is the intersections of Region1, Region2, ..., and RegionN.

NIL, if there is no intersection.

(UNIONREGIONS Region1 Region2 ... RegionN) ž returns the region

that is the union of Region1, Region2, ..., and RegionN. The union is the

smallest (rectangular) region that contains all of the given regions.

5LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

BITMAPs

Introduction

A bitmap is datatype that represents an N by M array of bits in memory.

The bits in a bitmap are identified using a positive integer coordinate system

whose origin (0,0) is the lower-left corner of the bitmap.

For example, (10,2) represents the bit that is 10 to the left of and 2 up

from the bit in the lower-left corner of the bitmap.

6LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Creating Bitmaps

To create a bitmap use the following function:

(BITMAPCREATE Width Height) ž creates and returns a bitmap Height

bits high and Width bits wide.

BITBLT

The major operation on bitmaps is the moving of bits from one bit map to another

using the BITBLT function:

(BITBLT SourceBitMap SourceLeft SourceBottom DestBitMap

DestLeft DestBottom Width Height SourceType Operation Texture) ž

copies some bits in SourceBitMap and combines them with some bits in

DestBitMap, resulting in a change to these bits in DestBitMap.

The bits copied from SourceBitMap are those in the region defined

by SourceLeft, SourceBottom, Width, & Height.

The bits effected in the DestBitMap are those in the region defined

by DestLeft, DestBottom, Width, & Height.

If either of these regions overflows the edges of its bitmap,

then Width and/or Height are decreased until both regions

fit into their bitmaps.

The way in which the bits are copied from the SourceBitMap is

determined by SourceType and Texture as follows:

If SourceType is INPUT, then the bits are copied directly

from the region in SourceBitMap.

If SourceType is INVERT, then the bits are copied from the

region in SourceBitMap, but each bit is inverted (i.e., 1s

become 0s and vice versa).

If SourceType is TEXTURE, then SourceBitMap,

SourceLeft, and SourceBottom are ignored and the bits to

be copied are taken from the bitmap specified by Texture.

7LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

If the Texture bitmap is smaller than Width by

Height, then it is repeated as many times as

necessary to make a rectangle of bits that is of size

Width by Height.

Note: the global variables WHITESHADE,

BLACKSHADE and GRAYSHADE are small

bitmaps for white, black, and gray, respectively.

SourceType defaults to INPUT.

The way in which the copied bits are combined with the bits

already in DestBitMap is determined by Operation as follows:

If Operation is REPLACE, the bits in DestBitMap are

replaced by the copied bits.

If Operation is PAINT, the bits in DestBitMap are logically

ORed with the copied bits.

If Operation is INVERT, the bits in DestBitMap are

logically XORed with the copied bits.

If Operation is ERASE, the bits in DestBitMap are

logically ANDed with the inversion of the copied bits.

Operation defaults to REPLACE.

8LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Examples:

START

BitMap1:

BitMap2:

(BITBLT BitMap1 0 0 BitMap2 0 0 50 50 ’INPUT

’REPLACE)

BitMap1:

BitMap2:

(BITBLT BitMap1 0 0 BitMap2 0 0 50 50 ’INPUT

’ERASE)

BitMap1:

9LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

BitMap2:

(BITBLT BitMap1 0 0 BitMap2 0 0 50 50 ’INVERT

’PAINT)

BitMap1:

BitMap2:

(BITBLT BitMap1 0 0 BitMap2 0 0 125 175

’TEXTURE ’PAINT GRAYSHADE)

BitMap1:

BitMap2:

10LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

(BITBLT BitMap1 0 0 BitMap2 0 0 50 50 ’INVERT

’ERASE)

BitMap1:

BitMap2:

Miscellaneous Bitmap Functions

The following are other miscellaneous functions that operate on bitmaps:

(BITMAPBIT BitMap X Y NewValue) ž If NewValue is either 0 or 1, then

sets the value of the (X,Y)th bit in BitMap to have value NewValue and

returns its old value (either 0 or 1). If NewValue is NIL, just returns the

value of the (X,Y)th bit in BitMap. If NewValue is anything else, then its

an error.

(BITMAPCOPY BitMap) ž returns a new bitmap that is an exact copy of

BitMap.

(BITMAPHEIGHT BitMap) ž returns the height in bits of BitMap.

(BITMAPWIDTH BitMap) ž returns the width in bits of BitMap.

The following functions return pointers to the "special" bitmaps:

(SCREENBITMAP) ž returns the screen bitmap.

(CURSORBITMAP) ž returns the bitmap that is the cursor.

11LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Hand Editing Bitmaps

(EDITBM BitMap) ž calls an editor to edit BitMap. If BitMap is NIL, will create

a bitmap after asking for the height and width of the desired bitmap.

The bitmap editor runs in a window which you will be asked to place.

The window is shown below.

In the bar just below the title bar flush to the left side of the window, the

bitmap being edited in displayed at normal resolution.

To the right of this is a gray area ÿ clicking the MIDDLE mouse button in

this gray area will bring up a menu of commands, including "OK" which

will allow you to exit the editor.

The gridded area represents a portion of the bitmap blown up ÿ each square

corresponds to one bit.

Clicking the RIGHT mouse button in a square makes the

corresponding bit black.

Clicking the MIDDLE mouse button in a square makes the

corresponding bit white.

To change the portion of the bitmap being displayed in this blown-

up area, LEFT or MIDDLE click in the normal resolution bitmap

above and choose the "Move" option (i.e., the only option) from

the menu that appears.

12LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Notes

Most of the above functions can take either a display stream or a window in place

of a bitmap argument. In this case, the operation is carried out on the bitmap

associated with the given display stream or window.

Thus, BITBLT et al. can be used to manipulate the contents of a window.

(See below).

Display Streams

Displays streams are a special type of Stream (see LispCourse #38, page 3) designed to

provide an interface to bitmaps (most importantly the display scrren bitmap).

Display streams allow you to access bitmaps in higher-level terms than just BITBLT and

BITMAPBIT. In particular, display streams are designed to deal with objects like

characters and geometric objects (lines, curves, circles, etc.).

Display Stream Properties (& creating a display stream)

Basically, a display stream has a destination bitmap and set of properties that

specify how higher-level objects like characters and lines should be drawn on this

bitmap.

The most important properties of a display stream are the following:

Destination ž the bitmap that this display stream refers to.

Initializes to (SCREENBITMAP).

XOffset, YOffset ž the origin of the display stream’s coordinate

system expressed in terms of the destination bitmap’s coordinate

system. Initializes to 0 and 0, so that the display stream origin is at

the lower-left corner of the destination bitmap.

ClippingRegion ž a region in the display stream’s coordinate

system that limits where anything can be written or drawn to the

display stream. If a display stream has a clipping region, then

commands that request characters and/or lines to be drawn outside

of this clipping region will simply be ignored.

13LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

XPosition, YPosition ž the X and Y coordinates of the "current"

position of the display stream. The "current" position is an

invidsible cursor that determines where things will be drawn unless

otherwise specified. (Initially 0 and 0, i.e., at the display stream’s

origin.

Texture ž the backround pattern used in the display stream (see

Texture description under BITBLT above). Initializes to

WHITESHADE.

Font ž a font descriptor that specifies the font to be used for

printing characters on this display stream. Initializes to font

descriptor for Gacha 10. (See LispCourse #21 for a discussion of

fonts.)

Operation ž the BITBLT operation (see BITBLT above) used by

default when printing or drawing on the destination bitmap. Must

be one of REPLACE, PAINT, INVERT, or ERASE as above.

Initializes to REPLACE.

For other properties of a display stream, see section 19.9.1 of the

IRM..

To create a display stream, use the DSPCREATE function:

(DSPCREATE Destination) ž returns a display stream object using

Destination as its destination bitmap. If Destination is NIL, then

(SCREENBITMAP) is used. All of th properties of the display

stream are initialized as described above.

The properties of a display stream can be manipulated using a set of

functions that work as follows:

Each property is is manipulated by a selector/mutator whose name

is "DSP" followed by the property name in all caps.

For example: the Font property is accessed using the

function DSPFONT.

14LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Each of these functions takes two arguments: the new value of the

property and the display stream.

If the new value is NIL, then the function just returns the

current value of the property.

If the new value is a value, then the function returns the old

value and sets the property to the new value.

Example:

(DSPFONT NIL DS) returns the Font property of display

stream DS.

(DSPFONT (FONTCREATE ’TIMESROMAN 16) DS)

changes the Font property of DS to be TimesRoman 16 and

returns the old font of DS.

(DSPTEXTURE GRAYSHADE DS) changes the

background texture of DS to be gray and returns the old

background texture.

Moving the Current Position in the Display Stream

When printing or drawing to a display stream, the default is to print/draw at the

current position, i.e., at (XPosition, YPosition) in the display stream.

DSPXPOSITION and DSPYPOSITION can be used to independently change the

X and Y coordinates of the current position.

The following functions can also be used to change the current position:

(MOVETO X Y DisplayStream) ž moves DisplayStream’s current

position to point (X,Y).’

(RELMOVETO DeltaX DeltaY DisplayStream) ž moves DisplayStream’s

current position to a point DeltaX units to the right and DeltaY units up

from its previous position.

Printing and Drawing on Display Streams

15LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

To print characters on a display stream, use the standard printing routines

discussed in LispCourse #38 (starting on page 12).

