
The Medley Interlisp Project: Reviving a Historical
Software System

Eleanor Young∗, Larry Masinter†, Herb Jellinek†, Eric Kaltman∗, Abhik Hasnain∗
∗Media and Technology Studies

University of Alberta, Edmonton, Alberta
†Interlisp.org

InterlispOrg Inc., Los Altos, California, United States
esyoung1@ualberta.ca, lmm@interlisp.org, jellinek@interlisp.org, kaltman@ualberta.ca, abhik1@ualberta.ca

Abstract—The Medley Interlisp project is an endeavor in soft-
ware recovery, preservation, and development. It aims to render
Medley Interlisp, the final release of Interlisp, usable on modern
operating systems and hardware environments, and to selectively
add modern capabilities to Medley while conserving its value as
a historically groundbreaking system. This paper describes the
Medley Interlisp project’s past and ongoing operations, decision-
making, and the unique issues encountered in the process of
restoring a historic software system to modern computing envi-
ronments. The Medley Interlisp project’s five years of hardships,
successes, and discoveries regarding the unique issues of software
recovery will help to create a blueprint from which similar long-
term historical software recovery projects may benefit.

Index Terms—software recovery, Interlisp, early programming,
programming languages and software, non-profit organization.

I. INTRODUCTION

The Medley Interlisp project was founded in 2020 by several
original developers of Interlisp and is currently registered
under the name InterlispOrg Inc. as a US 501(c)(3) non-profit
organization. The project aims to revive Interlisp, a software
development environment that was developed primarily at the
Xerox Palo Alto Research Center (PARC) throughout the
1970s and 1980s. Interlisp is an advanced implementation of
LISP, an early programming language that stood alongside
Fortran, COBOL, and ALGOL in the 1950s and 60s.

To the authors’ knowledge, there is no prior work outlining
a concerted software recovery effort aimed at a specific
historical software system. This paper aims to address that
gap by describing the Medley Interlisp project’s five years of
hardships, successes, and discoveries along its unique journey
of software recovery in the hopes that it will create a blueprint
from which similar long-term historical software recovery
projects may benefit.

The following main goals have guided the project’s efforts:
1. Make Medley Interlisp easy to run on all common modern

operating systems,
2. Expand Medley Interlisp’s compatibility with modern

computer peripherals such as modern computer mice,
keyboards, and displays,

3. Implement structural changes that ease interoperability
between Medley Interlisp and modern operating systems
(e.g., allow Medley to use or at least translate to Unicode
encoding standards instead of using Xerox Character

Code Standard (XCCS), access to the system clipboard
for easy copy-pasting, etc.),

4. Continue development of Medley in the form of fixing
bugs, updating Common Lisp compatibility to the ANSI
Common Lisp standard, and completing half-finished
features that remained in the codebase when development
was originally halted,

5. Compile a comprehensive bibliography of documents
pertaining to Interlisp and render it useful to researchers,

6. And, most importantly, conserve Medley Interlisp’s value
as a groundbreaking historical system for historical and
computational research.

All of these goals are subordinate to the final one, as without
fulfilling that goal, the entire project’s purpose falls flat. The
Medley Interlisp project does not aim to simply build an
artifact, but to record and preserve the history and context
that surrounds that artifact by restoring it to a state of modern
accessibility.

II. MEDLEY INTERLISP — HISTORY AND OVERVIEW

As mentioned above, Interlisp was developed at the Xerox
Palo Alto Research Center (PARC) throughout the 1970s and
1980s. Throughout its lifespan, Interlisp supported software
research in AI, computational linguistics, graphical user inter-
faces, hypertext, and other early computing fields, emphasizing
capabilities that facilitated a research-focused development
cycle rather than programming to specifications. Its affinity
for rapid prototyping is something that other software devel-
opment environments lack, even today.