For example: (PRIN1 "ABC" DS) will print ABC on display stream DS.

It will do the printing starting at the DS’s current point and then will move

the current point to the end of the last character printed.

The font used for printing the characters is determined by DS’s font

property.

To draw straight lines on a display stream use the following functions:

(DRAWTO X Y Width Operation DisplayStream) ž draws a line on

DisplayStream from the current point to location (X,Y). The line is Width

bits wide and is drawn using the BITBLT operation specified by

Operation (defaults to the DisplayStream’s operation property). At the

end, DisplayStream’s current point is set to (X,Y).

(RELDRAWTO DeltaX DeltaY Width Operation DisplayStream) ž draws

a line on DisplayStream from the current point to the location DeltaX to

the right and DeltaY up. The line is Width bits wide and is drawn using

the BITBLT operation specified by Operation (defaults to the

DisplayStream’s operation property). At the end, DisplayStream’s current

point is set to the end of the line.

(DRAWBETWEEN Position1 Position2 Width Operation

DisplayStream) ž draws a line on DisplayStream from Position1 to

Position2. The line is Width bits wide and is drawn using the BITBLT

operation specified by Operation (defaults to the DisplayStream’s

operation property). At the end, DisplayStream’s current point is set to

Position2.

To draw curved lines on a display stream use the following functions.

These functions all take a Brush argument. The Brush argument is

a two item list containing the shape and the width of the "brush"

that will be used to draw the curve. Shape is one of: ROUND,

SQUARE, VERTICAL, DIAGONAL. Width is the thickness of

the line to vbe drawn in bits.

16LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

These functions also take a Dashing argument that determines how

to dash the line. If Dashing is NIL, no dashing will be done.

Otherwise, Dashing is a list containing an even number of positive

integers. The first integer specifies how long (in bits) the brush

should be "on", the second integer then specifies how long the

brush should be "off", the third integer specifies how long the

brush should be "on" again, etc.

Example: A Dashing of (5 2) specifies that the line should

have 5 bits on then 2 bits off, then 5 bits on, etc.

(DRAWCURVE Knots ClosedFlg Brush Dashing DisplayStream) ž

Knots is an ordered list of POSITIONs. DRAWCURVE draws a spline

curve on DisplayStream that is fit to these POSITIONs. If ClosedFlg in

NIL, the spline will be an open curve; otherwise it will be a closed curve.

Brush and Dashing are as described above. The current position is left

unchanged.

17LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The knots:

2

4

3

1

An open curve using drawn unsing these knots:

2

4

3

1

A closed curve using drawn unsing these knots:

2

4

3

1

18LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

(DRAWCIRCLE X Y Radius Brush Dashing DisplayStream) ž Draws a

circle on DisplayStream centered at (X,Y) and having radius Radius. The

current position is left at (X,Y).

(DRAWELLISPSE X Y MinorRadius MajorRadius Orientation Brush

Dashing DisplayStream) ž Draws an ellipse on DisplayStream centered at

(X,Y) and having a minor radius MinorRadius and a major radius

MajorRadius. The orientation of the MajorRadius is determined by

Orientation, which is in degrees from upright in the counterclockwise

direction. The current position is left at (X,Y).

Windows & the Window Package

The window package provides two basic services to Interlisp-D programs:

1) It manages the "space" on the Interlisp-D display screen, allowing multiple

programs using multiple display streams to all access the screen simultaneously

without interfering with each other.

2) It provides an interface that dispatches the user’s mouse "actions" to the

Interlisp-D programs that these actions were intended to effect.

We will discuss only the first function in this section. Mouse action dispatching will be

covered in the section on the Mouse below.

Space Management: The Window Stack

Space on the Interlisp-D screen is managed using an occlusion stack of open

windows.

Each open window represents a rectangular region of the screen in which a

display stream (or part of a display stream) is to be displayed.

All of the open windows are placed on a stack (i.e., an ordered list), ordered by

"depth".

If the display regions of two or more windows intersect, then the actual

screen display in the intersection region will reflect the contents of the

window nearest to the top of the stack (i.e., earlier in the ordered list).

19LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The windows that are lower (deeper, later) in the stack will have the part

of them corresponding to the intersection region "occluded" by the

windows higher in the stack.

The Window Stack

Top

The Screen Display

The window at the top of the stack is always visible in its entirety on the screen.

Windows later in the stack may also be entirely visible (if they do not

intersect with any other open windows), but this cannot be guarenteed.

Any operation on a window brings it to the top of the stack. Thus all operations

are carried out on windows that are entirely visible on the screen.

The function call (OPENWINDOWS) returns the window stack as an ordered

list.

Windows

20LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

A window is just a data structure that contains all of the information necessary for

the window package to display the window on the screen.

Open and Closed Windows

Windows can be open or closed.

A closed window is just a data structure and is not part of the

window stack. It therefore cannot be displayed on the screen.

An open window is on the window stack and is therefore displayed

on the screen providing that it is not completely occluded by other

open windows on the stack.

Whenever you operate on a window (e.g., draw in the window),

the window is opened (and brought to the top of the stack).

(OPENW Window) opens the closed window Window, placing it

at the top of the window stack.

(CLOSEW Window) closes the open window Window.

(OPENWP Window) returns Window if it is an open window; NIL

otherwise.

Creating Windows

To create a window use:

(CREATEW Region Title Border NoOpenFlg) ž creates and returns a

new window.

The created window will be displayed (if opened) in screen region

Region. If Region is NIL, the the user will be asked to specify a

region on the screen.

If Title is non-NIL, a title bar will be created at the top of the

window and Title will be printed left-flush in this title bar.

If Border is a number it is the number of bits to use as a border

around the edge of the window; otherwise the window will have a

border width of 4.

21LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

If NoOpenFlg is NIL, the created window will be opened and

placed at the top of the window stack. Otherwise, the created

window will not be opened.

(WINDOWP Window) ž returns Window if it is a window, NIL otherwise.

Windows and Display Streams

When a window is created, a corresponding display stream is created and

stored in the window data structure.

The function: (WINDOWPROP Window ’DSP) will retrieve the

display stream associated with Window. (See explanation of

WINDOWPROP below.)

This destination of a window’s display stream is always

(SCREENBITMAP). Thus, a program should never alter the Destination

property of a window’s display stream.

The window package automatically takes care of setting the XOffset,

YOffset and ClippingRegion properties for the window’s display stream

as the window is scrolled or moved about the screen.

A program should never alter the XOffset, YOffset, and

ClippingRegion properties of a window’s display stream.

Otherwise, all properties and operations applicable to display streams are

also applicable to windows.

For example, to change the font used to print in a window, you use

DSPFONT. It is not necessary to specify the window’s display

stream directly since all the DSPxxx functions know how to coerce

a window into its corresponding display stream.

(DSPFONT BigFont Window) has the same effect as

(DSPFONT BigFont (WINDOWPROP Window ’DSP))

Printing and Drawing in Windows

22LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Printing and drawing in a windows is identical to printing and drawing in

display streams ž use the print functions and the DSPxxx functions

described above.

Just use the window as the argument in place of a display stream.

Doing Things to Windows

The following functions carry out various operations on windows.

(MOVEW Window Position) ž moves Window so that its lower-left corner

is located at POSITION Position on the display screen. If Position is NIL,

then the user is asked for to specify a position.

If Window is closed, it will not be opened unless Position is NIL.

(SHAPEW Window NewRegion) ž rehapes and moves Window so that it

is displayed in screen region NewRegion. If NewRegion is NIL, the user is

asked to specify a new region. Opens Window if it is closed.

(TOTOPW Window) ž places Window at the top of the window stack and

adjusts the display accordingly. Window is opened if it was closed.

(BURYW Window) ž places Window at the bottom of the window stack

and adjusts the display accordingly.

(CLEARW Window) ž clears the window, filling it with the Texture of its

underlying display stream. Also sets the current position to the upper-left

corner of the window.

(REDISPLAYW Window) ž causes Window to be redisplayed. Used if,

for example, the window’s display gets messed up. For this to work

correctly the window must have a REPAINTFN property (see below).

(SHRINKW Window) ž closes Window and replaces it on the screen with

a smaller icon window. The icon window is actually another window that

is associated with the window being shrunk.

23LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Unless the window’s properties specify otherwise (see below), the

icon window is just a black bar containing Window’s title or the

date and time if Window has no title.

You cannot shrink an icon window.

SHRINKW is a no-op if Window is closed.

(EXPANDW Window) ž expands or "unshrinks" Window if it was

previously "shrunk". If Window is an icon window, expands the window

that the icon window represents. If Window is neither shrunk nor an icon

window, EXPANDW is a no-op.

Tailoring Windows to Special Applications: Window Properties

Every window has a large set of properties that determine how it looks

and, more importantly, how it behaves in various circumstances.

You needn’t set any of these properties, they will all default to something

reasonable if you just want an ordinary window.

But if you want a fancy window, you need to set one or more of

these properties to get the looks or behavior you are interested in.

Most of the properties are intended to have functions or lists of functions

as values. These functions are called (with the window as an argument)

whenever some operation is done on the window (e.g., the window is

closed) or some event occurs in the window’s environment (e.g., the user

clicks a mouse button in the window).

In addition to these functional properties, each window has a few

properties that are not functions, e.g., the window’s title, and a few

that are read-only (i.e., that the window package sets and that the

user can query but not change).