To explain where this unique affinity comes from, we must
dive deeper into Interlisp’s history1 with a brief overview be-
ginning in 1958. Implementation of the programming language
LISP had just begun, led by John McCarthy. From the start,
McCarthy’s goals were to create an algebraic list-processing
language for artificial intelligence research, and throughout
its development created a way to express LISP programs
as data types within LISP, meaning that programs could be

1Much of the history as told in this paper, especially those parts without
other sources indicated, is sourced from conversations with Larry Masinter,
Herb Jellinek, Ronald Kaplan, and other members of the Medley Interlisp
project team who were Interlisp developers at Xerox PARC throughout the
70s and 80s.



written that process and write other programs [1]. Later, LISP
1.5 was implemented on the SDS 940 at Bolt, Beranek, and
Newman, Inc (BBN) and was called BBN-Lisp. In 1970, pro-
grammers Warren Teitelman, Daniel Bobrow, Alice Hartley,
Peter Deutch, and others contributed key features to BBN-
Lisp that would later become hallmarks of its next iteration,
Interlisp. Some of these features are the Do-What-I-Mean
system, History package, and, within the History package, the
first UNDO function [2].

The Do-What-I-Mean (DWIM) system, conceived of and
designed by Warren Teitelman, is a semi-intelligent autocor-
rect for simple programming errors. When enabled, DWIM
causes Interlisp to call the FAULTEVAL (or similar) function
whenever an error is encountered instead of throwing an error
as normal. This function then automatically corrects simple
mistakes in the code and continues running the program,
only noting that a change was made — doing what the
programmer meant, not what they actually typed. If an error
is determined to be potentially correctable, but the measured
‘distance’ between a correction and the error is past a certain
threshold, the program stops and requests user confirmation
for a change; if yes, the change is made and the program
continues as normal. DWIM is a realization of Teitelman’s
idea that human time is more important than computer time
[2].

The History package was the first of its kind. Instead of toss-
ing away the information contained in operations performed by
the user, the History package tracks the history of operations
and allows their examination and resubmission, often with
substitutions. This feature is now a staple of modern terminal
windows. The UNDO function, then, can use the recorded
information about each operation to reverse operations entirely,
including any changes they made when first performed. The
UNDO function also allows the user to undo operations out-
of-order, e.g., the user can make six changes via six different
operations, UNDO only the first operation, and the information
changed by the first operation would revert without affecting
the intervening operations. An entire edit session can also be
undone, if the user wishes [2].

All three of these key features were introduced in 1970,
when Interlisp was still BBN-Lisp. In 1972, Daniel Bobrow
and Warren Teitelman left BBN and joined the newly formed
Xerox Palo Alto Research Center. BBN and PARC continued
supporting BBN-Lisp, with BBN handling low-level develop-
ment and PARC taking over the LISP-based software package
and utility development. To acknowledge that BBN-Lisp’s
development was no longer solely at BBN, its name changed
to Interlisp after the move. Years of development at PARC
resulted in further extensions to Interlisp (such as an advanced
graphical window system in 1976), and in 1982, Interlisp-
D was developed for Xerox PARC’s computer workstations,
fittingly called D-Machines [2].

D-Machines were high-performance personal workstations
that ran pure Interlisp, all the way down. The operating
system, development environment, file manager, debugger,
display settings, window manager, and everything else were

all written in Interlisp-D, which was a further extended version
of Interlisp that included, among other features, the ability to
operate within a graphical user interface.

Since every part of the system is written in the language of
development, every aspect of the system is entirely modifiable
without ever leaving Interlisp; programs themselves are stored
as lists and can be manipulated like any other list can, allowing
programs in Interlisp, like LISP, to write other programs. Over
the next twelve years, Interlisp-D underwent various releases
and, in 1985, began incorporating compatibility with parts
of Common Lisp, another popular LISP dialect. 1988 saw
the Medley 1.0 release, which ran on all Sun Microsystems
workstations with SunOS, and in other Unix-based systems
such as IRIX, AIX, HP-UX, and Ultrix.