Looks Properties

TITLE ž a title to be printed left-flush in the title bar at the top of

the window. If TITLE is NIL, the window will have no title bar.

24LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

If TITLE is changed from NIL to a value, then a title bar is created

resulting in a slight enlargement of the window. Defaults to NIL.

BORDER ž an integer indicating the width of the border around the

edge of the window. The border will have (at most) 2 bits of white

around the inside with the remaining border width being black;

subject to the constraint that the white bits never make up more

than half the border width. Defaults to 4.

WINDOWTITLESHADE ž a texture (see texture under BITBLT

above) that is used as the background in the title bar to the right of

the end of the title. Where the title is printed, the background is

black. Defaults to value of global variable

WINDOWTITLESHADE, which defaults to BLACKSHADE.

Read-only Properties

DSP ž the window’s display stream.

HEIGHT, WIDTH ž the height and width in bits of the interior of

the window (i.e., not including the border and title bar). The

interior part of the window is the user accessable portion of the

window ÿ you cannot draw or print directly on the title bar or

border.

REGION ž a REGION that describes (in the SCREENBITMAP

coordinate system) the region occupied by the entire window (title

bar and all) on the screen.

Processes Property

PROCESS ž the process that is associated with this window. This

is the process that will become the TTY process when

GIVE,TTY.PROCESS is called using this window as an argument.

By default (see WINDOWENTRYFN) this is the process

that becomes the TTY process when you button down

inside the window.

25LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Functions to Be Invoked by Operations on the Window

CLOSEFN ž a single function or a list of functions that will be

called (with the window as the only argument), in order, just

before the window is closed. If any function is the atom DON’T

or returns the atom DON’T, then the window will not be closed.

Warning: You cannot call CLOSEW inside of a CLOSEFN

function otherwise you will get infinite recursion.

OPENFN ž a single function or a list of functions that will be

called (with the window as the only argument), in order, just after

the window is opened. If the atom DON’T appears anywhere on

the OPENFN list, then the window will not be opened and the

OPENFNs will not be called.

TOTOPFN ž a single function that will be called (with the window

as the only argument) whenever the window is brought to the top

of the window stack.

MOVEFN ž a single function or a list of functions that will be

called (with the window and the new position of the lower-left

corner of the window as arguments), in order, just before the

window is moved. If any function is the atom DON’T or returns

the atom DON’T, then the window will not be moved. If any

function returns a POSITION record, then the window will be

moved to that position.

AFTERMOVEFN ž a single function or a list of functions that

will be called (with the window as the only argument), in order,

just after the window is moved.

REPAINTFN ž a single function or a list of functions that will be

called (with the window and the region of the window to be

repainted as arguments), in order, whenever the window is

redisplayed (i.e., during scrolling or when REDISPLAYW is

called). The function should redraw the contents of the specified

region in window.

26LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Warning: You cannot call CLEARW inside of a

REPAINTFN. Use DSPFILL instead.

Functions to Be Invoked by Mouse Events in the Window

BUTTONEVENTFN ž a single function that will be called (with

the window as the only argument) whenever there is a change in

state of the mouse buttons (a mouse button goes up or down) while

the cursor is inside the window and the window is associated with

the TTY process.

While the BUTTONEVENTFN is being processed, further

mouse events do not reinvoke the BUTTONEVENTFN.

As a general convention a BUTTONEVENTFN is

called when a mouse button goes down but does not

do its work until the mouse button goes up. This

convention is accomplished by writing the "correct"

kind of BUTTONEVENTFNS - i.e., functions that

wait until the mouse button is up before continuing

their work.

RIGHTBUTTONFN ž a single function that will be called (with

the window as the only argument) instead of the

BUTTONEVENTFN whenever only the RIGHT mouse button

goes down in the window.

If RIGHT mouse clicks are to be treated the same as other

mouse clicks, then just make the BUTTONEVENTFN and

the RIGHTBUTTONFN be the same function.

Defaults to DOWINDOWCOM, which brings up a menu of

the standard window operations.

WINDOWENTRYFN ž a single function that will be called (with

the window as the only argument) whenever a button goes down in

the window and the process associated with the window is not the

TTY process.

27LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Default is to call GIVE.TTY.PROCESS on the window and

then call the window’s BUTTONEVENTFN.

CURSORINFN, CURSOROUTFN, CURSORMOVEDFN ž a

single function that will be called (with the window as the only

argument) whenever the cursor moves into (out of, about inside of)

the window.

Properties that Support Icons and Shrinking

SHRINKFN ž a single function or a list of functions that will be

called (with the window as the only argument), in order, just

before the window is shrunk. If any function is the atom DON’T

or returns the atom DON’T or if any of the CLOSEFNs is DON’t

or returns DON’T, then the window will not be shrunk.

ICONFN ž a single function that will be called (with the window

and the previous icon, if any), just before the window is shrunk.

The ICONFN should return a bitmap or a window that will be used

as the basis for making the icon window.

EXPANDFN ž a single function or a list of functions that will be

called (with the window as the only argument), in order, just after

the window is expanded from the shrunk state. If any function is

the atom DON’T, then the window will not be shrunk and the rest

of the EXPANDFNs will not be called.

Manipulating a Window’s Properties: WINDOWPROP, et al.

The function WINDOWPROP is a selector/mutator that can be used to

manipulate properties of a window:

(WINDOWPROP Window Property NewValue) ž sets the

Property property of Window to be NewValue. Returns the old

value of the specified property.

WINDOWPROP is a LAMBDA/No-spread function. If

NewValue is omitted from the function call, then

28LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

WINDOWPROP will simply return the old value of the

specified property. (Note: Omitting NewValue is not the same as

specifying NIL as the NewValue. The former will not change the

specified property, the later will set the property’s value to NIL.)

Important note: WINDOWPROP can be used to add any

arbitrarily named property to a window ÿ the Property argument

need not be one of the properties supported by the window

package (and described above). Thus WINDOWPROP can be

used to cache any sort of information on the window that may be

useful to the program. See the scrolling window example below.

The functions WINDOWADDPROP and WINDOWDELPROP can be

used to add and remove items for properties whose values are lists (e.g.,

lists of functions as for the CLOSEFN property):

(WINDOWADDPROP Window Property ValueToBeAdded) ž

adds ValueToBeAdded to the list that is the value of the Property

property of Window. If ValueToBeAdded is already on that list it is

not added again. If the current value of the specified property is

not already a list, it is made into a list before ValueToBeAdded is

added. ValueToBeAdded is always placed at the end of the list.

Returns the old value of the specified property.

(WINDOWDELPROP Window Property ValueToBeRemoved) ž

removes ValueToBeRemoved from the list that is the value of the

Property property of Window. If ValueToBeRemoved was actually

on that list, WINDOWDELPROP returns the old value of the

specified property. Otherwise, WINDOWDELPROP returns NIL.

Making Scrollable Windows

The window package provides some support for making scrolling

windows.

29LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

In particular, the window package provides and manages the scroll

bars that pop up whenever the mouse rolls through the left edge of

the window.

The window package also supports a default scheme for doing the

actual scrolling of the window contents ÿ although the default

scheme requires some amount of progamming setup.

The SCROLLFN Property

Every window has a SCROLLFN property.

If the SCROLLFN property is NIL (the default), then the window

will not be scrollable.

If the SCROLLFN has a non-NIL value, then the window will be

scrollable as follows:

Whenever the cursor moves from inside the window to

outside the window across the window’s right border, the

window package (in particular, the scroll handler) will

bring up a scroll bar.

If the user presses a mouse button while the scroll bar is up,

then the window package will call the function that is the

value of the SCROLLFN property. If the user continues to

hold down the mouse button while in the scroll bar, the

SCROLLFN will be called repeatedly every few

milliseconds until the button is released.

The SCROLLFN will be called with the following 4

arguments: 1) the window, 2) the distance to scroll

horizontally, 3) the distance to scroll vertically, and 4) a

flag that indicates whether the button is still being held.

The distances to scroll depend on which mouse button was

pressed as follows:

30LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

LEFT ž the distance in screen units (bits) from the

cursor to the top (left if horizontal scroll) of the

window.

RIGHT ž negative of the distance in screen units

(bits) from the cursor to the top (left if horizontal

scroll) of the window.

MIDDLE ž a FLOATP that describes the ratio of the

distance between the cursor and the top (or left)

edge of the window to the length of the entire scroll

bar. (In other words, proportion of the way down

(or across) the scroll bar that the cursor is.)

The SCROLLFN should take care of changing the contents

of the window as appropriate for the distances specified by

the user’s mouse press.

Every window has a SCROLLFN property.

SCROLLBYREPAINTFN

The window package provides a default SCROLLFN, called

SCROLLBYREPAINTFN, that can be attached to the

SCROLLFN property of any window that has a non-NIL

REPAINTFN property.

The idea behind SCROLLBYREPAINTFN is as follows:

A window is seen as showing at any given time a small part

of a much larger display. The coordinate system of this

display is the coordinate system of the window’s display

stream.

Each window has a property called EXTENT that describes

the region in the display stream’s coordinate system that

the larger display occupies. Setting the EXTENT property

of the window is the responsibilty of the program that uses

SCROLLBYREPAINTFN.

31LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The ClippingRegion property of the window’s display

stream determines what region of the display stream (and

hence what region of the EXTENT or larger display) is

being currently shown in the window.