In 1989, Xerox stopped supporting Interlisp development,
instead passing the reins to Venue, a corporation headed by ex-
PARC Interlisp developer John Sybalsky, with the agreement
that Venue would maintain and develop Interlisp in exchange
for the right to make derivative works. In 1992, Venue released
Medley 2.0 for the MS-DOS 4.0 and the Xerox Daybreak,
the last of the D-Machines. Interlisp won the ACM Software
System Award in that same year.

After this point, Medley’s history becomes much fuzzier. It
is unclear exactly when development stopped, but scattered
documentation shows that in 1999 Venue was distributing
Medley 3.5, and somewhere between then and 2009, the
year Sybalsky passed away, Medley’s development ceased.2

The version with which the Medley Interlisp project resumed
development in 2020 was a fractured and in-development
version of Medley 3.5, gathered from the remnants of the
Venue corporation and an employee of Venue.3

This is all to say: Medley is the final version of Interlisp,
which is a dialect of LISP, and runs in a self-contained environ-
ment that is entirely written in Interlisp; the operating system,
the debugger, the development environment, the application
being developed, and everything else are all written with the
same toolkit. As a residential programming environment [3],
mastery of Medley allows for rapid prototyping and a level
of interactivity and customizability of the programming envi-
ronment not found in modern systems. The effort to preserve
and modernize Medley serves to both continue development
of a system unique to those available today and to conserve
and perhaps even bring attention to ideas of exploratory
research-focused programming and residential programming
environments embodied in the system.

III. THE ROAD TO REVIVAL — BARRIERS TO PROGRESS

The project has encountered many challenges in its efforts
to recover Medley, some more unique to the project’s situation
than others.

Perhaps most obviously, Medley Interlisp is old. The orig-
inal developers on the project returned to Medley’s develop-

2R. Kaplan, Co-Founder, InterlispOrg Inc., personal communication.
3These ‘dark ages’ of Medley could potentially be illuminated via thorough

investigation of email records obtained from Venue, but the project team has
not prioritized this so far.



ment having spent 30 years away from Interlisp. The process
of relearning Medley has been a gradual and constant one and,
as one might expect, has slowed progress at times. Members
who did not previously know Medley have had to devote time
to a system whose learning curve has been described as almost
vertical [4]. This situation is exacerbated by the scattered state
of Medley’s documentation. Further, some of the project’s
members who have been uninvolved in software development
for several decades have had to devote time to learning more
modern software development tools, such as Docker and Git,
which did not exist when they were last in the field.

Medley is also far from bug-free [5]. As a natural conse-
quence of bringing a program from before the turn of the
millennia into the 21st century, some Y2K bugs in Medley
have been found (and fixed) and there are likely more still
undiscovered. Important aspects of system architecture have
also changed, such as how Medley was originally built for big-
endian systems, but virtually all modern personal computers
are now little-endian.

Further, Interlisp’s implementation was based around a
virtual machine with an instruction set specifically designed
to support LISP operations [6]. On the D-Machines, the
LISP virtual machine was implemented in microcode (small,
extremely low-level instructions for the computer). However,
when attempting to port Interlisp-D to more modern non-D-
Machine hardware (initially Sun Microsystems’s SPARCsta-
tions, circa 1989), which could not be microcoded, the virtual
machine implementation had to be rewritten in C so that it
could compile down to the host operating system’s native
instruction set. This virtual machine implementation in C,
developed with collaboration between Xerox PARC and Fuji
Xerox, is called Maiko and is still in place with Medley today.
As part of the project’s work, Maiko had to be updated and
now must be maintained to allow Medley to continue to ‘play
nice’ with modern operating systems while remaining accurate
to its behavior on D-Machines.4

Furthermore, as mentioned in the previous section, Medley
was not finished; the project resumed development from
several large fragments of Medley from at least three dif-
ferent sources which were all slightly different versions.5

The project’s initial work went almost exclusively towards
investigating these fragmented pieces of Medley, discovering
where they fit together, then actually fitting those pieces
together to end up, after a whole year, with a build of Medley
that actually worked. This is all in addition to the codebase
containing numerous incomplete implementations of features
which also had to be identified, deciphered, and implemented
after a 30-year break from so much as thinking about the
system itself.