When a window scrolls, the ClippingRegion of the display

stream changes ž another part of the larger display is now

being shown in the window.

When a window’s REPAINTFN gets called it is passed a

window and a region in the window’s display stream. The

REPAINTFN is responsible for drawing in the window that

region of the display stream.

Thus, SCROLLBYREPAINTFN works as follows:

SCROLLBYREPAINTFN calls the window’s

REPAINTFN to draw in the window the contents of the

new ClippingRegion whenever a scroll is requested (i.e.,

whenever the window’s SCROLLFN is called).

SCROLLBYREPAINTFN takes care of translating the

scroll distances (see the SCROLLFN description above)

into a new ClippingRegion and then calling the window’s

REPAINTFN with the new ClippingRegion as an

argument.

The programmer need only write a REPAINTFN that can

display an arbitrary region of the larger display underlying

the window. The programmer must also specify the

EXTENT of the underlying display since

SCROLLBYREPAINTFN needs to this to caluculate the

new ClippingRegion after each scroll.

Example

32LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The goal is to develop a scrollable window that displays a list of

strings, one string per line.

(MakeStringWindow
 (LAMBDA (StringList) (* fgh: "28-Jun-85 12:11")

 (* * Create a scrollable window to display the strings in
 StringList, one string per line.)

 (LET ((SW (CREATEW NIL "String Window")))

 (* * SCROLLFN will be the default -- SCROLLBYREPAINTFN)

 (WINDOWPROP SW (QUOTE SCROLLFN)
 (FUNCTION SCROLLBYREPAINTFN))

 (* * REPAINTFN will be StringWindowRepaintFn)

 (WINDOWPROP SW (QUOTE REPAINTFN)
 (FUNCTION StringWindowRepaintFn))

 (* * EXTENT of underlying display for scrolling is a region whose
 lower-left corner is at 0,0 and whose width is the width of the
 window and whose height is the number of strings times the height
 of each line as determined by the height of the window’s font.)

 (WINDOWPROP SW (QUOTE EXTENT)
 (CREATEREGION 0 0 (fetch (REGION WIDTH)
 of (WINDOWPROP SW (QUOTE REGION)))
 (TIMES (LENGTH StringList)
 (FONTPROP (DSPFONT NIL SW)
 (QUOTE HEIGHT)))))

 (* * Cache the string list on the window so we can use it
 in the REPAINTFN)

 (WINDOWPROP SW (QUOTE StringList)
 StringList)

 (* * Display the first window full -- will be region out of EXTENT
 starting from 0,0 with height and width determined by the
 height and width of the window.)

 (REDISPLAYW SW)

 (* * Return the window)

 SW)))

(StringWindowRepaintFn
 (LAMBDA (Window Region) (* fgh: "28-Jun-85 12:21")

33LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

 (* * Repaint a string window. StringList to print is cached on
 the StringList property of the window. Region argument is used to
 determine which strings to print in the window. Starting from 0,0
 for each LineHeight increment print 1 string. Thus, string 1 goes
 at 0,0. String 2 goes at 0, LineHeight. String 3 goes at 0,
 (2*LineHeight) etc. LineHeight is just the height of the font
 used in the window.)

 (LET ((StringList (WINDOWPROP Window (QUOTE StringList)))
 (LineHeight (FONTPROP (DSPFONT NIL Window)
 (QUOTE HEIGHT)))
 (RegionHeight (fetch (REGION HEIGHT) of Region))
 (RegionBottom (fetch (REGION BOTTOM) of Region))
 FirstLine LastLine)

 (* * Determine the first {i.e., top most} line to print)

 (SETQ FirstLine (ADD1 (FIX (QUOTIENT (PLUS RegionBottom RegionHeight)
 LineHeight))))

 (* * Determine the last {i.e., bottom most} line to print)

 (SETQ LastLine (ADD1 (FIX (QUOTIENT RegionBottom LineHeight))))

 (* * Move to the left edge and the bottom of the first {top most}
 line in the window. The Times/Quotient constrution is to
 position on an exact line base, i.e., on Y poisition that is
 an exact multiple of LineHeight.)

 (MOVETO (fetch (REGION LEFT) of Region)
 (TIMES (QUOTIENT (PLUS RegionBottom RegionHeight)
 LineHeight)
 LineHeight)
 Window)

 (* * For the top most to the bottom most line in the Region, print
 the corresponding string then move down a line. If the calculated
 string number is not positive, then we have scrolled below the
 end of the EXTENT. In this case don’t print any string.)

 (for Line from FirstLine to LastLine by -1
 do (AND (GREATERP Line 0)
 (PRIN1 (CAR (NTH StringList Line))
 Window))
 (DSPXPOSITION 0 Window)
 (RELMOVETO 0 (MINUS LineHeight)
 Window)))))

32_(MakeStringWindow
(FOR X FROM 1 to 50 COLLECT (CONCAT X X X X X X X X X X)))

{WINDOW}#45,5643

34LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

35LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Menus

The Menu package is very closely related to the Window package.

Basically, a menu is a window (or part of a window) in which pressing a mouse

button in certain specified regions (i.e., menu items) causes certain specified

events to happen.

In Interlisp-D, a menu is implemented as window with a special

BUTTONEVENFN that uses a menu data structure to determine what action to

take depending on what menu item the cursor is over when the button was

pressed.

Bringing a menu up on the display requires two steps: 1) creating the menu data

structure, and 2) displaying the menu in the window.

Creating the menu data structure

A MENU is a system datatype. Cached on the data type is all the information the

menu package needs in order to display the menu in a window and in order to

carry out actions when the mouse is clicked within the menu.

The MENU datatype has the following fields:

Fields that describe the menu’s behavior

ITEMS ž a list of the items to be included in the menu. If an item

is an NLISTP, then it is displayed in the menu. If an item is a list,

then the CAR of that list is displayed in the menu.

The display consists of the print name of the item or its

CAR unless it is a bitmap, in which case the bitmap is

displayed.

Under most circumstances, each item will be a list of three

elements: the item label, the item action, and the item

message. This list is interpreted by the default

WHENSELECTEDFN as described below.

36LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

If a WHENSELECTEDFN other than the default is used,

then each item can consist of whatever that

WHENSELECTEDFN requires.

WHENSELECTEDFN ž a function that gets called whenever an

item is selected in the menu by a mouse click. The function will

get called with three arguments: 1) the item slected, 2) the menu,

and 3) the mouse key used (LEFT, MIDDLE, or RIGHT).

The WHENSELECTEDFN defaults to the function

DEFAULTWHENSELECTEDFN which operates as

follows:

If the CADR of the item is non-NIL, then that

CADR is evaluated and returned as the value of the

function.

Otherwise, the item itself is returned.

WHENHELDFN ž a function that gets called whenever the user

holds the mouse button down inside an item for more than

MENUHELWAIT milliseconds (defaults to 1200). The function

will get called with three arguments: 1) the item slected, 2) the

menu, and 3) the mouse key used (LEFT, MIDDLE, or RIGHT).

The WHENHELDFN defaults to the function

DEFAULTMENUHELDFN which operates as follows:

If the CADDR of the item is non-NIL, then that

CADDR is printed in the prompt window.

Otherwise, This item will be slected when the button

is released will be printed in the prompt window.

WHENUNHELDFN ž a function that gets called whenever the

WHENHELDFN has been called and the user lets up on the mouse

button or moves the cursor out of the item. The function will get

called with three arguments: 1) the item slected, 2) the menu, and

3) the mouse key used (LEFT, MIDDLE, or RIGHT).

37LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The default WHENUNHELDFN is CLRPROMPT, which

clears the prompt window.

Fields that describe the menu’s looks

TITLE ž the title to appear in the title bar of the menu. If NIL, then

the menu will have no title bar.

MENUFONT ž the font in which the items will be printed.

Defaults to Helvetica 10.

MENUROWS or MENUCOLUMNS ž the number of rows or

columns the menu is to have. If both of these are NIL, the menu

will have one column.

ITEMHEIGHT, ITEMWIDTH ž the height (width) of each item

in the menu. If ITEMHEIGHT is not specified, then the height

will be the maximum height of any item in the menu (as

determined by the sizes of any bitmaps and the height of the

MENUFONT). If ITEMWIDTH is not specified, the maximum

width of any item will be used.

CENTERFLG ž if non-NIL, the menu items are printed centered in

their areas. Otherwise, they are left-justified.

MENUBORDERSIZE ž the width in bits of the black border

around each item. Defaults to 0.

MENUOUTLINESIZE ž the width in bits of the black border that

outlines the entire menu. Defaults to the maximum of 1 and

MENUBORDERSIZE.

Fields that describe the menu’s positioning

MENUPOSITION ž the default position of the menu in screen

coordinates (for pop-up menus) or window coordinates (for

permanent menus) [See below for op-up versus permamnent

menus].

38LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

If NIL, then the memu is paced at the cursor.

The point of the menu to be placed at MENUPOSITION is

determined by MENUOFFSET.

MENUOFFSET ž the point inside the menu that will be placed

over MENUPOSITION. Defaults to 0,0, i.e., the lower-left corner.

To create a menu data structure use the standard CREATE statement from the

Record Package:

Example:

(SETQ MenuX

(create MENU ITEMS _ ’(Yes No) CENTERFLG _ T

TITLE _ "Yes or No??"))