In the process of relearning Medley, the project also en-
countered issues with Interlisp’s documentation. There are
multiple large reference documents for Interlisp, all of which
are partially out of date for the version of Medley the project

4N. Briggs, Member, InterlispOrg Inc., personal communication.
5L. Masinter, Co-Founder, InterlispOrg Inc., personal communication.

is working with. The most recent documentation (which is still
not accurate to Medley’s current implementation) is the Medley
Language Reference published in 1993 under Venue, which
encompasses a hefty 787 pages. There exist other publications,
but in addition to being out-of-date, much of their contents
were never validated prior to publishing. Further, the actual
tools of documentation, all of which are written in Interlisp,
still require substantial recovery work before full functionality
is restored.

The work done in the Medley Interlisp project is volunteer-
driven. If the project wishes to spend funds on anything, it
must either come from a grant, or from the private funds
of someone generous enough to donate to its efforts. This
also, of course, means that the project is dependent on the
willingness of its members to volunteer their time and effort
toward Medley’s recovery.

Lastly, a specific goal of the project is to update Medley
Interlisp’s Common Lisp implementation to the 1994 ANSI
Common Lisp standard. The project possesses a chunk of
code that would bring Medley significantly closer to the ANSI
standard; however, it consists of approximately 90,000 lines of
code in total, and it would need to be implemented in the ‘guts’
of Medley itself. Additionally, since Medley development has
certainly diverged from the implementation this code was
originally designed for, incorporating it now would be a major
effort, requiring extensive time and expertise on the part of
experienced developers familiar with Medley.

IV. A SURVEY OF CURRENT PROGRESS

This section covers what the Medley Interlisp project has
been working on and what it has accomplished so far, along
with some notes on what remains to be done.

A. Building Membership

The Medley Interlisp project attracted its current member-
ship by proactive outreach and communication regarding the
project’s needs at various events [7]. The project had specific
initiatives for which its members opened the door for focused
assistance, such as: bibliographical maintenance, LispUsers
(user contributed packages) documentation, and outreach in
the form of video demonstrations and tutorials of various key
Medley features. The project team made calls for contributions
towards these initiatives and more at related symposiums or
conferences they attended. The project remains open-source
on GitHub today and still relies primarily on volunteer efforts
of interested individuals to perform its work.

Members contribute to the project for a variety of reasons.
Some members of the project team have specific goals related
to Interlisp in mind, ranging from linguistic theory research,
running applications that were built in Interlisp, or reclaiming
the development cycle that Medley Interlisp allowed, but
others contribute for the sake of curiosity, learning more about
Medley, and the excitement of bringing a historical system
like no other to the present. The eventual goal of the project’s
recruitment efforts is to achieve ‘escape velocity’, as put by



Fig. 1. Medley running on a Windows 10 system [8].

Larry Masinter.6 Currently, the project’s founders constitute a
substantial portion of its active membership. In investing effort
into outreach and recruiting new members whenever possible,
the project hopes to increase the chance that it will continue
to live even should its founders and current core membership
no longer be able to contribute.

B. Modernizing Medley

The main body of work has gone into tinkering with the
software of Medley itself. Medley has been updated to run on
modern operating systems such as Linux, macOS, Windows
10 and 11, and more (see Fig. 1) [8]. A system called
“Medley Online” has also been developed, which runs Medley
in a Docker container that users access through a virtual
network computing (VNC) connection [9]. Any files created
are stored entirely within the Docker container, and users
can save files after making an account. Without an account,
users can still access the unrestricted system. This enables
users to experience Medley without installing a single piece
of software on their own machines so long as they have an
internet connection, drastically raising accessibility; Medley
could even be accessed in a place such as a public library
with virtually no additional hassle. There is also a version
of Medley Online that uses WebAssembly to run in a user’s

6L. Masinter, Co-Founder, InterlispOrg Inc., personal communication.

browser itself; it is currently in an experimental state and still
under development, but accessible [10].

A software package called GITFNS (FNS being shorthand
for “functions” — a common naming scheme in Medley) has
also been developed for Medley [11]. This software package
allows Medley to interact directly with the Git version control
system in a variety of ways. Integrating with and adapting to
modern software development is especially important due to
Medley’s own affinity for easing development cycles; with ac-
cess to easy communication between Medley and Git, Medley
is able to integrate with Git-based development rather than
acting merely as an interesting alternative or even a stick in
the proverbial bike wheel. With GITFNS, Medley can more
easily coexist in the modern software development landscape.

Though Medley’s implementation of Common Lisp is still
out of date from the 1994 ANSI Common Lisp standard, the
project has implemented LOOP, a major iteration construct
present in the ANSI standard [12]. While there are still many
discrepancies between Medley Common Lisp and the ANSI
standard, LOOP’s implementation is a large step that had
significant impact without requiring prohibitive amounts of
time or expertise.

As for updates that allow Medley to more easily interact
with modern systems, a clipboard function has been imple-
mented in Medley. The software package enables copying,
cutting, and pasting into and out of Medley using the system



TABLE I
OUTDATED ENTRIES IN THE GLOSSARY OF Medley for the Novice.

Glossary Entry Definition
button (1)(n.) A key on a mouse.

(2)(v.t.) To press one of the mouse keys when
making a selection.

menu A way of graphically presenting you with a set
of options. There are two kinds of menus: pop-
up menus are created when needed and disappear
after an item has been selected; permanent menus
remain on the screen after use until deliberately
closed.

mouse The mouse is the box attached to your keyboard.
It controls the movement of the cursor on your
screen. As you become familiar with the mouse,
you will find it much quicker to use the mouse
than the keyboard.

Mouse Cursor The small arrow on the screen that points to the
northwest.

window A rectangular area of the screen that acts as the
main display area for some Lisp process.

clipboard. Medley was originally built using Xerox Character
Code Standard (XCCS) and uses it by default when reading
and writing files. However, Medley also now has built-in input-
output facilities for converting between XCCS and UTF-8
Unicode, meaning that Unicode poses no barrier for reading
files into or printing files out of Medley. In the case of the
clipboard functionality, pasting text outside of Medley converts
the text from XCCS to the operating system’s encoding as
determined by the SYSTEM-EXTERNALFORMAT variable
in Medley — which will, in nearly every case, be UTF-8
Unicode.

C. Medley Primer

In working to update and ease Medley’s documentation and
learning curve respectively, the Medley Primer, also called
Medley for the Novice, has been undergoing extensive review
and overhaul, and is currently in the middle of a rewrite. The
overall goal is to review and polish the document’s content
while improving its pedagogical value for beginners to Med-
ley Interlisp. In the process of reviewing, restructuring, and
rewriting such an old document, the project has encountered
several interesting issues.

The Primer has several instances of accurate-yet-outdated
information. Its glossary defines a variety of terms still useful
today, but also some that, in the modern day, become some-
what redundant. Some examples, taken verbatim (peculiarities
of capitalization included) from the Primer’s glossary, are
shown in Table I.

For most users, this information is entirely superfluous.
Even describing a mouse as “the box attached to your key-
board” is often untrue, since most modern computer setups
have their mice plugged into a USB port on the computer
itself rather than the keyboard, or connect wirelessly; and yet,
these entries have a certain charm about them. They offer a
view of the time that Medley was created in, which can be
valuable historical information in its own right (or, at least,

worth a few chuckles as someone scrolls through). For those
unfamiliar with early computing, whether due to not being
born yet or simply not being involved at the time, these entries
can also serve as contextualizing information, showing that
these matter-of-fact features of computing were at one time
new and warranted defining.