To change a menu data structure use the standard replace statement from the

Record Package:

Example:

(replace (MENU TITLE) of MenuX with "Well??")

Bringing up a menu on the screen: Pop-up and Fixed Menus

There are two way to use a menu: pop-up and fixed.

Pop-up menus are used in a program to get some information from a user.

A program using a pop-up menu brings the menu up on the screen and

then waits for the user to select an item. When the item is selected, the

menu is removed from the screen and the menu’s WHENSELECTEDFN

is called. The WHENSELECTEDFN will carry out some action, return a

value to the program, or both.

Fixed menus remain on the screen "permanently. Whenever the user

clicks a mouse button in one of the menu’s items, the menu’s

WHENSELECTEDFN is called to carry out some action. Since fixed

menus are not part of the ongoing processing of a program, the value

returned by the WHENSELECTEDFN is ignored.

39LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The MENU data structure is identical for pop-up and fixed menus. The

difference is in the function used to bring the menu up on the screen.

The function for displaying a pop-up menus is:

(MENU Menu Position) ž displays Menu at Position (in the screen

coordinate system) and then waits for the user to press and release a

mouse button.

Pressing a mouse button has the following effects:

If the cursor is an item in Menu, that item is inverted on the

screen.

If the user holds the mouse button down inside the item for

MENUHELDWAIT milliseconds, then Menu’s

WHENHELDFN is called.

If the user lets up on all mouse buttons while the cursor is

still in the item, then Menu’s WHENSELECTEDFN is

called.

If the user lets up on all mouse buttons while the cursor is

outside of Menu, then no action is taken.

MENU returns the value returned by the call to the

WHENSELECTEDFN, unless the user releases the mouse button

while the cursor is outside of Menu in which case MENU returns

NIL.

If the Position argument is NIL, then the MENUPOSITION field

of Menu is used. If the MENUPOSITION field is also NIL, then

the current cursor position is used.

Example:

(SELECTQ (MENU (create MENU ITEMS _’(Yes No)))

(Yes (PRINT "The answer is Yup."))

(No (PRINT "The answer is Nope."))

(PRINT "No answer given."))

40LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

The function for displaying a fixed menus is:

(ADDMENU Menu Window Position) ž displays Menu in Window at

Position (in the window’s coordinate system) and returns immediately.

The CURSORINFN and BUTTONEVENTFN of Window are replaced by

the function MENUBUTTONFN so that when the user presses a mouse

button inside an item in Menu (in Window) the following events take

place:

The item is inverted.

If the user holds the mouse button down inside the

item for MENUHELDWAIT milliseconds, then

Menu’s WHENHELDFN is called.

If the user lets up on all mouse buttons while the

cursor is still in the item, then Menu’s

WHENSELECTEDFN is called.

If the user lets up on all mouse buttons while the

cursor is outside of Menu, then no action is taken.

If no Position argument is given, then the MENUPOSITION field

of Menu is used. If the MENUPOSITION field is also NIL, then

the current cursor position is used.

If no Window argument is given, then a window is created just big

enough to hold the menu and placed at Position (in the screen

coordinate system).

ADDMENU always returns the window the menu was placed in.

Note: you can add more than one menu to a single window. But you

cannot add a single menu to more than one window!

Since fixed menus are no automatically removed, the following function must be

used to remove a fixed menu from the display:

41LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

(DELETEMENU Menu CloseFlg Window) ž deletes Menu from

Window. If CloseFlg is non-NIL and there are no other menus in Window,

then CLOSEW is called on Window.

If Window is not given, (OPENWINDOWS) is searched for the

window containing Menu. If no such window is found,

DELETEMENU is a no-op.

Hierarchical Menus

You can create hierarchical menus by creating menu items that have subitems.

A menu item with subitems is displayed with a small gray arrowhead at

the right edge of the item.

If the user, drags the cursor from inside the item to outside the item across

the right edge, then a submenu containing the subitems will be brought up.

Selecting one of these subitem from this submenu is functionally

equivalent to selecting an item from the main menu.

Note that the subitems may themseleves have subitems, making a fully

hierarchical menu.

The MENU datatype has a field called SUBITEMFN. The value of the field

should be a predicate that determines whether an item has subitems or not. The

SUBITEMFN is called with the menu and the item as arguments. It should return

either NIL to indicate that the item has no subitems or a list of subitems from

which to use as the ITEMS field while constructing the subitem menu.

The default SUBITEMFN is the function DEFAULTSUBITEMFN which

checks to see if the item is a list of 4 elements with the 4th element being a

list whose CAR is SUBITEMS. If it is, it returns the CDR of this 4th

element. Otherwise, it returns NIL.

Example of a menu with subitems and the default SUBITEMFN:

(create MENU

ITEMS _

’((Yes ’Yes "Answer Yes"

42LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

(SUBITEMS

("Yes w/ Check" ’Yes1 "Anwser

Yes, but check first.")

("Yes w/o Check" ’Yes2 "Anwser

Yes, without checking first.")))

(No ’No "Answer No.")))

Menu Example

The following set of functions implements a fixed menu that sits left-flushed

along the bottom of the screen. The menu has some common commands that you

usually invoke from the Exec window.

Note: The function CM.MakeCommandMenu creates a fixed menu while the

function CM.TEdit uses a pop-up menu.

(CM.MakeCommandMenu

(LAMBDA NIL

(ADDMENU

 (CREATE MENU

ITEMS _

’((TEdit (CM.TEdit) "Opens up a

new TEdit window.")

(FileBrowse (CM.FB) "Opens a File

Browser window.")

(Lafite (CM.Lafite) "Starts up Lafite

mail program."))

TITLE _ "Common Commands"

MENUFONT _ ’(HELVETICA 14 BOLD)

MENUROWS _ 1

CENTERFLG _ T

ITEMHEIGHT _ 50

43LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

MENUBORDERSIZE _ 2)

NIL

(create POSITION XCOORD _ 0 YCOORD _ 0))))

(CM.TEdit

(LAMBDA NIL

(* * Ask user if New or Old file to TEdit, then open a Tedit)

(SELECTQ (MENU (create MENU ITEMS _ ’(New Old)

MENUFONT _

’(HELVETICA 14)

ITEMHEIGHT _ 30

CENTERFLG _ T))

(New (TEDIT))

(Old (TEDIT

 (PROGN (PRIN1 "Enter file name: ")(READ))))

NIL)))

(CM.FB

(LAMBDA NIL

(FILEBROWSER)))

(CM.Lafite

(LAMBDA NIL

(LAFITE)))

Using the Mouse

Writing BUTTONEVENTFNs, CURSORxxxFNs, and WHENSELECTEDFNs

In general, programs that depend on mouse actions are best written using the

Window and/or Menu packages.

The BUTTONEVENTFNs and CURSORxxFNS for windows and the

WHENSELECTEDFN for menus allow you to carry out arbitrary actions

whenever the user buttons down inside a window or menu item or even

whenever the user moves a the cursor within a window.

44LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

For example, the GRAPHER program for editing node-link graphs

is built almost entirely on BUTTONEVENTFNs that fire

whenever the user buttons down inside the GRAPH window. The

BUTTONEVENTFNs determine what button was pressed and

where in the window it was pressed relative to the graph being

displayed. Theuse this information to decide what action to carry

out.

There is an important factor to pay attention to when writing

BUTTONEVENTFNs, CURSORxxxFNs, and WHENSELECTEDFNs.

In particular, these functions are evaluated as part of the Mouse

process (i.e., the process that tracks the cursor and interprets mouse

button presses). While these functions are be evaluated, the Mouse

process can’t be doing anything else, i.e., it can’t be carrying out

its normal job of tracking the cursor and interpreting button

presses.

If a BUTTONEVENTFN, CURSORxxxFN, or

WHENSELECTEDFN is going to be long running, it is good

practice to spin this evaluation off of the mouse process, so that the

user can go off an do other things with the mouse while the

function is being evaluated.

To do this, you can use the function call

(SPAWN.MOUSE) in the BUTTONEVENTFN,

CURSORxxxFN, or WHENSELECTEDFN.

As described in LispCourse #14 (page 16), this will make

the current mouse process (the one thats going to do the

long running evaluation) into a process called

OLDMOUSE and then start up a new mouse process.

The BUTTONEVENTFN, CURSORxxxFN, or

WHENSELECTEDFN will thus run under the

OLDMOUSE process and not interfere with ongoing

mouse operations.

45LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Also, there is a convention in Interlisp-D that a events don’t occur until

the user releases a mouse button. For example, menu items are selected

when the user releases the mouse button inside the item, rather than when

she presses the mouse button.

When writing BUTTONEVENTFNs for windows, the programmer

is responsible for adhering to this convention. When the

BUTTONEVENTFN is called, it is good practice to wait until the

user lets up on the mouse button before carryoing out any actions.

If the user lets up on the mouse button outside the window, then it

is considered correct return without carrying out the action.

So, at the begining of a BUTTONEVENTFN it is common

practice to have a (UNTILMOUSESTATE UP) and (OR

(INSIDEP (WINDOWPROP Window ’REGION)

(CURSORPOSITION Window)) (RETURN NIL)). [See below

for discussion of UNTILMOUSESTATE and

CURSORPOSITION.