Considering the historical value of these almost-
parachronistic definitions, we have chosen to let them
remain in the Primer. Though we have yet to decide its exact
form, we plan to flag these entries in some way as historical
— perhaps with a particular color, or even an antiquated
clock emoji. Whatever the eventual specifics, the aim is to
highlight the historical value their presence provides to the
Primer while ensuring the Primer presents itself as a current,
updated beginner’s introduction to Medley. We anticipate
other historical software recovery projects will have similar
encounters when sifting through old documentation and we
encourage their members to also consider the historical value
of these parachronisms.

As we reconsider the Primer’s previous approach to ped-
agogical design, we have returned to asking foundational
questions about the Medley system’s purpose and benefits
for newcomers. How did Interlisp and Medley ask users to
think differently in response to the standard mindset around
programming of that time? What new culture did this system
promote and encourage? What framework and lens should
readers adopt as they dive into the Primer? What does this
Primer aim to achieve, three decades of advancements later,
situated in the current socio-technological climate? And more
broadly, what is the relationship between the reader and the
text? Staying true to technical writing conventions of that
time, the Primer often took liberties in establishing a formal,
distanced relationship with readers. The resulting tone and
narrative uses passively voiced sentence structures delivered
prescriptively, simple but independent examples to demon-
strate various features of Medley and Interlisp, and encourages
readers to learn intertextually. In contrast, breathing new life
into this legacy Primer thirty years later requires a signifi-
cant reframing of this document’s self-presentation (and self-
preservation) tactics. A necessary shift, from a Primer for
a once-novel software environment for exploratory program-
ming, to a Primer for a digital playground for exploration of
historical digital artifacts, processes, systems, and conventions.

Our intended readers range from students in software ar-
chaeology courses, to one-stop hobbyists, to seasoned pro-
grammers, to researchers of computer history. The modernized
Primer addresses two realities of these audiences: (a) readers
with fleeting interests who are not quite ready to commit to
a lengthy intertextual learning process of a complex system
and a programming language new to them, and (b) readers
who are well-versed in computer systems, comfortable with
programming and are looking for adventures beyond the fun-
damentals. In acknowledgment of both use cases, our ongoing
rewrite combines a few solutions: (1) an introduction to the
Primer that contextualizes Interlisp and Medley in history and
establishes why they were important to programming, what



readers can gain from this text, and how they should think
about engaging with this system; (2) an authorship style that
is personable, direct, and inclusive; (3) projects to complete,
encompassing each section/chapter, which act as hooks that
ground the learning process in solving interesting problems
rather than unguided exploration; (4) broader projects and
additional resources for further research and creation.

D. Interlisp Bibliography

The Medley Interlisp project continues to build and maintain
an Interlisp bibliography, hosted in Zotero. The bibliography
is intended to be an exhaustive enumerative bibliography,
aiming to collect any and all works related to Interlisp and its
various versions. This ranges from academic articles, reference
manuals, software package documentation, advertisements in
magazines, video lectures, and more. It also includes files and
associated metadata for anything that discusses or pertains to
Interlisp, Interlisp’s development history (such as some LISP,
BBN-Lisp, and Common Lisp items), or applications built in
Interlisp. Essentially, the bibliography’s scope encompasses
anything and everything directly related to Interlisp as a topic.

Items were added to the bibliography from personal col-
lections and light searching based on project members’ own
knowledge of notable works, such as Interlisp Reference
Manuals, textbooks, and other notable publications.

Until recently, the bibliography was highly disorganized.
Recent efforts have been made to tag items within the bibli-
ography, clean up metadata, date and acquire digital files for
as many entries as possible, and reorganize the bibliography’s
hierarchy. Some time has also been devoted to removing
irrelevant items, or at least setting them aside. Initially, items
were added to the bibliography in large groups, and this
resulted in some entries that did not fit the above qualifications
of relevance to Interlisp. We would have benefitted from
clearer bibliographic standards from the start, or at least a more
thoroughly defined organization schema, so that documents
could have been tagged as they entered the bibliography.

The bibliography can be useful to a range of people,
from computer historians to software developers working in
Interlisp, or even those more casually interested in early
programming (or specifically Interlisp). Of the documents
referenced in the bibliography, the project hosts as many as
possible in Zotero or on the project’s website, [13], linking
to external repositories only when necessary; the exceptions
to this are stable external repositories, such as the Internet
Archive.

V. EXTERNAL COLLABORATION — FREELANCERS AND
UNIVERSITIES

The Medley Interlisp project has collaborated on several oc-
casions with external groups, some instances more successful
than others. This section will briefly describe each instance.

A. Independent Freelancer Collaboration

In 2021, the project’s members were seeking bibliographic
expertise to assist with tidying up many unsorted, untagged,

and generally disorganized items in the Interlisp bibliography
shortly after its inception. To this end, the project briefly hired,
through the freelancer marketplace Fiverr, a small number of
freelancers that had proficiency in Zotero. While contracted,
these freelancers went through many items in the bibliography
and added tags and other metadata.

This process highlighted some difficulties in working with
external parties, however. Due to their tenuous involvement
with the project and lack of experience with Interlisp and
adjacent topics, the freelancers’ tagging of items in the bib-
liography was often surface-level, or even inconsistent and
inaccurate. They were also unable to meaningfully assist with
the broader organization of the bibliography. This was largely
due to their lack of familiarity with the Medley Interlisp
project’s niche situation; gaining that familiarity requires time
spent embedded within the project, its history, and its goals.

B. University Collaboration

The project found more fruitful collaboration with the
Software History Futures and Technologies (SHFT) group,
a post-secondary research group led and organized by Eric
Kaltman. Through SHFT, the Medley Interlisp project initially
hired several California State University Channel Islands un-
dergraduate students to assist with the project’s work in 2023.
These students assisted in ways such as tagging bibliography
items and filling metadata, as well as public outreach in
the form of several tutorial videos uploaded on the project’s
YouTube channel.

More recently, since May 2024 the project has been col-
laborating with two University of Alberta (UA) graduate
students, authors Young and Hasnain, funded as Graduate
Research Assistants half by the project’s funds and half by
the UA’s departmental funding. Young and Hasnain have
worked primarily on the Interlisp Bibliography, the Medley
Primer rewrite alongside other introductory documentation,
and publications such as this one.

The project found that its more prolonged collaboration with
students through SHFT was more fruitful than hiring free-
lancers for two reasons. First, students interested in historical
software recovery and computer history can be recruited from
departments relevant to the project’s needs, which provides
these collaborators with a higher baseline upon which to build
than in the case of a freelancer unspecialized in the project’s
niche. Second, universities can sometimes assist in providing
funding for the students, easing some of the burden on the
project’s own limited funds; this then facilitates the embedding
of external collaborators for longer periods of time, which
increases their familiarity with Medley and the project as a
whole, and, consequently, their ability to assist the project’s
efforts.

VI. CONCLUSION

As technology continues to advance, thousands of pieces
of software are inadvertently left by the wayside. Though
Interlisp and Medley are largely forgotten, the Medley Interlisp
project finds significant value in considering what useful things



might have been left behind in obsolete systems such as these.
Viewing historical software systems as an opportunity, the
Medley revival effort is predicated on the idea that modern
software development could benefit from some of the ideas
infused into obsolete systems. Many of these ideas are no
longer present in the modern programming canon not because
they were bad ideas, but due to things like lack of support
over time or shifting focus to newer and ‘fresher’ technologies
without realizing how useful some ideas would remain in the
future. To reexamine these ideas or merely document their
existences, software recovery efforts like the Medley Interlisp
project are needed. Many historical software systems no longer
used in the modern day are endangered; they can still be saved
by intentional efforts, but may be lost completely if nothing
is done.