Getting Information about the Mouse and the Cursor

Many programs require information about the state of the mouse buttons or the

cursor. The following functions return this information:

Position of the Cursor

(CURSORPOSITION NewPosition Window) ž Reads and then returns

the location of the cursor in the coordinate system of Window. If

NewPosition is specified, sets the cursor to be at the specified position in

the window’s coordinate system.

(LASTMOUSEX Window), (LASTMOUSEY Window) ž Returns the X

(Y) location of the cursor in the coordinate system of Window as of the

last time the cursor position was read. Does not actually read the current

position.

46LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

LASTMOUSEX, LASTMOUSEY ž global variables that contain the X

(Y) position of the cursor in the screen coordinate system as of the last

time the cursor position was read.

(GETMOUSESTATE) ž Reads the current mouse state including the

cursor location and sets the global variables LASTMOUSEX and

LASTMOUSEY.

CURSORPOSITION calls GETMOUSESTATE before returning

the cursor position. The functions LASTMOUSEX and

LASTMOUSEY do not.

State of the Mouse Buttons

(MOUSESTATE ButtonSpec) ž Reads the mouse button state and returns

T if that state matches ButtonSpec, NIL otherwise. ButtonSpec is

description of the mouse buttons having one of the following forms:

LEFT, MIDDLE, RIGHT ÿ indicating the corresponding mouse

button is down.

UP ÿ indicating all mouse buttons are released.

(ONLY Button) ž indicating that mouse button Button (i.e., one of

LEFT, MIDDLE, RIGHT) is the ONLY button down.

(AND ButtonSpecs), (OR ButtonSpecs), (NOT ButtonSpec) ÿ

indicating the logical combinations of other ButtonSpecs.

Note: MOUSESTATE is a macro which is like an NLAMBDA function in

that its arguments are not quoted.

47LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

Examples:

(MOUSESTATE LEFT)

(MOUSESTATE (ONLY LEFT))

(MOUSESTATE (OR LEFT MIDDLE))

(MOUSESTATE (AND (NOT UP)(NOT (ONLY LEFT)))

(LASTMOUSESTATE ButtonSpec) ž Like MOUSESTATE but does not

first read the current mouse state. Thus it returns the mouse state as of the

time it was last read. Good for looking at exactly what caused

MOUSESTATE to return T. (Does not first call GETMOUSESTATE as

does MOUSESTATE.)

(UNTILMOUSESTATE ButtonSpec Interval) ž waits until

(MOUSESTATE ButtonSpec) returns T or until Interval milliseconds

have elapsed.

If (MOUSESTATE ButtonSpec) returns T, then

UNTILMOUSESTATE returns T. If Interval milliseconds elapses

without (MOUSESTATE ButtonSpec) returning T, then

UNTILMOUSESTATE eretunrs NIL.

If Interval is NIL, then UNTILMOUSESTATE will wait

indefinitely.

Example of Using the Mouse

The following two functions implement a trap window ž if the user rolls the cursor

into the window, he cannot roll it out again. Every time the cursor nears the edge

of the window, the window jumps to be centered around the cursor location.

Thus wherever the cursor moves, the window will follow.

(Being a nice guy, there is an escape.)

(EX.CreateWindow
 (LAMBDA NIL (* fgh: "29-Jun-85 16:26")
 (LET ((Window (CREATEW (CREATEREGION 100 100 300 150))))

 (* * Add special CURSORINFN to Window)

 (WINDOWPROP Window (QUOTE CURSORINFN)
 (FUNCTION EX.CursorInFn))

 (* * Add a warning title)

48LispCourse #40: Using the Display: Bitmaps, DisplayStreams, & Windows

 (WINDOWPROP Window (QUOTE TITLE)
 "Caution: This window is trap"))))

(EX.CursorInFn
 (LAMBDA (Window) (* fgh: "29-Jun-85 16:28")

 (* * The user has moved inside of the window, don’t let him out)

 (LET ((EdgeWidth 10)
 (Region (DSPCLIPPINGREGION NIL Window))
 (HalfWidth (QUOTIENT (fetch (REGION WIDTH) of (WINDOWPROP
 Window
 (QUOTE REGION)))
 2))
 (HalfHeight (QUOTIENT (fetch (REGION HEIGHT)
 of (WINDOWPROP Window (QUOTE REGION)))
 2))
 (Position (CURSORPOSITION NIL Window))
 NewRegion)

 (* * Compute a region just inside of the border of the window)

 (SETQ NewRegion (CREATEREGION (PLUS EdgeWidth (fetch (REGION LEFT)
 of Region))
 (PLUS EdgeWidth (fetch (REGION BOTTOM)
 of Region))
 (DIFFERENCE (fetch (REGION WIDTH)
 of Region)
 EdgeWidth)
 (DIFFERENCE (fetch (REGION HEIGHT)
 of Region)
 EdgeWidth)))

 (* * Forever, if the cursor moves out of the inner region move the
window to center on the cursor position)

 (while T
 do (COND
 ((INSIDEP NewRegion (CURSORPOSITION NIL Window Position))
 (* Allow user to escape if
 chords the left and right mouse buttons)
 (AND (LASTMOUSESTATE (AND RIGHT LEFT))
 (RETURN NIL)))
 (T (MOVEW Window (DIFFERENCE LASTMOUSEX HalfWidth)
 (DIFFERENCE LASTMOUSEY HalfHeight))))
 (* Allow other processes to run)
 (BLOCK)))))

References

Chapter 19 of the IRM! But beware that this material is fairly old and out-of-date. Look

in the Interlisp release messages for updates.

F.G.H.

7/11/85

LispCourse #41: The Compiler and MASTERSCOPE

The Interlisp Compiler

What is the Interlisp Compiler?

An important goal of any program is that it run FAST. Ceteris paribus, the faster

it runs the more work it can do.

Running fast, usually means doing as little work as possible while the program is

running.

There are two ways to accomplish this:

1) Minimize the amount of work to do

2) Do some work ahead of time so there is less work to do while

the program is running.

Recall from LispCourse #34 (and Homework #34) that the Lisp evaluator (i.e.,

EVAL/APPLY) does lots and lots of work whenever it evaluates a function call.

Because of this, evaluating a function call is relatively slow.

And because programs are made up of evaluating function calls,

(interpreted) Lisp programs tend to be relatively slow.

Moreover, in the evaluator outlined in LispCourse #34 (& 35), all of the

work is done each and every time the function is called, at the time

function is called.

Much of this work is in fact redundant and need only be done

once, e.g., when the function is called for the first time.

Thus the Lisp evaluator in LispCourse #34 ignores both of the speed-up

techniques described above.

The goal of the compiler is to make these two speed-up techniques available in

the Interlisp evaluation process.

2LispCourse #41: The Compiler and MASTERSCOPE

The compiler is a program that takes a Lisp function definition in source

code form (i.e., in the form that you write it in) and does as much of the

"evaluation work" as it can.

It then rewrites the function definition in a new form (i.e., compiled code

form) that captures all of the work it has done.

When the Lisp evaluation process encounters a function definition in

compiled code form, it can take advantage of the work the compiler has

already done and therefore APPLYing the function is much faster than if

the function were in source code form.

Since the compiler is run once, before the function is ever evaluated, it does two

things:

1) it minimizes work by getting rid of the redundancy in multiple

evaluations

2) it moves some of the cost of function call evaluation from the time of

evaluation to some earlier time (i.e., to the time when compilation is

done).

The result is that compiled functions can be evaluated much, much faster than the

equivalent interpreted (i.e. source code) functions. This is an obvious advantage.

The disadvantage of the compiler scheme is that you have to take the time to

compile your functions before you run them.

This can be a big disadvantage when you are debugging and testing your

program.

In these cases, you make frequent changes to your function definitions.

If you have to recompile your functions each time you make a change, the

compile time can easily outweigh the time wasted by the slower

evaluation of interpreted functions.

Other disadvantages of compiled code are the following:

1) Compiled code can be read only by real Lisp wizards. To the rest of

us, it looks like gibberish.

3LispCourse #41: The Compiler and MASTERSCOPE

2) Compiled code to some extent brings back the data/program

distinction into Lisp.

In source code form, function definitions are just list structures that

can easily be treated as data by another function.

In compiled code form, function definitions are special objects that

are not easily accessible using the standard Interlisp data

manipulation mechanisms.

The bottom-line is that compiled code is good for helping finished programs run

fast while interpreted code is good for testing and debugging, and when you need

to blur the distinction between data and program.

An important feature of Interlisp (in fact of most Lisps) is that compiled code and

interpreted code can be freely intermixed without any special considerations on

the part of the programmer.

An example of what the compiler does

The compiler is a very complex program that does lots and lots of fancy things to

speed up the evaluation of Lisp code.

Compiler research and the problem of compiled code optimization are

important research areas in computer science.

None of this will be covered here (since I don’t know anything about it!).

However, the following is an example of what the compiler does:

Consider the following abstract function definition:

(LAMBDA (A B) (LET (D E)(LET (F G) (LIST A B D E F G))))

In the interpreter outlined in LispCourse #34, evaluation of the LIST

function call would involve calling the LookUpValue function 6 times to

look up the values of the atoms A, B,

Each time, the LookUpValue function would search up the stack

looking for a binding of the given variable. For A & B, it would

find the binding on the third stack frame from the bottom. D & E

would be found on the second stack frame, etc.

4LispCourse #41: The Compiler and MASTERSCOPE

All of this stack searching would take lots of time.

The compiler, however, can do some of the interpretation work ahead of

time. For example:

The compiler can predict (based on the structure of the Lisp source

code) that any reference to A within the second embedded LET

will refer to the A bound in the third stack frame from the bottom.

Furthermore, since A is the first item in the parameter list,

the compiler can figure out that A will be the first bound

variable in its stack frame.

The compiler knows about the format of the stack. It can

therefore generate code that directly fetches the value of the

first bound variable in the third stack frame without any

search of the stack.

Thus, the compiler would replace all the references to the

value of A within the second embedded LET with compiled

code that just looks up the value of the first bound variable

in the third stack frame.

Then, when the function is later evaluated, the expensive

stack lookup operation for the value of A would be

skipped.

The compiler could do the analogous thing for all of the bound

variables within this function defintion.

If the function were compiled, the evaluation of the (LIST

...) statement would involve no stack lookup operations,

resulting in a much faster evaluation.

Note that the compiler cannot do the same thing for free variable

references. This is because the stack frame binding refered to by a

free variable is determined at run time by what functions and

bindings are currently on the stack.

5LispCourse #41: The Compiler and MASTERSCOPE

The compiler has no way of predicting what the stack will

look like at run time, and can therefore not replace the

stack lookup by a direct reference.

A good compiler, however, could also do some optimizations in this

function.

In particular, the two LETs could be collapsed into a single LET,

eliminating the need to create an additional stack frame.

This is possible because the compiler can tell that the

embedded LET does not rebind any of the variables used in

the outer LET.

Using the compiler

Compiler Questions

All of the functions that invoke the compiler start by asking the user the

following series of questions. Each question should be answered "Yes"

(or "Y") or "No" (or "N"), followed by a Carriage Return.

Listing? ž Asks whether you want a detailed listing of the compiled

code being generated. Always answer this question with "No".

REDFINE? ž Asks whether the compiled code should replace the

source code as the function definition for the functions being

compiled. In general, this question should be answered "Yes".

Occasionally, you may just want to create a file of

compiled code without altering the definitions in the

current virtual memory. In this case, answer this question

with "No".

SAVE EXPRS? ž Asks whether to save the original source code

whenever a function is redefined using its compiled code.

If "No", then the original code is lost when the function is

redefined with the compiled code.

6LispCourse #41: The Compiler and MASTERSCOPE

If "Yes", then the original source code is placed on the

property list of the atom that is the function’s name using

the property EXPR.

The editor, the compiler, the file package, etc. all

know about the EXPR property and handle in

appropriately.

For example, if you call DEdit on a function

whose definition is compiled code, DEdit

will instead edit the source code stored in

the EXPR property (if there is any).

If the function definition stored in EXPR is

changed during the DEdit, then DEdit

automatically redefines the function to be

the new source code and saves the old

compiled definition on the property list

under the property CODE.

In general, answer this question "Yes". because you will

often want to edit the source code and recompile the

function.

If you answer "No", you will have lreoad the source

code from a file (if you even bothered to save it)

when you want to change the function.

OUTPUT FILE? ž Asks whether to write the compiled code to a

file that can be LOADed at a later time or in a new sysout, etc.

"No" means no file will be created.

"Yes" will cause the compiler to prompt you for a file

name.

Anything else will be interpreted as a file name, in which

case "Yes" will be assumed and that file will be used.

Note: as a shorthand you can answer the LISTING? question can be

answered using the following:

7LispCourse #41: The Compiler and MASTERSCOPE

S ž use the same answers to all questions as given for the last

compile.

F ž just compile to a file without redefining the functions in the

virtual memory.

ST ž answer REDFINE? and SAVE EXPRS? with "Yes" but ask

about the output file.

STF ž answer REDFINE? with "Yes" and SAVE EXPRS? with

"No" and ask about the output file.

Functions that invoke the compiler

The following function invoke the compiler:

(COMPILE Functions) ž Compile the current source code

definitions for each of the functions in the list Functions. If

Functions is an atom, (LIST Functions) is used.

The current source code definition is either the function

definition or the source code stored under EXPR on the

property list.

(TCOMPL Files) ž Used to compile source code files created by

MAKEFILE. Files is a list of source code files to be compiled

one-by-one in order. If Files is atomic, (LIST Files) will be used.

Compiling a MAKEFILE file involves compiling all of the

functions on that file, writing the compiled code to a new

file of the same name (but with the extension .DCOM), and

then copying all of the non-function items (e.g., VARS,

RECORDS, etc) from the source file to the new compiled

file.

The resulting .DCOM file is a LOADable replacement of

the original MAKEFILE source file, except that the

function definitions contaion compiled rather than source

code.

TCOMPL returns a list of DCOM file produced.

8LispCourse #41: The Compiler and MASTERSCOPE

Note: Since TCOMPL automatically produces a file, it does

not ask the OUTPUT FILE? question.

(RECOMPILE File) ž Used to recompile a single source code file

File after one or more of its functions have been edited using

DEdit.

RECOMPILE works like TCOMPL, except that it does not

compile all functions on File. Instead the following

scheme is used:

If the function definition in the virtual memory is an

EXPR (i.e., is not compiled code), then

RECOMPILE compiles that definition and writes it

to the output DCOM file. [As indicated above,

functions are redefined to be their EXPR version

(source code) whenever they are edited using

DEdit.]

If the function definition in the virtual memory is

NOT an EXPR, then RECOMPILE simply copies

the previous compiled definition from the previous

version of the DCOM corresponding to File.

RECOMPILE is considerably faster than TCOMPL when

only one or a few function definitions have been changed

because it doesn’t recompile functions that haven’t

changed.

Example

32_(DEFINEQ (AAA (LAMBDA (A B C) (PLUS A B C))))
(AAA)
33_(DEFINEQ (BBB (LAMBDA (A B C) (LIST A B C))))
(BBB)
34_(SETQ EXAMPLECOMS ’((FNS AAA BBB)(VARS (XYZ 44))))
((FNS AAA BBB) (VARS (XYZ 44)))
35_(MAKEFILE ’EXAMPLE)

9LispCourse #41: The Compiler and MASTERSCOPE

{PHYLUM}<HALASZ>EXAMPLE.;1
36_(TCOMPL ’Example]
listing? no
redefine? yes
save exprs? yes
(dwimifying AAA)
(AAA (A B C))
(AAA redefined)
(dwimifying BBB)
(BBB (A B C))
(BBB redefined)
({PHYLUM}<HALASZ>EXAMPLE.DCOM;1)
37_DF[AAA]
prop unsaved
AAA
38_(MAKEFILE ’EXAMPLE)
{PHYLUM}<HALASZ>EXAMPLE.;2
39_(RECOMPILE ’EXAMPLE]
listing? N
redefine? Y
save exprs? Y
(dwimifying AAA)
(AAA (A B C))
(AAA redefined)
BBB,
{PHYLUM}<HALASZ>EXAMPLE.DCOM;2

Special Considerations when Writing Code to be Compiled

Interlisp takes ever effort to make compiled and interpreted code totally

interchangeable. However, there are some ways in which this simply cannot be

done. The following are some special considerations involved in writing code

that will be compiled.

All of these considerations are optional. They are simply ways of taking

advantage of feature available in compiled but not interpreted code.

10LispCourse #41: The Compiler and MASTERSCOPE

GLOBALVARS

As described above, the compiler writes special code to handle many of

the variable references more efficiently than the standard stack search

mechanism.

As we discussed in LispCourse #34, free variable reference in interpreeted

code is always done through a stack search unless you use the

GETTOPVAL/SETTOPVAL functions. In the later case, the value cell of

the atom is used directly without any stack search.

You have a little more control over this process in code produced by the

compiler. In particular, you can declare any variable to be a

GLOBALVAR.

Declaring a variable to be a GLOBALVAR tells the compiler that

whenever that variable is used freely in a function, code should be

generated to directly access the value of the atom, skipping the

stack search. Declaring a variable to be a GLOBALVAR is

essentially telling the compiler to generate code to do a

SETTOPVAL or GETTOPVAL whenever the variable is used

freely.

If you don’t declare a variable to be a GLOBALVAR, then the

compiler will generate code to do the normal stack search when it

encounters that variable used freely.

There are several ways to declare a variable as a GLOBALVAR:

1) Put a clause in the COMS list that contains the functions that

you want to use that variable as a GLOBALVAR. The clause

should be of the form (GLOBALVARS Var1 Var2 ...).

When any of the functions on the file are compiled, free

variable references for any variable in a GLOBALVARS

clause will be compiled as global variables.

11LispCourse #41: The Compiler and MASTERSCOPE

2) Put a property GLOBALVAR with value T on the property list

of the atom. Anytime the compiler runs across this atom used as a

free variable, it will compile it as a global variable.

3) Add the atom to the global list GLOBALVARS. Anytime the

compiler runs across this atom used as a free variable, it will

compile it as a global variable.

Macros

A macro is a Lisp form that is evaluated at compile time to produce a Lisp

form that is in turn compiled.

The evaluation of a macro to produce the form to be compiled is

called expanding the macro.

For example: (LIST (CAR ’(PLUS DIFFERENCE)) A B) might be

a macro that when expanded returns the Lisp form (PLUS 33 C)

given that the value of A is 33 and B is C when the macro is

expanded.