Above, we outlined the history of Interlisp and the Medley
Interlisp project, broadly described the project’s roadblocks,
and gave an overview of its current progress. We also ad-
dressed the project’s involvement with external organizations,
whether freelancers or university research groups, and outlined
the three authors from UA’s involvement with the project’s
efforts. Recovering a seminal software system such as Medley
opens the door for all levels of historical research focused on
early computing environments. We hope that in documenting
the Medley Interlisp Project’s efforts, other software recovery
efforts may benefit from an example that came before. While
we did not have this benefit, the project’s approach from the
start has, in a way, embodied the exploratory programming
paradigm that has undergirded Medley all along (and, fittingly
echoes the LISP read-eval-print loop): devise, build, deploy,
gather user feedback, refine, deploy, gather user feedback,
refine, deploy, gather, refine, deploy, gather, again and again,

until we went from having little clue what we were doing, to
proving something about why software recovery efforts have
been and will continue to be worthwhile for generations of
software past and future.

REFERENCES

[1] B. Liskov, J. McCarthy, and P. Abrahams, “LISP SESSION,” in His-
tory of Programming Languages, Elsevier, 1981, pp. 173–197. doi:
10.1016/B978-0-12-745040-7.50009-0.

[2] W. Teitelman, “History of Interlisp,” in Celebrating the 50th Anniversary
of Lisp, in LISP50. New York, NY, USA: Association for Computing
Machinery, Oct. 2008, pp. 1–5. doi: 10.1145/1529966.1529971.

[3] E. Sandewall, “Programming in an Interactive Environment: the “Lisp”
Experience,” ACM Comput. Surv., vol. 10, no. 1, pp. 35–71, Mar. 1978,
doi: 10.1145/356715.356719.

[4] P. Amoroso, “My encounter with Medley Interlisp,” Paolo
Amoroso’s Journal. Accessed: Mar. 10, 2025. [Online]. Available:
https://journal.paoloamoroso.com/my-encounter-with-medley-interlisp

[5] “Medley Interlisp project GitHub Issues,” GitHub. Accessed: May 22,
2025. [Online]. Available: https://github.com/Interlisp/medley/issues

[6] J. S. Moore, “The Interlisp Virtual Machine Specification,”
Xerox Palo Alto Research Center, 1976. [Online]. Available:
http://www.bitsavers.org/pdf/xerox/parc/techReports/CSL-76-
5 The Interlisp Virtual Machine Specification.pdf

[7] “News and Status Reports,” The Medley Interlisp Project. Accessed:
May 22, 2025. [Online]. Available: https://interlisp.org/project/status/

[8] “Install and Run,” The Medley Interlisp Project. Accessed: Mar. 16,
2025. [Online]. Available: https://interlisp.org/software/install-and-run/

[9] “Access Medley Online,” The Medley Interlisp Project. Accessed:
Mar. 16, 2025. [Online]. Available: https://interlisp.org/software/access-
online/

[10] “Medley running in WebAssembly.” Accessed: Mar. 16, 2025. [Online].
Available: http://wasm.interlisp.org/medley.html

[11] Kaplan, Ronald M., “GITFNS.” Medley In-
terlisp Project, May 2022. [Online]. Available:
https://files.interlisp.org/medley/lispusers/GITFNS.TEDIT.pdf

[12] “Implement the LOOP Common Lisp macro · Issue #1578 · In-
terlisp/medley,” GitHub. Accessed: May 22, 2025. [Online]. Available:
https://github.com/Interlisp/medley/issues/1578

[13] “Interlisp Bibliography,” The Medley Interlisp Project. Accessed: Mar.
17, 2025. [Online]. Available: https://interlisp.org/history/bibliography/