Note that the form that gets entered into the compiled function is

(PLUS 33 C). When this compiled function later gets evaluated,

the variables A and B have no effect whatsoever, only the variable

C (which didn’t appear in the macro definition at all) is releveant

to the evaluation.

Contrast the concept of a macro with the following Lisp construction:

(EVAL (LIST (CAR ’(PLUS DIFFERENCE)) A B))

When this form is evaluated, the inner LIST function returns

(PLUS 5 6) given that the value of A is 5 and B is 6. This form is

then evaluated by EVAL.

Note that if this form were compiled, it would be compiled exactly

as is. The value of A and B would not enter into the compiling

process but would appear as variables in the compiled definition

(as they are in the source definition). The value of A and B are

12LispCourse #41: The Compiler and MASTERSCOPE

then used at evaluation time, i.e., when the compiled form is being

evaluated.

Compiler macros are an important part of most Lisp dialects.

Unfortunately, in Interlisp they are relatively poorly implemented and

very clumsy to use. Therefore, macros are not used with high frequency

in Interlisp.

Using Macros

Macros are used very much like functions ž in fact many of the

Interlisp "functions" we have talked about are in fact implemented

as macros.

Example: If TestList is a macro name, then (TestList A B

C) would be a form that calls that macro.

The name TestList cues the interpreter or the

compiler that the TestList macro should be

expanded using A B C as arguments to the

expansion. (Expansion is described below.)

The form that actually gets evaluated or compiled is

the form that results from this expansion.

The original form (TestList A B C) is

basically ignored.

The compiler and the interpreter treat macros slightly differently:

Whenever he compiler encounters a form, it first checks to

see if the CAR of the form is an atom with a macro

definition. If so, it expands the macro (as described below)

and compiles the result of this expansion instead of the

original form.

If there is no macro definition, then the complier

looks to see if the CAR has a function definition.

In contrast, the interpreter looks first for a function

definition and only if one is not found does it look for a

13LispCourse #41: The Compiler and MASTERSCOPE

macro definition for the CAR of a form. If it needs and

finds a macro definition, it expands the macro (as described

below) and evaluates the result of this expansion in place of

the original form.

Defining macros and macro expansion

To define a macro, you need to put a macro definition onto the

property list of the macro’s name under the property MACRO (or

DMACRO).

The definition should be an Lisp form with one of the following

formats:

(List SExpression) ž this is called a substitution macro.

When this macro is expanded, each time an atom appearing

in List appears in SExpression, the corresponding argument

from the macro call (e.g., the A B C in (TestList A B C)) is

substituted in its place. The result is SExpression with

these substitutions.

Example:

If (PUTPROP ’ADD2 ’MACRO ’((X) (PLUS X 2)))

Then (ADD2 (CAR Z)) would expand to (PLUS

(CAR Z) 2)

(LitAtom SExpression) ž When this macro is expanded,

LitAtom is bound to the CDR of the calling form.

SExpression is then evaluated. The result of the expansion

is the result of this evaluation.

This format allows you to compute the SExpression

to be compiled (or evaluated).

Example:

If (PUTPROP ’LIST ’MACRO ’(Args

(LET ((ConsList (CONS NIL NIL)))
(FOR Item IN (REVERSE Args)

14LispCourse #41: The Compiler and MASTERSCOPE

DO (SETQ ConsList
(CONS
 (CONS (QUOTE CONS)

(CONS Item
ConsList))

NIL)))
(CAR ConsList))

Then: (LIST 1 2 3) would expand to (CONS

1 (CONS 2 (CONS 3 NIL))).

(LAMBDA ParamList FunctionDefinition) ž When this

macro is expanded, it simply returns the function call form

generated by using the LAMBDA expresion as the CAR of

the form and the arguments to the macro call as the CDR of

the form.

Example:

If (PUTPROP ’ABS ’MACRO ’(LAMBDA

(X) (COND ((GREATERP X 0) X)(T

(MINUS X)))))

Then (ABS (CAR (LIST 1 3))) would

expand to ((LAMBDA (X) (COND

((GREATERP X 0) X)(T (MINUS X)))))

(CAR (LIST 1 3)))

The purpose of this is to avoid the expense of a

function call in the compiled code, but to make the

source code look and function just like a function

call.

The macro expansion takes care of turning the

(ABS ..) form into an equivalent form that does not

require a function call when compiled.

The bottom line on Interlisp macros

In several years of Interlisp programming, I have written only two

macros.

15LispCourse #41: The Compiler and MASTERSCOPE

On the other hand, there are others, especially those who were

brought up in other Lisp dialects, who use macros quite a bit.

MASTERSCOPE

MASTERSCOPE is a very handy Interlisp package that comes loaded with every

standard Interlisp sysout.

MASTERSCOPE will analyze functions for you, store these analyses in a database, and

then allow you to ask questions about the analyzed functions and their relationships.

The following will be a very brief description of some of the commands available in

MASTERSCOPE. The whole package is fairly complex and will not be covered in detail

here (but see Chapter 13 of the IRM).

MASTERSCOPE has "English-like" commands implemented as a single NLAMBDA-

NoSpread function whose name is ".". Thus all MASTERSCOPE commands consist of a

period followed by a command or "question".

The following are some of the useful commands:

(. ANALYZE ALL ON File) ž analyzes all of the functions on the source file

File. This is usually the first command in a MASTERSCOPE analysis of a set of

functions.

Example: (. ANALYZE ALL ON HOMEWORK34)

(. SHOW PATHS FROM Function) ž opens a window that shows a graph of all

the (analyzed) functions that are called directly or indirectly from Function.

Example: (. SHOW PATHS FROM LC.Eval)

16LispCourse #41: The Compiler and MASTERSCOPE

(. SHOW PATHS TO Function) ž opens a window that shows a graph of all the

(analyzed) functions that directly or indirectly call Function.

Example: (. SHOW PATHS TO LC.Print)

(. WHO CALLS Function) ž returns a list of functions that directly call Function.

Example: (. WHO CALLS LC.Eval) returns (LC.Apply LC.Eval

LC.Cond)

(. WHO USES Variable) ž returns a list of functions that use the variable

Variable.

Example: (. WHO USES Stack) retruns (LC.Bind LC.Unbind

LC.LookupValue LC.SetValue LC.Apply LC.Cond LC.Eval LC.LispApply)

17LispCourse #41: The Compiler and MASTERSCOPE

(. WHO USES AS A RECORD RecordName) ž returns a list of functions that

use the record RecordName.

(. EDIT WHERE ANY CALLS Function) or (. EDIT WHERE ANY USES

Variable) or (. EDIT WHERE ANY USES AS A RECORD RecordName) ž

invokes DEdit on every function that directly calls the function Function (or uses

the variable Variable). The exact form in each function that does the calling (or

using) is selected and centered in the DEdit window when DEdit starts up.

The (. EDIT WHERE ..) command can be followed by a ž and one or more

commands from the TTY Editor. In this case, these commands will be

carried out on the functions instead of invoking DEdit on the functions.

Example: The following will change all varaibles named Stack to

MyStack within the HOMEWORK34 functions.

(. EDIT WHERE ANY USES Stack ž (R Stack MyStack))

MASTERSCOPE actually has many much more specific questions you can ask (e.g., free

variable usage, who fetches from a record, etc.). Consult the IRM for details.

There are some strategies, however, that make MASTERSCOPE work better.

For example: If you have many functions each with a bound variable that has the

same "semantics" in each of the functions, then call that bound variable the same

thing in each function. Naming it the same in each function will not effect the

operation of the functions because its locally bound, but it will make it easy to

change all of the functions at once if you want to change the semantics of the

variable.

In NoteCards. many (maybe 100 in total) functions have a bound variable

called NoteCardID. It was initially called just ID, but at one point a

LinkID was added to many of these functions and we decided to rename

all ID variables to NoteCardID. Luckily we had named them all alike so

that this could be accomplished in a single MASTERSCOPE command.

The bottom line: learn to use the basics of MASTERSCOPE. Its one of the handiest

tools around for writing large programs in Interlisp.

18LispCourse #41: The Compiler and MASTERSCOPE

References

The Interlisp Compiler is the subject of Chapter 12 of the IRM.

Macros are the subject of Section 5.5 of the IRM.

MASTERSCOPE is the subject of Chapter 13 of the IRM.

	OUTLINE01.PDF
	OUTLINE08.PDF
	OUTLINE09.PDF
	OUTLINE10.PDF
	OUTLINE11.PDF
	OUTLINE12.PDF
	OUTLINE13.PDF
	OUTLINE14.PDF
	OUTLINE15.PDF
	OUTLINE16.PDF
	OUTLINE17.PDF
	OUTLINE18.PDF
	OUTLINE19.PDF
	OUTLINE20.PDF
	OUTLINE21.PDF
	OUTLINE22.PDF
	OUTLINE23.PDF
	OUTLINE24.PDF
	OUTLINE25.PDF
	OUTLINE26.PDF
	OUTLINE27.PDF
	OUTLINE28.PDF
	OUTLINE29.PDF
	OUTLINE30.PDF
	OUTLINE31.PDF
	OUTLINE32.PDF
	OUTLINE33.PDF
	OUTLINE34.PDF
	OUTLINE35.PDF
	OUTLINE36.PDF
	OUTLINE37.PDF
	OUTLINE38.PDF
	OUTLINE39.PDF
	OUTLINE40.PDF
	OUTLINE41.PDF

